
Workflow Management Facility
Specification, V1.2

Version 1.2
New Edition: April 2000

Copyright 1999, CoCreate Software
Copyright 1999, Concentus
Copyright 1999, CSE Systems
Copyright 1999, Data Access Technologies
Copyright 1999, Digital Equipment Corporation
Copyright 1999, DSTC
Copyright 1999, EDS
Copyright 1999, FileNet Corporation
Copyright 1999, Fujitsu Limited
Copyright 1999, Hitachi Ltd.
Copyright 1999, Genesis Development Corporation
Copyright 1999, IBM Corporation
Copyright 1999, ICL Enterprises
Copyright 1999, NIIIP Consortium
Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1999, Oracle
Copyright 1999, Plexus - Division of BankTec
Copyright 1999, Siemens Nixdorf Informationssysteme
Copyright 1999, SSA
Copyright 1999, Xerox

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed

above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . 1
About the Object Management Group . 1

What is CORBA?. 1

Associated OMG Documents . 2

Acknowledgments . 3

1. Overview . 1-1
1.1 Workflow Management Coalition (WfMC) 1-1

1.2 Introduction to Workflow Management 1-2
1.2.1 Workflow . 1-2

1.2.2 Workflow Management Systems 1-3
1.2.3 The Workflow Reference Model. 1-5

2. Workflow Management Interfaces . 2-1
2.1 Chapter Overview. 2-2

2.2 Interfaces Overview . 2-3
2.2.1 Workflow Interfaces . 2-3

2.2.2 Process Enactment . 2-5
2.2.3 Process Monitoring. 2-5

2.3 WorkflowModel Module . 2-6

2.3.1 Data Structures . 2-7
2.3.2 Exceptions . 2-7

2.3.3 Patterns . 2-9

2.4 WfRequester. 2-10
2.4.1 IDL . 2-10

2.4.2 Relationships . 2-11
Workflow Management V1.2 April 2000 i

Contents
2.4.3 Operations . 2-11

2.5 WfExecutionObject . 2-12
2.5.1 IDL . 2-12

2.5.2 Attributes . 2-14
2.5.3 States . 2-16

2.5.4 Relationships . 2-19
2.5.5 Operations . 2-19

2.6 WfProcessMgr . 2-21

2.6.1 IDL . 2-21
2.6.2 Attributes . 2-22

2.6.3 Relationships . 2-24
2.6.4 States . 2-24

2.6.5 Operations . 2-25

2.7 WfProcess . 2-25

2.7.1 Process States . 2-25
2.7.2 Process context and results 2-25

2.7.3 IDL . 2-27
2.7.4 Attributes . 2-28

2.7.5 Relationships . 2-28
2.7.6 Operations . 2-29

2.7.7 WfProcessIterator . 2-30

2.8 WfActivity . 2-30
2.8.1 Activity States . 2-30

2.8.2 Activity Context and Result 2-31
2.8.3 Resource assignment . 2-31

2.8.4 Activity Realizations . 2-31
2.8.5 Process Monitoring. 2-32

2.8.6 Activity - Process Interaction 2-32
2.8.7 IDL . 2-32

2.8.8 Attributes . 2-33
2.8.9 Relationships . 2-33

2.8.10 Operations . 2-34
2.8.11 WfActivityIterator . 2-34

2.9 WfAssignment . 2-34

2.9.1 IDL . 2-35
2.9.2 Relationships . 2-35

2.9.3 WfAssignmentIterator 2-36

2.10 WfResource . 2-36
2.10.1 IDL . 2-36

2.10.2 Attributes . 2-37
ii Workflow Management V1.2 April 2000

Contents
2.10.3 Relationships . 2-37

2.10.4 Operations . 2-38

2.11 WfEventAudit . 2-38

2.11.1 IDL . 2-39
2.11.2 Attributes . 2-40

2.11.3 Relationships . 2-42
2.11.4 WfEventAuditIterator . 2-42

2.11.5 Publication via Notification Service 2-42

2.12 WfCreateProcessEventAudit . 2-43
2.12.1 IDL . 2-43

2.12.2 Attributes . 2-43
2.12.3 Publication via Notification Service 2-44

2.13 WfStateEventAudit . 2-44

2.13.1 IDL . 2-44
2.13.2 Attributes . 2-45

2.13.3 Publication via Notification Service 2-45

2.14 WfDataEventAudit . 2-45

2.14.1 IDL . 2-45
2.14.2 Attributes . 2-46

2.14.3 Publication via Notification Service 2-46

2.15 WfAssignmentEventAudit . 2-46
2.15.1 IDL . 2-47

2.15.2 Attributes . 2-47
2.15.3 Publication via Notification Service 2-47

2.16 The WfBase Module . 2-48

2.16.1 Data Types . 2-49
2.16.2 Exceptions . 2-50

2.17 Base Business Object Interfaces. 2-51
2.17.1 BaseBusinessObject . 2-51

2.18 BaseIterator . 2-51

2.18.1 IDL . 2-51
2.18.2 Attributes . 2-52

2.18.3 Operations . 2-52

2.19 Interface Usage Example . 2-52
Workflow Management V1.2 April 2000 iii

Contents
Appendix A - References. A-1

Appendix B - Consolidated IDL . B-1

Appendix C - CDL. C-1

Appendix D - Conformance . D-1
iv Workflow Management V1.2 April 2000

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
Workflow Management V1.2 April 2000 1

Associated OMG Documents

Formal documents are OMG’s final, published specifications. Currently, formal
documentation is available in both PDF and PostScript format from the OMG web site.
Use this URL to access the OMG formal documents:
http://www.omg.org/library/specindx.html.

The formal documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBA Facilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Domain Technologies, a collection of stand-alone specifications that relate
to the following domain industries:

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented
interfaces between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services
and accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
so forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

2 Workflow Management V1.2 April 2000

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Abbott McCarthy

• Action Technologies

• Baan Company NV

• CoCreate Software

• Compac

• Computron Software, Inc.

• Concentus

• COSA SOLUTIONS Standard Software GmbH

• CSE Systems

• Data Access Technologies

• DSTC

• Eastman Software, Inc.

• EDS

• FileNet Corporation

• Fuego Technology Corp.

• Fujitsu Limited

• Genesis Development Corporation

• GLS Conseil

• Hatton Blue Ltd.

• Hewlett Packard

• Hitachi Ltd.

• IABG

• IBM Corporation

• ICL Enterprises

• IDS Prof. Scheer GmbH

• IMA

• InConcert Inc.

• Meta Software

• Netscape

• NIIIP Consortium
Workflow Mgmt. V1.2 Acknowledgments April 2000 3

• Optika Imaging Systems, Inc.

• Oracle

• Plexus - Division of BankTec

• Sema Group Sae

• Siemens Nixdorf Informationssysteme

• SNS Shared Network Systems Inc.

• SSA

• TDI

• US DoD Defense Information Systems Agency

• Workflow Management Coalition (WfMC)

• Xedoc Software Development, Inc.

• Xerox
4 Workflow Management V1.2 April 2000

Overview 1
1.1 Workflow Management Coalition (WfMC)

This specification is based on standards defined by the Workflow Management
Coalition (WfMC). Founded in 1993, the WfMC is a non-profit, international
organization of workflow vendors, customers and users whose mission is to promote
the use of workflow through the establishment of standards for software terminology,
interoperability and connectivity between workflow products. With more than 200
members in 25 countries, the Coalition has quickly become established as the primary
standards body for this rapidly expanding software market.

The technology submitted in this specification is directly based upon the WFMC
standards for workflow interfaces, which have been available in the public domain for
a number of years (see [3], [4], [6]) and provide a stable base for the introduction of
workflow technology into the OMG architecture. The WfMC has approved the use of
these standards for this specification. As an industry consortium the WfMC is not able
formally to act as a submitter but fully endorses this specification as a supporter.

In 1996 the WfMC released an OMG IDL binding for its Client Application
Programming Interface and have been developing a similar binding for the
Interoperability interface (see [3], [7]). This specification is based directly on those
bindings.

It is intended that there be one Workflow Management Facility IDL specification
endorsed by both the WfMC and the OMG. In addition to the standards incorporated in
this specification the WfMC is actively engaged in the development of standards in
related areas of workflow management (e.g., specifications for process definition and
organization models). These specifications will be made available to OMG as and
when appropriate.
Workflow Management V1.2 April 2000 1-1

1

1.2 Introduction to Workflow Management

Workflow Management (WfM) is a fast evolving technology which is increasingly
being exploited by businesses in a variety of industries. Its primary characteristic is the
automation of processes involving combinations of human and machine-based
activities, particularly those involving interaction with information technology (IT)
applications and tools. Although its most prevalent use is within the office environment
in staff intensive operations such as insurance, banking, legal and general
administration, it is also applicable to complex, dynamic environments such as design,
engineering, and manufacturing.

Many software vendors have WfM products available today with WfM technology and
there is a continuous introduction of more products into the market. The availability of
a wide range of products within the market has allowed individual product vendors to
focus on particular functional capabilities and users have adopted particular products to
meet specific application needs. However, there are no object-oriented frameworks to
enable different WfM products and workflow aware applications to work together,
which is resulting in incompatible “islands” of process automation.

This Workflow Management Facility specification addresses this problem, by
introducing a workflow framework and interfaces that have been developed by a large
group of workflow vendors and users under the umbrella of the Workflow Management
Coalition (WfMC). This specification is based on the WfMC reference model and
architecture.

It has been recognized that all WfM products have some common characteristics,
enabling them potentially to achieve a level of interoperability through the use of
common standards for various functions. The WfMC has been established to identify
these functional areas and develop appropriate specifications for implementation in
workflow products. It is intended that such specifications will enable interoperability
between heterogeneous workflow products and improved integration of workflow
applications with other IT services such as electronic mail and document management,
thereby improving the opportunities for the effective use of workflow technology
within the IT market, to the benefit of both vendors and users of such technology.

This section describes the basic functionality of the Workflow Facility. Most of this
information is extracted from the WfMC Workflow Reference Model document [1].

1.2.1 Workflow

Workflow is concerned with the automation of procedures where information and tasks
are passed between participants according to a defined set of rules to achieve, or
contribute to, an overall business goal. Whilst workflow may be manually organized, in
practice most workflow is normally organized within the context of an IT system to
provide computerized support for the procedural automation.

Workflow is often associated with Business Process Re-engineering, which is
concerned with the assessment, analysis, modeling, definition and subsequent
operational implementation of the core business processes of an organization (or other
business entity). Although not all BPR activities result in workflow implementations,
1-2 Workflow Management V1.2 April 2000

1

workflow technology is often an appropriate solution as it provides separation of the
business procedure logic and its IT operational support, enabling subsequent changes
to be incorporated into the procedural rules defining the business process. Conversely,
not all workflow implementations necessarily form part of a BPR exercise, for example
implementations to automate an existing business procedure.

1.2.2 Workflow Management Systems

A Workflow Management System provides procedural automation of a business
process by management of the sequence of work activities and the invocation of
appropriate human and/or IT resources associated with the various activity steps.

An individual business process may have a life time ranging from minutes to days (or
even months and years), depending upon its complexity and the duration of the various
constituent activities.

At the highest level, all WfM systems may be characterized as providing support in
three functional areas:

• the Build-time functions, concerned with defining, and possibly modeling, the
workflow process and its constituent activities

• the Run-time control functions concerned with managing the workflow processes in
an operational environment and sequencing the various activities to be handled as
part of each process

• the Run-time interactions with human users and IT application tools for processing
the various activity steps

The diagram below illustrates the basic characteristics of WfM systems and the
relationships between these main functions.
Workflow Mgmt. V1.2 Introduction to Workflow Management April 2000 1-3

1

Figure 1-1 Workflow System Characteristics

1.2.2.1 Build-time Functions

The Build-time functions are those which result in a computerized definition of a
business process. During this phase, a business process is translated from the real
world into a formal, computer prosecutable definition by the use of one or more
analysis, modeling and system definition techniques. The resulting definition is
sometimes called a process model, a process template, process meta data, or a process
definition. For purposes of this document, the term 'process definition' will be used.

A process definition comprises a number of discrete activity steps, with associated
computer and/or human operations and rules governing the progression of the process
through the various activity steps. The process definition may be expressed in textual
or graphical form or in a formal language notation. Some workflow systems may allow
dynamic alterations to process definitions from the run-time operational environment,
as indicated by the feed-back arrow in the above diagram.

This Workflow Management Facility specification does not addressed the build-time
functions. The specification concentrates on the run-time aspects of WfM.

Process
Definition

Build Time

Business Process Analysis,
Modelling & Definition Tools

Run Time

Workflow Enactment Service

Process changes

Process Instanciation
& Control

Applications
& IT Tools

Interaction with
Users & Application Tools

Process Design
& Definition
1-4 Workflow Management V1.2 April 2000

1

1.2.2.2 Run-time Process Control Functions

At run-time the process definition is interpreted by software which is responsible for
creating and controlling operational instances of the process, scheduling the various
activities steps within the process and invoking the appropriate human and IT
application resources, etc. These run-time process control functions act as the linkage
between the process as modeled within the process definition and the process as it is
seen in the real world, reflected in the runtime interactions of users and IT application
tools. The core component is the basic workflow management control software,
responsible for process creation & deletion, control of the activity scheduling within an
operational process and interaction with application tools or human resources. This
WfM software is often distributed across a number of computer platforms to cope with
processes which operate over a wide geographic basis.

