

 Date: February 2010

GIOP Compression

Version 1.0

OMG Document Number: formal/2010-02-05
Standard document URL: http://www.omg.org/spec/ZIOP/
Associated Schema File(s)*: http://www.omg.org/spec/ZIOP/20090501

* Source document: ptc/09-05-08 (IDL)

Copyright © 2007, IONA Technologies, PLC
Copyright © 2008-2010, Object Management Group
Copyright © 2007-2009 Remedy IT
Copyright © 2008-2009, Telefónica Investigación y Desarrollo S.A.Unipersonal

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS
MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ...iii

1 Scope ... 1

2 Conformance .. 1

3 Normative References ... 1

4 Terms and Definitions .. 1

5 Symbols ... 2

6 Additional Information .. 2
6.1 Overview of this Specification ...2
6.2 Changes to Adopted OMG Specifications ..2
6.3 How to Read this Specification ...2
6.4 Acknowledgements ...2
6.5 Proof of Concept ...3

7 Description .. 3
7.1 Goal ..3
7.2 ZIOP Overview ..3
7.3 Compression Module Interfaces ...3

 7.3.1 Compressor Interface ... 4
 7.3.1.1 CompressionException .. 4
 7.3.1.2 compress .. 5
 7.3.1.3 decompress .. 5
 7.3.1.4 compressor_factory .. 5
 7.3.1.5 compression_level ... 5
 7.3.1.6 compressed_bytes ... 5
 7.3.1.7 uncompressed_bytes ... 5
 7.3.1.8 compression_ratio.. 5

 7.3.2 CompressorFactory Interface ... 5
 7.3.2.1 compressor_id .. 5
 7.3.2.2 get_compressor ... 6

 7.3.3 CompressionManager Interface ... 6
 7.3.3.1 register_factory .. 6
 7.3.3.2 unregister_factory .. 6
 7.3.3.3 get_factory ... 6
 7.3.3.4 get_compressor ... 7
 7.3.3.5 get_factories .. 7

 7.3.4 Compression Usage Scenario ... 7
GIOP Compression, v1.0 i

7.4 ZIOP Protocol ..7
 7.4.1 ZIOP Messages .. 7
 7.4.2 ZIOP Message use... 8
 7.4.3 ZIOP Compression Policies ... 9

 7.4.3.1 CompressionEnablingPolicy interface .. 9
 7.4.3.2 CompressorIdLevelListPolicy interface .. 9
 7.4.3.3 CompressionLowValuePolicy interface .. 10
 7.4.3.4 CompressionMinRatioPolicy interface ... 10

 7.4.4 Propagation of ZIOP Compression Policies ... 10
 7.4.5 ZIOP Usage Scenario .. 10

 7.4.5.1 Client .. 10
 7.4.5.2 Server ... 11

Annex A - Compression IDL.. 13

Annex B - ZIOP IDL .. 15

Index ... 17
ii GIOP Compression, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices
GIOP Compression, v1.0 iii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
iv GIOP Compression, v1.0

1 Scope

This specification defines a compression mechanism for the CORBA GIOP protocol. Such a mechanism provides a way
for servers to publish objects that accept compressed requests and for clients to make compressed invocations. Pluggable
compression algorithms could additionally be defined by clients.

2 Conformance

This specification defines an optional CORBA conformance point. In order to claim ZIOP compliance an ORB
implementation must support the following conformance point:

• ZIOP - The ORB implements the ZIOP wire protocol and the ZIOP module policy interfaces for controlling it, with
support for at least the zlib algorithm.

When an ORB claims ZIOP compliance it optionally can claim the following ZIOP compliance point:

• Pluggable compression - The ORB implements the Compression module interfaces, and the registered
CompressorFactory instances are available for use by ZIOP.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• OMG CORBA 3.1 specification: Part 1 Interfaces: formal/2008-01-04 or formal/2008-01-05 (changebarred version).

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative reference and the following apply.

Policy

The term policy in this document describes CORBA objects that implement the CORBA::Policy interface. See CORBA
3.1 specification: Part 1 Interfaces: formal/2008-01-04 or formal/2008-01-05 (changebarred version), Section 8.8.

