Date: December 2010

MOF 2 XMI| Mapping, Version 2.4

OMG Convenience Document
with change bars

OMG Document Number: ptc/2010-12-06
Standard document URL: http://www.omg.org/spec/XMI/20100901
Associated Schema file*: http://www.omg.org/spec/XMI1/20100901/XMl.xsd




Copyright © 2003, Adaptive

Copyright © 2003, Compuware Corporation
Copyright © 2003, DSTC

Copyright © 2003, Hewlett-Packard

Copyright © 2003, International Business Machines
Copyright © 2003, IONA

Copyright © 1997-2007, Object Management Group
Copyright © 2003, SUN

Copyright © 2003, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.



GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™_ CWM Logo™, I[IOP™ , MOF™ | OMG Interface Definition Language (OMG IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are



implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.



OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http.//www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).






1 Scope 1

2 Conformance 1

2.1 Introduction 1
2.2 Required Compliance 1

2.2.1 XMI Schema Compliance 1
2.2.2 XMI Document Compliance 1
2.2.3 Software Compliance 2

2.3 Optional Compliance Points 2
2.3.1 XMI Extension and Differences Compliance 2

Normative References 2
Terms and Definitions 3
Symbols 3

Additional Information 3

6.1 Acknowledgements 3
7 XMI Document and Schema Design Principles 5

7.1 Purpose 5
7.2 Use of XML Schemas 5

7.2.1 XML Validation of XMI documents 6
7.2.2 Requirements for XMI Schemas 6

7.3 Basic Principles 6

7.3.1 Required XML Declarations 6
7.3.2 Model Class Representation 7
7.3.3 Model Extension Mechanism 7

7.4 XMI Schema and Document Structure 7
7.5 XMI Model 8

7.5.1 XML Schema for the XMI Model 8
7.5.2 XMI Model classes 8

7.5.3 XMI 10

7.5.4 Extension 12

7.5.5 Documentation 12

7.5.6 Add, Replace, and Delete 13

7.6 XMI Attributes 14

7.6.1 Element Identification Attributes 15
7.6.2 Linking Attributes 16
7.6.3 Type Attribute 17

7.7 XMI Types 17

o o1~ W

XMI 2.4 Specification



7.8 Model Representation 18

7.8.1 Namespace Qualified XML Element Names 18
7.8.2 Multiplicities 19

7.8.3 Class Representation 19

7.8.4 DataType-typed Property Representation 20
7.8.5 Class-typed Property Representation 21

7.8.6 Composite Representation 22

7.8.7 Datatype representation 22

7.8.8 Inheritance representation 24

7.8.9 Association Representation 24

7.8.10 Derived Information 24

7.9 Transmitting Incomplete Metadata 25

7.9.1 Interchange of model fragments 25
7.9.2 XMl encoding 25
7.9.3 Example 25

7.10 Linking 26

7.10.1  Design principles 26
7.10.2 Linking 26
7.10.3 Example for UML 29

7.11 Tailoring Schema Production 30

7.11.1 XMl Tag Values 30

7.11.2 Tag Value Constraints 33

7.11.3 XML element vs XML attribute 34

7.11.4 Summary of XMI Tag Scope and Affect 34

7.11.5 Effects on Document Production 36

7.11.6 Example: Customize the XML Schema for a GIS Model 38

7.12 Transmitting Metadata Differences 43

7.12.1 Definitions 43
7.12.2 Differences 44
7.12.3 XMl encoding 44
7.12.4 Example 45

7.13 Document Exchange with Multiple Tools 46

7.13.1 Definitions 46
7.13.2 Procedures 47
7.13.3 Example 47

7.14 General Datatype Mechanism 48
7.15 Import Reconciliation 49

8 XML Schema Production 51

8.1 Purpose 51
8.1.1 Notation for EBNF 51

XMI 2.4 Specification



8.2 XMI Version 2 Schemas 51

8.2.1 EBNF 51
8.2.2 Fixed Schema Declarations 61

9 XML Document Production 67
9.1 Purpose 67
9.2 Introduction 67
9.3 Serialization Model 67

9.4 XMI Representation of the Core Packages 68

9.4.1 EMOF Package 68
9.4.2 CMOF Package 70

9.5 EBNF Rules Representation 72

9.5.1 Overall Document Structure 72
9.5.2 Object Structure 74
9.5.3 Extension 78

10 XML Schema Infoset Model 81

10.1 Introduction 81
10.2 XML Schema Structures 81

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.2.10
10.2.11
10.2.12
10.2.13
10.2.14
10.2.15
10.2.16
10.2.17
10.2.18

XSDAnnotation 89
XSDAttributeDeclaration 90
XSDAttributeGroupDefinition 90
XSDAttributeUse 91
XSDComplexTypeContent 91
XSDComplexTypeDefinition 91
XSDComponent 93
XSDFeature 93
XSDIdentityConstraintDefinition 94
XSDModelGroup 94
XSDNamedComponent 94
XSDSchema 95
XSDScope 97
XSDSimpleTypeDefinition 97
XSDTerm 100
XSDTypeDefinition 100
XSDWildcard 101
XSDXPathDefinition 101

10.3 XML Schema Datatypes 102

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5

XMI 2.4 Specification

XSDBoundedFacet 104
XSDCardinalityFacet 105
XSDConstrainingFacet 105
XSDEnumerationFacet 105
XSDFixedFacet 105



10.3.6 XSDFundamentalFacet 105
10.3.7 XSDFacet 105

10.3.8 XSDFractionDigitsFacet 106
10.3.9 XSDLengthFacet 106

10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17
10.3.18
10.3.19
10.3.20
10.3.21
10.3.22
10.3.23

XSDMaxExclusiveFacet 106
XSDMaxFacet 106
XSDMaxInclusiveFacet 106
XSDMaxLengthFacet 106
XSDMinFacet 107
XSDMinExclusiveFacet 107
XSDMinlnclusiveFacet 107
XSDMinLengthFacet 107
XSDNumericFacet 107
XSDOrderedFacet 107
XSDPatternFacet 107
XSDRepeatableFacet 108
XSDTotalDigitsFacet 108
XSDWhiteSpaceFacet 108

10.4 Example 108
11References 113

XMI 2.4 Specification



Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Atip./www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
. CORBAservices

XMI 2.4 Specification iii



. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp.//www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to Attp.//www.omg.org/
technology/agreement.htm.

iv XMI 2.4Specification



1 Scope

Issue 15620: Replace Scope

XMI is a widely used interchange format for sharing models using XML. XMI defines many of the important aspects
involved in describing objects in XML:

 The representation of objects in terms of XML elements and attributes is the foundation.

* Since objects are typically interconnected, XMI includes standard mechanisms to link objects within the same
file or across files.

* Object identity allows objects to be referenced from other objects in terms of IDs and UUIDs.
* Validation of XMI documents using XML Schemas.

XMI describes solutions to the above issues by specifying EBNF production rules to create XML documents and Schemas
that share objects consistently.

MOF is the foundation technology for describing metamodels, which cover the wide range of domains: this in turn is
based on (a constrained subset) of UML.

2 Conformance

2.1 Introduction

This section describes the required and optional points of compliance with the XMI specification. “XMI Document” and
“XMI Schema” are defined as documents and schemas produced by the XMI production (document and XML schema)
rules defined in this specification.

2.2 Required Compliance

2.21 XMI Schema Compliance

Issue 9294: use ‘schema produced by’ in front of ‘the XMI Schema production rules’

XMI Schemas must be equivalent to those generated by the XMI Schema production rules specified in this document.
Equivalence means that XMI documents that are valid under a schema produced by the XMI Schema production rules
would be valid in a conforming XMI Schema and that those XMI documents that are not valid under a schema produced
by the XMI Schema production rules are not valid in a conforming XMI Schema.

2.2.2 XMI Document Compliance
XMI Documents are required to conform to the following points:

« The XMI document must be “valid” and “well formed” as defined by the XML recommendation, whether used with or
without the document’s corresponding XMI Schema(s). Although it is optional not to transmit and/or validate a
document with its XMI Schema(s), the document must still conform as if the check had been made.

XMI 2.4 Specification 1



« The XMI document must be equivalent to those generated by the XMI Document production rules specified in this
document. Equivalence for two documents requires a one to one correspondence between the elements in each
document, each correspondence identical in terms of element name, element attributes (name and value), and contained
elements. Elements declared within the XMI documentation and extension elements are excepted.

2.2.3 Software Compliance
Software is XMI schema compliant when it produces XML schemas that are XMI schema compliant.

Software is XMI document compliant when it produces or consumes XML documents that are XMI document compliant.

2.3 Optional Compliance Points

2.3.1 XMI Extension and Differences Compliance

XMI Documents optionally conform to the following points:

Issue 9630: make statement more specific

 The guidelines for using the extension elements suggested in Section 7.5, “XMI Model,” on page 8 are found there and
in Section 7.11, “Tailoring Schema Production,” on page 30. Tools should place their extended information within
elements that are not in the XMI namespace or within elements that have the XMI namespace and a tag name of
“Extension”. They should also declare the nature of the extension using the standard XMI elements where applicable,
and preserve the extensions of other tools that fall within the XMI namespace.

+ Processing of XMI differencing elements (Section 7.11.5, “Effects on Document Production,” on page 36) is an
optional compliance point.

Issue 15306: Remove the optional Reverse Engineering compliance point along with the chapter

Issue 9294: make reference to section 8 more explicit

Issue 9635: delete the entire compliance point

Issue 9649: introduce new sections 3 to 5

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

Issue 15620: Add normative reference to MOF 2.4

« Meta Object facility (MOF) Core Specification, Version 2.4

+ Extensible Markup Language (XML) 1.0 (Fifth Edition)
W3C Recommendation 26 November 2008

2 XMI 2.4 Specification



+ XML Schema Part 1: Structures Second Edition
W3C Recommendation 28 October 2004

« XML Schema Part 2: Datatypes Second Edition
W3C Recommendation 28 October 2004

« XML Linking Language (XLink) Version 1.1
W3C Recommendation 06 May 2010

+ XPointer Framework
W3C Recommendation 25 March 2003

« XPointer element() Scheme
W3C Recommendation 25 March 2003

« XPointer xmlns() Scheme
W3C Recommendation 25 March 2003

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents

5 Symbols

There are no symbols defined in this specification.

Issue 9649: Delete one-line ‘Technical Specification’ section and make Additional Information into Section 6

6 Additional Information

Issue 9636 remove reference to XMl 2.0

6.1 Acknowledgements

The following companies submitted and/or supported parts of this specification:
+ Adaptive
 Ceira Technologies, Inc.
« Compuware Corporation
- DSTC
+ Hewlett-Packard
« International Business Machines

- IONA

XMI 2.4 Specification 3



MetaMatrix
Softeam

Sun Microsystems
Telelogic, AB
Unisys

University of Kent

XMI 2.4 Specification



7  XMI Document and Schema Design Principles

7.1 Purpose

This chapter contains a description of the XML documents produced from instances of MOF models, and XML schemas
that may be used to allow some XML validation of these documents. The use of schemas in XMI is described first,
followed by a brief description of some basic principles, which includes a short description of each XML attribute and
XML element defined by XMI. Those descriptions are followed by more complete descriptions that provide examples
illustrating the motivation for the XMI schema design in the areas of model class specification, transmitting incomplete
metadata, linking, tailoring schema production, transmitting metadata differences, and exchanging documents between
tools.

It is possible to define how to automatically generate a schema from the MOF model to represent any MOF-compliant
model. That definition is presented in Chapter 7.

You may specify tag value pairs as part of the MOF model to tailor the schemas that are generated, but you are not
required to do so. Using these tag value pairs requires some knowledge of XML schemas, but the schemas that are
produced might perform more validation than the default schemas. See Chapter 5 for a complete description of how to
generate XML schemas using these tag value pairs. Section 7.11, “Tailoring Schema Production,” on page 30 describes
the tag values, their affect on schema production, and their impact on document serialization.

7.2 Use of XML Schemas

An XML schema provides a means by which an XML processor can validate the syntax and some of the semantics of an
XML document. This specification provides rules by which a schema can be generated for any valid XMI-transmissible
MOF-based model. However, the use of schemas is optional; an XML document need not reference a schema, even if one
exists. The resulting document can be processed more quickly, at the cost of some loss of confidence in the quality of the
document.

Although XML schemas are optional in general terms, it is incumbent on standards bodies that define MOF?2 instances to
produce corresponding XMI 2 Schemas for them.

It can be advantageous to perform XML validation on the XML document containing MOF model data. If XML
validation is performed, any XML processor can perform some verification, relieving import/export programs of the
burden of performing these checks. It is expected that the software program that performs verification will not be able to
rely solely on XML validation for all of the verification since XML validation does not perform all of the verification that
could be done.

Each XML document that contains model data conforming to this specification contains: XML elements that are required
by this specification, XML elements that contain data that conform to a model, and, optionally, XML elements that
contain metadata that represent extensions of the model. Models are explicitly identified in XML elements required by
this specification. Some model information can also be encoded in an XML schema. Performing XML validation
provides useful checking of the XML elements that contain metadata about the information transferred, the transfer
information itself, and any extensions to the model.

The XML Namespace specification has been adopted by the W3C, allowing XMI to use multiple models at the same time.
XML schema validation works with XML namespaces, so you can choose your own namespace prefixes in an XML
document and use a schema to validate it. The namespace URIs, not the namespace prefixes, are used to identify which
schemas to use to validate an XML document.

XMI 2.4 Specification 5



7.2.1 XML Validation of XMI documents

XML validation can determine whether the XML elements required by this specification are present in the XML
document containing model data, whether XML attributes that are required in these XML elements have values for them,
and whether some of the values are correct.

XML validation can also perform some verification that the model data conforms to a model. Although some checking
can be done, it is impossible to rely solely on XML validation to verify that the information transferred satisfies all of a
model’s semantic constraints. Complete verification cannot be done through XML validation because it is not currently
possible to specify all of the semantic constraints for a model in an XML schema, and the rules for automatic generation
of a schema preclude the use of semantic constraints that could be encoded in a schema manually, but cannot be
automatically encoded.

Finally, XML validation can be used to validate extensions to the model, because extensions must be represented as
elements; if those elements are defined in a schema, the schema can be used to verify the elements.

7.2.2 Requirements for XMl Schemas
Each schema used by XMI must satisfy the following requirements:

« All XML elements and attributes defined by the XMI specification must be imported in the schema. They cannot be put
directly in the schema itself, since there is only one target namespace per schema.

» Model constructs have corresponding element declarations, and may have an XML attribute declaration, as described
below. In addition, some constructs also have a complexType declaration. The declarations may utilize groups,
attribute groups, and types, as described below.

« Any XML elements that represent extensions to the model may be declared in a schema, although it is not necessary to
do so.

By default, XMI schemas allow incomplete metadata to be transmitted, but you can enforce the lower bound of
multiplicities if you wish. See Section 7.9, “Transmitting Incomplete Metadata,” on page 25” for further details.

7.3 Basic Principles

This section discusses the basic organization of an XML schema for XMI. Detailed information about each of these topics
is included later in this chapter.

7.3.1 Required XML Declarations

Issue 9293: Reword description referring to elements removed at earlier versions of XMI.

This specification requires that XML element declarations, types, attributes, and attribute groups be included in schemas
to enable XML validation of metadata that conforms to this specification. .

All XML elements defined by this specification are in the namespace “http://www.omg.org/spec/XMI/version-
namespace,” where version-namespace is the XML namespace for the version of the XMI specification being used. The
XML namespace mechanism can be used to avoid name conflicts between the XMI elements and the XML elements from
your MOF models.

6 XMI 2.4 Specification



In addition to required XML element declarations, there are some attributes that must be defined according to this
specification. Every XML element that corresponds to a model class must have XML attributes that enable the XML
element to act as a proxy for a local or remote XML element. These attributes are used to associate an XML element with
another XML element. There are also other required attributes to let you put data in XML attributes rather than XML
elements. You may customize the declarations using MOF tag values.

7.3.2 Model Class Representation

Every model class is represented in the schema by an XML element whose name is the class name, as well as a
complexType whose name is the class name. The declaration of the type lists the properties of the class. By default, the
content models of XML elements corresponding to model classes do not impose an order on the properties.

By default, XMI allows you to serialize features using either XML elements or XML attributes; however, XMI allows
you to specify how to serialize them if you wish. Composite and multivalued properties are always serialized using XML
elements.

7.3.3 Model Extension Mechanism

Issue 9638: Make the word ‘lax’ bold

Issue 9640: Delete suggestion of using extension elements for display information

Every XMI schema contains a mechanism for extending a model class. Zero or more extension elements are included in
the content model of each class. These extension elements have a content model of ANY, allowing considerable freedom
in the nature of the extensions. The processContents attribute is lax, which means that processors will validate the
elements in the extension if a schema is available for them, but will not report an error if there is no schema for them. In
addition, the top level XMI element may contain zero or more extension elements, which provides for the inclusion of
any new information. One use of the extension mechanism might be to transmit data that represents extensions to a
model.

Tools that rely on XMI are expected to store the extension information and export it again to enable round trip
engineering, even though it is unlikely they will be able to process it further. XML elements that are put in the extension
elements may be declared in schemas, but are not required to be.

7.4 XMI Schema and Document Structure

Every XMI schema consists of the following declarations:

Issue 10112: remove space after <? and before 7>

« An XML version processing instruction. Example: <?XML version="1.0"?>

+ An optional encoding declaration that specifies the character set, which follows the ISO-10646 (also called extended
Unicode) standard. Example: <?XML version="1.0" ENCODING="UCS-2"?7>

+ Any other valid XML processing instructions.
+ A schema XML element.

« An import XML element for the XMI namespace.

XMI 2.4 Specification 7



« Declarations for a specific model.
Every XMI document consists of the following declarations, unless the XMI is embedded in another XML document:
+ An XML version processing instruction.
+ An optional encoding declaration that specifies the character set.
 Any other valid XML processing instructions.

XMI imposes no ordering requirements beyond those defined by XML. XML Namespaces may also be declared in the
XMI element as described below.

The top element of the XMI information structure is either the XMI element, or an XML element corresponding to an
instance of a class in the MOF model. An XML document containing only XMI information will have XMI as the root
element of the document. It is possible for future XML exchange formats to be developed that extend XMI and embed
XMI elements within their XML elements.

7.5 XMl Model

This section describes the model for XMI document structure, called the XMI model. The XMI model is an instance of
MOF for describing the XMI-specific information in an XMI document, such as the version, documentation, extensions,
and differences.

Using an XMI model enables XMI document metadata to be treated in the same fashion as other MOF metadata, allowing
use of standard MOF APIs for access to and construction of XMI-specific information in the same manner as other MOF
objects. A valid XMI document may contain XMI metadata but is not required to.

7.5.1 XML Schema for the XMI Model

Issue 9642: Update reference to XMI 2.4 schema and use of version namespace.

When the XMI model is generated as an XML Schema following the XMI schema production rules, the result is a set of
XML element and attribute declarations. These declarations are shown in Chapter 7 and given the XML namespace name
of the form “http://www.omg.org/spec/XMl/version-namespace,” where version-namespace is the XML namespace for
the version of the XMI specification being used. Every XMI-compliant schema must include the declarations of the
following XML elements by importing the declarations in the XMI namespace “http://www.omg.org/spec/XMl/version-
namespace.” The version of this XMI specification is 2.4, and its XMI namespace is “http://www.omg.org/spec/XMI/
20100901", and the XSD file can be found at "http://www.omg.org/spec/XMI1/20100901/XMI.xsd.”

In addition, there are attribute declarations and attributeGroup declarations that must be imported. These include the id
attribute, and the IdentityAttribs, LinkAttribs, and ObjectAttribs attribute groups. These constructs are not defined in the
XMI model.

In the declarations that follow, the XML Schema namespace, whose URI is “http://www.w3.0rg/2001/XMLSchema,” has
the namespace prefix “xsd.” The XMI namespace is the default namespace.

7.5.2 XMI Model classes

There are three diagrams that describe the XMI model. The details of the classes are described in the sections below.
This section gives an overview of the model.

8 XMI 2.4 Specification



Issue 9624: replace descriptions of primitive data types

Issue 9296: Add reference to DateTime primitive

Issue 9650: Remove ‘version’ attribute (in text and diagram)

Figure 4.1 shows the XMI element, documentation, and extension elements. The XMI class is an overall default container
| for XMI document metadata and contents. The attributes of the XMI class are the documentation, differences (add,
replace, delete in Figure 5) and extensions. The Documentation class contains many fields to describe the document for
non-computational purposes. The Extension class contains the metadata for external information. The String datatype and
the Integer datatype come from the PrimitiveTypes package used by MOF Core and UML Infastructure. The
PrimitiveTypes package also contains UnlimitedNatural and Boolean. The DateTime primitive type has XML Schema
data type of “http://www.w3.0rg/2001/XMLSchema#dateTime.”

Issue 9296: Add timestamp and DataTime primitive

XMi Documentation primitives
documentstion : Documentation [0..1] contact : String [0..1] DateTime
difference : Difference [0..%] exporter © String [0..1]
extension : Extension [0..%] exporteriersion © String [0.1]

exporterlD ; String [0..1]
longDeszcription : String [0..%]
shortDescription ; String [0. %]
notice  String [0..#]

owener @ Steing [0 %]
timestamp ; DateTime [0..1]

Extension

extender ; String [1]
extenderiD : String [0..1]

Figure 4.1 - The XMI Model for the XMI element, documentation, and extension

Issue 9631: Replace Object by Element, including in following Figure

The differences information (Figure 5) is described as additions, deletions, and replacements to target objects. The objects
referenced by the differences may be in the same or different documents. The differences information consists of the Add,
Delete, and Replace classes, which specify a set of differences and refer to MOF objects that are added or removed. Note
that the Element class is a placeholder for specifying that a Difference has a target that can refer to any objects. The
Element class is not included in the required element declarations.