1.2.2.3 Run-time Activity Interactions

Individual activities within a workflow process are typically concerned with human
operations, often realized in conjunction with the use of a particular IT tool (for
example, form filling), or with information processing operations requiring a particular
application program to operate on some defined information (for example, updating an
orders database with a new record). Interaction with the process control software is
necessary to transfer control between activities, to ascertain the operational status of
processes, to invoke application tools and pass the appropriate data, etc. There are
several benefits in having a standardized framework for supporting this type of
interaction, including the use of a consistent interface to multiple workflow systems
and the ability to develop common application tools to work with different workflow
products.

1.2.2.4 Distribution & System Interfaces

The ability to distribute tasks and information between participants is a major
distinguishing feature of workflow runtime infrastructure. The distribution function
may operate at a variety of levels (workgroup to inter-organization) depending upon
the scope of the workflows; it may use a variety of underlying communications
mechanisms (electronic mail, messaging passing, distributed object technology, etc.).
An alternative top-level view of workflow architecture which emphasizes this
distribution aspect is shown in the diagram below.
Workflow Mgmt. V1.2 Introduction to Workflow Management April 2000 1-5

1

The workflow enactment service is shown as the core infrastructure function with
interfaces to users and applications distributed across the workflow domain. Each of
these interfaces is a potential point of integration between the workflow enactment
service and other infrastructure or application components.

Figure 1-2 Distribution within the WfM Service

The flow of work may involve the transfer of tasks between different vendors
implementations of the workflow management facility to enable different parts of the
business process to be enacted on different platforms or sub-networks using particular
products suited to that stage of the process. In this scenario the flow within the central
box passes between two or more workflow products - for example activities 1,2 and 5
may be executed by one workflow system and activities 3 and 4 by a different system,
with control passed between them at appropriate points within the overall workflow.
Standards to support this transfer of workflow control enable the development of
composite workflow applications using several different implementations of the WfM
Facility operating together as a single logical entity.

1.2.3 The Workflow Reference Model

The Reference Model identifies the functional areas addressed by the Workflow
Management Facility and typical usage scenarios:

• Process Definition: specifications for process definition data and its interchange
with the Workflow Execution environment.

• Workflow Interoperability: interfaces to support interoperability between different
workflow systems

Individual activity

Applications

User Interface &

Local Desktop
Applications

Business
Process

Databases

Process/Activity Mgt

Distribution Functionsteps
1-6 Workflow Management V1.2 April 2000

1

• Invoked Applications: interfaces to support interaction with a variety of IT
application types

• Workflow Client Applications: interfaces to support interaction with user interface
desktop functions

• Administration and Monitoring: interfaces to provide system monitoring and
metric functions to facilitate the management of composite workflow application
environments

Figure 1-3 Workflow Reference Model

W o r k f l o w E n a c t m e n t S e r v i c e

Process
Def in i t ion

T o o l s

I n v o k e d
App l i ca t ions

O t h e r W o r k f l o w
E n a c t m e n t
Serv ice (s)

Admin i s t r a t i on
a n d

M o n i t o r i n g T o o l s

App l i ca t i on
D a t a

W o r k f l o w C l i e n t A p p l i c a t i o n s

W o r k L i s t
H a n d l i n g

Process
C o n t r o l

Cl ien t app l i ca t ion
in ter face

I n v o k e d A p p l i c a t i o n
in ter face

Admin i s t r a t i on
a n d

m o n i t o r i n g
in ter face

In te roperab i l i ty
in ter face

Process def in i t ion in ter face
Workflow Mgmt. V1.2 Introduction to Workflow Management April 2000 1-7

1

1-8 Workflow Management V1.2 April 2000

Workflow Management Interfaces 2
The OMG document used to create this chapter was dtc/99-07-05.

Contents

This chapter contains the following sections

Section Title Page

“Chapter Overview” 2-2

“Interfaces Overview” 2-3

“WorkflowModel Module” 2-6

“WfRequester” 2-10

“WfExecutionObject” 2-12

“WfProcessMgr” 2-21

“WfProcess” 2-25

“WfActivity” 2-30

“WfAssignment” 2-34

“WfResource” 2-36

“WfEventAudit” 2-38

“WfCreateProcessEventAudit” 2-43

“WfStateEventAudit” 2-44

“WfDataEventAudit” 2-45

“WfAssignmentEventAudit” 2-46

“The WfBase Module” 2-48
 Workflow Mgmt. V1.2 April 2000 2-1

2

2.1 Chapter Overview

This chapter specifies interfaces for workflow execution control, monitoring, and
interoperability between workflows defined and managed independently of each other.
The interfaces are based on a model of workflow objects, which includes their
relationships and dependencies with requesters, assignments, and resources. The core
workflow interfaces are defined in the WorkflowModel module.

The model is graphically represented in UML class and object interaction diagrams,
and specified by IDL interfaces. For each interface, its attributes, relationships, state
set and its operations are described. Standard patterns are used for operations realizing
relationships and access to attributes and object state.

In addition to the core workflow interfaces, we also include a simple ’framework’ that
is meant to be a placeholder for a ’Business Component Framework.’ A revision of this
specification is expected to align this placeholder with the result of the OMG efforts to
define such a framework in the context of the BOF and the Component Model RFP.
The framework is described in the WfBase module.

“Base Business Object Interfaces” 2-51

“BaseIterator” 2-51

“Interface Usage Example” 2-52
2-2 Workflow Mgmt. V1.2 Chapter Overview April 2000

2

Figure 2-1 Joint Workflow Management Facility Model

2.2 Interfaces Overview

This section provides a brief overview on the core interfaces defined in this
specification; it also discusses typical usage scenarios. The following sections describe
the interfaces in detail. Section 2.19, “Interface Usage Example,” on page 2-52
contains more detailed usage scenarios.

2.2.1 Workflow Interfaces

The core workflow interfaces are:

WfDa ta Eve ntAudit

old_da ta : Na me Va lue s
ne w_da ta : Na me Va lue s

WfSt a te Eve ntAudit

old_sta te : string
ne w_sta te : string

WfAssignme ntEve ntAudit

o ld_ re sou rce _ke y : string
n e w_resource _ke y : string
o ld_ re sou rce _na me : s tri ng
n e w_resource _n am e : string

WfRe source

re source _ke y : string
re source _na me : string

re le a se ()

WfAssignme nt

1

*
+a ss ig ne e

1+work_ list

*

WfRe que ste r

re ce ive _e ve nt()

WfActivity

re sult : Proc essD at a

comple te ()

*

+a ctivity

+ a ss ig nm ent

*

WfP roce ssMgr

na m e : string
de scription : string
ca te go ry : string
ve rsion : string
e na b le d : boole a n

cre a te _proce ss()
ge t_ conte xt_signa ture ()
ge t_ re sult_signa ture ()
proce ss_m gr_sta te ()
se t_proce ss_m gr_sta te ()

WfPro ce ss

re sult : Proc essD at a

sta rt()
ge t_ a ctivitie s_ in_sta te ()

0..1

*

+re que ste r 0..1

+pe rforme r *

1

*

+ con ta ine r
1

+ste p
*

+ma ster

+insta nce of

WfExe cutionObje ct

de scription : string
ke y : string
priority : long
na m e : string
proce ss_con te xt : Proc essD at a

list_history()
ge t_cu rre nt_sta te ()
cha nge _sta te ()
va lid_sa te s()
re sume ()
te rm ina te ()
a bort()
su spe nd()
la st_sta te _time ()
sta te ()
workflow_sta te ()
while _ope n()
why_not_running()
while _ope n()
how_close d()

WfEve ntAudit

time _sta m p : Time Ba se ::UtcT
e ve nt_ type : string
a ctivity_ke y : string
a ctivity_na m e : string
proce ss_ke y : string
proce ss_na me : string
proce ss_m gr_na m e : string
proce ss_m gr_ve rsion : string

1

0..*

1

0..*

WfCre a teP roce ssEve ntAudit

p_a ctivity_ke y : string
p_proce ss_ke y : string
p_proce ss_na me : string
p_proce ss_mgr_na me : string
p_proce ss_mgr_ve rsion : string
Workflow Mgmt. V1.2 Interfaces Overview April 2000 2-3

2

Table 2-1 Core Workflow Interfaces

Core Workflow Interfaces Description

WfRequester Links the immediate owner of a request for a
WfProcess (i.e., it receives significant events
such as ’complete’). See Section 2.4,
“WfRequester,” on page 2-10 for more
information.

WfProcessMgr Provides factory and location support for
WfProcess. See Section 2.6, “WfProcessMgr,” on
page 2-21 for more information.

WfProcess The performer of a workflow request issued by a
user or automated actor such as WfActivity as a
WfRequester. See Section 2.7, “WfProcess,” on
page 2-25 for more information.

WfActivity A step in a WfProcess and may also be a
WfRequester. See Section 2.8, “WfActivity,” on
page 2-30 for more information.

WfExecutionObject An abstract base class for WfProcess and
WfActivity. See Section 2.5,
“WfExecutionObject,” on page 2-12 for more
information.

WfAssignment Links activities to potential/actual WfResources.
See Section 2.9, “WfAssignment,” on page 2-34
for more information.

WfResource A person or thing that can do and accept a
WfActivity. See Section 2.10, “WfResource,” on
page 2-36 for more information.

WfEventAudit A common interface for recording workflow
events. Several subtypes of this interface are
defined to record change of the state of a
workflow object; process data associated with it,
and change in the assignment of resources to
WfActivities. See Section 2.11, “WfEventAudit,”
on page 2-38 for more information.
2-4 Workflow Mgmt. V1.2 Interfaces Overview April 2000

2

2.2.2 Process Enactment

To initiate enactment of a particular workflow process, a Requester that is responsible
for that Process would be identified; an existing Requester can be reused or a specific
one that observes this Process can be created. WfRequester is the interface that has a
direct concern with the execution and results of a workflow process - it represents the
request for some work to be done.

An appropriate Process Manager is identified and the Process is created using the
create_process operation of that manager. The Requester is associated with the
Process when it is created and will receive status change notifications from the
Process. When the Process is instantiated it might create a set of Activities
representing process steps in the Process.

The Process is initialized by setting its context data; context data may be used to
parametrize a generic workflow process, identify resources to be used by the process,
etc.

Enactment of the Process is initiated by invoking its start operation. The process
implementation will use context data and built-in logic to determine which Activities
are to be activated. It may also initiate other (sub-) Processes.

When an Activity is activated, its context is set and resources may be assigned to it by
creating Assignments linking it to Resources; the resource selection mechanism is not
defined here, but an implementation might, for example, use another Process to
determine which resources to assign to a particular Activity, using the Activity’s
context information and other process parameters.

An Activity might be implemented by another (sub-) Process (i.e., it can be registered
as the Requester of that Process); the sub-process can be initiated when the Activity is
activated. In this case, the Activity is completed when the sub-Process completes and
the result of the Activity is obtained from the result of the Process.

An Activity can also be realized by an application that uses the Activity’s set_result
and complete operations to return results and signal completion of the Activity.

When an Activity is completed, its results will be used by the workflow logic to
determine follow-on Activities; the results can also be used to determine the overall
result of the Process it is contained in.

A Process is completed when there are no more Activities to be activated; it will signal
its completion to the associated Requester. At this time, the results of the process are
made available, intermediate results may be accessible while the Process is running.

2.2.3 Process Monitoring

The overall status of a Process can be queried using the state, get_context, and
get_result operations. The Requester associated with a Process also receives
notifications about status changes of the Process.
Workflow Mgmt. V1.2 Interfaces Overview April 2000 2-5

2

More detailed information on the status of the process steps can be obtained by
navigating the step relationship between Process and its Activities and using the status
inquiries provided by the Activity interface. Navigation of nested workflows is
supported by the performer relationship between a specialization of an Activity into a
Requester and potential sub-Processes.

Whenever an Execution Object (Process or Activity) performs a (workflow relevant)
status change, an EventAudit is recorded. For each Execution Object, the history of
Event Audit items can be accessed to analyze the execution history of that object.
Event Audits might be published using the OMG Notification Service.

2.3 WorkflowModel Module

The WorkflowModel module defines the core interfaces of the Workflow
Management Facility.

#ifndef _WORKFLOW_MODEL_
#define _WORKFLOW_MODEL_
#include <WfBase.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"
module WorkflowModel{

// Forward declarations
...

// Data Types
...

// Exceptions
...

// Interfaces

interface WfRequester : WfBase::BaseBusinessObject{...};
interface WfExecutionObject : WfBase::BaseBusinessObject {...};
interface WfProcessMgr : WfBase::BaseBusinessObject {...};
interface WfProcess :WfExecutionObject {...};
interface WfProcessIterator : WfBase::BaseIterator {...};
interface WfActivity : WfExecutionObject, WfRequester{...};
interface WfActivityIterator : WfBase::BaseIterator{...};
interface WfAssignment : WfBase::BaseBusinessObject{...};
interface WfAssignmentIterator : WfBase::BaseIterator{...};
interface WfResource : WfBase::BaseBusinessObject{...};
interface WfEventAudit : WfBase::BaseBusinessObject{...};
interface WfEventAuditIterator : WfBase::BaseIterator{...};
interface WfCreateProcessEventAudit : WfEventAudit{...};
interface WfStateEventAudit : WfEventAudit {...};
interface WfDataEventAudit : WfEventAudit {...};
interface WfAssignmentEventAudit : WfEventAudit{...};

};
#endif
2-6 Workflow Mgmt. V1.2 WorkflowModel Module April 2000

2

2.3.1 Data Structures

The WorkflowModel module defines the following data structures.