Compressor

An entity that provides compression and decompression of octet sequences.

CompressionRatio

The numerical relation between compressed and original uncompressed sequences.
GIOP Compression, v1.0 1

5 Symbols

List of symbols/abbreviations.

ZIOP - Zipped Inter-ORB protocol

GIOP - Generic Inter-ORB protocol

ORB - Object Request Broker

CORBA - Common Object Request Broker Architecture

IOR - Interoperable Object Reference

6 Additional Information

6.1 Overview of this Specification

This specification describes the compression and ZIOP additions to the CORBA specification. The intended audiences are
CORBA vendors and users.

6.2 Changes to Adopted OMG Specifications

This specification adds the following to the CORBA 3.1 specification:

• A set of new POA Policies: CompressionEnablingPolicy, CompressionIdLevelListPolicy,
CompressionLowValuePolicy, CompressionMinRatioPolicy.

• A new initial reference retrievable from the ORB’s resolve_initial_references operation: CompressionManager.

• A new ZIOP message with compressed data.

6.3 How to Read this Specification

The rest of this document contains the technical content of this specification.

6.4 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Dion Picco, IONA Technologies, The IONA building, Shelbourde Road, Dublin 4, Ireland, dion.picco@iona.com

• Johnny Willemsen, Remedy IT, Postbus 101, 2650 AC Berkel en Rodenrijs, The Netherlands, jwillemsen@remedy.nl

• Alvaro Vega García, Telefónica I+D, C/ Emilio Vargas 6, 28043 Madrid, Spain avega@tid.es
2 GIOP Compression, v1.0

6.5 Proof of Concept

This specification describes the ZIOP pluggable protocol implemented in TIDorbJ and TIDorbC++ by Telefonica I+D and
TAO by Remedy IT.
GIOP Compression, v1.0 3

4 GIOP Compression, v1.0

7 Description

7.1 Goal

CORBA is deployed in numerous areas where the bandwidth is restricted. Such environments may operate with
antiquated network infrastructure, or the network infrastructure may be overloaded. In such environments, reducing the
bandwidth used by each communication request made between a client and server is desirable.

An example of such an environment is aviation, where a relatively large amount of information (such as flight charts,
passenger and route data) must be passed to a remote location in a timely manner. Another example would be retail
banking, particularly in developing economies, where remote bank branches may be connected to a central server only
over a dial-up modem connection.

A rise on the CPU overload is expected in this environment in order to reduce data length to be transmitted by the wire.
It is needed to define a configurable way to indicate in which circumstances (source data length, compressed ratio
obtained) compression is applied or not.

7.2 ZIOP Overview

The new ZIOP protocol applies compression to GIOP, it is the same as GIOP Compression. ZIOP is the way to introduce
compression between CORBA parties with the aim to reduce the amount of data to be transmitted on the wire. In a
CORBA communication that uses ZIOP protocol, the GIOP message is compressed using a specific compression
algorithm. For this purpose a compressed message is defined as ZIOP message.

A set of new compression CORBA Policies related with ZIOP are defined to activate and communicate to other ORBs the
available compression functionalities.

The compression features will be provided to ZIOP protocol by some entities. The Compressor will be in charge of basic
compression and decompression operations. The CompressorFactory will create Compressors and then
CompressorFactory will be registered by the CompressionManager interface.

ORB vendors may deliver ZIOP through pluggable compressors or support a standard and well known compression
algorithm.

7.3 Compression Module Interfaces

The Compression module provides a set of interfaces to create and register entities that provide compression and
decompression functionalities. These features may be used in stand-alone mode to obtain compressed and decompressed
CORBA octet sequences, or internally by the ORB to compress GIOP messages when the ZIOP protocol is enabled.

The Compressor interface is an abstraction that provides the basic mechanism to compress and decompress CORBA octet
sequences. The compressor collects statistical information about its compression. A specific compressor is identified by
its CompressorId. CompressorIds are maintained by the OMG, vendors and users must request specific CompressorIds for
their own compressors.

The CompressorFactory interface is a factory to create different compressors using a particular algorithm depending on its
compression level.