The XML Schema declarations for each element of the XML model are given in the following sections. They may be
generated by following the XMI production of XML Schema rules defined in Chapter 7, except for the XMI class and the
XMI attributes described in Section 7.6, “XMI Attributes,” on page 14.

| XMI 2.4 Specification 9



U Elamanmt Pp—
a.
{readOnly union }
JownedElement
o.*
addition | 0.* target | 0% replacemert | 0.* {reacdOnly union}
Diffarence container
0.1
difference
D x
. .
Add Delete Replace

position ; Integer [0..1]

pozition : Integer [0..1]

Figure 5 - The XMI Model for differences

7.5.3 XMI

Issue

9641: Explain when XMI element is needed

The root level XML element for XMI documents containing only XMI data may be the XMI element, but it must be the
XMI element if there are multiple elements. Its declaration is:

<xsd:complexType name="XMI">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="strict"/>
</xsd:choice>
<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="IdentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"

form="qualified"/>

Issue

9650: Remove the version attribute

10

</xsd:complexType>

<xsd:element name="documentation" type="Documentation"/>

<xsd:element name="difference” type="Difference"/>
<xsd:element name="extension" type="Extension"/>

<xsd:element name="XMI" type="XMI"/>

XMI 2.4 Specification



Issue 15863: Clarify use of documentation etc elements

Note that in the schema that the elements for documentation, difference and extension may not validly be included in the
xsd:choice for XMI since that already has xsd:any. However are the elements that must be used within the XMI elements.
The Documentation, Difference and Extension elements (starting with uppercase), defined in the following sections, may
only be used if they are root elements, not nested underneath XMI, and qualified with the XMI namespace: for example
xmi:Documentation.

Issue 9650: Replace reference to the version attribute

Issue 15618: Fix incomplete removal of the version attribute

Each version of XMI is unambiguously identified by its unique namespace URI of the form “http://www.omg.org/spec/
XMl/version-namespace”.

Issue 15684: Adapt wording for the presence of the XMI element

The XMI element need not be the root element of an XML document; you can include it inside any XML element that

was not serialized according to this specification. If a document contains only XMI information, the XMI element may
not be present when there is only a single top-level object, but is often useful for consistency and for elements such as

Documentation. The start of XMI information and identification of the XMI version is indicated by the presence of the
XMI namespace declaration, regardless of whether the XMI element itself is present. Section 7.12.4 contains examples
of the use of the XMI element.

Issue 9677: Qualify the tag name with org.omg.xmi.

The XMI class has the XMI tag org.omg.xmi.contentType set to “any” to indicate that any XMI element may be present
in the XMI stream.

See Section 9.5.1, “Overall Document Structure,” on page 72” for details on how the XMI class is serialized.

Issue 9646: Remove sentence that the XMl serialization is special

Issue 9677: Qualify the tag names with org.omg.xmi

The XMI model package has the following tag settings:
+ tag org.omg.xmi.nsURI set to “http://www.omg.org/spec/XMI/version-namespace”
+ tag org.omg.xmi.nsPrefix set to “xmi”
+ tag org.omg.xmi.superClassFirst set to “true”
+ tag org.omg.xmi.useSchemaExtension set to “true”

+ tag org.omg.xmi.clement set to “true”

Issue 9647 Include the attribute tag

| XMI 2.4 Specification 11



+ tag org.omg.xmi.attribute set to “false”

7.5.4 Extension

The Extension class is designed to contain extended information outside the scope of the user model. Extensions are a
multivalued attribute of the XMI class and may also be embedded in specific locations in an XMI document. The Schema
for extension is:

<xsd:complexType name="Extension">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="lax"/>

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="extender" type="xsd:string" use="optional"/>

<xsd:attribute name="extenderID" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

Issue 9625 Add explanation of extenderld

The extender attribute should indicate which tool made the extension. It is provided so that tools may ignore the
extensions made by other tools before the content of the extensions element is processed. The extenderID is an optional
internal ID from the extending tool that allows the element to be uniquely located within the tool. The other attributes
allow individual extensions to be identified and to act as proxies for local or remote extensions.

Issue 9677: Qualify the tag names

The Extension class in the MOF model has the tag org.omg.xmi.contentType set to “any” and the
org.omg.xmi.processContents tag set to “lax.” The extender and extenderID attributes have the tag attribute set to “true.”

7.5.5 Documentation

Issue 9296: Include timestamp.

The Documentation class contains information about the XMI document or stream being transmitted, for instance the
owner of the document, a contact person for the document, long and short descriptions of the document, the exporter tool
which created the document, the version of the tool, the date and time the document was created, and copyright or other
legal notices regarding the document. The data type of all the attributes of Documentation is string except for the
timestamp which is DateTime. The XML Schema generated for Documentation is:

<xsd:complexType name="Documentation">
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="contact" type="xsd:string"/>
<xsd:element name="exporter" type="xsd:string"/>
<xsd:element name="exporterVersion" type="xsd:string"/>
<xsd:element name="longDescription" type="xsd:string"/>
<xsd:element name="shortDescription" type="xsd:string"/>
<xsd:element name="notice" type="xsd:string"/>

12 XMI 2.4 Specification



<xsd:element name="owner" type="xsd:string"/>
<xsd:element name=timestamp” type="xsd:dateTime”/>
<xsd:element ref="Extension"/>

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

Issue 9647: delete the attributes since the org.omg.xmi.attribute tag is false

</xsd:complexType>
<xsd:element name="Documentation"” type="Documentation"/>

7.5.6 Add, Replace, and Delete

Issue 9631: Replace text

The Add class represents an addition to a target object in this document or other documents. The farget is constrained to
reference only one object. The position attribute indicates where to place the addition relative to other XML elements of
that type within the target. The default, -1, indicates to add the new elements at the end of those elements for the target
element. The addition attribute refers to the set of objects to be added. Both of these attributes have the tag
org.omg.xmi.attribute set to “true.”

The Replace class represents the removal of a target set of objects and the addition of the objects referred to in the
replacement attribute. The position attribute indicates where to place the replacements relative to other XML elements of
that type within their container (they should all be of the same XML type). The default, -1, indicates to add the new
elements at the end of those elements for the target element. The replacement attribute refers to the objects that will
replace the target elements. Both of these attributes have the tag org.omg.xmi.attribute set to “true.” Note that, unlike
Delete, the replaced elements are only removed from the container not deleted.

The Delete class represents a deletion of the target set of objects in this document or other documents.

Issue 9634: Add cross-reference

The Difference class is the superclass for the Add, Replace, and Delete classes (see Figure 5 and Section 7.12).

The declarations for these classes are:

<xsd:complexType name="Difference">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="target">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="difference" type="Difference"/>
<xsd:element name="container" type="Difference"/>
<xsd:element ref="Extension"/>

XMI 2.4 Specification 13



</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>

<xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>
</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>
<xsd:complexType name="Add">

<xsd:complexContent>
<xsd:extension base="Difference">

Issue 9632: change type of ‘position’ to integer

<xsd:attribute name="position" type="xsd:integer" use="optional"/>
<xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">
<xsd:complexContent>
<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:integer" use="optional"/>
<xsd:attribute name="replacement” type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>

<xsd:complexType name="Delete">
<xsd:complexContent>
<xsd:extension base="Difference"/>
<I/xsd:complexContent>
</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

7.6 XMI Attributes

This section describes the fixed XML attributes that are used in the XMI production of XML documents and Schemas.
By defining a consistent set of XML attributes, XMI provides a consistent architectural structure enabling consistent
object identity and linking across all assets.

14 XMI 2.4 Specification



7.6.1 Element Identification Attributes

Three XML attributes are defined by this specification to identify XML elements so that XML elements can be associated
with each other. The purpose of these attributes is to allow XML elements to reference other XML elements using XML
IDREFs, XLinks, and XPointers.

Issue 9677: Qualify the tag name

Issue 9644: Delete idName tag

Two of these attributes are declared in an attribute group called IdentityAttribs; the id attribute is declared globally.
Placing these attributes in an attribute group prevents errors in the declarations of these attributes in schemas. Its
declaration is as follows:

Issue 15863 (originally 11001) Remove ‘optional’ from id attribute

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IdentityAttribs">
<xsd:attribute name="label" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string" use="optional"
form="qualified"/>
</xsd:attributeGroup>

id
XML semantics require the values of this attribute to be unique within an XML document; however, the value is not
required to be globally unique. This attribute may be used as the value of the idref attribute defined in the next section.

It may also be included as part of the value of the href attribute in XLinks. An example of the use of this attribute and
the other attributes in this section can be found in Section 7.10.3, “Example for UML,” on page 29.

Issue 9644: Replace id tags with metamodel properties

If the metaclass has (or inherits) a Property with isId = ‘true’ then the value of that property may be used as the basis of
the xmi:id and/or xmi:uuid attributes.

This is not mandatory, and the exact algorithm to be used is not specified in this specification. However it is important,
to be a valid XML document, that the value for xmi:id is unique across all elements within the file. The xmi:uuid is not
so constrained, but if the same value is used in multiple XML elements then they are all deemed to reference the same
MOF element (e.g. they may represent different aspects).

label

This attribute may be used to provide a string label identifying a particular XML element. Users may put any value in this
attribute.

Issue 9643: Clarify that label is ignored on import

The value of the label attribute is ignored on import.

XMI 2.4 Specification 15



uuid

Issue 9645: refer to use of URIs

The purpose of this attribute is to provide a globally unique identifier for an XML element. The values of this attribute
should be globally unique strings prefixed by the type of identifier. If you have access to the UUID assigned in MOF, you
may put the MOF UUID in the uuid XML attribute when encoding the MOF data in XMI.

UUIDs should use URIs as the unique string. Refer to section 6.4.1.1 of the MOF Facility and Object Lifecycle
Specification for an example of a scheme for detailed URI production rules.

Issue 15617: Update the example URI introduced by issue 9645

An example URI for the metaclass UseCase in the UML2 metamodel looks like this:

http://www.omg.org/spec/UML/20100901/uml.xml#UseCase

Issue 9648: Delete last sentence referring to old MOF operation reflD()

7.6.2 Linking Attributes

XMI allows the use of several XML attributes to enable XML elements to refer to other XML elements using the values
of the attributes defined in the previous section. The purpose of these attributes is to allow XML elements to act as simple
XLinks or to hold a reference to an XML element in the same document using the XML IDREF mechanism.

The attributes described in this section are included in an attribute group called LinkAttribs. The attribute group
declaration is:

Issue 11006: Declare href as anyURI rather than string

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional"
form="qualified"/>
</xsd:attributeGroup>

The link attributes act as a union of two linking mechanisms, any one of which may be used at one time. The
mechanisms are the XLink href for advanced linking across or within a document, or the idref for linking within a
document.

XMI offers another mechanism for linking, using the name of the property involved in the reference instead of href or
idref. See Section 7.10, “Linking,” on page 26 for more information.

Simple XLink Attributes

The href attribute declared in the above entity enables an XML element to act in a fashion compatible with the simple
XLink according to the XLink and XPointer W3C recommendations. The declaration and use of href is defined in the
XLink and XPointer specifications. XMI enables the use of simple XLinks. XMI does not preclude the use of extended
XLinks, although it is not anticipated that many XMI tools will support them. The XLink specification defines many
additional XML attributes, and it is permissible to use them in addition to the attributes defined in the LinkAttribs group.

16 XMI 2.4 Specification



To use simple XLinks, set href to the URI of the desired location. The href attribute can be used to reference XML
elements whose id attributes are set to particular values. The id attribute value can be specified using a special URI form
for XPointers defined in the XLink and XPointer recommendations.

idref

This attribute allows an XML element to refer to another XML element within the same document using the XML IDREF
mechanism. In XMI documents, the value of this attribute should be the value of the id attribute of the XML element
being referenced.

Issue 15381: Remove all references to Version attribute

7.6.3 Type Attribute

The type attribute is used to specify the type of object being serialized, when the type is not known from the model. This
can occur if the type of a reference has subclasses, for instance. The declaration of the attribute is:

<xsd:attribute name="type" type="xsd:QName" form="qualified"/>

Rather than including the IdentityAttribs, and LinkAttribs attribute groups, and the version and type attributes in the
declarations for each MOF class, the XMI namespace includes the following declaration of the ObjectAttribs attribute
group for the attribute declarations that pertain to objects:

Issue 12859: remove use='optional’ from ‘type’ attribute

Issue 15863 (originally) 15618: remove ‘version’ attribute

<xsd:attributeGroup name="0ObjectAttribs">
<xsd:attributeGroup ref="IdentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="type" type="xsd:QName"
form="qualified"/>
</xsd:attributeGroup>

7.7 XMl Types

The XMI namespace contains a type called Any. It is used in the XMI schema production rules for class attributes, class
references, and class compositions. The declaration of this type is part of the fixed declarations for XMI. The Any type
allows any content and any attributes to appear in elements of that type, skipping XML validation for the element’s
content and attributes. The declaration of the type is as follows:

<xsd:complexType name="Any">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>

XMI 2.4 Specification 17



By using this type, the XMI schema production rules generate smaller schemas than if this type was declared multiple
times in a schema. Also, using the Any type enables some changes to be made to the Any type declaration without
affecting generated XMI schemas.

7.8 Model Representation

This section describes how to represent information using XMI:

« How classes, properties, composites, multiple elements, datatypes, and inheritance are represented in XMI compliant
XML schemas.

+ How instances of classes are represented in XMI compliant XML documents.

The production rules for these representations are given in EBNF form in the “XML Schema Production” and “XML
Document Production” chapters.

7.8.1 Namespace Qualified XML Element Names

Issue 9652: Remove the impression that the schema generator has a ‘choice’

When the official schema for a model is produced, the schema generator must use the namespace URI specified by the
Package::URI property on the package representing the metamodel, which may be overridden by the org.omg.xmi.nsURI
tag to uniquely identify the XML namespace in the model. XML processors will use namespace URIs to identify the
schemas to be used for XML validation, as described in the XML schema specification.

Issue 9654: Replace ‘namespace’ by ‘naming context’ in last line.

Issue 9653: Replace MOF 1 terms reference and attribute

The XML element name for each model Class, and Association in a document is its short name. The name for XML tags
corresponding to model Properties is the short name of the property. The name of XML attributes corresponding to model
properties (DataType-typed or Class-typed) is the short name of the property, since each tag in XML has its own naming
context.

Issue 9656: Replace ‘XMI’ by ‘top level element’ in first sentence

Issue 9652: Update the namespace used for UML

Each namespace is assigned a logical URI. The logical URI is placed in the namespace declaration of the top level
element in XML documents that contain instances of the model. The XML namespace specification assigns logical names
to namespaces that are expected to remain fixed throughout the life of all uses of the namespace since it provides a
permanent global name for the resource. An example is “http://www.omg.org/spec/UML/20100901.” There is no
requirement or expectation by the XML Namespace specification that the logical URI be resolved or dereferenced during
processing of XML documents.

The following is an example of a UML model in an XMI document using namespaces.

Issue  9655: Update example

<xmi:XMI xmins:uml="http://www.omg.org/spec/UML/20100901"

18 XMI 2.4 Specification



xmlins:xmi="http://www.omg.org/spec/XMI/20100901">
<uml:Class name="C1" xmi:type="uml:Class” xmi:id="_1">
<ownedAttribute xmi:type="uml:Property" xmi:id="_2" name="a1"
visibility="private"/>
</uml:Class>
</xmi:XMI>

The model has a single class named C1 that contains a single attribute named al with visibility private. The XMI element
declares the version of XMI and the namespace for UML with the logical URI.

7.8.2 Multiplicities

Issue 9657: Replace ‘XMI’ by ‘XMI 2’ in 2nd sentence

In XMI 1, the multiplicities from the model were ignored, since DTDs were not able to validate multiplicities without
ordering the content of XML elements. By default, XMI 2 produces schemas that ignore multiplicities also.

You may tailor the schemas produced by XMI by specifying tag values in the model. Two of the tags,
“org.omg.xmi.enforceMaximumMultiplicity” and “org.omg.xmi.enforceMinimumMultiplicity” allow you to specify that
multiplicities are to be used in a schema rather than being ignored.

Issue 9677: Qualify the tag names

Model multiplicities map directly from the EMOF definition of multiplicity, which is a lower bound and an upper bound,
to schema XML attributes called “minOccurs” and “maxOccurs.” The minOccurs XML attribute corresponds to
MultiplicityElement’s lower property, and the maxOccurs XML attribute corresponds to its upper property. If the lower
| bound for a property is null, the org.omg.xmi.enforceMinimumMultiplicity tag is ignored, and minimum multiplicity is
not enforced in the Schema (minimum multiplicity is effectively “0”). Similarly, if the upper bound for a property is null,
| the org.omg.xmi.enforceMaximumMultiplicity tag is ignored, and maximum multiplicity is not enforced in the Schema
(the multiplicity is effectively unbounded).

| 7.8.3 Class Representation

A class is represented by an XML element, with an XML element or attribute for each property. The XML element for
the class includes the inherited properties.

In the examples that follow in this section, “xsd” is the namespace prefix for the XML schema namespace (“http://
www.w3.0rg/2001/XMLSchema”) and “xmi” is the namespace prefix for the XMI namespace.

The representation of a class named “c” is shown below for the simplest case where “c” does not have any Properties:
<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

| XMI 2.4 Specification 19



If the class has properties, the XML elements for them are put in the all group of the content model, as explained below.

7.8.4 DataType-typed Property Representation

Issue 9653: change heading

Issue 9658: clarify explanation

Issue 9677: Qualify the tag names

The representation of properties of class “c” uses XML elements and XML attributes. If the property types are primitives
or enumerations, then by default XML attributes and XML elements are declared for these types. The reasons for the
XML element choice are several, including: the values to be exchanged may be very large values and unsuitable for
XML attributes, and may have poor control of whitespace processing with options that apply only to element contents.

| The default encoding can be changed using the XMI “org.omg.xmi.attribute” and “org.omg.xmi.clement” tags. See
Section 7.11.3, “XML element vs XML attribute,” on page 34 for information on how these tags affect encoding. See
Section 7.11.1, “XMI Tag Values,” on page 30 for a complete list of XMI tags.

The declaration of a property named “a” is as follows:
<xsd:element name="a" type="type specification"/>

The XML element corresponding to the property is declared in the content of the complexType corresponding to the class
that owns the attribute. The type specification is either an XML schema data type, an enumeration data type, or a class
from the model.

Issue 9659: use uppercase String

For properties whose types are primitive types (for example, String) and whose upper bound multiplicity is 1, an XML
attribute must also be declared in the XML element corresponding to model class “c,” and the XML element must be put
in the content model of the XML element for class “c.” The declaration of “c” appears as follows without multiplicity
enforcement:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>

An element is also declared to be of XML type string if the class contains a Tag org.omg.xmi.schemaType with value
“string.”

| For multi-valued DataType-typed Properties, no XML attributes are declared; each value is encoded as an XML element.

| 20 XMI 2.4 Specification



When “a” is a property with enumerated values, the type used for the declaration of the XML element and XML attribute
corresponding to the model attribute is as follows:

<xsd:simpleType base="enumName" >
<xsd:restriction base="xsd:string">
<xsd:enumeration value="v1"/>
<xsd:enumeration value="v2"/>
</xsd:restriction>
</xsd:simpleType>

Issue 9660: Refer to names of Enumeration Literla

where enumName is the name of the enumeration type, and v1 and v2 are the names of the EnumerationLiterals.

If a property has enumerated values, an XML element and an XML attribute is put in the complexType for the class “c,”
their declaration is as follows:

<xsd:element name="a" type="enumName"/>
<xsd:attribute name="a" type="enumName" use="optional"/>

If a property is a multi-valued enumeration, the declaration of the XML attribute is omitted.

Issue 9661: Remove use of default values in the schema

The semantics of default values differs between MOF/UML and XML Schema, so the XML Schema will never contain
default values for Properties.

Issue 9653: Change heading and first paragraph

7.8.5 Class-typed Property Representation

A Class-typed property references another model element. Each such reference is represented as an XML element and/or
an XML attribute. The XML element declaration for a property named “r” for a class “c” is:

Issue 11002 replace use of xmi:Any

<xsd:element name="r" minOccurs="0" maxOccurs="unbounded”>
<xsd:attributeGroup ref="LinkAttribs"/>
</xsd:element>

Issue 9677: Qualify the tag names

Issue 11002: Remove mention of ability to override

This element is declared in the content of the complexType for the class that owns the property. This declaration enables
any object to be serialized, enhancing the extensibility of models.

The attribute declaration for the property, which also is included in the complexType declaration for the class that owns
the property, is as follows:

<xsd:attribute name="r" type="xsd:IDREFS" use="optional"/>

XMI 2.4 Specification 21



7.8.6 Composite Representation

Each property that is a composite is represented by an XML element, but not by an XML attribute.

Issue 15381: Changes for new tag allowMetamodelExtension

The XML element declaration for a composite property named “r” for a class “c” of type “ClassType” is:
<xsd:element name="r" type="ClassType" minOccurs="0" maxOccurs="unbounded”/>
This element is declared in the content of the complexType for the class that owns the property.

If the org.omg.xmi.allowMetamodelExtension tag is set to true then the name of the type is replaced by “xmi:Any”: this
declaration enables any object to be serialized, enhancing the extensibility of models.

If org.omg.xmi.useSchemaExtension is false (the default) the names of all non-abstract subtypes must also be included (in
alphabetic order of immediate children with depth first expansion): if ClassType has subclasses CTS1 and CTS2, and
CTS1 has subclass CTS1S1 then the declaration needs to make use of an anonymous complex type:
<xsd:element name="r" minOccurs="0" maxOccurs="unbounded”>
<xsd:complexType>
<xsd:choice>
<ref="ClassType”/>
<ref="CTS1”/>
<ref="CTS181”/>
<ref="CTS2”/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

7.8.7 Datatype representation

Like classes, datatypes are classifiers and can have instances that are represented by XML elements. Unlike classes,
datatypes do not have object identity, so there are no identification attributes in their representation.

The representation of a datatype named “dt” is shown below:

<xsd:element name="dt" type="dt"/>

<xsd:complexType name="dt">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attributeGroup ref="xmi:LinkAttribs"/>
<xsd:attribute name="version" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"
form="qualified"/>
</xsd:complexType>

Issue 9662: Allow for use of attributes for datatypes

22 XMI 2.4 Specification



Issue 9677: Qualify the tag name

In the instance document, the value of a simple datatype appears as an attribute value or as character content.

Issue 8884: Allow structured datatypes ot be serialized as classes

In CMOF, datatypes, other than Primitive and Enumeration Types, can have properties, which in effect allows them to be
structured datatypes. During serialization, structured datatypes are treated like classes with properties, reusing the
document production rules starting with rule 2a:XMIObjectElement (see Section 9.5.2) with the following adaption:

. The name of the structured datatype is used instead of the class name.

Serializing structured datatypes analogous to classes is the default. The org.omg.xmi.valueSeparator tag has no effect on
this form of serialization.

Primarily for backward compatibility, flattening of structured datatypes may be performed if all of the following
conditions hold:

. The structured datatypes are not nested (i.e. do not contain structured datatypes as one or more fields).
. The fields have multiplicity [1..1].
. The tag org.omg.xmi.flattenStructuredDataTypes (which defaults to false) is set to true.