2.3.1.1 Workflow object sequences

typedef sequence<WfProcess> WfProcessSequence;
typedef sequence<WfActivity> WfActivitySequence;
typedef sequence<WfAssignment> WfAssignmentSequence;
typedef sequence<WfEventAudit> WfEventAuditSequence;

Sequences of workflow objects used for handling of relationship navigation.

2.3.1.2 Process Data

typedef WfBase::NameValueInfoSequence ProcesDataInfo;
typedef WfBase::NameValueSequence ProcessData;

Name-value pair sequences are used to handle process data associated with a
WfExecutionObject. ProcessDataInfo describes the structure of these process data
and ProcessData represents context and result data of an execution object. See
Section 2.5, “WfExecutionObject,” on page 2-12 for details.

2.3.1.3 State sets

enum workflow_stateType{ open, closed };
enum while_openType{not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };
enum process_mgr_stateType{enabled, disabled };

These enumerations are used to describe sets of states of various workflow objects; see
below for details.

2.3.2 Exceptions

The WorkflowModel module defines the following exceptions

exception InvalidPerformer{};

Is raised by an attempt to signal a WfEventAudit to a WfRequester that was not created
by one of the WfProcesses associated with the WfRequester.

exception InvalidState{};

Is raised by an attempt to change the state of a WfExecutionObject to a state that is not
defined for that object.
Workflow Mgmt. V1.2 WorkflowModel Module April 2000 2-7

2

exception InvalidData{};

Is raised by an attempt to update the context of the result of a WfExecutionObject with
data that do not match the signature of that object.

exception TransitionNotAllowed{};

Is raised by an attempt to perform an invalid state transition of a WfExecutionObject.

exception CannotResume{};
exception CannotSuspend{};
exception AlreadySuspended{};
exception CannotStop{};
exception NotRunning{};
exception NotSuspended{};

These exceptions are raised by operations on a WfExecutionObject that attempt to
perform invalid control operations on that object. See Section 2.5,
“WfExecutionObject,” on page 2-12 for details.

exception HistoryNotAvailable{};

Is raised by a request for event audit history of a WfExecutionObject when the History
is not available (i.e., because the implementation of the WfM Facility does not support
recording of history for a specific execution object).

exception NotEnabled{};

Is raised by an attempt to create a WfProcess using a WfProcessMgr that is disabled.

exception AlreadyRunning{};
exception CannotStart{};

These exceptions are raised by an attempt to start a WfProcess that is already running
or cannot be started yet.

exception ResultNotAvailable{};

Is raised when the requested result of a WfExecutionObject is not available (yet).

exception CannotComplete{};

Is raised by an attempt to complete execution of a WfActivity when it cannot be
completed yet.

exception NotAssigned{};

Is raised by an attempt to release a WfResource from an assignment it is not associated
with.
2-8 Workflow Mgmt. V1.2 WorkflowModel Module April 2000

2

exception SourceNotAvailable{};

Is raised by a request for the source of a WfEventAudit when the source is no longer
available.

exception RequesterRequired{};

Is raised when a valid WfRequester is required by the process definition, but one is not
supplied.

InvalidRequester{};

An InvalidRequester exception is raised when a WfRequester is being identified that
cannot be a 'parent' of instances of the process model. It is up to the implementation of
the WfM Facility to decide which WfRequester objects to accept or not. When a
WfRequester is rejected, the invoking application might decide not to register a
WfRequester with the WfProcess.

exception CannotChangerequester{};

Is raised when set_requester() cannot change the WfRequester of a WfProcess.

exception InvalidResource{};

Is raised by an attempt to assign an invalid resource to the assignment.

exception UpdateNotAllowed{};

Is raised when it is not allowed to update the process context.

2.3.3 Patterns

We use standard patterns to represent attributes and relationships of the workflow
interfaces. All operations return a WfBase::BaseException CORBA exception in
addition to the exceptions defined in this specification; see the discussion in the
chapter on the WfBase module for details.

2.3.3.1 Attributes

The pattern for access operations on attributes is the following: for an attribute with
name ATTRNAME and type TYPE, two operations are provided;

TYPE ATTRNAME();

Returns the value of the attribute.

void set_ATTRNAME(in TYPE value)

Supports updates of the attribute; the set operation is not provided for readonly
attributes.
Workflow Mgmt. V1.2 WorkflowModel Module April 2000 2-9

2

2.3.3.2 Relationships

The pattern for accessing cardinality 1 relationships is the same as for attributes. For
relationships with cardinality 'many' the following pattern is applied. For a relationship
with name RELNAME and type TYPE:

• the how_many_RELNAME() operation returns the number of elements in the
relationship,

• get_iterator_RELNAME() returns a TYPEIterator,

• get_sequence_RELNAME(in long how_many) returns a TYPESequence, and

• is_member_RELNAME(in TYPE member) support checks for membership of
an object in the relationship.

Note that the get_sequence_RELNAME will only return the first 'how_many'
elements, while the get_next and get_next_n operations on TYPEIterator support
navigation through the set of elements, retrieving one (or 'how_many') at a time and
positioning the cursor after the last element retrieved.

2.4 WfRequester

WfRequester is the interface that has a direct concern with the execution and results
of a workflow process - it represents the request for some work to be done. Its
performer, a WfProcess, is expected to handle its request and communicate significant
status changes; in particular to inform the requester when it has completed performing
the requested work. A single requester can have many processes associated with it.

Often WfRequester will also be the interface to the object that starts the process. As a
process starter some of the control actions on the process include setting up the
context, starting the process, and getting results and status.

There are two usage scenarios for the association of a WfProcess with a WfRequester:

1. Nesting of workflow processes - a WfActivity can be refined into a WfRequester
and may therefore request that a WfProcess be its performer (i.e., implementation).
In this case, the WfActivity would be registered as the requester with the
implementing sub-process when the WfProcess is created and would receive
notifications of status changes of that sub-process; upon completion of the sub-
process, the WfActivity would enter completed state.

2. Linking a workflow process to another (initiating or controlling) application. When
used as a linked process the requester should be a WfRequester, which is not the
linking WfActivity. Requesters that are not activities are roles or adapters for
external clients.

2.4.1 IDL

interface WfRequester : WfBase::BaseBusinessObject{

long how_many_performer()
2-10 Workflow Mgmt. V1.2 WfRequester April 2000

2

raises (WfBase::BaseException);
WfProcessIterator get_iterator_performer()

raises (WfBase::BaseException);
WfProcessSequence get_sequence_performer(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

void receive_event(
in WfEventAudit event)
raises (WfBase::BaseException, InvalidPerformer);

};

2.4.2 Relationships

2.4.2.1 performer

Zero or more WfProcesses can be associated with a WfRequester. A requester is
associated with a WfProcess when the process is created.

The following operations support the performer relationship with WfProcess.

long how_many_performer()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_performer()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_performer(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

2.4.3 Operations

2.4.3.1 receive_event

The following operation is used by WfProcess to notify its requester of workflow
events. In particular the WfProcess must notify the requester of complete, terminate, or
abort events or the transition to a closed state.

Name Type Properties Purpose

performer WfProcess cardinality: 0..n
readonly

Associates work requests with
their performers.
Workflow Mgmt. V1.2 WfRequester April 2000 2-11

2

The workflow event contains the source of the event; an InvalidPerformer exception
is raised if the source of the event is not a performer associated with the WfRequester.

void receive_event(
in WfEventAudit event)
raises(WfBase::BaseException, InvalidPerformer);

2.5 WfExecutionObject

WfExecutionObject is an abstract base interface that defines common attributes,
states, and operations for WfProcess and WfActivity.

It provides the capability to get and set and internal states. Operations are provided to
get the current state and to make a transition from the current state into another state.
Operations are also provided for specific state transitions. These operations are
suspend, resume, terminate, and abort. States returned by these operations should not
be confused with the “state of the process” which is calculated by the top level
WfProcess. States returned by these operations pertain only to the object they are
returned from. For example, regardless of what activity is currently enabled, a process
as a whole can be paused and resumed. The propagation of state change of a
WfProcess object down to WfActivity objects or subprocesses is implementation and
process definition dependent.

The interface includes name, description, priority, and key attributes. It also provides
an operation for monitoring WfExecutionObject executions by returning, based on filter
specified, event audit records that represent the history of the execution. Other
operations include methods for getting and setting context.

2.5.1 IDL

enum workflow_stateType{ open, closed };
enum while_openType{ not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };

typedef WfBase::NameValueSequence ProcessData;

interface WfExecutionObject : WfBase::BaseBusinessObject {

workflow_stateType workflow_state()
raises (WfBase::BaseException);

while_openType while_open()
raises (WfBase::BaseException);

why_not_runningType why_not_running()
raises (WfBase::BaseException);

how_closedType how_closed()
raises (WfBase::BaseException);

WfBase::NameSequence valid_states()
2-12 Workflow Mgmt. V1.2 WfExecutionObject April 2000

2

raises (WfBase::BaseException);
string state()

raises (WfBase::BaseException);
void change_state(

in string new_state)
raises (WfBase::BaseException, InvalidState,

TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

string key()
raises(WfBase::BaseException);

string description()
raises(WfBase::BaseException);

void set_description(
in string new_value)
raises (WfBase::BaseException);

ProcessData process_context()
raises(WfBase::BaseException);

void set_process_context(
in ProcessData new_value)
raises (WfBase::BaseException, InvalidData,

UpdateNotAllowed);
unsigned short priority()

raises(WfBase::BaseException);
void set_priority(in unsigned short new_value)

raises (WfBase::BaseException);
TimeBase::UtcT last_state_time()

raises(WfBase::BaseException);

void resume()
raises (WfBase::BaseException, CannotResume,

NotRunning, NotSuspended);
void suspend()

raises (WfBase::BaseException,CannotSuspend,
NotRunning, AlreadySuspended);

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

long how_many_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history(
in string query,
in WfBase::NameValueSequence names_in_query)
raises(WfBase::BaseException, HistoryNotAvailable);

WfEventAuditSequence get_sequence_history(
in long max_number)
raises (WfBase::BaseException, HistoryNotAvailable);

};
Workflow Mgmt. V1.2 WfExecutionObject April 2000 2-13

2

2.5.2 Attributes

The following discusses the operations that support access to the attributes in detail.

2.5.2.1 name

Human readable, descriptive identifier of the execution object.

string name()
raises(WfBase::BaseException);

void set_name(in string new_value)
raises (WfBase::BaseException);

2.5.2.2 key

Identifier of the execution object. The key of a WfProcess is unique among the set of
all WfProcesses created by a particular WfProcessMgr; the key of a WfActivity is
unique within the set of all WfActivities contained in a particular WfProcess. A key is
assigned to the execution object by its WfProcessMgr when it is created.

The key of a workflow object should not be confused with an ’object identifier.’ It is
used for reference to the process or activity independently of the lifetime of the
execution object.

string key()
raises(WfBase::BaseException);

2.5.2.3 description

Description of the execution object.

Name Type Properties Purpose

name string Descriptive name of a workflow
execution object

key string readonly (Business) identifier of an execution
object that uniquely identifies it within
the scope of its ’parent’ object.

description string Information describing the execution
object.

priority unsigned
short

constraint:
0 < priority < 6

A number representing the priority of
the execution element.

process_context ProcessData The name-value pairs holding the
process relevant data.

last_state_time TimeBase::
UtcT

readonly The time of the last state change.
2-14 Workflow Mgmt. V1.2 WfExecutionObject April 2000

2

string description()
raises(WfBase::BaseException);

void set_description(in string new_value)
raises (WfBase::BaseException);

2.5.2.4 process_context

Process relevant data that define the context of the execution object. The process
context is described by a set of named properties; the following operations support
access to the context of an execution object. The NameValues structure identifies a set
of property names and values matching the signature of the execution object. The
signature of a WfProcess can be obtained using the get_context_signature operation
provided by the WfProcessMgr of the process.

Exceptions
• An InvalidData exception is raised when an update request does not match this

signature.

• An UpdateNotAllowed exception is raised when the implementation of the WfM
Facility or the specific workflow process does not allow an update of the context.
See Section 2.7, “WfProcess,” on page 2-25 and Section 2.8, “WfActivity,” on
page 2-30 for details.

When the set_process_context() method has been called only those name-value
pairs in the parameter will be set. Several set_process_context() calls could be used
to set the entire context.

ProcessData process_context()
raises(WfBase::BaseException);

void set_process_context(in ProcessData new_value)
raises (WfBase::BaseException, InvalidData, UpdateNotAllowed);

For a discussion of the context of WfActivity and WfProcess see the corresponding
sections Section 2.8, “WfActivity,” on page 2-30 and Section 2.7, “WfProcess,” on
page 2-25.

2.5.2.5 priority

Relative priority of the execution element in the set of all execution objects of a given
type. Valid values are numbers between one and five, with three being “normal” and
one as the “highest” priority.

A request for update of the priority will raise an InvalidPriority exception when the
specified priority is out of range; an UpdateNotAllowed exception is raised when
the priority cannot be updated.

unsigned short priority()
raises(WfBase::BaseException);

void set_priority(in unsigned short new_value)
raises (WfBase::BaseException);
Workflow Mgmt. V1.2 WfExecutionObject April 2000 2-15

2

2.5.2.6 last_state_time

The time the state of the WfExecutionObject was changed. This may happen from an
explicit action like the complete() method or via a state change propagation from
another WfExecutionObject.