The CompressionManager interface is an ORB initial reference for register CompressorFactories depending on its
compression algorithm.
GIOP Compression, v1.0 3

All these entities, Compressor, CompressorFactory, and CompressionManager are local CORBA interfaces.

The Compression module provides the way to easily create custom compressors. The procedure involves two steps.

• First, the user provides an implementation of CompressorFactory and Compressor interfaces.

• Second, this new custom CompressorFactory must be registered in the CompressionManager to make it accessible
through the ORB services.

The zlib compressor must be provided by default and may be used easily as another CORBA feature. Also it must be
possible to implement a new custom compressor by implementing the Compressor interface.

7.3.1 Compressor Interface

This interface is an abstraction of a specific algorithm for compression and decompression. All different algorithm
implementations will support this common interface.

// IDL
module Compression {

exception CompressionException {
long reason;
string description;

};
typedef CORBA::OctetSeq Buffer;
typedef unsigned short CompressionLevel;
typedef float CompressionRatio;
local interface Compressor {

void compress(
in Buffer source,
inout Buffer target)

raises (CompressionException);
void decompress(

in Buffer source,
inout Buffer target)

raises (CompressionException);
readonly attribute CompressorFactory compressor_factory;
readonly attribute CompressionLevel compression_level;
readonly attribute unsigned long long compressed_bytes;
readonly attribute unsigned long long uncompressed_bytes;
readonly attribute CompressionRatio compression_ratio;

};
};

7.3.1.1 CompressionException

This exception is thrown when compress or decompress fails. The reason can be used by the concrete compressor
implementation to give some feedback on the technical reason of the failure. This could be used by application mode when
they are aware of the concrete compressor and their list of possible reasons. Because there are a lot of different compression
algorithms with different possible error reasons we don’t want to attempt to list all possible error reasons. When the underlying
compression algorithm has the possibility to retrieve an error string this will be put in the description field.
4 GIOP Compression, v1.0

7.3.1.2 compress

This operation compresses the data contained in a source buffer into the target buffer. If an error occurs during the compression,
it throws a CompressionException. The buffer is an octet sequence that could be extended with ORB specific operations.

7.3.1.3 decompress

This operation decompresses the data contained in the source buffer into the target buffer. If an error occurs during the
decompression, it throws a CompressionException. The buffer is an octet sequence that could be extended with ORB
specific operations.

7.3.1.4 compressor_factory

This attribute represents the object reference to CompressorFactory that created this Compressor.

7.3.1.5 compression_level

This attribute represents, for the specific algorithm, the compression level that will be applied using this Compressor. For
ZIOP we define that 0 means no compression, 1 low compression, 9 the highest compression available.

7.3.1.6 compressed_bytes

This attribute represents the total number of compressed bytes written by this compressor during compression (i.e., the
“target” argument of Compressor::compress). This information could be useful for statistical purposes.

7.3.1.7 uncompressed_bytes

This attribute represents the total number of uncompressed bytes read by this compressor during compression (i.e., the
“source” argument of Compressor::compress). This information could be useful for statistical purposes.

7.3.1.8 compression_ratio

This attribute represents the compression ratio achieved by this compressor. The ratio must be obtained with the following
formula: compressed_bytes / uncompressed_bytes.

7.3.2 CompressorFactory Interface

The CompressorFactory interface allows the retrieval of a Compressor with a particular algorithm implementation.
Compressors are retrieved for a specific compression level.

// IDL
local interface CompressorFactory {

readonly attribute CompressorId compressor_id;

Compressor get_compressor(in CompressionLevel compression_level);
};

7.3.2.1 compressor_id

This attribute represents the specific compression algorithm associated with this CompressorFactory. All Compressors
retrieved from this factory use this algorithm.
GIOP Compression, v1.0 5

7.3.2.2 get_compressor

This operation retrieves a Compressor instance with the given compression level. Calling this operation multiple times
with the same compression level should return the same instance. The CompressorFactory is responsible for managing the
lifetime of the Compressors. If a compression level > 9 is passed, a BAD_PARAM exception with minor code 44 is
raised.

7.3.3 CompressionManager Interface

This is the interface to register and unregister CompressorFactories objects with an ORB. It is obtained by resolving
initial references: “CompressionManager.”