As an example, here is a datatype called Point with two properties representing the X and Y coordinates of the point:

<<datatype>>
Point

x : Integer

y : Integer

Issue 8884: Example with structured serialization

Using the class-like default serialization, an example of a graph with two points would serialize as:
<g:Graph xmi:type="g:Graph”>
<points xmi:type="g:Point” x="0" y="0"/>
<points xmi:type="g:Point” x="1" y="5"/>
</g:Graph>

But using the special case flattened serialization (with org.omg.xmi.flattenStructuredDataTypes=true), the point
coordinates would serialize as strings. The separator between the coordinate values is controlled by
org.omg.xmi.valueSeparator:

<TwoPointsOnAGraph point1="0,0” point2="1,5" />

A structured datatype may be more than one level deep - its properties can in turn be structured datatypes. For example:

XMI 2.4 Specification 23



<<datatype>>
Rectangle
upperLeft : Point
lowerRight : Point

Issue 8884: Example with structured serialization

This example shows the nesting of two structured datatypes. The only valid serialization for a property called area of type
Rectangle is:
<display xmi:type="g:Viewport”>
<area xmi:type="g:Rectangle”>
<upperLeft xmi:type="g:Point” x="0" y="5"/>
<lowerRight xmi:type="g:Point” x="4" y="0"/>
</area>
</display>

7.8.8 Inheritance representation

Issue 9665 Mention use of xmi:type

XML schemas have a mechanism for extending types, but it does not support extending from more than one type, and
using that mechanism imposes an order on the content models of the types that are derived from other types. Since XMI
attempts to minimize order dependencies, XMI by default does not use schema extension to represent inheritance. In its
place, XMI specifies that inheritance will be copy-down inheritance and therefore uses xmi:type instead of xsi:type.

Issue 9653: Replace use of references for association ends

Multiple inheritance is treated in such a way that the Properties that occur more than once in the inheritance hierarchy are
only included once in their subclasses. For associations (Class-typed Properties), the actual class referenced is used, and
subclasses may be used on the other end of the reference.

Issue 9695: Add new section

7.8.9 Association Representation

Associations are classifiers whose instances are Links. There are cases where it makes sense to serialize Links: for
example where the Association owns all of its ends, to link existing elements, or to add a new element to a composition
without replacing the existing contents (e.g. to add a Property to a Class where including a new value for
package::packagedElement would lose, or require repeating, the complete current list).

7.8.10 Derived Information

Issue 9664: Replace ‘end users’ by ‘metamodelers’

24 XMI 2.4 Specification



Issue 9677: Qualify the tag name

Whether or not information is derived information is orthogonal to whether or not that information is serialized. The
org.omg.xmi.serialize tag is provided to optionally include derived data. This capability provides more control to the
metamodelers, allowing them to customize exactly which information is present in their files. In some cases, derived
information may be more condensed than the information it is derived from. In these cases, serialization of only the
derived information may be desirable to keep the size of the XMI file as small as possible.

7.9  Transmitting Incomplete Metadata

Issue 9666: refer to implementation not schema generator

Starting with XMI version 2.0, an implementation can decide whether to support the exchange of model fragments.

7.9.1 Interchange of model fragments

In practice, most information is related. The ability to transfer a subset of known information is essential for practical
information interchange. In addition, as information models are developed, they will frequently need to be interchanged
before they are complete.

The following guidelines apply for interchanging incomplete models via XMI:

+ Information may be missing from a model. The transmission format should not require the addition or invention of new
information.

« Model fragments may be disjoint sets. Each set may be transmitted in the same XMI file or in different XMI files.

+ “Incomplete” indicates a quantity of information less than or equal to “complete.” Additional information beyond that
which the model prescribes may be transmitted only via the extension mechanism.

« Semantic verification is performed on the metadata that is actually present as if it was included in complete metadata.

7.9.2 XMl encoding

The interchange of model fragments is accomplished by lowering the lower bound of multiplicities whose lower bound is
greater than 0.

7.9.3 Example
The following is an example of an incomplete UML 1.4 model:

<UML:Model name="model1" xmi:id="id1">
<ownedElement xmi:type="UML:Class" name="class1" xmi:id="id2">
<feature xmi:type="UML.:Attribute" name="attribute1"
type="type1"/>
</ownedElement>
<ownedElement xmi:type="UML:Datatype"” name="Integer" xmi:id="type1"/>
</UML:Model>

XMI 2.4 Specification 25



7.10 Linking

The goal is to provide a mechanism for specifying references within and across documents. Although based on the
XLinks standard, it is downwards compatible and does not require XLinks as a prerequisite.

7.10.1 Design principles

» Links are based on XLinks to navigate to the document (which may be the current document) and XPointers to navigate
to the element within the document.

« Link definitions are encapsulated in the attribute group LinkAttribs defined in Section 7.6.2.

+ Elements act as a union, where they are either a definition or a proxy. Proxies use the LinkAttribs attribute group to
define the link, and contain no nested elements.

» LinkAttribs supports external links through the XLink attributes, and internal links through the xmi:idref and xmi:id
attributes.

Issue 9667: Remove last sentence

» Links are always to elements of the same type or subclasses of that type. Restricting proxies to reference the same ele-
ment type reduces complexity, enhances reliability and type safety, and promotes caching.

Issue 9668: Clarify that the cache does not guarantee correctness

« When acting as a proxy, XML attributes may be defined, but not contents. The XML attributes act as a cache or guide
that gives an indication if the link should be followed: however there is no guarantee that these cached values accu-
rately represent the current values of the linked element.

+ Proxies may be chained.

» When following the link from a proxy, the definition of the proxy is replaced by the referenced element.

Issue 9669: Update guidance

« Itis efficient practice to use local proxies of the same element within a document to link to a single proxy that holds an
external reference. For example: there could be local proxies defined for references to the predefined DataTypes such
as Integer, UnlimitedNatural, String, and Boolean..

Issue 9670: Delete last bullet that did not make sense.

7.10.2 Linking

For XMI, the most common linking requirements are:
 Linking to an XML element in the same document using the element’s id.
» Linking to an XML element in a different document using the element’s id.
+ Linking to an XML element using the element’s uuid or label, in the same or a different document.

The following sections describe how XMI supports these requirements.

26 XMI 2.4 Specification



7.10.2.1 Linking within a Document

Issue 9671: Include use of XML attributes for class-typed properties

Every construct that can be referred to has a local XML ID, a string that is locally unique within a single XML file.
Attributes representing Class-typed properties in the metamodel, or XML idref attributes can refer to other XML elements
within the same XML file by specifying the target element’s XML ID.

7.10.2.2 Linking across Documents

Issue 9672: Delete sentence about linking being optional

Issue 9673: Include ‘file:’ in example URLs for Co.xml

Issue 15619: Remove incorrect use of file: introduced by 9673, restoring text to original

1. Using the XMI href attribute to locate an XMI id

Issue 9677: Qualify the tag name

This is the simplest form of cross document linking. With help from the XMI org.omg.xmi.idName tag, it can be
backward compatible with XMI 1.2 and later.

Here, the XMI href attribute is used to locate an XML element in another XML document by its XMI id. The value of

href must be a URI reference, as defined by IETF RFC 2396: Uniform Resource Identifiers. The URI reference must be
of the form URI#id value, where URI locates the XML file containing the XML element to link to, and id_value is the
value of the XML element’s XMI id attribute.

As an example:
<mgr xmi:id="mgr_1" href="Co.xml#emp_2"/>

locates XML element <Employee xmi:id="emp_2" ... /> in file Co.xml.

2. Using an XLink simple link and XPointer bare name to locate an XMl id

This is a little more complicated than using the XMI href attribute, and does not provide any more function. It does have
the advantage that standard XLink and XPointer software can follow the link.

Here, an xlink:href attribute is used, where XLink is the prefix for the XLink namespace. The XLink prefix must be
declared in the document that contains the Xlink:href attribute. For example:

<xmi:XMI xmins:xlink="http://www.w3.0rg/1999/XLink"
xmlins:xmi=" http://www.omg.org/spec/XMI/20100901">

The value of xlink:href must again be a URI reference of the form URI#id_value. In this case, id_value is technically an
XPointer bare name, but it looks just like the id value for the XMI href attribute.

The XML element with the xlink:href must also have an xlink:type="simple” attribute, to identify it as a simple link.

As an example:

XMI 2.4 Specification 27



<mgr xmi:id="mgr_1" xlink:href="Co.xml#emp_2" xlink:type="simple"/>

locates XML element <Employee xmi:id="emp_2" ... /> in file Co.xml.

3. Using an XLink simple link and full XPointer to locate an XMl uuid or label

An XLink simple link and a form of full XPointer can be used to locate an XML element in an XML document by its
XMI uuid or label. This describes the form for uuid; the form for label is strictly analogous. Again:

 An xlink:href attribute is used, where XLink is the prefix for the XLink namespace. The xlink prefix must be declared
in the document containing the xlink:href attribute.

+ The value of xlink:href must be a URI reference.

However this time, the URI reference has a more complicated form:

URT#xpointer((//*[@xmi:uuid="value'])[1])

The xpointer expression is a series of instructions for finding the first element in the target file whose xmi:uuid has that
value.

As an example:

<mgr xmi:id="mgr_1"
xlink:href="Co.xml#xpointer((//*[@xmi:uuid="'emp_2'7)[1])"
xlink:type="simple"/>

locates XML element <Employee xmi:uuid="emp_2".../> in file Co.xml, as long as it is the first element with that uuid
in the file.

Since a URI can identify the same file that contains the href, this also supports locating XML elements by XMI uuid in
the same document.

4. Using full XLink and XPointer to locate almost anything

XLink and XPointer provide rich and complex capabilities for locating XML elements, far beyond what XMI requires.
Consequently it is not expected that XMI implementations supporting linking across documents provide this level of
support. The W3C XLink and XPointer specifications define what is possible and how it works.

Issue New example from Adoption of MOF2 Facility and Object Lifecycle spec - sect 7.1.2.1

5 Using the MOF2 facility Basic Encoding Scheme

The MOF2 Facility specification provides a means of encoding URIs to refer to elements in facilities: these may be
realized through XMI files, database-backed repositories or other mechanisms. Hence it is usually not appropriate to make
use of xmi:id values which are in general transient and limited in scope: rather names and unique ids are made use of. Full
details are contained in that specification.

As an example here is a link to an activity called CalculateHoursWorked which is within ProcessModel within
PayrollModels; PayrollModels is located via facility http://mof.adaptive.com:8083/ModelsFacility.
<activity
href="http://mof.adaptive.com:8083/ModelsFacility/PayroliIModels?ProcessModel/MonthlyProcess/
CalculateHoursWorked”/>

28 XMI 2.4 Specification



Issue 9626: Update example from UML 1.4

Issue 15616: replace ModelElement by Element in first line

7.10.3 Example for UML

There is an association between ModelElements and Constraints in UML. Operation is a subclass of Element. This
example shows an association between Operations and four Constraints with roles ownedRule and constrainedElement.
Each of the methods of linking is shown. The Constraints are shown in both definition and proxy form. Note that one of
the constrainedElement elements contains href="#xpointer(descendent(1,Operation,xmi:label,opl)).” This is an example
of case 4. Using full XLink and XPointer to locate almost anything.

Document 1, docl.xml (omitting root and namespace declarations)::
<uml:Operation xmi:id="idO1" xmi:type="uml:Operation"” xmi:label="op1"
xmi:uuid="DCE:1234">
<ownedRule xmi:id="idC1" xmi:type="uml:Constraint" xmi:label="co1"
xmi:uuid="DCE:abcd">
<specification xmi:type="uml:OpaqueExpression">
<body>First Constraint definition</body>
</specification>
<constrainedElement xmi:idref="idO1"/>
</ownedRule>
<ownedRule xmi:idref="idC2" />
<ownedRule xmi:idref="idC3" />
<ownedRule href="doc2.xml#idC4" />
</uml:Operation>
<uml:Constraint xmi:id="idC2" xmi:type="uml:Constraint" xmi:label="co2"
xmi:uuid="DCE:efgh">
<specification xmi:type="uml:OpaqueExpression">
<body>Second Constraint definition</body>
</specification>
<constrainedElement xmi:idref="idO1" />
</uml:Constraint>
<uml:Constraint xmi:id="idC3" xmi:type="uml:Constraint" xmi:label="co3"
xmi:uuid="DCE:ijkI">
<specification xmi:type="uml:OpaqueExpression">
body>Third Constraint definition</body>
</specification>
<constrainedElement href="#xpointer(descendent(1,0peration,xmi:label,op1))"/>
</uml:Constraint>

Document 2, doc2.xml (omitting root and namespace declarations):
<uml:Constraint xmi:id="idC4" xmi:type="uml:Constraint" xmi:label="co4"
xmi:uuid="DCE:mnop">
<specification xmi:type="uml:OpaqueExpression">
<body>Fourth Constraint definition</body>
</specification>
<constrainedElement href="doc1.xml#idO1"/>
</uml:Constraint>

XMI 2.4 Specification 29



The first constraint is a definition. The constrainedElement role contains an Operation proxy that has a local reference to
the initial Operation definition using xmi:idref. The second constraint is a proxy referencing a constraint definition using
the xmi:idref of “idC2.” The third constraint is a proxy reference to the definition using xmi:idref to the constraint
“idC3.” The fourth constraint is an XPointer reference proxy to the definition of the constraint using the href to the file
doc2.xml with id “idC4.”

Following the definition of the operation and its 3 constraint proxies are the definitions of two of the constraints. The
second document contains the third constraint definition.

The use and placement of references is freely determined by the document creator. It is likely that most documents will
make internal and external references for a number of reasons: to minimize the amount of duplicate declarations, to
compartmentalize the size of the document streams, or to refer to useful information outside the scope of transmission.
For example, the href of an XLink could contain a query to a repository that will recall additional related information. Or
there may be a set of XMI documents created, one file per package to be transferred, where there are relationships
between the packages.

7.11 Tailoring Schema Production

This section describes how to tailor schema production by specifying particular MOF tags to augment a MOF model. It
also explains the impact the tailored schemas have on document production.

Issue 9674: Replace use of MOF 1 clustering by Packagelmport

Note that the MOF definition of the association between ModelElement and Tag is not a composition and does not have
a reference as part of ModelElement. This allows Tags to be contained in separate Packages and ‘remotely’ reference the
tagged elements. For XMI purposes this means that the following tags can be incrementally added to an existing model
without needing to be embedded in it - and thus changing it. Typically, the Tags could be in a separate Package and a
‘super’ package could import (via Packagelmport) this Tags package and the model package to drive the Schema
generation. This conveniently allows different Tag sets to be used with the same model (there would be a separate ‘super’
package for each). And the ‘super’ package extent allows runtime model access to the Tags package for introspection of
the tags that were used for the generation.

7.11.1 XMI Tag Values

The following table specifies the XMI tags that allow you to tailor the schemas that are produced and the documents that
are produced using XMI. Each of the names has a prefix of “org.omg.xmi.” The prefix is not included in the names to
make the table easier to read.

Table 1 - XMI Tag Values Summary

Tag Name Value Type Default value | Description

Naming tags

xmiName string nil Provides an alternate name from the MOF name for
writing to XMI. Useful in cases where the MOF
name has characters that conflict with XML. This
value is used rather than the MOF name.

nsURI string nil The namespace URI of the MOF package.

30 XMI 2.4 Specification



Table 1 - XMI Tag Values Summary

Tag Name Value Type Default value | Description

nsPrefix string Package::name | The namespace prefix of the MOF package; this is
used in schemas. (Any legal XML prefix may be
used in documents.)

XML Syntax tags

serialize string non-derived If non-derived, then the MOF construct is serialized
unless it is derived. ‘true’ forces the construct to be
serialized regardless of whether it is derived; and
‘false’ suppresses it regardless.

attribute boolean false If false, do not serialize the MOF construct as an
XML attribute unless element is also false.

element boolean false If false, do not serialize the MOF construct as an
XML element unless attribute is also false.

remoteOnly boolean false If set on one end of a bidirectional relationship, only
serializes that end if it is remote.

href boolean false If true, use the href attribute rather than the idref
attribute for links within a document. This also
prohibits the use of XML attributes for class-typed
properties.

valueSeparator string " The value of a structured datatype (i.e. a datatype
that has properties) is represented as the values of
the properties separated (by default) by a comma.
This tag allows the specification of a different
separator.

Ordering

superClassFirst boolean false If true, serialize the super class content first.

ordered boolean false If true, serialize object content in the order it is
defined in a MOF model. Where properties have
isOrdered=false then the order used is alphabetic
order of the string rendition of that property value

Content

includeNils boolean true If false, do not serialize nil values.

XML Schema Production

enforceMaximumMultiplicity | boolean false If true, enforce maximum multiplicities; otherwise,
they are “unbounded.”

enforceMinimumMultiplicity boolean false If true, enforce minimum multiplicities; otherwise,
they are “0.”

useSchemaExtensions boolean false If true, use schema extensions to represent
inheritance in the MOF model.

XMI 2.4 Specification

31




Table 1 - XMI Tag Values Summary

Tag Name

Value Type

Default value

Description

schemaType

string

nil

The name of a datatype defined in the XML Schema
Datatype specification.

contentType

string

complex

Defines the schema content type. Other valid values
are: any, mixed, empty, and simple.

processContents

string

strict

If the contentType is any, this tag is used to specify
the value of the processContents attribute of the any
element. Other valid values are: lax, skip.

form

string

nil

Specifies the value of the form attribute for
attributes. Other valid values are qualifed and
unqualified.

allowMetamodelExtension

boolean

false

Whether the XML Schema generated should allow
for the original metamodel to be extended —
allowing subclasses outside the metamodel to be
substituted

flattenStructuredDataTypes

boolean

false

If set to true, instances of non-nested structured
datatypes with field multiplicities [1..1] may be
serialized as a string of values separated by the
separator defined by the valueSeparator tag

Issue 9675: In table above, clarify interaction of attribute and element tags

Issue 9676: Delete duplicate ‘complex’ in list of values for contentType

Issue 9652: Insert default for nsPrefix

Issue 9679: Update description of href attribute

Issue 15307: Make description of ordered more specific

Issue 15621: Fix change to ordered made in 15307

Issue 15382: Change default for contentType from empty to complex

Issue 15381: Add tag allowMetamodelExtension

Issue 9644: Delete idProperty and idName tags

Issue 9661: Delete defaultValue and fixedValue tags

Issue 14628: Change default of includeNils to true

32

XMI 2.4 Specification



Issue

8884: Add flattenStructuredDataTypes tag

7.11.2 Tag Value Constraints

Issue

9677: Qualify the tag names

There are constraints on the values of the XMI tags in addition to the ones specified in the above table. Here is a list of

them:

Issue

14628: Update bullet

If org.omg.xmi.includeNils is true (the default), and the value of a property is empty, the value must be represented by
an XML element regardless of the value of the org.omg.xmi.attribute tag.

For class scope or multi-valued construct scope, if org.omg.xmi.enforceMinimumMultiplicity or
org.omg.xmi.enforceMaximumMultiplicity is true, the org.omg.xmi.ordered tag must be true as well (to validate mul-
tiplicities, schemas require element content to be serialized in a particular order). The multiplicity tags require the use
of serializing in elements. For singlevalued construct scope, when org.omg.xmi.enforceMinimumMultiplicity is true
and lower bound of the multiplicity = 0 or 1, then there is no need to enforce the use of the ordered tag or the use of ele-
ments for document serialization.

If the lower bound for a property is null, the org.omg.xmi.enforceMinimumMultiplicity tag is ignored, and minimum
multiplicity is not enforced in the Schema (minimum multiplicity is effectively “0). Similarly, if the upper bound for
a property is null, the org.omg.xmi.enforceMaximumMultiplicity tag is ignored, and maximum multiplicity is not
enforced in the Schema (the multiplicity is effectively unbounded).

Issue

9678: Clarify the condition

If the MOF model has multiple inheritance, then org.omg.xmi.useSchemaExtensions must be false,
If org.omg.xmi.useSchemaExtensions is true, org.omg.xmi.superClassFirst must be true also.
If org.omg.xmi.href is true, org.omg.xmi.element must be true as well for every reference that is serialized.

The org.omg.xmi.attribute tag may not be specified on containment references, multi-valued attributes, attributes with-
out simple data types, or features with the following tags as true: org.omg.xmi.element, org.omg.xmi.includeNils,
org.omg.xmi.enforceMinimumMultiplicity, org.omg.xmi.enforceMaximumMultiplicity, and org.omg.xmi.href.

Issue 9680: use idProperty not isProperty
Issue 9644: delete constraint due to removal of idProperty
Issue 9679: Add new constraint

If org.omg.xmi.href is true, the org.omg.xmi.attribute must be false and org.omg.xmi.element must be triue

Issue

9681 Delete redundant Scope section

XMI 2.4 Specification 33



7.11.3 XML element vs XML attribute

Issue 9653: replace use of MOF 1 attributes and references

You may choose features (DataType-typed or Class-typed properties) to appear as XML attributes, XML elements, or
both, based on the model and tags in the model. The following is a list of the conditions for mapping a feature to an XML
construct.

Issue 14865: Clarify conditions if both tags are ‘true’

XML attribute only

+ The feature has tag org.omg.xmi.attribute set to true and tag org.omg.xmi.element set to false.

XML element only

« The feature is a containment, or

Issue 9677: qualify the tag names

« has tag org.omg.xmi.element set to true and tag org.omg.xmi.attribute set to false

+ has an org.omg.xmi.href tag set to true, or

Issue 9653: replace ‘attribute’ by ‘property’

« is a multi-valued property, or

« is a property whose type is not a simple data type.

Both XML attribute and element
+ The default, if neither of the above conditions apply

7.11.4 Summary of XMI Tag Scope and Affect

The table below contains the following information:
 Affect: the second column identifies the MOF constructs that are affected by a given XMI tag.

+ Scope: columns 3 through 5 identify the scope of each tag. If the scope is Package Scope, a tag set on the package
applies to all the affected constructs within the package. If the scope is class Scope, a tag set on the class applies to all
affected constructs within the class. If the scope is Construct Scope, the tag affects only the specific construct it is set
on.

Issue 9653: refer to properties rather than attributes and association ends

By setting a tag on a Package or Class, you avoid setting the same tags repeatedly for classes in the package, and for
Properties belonging to the Class. For example, the org.omg.xmi.element tag applies to Properties. If the
org.omg.xmi.clement tag is set to true for a Class, the Class itself is not affected, but each Property belonging to the Class
is treated as if the org.omg.xmi.element tag were set to frue for all of them.