TimeBase::UtcT last_state_time()
raises(WfBase::BaseException);

2.5.3 States

We define a hierarchy of states of an execution object, as shown in Figure 2-2. The top
level states are mandatory; implementations may define substates of the standard states
defined here. The following section describes the standard states and the basic accessor
operations.

Figure 2-2 States of a WfExecutionObject

2.5.3.1 workflow_state state set

An execution object is either in state ’open’ (i.e., it is active) or in state ’closed’ (i.e.,
it has finished execution).

enum workflow_stateType { open, closed };

Values Substates Purpose

open while_open To reflect that the object is active and not finished.

closed how_closed Reflects that the object is finished and inactive.

open

not_running

not_started

suspended

running

closed

completed

aborted

terminated

not_running

not_started

suspended

running

not_started

suspended

completed

aborted

terminated
2-16 Workflow Mgmt. V1.2 WfExecutionObject April 2000

2

workflow_stateType workflow_state()
raises(WfBase::BaseException);

2.5.3.2 while_open state set

enum while_openType { not_running, running };

while_openType while_ open()
raises(WfBase::BaseException);

2.5.3.3 why_not_running state set

enum why_not_runningType { not_started, suspended };

why_not_runningType why_not_running()
raises(WfBase::BaseException);

Values Substates Purpose

not_running why_not_running Object is active and quiescent, but ready to
execute.

running The object is active and executing in the
workflow.

Values Purpose

not_started Provides a state after creation where the object is active
and ready to be initialized and started.

suspended Provides a state to temporarily pause the execution of
the object. When an execution object is suspended, no
execution objects depending on this object may be
started.
Workflow Mgmt. V1.2 WfExecutionObject April 2000 2-17

2

2.5.3.4 how_closed state set

enum how_closedType {completed, terminated, aborted };

how_closedType how_closed()
raises(WfBase::BaseException);

2.5.3.5 Extended state access

The following operations support access to a potentially extended set of states; a state
is represented by a ’dot-notation’ representing hierarchical states (e.g., ’open.running’).

WfBase::NameSequence valid_states()
raises(WfBase::BaseException);

Returns a list of all the valid states that can be reached from the current state. For
example, ’open.not_running.suspended’ and ’closed.terminated’ would be in the list of
valid states if the current state was ’open.running’ - ’open.not_running.not_started’
probably would not be in that list.

string state()
raises(WfBase::BaseException);

Gets the current state of the object.

Values Purpose

completed When an execution object has finished its task in the
overall workflow process it enters the completed state; it
is assumed that all execution objects associated with that
execution object are completed when it enters this state.

terminated Indicates that enactment of the execution object was
stopped before normal completion. It is assumed that all
execution objects depending on this execution object
(i.e., WfActivities contained in a WfProcess or a
WfProcess implementing a WfActivity) are either
completed or are terminated when it enters this state.

aborted Indicates that the enactment of the execution object has
been aborted before normal completion. No assumptions
on the state of execution objects depending on this
execution object are made when it enters this state.
2-18 Workflow Mgmt. V1.2 WfExecutionObject April 2000

2

2.5.4 Relationships

2.5.4.1 history

Zero or more WfEventAudit items can be associated with an execution object. An event
audit item is generated (and associated with the source object) for each workflow
relevant status change (change of state, context or result and change of resource
assignment) of a WfExecutionObject. Status changes can be explicitly triggered by
operations that request a change of the object’s status or implicitly by the workflow
process logic. We will indicate which operations trigger generation of WfEventAudit
items.

The following operations provide access to the set of all WfEventAudit items associated
with a WfExecutionObject.

long how_many_history()
raises(WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history(
in string query,
in WfBase::NameValueSequence names_in_query)
raises(WfBase::BaseException, HistoryNotAvailable);

WfEventAuditSequence get_sequence_history(
in long max_number)
raises(WfBase::BaseException, HistoryNotAvailable);

boolean is_member_of_history(
in WfExecutionObject member)
raises(WfBase::BaseException);

2.5.5 Operations

The following operations support execution control of the execution object; they all
change the state (and potentially other features) of an execution object and its
associated objects. Operations are provided to resume suspended WfExecutionObjects,
suspend running executions, and terminate or abort open workflow execution objects.

All of these operations trigger creation of a state change event (WfStateEventAudit);
other status changes resulting from the state change of the execution object might
trigger creation of additional WfEventAudit items.

2.5.5.1 resume

Requests enactment of a suspended execution object to be resumed. The state is set to
’open.running’ (or a substate) from ’open.not_running.suspended.’

Name Type Properties Purpose

history WfEventAudit cardinality: 0..n
readonly

Associates event audit data with
its source execution object.
Workflow Mgmt. V1.2 WfExecutionObject April 2000 2-19

2

A CannotResume exception is raised when the execution object cannot be resumed.
For example, resuming a WfActivity might not be allowed when the containing
WfProcess is suspended. A NotSuspended exception is raised when the object is not
suspended.

void resume()
raises (WfBase::BaseException, CannotResume,

NotRunning, NotSuspended);

2.5.5.2 terminate

Requests enactment of an execution object to be terminated before its normal
completion. A terminate request is different from an abort request in its effect of
execution object associated with the current execution object. See Section 2.7,
“WfProcess,” on page 2-25 and Section 2.8, “WfActivity,” on page 2-30 for details.

The state is set to ’closed.terminated’ (or one of its substates) from ’open.running’ (or
one of its substates).

A CannotStop exception is raised when the execution object cannot be terminated;
for example, termination of a WfActivity might not be allowed when its implementation
is still active and cannot be terminated. A NotRunning exception is raised when the
object is not running.

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

2.5.5.3 suspend

Requests enactment of an execution object to be suspended. The state is set to
’open.not_running.suspended’ (or one of its substates).

A CannotSuspend exception is raised when the execution object cannot be
suspended. For example, an implementation of the WfM Facility might not support
suspension of a WfActivity. A NotRunning exception is raised when the object is not
running.

void suspend()
raises (WfBase::BaseException, CannotSuspend,

 NotRunning, AlreadySuspended);

2.5.5.4 abort

Requests enactment of a suspended execution object to be aborted before its normal
completion. The state is set to ’closed.aborted.’

A CannotStop exception is raised when the execution object cannot be aborted. A
NotRunning exception is raised when the object is not running.
2-20 Workflow Mgmt. V1.2 WfExecutionObject April 2000

2

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

2.5.5.5 change_state

Updates the current state of the execution object. As a result the state of execution
objects associated with this execution object might be updated, too. An InvalidState
exception is raised when the new_state is not a valid state for the execution object; a
TransitionNotAllowed exception is raised when the transition from the current state
to new_state is not allowed.

void change_state(
in string new_state)
raises(WfBase::BaseException, InvalidState, TransitionNotAllowed);

2.6 WfProcessMgr

A WfProcessMgr represents a template for a specific workflow process; it is used to
create instances of a workflow process. Logically it is the factory and locator for
WfProcess instances. It provides access to the meta information about the context a
process requires and the result a process produces.

A process manager is identified by its name which is unique within a given business
domain. It could located, for example, via name using the OMG Naming Service, via
name and other attributes (e.g., category) via the OMG Trader Service, or other
infrastructure mechanisms.

2.6.1 IDL

typedef WfBase::NameValueInfoSequence ProcessDataInfo;

enum process_mgr_stateType{enabled, disabled };

interface WfProcessMgr : WfBase::BaseBusinessObject {

long how_many_process()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_process()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_process(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_process(
in WfProcess member)
raises (WfBase::BaseException);

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
Workflow Mgmt. V1.2 WfProcessMgr April 2000 2-21

2

in process_mgr_stateType new_state)
raises(WfBase::BaseException, TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

string description()
raises(WfBase::BaseException);

string category()
raises(WfBase::BaseException);

string version()
raises(WfBase::BaseException);

ProcessDataInfo context_signature()
raises (WfBase::BaseException);

ProcessDataInfo result_signature()
raises (WfBase::BaseException);

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled,

 InvalidRequester, RequesterRequired);
};

2.6.2 Attributes

All attributes of the WfProcessMgr are readonly; they are set when the process
manager is installed. The following discusses the operations that support access to the
attributes in detail.

Name Type Properties Purpose

name string readonly Name of the process manager.

description WfActivity readonly Describes the workflow process
type.

category string readonly Provide an indication of the
application domain the process
was designed for.

version string readonly Defines the version of this process
manager.

context_signature ProcessDataInfo readonly Describes the structure of the
context data for the process

result_signature ProcessDataInfo readonly Describes the structure of the
result data for the process
2-22 Workflow Mgmt. V1.2 WfProcessMgr April 2000

2

2.6.2.1 name

Name of the process manager. The name uniquely identifies the process manager in a
business domain.

string name();

2.6.2.2 description

Description of the process manager. It is set when the process manager is initialized
and cannot be modified.

string description();

2.6.2.3 category

The category of a process manager is used for classification of process types. It is set
when the process manager is initialized and cannot be modified.

string category();

2.6.2.4 version

The version attribute of a process manager is used to distinguish between different
versions of a process model. Note that this is a means to distinguish between different
process managers that have the same name; it is left to the implementation to define
the format of the version attribute. It is set when the process manager is initialized and
cannot be modified.

string version();

2.6.2.5 Process signature information

Meta information that defines how to set the context and return the result of an
instance of this interface is returned by these operations.

The ProcessDataInfo structure identifies the name and the data type (IDL type
represented by its string name) of the data item. ProcessDataInfo contains an entry
for each data item in the set of context or result data for the WfProcess.

typedef WfBase::NameValueInfoSequence ProcessDataInfo;

ProcessDataInfo get_context_signature();

Returns the meta information that defines how to set the context of an instance.

ProcessDataInfo get_result_signature();

Returns the meta information that specifies how instances will return results.
Workflow Mgmt. V1.2 WfProcessMgr April 2000 2-23

2

2.6.3 Relationships

2.6.3.1 process

Zero or more WfProcesses are associated with the WfProcessMgr that was used to
create them. The association is established when a WfProcess is created.

The following operation supports access to the set of WfProcesses associated with a
WfProcessMgr.

long how_many_process()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_process()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_process(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_process(
in WfProcess member)
raises (WfBase::BaseException);

2.6.4 States

2.6.4.1 process_ mgr_state state set

A WfProcessMgr can be enabled or disabled.

enum process_mgr_stateType{ enabled, disabled };

The following operation provides access to the state of a WfProcessMgr.

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
in process_mgr_stateType new_state)
raises(WfBase::BaseException, TransitionNotAllowed);

Name Type Properties Purpose

process WfProcess cardinality: 0..n
readonly

Locate process instances created using
this WfProcessMgr.

Values Purpose

enabled Indicates that creation of workflow processes is enabled.

disabled Indicates that creation of workflow processes is disabled.
2-24 Workflow Mgmt. V1.2 WfProcessMgr April 2000

2

2.6.5 Operations

2.6.5.1 create_process

This operation is used to create instances of a process model and link its requester.
When the process is created it enters state ’not_running.not_started.’

• A NotEnabled exception is raised when the process manager is disabled.

• A RequesterRequired exception is raised when the process definition requires a
WfRequester and an invalid WfRequester is supplied in the parameter.

• An InvalidRequester exception is raised when a WfRequester is being identified
that cannot be a 'parent' of instances of the process model. It is up to the
implementation of the WfM Facility to decide which WfRequester objects to accept
or not. When a WfRequester is rejected, the invoking application might decide not
to register a WfRequester with the WfProcess.

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled,

InvalidRequester, RequesterRequired);

2.7 WfProcess

A WfProcess is the performer of a workflow request. All workflow objects that
perform work implement this interface. This interface allows work to proceed
asynchronously while being monitored and controlled.

The WfProcess interface specializes WfExecutionObject interface by adding an
operation to start the execution of the process, an operation to obtain the result
produced by the process and relationships with WfRequester and WfActivity.

2.7.1 Process States

When a WfProcess is created it enters ’open.not_running.not_started’ state. When it
has successfully finished processing, it enters ’closed.completed’ state. Additional state
changes can be performed using the change_state operation provided by
WfExecutionObject.

2.7.2 Process context and results

In general, the context of a WfProcess is set when it has been created (using an
appropriate WfProcessMgr factory) and before it is started. The context includes
information about process navigation data, the resources to use, and the results to
produce. An implementation of the WfM Facility may or may not allow updates of the
process context after the process has been started.
Workflow Mgmt. V1.2 WfProcess April 2000 2-25

2

The result of a WfProcess is derived from the process context and from results of
WfActivities contained in the WfProcess; a NULL result is possible and allowed.
Derivation of result data is left to the implementation of the WfProcess.

2.7.2.1 Process Requester

A WfProcess is created (using a WfProcessMgr) by a user or automated resource and
associated with a WfRequester. The WfRequester may be a WfActivity or an adapter for
external clients. WfProcess always has one WfRequester; an implementation of the
WfM Facility may allow for re-assignment of the WfRequester associated with a
WfProcess.

A WfProcess will inform its WfRequester about status changes such as modification of
its state and its context using the requester’s receive_event operation.

2.7.2.2 Process Steps

A WfProcess can contain zero or more WfActivity objects. The WfActivity objects
represent steps in the process to be performed. The steps are assigned to WfResources
or become WfRequesters that use and create WfProcesses as sub-processes. It is left to
the implementation of the WfM Facility and the WfProcess to determine when to
create and start WfActivities. The set of active WfActivities contained in a WfProcess
can be obtained via the step relationship between WfProcess and WfActivity.