// IDL
exception FactoryAlreadyRegistered {
};
exception UnknownCompressorId {
};
local interface CompressionManager {

void register_factory(
in CompressorFactory compressor_factory)

raises (FactoryAlreadyRegistered);
void unregister_factory(

in CompressorId compressor_id)
raises (UnknownCompressorId);

CompressorFactory get_factory(
in CompressorId compressor_id)

raises (UnknownCompressorId);
Compressor get_compressor(

in CompressorId compressor_id,
in CompressorLevel compression_level)

raises (UnknownCompressorId);
CompressorFactorySeq get_factories();

};

7.3.3.1 register_factory

This operation registers a new CompressorFactory.

7.3.3.2 unregister_factory

This operation unregisters a CompressorFactory with the given CompressorId from the CompressionManager.

7.3.3.3 get_factory

This operation retrieves a CompressorFactory with the given CompressorId from the CompressionManager.
6 GIOP Compression, v1.0

7.3.3.4 get_compressor

This operation retrieves a Compressor with the given compression_level from the CompressorFactory with the given
CompressorId. Calling this operation multiple times with the same compressor id and compression level should return the same
instance. If a compression level > 9 is passed a BAD_PARAM exception with minor code 44 is raised.

7.3.3.5 get_factories

This operation lists all registered CompressorFactories in the CompressionManager.

7.3.4 Compression Usage Scenario

This section provides an example about how to use Compression facilities.

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var cm_obj =
orb->resolve_initial_references("CompressionManager");

Compression::CompressionManager_var cm =
Compression::CompressionManager::_narrow(cm_obj);

Compression::Compressor_var compressor =
cm->get_compressor (Compression::COMPRESSORID_ZLIB, 9);

CORBA::ULong const max_length = 65000;
Compression::Buffer source;
source.length(max_length);
for (CORBA::ULong i = 0; i < max_length; i++)

source[i] = (CORBA::Octet)'A';

Compression::Buffer compressed;
Compression::Buffer uncompressed;

cout << "[Tester] source sequence length = " << source.length() << endl;
compressor->compress(source, compressed);
cout << "[Tester] compressed sequence length = " << compressed.length() <<
endl;
compressor->decompress(compressed, uncompressed);
cout << "[Tester] uncompressed sequence length = " << uncompressed.length() <<
endl;

7.4 ZIOP Protocol

ZIOP Protocol is a mechanism that, in some particular circumstances, applies compression to a GIOP message.

7.4.1 ZIOP Messages

A ZIOP message is a GIOP message that has ZIOP as first four magical bytes instead of the regular GIOP magical bytes.

GIOP compression can be applied to send or receive GIOP 1.2 and higher messages and includes fragmented messages.
GIOP Compression, v1.0 7

// PIDL: ZIOP body in ZIOP Message
module ZIOP {

struct CompressionData {
Compression::CompressorId compressor;
unsigned long original_length;
Compression::Buffer data;

 };
};

A ZIOP message defines how the application data of the GIOP Messages is compressed: when the magic bytes are ZIOP
then the data after the GIOP MessageHeader is replaced by the CompressionData structure, which contains the following
items encoded in this order:

1. compressor: contains the identifier that indicates the compressor used for the current ZIOP message.

2. original_length: contains an unsigned long value that represents the GIOP body length of the current GIOP message
without applying any compression.

3. data: is an octet sequence that contains the compressed message.

The length in the GIOP Header is updated to reflect the new message length, the other fields are unchanged as it is
described below.

To allow interoperability between a ZIOP and a non ZIOP party the client that supports ZIOP will send only ZIOP
messages to servers that have been declared to accept ZIOP messages.

At message level, the sequence of message exchange is as follows:

1. When client and server ORB support a compatible compression algorithm, and if the message fulfills the compres-
sion policies (for example message size threshold), the message is compressed and the four magic start bytes are
changed to ZIOP. The length field in the GIOP MessageHeader is updated, all other fields are unchanged.

2. The server ORB reads the ZIOP header. It then takes the CompressionData struct and uncompresses the data. The
other fields of the header and the uncompressed data can then be used as a regular GIOP message.