34 XMI 2.4 Specification



Issue 9681: Moved paragraph from 4.11.3

The org.omg.xmi.xmiName, org.omg.xmi.serialize, org.omg.xmi.contentType, org.omg.xmi.schemaType, and
org.omg.xmi.remoteOnly tags apply only to the constructs for which they are specified. For example, setting the
org.omg.xmi.xmiName of a MOF class to “c” means that the name “c” should be used in XMI schemas and documents

for that class; it does not constrain the names of the features of the class.

Issue 9681: Serialize, contentType, remoteOnly no longer Package and Classs scoped

Issue 10426: Include ordered, processContents and valueSeparator in table

Issue 15381: add allowMetamodelExtension

Issue 9661: Remove defaultValue and fixedValue tags

Issue 9644: Remove idName and idProperty tags

Issue 8884: Add flattenStructuredDataTypes tag

Table 2 - XMI Tags, the MOF Constructs They Affect, and Their Scope

XMI Tag MOF Constructs Affected Package Class Construct
Scope Scope Scope
xmiName Class, Property X
ordered Class, Property X X X
serialize Property X
element Property X X X
attribute Property X X X
enforceMaximumMultiplicity Property X X X
enforceMinimumMultiplicity Property X X X
form Property X X X
remoteOnly Property X
href Property X X X
includeNils Property X X X
schemaType Property X
valueSeparator Property X X X

XMI 2.4 Specification

35



| allowMetamodelExtension Property X X X
nsURI Package X X
| flattenStructuredDataTypes Property X X X
nsPrefix Package X X
| processContents Class, Property, Package X X
useSchemaExtensions Class X X X
| contentType Class X
superClassFirst Class X X X

7.11.5 Effects on Document Production

The values of the XMI tags affect how documents are serialized. In general, the more validation a schema performs, the
more restrictions there are on the XMI documents that validate using the schemas. There are two reasons for this. First,
schemas cannot validate multiplicities without imposing an order on element content. Second, if the schema extension
mechanism is used, superclass elements must be serialized in element content before subclass elements.

Here are some examples of how the XMI tags affect document production. Assume that there is a MOF model with class
“Super” and class “Sub.” Sub inherits from Super. Super has attribute a of type String, and Sub has attribute b of type
String. If the namespace URI is “URI,” and the prefix is “p,” here is the default schema produced from the MOF model:

Issue 9682: Update the XMI namespace

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema
targetNamespace="URI"
| xmlins:xmi="http://www.omg.org/spec/XMI/20100901"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:p="URI">

<xsd:import
| namespace="http://www.omg.org/spec/XMI/20100901"
schemaLocation="XMIl.xsd"/>

<xsd:complexType name="Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Super" type="p:Super"/>

| 36 XMI 2.4 Specification



<xsd:complexType name="Sub">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Sub" type="p:Sub"/>

</xsd:schema>

Note that the content model for Sub allows attribute a or attribute b to be serialized first if they are serialized as elements.

For example, if p is the namespace prefix for a namespace whose uri is “URI” in an XML document, the following
instance of Sub validates against the default schema:

<p:Sub>
<b>Value1</b>
<a>Value2</a>

</p:Sub>

The following is also legal:

<p:Sub>
<a>Value2</a>
<b>Value1</b>

</p:Sub>

Issue 9677: Qualify the tag name

If org.omg.xmi.useSchemaExtensions is true, the declaration of the Sub complexType uses the XML schema extension

mechanism, as follows:

<xsd:complexType name="Sub">
<xsd:complexContent>
<xsd:extension base="p:Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="b" type="xsd:string"/>
</xsd:choice>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

XMI 2.4 Specification

37



This declaration of the Sub type imposes an ordering on the content of Sub instances. With this declaration attribute a
must be serialized before attribute b, so the first instance of Sub above does not validate with this schema, but the second
does validate. Also, any xmi:extension elements must be serialized in Sub instances before elements corresponding to
attribute b.

7.11.6 Example: Customize the XML Schema for a GIS Model

Issue 9687: clarify that this is a metamodel

This example uses a model from GIS. It shows the flexibility that XMI tags give the modeler in tailoring an XML schema
for a metamodel: in this case an EMOF metamodel.

0..” CityModel

CityFeature
1/ < dateCreated : Date

A

+cityMember

Road River

Mountain
classification : CharacterString centerLineOf: GM _Curve elevation : Integer
number : CharacterString
linearGeometry : GM_Curve

Figure 6 - GIS Cambridge model

Issue 9684: Add note

Note: The definition of type “GM_Curve” is intentionally not shown to keep the example focused and simple.

The default XML schema for this model is:

Issue 9682: Update the XMI namespace

Issue 9685: Delete annotation elements

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlins:xmi="http://www.omg.org/spec/XMI/20100901">

<xsd:import namespace="http://www.omg.org/spec/XMI/20100901" schemaLocation="XMIl.xsd"/>

<xsd:complexType nhame="Road">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="classification" type="xsd:string" nillable="true"/>
<xsd:element name="number" type="xsd:string" nillable="true"/>
<xsd:element name="linearGeometry" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

38 XMI 2.4 Specification



<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="classification" type="xsd:string" use="optional"/>

<xsd:attribute name="number" type="xsd:string" use="optional"/>

<xsd:attribute name="linearGeometry" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Road" type="Road"/>

<xsd:complexType name="CityFeature">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityFeature" type="CityFeature"/>

<xsd:complexType name="River">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="centerLineOf" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="centerLineOf" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="River" type="River"/>
<xsd:complexType name="CityModel">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="dateCreated" type="xsd:string" nillable="true"/>

Issue 15381 change type of cityMember from xmi:Any

<xsd:element name="cityMember" type="CityFeature” minOccurs="0” maxOccurs="unbounded”/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="dateCreated" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="CityModel" type="CityModel"/>

Issue 9686: make elevation of type ‘int’

<xsd:complexType name="Mountain">

XMI 2.4 Specification 39



<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="elevation" type="xsd:int" nillable="true"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="elevation" type="xsd:int" use="optional"/>

</xsd:complexType>

<xsd:element name="Mountain" type="Mountain"/>

<xsd:element name="Cambridge">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Road"/>
<xsd:element ref="CityFeature"/>
<xsd:element ref="River"/>
<xsd:element ref="CityModel"/>
<xsd:element ref="Mountain"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Some things to notice about the default schema include:

Issue

9677: Qualify the tag names

It does not use the XML schema extension element to express inheritance. This is because XML schema does not sup-
port multiple inheritance. Instead, declarations of the superclass(es) are repeated in the subclass. For models that only
use single inheritance, the ‘org.omg.xmi.useSchemaExtensions’ tag signals that the xsd:extension element should be
generated rather than repeating the declarations.

XMI allows attributes with primitive values (like String) to be serialized either as XML attributes or as XML elements.
This makes the default schema verbose, since it needs to take into account both possibilities. The XMI
‘org.omg.xmi.clement’ tag can be used to signal that attributes can be serialized only as XML elements. Similarly, the
XMI ‘org.omg.xmi.attribute’ tag signals the other case.

Issue

9688: Remove reference to Rose tooling

40

The dateCreated attribute of the CityModel class has type string. This is because Date is not in the set of MOF primi-
tive datatypes. This could be addressed by including datatype ‘Date’ in the model and having XMI tag
‘org.omg.xmi.schemaType’ with value http://www.w3.0rg/2001/XMLSchematdate.

xsd:choice is used to represent attributes, but does not constrain cardinality. This makes it possible to leave out an
attribute or to repeat it a number of times without being caught when validating a document with the schema. You can
set XMI tags “org.omg.xmi.enforceMaximumMultiplicity,” “org.omg.xmi.enforceMinimumMultiplicity,” and
“org.omg.xmi.ordered” to “true.” Also, the XMI tag “org.omg.xmi.attribute” must be “false” (the default). There is a

XMI 2.4 Specification



disadvantage to using these tags: in order to validate multiplicity, schemas require the XML elements be serialized in
the same order as declared in the schema.

+ The schema declaration for cityMember has type xmi:Any instead of type CityFeature:

<xsd:element name="cityMember" type="xmi:Any"/>

Issue 9699: Correct typo ‘would not recognized’

It would be useful to be able to constrain the attribute to the correct type - in this case CityFeature instead of Any. In the
default case, where XMI tag org.omg.xmi.useSchemaExtensions="false,” using xmi:Any instead of CityFeature allows
the subclasses of CityFeature (Road or River) to be serialized and validated by the schema. If we used type=CityFeature,
the validator would not recognize the additional attributes in Road and River, and the document would be considered
invalid. However, with XMI tag org.omg.xmi.useSchemaExtensions="true,” the correct type can safely be used.

By applying all the XMI tags described above, we can tailor the schema to look like:

Issue 9682: Update the XMI namespace for XMI 2.4

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xmi="http://www.omg.org/spec/XMI/20100901">

<xsd:import namespace="http://www.omg.org/spec/XMI/20100901"
schemaLocation="XMI.xsd"/>
<xsd:annotation>
<xsd:documentation>PACKAGE: Cambridge</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>CLASS: Road</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="Road">
<xsd:extension base="CityFeature">
<xsd:sequence>
<xsd:element name="classification" type="xsd:string" nillable="true"/>
<xsd:element name="number" type="xsd:string" nillable="true"/>
<xsd:element name="linearGeometry" type="xsd:string" nillable="true"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexType>

<xsd:element name="Road" type="Road"/>
<xsd:annotation>
<xsd:documentation>CLASS: CityFeature</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="CityFeature">

XMI 2.4 Specification 41



42

<xsd:sequence>
<xsd:element ref="xmi:Extension" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityFeature" type="CityFeature"/>

<xsd:annotation>
<xsd:documentation>CLASS: River</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="River">
<xsd:extension base="CityFeature">
<xsd:sequence>
<xsd:element name="centerLineOf" type="xsd:string" nillable="true"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexType>

<xsd:element name="River" type="River"/>

<xsd:annotation>
<xsd:documentation>CLASS: CityModel</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="CityModel">
<xsd:sequence>
<xsd:element name="dateCreated" type="xsd:date" nillable="true"/>
<xsd:element name="cityMember" type="CityMember" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="xmi:Extension” minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityModel" type="CityModel"/>
<xsd:annotation>

<xsd:documentation>CLASS: Mountain</xsd:documentation>
</xsd:annotation>
<xsd:complexType name="Mountain">

<xsd:sequence>
<xsd:element name="elevation" type="xsd:int" nillable="true"/>

XMI 2.4 Specification



<xsd:element ref="xmi:Extension" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="Mountain" type="Mountain"/>

<xsd:element name="Cambridge">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Road"/>
<xsd:element ref="CityFeature"/>
<xsd:element ref="River"/>
<xsd:element ref="CityModel"/>
<xsd:element ref="Mountain"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

</xsd:schema>

7.12 Transmitting Metadata Differences

The goal is to provide a mechanism for specifying the differences between documents so that an entire document does not
need to be transmitted each time. This design does not specify an algorithm for computing the differences, just a form for
transmitting them.

Up to now we have seen how to transmit an incomplete or full model. This way of working may not be adequate for all
environments. More precisely, we could mention environments where there are many model changes that must be
transmitted very quickly to other users. For these environments the full model transmission can be very resource
consuming (time, network traffic, ...) making it very difficult or even not viable for finding solutions for cooperative
work.

The most viable way to solve this problem is to transmit only the model changes that occur. In this way different
instances of a model can be maintained and synchronized more easily and economically. Concurrent work of a group of
users becomes possible with a simple mechanism to synchronize models. Transmitting less information allows
synchronizing models more efficiently.

7.12.1 Definitions

The idea is to transmit only the changes made to the model (differences between new and old model) together with the
necessary information to be able to apply the changes to the old model.

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences between them in a reversible fashion.
The difference is expressed in terms of changes made to the old document to arrive at the new document.

XMI 2.4 Specification 43



B. New = OId + Difference

Model merging is the ability to combine difference information plus a common reference model to construct the
appropriate new model.

7.12.2 Differences

Differences must be applied in the order defined. A later difference may refer to information added by a previous
difference by linking to its contents. Model integrity requires that all the differences transmitted are applied. The
following are the types of differences recognized, the information transmitted, and the changes they represent:

Issue 9632: Improve semantics

« Delete (reference to deleted elements): The Delete element refers to particular elements and specifies a deep removal of
the referenced elements and all of their contained elements (determined through composite associations).

+ Add (reference to containing element, new elements, optional position): The Add element refers to a particular element
of the old model and specifies a deep addition. The elements and their contents are added at the optional position spec-
ified relative to elements of that type within the target element (e.g. packagedElement), the default being at the end.
The optional position form is based on XPointer's position form. 1 means the first position, -1 means the last position,
and higher numbers count across the contents in the specified direction.

« Replace (reference to replaced elements, replacement elements, optional position): This operation removes the old ele-
ments from their container (they must all have the same container) but does not delete them. The new elements are
added at the specified position within the same container (as per Add).

7.12.3 XMl encoding

The following are the elements used to encode the differences.

Issue 9632: Improve the semantics

delete

The target element’s link attributes contain a link to the element to be deleted.

add

The addition attribute of add references the elements to be added, which must all be of the same XML type. The target
element’s link attributes contain a link to the single container element for the new ones and an optional position. The
numbering corresponds to XPointer numbering, where 1 is the first and -1 is the last element and it is used to count the
elements of the same type as the ones to be added within the container. The type used is that of the XML element (which
typically represents a composite property) as opposed to the xmi:type. The new elements are positioned after the element
with the indicated position.

replace

The target of replace is the set of elements to be replaced which must all be of the same XML type and have the same

container. The replacement attribute of replace references the elements to be added to that container, and must again all
be of the same XML type. The optional position attribute uses numbering corresponding to XPointer numbering, where 1
is the first and -1 is the last element and it is used to count the elements of the same type as the ones to be added within

44 XMI 2.4 Specification



the container (after removal of the target elements). The type used is that of the XML element (which typically represents
a composite property) as opposed to the xmi:type. The new elements are positioned after the element with the indicated

position.

7.12.4 Example

Issue 9632: Provide a more up-to-date and useful example

This example will delete a class and its attributes, add two classes, and replace a class within a package. The original
document, called original.xml:
<xmi:XMI xmins:uml="http://www.omg.org/spec/UML/20100901"
xmins:xmi=" http://www.omg.org/spec/UML/20100901">
<uml:Package xmi:id="ppp" xmi:label="p1">
<packagedElement xmi:type="uml:Class" xmi:id="ccc" name="c1">
<ownedAttribute xmi:type="uml:Property" name="a1"/>
<ownedAttribute xmi:type="uml:Property " name ="a2"/>
</packagedElement >
</uml:Package>
</xmi:XMI>

The differences document:
<xmi:XMI xmIns:uml="http://www.omg.org/spec/UML/20100901"
xmins:xmi=" http://www.omg.org/spec/UML/20100901">
<difference xmi:type="xmi:Delete">
<target href="original.xml#ccc"/>
</difference/>
<difference xmi:type="xmi:Add" addition="Class_1 Class_2">
<target href="original.xml#ppp"/>
</difference>
<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
<packagedElement xmi:type="uml:Class" xmi:id="Class_2" name="c3">
<difference xmi:type="xmi:Replace" position="0" replacement="c4">
<target href="original.xml#Class_2"/>
</difference>
<packagedElement xmi:type="uml:Class" xmi:id="Class_3" name="c4">
</xmi:XMI>

Here’s how the 3 differences change the document as they’re applied. The delete:
<xmi:XMI xmins:uml="http://www.omg.org/spec/UML/20100901"
xmlins:xmi=" http://www.omg.org/spec/UML/20100901">
<uml:Package xmi:id="ppp" xmi:label="p1">
</uml:Package>
</xmi:XMI>

Next, the add:
<xmi:XMI xmins:uml="http://www.omg.org/spec/UML/20100901"
xmins:xmi=" http://www.omg.org/spec/UML/20100901">
<uml:Package xmi:id="ppp" xmi:label="p1">

XMI 2.4 Specification

45



<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
<packagedElement xmi:type="uml:Class" xmi:id="Class_2" name="c3">
</uml:Package>
</xmi:XMI>

Finally, the replace:
<xmi:XMI xmins:uml="http://www.omg.org/spec/UML/20100901"
xmins:xmi=" http://www.omg.org/spec/UML/20100901">
<uml:Package xmi:id="ppp" xmi:label="p1">
<packagedElement xmi:type="uml:Class" xmi:id="Class_3" name="c4">
<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
</uml:Package>
<uml:Class xmi:type="uml:Class" xmi:id="Class_2" name="c3">
</xmi:XMI>

Note that Class_2 is not deleted but merely removed from the package ppp.

7.13 Document Exchange with Multiple Tools

This section contains a recommendation for an optional methodology that can be used when multiple tools interchange
documents. In this methodology, the xmi:uuid and extensions are used together to preserve tool-specific information. In
particular, tools may have particular requirements on their IDs, which makes ID interchange difficult. Extensions are used
to hold tool-specific information, including tool-specific IDs.

The basic policy is that the XML ID is assigned by the tool that initially creates a construct. The UUID will most likely
be the same as the ID the tool would choose for its own use. Any other modifiers of the document must preserve the
original UUID, but may add their own as part of their extensions.

Issue Change from adoption of MOF 2 Facility Specification

In order to allow the use of such schemes as outlined here, XMI Extensions must be persistently maintained by the
importing tool.

7.13.1 Definitions

General:
+ MC - Model construct. An XML element that contains an xmi.uuid attribute.

 Extension - Extensions use the extension element. Extensions to MCs may be nested in MCs, linked to the extensions
section(s) of the document, or linked outside the document. Each extension contains a tool-specific identifier in the
extender attribute. Extensions are considered private to a particular tool. An MC may have zero or more extensions.
Extensions may be nested.

IDs:

« xmi:uuid - The universally unique ID of an MC, expressed as the xmi:uuid attribute. Example: <Class
xmi:uuid="ABCDEFGH”>

« extenderID - The tool-specific ID of an MC. The extenderID is stored in an extension of the MC when it differs from
the xmi:uuid.

46 XMI 2.4 Specification



Tool ID policies:
Every tool is either Open or Closed.

« Open tool - A tool that will accept any xmi:uuid as its own. Open tools do not need to add extensions to contain a tool-
specific id.

+ Closed tool - A tool that will not accept an xmi:uuid created by another tool. Closed tools store their ids in the exten-
derID attribute of an XMI.extension. The extender attribute of the XMI.extension is set to the name of the closed
tool.

7.13.2 Procedures

Document Creation:

+ The Creating Tool writes a new XMI document. Each MC is assigned an xmi:uuid. If the xmi:uuid differs from the
extenderID, an extension for that tool is added containing the extenderID.

Document Import:

+ The importing tool reads an existing XMI document. Extensions from other tools may be stored internally but not
interpreted in the event a Modification will occur at a later time. One of the following cases occurs:

1.If the importing tool is an Open tool, the xmi:uuids are accepted internally and no conversion is needed.

2.If the importing tool is a closed tool, the tool looks for a contained extension that it recognizes (identified by
extender) with an extenderID. If one does not exist, the importing tool creates its own internal id.

Document Modification:
+ The modifying tool writes the MCs and any extensions preserved from import.
« For new MCs, the MC is assigned an xmi:uuid.

+ Closed tools add an extension including their internal id in the extenderID.

7.13.3 Example

This section describes a scenario in which Tooll creates an XMI document that is imported by Tool2, then exported to
Tooll, and then a third tool imports the document. All the tools are closed tools.

1. A model is created in Tooll with one class and written in XMI.

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh"/>

Issue 10640: Replace 2nd extenderld by uuid in steps 2 and 4

2. The class is imported into Tool2. Tool2 assigns extenderID “JKLMNOPQRST.” A second class is added with name
“c2” and uuid “X012345678.”

3. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678"/>

XMI 2.4 Specification 47



4. The model is imported into Tooll. Tooll assigns extenderID “ijklmnop” to “c2” and a new class “c3” is created with
uuid “qrstuvwxyz.”

5. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">

<xmi:Extension extender="Tool1" extenderID="ijkimnop"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qgrstuvwxyz"/>

6. A third closed tool, Tool3, adds its ids:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
<xmi:Extension extender="Tool3" extenderiD="s1234"/>

</UML:Class>

<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tool1" extenderIlD="ijkimnop"/>
<xmi:Extension extender="Tool3" extenderlD="s5678"/>

</UML:Class>

<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz">

<xmi:Extension extender="Tool3" extenderID="s90ab"/>
</UML:Class>

7. An open tool imports and modifies the file. There are no changes because the xmi:uuids are used by the tool.

7.14 General Datatype Mechanism

The ability to support general data types in XMI has significant benefits. The applicability of XMI is significantly
expanded since domain models are likely to have a set of domain-specific data types. This general solution allows the
user to provide a domain datatype model with a defined mapping to the XML data types.

Data types are defined in the model and the XML serialization of the datatypes is described in terms of the XML schema
datatypes.

MOF complex data types are treated as MOF classes with each field treated as a MOF attribute with a primitive type
mapped to XML schema.

The Tag org.omg.xmi.schemaType indicates that this class is a datatype with XML schema mapping. The value of the tag
indicates the schema type. For example, http://www.w3.0rg/2001/XMLSchema#int is the int datatype.

Issue New section added by adoption of MOF2 Facility and Object Lifecycle

48 XMI 2.4 Specification



7.15 Import Reconciliation

The following are cases where an element in an imported XMI file will resolve to an existing element in the importer:
only one of the following need apply

+ both elements have uuids which are identical

« the XMI element has extenderID and extender which are identical to those associated with the element in the importer
+ both elements have identical values of a Property with isID=true

+ both elements are in the same extent and would have identical values for the basic URI scheme

Should elements match as above then the element in the importer is updated as follows:

* If property P is explicitly included in the XMI file then the value of that property is updated to the value(s) from the
XMI file. If multivalued then any existing values not in the new set are removed.

* If P is included but empty in the XMI file the property is unset; if mandatory it is instead set to its default value.

* If P is not explicitly included in the XMI file then any existing value in the importer is unchanged.

Should a matching element be referenced from the Differences element then the actions are carried out in order prior to
the main import.

XMI 2.4 Specification 49



50

XMI 2.4 Specification



8 XML Schema Production

8.1 Purpose

This section describes the rules for creating a schema from a MOF-based metamodel. The conformance rules are stated in
Section 2.2.1.