2.7.2.3 Process Monitoring and Control

The performing of the work represented by a WfProcess may take anywhere from
seconds to months to even years for major projects. Operations are provided to monitor
the status of the process and to control execution of the process.

Execution of a WfProcess is initiated using the start operation; execution can be
suspended (and resumed) and terminated or aborted before it completes.

While the work is proceeding, the state operation on the WfProcess may be used to
check on the overall status of the work. More detailed information on the status of the
process can be obtained by navigating the relationship to the WfActivities contained in
the WfProcess and using the status inquiries supported by this interface (see below).

The result operation may be used to request intermediate result data, which may or
may not be provided depending upon the details of the work being performed. The
results are not final, until the unit of work is completed. When the status of a
WfProcess changes, it sends a state change event to the requester informing it of the
change. Notification is always delivered on “completed” or “terminated” or “aborted”
events, which tell the requesting object that the results could be available and the
WfProcess object is done with its work.
2-26 Workflow Mgmt. V1.2 WfProcess April 2000

2

2.7.2.4 WfProcess usage scenarios

In general, a WfProcess will represent an instance of a particular process model (e.g.,
’approveCreditRequest’), the process steps being represented by WfActivities. Any
other discrete unit of work, which needs to be performed asynchronously may
implement this interface. It may or may not expose a fine grained structure in terms of
process steps. For example, a wrapper for a legacy application could implement the
WfProcess interface enabling that application to perform a task in another workflow
process. A driver for an actual physical device, such as a numerical milling machine,
could implement the WfProcess interface if that device were to be controlled by a
workflow system.

2.7.3 IDL

interface WfProcess : WfExecutionObject {

WfRequester requester()
raises(WfBase::BaseException);

void set_requester(in WfRequester new_value)
raises (WfBase::BaseException, CannotChangeRequester);

long how_many_step()
raises (WfBase::BaseException);

WfActivityIterator get_iterator_step()
raises (WfBase::BaseException);

WfActivitySequence get_sequence_step(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

WfProcessMgr manager()
raises(WfBase::BaseException);

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

void start()
raises (WfBase::BaseException, CannotStart, AlreadyRunning);

WfActivityIterator get_activities_in_state(
in string state)
raises(WfBase::BaseException, InvalidState);

};

interface WfProcessIterator : WfBase::BaseIterator {

WfProcess get_next_object ()
raises (WfBase::BaseException);

WfProcess get_previous_object()
raises (WfBase::BaseException);
Workflow Mgmt. V1.2 WfProcess April 2000 2-27

2

WfProcessSequence get_next_n_sequence(
in long max_number)
raises (WfBase::BaseException);

WfProcessSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.7.4 Attributes

The following discusses the operations that support access to the attributes in detail.

2.7.4.1 result

The result produced by the WfProcess. In general the result is undefined until the
process completes, but some processes may produce intermediate results.

A ResultNotAvailable exception is raised when the result cannot be obtained yet.

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

2.7.5 Relationships

2.7.5.1 requester

One WfRequester may be associated with a WfProcess. The association is established
when the process is created; implementations may support reassignment of the process
to another requester. The following operations support the ’requester’ relationship.

WfRequester requester()
raises(WfBase::BaseException);

Name Type Properties Purpose

result ProcessData readonly Result produced by the
process.

Name Type Properties Purpose

requester WfRequester cardinality: 0..1 One WfRequester may be
associated with a WfProcess.

step WfActivity cardinality: 0..n
readonly

Contain the activities of a
process.

manager WfProcessMgr cardinality: 1
readonly

Identify the template for this
instance.
2-28 Workflow Mgmt. V1.2 WfProcess April 2000

2

void set_requester(
in WfRequester new_value)
raises(WfBase::BaseException,

CannotChangeRequester);

2.7.5.2 step

Zero or more WfActivities are associated with a WfProcess. The association is
established when an activity is created as part of the enactment of the WfProcess. The
following operations support the ’step’ relationship.

long how_many_step()
raises (WfBase::BaseException);

WfActivityIterator get_iterator_step()
raises (WfBase::BaseException);

WfActivitySequence get_sequence_step(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

2.7.5.3 manager

A process is associated with one WfProcessMgr; the association is established when
the WfProcess is generated and cannot be modified. The following operation returns
the WfProcessMgr associated with the WfProcess.

WfProcessMgr manager()
raises(WfBase::BaseException);

2.7.6 Operations

2.7.6.1 start

This operation is used to initiate enactment of a WfProcess. The state of the process is
changed from ’open.not_running.not_started’ to ’open.running.’

• A CannotStart exception is raised when the process cannot be started (e.g.,
because it is not properly initialized).

• An AlreadyRunning exception is raised when the process has already been
started.

void start()
raises (WfBase::BaseException, CannotStart, AlreadyRunning);
Workflow Mgmt. V1.2 WfProcess April 2000 2-29

2

2.7.6.2 get_activities_in_state

This operation is used to get an iterator over WfActivity objects that are in a certain
state. The state is an input parameter. In case an invalid state has been specified, the
exception InvalidState is raised.

WfActivityIterator get_activities_in_state
(in string state)
raises(WfBase::BaseException, InvalidState);

2.7.7 WfProcessIterator

The WfProcessIterator interface specializes the WfBase::BaseIterator interface
and adds the event audit specific operations according to the Iterator pattern described
in the section on patterns above.

The following attributes can be used in query expressions using the Trader Constraint
Language: key, name, priority, description, state.

2.8 WfActivity

WfActivity is a step in a process that is associated, as part of an aggregation, with a
single WfProcess. It represents a request for work in the context of the containing
WfProcess. There can be many active WfActivity objects within a WfProcess at a given
point in time.

The WfActivity interface specializes WfExecutionObject with an explicit complete
operation to signal completion of the step, and with an operation to set the result of the
WfActivity. It also adds relationships with WfProcess and WfAssignment.

2.8.1 Activity States

A WfActivity is created by the containing WfProcess; when it is created it enters state
’open.not_running.not_started.’ It is left to the implementation of the WfM Facility or
the WfProcess to decide when to create a WfActivity. The lifetime of a WfActivity is
limited by that of its containing WfProcess.

When it becomes ready for execution, a WfActivity is transformed into state
’open.running.’ It is left to the implementation of the WfM Facility or the WfProcess to
decide when to activate a WfActivity.

A WfActivity enters state ’closed.completed’ when its complete operation is invoked,
or, if it is implemented by a WfProcess, when it receives a completion notification via
the receive_event operation inherited from WfRequester.

Other operations are provided to modify the state of the WfActivity as described in
Section 2.5, “WfExecutionObject,” on page 2-12.
2-30 Workflow Mgmt. V1.2 WfActivity April 2000

2

2.8.2 Activity Context and Result

The context of an activity is set by the containing WfProcess before the activity is
activated; the context is derived from the context of the WfProcess and results of other
activities. An implementation of the WfM Facility may support updates of the
activity’s context via the set_process_context operation inherited from
WfExecutionObject.

An activity produces a result that can be used to determine which follow-on process
steps to activate. It can also be used to determine the result of the WfProcess. In
general, this overall result is not set until the process is closed; however, in-process,
intermediate results may be available. In both cases the implementation of the
workflow process sets the result in WfProcess and decides whether intermediate results
will be available. The set_result operation is used to feed back activity results into
the process.

2.8.3 Resource assignment

A WfActivity is a requester of work. Activities can be assigned to resources that
participate in the execution of that work. A WfAssignment represents the association of
a WfResource with a WfActivity and is used to indicate the nature of the assignment.
Zero or more resources can be assigned to an activity.

It is up to the implementation of the WfM Facility, the WfProcess, or the owning
WfActivity to coordinate the contributions of the resources assigned to an activity. This
allows for the realization of a variety of collaboration patterns. For example, an
implementation of the WfM Facility might decide to use WfAssignments to offer work
to a set of WfResources but allow only one of them to actually perform the work;
alternatively, the work might be split amongst the set of all resources that are assigned
to a particular activity. Work items can be assigned to WfResources that accept or reject
the work. Candidate resources include people or automated actors (see Section 2.10,
“WfResource,” on page 2-36 for details).

2.8.4 Activity Realizations

A WfActivity is a request for work to be done in the context of its parent workflow
process. As a WfRequester, it can be associated with a WfProcess, as a subprocess,
which performs the work. A WfActivity does not have to be performed by a subprocess,
but can be performed by associated resources (e.g., people) using operations on the
WfActivity. For instance, to obtain the context of the activity, to indicate that the
activity is completed, or to send the result data values.

If it is realized by a WfProcess, it is the responsibility of a WfActivity object to
conform to the interface required by the WfProcess that is performing the work as a
subprocess. A WfProcess can only be used as the realization of one WfActivity (i.e.,
instances of process models cannot be used to realize multiple WfActivities). This
means that the context of the activity will be mapped to that of the subprocess using
Workflow Mgmt. V1.2 WfActivity April 2000 2-31

2

the context signature of the subprocess. Also, results returned by the subprocess will be
mapped to the results of the activity. The WfActivity may use the meta data about the
signature of the WfProcess provided by the WfProcessMgr of that process.

2.8.5 Process Monitoring

Given a reference to the WfProcess, the currently active WfActivity objects can be
found. From each WfActivity, one can discover the sub WfProcess objects, if any, which
may contain more activities. In this way, a distributed workflow of any scale can be
navigated.

Status information on the process steps can be obtained using the operations to get the
current state and the context of the corresponding WfActivity.

2.8.6 Activity - Process Interaction

When a WfActivity is completed (it is told that the work is complete) the workflow
process, through the use of internal logic, determines which activities are open and
ready to start or resume. It is important to note that other events may also trigger a
workflow system to dynamically determine its activities and their state.

2.8.7 IDL

interface WfActivity : WfExecutionObject {
long how_many_assignment()

raises (WfBase::BaseException);
WfAssignmentIterator get_iterator_assignment()

raises (WfBase::BaseException);
WfAssignmentSequence get_sequence_assignment(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)

raises (WfBase::BaseException);
WfProcess container()

raises(WfBase::BaseException);
ProcessData result()

raises(WfBase::BaseException, ResultNotAvailable);
void set_result(in ProcessData result)

raises (WfBase::BaseException, InvalidData);
void complete()

raises (WfBase::BaseException, CannotComplete);
};
2-32 Workflow Mgmt. V1.2 WfActivity April 2000

2

2.8.8 Attributes

2.8.8.1 result

Represents the result produced by the realization of the work request represented by an
activity. An implementation of the WfM Facility may or may not provide access to the
result of an activity. If it does not, or if the result data are not available yet, a
ResultNotAvailable exception is raised by the result access operation.

The set_result operation is used to pass process data back to the workflow process.
An InvalidData exception is raised when the data do not match the signature of the
activity or when an invalid attempt is made to update the results of an activity; lack of
access rights might be one of those reasons.

ProcessData result()
raises(WfBase::BaseException, ResultNotAvailable)

void set_result(in ProcessData result)
 raises (WfBase::BaseException, InvalidData);

2.8.9 Relationships

2.8.9.1 assignment

Zero or more WfAssignments can be associated with a WfActivity. The association is
established when the assignment is created as part of the resource selection process for
the activity. The following operations support access to the set of WfAssignments
associated with an activity.

long how_many_assignment()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_assignment()
raises (WfBase::BaseException);

Name Type Properties Purpose

result ProcessData Result produced by the
realization of the activity

Name Type Properties Purpose

assignment WfAssignment cardinality: 0..n
readonly

Links an activity to
potential/actual resources.

container WfProcess cardinality: 1
readonly

Links the process this activity is
part of.
Workflow Mgmt. V1.2 WfActivity April 2000 2-33

2

WfAssignmentSequence get_sequence_assignment(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)
raises (WfBase::BaseException);

2.8.9.2 process

This operation returns the WfProcess that this activity is a part of.

WfProcess container()
raises(WfBase::BaseException);

2.8.10 Operations

2.8.10.1 complete

This operation is used by an application to signal completion of the WfActivity. It will
be used together with the set_result operation to pass results of the activity back to
the workflow process. A CannotComplete exception is raised when the activity
cannot be completed yet.

void complete()
raises (WfBase::BaseException, CannotComplete);

2.8.11 WfActivityIterator

The WfActivityIterator interface specializes the WfBase::BaseIterator interface
and adds the event audit specific operations according to the Iterator pattern described
in Section 2.3.3, “Patterns,” on page 2-9.

The following attributes can be used in query expressions using the Trader Constraint
Language: key, name, priority, description, state.

2.9 WfAssignment

WfAssignment links WfActivity objects to WfResource objects. These links represent
real assignments for enacting the activity. This interface may be specialized by
resource management facilities that interpret the context of the activity to create and
negotiate assignments with resources.

Assignments are created as part of the resource selection process before an activity
becomes ready for execution. The lifetime of an assignment is limited by that of the
associated activity.
2-34 Workflow Mgmt. V1.2 WfAssignment April 2000

2

2.9.1 IDL

interface WfAssignment : WfBase::BaseBusinessObject{

WfActivity activity()
raises(WfBase::BaseException);

WfResource assignee()
raises(WfBase::BaseException);

void set_assignee(
in WfResource new_value)
raises (WfBase::BaseException);

};

interface WfAssignmentIterator : WfBase::BaseIterator{

WfAssignment get_next_object ()
raises (WfBase::BaseException);

WfAssignment get_previous_object()
raises (WfBase::BaseException);

WfAssignmentSequence get_next_n_sequence(
in long max_number)
raises (WfBase::BaseException);

WfAssignmentSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.9.2 Relationships

2.9.2.1 activity

A WfAssignment is associated with one WfActivity; the association is established when
the assignment is created as part of the resource selection process for the activity. The
following operation returns the associated WfActivity.