3. In the server side, if the GIOPReply message fulfills the compression policies, a compressor object is retrieved and
server ORB will generate a compressed GIOP Reply and will send it to client where the magic bytes in the header are
set to ZIOP.

4. The client ORB side will read the ZIOP magic bytes message and then will continue reading the compressed GIOP
Reply and decompressing the GIOPBody.

Both client and server only send ZIOP messages when it knows that the remote ORB supports ZIOP and it has a compatible
compressor implementation, as is described in the following section.

7.4.2 ZIOP Message use

Client and server ORBs interchange available compression details through a set of new ZIOP CORBA Policies. These
policies must be propagated as standard CORBA Policies in a ServiceContext into a GIOP Request and GIOP Reply
messages. They may also be propagated into an IOR by using the Messaging propagation of QoS. Policies which values
are transferred to the remote ORB are called ‘client-exposed’ policies. The Messaging propagation mechanism is
described in detail in section 17.3 of the CORBA 3.1 specification (Part 1 Interfaces: formal/2008-01-04).
8 GIOP Compression, v1.0

ORB server side applications may set available compression algorithms via appointing ZIOP Policies list to the POA that
will create object references that embed these policies into the IOR component. The client side ORB could send ZIOP
messages defining similar Policies using PolicyContext interfaces, at ORB, thread or reference level.

As previously described servers and clients must agree on which compression algorithm will be used. To allow this, each
party must know if the other party supports ZIOP and its preferences about compression before sending to it a ZIOP
message.

The server must register the CORBA object in a POA that was created with ZIOP Policies. These ZIOP Policies will be
transmitted as part of the IOR through the Messaging QoS Profile Component. The client may indicate through
'set_policies_overrides' over the remote CORBA object reference the ZIOP Polices which it has as preferences.

The client-side ORB will decide the compatible ZIOP Policies list which the ORB must use to send a GIOPRequest to
the server. For this, the client-side ORB will extract the compression server preferences (ZIOP Policies) from a
TaggedComponent of an IOR if it is present. The client will select a compression algorithm and send the application data
compressed to the server. The client-side ORB will also create a Policy list with its compression policies and send them
in the Request as a Messaging ServiceContext.

The server-side ORB will reply to the request taking into account the ZIOP Policies that it found in the ServiceContext
of the ZIOP messaging and compare it with the ZIOP Policies of the POA object.

If the server does not allow receipt of compressed GIOP Requests, then the client-side ORB should not send any GIOP
compressed messages. Instead, the client-side ORB will only send the ZIOP Policies values that the client supports in
Messaging ServiceContext. In a similar way a server may not respond to a client with a compressed GIOP Reply if the
client does not support GIOP compression.

In this way, a client and server may decide independently if compression could be used or not. There is no necessity to
exchange CORBA messages between client and server to obtain the best set of ZIOP Policies to be applied in
communication to get the optimal performance.

7.4.3 ZIOP Compression Policies

This module ZIOP provides all necessary elements to allow interchange of compressed GIOP messages between client
and servers using mechanisms defined in Compression module. If a specific policy is not supplied, then an ORB default
is used. The following interfaces are the ZIOP policies.

7.4.3.1 CompressionEnablingPolicy interface

This interface represents the ZIOP policy CompressionEnablingPolicy that has a boolean attribute indicating if
compression is enabled or not by the tier. Only when this policy has been set to true ZIOP may be used by the ORB. This
policy is client-exposed and both client and server must have set this policy to TRUE in order to enable ZIOP.

7.4.3.2 CompressorIdLevelListPolicy interface

This interface represents the ZIOP policy CompressorIdLevelListPolicy. It has a list of CompressorId/CompressionLevel
attributes indicating the compression algorithms with their respective levels that may be used. The
CompressorIdLevelListPolicy contains a sequence of structures and this sequence is ordered by preference priority. This
policy is client-exposed, the client/server will take its own sequence and search for the first CompressorId that is also
supported by the other tier. For this Compressor then the lowest CompressionLevel is selected.
GIOP Compression, v1.0 9

7.4.3.3 CompressionLowValuePolicy interface

This interface represents the ZIOP policy CompressionLowValuePolicy. It has an unsigned long attribute indicating the
minimum size of application data that has to be sent before the ORB will consider this as a ZIOP message. This policy is
not client exposed.