8.1.1 Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules are written as rule number, rule
name, for example la. SchemaStart. Text within quotation marks are literal values, for example “<xsd:element.” Text
enclosed in double slashes represents a placeholder to be filled in with the appropriate external value, for example //Name
of Attribute//. Literals should be enclosed in single or double quotation marks when used as the values for XML
attributes in XML documents. The suffix “*” is used to indicate repetition of an item O or more times. The suffix “?” is
used to indicate repetition of an item O or 1 times. The suffix “+” is used to indicate repetition of an item 1 or more times.
The vertical bar “|” indicates a choice between two items. Parentheses “()” are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment. However, since white space in XML
is significant, the actual schema generation process must insert white space at the appropriate points.

8.2 XMI Version 2 Schemas

8.21 EBNF

Issue 8437: various changes including namespace and replacing namespace “name” by “prefix”

Issue 9693: also replace namespace “name” by “prefix”

Issue 9692: Replace ImportsAndincludes by Includes

XMI 2.4 Specification 51



The EBNF for XMI Version 2 schemas is listed below with rule descriptions between sections.

1. Schema ::= la:SchemaStart
1d:Imports?
le:FixedDeclarations
2:PackageSchema+
1f:SchemaEnd
la. SchemaStart ::= "<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
xmlns:xmi='"http://www.omg.org/spec/XMI/20100901"
1b:NamespaceDecl*
lc:TargetNamespace?
nsn
1b. NamespaceDecl ::= "xmlns:" //Namespace prefix// "="
mrw //Namespace URI// "'"
lc. TargetNamespace = "targetNamespace='" //Namespace URI// "'"
1d. Imports::= //Import statements for referenced metamodels//
Issue 11001: Remove ‘optional’ from xmi:id in 1g
Issue 9644: No option for id attribute in 1g
le. FixedDeclarations ::= "<xsd:import
namespace='http://www.omg.org/spec/XMI/20100901" />"
1f. SchemaEnd ::= "</xsd:schema>"
lg. XMIFixedAttribs ::= "<xsd:attribute ref='xmi:id’/>"
"<xsd:attributeGroup ref=’xmi:ObjectAttribs’/>"
1h. Namespace = ( //Name of prefix// ":" )?
52 XMI 2.4 Specification



Issue 9677: Qualify the tag names

Table 3
I Issue  9622: delete ‘includes’
A schema consists of a schema XML element that contains import statements, fixed declarations, plus
declarations for the contents of the Packages in the metamodel.
la. The schema XML element consists of the schema namespace attribute, namespace attributes for the

other namespaces used in the schema, if any, and an optional target namespace attribute. These rules
are written as if the namespace name for the schema namespace is “xsd” and the namespace name for
the XMI namespace is “xmi,” but you can substitute other names for these namespace names and still
conform to this specification.

b Issue 9652: Use Package::URI

Each namespace used in the schema must have a namespace attribute that identifies the namespace
prefix and the namespace URI. If the namespace name is "" the attribute name should be “xmlns.”
The namespace is taken by default from the URI property on the Package representing the
metamodel, which may be overridden by the org.omg.xmi.nsURI tag. The prefix is declared by the
org.omg.xmi.nsPrefix in the metamodel.

le. Issue 9692: reference the URI property

The target namespace is set to the URI property of the Package representing the metamodel.

ld Issue 9692 Replace text

For each Packagelmport in the metamodel there is a XML Schema import element. The namespace
attribute will be set to the URI property of the Package defining the metamodel. The schemalocation
attribute is optional for XMI and may be set to the location of the generated XMI-complaint XML
Schema for that metamodel.

le. The schema declarations that are in the XMI namespace are listed in Section 8.2.2, “Fixed Schema
Declarations,” on page 61.

1f. The end of the schema XML element.

lg. Issue 9644: Remove idProperty tag

The fixed XMI attributes present on the major elements provide element identity and element
linking. The identity attribute name is “xmi:id.”

(134

1h. A namespace is a namespace prefix followed by a “:”. If no namespace prefix is given, the rule is a
blank.

Issue  9694: Remove PackageElementDef and add AssociationDef

2. PackageSchema ::= ( 2:PackageSchema
3:ClassSchema

\
| 6:StructuredDataTypeDef
| 7:AssociationDef

\

8 :EnumSchema) *

| XMI 2.4 Specification 53



Table 4

Issue 15307: Add sentence regarding order

The schema contribution from a Package consists of the declarations for any contained Packages,
Classes, Structured Data Types (those with properties), Associations and Enumerations.
The order of definitions within the package is by element type (which includes their subtypes) as
follows: Package, Class, Datatype, and alphabetically byname within each element type

Issue 8884: Add StructuredDataTypeDef in rule 2 above.

3. ClassSchema ::= 4:ClassTypeDef
5:ClassElementDef

Table 5
3. Issue 9653: Replace use of terma attributes and references
The class schema contribution consists of a type declaration based on the Properties of the Class, and
an element declaration for the Class itself.
54

XMI 2.4 Specification



Issue 8437: Various formatting changes - mostly indentation and moving | to start of lines

4. ClassTypeDef ::= "<xsd:complexType name=’'" //Name of Class//
("mixed="true’")?
I
( "<xsd:complexContent>"
"<xsd:extension base=’'" 4a:ClassTypeName "’'")?
(("<xsd:choice minOccurs='0"’
maxOccurs='unbounded’ >" )
| "<xsd:sequence>")?
( 4b:ClassContents
| ( "<xsd:any minOccurs=’'0’ maxOccurs='unbounded’ )
processContents=’'" // ProcessContents Value // "/ />")?
("</xsd:choice>"
| "</xsd:sequence>")?
4g:ClassAttListItems
( "</xsd:extension>"
"</xsd:complexContent>" )?
"</xsd:complexType>
4a. ClassTypeName ::= lh:Namespace //Name of Class//
4b. ClassContents ::= 4d:ClassAttributes
4e:ClassReferences
4f:ClassCompositions
4c:Extension
4c. Extension ::= ("<xsd:element ref=’xmi:extension’/>")*
4d. ClassAttributes

("<xsd:element name=’'" //Name of DataType-typed Property// "'"
("nillable="true’")?
( 4m:MinOccursAttrib )?
( 4n:MaxOccursAttrib )?
(("type='" //Name of type// "' />")
| ("type='xmi:Any'/>")) )*

4e. ClassReferences ( "<xsd:element name=’'" //Name of Class-typed Property// "'"
( 4m:MinOccursAttrib )?
( 4n:MaxOccursAttrib )?

"xsd:attributeGroup ref=’linkAttribs’")*

Issue 11002: replace use of xmi:Any in 4e with linkAttribs

Issue 15381: allow for explict types in 4f

Issue 9661: Remove default and fixed values in 4j and 4k and remove 4| and 40

Issue 15454: More options in rule 4i

XMI 2.4 Specification



4f. ClassCompositions ::= ( "<xsd:element name='" //Name of Reference// "'"
( 4m:MinOccursAttrib )?
( 4n:MaxOccursAttrib )?
(("type='" 4a:ClassTypeName "' />")
| ("type='xmi:Any'/>")/>")
| (" ><xsd:complexType><xsd:choice>"
("<ref='" 4a: ClassTypeName "’ />")*
"></xsd:choice></xsd:complexType></xsd:element>" ) )*
4g. ClassAttListItems ::= 1g:XMIFixedAttribs 4h:ClassAttribAtts
4h. ClassAttribAtts = ( 4i:ClassAttribRef
| 4j:ClassAttribData
| 4k:ClassAttribEnum )*
4i. ClassAttribRef ::= "<xsd:attribute name=’'" //Name of attribute// "’"
("type='xsd:IDREFS’" | "type='xsd:IDREF’" )
("use='optional’" | use='required’™ ) "/>"
| (OName ? "type='xsd:anyURI’ use='’optional’/>")}
4j. ClassAttribData ::= "<xsd:attribute name=’'" //Name of attribute// "’"
"type=’'xsd:string’ "
("use='optional’"™ | "use='required’")
("form='" // Form value // "'")?
" / > "
4k. ClassAttribEnum ::= "<xsd:attribute name='" //Name of attribute// "’"
"type='" 8a:EnumTypeName "'"
("use='optional’"™ | "use='required’"))
" /> n
41. // rule deleted//
4m. MinOccursAttrib ::= "minOccurs='" // Minimum // "'"
4n. MaxOccursAttrib ::= "maxOccurs='" // Maximum // "'"
Table 6
4. Issue 9677: Qualify the tag names
Issue 15382: the default for contentType is now complex not empty
These rules describe the declaration of a Class in the metamodel as an XML complex type with a content
model and XML attributes. If either of the tags org.omg.xmi.enforceMaximumMultiplicity or
org.omg.xmi.enforceMinimumMultiplicity is true, the contents of the class are put in a sequence;
otherwise, they are put in a choice. Ifthe org.omg.xmi.contentType tag is complex (the default), the class
content declarations appear as defined by rule 4b; however, if the org.omg.xmi.contentType value is
empty, they do not appear, and if the org.omg.xmi.contentType value is any, the "xsd:any" element
declaration appears instead of the class content. If the org.omg.xmi.contentType value is mixed, then the
mixed attribute is included. If org.omg.xmi.useSchemaExtensions is true, the complex type for the class
is derived by extension from the complex type for its superclass.
4a. This rule is for a reference to the type for the class, which is the name of the Class prefixed by the
namespace, if present and not the default namespace.
56 XMI 2.4 Specification



Issue 9653: replace use of terms Attribute and Reference by DataType-typed and Class-typed Property in
this set of rules

Table 7

4b.
4c.

4d.

4e.

Issue 9677: Qualify the tag names

Issue 15680: Derived properties are controlled by serialize tag

The complex type for the Class contains XML elements for the contained DataType-typed and Class-
typed properties and Compositions of the Class, plus an extension element. The org.omg.xmi.serialize
tag can be used to control whether these constructs are serialized: by default derived contructs are not.
If org.omg.xmi.useSchemaExtensions is false or not present, inherited DataType-typed and Class-typed
properties and Compositions are included; otherwise, only local DataType-typed and Class-typed
properties, and Compositions are included.

Issue 15681: Describe use of allowMetamodelExtensions tag

The XML element name for each DataType-typed property of the Class is listed as part of the content
model of the Class element. This includes the DataType-typed properties defined for the Class itself
as well as all of the DataType-typed properties inherited from superclasses of the Class. The type is
“xsd:string” for simple properties, the name of an enumeration for enumerated properties, or the value
of the org.omg.xmi.schemaType tag, if present. For Properties typed by a structured DataType (pos-
sible in CMOF only), when org.omg.xmi.useSchemaExtensions is true, the name of the Property’s
type is used from rule 4. When org.omg.xmi.useSchemaExtensions is false and org.omg.xmi.allow-
MetamodelExtension is true, xmi:Any is used. Otherwise the list of candidate types is included: this
is the name of the Property’s type (if not abstract) and the name of any non-abstract subtype. The list
is in alphabetical order of immediate subtypes with depth first expansion.

If the org.omg.xmi.includeNils tag is false, then the “nillable” attribute is not included in the declara-
tion. If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included. If
org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

Issue 11002: Clarify multiplicity conditions in 4e and 4f

Issue 15681: Describe use of allowMetamodelExtensions tag

This rule applies to Class-typed Properties that are not composite. The XML element name for each
Class-typed Property of the Class is listed in the content model of the Class. The list includes the Class-
typed Properties defined for the Class itself, as well as all Class-typed Properties inherited from the
superclasses of the Class. The type is the class name for the Class-typed Property type if
org.omg.xmi.useSchemaExtensions is “true”. If org.omg.xmi.allowMetamodelExtensions is true, the
type allows any object to be serialized and xmi:Any is used. Otherwise the list of candidate types is
included: this is the name of the Property type (if not abstract) and the name of any non-abstract subclass.
The list is in alphabetical order of immediate subclasses with depth first expansion.

If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is set to the lowerValue for
the Property in the metamodel (unless it is 1 in which case minOccurs is omitted), otherwise it is set to
“0” regardless. If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is set to
the upperValue for the Property in the metamodel (unless it is 1 in which case maxOccurs is omitted),
otherwise it is set to “unbounded” regardless.

XMI 2.4 Specification

57



Table 7

4f. Issue 15381: descibe effect of allowMetamodelExtensions

Issue 15681: remove redundant text at end

The XML element name for each Class-typed Property of the Class that is a composite is listed in the
content model of the class. The list includes the Class-typed Properties defined for the Class itself, as
well as all Class-typed Properties inherited from the superclasses of the Class. The type is the class name
for the Class-typed Property type if org.omg.xmi.useSchemaExtensions is “true”. If
org.omg.xmi.allowMetamodelExtensions is true, the type allows any object to be serialized and xmi:Any
is used. Otherwise the list of candidate types is included: this is the name of the Property type (if not
abstract) and the name of any non-abstract subclass. The list is in alphabetical order of immediate
subclasses with depth first expansion.

If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is set to the lowerValue
for the Property in the metamodel (unless it is 1 in which case minOccurs is omitted), otherwise it is set
to “0” regardless. If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is set
to the upperValue for the Property in the metamodel (unless it is 1 in which case maxOccurs is omitted),
otherwise it is set to “unbounded” regardless.

4g. In addition to the standard identification and linkage attributes, the attribute list of the Class element can

4h. contain XML attributes for the DataType-typed Properties and non-composite Class-typed Properties of
the Class, when the limited facilities of the XML attribute syntax allow expression of the necessary
values. Inherited properties are included unless the org.omg.xmi.useSchemaExtensions tag is true, in
which case only local properties are included.

4. Issue 15454: More combinations allowed.

Class-typed Properties can be expressed as XML id reference XML attributes. If the upper bound of
the multiplicity of the Property is 1, the type is IDREF otherwise it is IDREFS. If the lower bound is
greater than 0 and org.omg.xmi.enforceMinimumMultiplicity is true, then use= required, otherwise
use=optional..

4j. Single-valued DataType-typed Properties of a Class that have a string representation for their data are
mapped to XML attributes of type “xsd:string;” unless the org.omg.xmi.schemaType tag is present, in
which case its value is used for the type. Multi-valued DataType-typed Properties of a Class cannot be
so expressed, since the XML attribute syntax does not allow repetition of values. If the multiplicity of
the attribute is exactly one, and org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is
required to be present.

4k. Single-valued DataType-typed Properties that have enumerated values are mapped to XML attributes
whose type is the enumerated type. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

Issue 9661: Remove 4l and 40

Table 8
4m. The value for minimum is the minimum multiplicity.

4n. The value for maximum is the maximum multiplicity.

58 XMI 2.4 Specification



5. ClassElementDef ::= "<xsd:element name=’'" //Name of class// "'"
"type=’' 4a:ClassTypeName "’/ />"

Table 9

Issue 15682: Exclude elements for abstract metaclasses

This rule declares an XML element for a class in a metamodel: such elements should only be included
for Classes which have isAbstract = falsesuch elements should only be included for Classes which have
isAbstract = false

Issue  9694: Remove ruleset 6 for PackageElementDef

6. StructuredDataTypeDef::= "<xsd:complexType name=’'" //Name of DataType//
("mixed='true’")?
nesn
( "<xsd:complexContent>"
"<xsd:extension base=’'" 6a:DataTypeName
("<xsd:choice minOccurs='0"'
maxOccurs='"unbounded’ >" |
"<xsd:sequence>")?
( 6b: DataTypeContents |
"<xsd:any minOccurs=’0’ maxOccurs='u
processContents=’" // ProcessCont
/>y
("</xsd:choice>" | "</xsd:sequence>")?
4g:ClassAttListItems
( "</xsd:extension>"
"</xsd:complexContent>" )?
"</xsd:complexType>
6a. DataTypeName ::= lh:Namespace //Name of DataType//
6b. DataTypeContents ::= 4d: ClassAttributes
4c:Extension

Issue 8884: Reuse ruleset 6

6. These rules describe the declaration of a structured DataType in the metamodel as an XML complex type with a content
model and XML attributes. The rules for declaring the Properties are the same as for Classes except that compositions and
references do not apply to DataTypes.

6a.This rule is for a reference to the type for the class, which is the name of the DataType prefixed by the namespace, if present
and not the default namespace.

6b.The complex type for the DataType contains XML elements for the contained Properties, plus an extension element. The
org.omg.xmi.serialize tag can be used to control whether these constructs are serialized. If org.omg.xmi.useSchemaExtensions

XMI 2.4 Specification 59



is false or not present, inherited Properties are included; otherwise, only local Properties are included.

Issue

8437: Various formatting changes - mostly indentation and moving | to start of lines

7.

Tc.

7d.

Ta.
Tb.

AssnElmtName
AssnContents

AssnEndDef

AssnAtts

AssociationDef 1= "<xsd:element name=’'"’ 7a:AssnElmtName ’'"’'>"

"<xsd:complexType>
<xsd:choice minOccurs=’0"'
maxOccurs='unbounded’ >"
7b:AssnContents
"</xsd:choice>"
7d:AssnAtts
"</xsd:complexType>
</xsd:element>"
::= lh:Namespace //Name of association//
:= 7c:AssnEndDef
7c:AssnEndDef
4c:Extension
1= "<xsd:element"
"name='" //Name of association end// "’>"
"<xsd:complexType>"
lg:XMIFixedAttribs
"</xsd:complexType>"
"</xsd:element>"
1= 1g:XMIFixedAttribs

Table 10

7a.
7d.

Issue 9695: remove ‘unreferenced’ and add clarification

The declaration of an Association consists of the names of its AssociationEnd XML elements (whether
or not they are owned by the Association).

The use of the name of the XML element representing the Association.

The fixed identity and linking XML attributes are the Association XML attributes.

8a.
8b.
8c.
8d.

EnumSchema

EnumTypeName
EnumName
EnumLiterals
EnumLiteral

::= "<xsd:simpleType name=’'" 8a:EnumType "’'>"
"<xsd:restriction base=’xsd:string’>"
8c:EnumLiterals
"</xsd:restriction>"
"</xsd:simpleType>"
:= lh:Namespace 8b:EnumName
::= // Name of enumeration //
::= ("<xsd:enumeration value=’" 8d:EnumLiteral "' />")+
::= // Name of enumeration literal //

| 60

XMI 2.4 Specification



Table 11

8. The enumeration schema contribution consists of a simple type derived from string whose legal values are the
enumeration literals.

8a. The name of the enumeration in XML schema references.

8b.

8c. Each enumeration literal is put in the value XML attribute of an enumeration XML element.

8d. The name of the enumeration literal.

8.2.2 Fixed Schema Declarations

Issue 9696: Update to use the XMI 2.4 namespce

There are some elements of the schema that are fixed, constituting a form of “boilerplate” necessary for every XMI 2
schema. These elements are described in this section. These declarations are in the namespace “http://www.omg.org/
spec/XMI/20100901”

Only the schema content of the fixed declarations is given here. For a complete description of the semantics of these
declarations, see Chapter 6.

The fixed declarations are contained in file XMI.xsd that may be imported into generated XML Schemas; or these
declarations may be copied.

Issue 15863: Delete the remainder of this section which is redundant with 7.5.3 and the accompanying
XMl.xsd file

| XMI 2.4 Specification 61



62

XMI 2.4 Specification



9 XML Document Production

9.1 Purpose

| This chapter specifies the XMI production of an XML document from a model based on the MOF 2 Core. The EMOF and
CMOF packages of MOF 2 are shared by both UML 2 and MOF 2, so that XMI production rules support both. XMI
describes an XML syntax that leverages the capability of XML schema. A set of objects are written to an XML document
following the grammar defined here.

Key requirements for successful model interchange are:

« All significant aspects of the metadata are included in the XML document and can be recovered from it. No informa-
tion is lost.

« The XML document is as compact as possible without loss of information.

+ The XML document reflects the model being serialized in an intuitive way, in order to gain acceptance in the XML
community at large.

The first requirement has been addressed by both XMI 1 and 2. The second and third requirements have been highlighted
by organizations like e BXML and GIS, in which XMI 1 did not find acceptance. XMI 2 made great progress in reducing
document size and improving readability. This specification maintains that progress, and streamlines the specification to
make it easier to understand and implement.

9.2 Introduction

XMI’s XML document production process is defined as a set of production rules. When these rules are applied to a model
or model fragment, the result is an XML document. The inverse of these rules can be applied to an XML document to
reconstruct the model or model fragment. In both cases, the rules are implicitly applied in the context of the specific
metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production and consumption processes. They

should not be viewed as prescribing any particular algorithm for XML producer or consumer implementations.

9.3 Serialization Model

The number of XML serialization patterns available for use by XMI are small. These serialization patterns are shown in
Figure 6.1. By limiting the XMI EBNF rules to these patterns, then mapping each modeling element to a pattern, we can
reduce the size of the EBNF in the XMI spec, thus simplifying it.

| XMI 2.4 Specification 67



+containeditem XMlinfoltems

| ) : | |

XMIElement +referencedElement XMIReferenceltem XMiAttribute

*

s R X

o MObjectElement || XViValueElement XMIReferenceElement XMIReferenceAttribute || XMIValueAttribute

Figure 6.1- Serialization Model

An XMIObjectElement is an XML element that can contain other information items (XML elements and attributes). An
XMIValueElement is an XML element that can have a value, but cannot contain other XML elements or attributes. An
XMIReferenceElement is an XML element with an idref or href attribute that references another XMIElement, by id,
URI, or URI and XPointer. An XMIReferenceAttribute is an XML attribute that references an XMIElement by id. An
XMlIValueAttribute is simply an XML attribute with a value.

Issue 9627 Swap this with section for EBNF (formerly 6.4 and 6.5)

9.4 XMI Representation of the Core Packages

Issue 9627 Update for use of UML

XMI production rules are defined for elements in in UML as constrained by the EMOF and CMOF compliance levels in
the MOF 2 Core. The rules for these packages are consistent and build upon each other: the rules for CMOF refine the
EMOF rules. The rules are defined by mapping the model elements to the serialization model.

Issue 9627: Delete former section 4.5.1 for Abstractions and renumber remainder

9.4.1 EMOF Package

Issue 9694: Remove first row from table for instances of Package

The overall rules are shown in the table below.

Instance of Model Element XMI Representation

A Class XMIObjectElement

68 XMI 2.4 Specification



Instance of Model Element XMI Representation

A Property, type 1s a PrimitiveType or Enumeration |Choice of:
1. XMIValueAttribute
2. Nested XMIValueElement

Issue 15687: refer to EnumerationLiteral instead of
Enumeration

The value of an EnumerationLiteral is its name.

Issue 15688: clarify condition for use of nil

When the value of a Property is null (i.e. empty), it is serialized as
XMIValueElement with attribute xsi:nil="true’ if tag
org.omg.xmi.includeNils =true. Otherwise it should be serialized as an
empty element.