WfActivity activity()
raises(WfBase::BaseException);

Name Type Properties Purpose

activity WfActivity cardinality: 1
readonly

Associate the activity this assignment
exists for.

assignee WfResource cardinality: 1 Link the resource for this assignment.
Workflow Mgmt. V1.2 WfAssignment April 2000 2-35

2

2.9.2.2 assignee

A WfAssignment is associated with one WfResource. The association is established
when the assignment is created as part of the resource selection process for the
activity; the assignment can be reassigned to another resource at a later point in time.
The following operations support the assignee relationship. An InvalidResource
exception is raised by an attempt to assign an invalid resource to the assignment.

WfResource assignee()
raises(WfBase::BaseException);

void set_assignee(
in WfResource new_value)
raises (WfBase::BaseException, InvalidResource);

2.9.3 WfAssignmentIterator

The WfAssignmentIterator interface specializes the WfBase::BaseIterator
interface and adds the event audit specific operations according to the Iterator pattern
described in Section 2.3.3, “Patterns,” on page 2-9.

The state attribute described for the WfAssignment interface can be used in query
expressions using the Trader Constraint Language.

2.10 WfResource

WfResource is an abstraction that represents a person or thing that will potentially
accept an assignment to an activity. Potential and/or accepted WfAssignments are links
between the requesting WfActivities and WfResource objects. It is expected that this
interface will be used to implement adapters for objects representing people and things
implemented in user, organization, and resource models. These models are outside the
scope of this specification.

2.10.1 IDL

interface WfResource : WfBase::BaseBusinessObject{

long how_many_work_item()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_work_item()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_work_item(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

string resource_key()
2-36 Workflow Mgmt. V1.2 WfResource April 2000

2

raises(WfBase::BaseException);
string resource_name()

raises(WfBase::BaseException);

void release(
in WfAssignment from_assigment,
in string release_info)
raises (WfBase::BaseException, NotAssigned);

};

2.10.2 Attributes

2.10.2.1 resource_key

The resource key identifies a resource within a given business domain. It is assumed
that resources are defined in the same business domain as the workflow processes they
are associated with.

The key is set when the object is initialized; modification of the key can be done in the
context of a resource management facility.

string resource_key()
raises(WfBase::BaseException);

2.10.2.2 resource_name

A human readable, descriptive name of the resource.

string resource_name()
raises(WfBase::BaseException);

2.10.3 Relationships

Name Type Properties Purpose

resource_key string readonly Uniquely identifies the resource.

resource_name string readonly Name of an resource.

Name Type Properties Purpose

work_item WfAssignment cardinality: 0..n
readonly

Provides a link to accepted
work assignments.
Workflow Mgmt. V1.2 WfResource April 2000 2-37

2

2.10.3.1 work_item

Zero or more WfAssignments are associated with a resource. The association is
established when the assignment is created as part of the resource selection process for
an activity; the assignment can be reassigned to another resource at a later point in
time.

The following operations provide access to the set of WfAssignments associated with a
resource.

long how_many_work_item()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_work_item()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_work_item(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

2.10.4 Operations

2.10.4.1 release

The release operation is used to signal that the resource is no longer needed for a
specific assignment. It takes the assignment that is no longer associated with the
resource and a string that specifies additional information on the reason for realizing
the resource as input. A NotAssigned exception is raised when the WfAssignment
specified as input is not assigned to the WfResource.

It is assumed that this operation is invoked when an assignment is deleted or when an
assignment is reassigned to another resource.

void release (
in WfAssignment from_assignment,
in string release_info)
raises(WfBase::BaseException, NotAssigned);

2.11 WfEventAudit

WfEventAudit provides audit records of workflow event information. It provides
information on the source of the event and contains specific event data. Workflow
events include state changes, change of a resource assignment, and data changes.
Workflow events are persistent and can be accessed navigating the history relationship
of a WfExecutionObject. Workflow audit event objects are not part of the persistent
state of their source workflow object.
2-38 Workflow Mgmt. V1.2 WfEventAudit April 2000

2

A workflow event audit object is created when a workflow object changes its status
(state change, process data change or assignment change); its lifetime is not limited by
the lifetime of the event source object. Operations for managing the retention,
archiving, and deletion of workflow events are not specified in this specification.

The WfEventAudit defines a set of event properties common to all workflow audit
events. In particular, it provides an identification of the source of the event in terms of
(business) identifiers of the workflow entities WfProcessMgr, WfProcess, and
WfActivity.

2.11.1 IDL

interface WfEventAudit : BaseBusinessObject{

WfExecutionObject source()
raises(WfBase::BaseException, SourceNotAvailable);

TimeBase :: UtcT time_stamp()
raises(WfBase::BaseException);

string event_type()
raises(WfBase::BaseException);

string activity_key()
raises(WfBase::BaseException);

string activity_name()
raises(WfBase::BaseException);

string process_key()
raises(WfBase::BaseException);

string process_name()
raises(WfBase::BaseException);

string process_mgr_name()
raises(WfBase::BaseException);

string process_mgr_version()
raises(WfBase::BaseException);

};

interface WfEventAuditIterator : WfBase::BaseIterator{
WfEventAudit get_next_object ()

raises (WfBase::BaseException);
WfEventAudit get_previous_object()

raises (WfBase::BaseException);
WfEventAuditSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfEventAuditSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};
Workflow Mgmt. V1.2 WfEventAudit April 2000 2-39

2

2.11.2 Attributes

2.11.2.1 time_stamp

Records the time the status change of the source occurred that triggered the event audit
item to be created, using the TimeBase::UtcT data type defined by the OMG Time
Service.

TimeBase::UtcT time_stamp();

2.11.2.2 event_type

Identifies the specific event type. The following is a set of pre-defined event types;
implementations of the WfM Facility may decide to support additional audit event
types.

Name Type Properties Purpose

time_stamp TimeBase:UtcT readonly Records time of the event.

event_type string readonly Describes the audit event type.

activity_key string readonly Identifies the WfActivity
associated with the event; NULL
for process events.

activity_name string readonly Name of the WfActivity
associated with the event; NULL
for process events.

process_key string readonly Identifies the WfProcess
associated with the event.

process_name string readonly Name of the process associated
with the event

process_mgr_name string readonly Name of the process manager
associated with the event

process_mgr_version string readonly Version of the process manager

Name Purpose

processCreated A WfProcess was created

processStateChanged The state of a WfProcess was changed

processContextChanged The context of a WfProcess was initialized or
changed

activityStateChanged The state of a WfActivity was changed
2-40 Workflow Mgmt. V1.2 WfEventAudit April 2000

2

string event_type() raises(WfBase::BaseException);

2.11.2.3 activity_key and activity_name

If the event is triggered by a status change of a WfActivity, the key and the name of the
activity is recorded with the WfEventAudit. Otherwise, the activity related attributes
contain a NULL value.

The following operations return the key and the name of the WfActivity associated
with the event.

string activity_key() raises(WfBase::BaseException);
string activity_name() raises(WfBase::BaseException);

2.11.2.4 process_key and process_name

The key and the name of the WfProcess associated with the source of an event are
recorded with the WfEventAudit. If the event was triggered by a WfActivity, this is the
containing WfProcess. If it was triggered by a status change of a WfProcess, it is that
process.

The following operations return the key and the name of the WfProcess associated with
the event.

string process_key() raises(WfBase::BaseException);
string process_name() raises(WfBase::BaseException);

2.11.2.5 process_mgr_name and process_mgr_version

The WfProcessMgr associated with the workflow object that triggered the event is
identified via its name and version. If the event was triggered by a status change of an
activity, this is the manager of the process that contains the activity. If it was triggered
by a status change of a process, this is the manager of that process.

string process_mgr_name() raises(WfBase::BaseException);
string process_mgr_version() raises(WfBase::BaseException);

activityContextChanged The context of a WfActivity was changed

activityResultChanged The result of a WfActivity was set

activityAssigmentChanged The status or the resource assignment of a
WfAssignment was initialized or changed

Name Purpose
Workflow Mgmt. V1.2 WfEventAudit April 2000 2-41

2

2.11.3 Relationships

2.11.3.1 source

A WfEventAudit can be associated with the WfExecutionObject that triggered the
event. Event audit items are meant to provide information on the execution history of
workflow object even after the source object has been deleted; in this case, no source
would be associated with the WfEventAudit.

The following operation returns the source of the event, when available; if the source is
not available, a SourceNotAvailable exception is raised.

WfExecutionObject source()
raises(WfBase::BaseException, SourceNotAvailable);

2.11.4 WfEventAuditIterator

The WfEventAuditIterator interface specializes the WfBase::BaseIterator
interface and adds the event audit specific operations according to the Iterator pattern
described in the section on patterns above.

All of the attributes described for the WfEventAudit interface can be used in query
expressions using the Trader Constraint Language.

2.11.5 Publication via Notification Service

A workflow event can be published using the OMG Notification Service (note that
BaseBusinessObject is a CosNotifyComm:StructuredPushSupplier). The
information recorded by a WfEventAudit entity is mapped into the CosNotification ::
StructuredEvent data structure as follows:

• FixedEventHeader: domain_name is set to ’workflow,’ event_type is set to the
event_type defined here, event_name is set to NULL.

• OptionalHeaderFields are used to hold the other attributes defined above. The
attributes are mapped to the PropertySequence (i.e., name-value pair sequence)
of the optional header in the obvious way using the attribute names to identify the
properties and string-type values.

• Specialization of the WfEventAudit entity will use the body fields of the
StructuredEvent; the mapping for the four specializations defined here is given
below.

Name Type Properties Purpose

source WfExecutionObject cardinality: 0..1
readonly

Associates the source of the
event.
2-42 Workflow Mgmt. V1.2 WfEventAudit April 2000

2

2.12 WfCreateProcessEventAudit

This interface specializes WfEventAudit by adding information related to creation of a
WfProcess. If the process is created as a sub-process of another process that is
synchronized with the main process via a WfActivity requester, information on the
requester is recorded. The WfProcess that is being created is recorded as the source of
this event.

The event_type is set to processCreated for this event.

2.12.1 IDL

interface WfCreateProcessEventAudit : WfEventAudit{

string p_activity_key()
raises(WfBase::BaseException);

string p_process_key()
raises(WfBase::BaseException);

string p_process_name()
raises(WfBase::BaseException);

string p_process_mgr_name()
raises(WfBase::BaseException);

string p_process_mgr_version()
raises(WfBase::BaseException);

};

2.12.2 Attributes

2.12.2.1 p_activity_key

If the requester of the newly created workflow process is a WfActivity, the key of that
activity is recorded.

Name Type Properties Purpose

p_activity_key string readonly Identify activity which is the requester
for the newly created process

p_process_key string readonly Identify process that contains parent
activity.

p_process_mgr_name string readonly Identify process manager of the parent
process.

p_process_mgr_version string readonly Identifies the version of the process
manager of the parent process.
Workflow Mgmt. V1.2 WfCreateProcessEventAudit April 2000 2-43

2

string p_activity_key() raises(WfBase::BaseException);

2.12.2.2 p_process_key

If the requester of the newly created workflow process is a WfActivity, the key of the
WfProcess that contains that activity is recorded.

string p_process_key() raises(WfBase::BaseException);

2.12.2.3 p_process_mgr_name and p_process_mgr_version

If the requester of the newly created workflow process is a WfActivity, name and
version of the process manager of the process that contains that activity is recorded.

string p_process_mgr_name() raises(WfBase::BaseException);
string p_process_mgr_version() raises(WfBase::BaseException);

2.12.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent; mapping is straightforward, using the
attribute names to identify the properties and string-type values.

2.13 WfStateEventAudit

This interface specializes WfEventAudit by adding state change information. A state
change event is signaled when a WfExecutionObject changes its state. This covers both
state changes resulting from a change_state operation request and internal state
changes triggered by the execution logic of a WfProcess (e.g., process completes
successfully, activity is suspended because the containing process was suspended, etc.).
The event_type is processStateChanged or activityStateChanged.

2.13.1 IDL

interface WfStateEventAudit : WfEventAudit {

string old_state()
raises(WfBase::BaseException);

string new_state()
raises(WfBase::BaseException);

};
2-44 Workflow Mgmt. V1.2 WfStateEventAudit April 2000

2

2.13.2 Attributes

2.13.2.1 old_state

The state of the execution object before the status change is recorded. The state is
described using ’dot-notation.’ The ’old’ state is recorded for convenience here; it
could be deduced by analyzing the history of the execution object. Recording of the
old state is optional.

string old_state() raises(WfBase::BaseException);

2.13.2.2 new_state

The state of the execution object after the state change is recorded. The state is
described using ’dot-notation.’

string new_state() raises(WfBase::BaseException);

2.13.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent. Mapping is straightforward, using
the attribute names to identify the properties and string-type values.

2.14 WfDataEventAudit

This interface specializes WfEventAudit for data change events. A data change event is
signaled when the context of a WfExecutionObject or the result of a WfActivity is
initialized or changed. The event_type is processContextChanged,
activityContextChanged, or activityResultChanged.