7.4.3.4 CompressionMinRatioPolicy interface

This interface represents the ZIOP policy CompressionMinRatioPolicy. It has a float attribute indicating the minimum
compression ratio that must be obtained at compression time to send with a compressed GIOP message. This policy tries
to prevent the sending of compressed messages with few improvements about the original size in order to not overload the
server with a useless decompression process. The ratio must be obtained with the following formula: compressed_length
/ original_length. This policy is not client exposed.

7.4.4 Propagation of ZIOP Compression Policies

ZIOP Compression policies are transferred using the Messaging QoS Profile Component that is defined in section 17.3 of
the CORBA 3.1 specification (Part 1 Interfaces: formal/2008-01-04). That section also describes the concept of client-
exposed policies.

7.4.5 ZIOP Usage Scenario

This section describes a client-server communication through ZIOP protocol.

7.4.5.1 Client

CORBA::ORB_ptr orb = CORBA::ORB_init (argc, argv);

CORBA::Boolean compression_enabling = true;
Compression::CompressorId compressor_id = Compression::COMPRESSORID_ZLIB;
Compression::CompressorIdLevelList compressor_id_list(1);
compressor_list.length(1);
compressor_list[0].compressor_id = compressor_id;
compressor_list[0].level = 9
CORBA::ULong compression_low_value = 32000;
Compression::CompressionRatio compression_min_ratio = 0.30;

CORBA::Any enabling_any, compressors_any, low_value_any, min_ratio_any;

enabling_any <<= CORBA::Any::from_boolean(compression_enabling);
compressors_any <<= compressor_list;
low_value_any <<= compression_low_value;
min_ratio_any <<= compression_min_ratio;

CORBA::PolicyList policies(4);
policies.length(4);

try {
policies[0] = orb->create_policy(ZIOP::COMPRESSION_ENABLING_POLICY_ID,

enabling_any);
policies[1] = orb->create_policy(ZIOP::COMPRESSOR_ID_LEVEL_LIST_POLICY_ID,

compressors_any);
10 GIOP Compression, v1.0

policies[2] = orb->create_policy(ZIOP::COMPRESSION_LOW_VALUE_POLICY_ID,
low_value_any);

policies[3] = orb->create_policy(ZIOP::COMPRESSION_MIN_RATIO_POLICY_ID,
min_ratio_any);

} catch(const CORBA::PolicyError&) {
policies.length(0);

}

CORBA::Object_var obj = orb->string_to_object(uri);
CORBA::Object_var obj2 = CORBA::Object::_nil();

try{
obj2 = obj->_set_policy_overrides(policies, CORBA::ADD_OVERRIDE);

} catch(const CORBA::SystemException&) {
obj2 = obj;

}
Echo::Test_var test_ref = Echo::Test::_narrow(obj.in ());
Echo::Test_var ziop_test_ref = Echo::Test::_narrow(obj2.in ());
CORBA::String_var str = test_ref->echo(message);
CORBA::String_var str = ziop_test_ref->echo(message);

7.4.5.2 Server

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var poaobj = orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow (poaobj);
PortableServer::POAManager_var mgr = poa->the_POAManager();

CORBA::Boolean compression_enabling = true;
Compression::CompressorId compressor_id = Compression::COMPRESSORID_ZLIB;
Compression::CompressorIdLevelList compressor_id_list(1);
compressor_list.length(1);
compressor_list[0].id = compressor_id;
compressor_list[0].level = 5;
CORBA::ULong compression_low_value = 16384;
Compression::CompressionRatio min_compression_ratio = 0.40;

CORBA::Any enabling_any, compressors_any, low_value_any, min_ratio_any;

enabling_any <<= CORBA::Any::from_boolean(compression_enabling);
compressors_any <<= compressor_list;
low_value_any <<= low_value;
min_ratio_any <<= min_ratio;

PortableServer::POA_var my_compress_poa = PortableServer::POA::_nil();