When the Property is multi-valued, it is serialized as multiple nested

XMIValueElements.
A Property, type is not a PrimitiveType or Choice of:
Enumeration, 1. XMIReferenceAttribute
isComposite = false 2. Nested XMIReferenceElement
A Property, type is not a PrimitiveType or Nested XMIObjectElement

Enumeration,
isComposite = true

The following additional rules are defined to suppress redundant information. They can be overriden using XMI tags.
+ Derived information is not serialized.
+ Properties whose values are the default values are not serialized.

 For Properties with isComposite=true, the opposite Property is not serialized.

9.4.1.1 Examples

<complexco:Department xmi:id=“Department_17/>

Figure 1 -- Instance of a class, the namespace name is its package name.

<Department number=*13"/>

Figure 1 -- Instance of a class with primitive typed property.

XMI 2.4 Specification 69



Stoplight <<enumeration>>
id:Sting StopGo
state : StopGo red
green

<Stoplight 1d="s106" state="red”/>

Figure 1 -- Instance of a class with an enumerated property.

PtyClass2
<<0..*>>t1voc1 : Integer

<PtyClass2>
<tlvocl1>1001</tlvocl>
<tlvocl1>1001</tlvocl>
</PtyClass2>

Figure 1 -- Multi-valued property, with each value serialized as an XML element.

Department +department +member

id : String

Employ ee

name : String

0..1 0..*

Figure 1 -- Composite property serialized as XML elements, the opposite prop-
erty is not serialized.

Issue 12859: Add xmi:type to example

<Department id=“13">
<member name=“Glozic” xmi:type=“Employee”/>
<member name=“Andrews” xmi:type=“Employee”/>
</Department>

9.4.2 CMOF Package

Issue 9677: Qualify tag names

Issue 9695: Remove condition on Association

70 XMI 2.4 Specification



The overall rules are the same as for the EMOF Package, with additions shown in the table below.

Instance of Model Element

XMI Representation

Properties of a DataType

Issue 15689: use the object style expansion for structured
datatypes

Choice of:

1. XMIObjectElement

2. XMIValueAttribute

3. Nested XMIValueElement

By default instances of structured datatypes are serialized as if they
were classes, as described in Section 7.8.7. This can be overridden by
the tag org.omg.xmi.flattenStructuredDatatypes in which case the
values of the Properties are serialized as a single string separated (by
default) by commas. The default separator can be overridden by the
XMI org.omg.xmi.valueSeparator tag.

An Association

XMIObjectElement

The following additional rules are defined to suppress redundant information. They can be overriden using XMI tags:

Issue 15680: Serialization of derived constructs is at metamodel level.

+ Additional to the first bullet in rules for the EMOF package: for some metamodels, it may be desirable to serialize par-
ticular derived Properties instead of the information they are derived from because the derived form is more compact.
In this case default behavior can be overridden by setting the org.omg.xmi.serialize tag to ‘true’ for the derived prop-
erty. This means that either the base or derived form can be serialized, but for a particular metamodel construct only
one may be chosen. To allow import, derived properties should only be made serializable if they are writeable (isRea-
dOnly=false) and it is possible to reverse-derive the base information from the derived form.

+ In the case where a Property redefines another Property, only the redefining Property is serialized. (Note that when
serializing an instance of a concrete supertype whose Property has been redefined, the supertype is unaware of the
redefinition, and the Property as defined on the supertype is serialized.)

No special serialization rules need to be defined for subsetted Properties. Following EMOF rule 1, when one of the
subsetted or subsetting Properties is derived, it is not serialized by default. Properties that are not derived are serial-

ized.

9.4.2.1 Examples

Figure 1 -- Datatypes with properties

ViewPort <<datatype>>
name : String Rectangle
area : Rectangle label: String[0..1]

upperLeft: Point
lowemRight : Point

<<datatype>>
Point

x : Integer

y : Integer

XMI 2.4 Specification

71




Issue 8884: Serialize as structure

<display xmi:type="g:Viewport” nhame="normal”>
<area xmi:type="g:Rectangle”label=""">
<upperLeft xmi:type="g:Point” x="1" y="2"/>
<lowerRight xmi:type="g:Point” x="3" y="4"/>
</area>
<[/display>

9.5 EBNF Rules Representation

The XML produced by XMI is represented here in Extended Backus Naur Form (EBNF). The XML specification does not
require XML processors to preserve the order of XML attributes within an XML element. Therefore, although this
grammar indicates that XML attributes should be serialized in a particular order for each XML element, the XML
attributes may be serialized in any order. Also, XML attributes are normalized by XML processors, so whitespace may
not be preserved. You may choose to serialize parts of objects as XML elements rather than XML attributes using the

org.omg.xmi.element tag, as explained below.

The following sections provide the production rules. The items in italics are terminal values.

9.5.1 Overall Document Structure

Issue 9396: In rule 1a Replace erroneous reference to 5j: Extension

l:Document::= la:XMI | //Content Elements//

la:XMI ::= "<xmi:XMI"
le:Namespaces ">"
( 2a:XMIObjectElement) *
( 3:Extension )*
"</xmi: XMI>"
1b to 1d: // rules deleted //

Issue  15609: in rule 1 replace 2:ContentElements with a terminal symbol

Issue 15618: remove startAttribs and XMIVersion - rules 1c and 1d

Issue 8438: Various formatting changes, hardcode ns Prefix as ‘xmi:’ and reference missing rule 3:Extension

Issue 9693: Replace namespace ‘name’ with ‘prefix’

72

XMI 2.4 Specification



le

:Namespaces

1f:XMINamespaceDecl *?
( "xmlns:" lh:NsPrefix "=’" 1i:NsURI "’"

)*

1f:XMINamespaceDecl ::= "xmlns:xmi=’http://www.omg.org/spec/XMI/20100901""
lg:Namespace = ( lh:NsPrefix> ":" )?
lh:NsPrefix ::= Name of namespace prefix
1i:NsURI = URI of namespace
Table 12
L. Issue 15609: Expand on Content Elements
The content of an XMI document may be enclosed in an XMI XML element, but it does not need
to be. The XML specification requires that there be one root element in an XML document for the
document to be well formed. The XMI elements(identified via the XMI namespace) may appear
anywhere in an arbitrary XML document, intermingled with non-XMI elements — though this can
be somewhat restricted through the use of the org.omg.xmi.contentType tag
la. An XMI element has XML attributes that declare namespaces and specify the version of XMI, and
the XMI element contains XML elements that make up the header, content, differences, and
extensions for the XMI document.
| le. Issue 14628: Include conditions for declaring xsi namespace
The XMI namespace and the namespaces associated with a model must be declared or already be
visible to the XMI element in the XML document. Since there is no requirement that the XMI XML
element be the root element, these namespaces may be declared in XML elements that contain the
XMI element.
The namespace declarations must include the following if tag org.omg.xmi.includeNils is true for at
least one Property in the metamodel, or org.omg.xmi.useSchemaExtensions is true:
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance”
| lg. The use of a namespace prefix, including a ":" separator. If the namespace prefix is blank, the result
is the empty string.
| 1h. A particular namespace prefix. Document producers can choose their own namespace prefixes, as

1i.

long as doing so results in legal XML documents, or they may choose to use the value of the
org.omg.xmi.nsPrefix tag.

The logical URI of the namespace. Note that namespaces are resolved to logical URIs, as opposed
to physical ones, so that there is no expectation that this URI will be resolved and that there will be
any information at that location. The URI is obtained from the org.omg.xmi.nsURI tag.

| XMI 2.4 Specification

73



9.5.2 Object Structure

Issue 8438: Various formatting changes and use // instead of italics to delimit terminal symbols
2:XMIElement ::= 2a:XMIObjectElement
| 2b:XMIValueElement
| 2c:XMIReferenceElement
Issue 9653: Replace terms Attribute and Reference by Property in the whole set of rules
2a:XMIObjectElement = ( "<" 2k:QName 2d:XMIAttributes "/>" )
| ( "<" 2k:QName 2d:XMIAttributes ">"
(2:XMIElement) *
"</" 2k:QName ">" )
Issue 14628: use xsi:nil

2b:XMIValueElement

1
—

"<" //xmiName// ">" //value//
"</" //xmiName// ">" )
| ( "<xsi:nil='true'/>" )

Issue 15409: Remove optional use of TypeAttrib
2c:XMIReferenceElement::= "<" //xmiName//
21:LinkAttribs "/>"
Issue 15612: Ensure there is a colon after 2h in reference from 2d
Issue 12859: TypeAittrib is not optional in 2d
2d:XMIAttributes ::= (le:Namespaces)?
(2e:IdentityAttribs) ?
(2g:TypeAttrib)
(2h:FeatureAttrib) *
Issue 15611: Replace //xmiPrefix// with xmi:
2e:IdentityAttribs ::= ( 2f:IdAttribName "='" //id// "'")?
( "xmi:label=’" //label// ™'™ )?
( "xmi:uuid='" //uuid// "'"™ )?
Issue 9644: hardcode name of the id
2f:IdAttribName ci= "xmi:id"
74

XMI 2.4 Specification



Issue 15610: hardcode xmi prefix

2g:TypeAttrib 1= "xmi:type='" 2k:QName "'"
2h:FeatureAttrib ::= 2i:XMIValueAttribute

| 2j:XMIReferenceAttribute
2i:XMIValueAttribute ::= //xmiName// "='" value "'"

Issue 15453: Remove URI option

2j:XMIReferenceAttribute ::= //xmiName// "='"
( //ref1d// )+ "'"

2k :QName c:= ( //prefix// ":" )? //xmiName//

Issue 15610: hardcode xmi prefix

21:LinkAttribs ::= "xmi:idref='" //ref1id// "’"
| 2m:Link
2m:Link = "href='" 2n:URIref "'"

Issue 15686: remove option for QName in the href

2n:URIref ::= //URI reference//

Table 13

2a. Issue 9693: Use namespace prefix instead of name

An object has a starting element, contents, and a closing element. If the contents are empty, you
may end the starting element with "/>". You use this production rule to serialize top-level objects
| and to serialize objects that are the values of Properties.

| If the object is a top-level object, the tag name is the namespace prefix followed by ":" and the XMI
name for the object. The XMI name for the object is either the name of the object’s class or the
value of the org.omg.xmi.xmiName tag. If the object is the value of an attribute or reference, the
XMI name is the name of the Property, or the value of the org.omg.xmi.xmiName tag. The
namespace prefix is ignored for an object that is the value of a Property.

Issue 15307: Define ordering

The order of the elements for properties must follow any prescribed XML Schema ordering as
defined in Section 5 — even if no XML Schema has actually been generated. Furthermore if the
ordered tag is true, the values of multi-valued properties must follow the order in the model (if
isOrdered is true for the property) otherwise alphabetic order of the string rendition of that property
value.

| XMI 2.4 Specification 75



Table 14

2b.

2c.

2d.

2e.

2f.

2g.

2h.

Each value of a property is represented by an XML element; for multi-valued properties, there is
one XML element for each value. Null values may be serialized as well, unless the value of the
org.omg.xmi.includeNils tag is “false,” in which case you may not serialize null values.

Use this production rule to serialize a reference to an object using an XML element. If you use
identity attributes, the values of the identity attributes must match the values of the identity
attributes for the object that is referenced.

The XML attributes for an object are the optional start attributes, identity attributes, and attributes
corresponding to an object’s Properties. The start attributes must be written if the object is a top-
level object for XMI.

The identity attributes consist of an optional id, label, and uuid. If the element has a MOF uuid, it
may be used here.

Issue 9644: hardcode name of the id attribute

The name of the identity attribute is “id” in the XMI namespace.

Issue 12859: the type attribute is not optional

Issue 9693: replace namespace ‘name’ by ‘prefix’

You must specify the class name using the “type” attribute. The value of this attribute is defined by
the XML Schema Part 1: Structures specification to be a QName, consisting of a namespace prefix
for the value’s class (if there is one and it is not the default prefix for the document), a “:” and the
name of the value’s class. The QName can be either “xmi” (referring to the XMI namespace) or
“xsi” (referring to the XML Schema Instance namespace). See the schema specification for more
details. You may only use the XML schema instance type attribute if
org.omg.xmi.useSchemaExtensions is true.

The XML attributes of the element correspond to Properties whose type is a data value or
enumeration, or Class-typed properties whose values are objects in the document. You may not
serialize a Property as both an XML element and an XML attribute in the same object. You must
not serialize a Property as an XML attribute if the value of the org.omg.xmi.clement tag is “true.”
You must not serialize a Property at all if the value of the org.omg.xmi.serialize tag is “false;” or
the value of that tag is “non-derived” and the Property has isDerived="true.” You must not serialize
a Class-typed Property at all if the org.omg.xmi.remoteOnly tag is true and the Property has a value
that is an object in the same XML document. You may serialize classifier-level attributes with an
object.

76

XMI 2.4 Specification



Table 14

2i. Use this production rule to serialize a Property whose type is not an object and whose value can be
represented by a string. Multi-valued DataType-typed Properties cannot be serialized as XML
attributes. If the Property’s type is one of the types defined by the XML Schema Part 2: Datatypes
specification, serialize the value as specified in that specification.

| Also use this production rule if the Property type is an enumeration and whose value is one of the
legal enumeration literals. If the org.omg.xmi.xmiName is specified for the literal, the value of that
tag should be used; otherwise, the name of the enumeration literal specified in the model is used.

2. Issue 15463: Remove URI option

Use this production rule to serialize Class-typed Properties whose values are objects that are
serialized in the same document. The value of the XML attribute contains the XMI ID of each
referenced object, separated by a space.

Table 15
2k. The name of an XMI element or attribute with an optional namespace prefix.
21. Use the idref attribute to specify the id of an XML element that is referenced in the document; use
the href attribute to specify an XML element in another document. If the org.omg.xmi.href tag is

“true,” you must not use the idref attribute; use the href attribute for references within the document
and across documents.

2m. An XMI link. The value of the href attribute is a URI reference that refers to an XML element in
another document or in the same document.

2n. Issue  15619: rmove invalid ‘file:’ from URI

Issue 15686: remove option for including the type in an href

A URI Reference, optionally preceded by the type of the object being referenced. The URI
reference refers to an XML element in another document or in the same document. For example, if
the href is “someFile.xmi#someld,” the href refers to an XML element in the “someFile.xmi”
document whose XMI ID is “someld.” If the URI reference is #anotherld,” it refers to an XML
element whose XMI ID is “anotherld” in the same document. XLinks are also supported in XMI.
See 7.10.2, ’Linking’ for more information. See the W3C XLink and XPointer specification for

| production rules.

| Issue 8438: Added new section

| XMI 2.4 Specification 77



9.5.3 Extension

Issue 15610: hardcode xmi prefix

oW rom

3:Extension .= "<xmi:extension
(" extender=’'" // extender // "'")?
(" extenderID='" // extenderID // "'")?
">H

xmi:type='xmi:Extension

// Extension elements //
"</xmi:extension>"

3 Extension elements may be provided to complement the serialized model with additional information, such as
tool-specific diagram data, for example. Each extension element has an optional extender and extenderID attribute; its
content can be anything (see for examples)

78 XMI 2.4 Specification



Issue  15306: Delete chapter

XMi 2.4 Specification

79



80

XMI 2.4 Specification



10 XML Schema Infoset Model

10.1 Introduction

This chapter describes the MOF model for XML Schema using UML notation. The model is a straightforward mapping
from the XML Schema specification: classes in the model have a direct correspondence to XML Schema components.

This model replaces the XSD model in the XMI 2.0 specification (http://www.omg.org/technology/documents/formal/
xmi.htm), which was created prior to the introduction of the XML Infoset and the XML Schema abstract data model into
the XML Schema specification. This model is called the XML Schema Infoset Model to distinguish it from the earlier
version.

The specification of the XML Schema Infoset model assumes a strong working knowledge of XML Schema and refers
throughout to the XML Schema specification for the detailed description of constructs that are defined by XML Schema.

The description of the model is divided into two sections: the first describing elements of the model that primarily
represent XML Structures, and the second describing elements that primarily represent XML Schema Datatypes.

The final section of this chapter shows an example of an XML Schema represented as an instance of the XSD Infoset
model.

The model diagrams are color coded for easier reading:
+ Yellow - concrete classes
« Turquoise - abstract classes
« Orange - enumerations

+ QGray - datatypes

10.2 XML Schema Structures

This section defines the model elements corresponding to XML Schema Part 1, Structures. There are eight diagrams in
this section. The first set of diagrams show aspects of the XSD Infoset model that represent the XML Schema abstract
data model defined in the XML Schema specification:

 Figure 10.1 on page 82

 Figure 10.2 on page 83

 Figure 10.3 on page 84

« Figure 10.4 on page 85

The next set of diagrams show aspects of the model that represent the XML Schema concrete syntax:
 Figure 10.5 on page 86

« Figure 10.6 on page 87
« Figure 10.7 on page 88

The final diagram (Figure 10.8 on page 89) shows how concrete components resolve into abstract components.

XMI 2.4 Specification 81



The sub sections following these diagrams describe the model classes in detail. The sub sections are alphabetically
ordered by class name.

XSDConponent

i

[ \ \ \ |
XSDScope XSDAnnotation XSDAttributeUse XSDTerm XSDXPathDefinition
XSDSchema XSDConplexTypeContent XSDNamedComponent XSDWildcard XS DModelGroup

XSDParticle XSDRedefinable Component XSDFeature

XSDTypeDefinition XSDModelGroupDefinition

8

XSDSimpleTypeDefinition

XSDAttribute GroupDefinition

XSDComplexTypeDefinition

Figure 10.1- Component Hierarchy

XS DElementDecl aration

XSDAttributeDeclaration

XSDNotationDeclaration

XSDldentityConstraintDefinition

The Component Hierarchy diagram introduces classes representing the abstract XML Schema components. Schema
components are the building blocks that comprise the abstract data model of the schema. An XML Schema is a set of
schema components.

82

XMI 2.4 Specification



0..* +attributeDeclarations

XSDSchema

+notationDeclarations 0..*

0..* +typeDefinitions +attrib uteGroup Definitions  0.*
0..*| +elementDeclarations 0.* | +identityConstraintDefinitions 0..* | *modelGroupDefinitions
XSDElementDeclaration 0- XSDldentityConstraintDefinition XSDModelGroupDéefinition
>
0.1 +identityConstraintDefinitions 0.1
0.* “ 1 +subs titutionGrou pAfiiliation +referencedKey
+substitutionGroup Hields | 1.* 1 | +selector +modelGroup | 1
1|, +ypeDefiniion
XSDTypeDefinition XSDXPathDefinition XSDModelGroup
—> 1
+baseTypeDefinition +particles | 1.
+attributeWildcard
XSDSimpleTypeDefinition XSDComplexTypeDefinition XSDWildcard XSDParticle
0.1
1 ) )
0.1 | +contentType 0.1 | +atributeWildcard +erm | 1
+baseTypeDefinition
. XSDComplexTypeContent XSDTerm
1 | +typeDéfinition +attributeUses | 0..*
XSDAttributeDeclaration ! XSDAitributeUse 0.” XSDAitributeGroupDefinition

+attributeDeclaration

XSDFeature *scope

XSDScope

0.1

+attributeUses

XSDNotationDeclaration

Figure 10.2 - Component Relations

The Component Relations diagram shows the interrelationships between XML Schema components: which components
can contain or reference other components. The XSDAnnotation relations are shown separately in Figure 10.4 on page 85.

This is closely aligned with the (non-normative) Schema Components Diagram in XML Schema Part 1: Structures.

XMI 2.4 Specification

83



XSDNamedComponent

name : String
targetNamespace : String

XSDSchema Zﬁ

XSDAttributeUse

required : Boolean
value : Value
constraint : XSDConstraint

<<enumeration>> XSDXPathDefinition <<enumeration>>
XSDldentityConstraintCategory variety : XSDXPathVariety XSDXPathVariety
key value : String selector
keyref field
unique

XSDFeature

value : Value
constraint : XSDConstraint

<<enumeration>>

XSDRedefinableComponent

XSDConstraint XSDldentityConstraint Definition
default identityConstraintCategory : XSDIdentityConstraintCategory -
fixed

‘ K

XSDAttributeDeclaration

XSDNotationDeclaration

XSDElementDeclaration

systemldentifier : String

nillable : Boolean

disallowedSubstitutions : XSDDisallowedSubstitutions [0..*]
substitutionGroupExclusions : XSDSubstitutionGroupExclusions [0..*]

abstract : boolean

publicldentifier : String

<<enumeration>> <<enumeration>> <<enumeration>>
XSDCom positor XSDSubstitutionGroupExclusions XSDDisallowedSubstitutions XSDModelGroupDefinition XSDAttributeGroupDefinition
all extension substitution
choice restriction extension
sequence restriction XSDTypeDefinition
XSDM odel Group Z>
compositor : XSDCompositor m
. XSDVariety XSDSimpleTypeDefinition XSDComplexTypeDefinition
XSDParticle atomic variety : XSDV ariety derivationMethod : XSDDerivationMethod = restriction
minOccurs : Integer = 1 list final : XSDSimpleFinal [0..*] final : XSDComplexFinal [0..%]
maxOccurs : UnlimitedNatural = 1 union abstract : Boolean
<<enumeration>> contentTypeCategory : XSDContentTypeCategory
XSDSimpleFinal prohibitedSubstitutions : XSDP rohibited Substitutions [0..*]
XSDWildcard list
namespaceConstraintCategory : XSDNamespaceCons traintCategory restriction <<enumeration>>
namespaceConstraint : String [0..%] union XSDComplexFinal
processContents : XSDProcessContents extension
restriction <<enumeration>>
<<enumeration>> <<enumeration>> XSDContentTypeCategory
XSDNamespaceConstraintCategory XSDProcessContents <<enumeration>> <<enumeration>> empty
any strict XSDProhibitedSubstitutions | | XSDDerivationMethod | |simple
not lax extension extension mixed
set skip restriction restriction elementOnly

Figure 10.3 - Component Properties

The Component Properties diagram shows the properties of the XML Schema component classes that are associated with
the abstract data model. The enumerations that are used as property types are also shown.