2.14.1 IDL

interface WfDataEventAudit : WfEventAudit {

ProcessData old_data()
raises(WfBase::BaseException);

ProcessData new_data()
raises(WfBase::BaseException);

};

Name Type Properties Purpose

old_state string readonly Records the previous state.

new_state string readonly Records the new state.
Workflow Mgmt. V1.2 WfDataEventAudit April 2000 2-45

2

2.14.2 Attributes

These operations return additional information about the data change event.

2.14.2.1 old_data

Records the context resp. result data of the execution object before the change; only the
data items that were changed are reported. This event also records the initialization of
the context of a WfProcess resp. of the result of a WfActivity; in these cases, old_data
is NULL.

The ’old’ data are recorded for convenience here; they could be deduced by analyzing
the history of the execution object. Support for recording of old data is optional.

ProcessData old_data() raises(WfBase::BaseException);

2.14.2.2 new_data

Records the context resp. result data of the execution object after the change; only the
data items that were changed are reported. This event also records the initialization of
the context of a WfProcess resp. of the result of a WfActivity; in these cases, new_data
contains the initial data.

ProcessData new_data() raises(WfBase::BaseException);

2.14.3 Publication via Notification Service

The information recorded in the new_data attribute by this specialization of the
WfEventAudit are mapped into the ’remainder_of_body’ part of the StructuredEvent.

2.15 WfAssignmentEventAudit

This interface specializes WfEventAudit for assignment change events. The event
records resource and assignment status before and after the change. The event_type
is activityAssignmentChanged.

An assignment change event is signaled when assignments for an activity are created
(in this case the old_... data is NULL), when the status of an assignment is changed, or
when an existing assignment is reassigned to another resource. The WfActivity
associated with the assignment is reported as the source of the event.

Name Type Properties Purpose

old_data ProcessData readonly Identifies the previous data used.

new_data ProcessData readonly Records the new data to be used.
2-46 Workflow Mgmt. V1.2 WfAssignmentEventAudit April 2000

2

2.15.1 IDL

interface WfAssignmentEventAudit : WfEventAudit{

string old_resource_key()
raises(WfBase::BaseException);

string old_resource_name()
raises(WfBase::BaseException);

string new_resource_key()
raises(WfBase::BaseException);

string new_resource_name()
raises(WfBase::BaseException);

};

2.15.2 Attributes

2.15.2.1 old_resource_key and old_resource_name

The status of the assignment before the change may be recorded. This event also
covers creation of a new assignment; in this case, the ’before event’ information is
NULL.

string old_resource_key() raises(WfBase::BaseException);
string old_resource_name() raises(WfBase::BaseException);

2.15.2.2 new_resource_key and new_resource_name

The status of the assignment after the change is recorded.

string new_resource_key() raises(WfBase::BaseException);
string new_resource_name() raises(WfBase::BaseException);

2.15.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent. Mapping is straightforward, using the
attribute names to identify the properties and string-type values.

Name Type Properties Purpose

old_resource_key string readonly Identifies resource associated with
assignment before the change.

old_resource_name string readonly Name of the associated resource.

new_resource_key string readonly Identifies resource associated with
assignment after the change.

new_resource_name string readonly Name of the associated resource.
Workflow Mgmt. V1.2 WfAssignmentEventAudit April 2000 2-47

2

2.16 The WfBase Module

The WfBase module defines a set of base interfaces for the workflow interfaces. This
’base framework’ is separated from the core specification to enable adaptation of this
specification to the results of the ongoing work in OMG on the definition of a
’Business Component Framework’.

#ifndef _WF_BASE_
#define _WF_BASE_
#include <ord.idl>
#pragma prefix "omg.org"
module WfBase {

// Data Types

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;

struct NameValue{
string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;

typedef sequence <string> NameSequence;

struct BaseError {
long exception_code;
string exception_source;
any exception_object;
string exception_reason;
any exception_data;

};
typedef sequence <BaseError> BaseErrorSequence;

// Exceptions

exception BaseException {
BaseErrorSequence errors;

};

exception NameMismatch{};
exception InvalidQuery{};
exception GrammarNotSupported{};

// Interfaces
2-48 Workflow Mgmt. V1.2 The WfBase Module April 2000

2

interface BaseBusinessObject : {};

};
#endif

2.16.1 Data Types

2.16.1.1 NameValueInfo

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;

The NameValueInfo structure provides information on the structure of a name-value
pair. The attribute_name attribute provides the name of the pair, the type_name
attribute identifies the (IDL) type of the value.

2.16.1.2 NameValue

struct NameValue{
string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;

The NameValue structure is used to handle name-value pair lists; the the_name
attribute holds the string name of the item, the the_value attribute is a CORBA::Any
and holds the value of the item.

2.16.1.3 NameSequence

typedef sequence <string> NameSequence;

Used to handle lists of names.

2.16.1.4 Base Error

struct BaseError {
long exception_code;
string exception_source;
any exception_object;
string exception_reason;

 string exception_data;
};

typedef sequence <BaseError> BaseErrorSequence;
Workflow Mgmt. V1.2 The WfBase Module April 2000 2-49

2

The BaseError structure is used to hold information on an application error. The
exception_source is a printable description of the source of the exception. The
exception_object is a pass-by-value object or an object reference of the object that
generated the exception. The exception_code is an identifier associated with the
source type. The exception_reason is a textual string containing a description of the
exception and should correspond to the code.

2.16.2 Exceptions

2.16.2.1 BaseException

exception BaseException {
BaseErrorSequence errors;

};

BaseException is an exception that holds a sequence of BaseError structures -
essentially a sequence of exceptions. The sequence is a push-down list so that the most
recently occurring exception is first. This allows multiple exceptions to be returned so
that multiple problems may be addressed, as where a user has a number of data entry
errors or where consequential errors are recorded as a result of a low-level exception.

The BaseException is returned by all operations defined in this specification to
support implementations of the WfM Facility to raise implementation specific
exceptions.

2.16.2.2 QueryExceptions

exception NameMismatch{};
exception InvalidQuery{};
exception GrammarNotSupported{};

• The NameMismatch exception is raised when the NameValue list provided as
input for a set_names_in_expression operation on a BaseIterator has names
that are not recognized.

• The InvalidQuery exception is raised when an invalid query expression is
provided as input for a set_query_expression operations on a BaseIterator.

• The GrammarNotSuported exception is raised when the input parameter of the
set_query_grammar on a BaseIterator specifies a query grammar that is not
supported by the iterator.
2-50 Workflow Mgmt. V1.2 The WfBase Module April 2000

2

2.17 Base Business Object Interfaces

2.17.1 BaseBusinessObject

A BaseBusinessObject is the base interface for all business object interfaces. It
serves as a placeholder for the definition of a business component base entity; it is
assumed that a future OMG initiative will provide a detailed specification of a base
business component interface which will replace the placeholder used in this
specification.

interface BaseBusinessObject : {};

2.18 BaseIterator

The BaseIterator interface is used to navigate relationships of cardinality greater than
1 in this specification. It supports specification of a filter using parametrized query
expressions.

2.18.1 IDL

interface BaseIterator {

string query_expression()
raises(BaseException);

void set_query_expression(
in string query)
raises(BaseException, InvalidQuery);

NameValueSequence names_in_expression()
raises(BaseException);

void set_names_in_expression(
in NameValueSequence query)
raises(BaseException, NameMismatch);

string query_grammar()
raises(BaseException);

void set_query_grammar(
in string query_grammmar)
raises(BaseException, GrammarNotSupported);

long how_many ()
raises(BaseException);

void goto_start()
raises(BaseException);

void goto_end()
raises(BaseException);

};
Workflow Mgmt. V1.2 Base Business Object Interfaces April 2000 2-51

2

2.18.2 Attributes

2.18.2.1 query_expression

Defines the query expression used to filter the contents of the iterator.

2.18.2.2 names_in_expression

Defines a set of parameters that used to substitute variables in the
query_expression. The parameters are defined by name-value pairs, where the name
identifies the variable and the value represents the variable value to be substituted.

2.18.2.3 query_grammar

The query_grammar attribute identifies the query grammar used to define the query
expression. The Constraint Language defined by the OMG Object Trading Service is
used as the mandatory query grammar in this specification; implementations of the
WfM Facility may support additional query grammars. The Trader Constraint
Language is identified via the string TCL.

For each workflow object, the set of attributes that can be used as property identifiers
in queries on sets the specific object type is identified in the corresponding sections
above.

2.18.3 Operations

how_many

Returns the number of elements in the collection.

goto_start

Positions the iterator such that the next “next” retrieval will retrieve the first element in
the collection.

goto_end

Positions the iterator such that the next “previous” retrieval will retrieve the last
element in the collection.

2.19 Interface Usage Example

Figure 2-3 shows one possible set of interactions that illustrate the enactment of a
process from creation through completion.
2-52 Workflow Mgmt. V1.2 Interface Usage Example April 2000

2

Figure 2-3 Process Creation to Completion Object Interaction Diagram

PM1 : W f Proc es s MgrR 1 : W f R eques ter P1 : W f Proc es s A1 : W f Ac t iv ity R x : W fR es ourc e Ax : W f As s ignm ent

1: c reate_proc es s(W f R eques ter) 2: crea te

3: get_c ontex t_i nfo

4: get_result_ inf o

8: in terna l_c reat e

9: s et_contex t

12: int erna l_s tar t

19: int erna l_c om plete

13: ac cept

14: s e t_ status (ac c epted)

15: c reat e_re la t ions hip

17: c om plete

20: rec iev e_ev ent(c om plete)

21: get_ re sult

16: s et_re sult

18 : i nt erna l_ s et_resul t

5 :

6 : s et_contex t

7: s tart

10: int erna l_cr eate (p otent ia l)

11: c reat e_re la t ions hip
Workflow Mgmt. V1.2 Interface Usage Example April 2000 2-53

2

In this example, a WfProcess is created by an application implementing the
WfRequester interface; an appropriate WfProcessMgr is identified and the
WfProcess is created using the create_process operation on this process manager.
The process manager creates a new WfProcess and returns a reference to the requester.

The requester retrieves information about the signature of the process using the
get_context_info and get_result_info operations on the process manager and uses
the information on the structure of the process context to initialize the process context
using the set_context operation on the WfProcess.

Next, the requester initiates enactment of the process using the start operation of the
WfProcess. As a result, the process determines the activities to be activated (in our
example it is only one, there might be more), creates a WfActivity that represents the
first step in the process and sets the context of that activity using the data that were
provided during initialization of the process and potentially additional information.

In this scenario, the WfActivity then establishes an association with a WfResource that
can potentially perform the work request represented by the activity. The association is
established by creating a WfAssignment, which establishes an association with an
appropriate resource using internal knowledge about resource selection. Note that it
could use, for example, a resource selection WfProcess to perform this task; the
resource selection mechanism is not subject of this specification. Note also that instead
of assigning the activity to a resource, the activity could also be realized by another
workflow process which essentially performs the same operations that are performed
by the resource in our scenario.

Next, the process starts the activity and the potential assignment is changed into an
’actual’ one because the resource decided to accept the assignment (and changed the
state of the assignment accordingly).

Then, the resource (or some application) performs the work request represented by the
activity, returns the result to the activity and invokes the complete operation on the
activity to signal that the task has been completed.

The activity informs the process about the status change and passes the result on for
further processing by the process. The process could use the information to determine
the next activities to be activated. In the example, however, the process decides that the
work is done and signals completion to its requester using the result of the activity to
determine the overall process result.

The requester receives the process completion notification and retrieves the process
result using the get_result operation on the process.
2-54 Workflow Mgmt. V1.2 Interface Usage Example April 2000

References A
A.1 List of References

The following is a list of the OMG and WfMC specifications used in this specification;
the WfMC documents can be found at http://www.wfmc.org/wfmc/.

[1] The Workflow Reference Model, Version 1.1, November 1994, WfMC-TC-1003

[2] Terminology & Glossary, Version 2.0, June 1996, WfMC-TC-1011

[3] Workflow Client Application Programming Interface (WAPI) Specification, Version
1.2, October 1996, WfMC-TC-1009

[4] Workflow Interoperability - Abstract Specification, Version 1.0, October 1996,
WFMC-TC-1012

[5] Process Definition Interchange, WfMC TC-1016

[6] Audit Data Specification, WfMC TC-1015

[7] Workflow Facility Specification, Draft WfMC TC-2101

[8] OMG Event Service, in CORBAservices: Common Object Services Specification,
chapter 4

[9] OMG Life Cycle Service, in CORBAservices: Common Object Services
Specification, chapter 6

[10] OMG Naming Service, in CORBAservices: Common Object Services Specification,
chapter 3

[11] OMG Property Service, in CORBAservices: Common Object Services Specification,
chapter 13

[12] OMG Security Service, in CORBAservices: Common Object Services Specification,
chapter 15
Workflow Management V1.2 April 2000 A-1

A

[13] OMG Time Service, in CORBAservices: Common Object Services Specification,
chapter 14

[14] OMG Trading Object Service, in CORBAservices: Common Object Services
Specification, chapter 16
A-2 Workflow Management V1.2 April 2000

Consolidated IDL B
 B.1 Complete IDL Definitions

The following lists the complete IDL for the proposed Workflow Management Facility.