CORBA::PolicyList policies(4);
policies.length(4);

try {
policies[0] = orb->create_policy(ZIOP::COMPRESSION_ENABLING_POLICY_ID,
GIOP Compression, v1.0 11

compression_enabling_any);
policies[1] = orb->create_policy(ZIOP::COMPRESSOR_ID_LEVEL_LIST_POLICY_ID,

compressors_any);
policies[2] = orb->create_policy(ZIOP::COMPRESSION_LOW_VALUE_POLICY_ID,

low_value_any);
policies[3] = orb->create_policy(ZIOP::MIN_COMPRESSION_RATIO_POLICY_ID,

min_ratio_any);
my_compress_poa = poa->create_POA("My_Compress_Poa",

PortableServer::POA::_nil (), policies);
} catch(const CORBA::PolicyError&) {

policies.length(0);
my_compress_poa = poa->create_POA("My_Compress_Poa",

PortableServer>>POA::_nil (), policies);
}

PortableServer::POAManager_var my_compress_poa_mgr =
my_compress_poa->the_POAManager();

my_compress_poa_mgr->activate();

PortableServer::ObjectId_var oid = my_compress_poa->activate_object (servant);

CORBA::Object_var ref = poa->id_to_reference (oid.in ());

12 GIOP Compression, v1.0

Annex A
(normative)

Compression IDL

#pragma prefix "omg.org"
module Compression {

exception CompressionException {
long reason;

 string description;
};
exception FactoryAlreadyRegistered { };
exception UnknownCompressorId { };

typedef unsigned short CompressorId { };
const CompressorId COMPRESSORID_NONE = 0;
const CompressorId COMPRESSORID_GZIP = 1;
const CompressorId COMPRESSORID_PKZIP = 2;
const CompressorId COMPRESSORID_BZIP2 = 3;
const CompressorId COMPRESSORID_ZLIB = 4;
const CompressorId COMPRESSORID_LZMA = 5;
const CompressorId COMPRESSORID_LZO = 6;
const CompressorId COMPRESSORID_RZIP = 7;
const CompressorId COMPRESSORID_7X = 8;
const CompressorId COMPRESSORID_XAR = 9;

typedef unsigned short CompressionLevel;
typedef float CompressionRatio;

struct CompressorIdLevel {
CompressorId compressor_id;
CompressionLevel compression_level;

}
typedef sequence <CompressorIdLevel> CompressorIdLevelList;

typedef CORBA::OctetSeq Buffer;

local interface Compressor {
void compress(

in Buffer source,
inout Buffer target)

raises (CompressionException);
void decompress(

in Buffer source,
inout Buffer target)

raises (CompressionException);
readonly attribute CompressorFactory compressor_factory;
GIOP Compression, v1.0 13

readonly attribute CompressionLevel compression_level;
readonly attribute unsigned long long compressed_bytes;
readonly attribute unsigned long long uncompressed_bytes;
readonly attribute CompressionRatio compression_ratio;

};

local interface CompressorFactory {
readonly attribute CompressorId compressor_id;

Compressor get_compressor(in CompressionLevel compression_level);
};

typedef sequence<CompressorFactory> CompressorFactorySeq;
local interface CompressionManager {

void register_factory(
in CompressorFactory compressor_factory)

raises (FactoryAlreadyRegistered);
void unregister_factory(

in CompressorId compressor_id)
raises (UnknownCompressorId);

CompressorFactory get_factory(
in CompressorId compressor_id)

raises (UnknownCompressorId);
Compressor get_compressor(

in CompressorId compressor_id,
in CompressorLevel compression_level)

raises (UnknownCompressorId);
CompressorFactorySeq get_factories();

};
};
14 GIOP Compression, v1.0

Annex B
(normative)

ZIOP IDL

#pragma prefix “omg.org”
module ZIOP {

struct CompressedData {
Compression::CompressorId compressorid;
unsigned long original_length;
Compression::Buffer data;