84 XMI 2.4 Specification



XSDAttributeUse XSDSchema @ XSDFacet
+annotation

- . + tati
XSDAttributeDeclaration o, annotation +annotations %
+annotation XSDConstrainingFacet
XSDAttributeGroupDefinition *®
XSDElementDeclaration *+annotation 0.7 XSDRepeatableFacet
®*
» 0.1/0..1]0..1| O.. 0..1 +annotations
3 3 +annotation i
XSDNotationDeclaration XSDAnnotation +annotations
0..1 0..*
XSDXPathDefinition *+annotation +derivationAnnotation
0.1 0..1
XSDModelGroup P *annotation +annotation
0..1 0..1
XSDModelGroupDefinition | *+annotation —
> XSDTypeDéefinition
01 o o o o
XSDldentity ConstraintDefinition ‘+annotat|on +contentAnnotation %
+annotation ‘
SDWidoard . XSDSimpleTypeDefinition
+annotations
velplFeitel XSDComplexTypeDefinition

Figure 10.4 - Component Annotations

The annotation schema component provides for human- and machine-targeted annotations of other schema components.
The Component Annotations diagram models the structure and usage of the annotation component by other abstract

components.

XMI 2.4 Specification 85



+schema

XSDConcreteComponent
0..1 1 .
+rootContainer | 4 Z> 0..1 | *container
XSDComponent XSDAttributeGroupContent XSDSchemaContent XSDPartic leContent
XSDScope XSDNamedComponent XSDRedefineContent XSDSchemaDirective
XSDRedefinableComponent XSDImport XSDSchemaCompositor
0..1| +annotation %
XSDSchema XSDAnnotation *annotation XSDlInclude XSDRedefine
S—
0..1

0..

0..1| +incorporatedSchema

+annotations

1| +resolvedSchema

Figure 10.5 - Concrete Components

The Concrete Components diagram shows the additions and extensions to the abstract XML Schema components for
representing the concrete syntax. For example, it introduces classes XSDImport (for the import element) and XSDInclude

(for the include element).

86

XMI 2.4 Specification



XSDConcreteComponent <<datatype>> <<datatype>>
element : DOMElement DOMElement DOMDocument
‘ ‘ <<datatype>> <<datatype>>
XSDSchemaContent XSDComponent DOMNode DOMAttr
Z% Z> <<javaclass>> org.w3c.dom.Node
— : [ \
XSDSchemaDirective XSDScope XSDFacet XSDAnnotation
schemal.ocation : String lexicalValue - String applicationinformation : DOMElement [0..*]
Z> userinformation : DOMElement [0..%]
XSDSchema attributes : DOMALtr [0..%]
document : DOMDocument
XSDimport schemalocation : String XSDNamedComponert XSDTerm
namespace - Stin targetNamespace : String
P . 9 attributeFormDefault : XSDForm = unqualified
elementFormDefault : XSDForm = unqualified
finalDefault : XSDProhibitedSubstitutions [0..*] XSDWildcard

blockDefault : XSDDisallowedSubstitutions [0..*]
version : String

lexicalNamespaceConstraint : String [0..*]

Figure 10.6 - Concrete Properties

XSDAttributeUse -
use : XSDAttributeUseCategory )@DSS;T:V%ZEE‘;E;;M”S ‘ 3 ‘ S Ee=
et Vel & Sty e XSDRedefinableComponent XSDFeature XSDForm
su:)stltghon form : XSDForm qualified
<<enumeration>> :; ?:;g: T lexicalValue : String| |unqualified
XSDAttributeUseCategory all Z>
optional :
pfohibited <<enumeration>> XSDTypeDefinition S )GDEIemer.]tI.Declarano'n :
required XSDProhibitedSubstitutions lexicalFinal : .xsDPI’OthItedS.Ub.StItUtlonS [O*]
: block : XSDDisallowedSubstitutions [0..*]
extension Z>
<<enumeration>> restriction
XSDSimpleFinal all ‘ <<enumeration>>
list XSDComplexTypeDefinition XSDComplexFinal
restriction lexicalFinal : XSDComplexFinal [0..*] extension
union XSDSimpleTypeDefinition block : XSDProhibitedSubstitutions [0.."] restriction
all lexicalFinal : XSDSimpleFinal [0..*] mixed : Boolean all

The Concrete Properties diagram shows the additional properties required to represent the concrete syntax.

XMI 2.4 Specification

87




‘ XSDPatticleContent ‘

1| +content Z>
\
XSDTerm XSDSchema 0. __| XSDSchemaContent
+contents +attributeContents
A A
XSDModelGroup XSDElementDeclaration XSDAtt b uteGroupContent XSDRedefineContent XSDSchemabDirective
’ +contents | Q..* O"*ﬁ +eontents 4
*identity ConstraintDefinitions XSDRedefine — > XSDSchemaCompositor
0.*
XSDIdentityConstraintDefinition XSDAttributeUse ‘
XSDTypeDefinition XSDNotationDeclaration
+ields | 1.* 1 | +selector 1| +content
XSDWildcard XSDXPathDefinition XSDAttributeDeclaration XSDAttributeGroupDefinition XSDModelGroupDefinition
/F 0..1+attributeWildcardContent ’ ?
1
+modelGroup 0.1
XSDComplexTypeContent
+anonymous TypeDefinition
+contents 4 0..1| +anonymousTypeDefinition
0.*
| | | o |
XSDParticle XSDSimpleTypeDefinition XSDConstrainingFacet XSDComplexTypeDefinition @
+facet Contents
+content 0.1 t 0__*f *+contents
0..1/ +attributeWildcardContent

Figure 10.7 - Concrete Containment

The Concrete Containment diagram models the contents of concrete components.

88

XMI 2.4 Specification



+rootVersion

+schemaForSchema

1

1

0..1 +originalVersion

XSDSchema

XSDSimpleTypeDefinition

0..* | +syntheticFacets

XSDFacet
+incorporatedVersions
0..1+incorporatedSchema
0..* ‘
? 0.1 +resolvedSchema XSDComplexTypeDefinition
0..*|,+referencingDirectives
XSDS chem aDirective +syntheticParticle
0..1 +syntheticWildcard | O..
Z> XSDParticle XSDW ildcard
XSDSchemaCompositor
0..1
XSDAttributeDeclaration XSDAttributeGroupDefinition | g
1 1 +syntheticWildcard
+resolvedAttributeDeclaration +resolvedAttributeGroupDefinition

XSDElementDeclaration

XSDModelGroupDefinition

1

+resolvedElementDeclaration

1

+resolvedModelGroupDefinition

Figure 10.8 - Concrete Schema Composition

The Concrete Schema Composition diagram shows how concrete components resolve to abstract components.

10.2.1 XSDAnnotation

1

A representation of the model object “Annotation.” Access to the contents of an annotation is provided via their DOM

representation.

applicationlnformation

This represents the application information infoset property (i.e., a list of appinfo elements).

userInformation

This represents the user information infoset property (i.e., a list of documentation elements).

attributes

This represents the attributes infoset property.

XMI 2.4 Specification

89



10.2.2 XSDAttributeDeclaration

A representation of the model object ‘Attribute Declaration.’
attributeDeclarationReference
This concrete property is false when the XSDAttributeDeclaration refers to itself as its resolvedAttributeDeclaration.

An infoset feature will never return an instance for which this is true since this is a concrete attribute that is used to
represent an attribute declaration with a ref attribute.

annotation

References the XSDAnnotation for this declaration.

anonymousTypeDefinition

This concrete reference represents a simple type definition defined within the body of an attribute element.
typeDefinition

This represents the type definition infoset property.

resolvedAttributeDeclaration

This concrete reference represents the attribute declaration resolved by the ref attribute.

10.2.3 XSDAttributeGroupDefinition

A representation of the model object ‘Attribute Group Definition.’
attributeGroupDefinitionReference

This concrete property is false when the XSDAttributeGroupDefinition refers to itself as its
resolvedAttributeGroupDefinition.

annotation

This represents the annotation infoset property.

contents

This concrete reference represents the contents defined within the body of an attributeGroup element.
attributeUses

This represents the attribute uses infoset property. It is computed from the contents.

attributeWildcardContent

This concrete reference represents the attribute wildcard defined within the body of an attributeGroup element.
attributeWildcard

This represents the attribute wildcard infoset property. It is computed from the attribute wildcard content.

90 XMI 2.4 Specification



resolvedAttribute GroupDefinition
This concrete reference represents the attribute group definition resolved by the ref attribute.
syntheticWildcard

This contains the attribute wildcard infoset property, if the rules require a synthesized component.

10.2.4 XSDAttributeUse

A representation of the model object ‘Attribute Use.’

required

This represents the required infoset property.

value

This represents the value of the value constraint infoset property. It is computed from the lexical value.
constraint

This represents the constraint of the value constraint infoset property.

use

This concrete attribute represents the value of the use attribute.

lexicalValue

This concrete attribute represents the value of the default or fixed attribute.
attributeDeclaration

This represents the attribute infoset property. It is computed from the content.
content

This concrete reference represents the underlying concrete attribute element.

10.2.5 XSDComplexTypeContent

A representation of the model object ‘Complex Type Content.’ It is the contentType of XSDComplexTypeDefinitions.

10.2.6 XSDComplexTypeDefinition

A representation of the model object ‘Complex Type Definition.’
derivationMethod

This represents the derivation method infoset property.

final

This represents the final infoset property. It is computed from the lexical final.

XMI 2.4 Specification



abstract
This represents the abstract infoset property.
contentTypeCategory

This represents the category of the content type infoset property. It is computed from the type of the content and from the
setting of mixed.

prohibitedSubstituations

This represents the prohibited substitutions infoset property. It is computed from the block.
lexicalFinal

This concrete attribute represents the value of the final attribute.

block

This concrete attribute represents the value of the block attribute.

mixed

This concrete attribute represents the value of the mixed attribute.

contentAnnotation

This concrete reference represents the annotation content of a complexContent element or a simpleContent element.
baseTypeDefinition

This represents the base type definition infoset property.

content

This concrete reference represents the simple type content or particle content of a complexType element. It will be null,
an XSDSimpleTypeDefinition, or an XSDParticle.

contentType

This represents the value of the content type infoset property. It is computed from the content. It will be null, an
XSDSimpleTypeDefinition, or an XSDParticle.

attributeUses

This represents the attribute uses infoset property. It is computed from the attribute contents.
attributeContents

This concrete reference represents the attribute contents defined within the body of a complexType element.
attributeWildcard

This represents the attribute wildcard infoset property. It is computed from the attribute wildcard content.
attributeWildcardContent

This concrete reference represents the attribute wildcard defined within the body of an complexType element.

92 XMI 2.4 Specification



rootTypeDefinition

This walks the base type definitions until it hits the one that has the ur-type definition as its base type definition.
syntheticParticle

This represents the value of the content type infoset property, if the rules require a synthesized particle.
syntheticWildcard

This represents the attribute wildcard infoset property, if the rules require a synthesized wildcard.

10.2.7 XSDComponent

A representation of the model object ‘Component.’ It is the root of the infoset hierarchy.

10.2.8 XSDFeature

A representation of the model object ‘Feature.’ It is used to represent aspects common to ‘Element Declarations’ and
‘Attribute Declaration.’

value

This represents the value of the attribute value constraint or element value constraint infoset property. It is computed from
the lexical value.

constraint
This represents the constraint of the attribute value constraint or element value constraint infoset property.
form

This concrete attribute represents the value of the attribute form attribute or the element form attribute. It, along with the
attribute form default and element form default of the schema, affects the target namespace of locally scoped features.

lexicalValue

This concrete attribute represents the value of the attribute fixed or default attribute or the element fixed or default
attribute.

global

This indicates whether the feature is globally scoped. Its value is false if the feature is declared within a complex type
definition, an attribute group definition, or a model group definition.

featureReference

This is the same result as either the ‘Element Reference’ attribute or the ‘Attribute Reference’ attribute.
scope

This represents the attribute scope or element scope infoset property.

resolvedFeature

This is the same result as either the ‘Resolved Element Declaration’ reference or the ‘Resolved Attribute Declaration’
reference.

XMI 2.4 Specification 93



type

This is the same result as either the element ‘Type Definition’ reference or the attribute ‘Type Definition’ reference.

10.2.9 XSDldentityConstraintDefinition

A representation of the model object ‘Identity Constraint Definition.’
identityConstraintCategory

This represents the identity constraint category infoset property.
annotation

This represents the annotation infoset property.

referencedKey

This represents the referenced key infoset property.

selector

This represents the selector infoset property.

fields

This represents the fields infoset property. The fields are of type XSDXPathDefinition.

10.2.10 XSDModelGroup

A representation of the model object ‘Model Group.’

compositor

This represents the compositor infoset property.

annotation

This represents the annotation infoset property.

contents

This concrete reference represents the particle contents defined within the body of a sequence, choice, or all element.
particles

This represents the particles infoset property.

10.2.11 XSDNamedComponent

A representation of the model object ‘Named Component.’ It is used to represent aspects common to attribute
declarations, attribute group definitions, complex type definitions, element declarations, identity constraint definitions,
model groups definitions, notation declarations, and simple type definitions.

94 XMI 2.4 Specification



name

This represents the value of the attribute declaration name, attribute group definition name, complex type definition name,
element declaration name, identity constraint definition name, model group definition name, notation declaration name, or
simple type definition name (*) infoset property.

targetNamespace

This represents the value of the attribute declaration target namespace, attribute group definition target namespace,
complex type definition target namespace, element declaration target namespace, identity constraint definition target
namespace, model group definition target namespace, notation declaration target namespace, or simple type definition
target namespace (*) infoset property. It is computed from the target namespace of the schema and should typically not
be set directly; in the case of locally scoped features, the value is also affected by the form.

aliasName

This is a constructed name for an anonymous component. In order to make it relatively meaningful, it can be constructed
by using the name of the containing component and an indication of the relation to that component, For example,

“E . type” would be the alias name of the anonymous type definition of the element “E” and “LT . item” would be the
alias name of the anonymous item type definition of the list type defintion “LT.”

uRl
This is equivalent to the string
<target namespace>#<name>
where a null target namespace is taken to mean an empty string.
aliasURI
This is equivalent to the string
<target namespace>#<alias name>
where a null target namespace is taken to mean an empty string.
gName

This concrete attribute is this named component's ‘QName.’

10.2.12 XSDSchema

A representation of the model object ‘Schema.’

document

This is the optional DOM document of this schema (i.e., the owner of the element).
schemaLocation

This concrete attribute represents the URI of the resource that contains this schema. It is used to complete any relative
schemalocation URI in an import, include, or redefine.

XMI 2.4 Specification 95



targetNamespace

This concrete attribute represents the value of the targetNamespace attribute.
attributeFormDefault

This concrete attribute represents the value of the attributeFormDefault attribute.
elementFormDefault

This concrete attribute represents the value of the elementFormDefault attribute.

finalDefault

This concrete attribute represents the value of the finalDefault attribute.

blockDefault

This concrete attribute represents the value of the blockDefault attribute.

version

This concrete attribute represents the value of the version attribute.

contents

This concrete reference represents the contents defined within the body of a schema element.
elementDeclarations

This represents the element declarations infoset property. It is computed from the contents.
attributeDeclarations

This represents the attribute declarations infoset property. It is computed from the contents.
attributeGroupDefinitions

This represents the attribute group definitions infoset property. It is computed from the contents.
typeDefinitions

This represents the type definitions infoset property. It is computed from the contents.
modelGroupDefinitions

This represents the model group definitions infoset property. It is computed from the contents.
identityConstraintDefinitions

This represents the model group definitions infoset property. It is computed from the contents.
notationDeclarations

This represents the notation declarations infoset property. It is computed from the contents.
annotations

This represents the annotations infoset property. It is computed from the contents.

96 XMI 2.4 Specification



referencingDirectives

This represents the directives that have this schema as their ‘Resolved Schema’ reference or ‘Incorporated Schema’
reference.

rootVersion
This walks the original versions until it hits one that has no original version.
originalVersion

This represents the schema from which an incorporated version originates. The root version has itself as its original
version.

incorporatedVersions

This represents those versions of this schema that have been included into a schema with a different namespace or have
been otherwise redefined.

schemaForSchema

This represents the ‘schema for schemas.’ It is computed from the schema for schema namespace.

10.2.13 XSDScope

A representation of the model object ‘Scope.” This is used to represent the types the scope property of XSDFeature (i.e.,
‘Schema’ and ‘Complex Type Definition.’

10.2.14 XSDSimpleTypeDefinition

A representation of the model object ‘Simple Type Definition.” For the properties with names of the form
effectiveXxxFacet, effective means that the value of the property is computed based on the direct facets of this type, or,
if the facet is not present, is computed recursively from the base type.

variety

This represents the variety infoset property. It is computed based on the presence or absence of an item type or of member
types.

final

This represents the final infoset property. It is computed from the lexical final.

lexicalFinal

This concrete attribute list represents the value of the final attribute.

validFacets

This computed attribute list represents the facet name of each type of facet that is valid for this simple type definition.
contents

This concrete reference list represents the anonymous simple type definition content of a restriction, list, or union
element.

XMI 2.4 Specification 97



facetContents

This concrete reference list represents the facet contents of a restriction. There are properties with names of the form
XxxFacet that provide direct access to the individual facets.

facets
This represents the facets infoset property. It is computed from the facet contents.
memberTypeDefinitions

This represents the member type definitions infoset property. When constructing a union type, each anonymous member
type should be added to both this list and to the contents list. The variety is determined automatically by the presence of
member type definitions.

fundamentalFacets

This represents the fundamental facets infoset property. It is a computed property.
baseTypeDefinition

This represents the base type definition infoset property.

primitiveTypeDefinition

This represents the primitive type definition infoset property.

itemTypeDefinition

This represents the item type definition infoset property. When constructing a list type, an anonymous item type should
be both set using this method and added to the contents list. The variety is determined automatically by the presence of
an item type definition.

rootTypeDefinition

This walks the base type definitions until it hits that one that has the ur-type definition as its base type definition.
minFacet

This represents the XSDMinFacet of the facet contents.
maxFacet

This represents the XSDMaxFacet of the facet contents.
maxInclusiveFacet

This represents the XSDMaxInclusiveFacet of the facet contents.
minlnclusiveFacet

This represents the XSDMinlInclusiveFacet of the facet contents.
minExclusiveFacet

This represents the XSDMinExclusiveFacet of the facet contents.

98 XMI 2.4 Specification



maxExclusiveFacet

This represents the XSDMaxExclusiveFacet of the facet contents.
lengthFacet

This represents the XSDLengthFacet of the facet contents.
whiteSpaceFacet

This represents the XSDWhiteSpaceFacet of the facet contents.
enumerationFacets

This represents the XSDEnumerationFacet of the facet contents.
patternFacets

This represents the XSDPatternFacet of the facet contents.

cardinalityFacet

This represents the XSDCardinalityFacet of the fundamental facets.

numericFacet

This represents the XSDNumericFacet of the fundamental facets.
maxLengthFacet

This represents the XSDMaxLengthFacet of the facet contents.
minLengthFacet

This represents the XSDMinLengthFacet of the facet contents.
totalDigitsFacet

This represents the XSDTotalDigitsFacet of the facet contents.
orderedFacet

This represents the XSDOrderedFacet of the fundamental facets.
boundedFacet

This represents the XSDBoundedFacet of the fundamental facets.
effectiveMaxFacet

This represents the XSDMaxFacet of the facets.
effectiveWhiteSpaceFacet

This represents the XSDWhiteSpaceFacet of the facets.
effectiveMaxLengthFacet

This represents the XSDMaxLengthFacet of the facets.

XMI 2.4 Specification

99



effectiveFractionDigitFacet

This represents the XSDFractionDigitsFacet of the facets.
effectivePatternFacet

This represents the XSDPatternFacet of the facets.
effectiveEnumerationFacet

This represents the XSDEnumerationFacet of the facets.
effectiveTotalDigitsFacet

This represents the XSDTotalDigitsFacet of the facets.
effectiveMinLengthFacet

This represents the XSDMinLengthFacet of the facets.
effectiveLengthFacet

This represents the XSDLengthFacet of the facets.
effectiveMinFacet

This represents the XSDMinLengthFacet of the facets.
syntheticFacets

This represents the facets infoset property, if the rules require a synthesized facet.

10.2.15 XSDTerm

A representation of the model object ‘“Term.” It is used as the type for the XSDParticle term property.

10.2.16  XSDTypeDefinition

A representation of the model object ‘Type Definition.” It is used to represent aspects common to ‘Simple Type
Definitions’ and ‘Complex Type Definitions.’

annotation
This concrete reference represents the direct annotation content of a complexType element or a simpleType element.
derivationAnnotation

This concrete reference represents the direct annotation content of a complex content extension, complex content
restriction, simple content extension, simple content restriction, simple type restriction, simple type list, or simple type
union element.

annotations

This represents the complex type definition annotation or simple type definition annotation infoset property. It is
computed from the annotation, content annotation, derivationAnnotation.

100 XMI 2.4 Specification



rootType
This walks the base types until it hits that one that has the ur-type definition as its base type.
baseType

This represents the same result as either the simple ‘Base Type Definition’ reference or the complex ‘Base Type
Definition’ reference.

simpleType
This represents either the ‘Simple Type Definition’ itself or the complex ‘Content Type’ reference, if it is simple.
complexType

This represents the complex ‘Content Type’ reference, if it is complex (i.e., if it is a ‘Particle’).

10.2.17 XSDWildcard

A representation of the model object ‘Wildcards.’
namespaceConstraintCategory

This represents the category of the namespace constraint infoset property.
namespaceConstraint

This represents the value of the namespace constraint infoset property. It is computed from the lexical namespace
constraint and should typically not be modified directly.

processContents

This represents the process contents infoset property.

lexicalNamespaceConstraint

This concrete attribute represents the value of the any namespace or anyAttribute namespace attribute.
annotation

This concrete reference represents the annotation content of an any or anyAttribute element.
annotations

This represents the annotation infoset property. It is computed from the annotation.

10.2.18 XSDXPathDefinition

A representation of the model object ‘XPath Definition.” It represents a field or selector of an Identity-constraint
Definition. It defines a restricted XPath. It is used to represent the types of object returned by the 'Fields' reference list
and the ‘Selector’ reference.

variety

This attribute represents whether this is a field or a selector.

XMI 2.4 Specification 101



value
This concrete attribute represents the value of the selector xpath or field xpath attribute.
annotation

This concrete reference represents the annotation contents defined within the body of a field or selector element.

10.3 XML Schema Datatypes

‘ XSDSimpleTvoeDefiniti <<enumeration>>
. . impleTypeDefinition :
XSDComponent +simpleTypeDefinition = XSDVariety t XS.DVarlety
+baseTypeDefinition; atomic
a5 WRe= findi RS DSimpleFinal [0.."] fist
% +fundamentalFacets union
XSDFacet . 1
B 0.1 <<enumeration>>
0.1 L XSDSimpleFinal
0..| +facets % +primitiveTypeDefinition OHL list
+itemType Definiti restriction
XSDConstrainingFacet | | XSDFundamentalFacet flemlypeLefinion union
+memberTypeDefinitions
XSDFixedFacet NSRS R XSDBoundedFacet XSDOrderedFacet
fixed : Boolean
value : Boolean value : XSDOrdered

| - |

XSDEnumerationFacet XSDPatternFacet
value : Element [0..%] value : String [0..]

XSDNumericFacet
value : Boolean

XSDCardinalityFacet
value : XSDCardinality

‘ ‘ ‘ ‘ <<enumeration>>
XSDMinFacet XSDLengthFacet XSDWhiteSpaceFacet XSDMaxFacet XSDOrdered
value : Value value : Integer value : XSDWhiteSpace value : Value false
partial
XSDMinLengthFacet XSDMaxLengthFacet total
value : Integer value : Integer

<<enumeration>>
XSDCardinality

finite

countablyInfinite

XSDMinlInclusiveFacet XSDMaxInclusiveFacet

XSDMinExclusiveFacet XSDMaxE xclusiveFacet

<<enumeration>>
XSDWhiteSpace
presene
XSDTotal Digits Facet XSDFractionDigitsFacet replace
value : Integer value : Integer collapse

Figure 10.9 - Component Hierarchy, Relations, and Properties (Part 2: Datatypes)

102 XMI 2.4 Specification



The Component Hierarchy, Relations, and Properties (Part 2: Datatypes) diagram represents the abstract XML Schema

components as defined in XML Schema Part 2: Datatypes. Each datatype has a value space, which is the set of values for
that datatype. A facet is a single defining aspect of a -value space-. Generally speaking, each facet characterizes a -value
space- along independent axes or dimensions. The facets of a datatype serve to distinguish those aspects of one datatype
that differ from other datatypes.

Facets are of two types: fundamental facets that define the datatype, and constraining facets constrain the permitted values

of a datatype. For example, the XML Schema string datatype has the following constraining facets:

In contrast, the boolean dataype has these constraining facets:

length
minLength
maxLength
pattern
enumeration

whiteSpace

pattern

whiteSpace

XMI 2.4 Specification

103



XSDConcreteComponent
XSDNamedComponent
‘ aliasName : String |
XSDRedefinableComponent URI : String
: 2 aliasURI : String +resolvedFeature | 1 Ao
circular : Boolean gName : String global : Boolean
Z> 1 featureReference : Boolean
+type
\ \ 0
XSDModelGroupDefinition XSDTypeDefinition | _*+baseType |
modelGroupDefinitionReference : Boolean 1 XSDElementDeclaration
elementDeclarationReference : Boolean
circular : Boolean
XSDAttributeGroupDefinition
attributeGroupDefinitionReference : Boolean XSDAttributeDeclaration
‘ 1 1 attributeDeclarationReference : Boolean
o..wﬂx,m lexTvoe " +root Type
' pl yp +rootTypeDefinition +o,‘._1 o XSDFacet
XSDParticle ‘ simplelype facetName : String
iti effectiveValue : Value
XSDComplexTypeDefinition +rootTypeDefinition
XSDNumericFacet : /
1 +numericFacet 1.0 +boundedFacet XSDBoundedFacet
XSDSimpleTypeDefinition u 1
XSDOrderedFacet 1 +orderedFacet validFacets : String [0..¥] +candinalityFacet 1
XSDCardinalityFacet
XSDMinFacet 0.1 +minF
2 minFacet +maxFacet 01 | xSDMaxFacet
inclusive : Boolean 0.1 . . ) : -
exclusive : Boolean | *effectiveMinFacet +effectiveMaxFacet 0.1 |inclusive : Boolean
exclusive : Boolean
XSDMininclusiveFacet | O--1 +mininclusiveFacet +maxinclusiveFacet  0..1 -
XSDMaxInclusiveFacet
XSDMinExclusiveFacet | 01 *minExclusiveFacet +maxExclusiveFacet 0..1
XSDMaxExclusiveFacet
* 4 i F
XSDEnumerationFacet [q 10“ i inu;ﬂemtlont-acfs t *pattemfacets 0.7
..1 +effectiveEnumerationFace
+effectivePatternFacet 0.1 | XSDPattemFacet

0..1 +lengthFacet +whiteSpaceFacet 0.1
XSDLengthFacet [~ 4 +effectiveLengthFacet +effectiveWhiteSpaceFacet 0.1 XSDWhiteSpaceFacet
0..1 +minLengthFacet +maxLengthFacet 0..1
XSDMinLengthFacet =0 1 teffectiveMinLengthFacet +effectiveMaxLengthFacet o 1 | *SDMaxLengthFacet
SDTomlDicitsFacet 0.1 +totalDigitsFacet +fractionDigits Facet 0..1
olalDigitsFacet < 1 +effectiveTotalDigitsFacet +effectiveFractionDigitsFacet 0.1 | “o0r ractionDigitsFacet

Figure 10.10 - Supplemental

The Supplemental diagram primarily models the relationships between type definitions and facets.

10.3.1 XSDBoundedFacet

A representation of the model object ‘Bounded Facet.’

104 XMI 2.4 Specification



value

This represents the value infoset property. It is a computed property.

10.3.2 XSDCardinalityFacet
A representation of the model object ‘Cardinality Facet.’
value

This represents the value infoset property. It is a computed property.

10.3.3 XSDConstrainingFacet

A representation of the model object ‘Constraining Facet.’

10.3.4 XSDEnumerationFacet
A representation of the model object ‘Enumeration Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.3.5 XSDFixedFacet
A representation of the model object ‘Fixed Facet.’
fixed

This represents the fractionDigitsFacet fixed, lengthFacet fixed, maxExclusiveFacet fixed, maxInclusiveFacet fixed,
maxLengthFacet fixed, minExclusiveFacet fixed, minInclusiveFacet fixed, minLengthFacet fixed, totalDigitsFacet fixed,
whiteSpaceFacet fixed infoset property.

10.3.6 XSDFundamentalFacet

A representation of the model object ‘Fundamental Facet.’

10.3.7 XSDFacet

A representation of the model object ‘Facet.’

lexicalValue

This concrete attribute represents the value of the value attribute of the facet element.
facetName

This concrete attribute represents the name of this type of facet.

effectiveValue

This represents a generic version of the value infoset property of this facet.

XMI 2.4 Specification 105



annotation
This represents the annotation infoset property; each type of facet has an annotation.
simpleTypeDefinition

This represents the containing simple type definition of the facet.

10.3.8 XSDFractionDigitsFacet
A representation of the model object ‘Fraction Digits Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.3.9 XSDLengthFacet
A representation of the model object ‘Length Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.3.10 XSDMaxExclusiveFacet

A representation of the model object ‘Max Exclusive Facet.’

10.3.11 XSDMaxFacet

A representation of the model object ‘Max Facet.” It represents aspects common to ‘Max Exclusive Facet’ and ‘Max
Inclusive Facet.’

value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.
inclusive

The value is true if this is an XSDMaxInclusiveFacet.

exclusive

The value is true if this is an XSDMaxExclusiveFacet.

10.3.12 XSDMaxInclusiveFacet

A representation of the model object ‘Max Inclusive Facet.’

10.3.13 XSDMaxLengthFacet

A representation of the model object ‘Max Length Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

106 XMI 2.4 Specification



10.3.14 XSDMinFacet

A representation of the model object ‘Min Facet.’ It represents aspects common to ‘Min Exclusive Facet’ and ‘Min
Inclusive Facet.’

value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.
inclusive

The value is true if this is an XSDMinlInclusiveFacet.

exclusive

The value is true if this is an XSDMinExclusiveFacet.

10.3.15 XSDMinExclusiveFacet

>

A representation of the model object ‘Min Exclusive Facet.

10.3.16 XSDMininclusiveFacet

A representation of the model object 'Min Inclusive Facet'.

10.3.17 XSDMinLengthFacet
A representation of the model object ‘Min Length Facet.’

value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.3.18 XSDNumericFacet
A representation of the model object ‘Numeric Facet.’

value

This represents the value infoset property. It is a computed property.

10.3.19 XSDOrderedFacet

A representation of the model object ‘Ordered Facet.’
value

This represents the value infoset property. It is a computed property.

10.3.20 XSDPatternFacet

A representation of the model object ‘Pattern Facet.’

value

XMI 2.4 Specification 107



This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute. value is a multi-valued
property, in which each value is a String representing a pattern. The overall effect of the patterns is the logical
intersection.

10.3.21 XSDRepeatableFacet

A representation of the model object ‘Repeatable Facet.’

Both pattern and enumeration facets may be repeated in the concrete syntax and yet they are merged into a single
component in the infoset model. As a result, instances of these two facets are synthesized by the effectivePatternFacet
and effectiveEnumerationFacet properties of XSDSimpleTypeDefinition.

annotations

This represents the enumeration annotation, or pattern annotation infoset property. It is computed from the concrete
annotation content.

10.3.22 XSDTotalDigitsFacet

A representation of the model object ‘Total Digits Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.3.23 XSDWhiteSpaceFacet

A representation of the model object ‘White Space Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value’ attribute.

10.4 Example

This section shows how a simple XML Schema is represented as an instance of the XML Infoset model. The schema in
this example is:

<xs:schema targetNamespace=t1 xmlns:xs=http://www.w3.0org/2001/XMLSchema>
<xs:element name="e01" type="ct01"/>
<xs:complexType name="ct01">
<xs:choice>
<xs:element name="inline" type="xs:string" minOccurs="2" maxOccurs="3"/>
<xs:any namespace="##other"/>
</xs:choice>
</xs:complexType>
</xs:schema>

108 XMI 2.4 Specification



The information in the xs:schema tag is represented by an :XSDSchema.

:XSDSchema

targetNamespace="“t1”

The information in the xs:element tag adds in an XDSElementDeclaration (excluding for the moment the reference to its
type).

:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

content

name="e01”
targetNamespace="t1”

The information in the xs:complexType tag adds an :XSDComplexTypeDefinition. Since this is the type for element e01,
the :XSDElementDeclaration references the :XSDComplexTypeDefinition through the typeDefinition property.

:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

content
name="e¢01”
targetNamespace="t1"

conte

:XSDComplexTypeDefinition

name="“ct01”
targetNamespace="t1"

typeDefinition|

Complex type ctOlcontains an xs:choice tag. This means that the content type of the complex type definition is a pair
consisting of

« elementonly. This is represented by the contentTypeCategory property in the XSDComplexTypeDefinition.

« The particle corresponding to the <choice>. Particles corresponding to a <choice> have terms that are model groups.
This particle is represented in the instance diagram by an XSDParticle that references an XSDModelGroup whose
compositor has the value “choice.”

XMI 2.4 Specification 109



:XSDElementDeclaration

name="e01”
targetNamespace="t1"

:XSDSchema

targetNamespace="t1”

content

:XSDComplexTypeDefinition

:XSDParticle

name="ct01”

targetNamespace="t1"

contentTypeCategory=
elementonly

typeDefinition|

content

:XSDModelGrou

compositor=choice

The first element within the choice is an xs:element tag named “inline.” This means that the model group has a particle
whose term is an element declaration. The minOccurs and maxQOccurs attributes in the xs:element tag are represented
by the XSDParticle’s minOccurs and maxOccurs properties. The type attribute in the tag is represented by an
XSDSimpleTypeDefinition for the XML Schema string type. This is shown in the instance diagram below.

110

XMI 2.4 Specification



:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

:XSDModelGrou
name="e01”

targetNamespace="t1”

compositor=choice
content

content

:XSDComplexTypeDefinition :XSDParticle
particles,
name="“ct01” XSDParticl
P : article
typeDefinition targetNamespace="t1
»| contentTypeCategory= 4 minOccurs: 2
elementonly maxOccurs: 3
content
:XSDSimpleTypeDefinition :XSDElementDeclaration
. typeDefinition o
name="string” l¢&— | name="inline”
targetNamespace= targetNamespace="t1”
“http://www.w3.0rg/2001/XMLSchema”

The second element within the choice is an xs:any tag. This means that the model group has another particle, whose term
is a wildcard. This is show in the instance diagram by an XSDInstance and an XSDWildcard, completing the
representation of the schema:

XMI 2.4 Specification 111



:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

:XSDModelGroup
| name=*e01” . .
targetNamespace="t1” compositor=choice

content

content

conte:
:XSDComplexTypeDefinition :XSDParticle
particles, particles
name="“ct01” i - ] -
. | targetNamespace="t1” :XSDParticle :XSDParticle
ypeDefinition|
»| contentTypeCategory= 4 minOccurs: 2
clementonly maxOccurs: 3
content content
:XSDSimpleTypeDefinition :XSDElementDeclaration :XSDWildcard
] typeDefinition o ] )
name="string” name="inline” lexicalNamespaceConstraint="##other”
targetNamespace= targetNamespace="t1” namespaceConstraintCategory=not
“http://www.w3.0rg/2001/XMLSchema” namespaceConstraint=(*"//t1”)

112 XMI 2.4 Specification



Annex A

[XML]

[XMLSchema]

[NAMESP]
[XLINK]
[XPath]

[UML]

[MOF]

[XMI]

- References

XML, a technical recommendation standard of the W3C.
http://www.w3.0org/TR/REC-xm

XML Schemas, a proposed recommendation of the W3C.
Primer: http://www.w3.0org/TR/xmlschema-0/,

Structured types: http://www.w3.org/TR/xmlschema-1/
Data types: http://www.w3.org/TR/xmlschema-2/

Namespaces, a technical recommendation of the W3C.
http://www.w3.0org/TR/REC-xml-names

XLinks, a working draft of the W3C. http://www.w3.org/TR/WD-xlink and
http://www.w3.0rg/TR/NOTE-xlink-principles

XPointer, technical recommendation of the W3C.
http://www.w3.org/TR/xpath

UML 2.0, an in progress standard of the OMG. More specifically, this refers to the
UML 2.0 Infrastructure submission. See http://www.omg.org/techprocess/meetings/
schedule/UML_2.0_Infrastructure_ RFP.html.

MOF 2.0, an in progress standard of the OMG. More specifically, this refers to the
MOF 2.0 Core submission. See http://www.omg.org/techprocess/meetings/sched-
ule/MOF_2.0_Core_RFP.html.

XMI 2.0, an adopted standard of the OMG.
http://www.omg.org

The following is the Open Group DCE standard on UUIDs.

[UUID]

XMI 2.4 Specificati

CAE Specification

DCE 1.1: Remote Procedure Call

Document Number: C706

http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDs)

on 113



114 XMI 2.4 Specification



A
Attributes 14

C

Class representation 19
classes 8

CMOF Package 70
compliance 1,2

Composite representation 22
Creating tool 47

D

Datatype representation 22
Derived information 24
Difference class 13
Differences 44
Documentation class 12

E

EBNF notation 51

Element identification attributes 15
EMOF Package 68

Extended Backus Naur Form (EBNF) 72

Extension class 12
extension elements 7

F
fixed declarations 61

G
GIS Model 38

I
Importing tool 47
Inheritance representation 24

L

Language Formalism 5, 51, 67, 81, 113
Linking 26

Linking attributes 16

Links 26

M

model fragments 25
Modifying tool 47
Multiplicities 19

N
Namespace 18

(o)
object structure 74
overall document structure 72

P
production rules 67, 72
Property representation 20

S

schema production (tailoring) 30
serialization patterns 67
software compliance 2

XMI 2.4 Specification

T
tag settings 11

tag value constraints 33

Tag-Value 20

tool (creating) 47

tool (importing) 47

tool (modifying) 47

Tool ID policies 47

tools 46

Transmitting Incomplete Metadata 25
Transmitting Metadata Differences 36
Type attribute 17

\"
Value 20

X
XLink 26
XLinks 26
xmi

extenderID 12

id 15

idref 17

label 15

uuid 16
XMI namespace 8
XMI schema requirements 6
XMI tag values 30
XMI Types 17
XMl.celement.att 15
XMl.extension 12
XMl link.att 16
XMIDataType 20
XML declarations 6
XML Namespace specification 5
XML schema 5
XML Schema Datatypes 102
XML Schema Infoset model 81
XML Schema Structures 81
XML validation 6
XSDAnnotation 89
XSDAttributeDeclaration 90
XSDAttributeGroupDefinition 90
XSDAttributeUse 91
XSDBoundedFacet 104
XSDCardinalityFacet 105
XSDComplexTypeContent 91
XSDComplexTypeDefinition 91
XSDComponent 93
XSDConstrainingFacet 105
XSDEnumerationFacet 105
XSDFacet 105
XSDFeature 93
XSDFixedFacet 105
XSDFractionDigitsFacet 106
XSDFundamentalFacet 105
XSDLengthFacet 106
XSDMaxExclusiveFacet 106
XSDMaxFacet 106
XSDMaxInclusiveFacet 106
XSDMaxLengthFacet 106

115



XSDMinExclusiveFacet 107
XSDMinFacet 107
XSDMinlInclusiveFacet 107
XSDMinLengthFacet 107
XSDModelGroup 94
XSDNamedComponent 94
XSDNumericFacet 107
XSDOrderedFacet 107
XSDPatternFacet 107
XSDRepeatableFacet 108
XSDSchema 95

XSDScope 97
XSDSimpleTypeDefinition 97
XSDTerm 100
XSDTotalDigitsFacet 108
XSDTypeDefinition 100
XSDWhiteSpaceFacet 108
XSDWildcard 101
XSDXPathDefinition 101

116 XMI 2.4 Specification



	OMG’s Issue Reporting Procedure
	1 Scope
	2 Conformance
	2.1 Introduction
	2.2 Required Compliance
	2.2.1 XMI Schema Compliance
	2.2.2 XMI Document Compliance
	2.2.3 Software Compliance

	2.3 Optional Compliance Points
	2.3.1 XMI Extension and Differences Compliance


	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 XMI Document and Schema Design Principles
	7.1 Purpose
	7.2 Use of XML Schemas
	7.2.1 XML Validation of XMI documents
	7.2.2 Requirements for XMI Schemas

	7.3 Basic Principles
	7.3.1 Required XML Declarations
	7.3.2 Model Class Representation
	7.3.3 Model Extension Mechanism

	7.4 XMI Schema and Document Structure
	7.5 XMI Model
	7.5.1 XML Schema for the XMI Model
	7.5.2 XMI Model classes
	7.5.3 XMI
	7.5.4 Extension
	7.5.5 Documentation
	7.5.6 Add, Replace, and Delete

	7.6 XMI Attributes
	7.6.1 Element Identification Attributes
	7.6.2 Linking Attributes
	7.6.3 Type Attribute

	7.7 XMI Types
	7.8 Model Representation
	7.8.1 Namespace Qualified XML Element Names
	7.8.2 Multiplicities
	7.8.3 Class Representation
	7.8.4 DataType-typed Property Representation
	7.8.5 Class-typed Property Representation
	7.8.6 Composite Representation
	7.8.7 Datatype representation
	7.8.8 Inheritance representation
	7.8.9 Association Representation
	7.8.10 Derived Information

	7.9 Transmitting Incomplete Metadata
	7.9.1 Interchange of model fragments
	7.9.2 XMI encoding
	7.9.3 Example

	7.10 Linking
	7.10.1 Design principles
	7.10.2 Linking
	7.10.3 Example for UML

	7.11 Tailoring Schema Production
	7.11.1 XMI Tag Values
	7.11.2 Tag Value Constraints
	7.11.3 XML element vs XML attribute
	7.11.4 Summary of XMI Tag Scope and Affect
	7.11.5 Effects on Document Production
	7.11.6 Example: Customize the XML Schema for a GIS Model

	7.12 Transmitting Metadata Differences
	7.12.1 Definitions
	7.12.2 Differences
	7.12.3 XMI encoding
	7.12.4 Example

	7.13 Document Exchange with Multiple Tools
	7.13.1 Definitions
	7.13.2 Procedures
	7.13.3 Example

	7.14 General Datatype Mechanism
	7.15 Import Reconciliation

	8 XML Schema Production
	8.1 Purpose
	8.1.1 Notation for EBNF

	8.2 XMI Version 2 Schemas
	8.2.1 EBNF
	8.2.2 Fixed Schema Declarations


	9 XML Document Production
	9.1 Purpose
	9.2 Introduction
	9.3 Serialization Model
	9.4 XMI Representation of the Core Packages
	9.4.1 EMOF Package
	9.4.2 CMOF Package

	9.5 EBNF Rules Representation
	9.5.1 Overall Document Structure
	9.5.2 Object Structure
	9.5.3 Extension


	10 XML Schema Infoset Model
	10.1 Introduction
	10.2 XML Schema Structures
	10.2.1 XSDAnnotation
	10.2.2 XSDAttributeDeclaration
	10.2.3 XSDAttributeGroupDefinition
	10.2.4 XSDAttributeUse
	10.2.5 XSDComplexTypeContent
	10.2.6 XSDComplexTypeDefinition
	10.2.7 XSDComponent
	10.2.8 XSDFeature
	10.2.9 XSDIdentityConstraintDefinition
	10.2.10 XSDModelGroup
	10.2.11 XSDNamedComponent
	10.2.12 XSDSchema
	10.2.13 XSDScope
	10.2.14 XSDSimpleTypeDefinition
	10.2.15 XSDTerm
	10.2.16 XSDTypeDefinition
	10.2.17 XSDWildcard
	10.2.18 XSDXPathDefinition

	10.3 XML Schema Datatypes
	10.3.1 XSDBoundedFacet
	10.3.2 XSDCardinalityFacet
	10.3.3 XSDConstrainingFacet
	10.3.4 XSDEnumerationFacet
	10.3.5 XSDFixedFacet
	10.3.6 XSDFundamentalFacet
	10.3.7 XSDFacet
	10.3.8 XSDFractionDigitsFacet
	10.3.9 XSDLengthFacet
	10.3.10 XSDMaxExclusiveFacet
	10.3.11 XSDMaxFacet
	10.3.12 XSDMaxInclusiveFacet
	10.3.13 XSDMaxLengthFacet
	10.3.14 XSDMinFacet
	10.3.15 XSDMinExclusiveFacet
	10.3.16 XSDMinInclusiveFacet
	10.3.17 XSDMinLengthFacet
	10.3.18 XSDNumericFacet
	10.3.19 XSDOrderedFacet
	10.3.20 XSDPatternFacet
	10.3.21 XSDRepeatableFacet
	10.3.22 XSDTotalDigitsFacet
	10.3.23 XSDWhiteSpaceFacet

	10.4 Example

	Annex A - References