};

typedef boolean CompressionEnablingPolicyValue;

const CORBA::PolicyType COMPRESSION_ENABLING_POLICY_ID = 64;

local interface CompressionEnablingPolicy: CORBA::Policy
{

readonly attribute CompressionEnablingPolicyValue compression_enabled;
};

const CORBA::PolicyType COMPRESSOR_ID_LEVEL_LIST_POLICY_ID = 65;

local interface CompressionIdLevelListPolicy: CORBA::Policy
{

readonly attribute Compression::CompressorIdLevelList compressor_ids;
};

typedef unsigned long CompressionLowValuePolicyValue;

const CORBA::PolicyType COMPRESSION_LOW_VALUE_POLICY_ID = 66;

local interface CompressionLowValuePolicy: CORBA::Policy
{

readonly attribute CompressionLowValuePolicyValue low_value;
};

const CORBA::PolicyType COMPRESSION_MIN_RATIO_POLICY_ID = 67;

local interface CompressionMinRatioPolicy: CORBA::Policy
{

readonly attribute Compression::CompressionRatio ratio;
};

};
GIOP Compression, v1.0 15

16 GIOP Compression, v1.0

INDEX

A
abstract class 1
Acknowledgements 2, 3
Additional Information 2, 3

B
Bandwidth 3

C
Changes to Adopted OMG Specifications 2
Client 10
Common Object Request Broker Architecture (CORBA) 2
Compliance 1
compress 5
compressed invocations 1
compressed_bytes 5
Compression Usage Scenario 7
compression_level 5
compression_ratio 5
CompressionEnablingPolicy interface 9
CompressionException 4
CompressionLowValuePolicy interface 10
CompressionManager Interface 3, 6
CompressionMinRatioPolicy interface 10
CompressionRatio 1
Compressor 1
Compressor interface 4
compressor_factory 5
compressor_id 5
CompressorFactory 1, 3
CompressorFactory interface 3, 5
CompressorId 3
CompressorIdLevelListPolicy interface 9
Conformance 1
CORBA 3
CORBA GIOP protocol 1
CORBA Policies 8

D
decompress 5
Definitions 1

G
Generic Inter-ORB protocol (GIOP) 2
get_compressor 6, 7
get_factories 7
get_factory 6

H
How to Read this Specification 2

I
Interoperable Object Reference (IOR) 2

N
Normative References 1

O
Object Request Broker (ORB) 2

P
Pluggable compression algorithms 1
POA Policies 2
Policy 1

R
References 1
register_factory 6

S
Scope 1, 3
Server 11
Symbols 2

T
Terms and definitions 1

U
uncompressed_bytes 5
unregister_factory 6

Z
ZIOP 1
ZIOP compliance 1
ZIOP Compression Policies 9
ZIOP message 3, 7
ZIOP Protocol 7
ZIOP Usage Scenario 10
Zipped Inter-ORB protocol (ZIOP) 2
GIOP Compression, v1.0 17

18 GIOP Compression, v1.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Overview of this Specification
	6.2 Changes to Adopted OMG Specifications
	6.3 How to Read this Specification
	6.4 Acknowledgements
	6.5 Proof of Concept

	7 Description
	7.1 Goal
	7.2 ZIOP Overview
	7.3 Compression Module Interfaces
	7.3.1 Compressor Interface
	7.3.1.1 CompressionException
	7.3.1.2 compress
	7.3.1.3 decompress
	7.3.1.4 compressor_factory
	7.3.1.5 compression_level
	7.3.1.6 compressed_bytes
	7.3.1.7 uncompressed_bytes
	7.3.1.8 compression_ratio

	7.3.2 CompressorFactory Interface
	7.3.2.1 compressor_id
	7.3.2.2 get_compressor

	7.3.3 CompressionManager Interface
	7.3.3.1 register_factory
	7.3.3.2 unregister_factory
	7.3.3.3 get_factory
	7.3.3.4 get_compressor
	7.3.3.5 get_factories

	7.3.4 Compression Usage Scenario

	7.4 ZIOP Protocol
	7.4.1 ZIOP Messages
	7.4.2 ZIOP Message use
	7.4.3 ZIOP Compression Policies
	7.4.3.1 CompressionEnablingPolicy interface
	7.4.3.2 CompressorIdLevelListPolicy interface
	7.4.3.3 CompressionLowValuePolicy interface
	7.4.3.4 CompressionMinRatioPolicy interface

	7.4.4 Propagation of ZIOP Compression Policies
	7.4.5 ZIOP Usage Scenario
	7.4.5.1 Client
	7.4.5.2 Server

	A - Compression IDL
	B - ZIOP IDL