B.1.1 Consolidated IDL

#ifndef _WF_BASE_
#define _WF_BASE_
#include <orb.idl>
#pragma prefix "omg.org"

module WfBase {

// DataTypes

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;

struct NameValue{
string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;

typedef sequence <string> NameSequence;

struct BaseError {
long exception_code;
Workflow Management V1.2 April 2000 B-1

B

string exception_source;
any exception_object;
string exception_reason;

};
typedef sequence <BaseError> BaseErrorSequence;

// Exceptions

exception BaseException {
BaseErrorSequence errors;

};
exception NameMismatch{};
exception InvalidQuery{};
exception GrammarNotSupported{};

// Interfaces

interface BaseBusinessObject {};

interface BaseIterator {

string query_expression()
raises(BaseException);

void set_query_expression(
in string query)
raises(BaseException, InvalidQuery);

NameValueSequence names_in_expression()
raises(BaseException);

void set_names_in_expression(
in NameValueSequence query)
raises(BaseException, NameMismatch);

string query_grammar()
raises(BaseException);

void set_query_grammar(
in string query_grammmar)
raises(BaseException, GrammarNotSupported);

long how_many ()
raises(BaseException);

void goto_start()
raises(BaseException);

void goto_end()
raises(BaseException);

};

};
#endif
B-2 Workflow Management V1.2 April 2000

B

#ifndef _WORKFLOW_MODEL_
#define _WORKFLOW_MODEL_
#include <WfBase.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"

module WorkflowModel{

// Forward declarations
interface WfExecutionObject;
interface WfProcess;
interface WfProcessIterator;
interface WfRequester;
interface WfProcessMgr;
interface WfActivity;
interface WfActivityIterator;
interface WfResource;
interface WfAssignment;
interface WfAssignmentIterator;
interface WfEventAudit;
interface WfEventAuditIterator;
interface WfCreateProcessEventAudit;
interface WfStateEventAudit;
interface WfAssignmentEventAudit;

// DataTypes
typedef sequence<WfProcess> WfProcessSequence;
typedef sequence<WfActivity> WfActivitySequence;
typedef sequence<WfAssignment> WfAssignmentSequence;
typedef sequence<WfEventAudit> WfEventAuditSequence;
typedef WfBase::NameValueInfoSequence ProcessDataInfo;
typedef WfBase::NameValueSequence ProcessData;

enum workflow_stateType{ open, closed };
enum while_openType{not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };
enum process_mgr_stateType{enabled, disabled };

// Exceptions
exception InvalidPerformer{};
exception InvalidState{};
exception InvalidData{};
exception TransitionNotAllowed{};
exception CannotResume{};
exception CannotSuspend{};
exception AlreadySuspended{};
exception CannotStop{};
exception NotRunning{};
exception HistoryNotAvailable{};
Workflow Management V1.2 April 2000 B-3

B

exception NotEnabled{};
exception AlreadyRunning{};
exception CannotStart{};
exception ResultNotAvailable{};
exception CannotComplete{};
exception NotAssigned{};
exception SourceNotAvailable{};
exception RequesterRequired{};
exception NotSuspended{};
exception CannotChangeRequester{};
exception InvalidResource{};
exception UpdateNotAllowed{};
exception InvalidRequester{};

// Interfaces
interface WfRequester : WfBase::BaseBusinessObject{

long how_many_performer()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_performer()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_performer(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

void receive_event(
in WfEventAudit event)
raises (WfBase::BaseException, InvalidPerformer);

};

interface WfExecutionObject : WfBase::BaseBusinessObject {
workflow_stateType workflow_state()

raises (WfBase::BaseException);
while_openType while_open()

raises (WfBase::BaseException);
why_not_runningType why_not_running()

raises (WfBase::BaseException);
how_closedType how_closed()

raises (WfBase::BaseException);
WfBase::NameSequence valid_states()

raises (WfBase::BaseException);
string state()

raises (WfBase::BaseException);
void change_state(

in string new_state)
raises (WfBase::BaseException, InvalidState,

TransitionNotAllowed);
string name()
B-4 Workflow Management V1.2 April 2000

B

raises(WfBase::BaseException);
void set_name(in string new_value)

raises (WfBase::BaseException);
string key()

raises(WfBase::BaseException);
string description()

raises(WfBase::BaseException);
void set_description(in string new_value)

raises (WfBase::BaseException);
ProcessData process_context()

raises(WfBase::BaseException);
void set_process_context(in ProcessData new_value)

raises (WfBase::BaseException, InvalidData,
UpdateNotAllowed);

unsigned short priority()
raises(WfBase::BaseException);

void set_priority(in unsigned short new_value)
raises (WfBase::BaseException);

void resume()
raises (WfBase::BaseException, CannotResume,

NotRunning, NotSuspended);
void suspend()

raises (WfBase::BaseException, CannotSuspend,
NotRunning, AlreadySuspended);

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

long how_many_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history(
 in string query,

 in WfBase::NameValueSequence names_in_query)
 raises(WfBase::BaseException, HistoryNotAvailable);

 WfEventAuditSequence get_sequence_history(
 in long max_number)
 raises(WfBase::BaseException, HistoryNotAvailable);

boolean is_member_of_history(in WfExecutionObject member)
raises(WfBase::BaseException);

TimeBase::UtcT last_state_time()
raises(WfBase::BaseException);

};

interface WfProcessMgr : WfBase::BaseBusinessObject {
long how_many_process()

raises (WfBase::BaseException);
WfProcessIterator get_iterator_process()

raises (WfBase::BaseException);
WfProcessSequence get_sequence_process(

in long max_number)
Workflow Management V1.2 April 2000 B-5

B

raises (WfBase::BaseException);
boolean is_member_of_process(

in WfProcess member)
raises (WfBase::BaseException);

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
in process_mgr_stateType new_state)
raises(WfBase::BaseException, TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

string description()
raises(WfBase::BaseException);

string category()
raises(WfBase::BaseException);

string version()
raises(WfBase::BaseException);

ProcessDataInfo context_signature()
raises (WfBase::BaseException);

ProcessDataInfo result_signature()
raises (WfBase::BaseException);

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled,

InvaildRequester, RequesterRequired);
};

interface WfProcess : WfExecutionObject {
WfRequester requester()

raises(WfBase::BaseException);
void set_requester(in WfRequester new_value)

raises (WfBase::BaseException, CannotChangeRequester);
long how_many_step()

raises (WfBase::BaseException);
WfActivityIterator get_iterator_step()

raises (WfBase::BaseException);
WfActivitySequence get_sequence_step(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

WfProcessMgr manager()
raises(WfBase::BaseException);

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

void start()
raises (WfBase::BaseException, CannotStart,
AlreadyRunning);

WfActivityIterator get_activities_in_state(
 in string state)
B-6 Workflow Management V1.2 April 2000

B

raises(WfBase::BaseException, InvalidState);
};

interface WfProcessIterator : WfBase::BaseIterator {
WfProcess get_next_object ()

raises (WfBase::BaseException);
WfProcess get_previous_object()

raises (WfBase::BaseException);
WfProcessSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfProcessSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfActivity : WfExecutionObject {
long how_many_assignment()

raises (WfBase::BaseException);
WfAssignmentIterator get_iterator_assignment()

raises (WfBase::BaseException);
WfAssignmentSequence get_sequence_assignment(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)
raises (WfBase::BaseException);

WfProcess container()
raises(WfBase::BaseException);

ProcessData result()
raises(WfBase::BaseException, ResultNotAvailable);

void set_result(
in ProcessData result)
raises (WfBase::BaseException, InvalidData);

void complete()
raises (WfBase::BaseException, CannotComplete);

};

interface WfActivityIterator : WfBase::BaseIterator{
WfActivity get_next_object ()

raises (WfBase::BaseException);
WfActivity get_previous_object()

raises (WfBase::BaseException);
WfActivitySequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfActivitySequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};
Workflow Management V1.2 April 2000 B-7

B

interface WfAssignment : WfBase::BaseBusinessObject{
WfActivity activity()

raises(WfBase::BaseException);
WfResource assignee()

raises(WfBase::BaseException);
void set_assignee(

in WfResource new_value)
raises (WfBase::BaseException, InvalidResource);

};

interface WfAssignmentIterator : WfBase::BaseIterator{
WfAssignment get_next_object ()

raises (WfBase::BaseException);
WfAssignment get_previous_object()

raises (WfBase::BaseException);
WfAssignmentSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfAssignmentSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfResource : WfBase::BaseBusinessObject{
long how_many_work_item()

raises (WfBase::BaseException);
WfAssignmentIterator get_iterator_work_item()

raises (WfBase::BaseException);
WfAssignmentSequence get_sequence_work_item(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

string resource_key()
raises(WfBase::BaseException);

string resource_name()
raises(WfBase::BaseException);

void release(
in WfAssignment from_assigment,
in string release_info)
raises (WfBase::BaseException, NotAssigned);

};

interface WfEventAudit : WfBase::BaseBusinessObject{
WfExecutionObject source()

raises(WfBase::BaseException, SourceNotAvailable);
TimeBase::UtcT time_stamp()

raises(WfBase::BaseException);
string event_type()

raises(WfBase::BaseException);
B-8 Workflow Management V1.2 April 2000

B

string activity_key()
raises(WfBase::BaseException);

string activity_name()
raises(WfBase::BaseException);

string process_key()
raises(WfBase::BaseException);

string process_name()
raises(WfBase::BaseException);

string process_mgr_name()
raises(WfBase::BaseException);

string process_mgr_version()
raises(WfBase::BaseException);

};

interface WfEventAuditIterator : WfBase::BaseIterator{
WfEventAudit get_next_object ()

raises (WfBase::BaseException);
WfEventAudit get_previous_object()

raises (WfBase::BaseException);
WfEventAuditSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfEventAuditSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfCreateProcessEventAudit : WfEventAudit{
string p_activity_key()

raises(WfBase::BaseException);
string p_process_key()

raises(WfBase::BaseException);
string p_process_name()

raises(WfBase::BaseException);
string p_process_mgr_name()

raises(WfBase::BaseException);
string p_process_mgr_version()

raises(WfBase::BaseException);
};

interface WfStateEventAudit : WfEventAudit {
string old_state()

raises(WfBase::BaseException);
string new_state()

raises(WfBase::BaseException);
};

interface WfDataEventAudit : WfEventAudit {
ProcessData old_data()

raises(WfBase::BaseException);
ProcessData new_data()
Workflow Management V1.2 April 2000 B-9

B

raises(WfBase::BaseException);
};

interface WfAssignmentEventAudit : WfEventAudit{
string old_resource_key()

raises(WfBase::BaseException);
string old_resource_name()

raises(WfBase::BaseException);
string new_resource_key()

raises(WfBase::BaseException);
string new_resource_name()

raises(WfBase::BaseException);
};

};
#endif
B-10 Workflow Management V1.2 April 2000

CDL C
The following describes the workflow model in terms of the Component Definition
Language (CDL) that is part of the proposed Business Object Component Architecture
(Boca). The specification is included to illustrate the relationship of this specification
with the Boca; it is not a normative part of the specification.

C.1 Consolidated CDL

#include <BocaFramework.cdl>
collection_kind Manager {};
#define ReducedIdl

module WorkflowModel {
 //Forward references
 business_object WfExecutionObject;
 process WfProcess;
 business_object WfActivity;
 business_event WfEventAudit;

 struct DataInfoType {
 string attribute_name;
 string type_name;
 };

 typedef sequence<DataInfoType> ProcessDataInfo;

 struct NameValue {
 string aname;
 any avalue;
 };
Workflow Management V1.2 April 2000 C-1

C

 typedef sequence<NameValue> ProcessData;

 //Forward references
 business_object WfProcessMgr;
 business_object WfExecutionObject;
 process WfProcess;
 business_object WfActivity;
 business_object WfRequester;
 business_event WfEventAudit;
 business_object WfResource;
 entity WfAssignment;

 [is_abstract]
 business_object WfRequester {
 [is_read_only]
 relationship performer Many WfProcess inverse requester;
 // Operations invoked from related workflows
 void receive_event(in WfEventAudit event);
 };

 [is_abstract]
 business_object WfProcessMgr {
 exception NotEnabled {};

 [is_read_only]
 relationship process Aggregates WfProcess inverse manager;

 WfProcess create_process (in WfRequester requester)
raises (NotEnabled);

 [is_read_only] attribute boolean enabled;
 [is_read_only] attribute string name;
 [is_read_only] attribute string description;
 [is_read_only] attribute string category;
 [is_read_only] attribute string version;

 ProcessDataInfo get_context_signature();
 ProcessDataInfo get_result_signature();
 };

 [is_abstract, keys={key}]
 business_object WfExecutionObject {
 exception CannotSuspend {};
 exception AlreadySuspended {};
 exception CannotStop {};
 exception NotRunning {};
 exception CannotResume {};
 exception InvalidState {};

 // Workflow state model
 state_set workflow_state { open, closed };
C-2 Workflow Management V1.2 April 2000

C

 during (open) {
 state_set while_open { not_running, running };
 during (not_running) {
 state_set why_not_running { not_started, suspended };
 during (suspended) {
 signal resume()raises (CannotResume);
 };
 };
 during (running) {
 signal suspend() raises (CannotSuspend, CurrentlySuspended);
 };
 signal terminate() raises (CannotStop, NotRunning);
 signal abort() raises (CannotStop, NotRunning);
 };
 during (closed) {
 state_set how_closed {completed, terminated, aborted };
 };

 // Attributes
 attribute string name;
 [is_read_only] attribute string key;
 attribute string description;
 attribute ProcessData process_context;
 //[annotation="Lower numbers have greater priority"]
 [constraint=((priority>=1) && (priority<=5))]
 attribute unsigned short priority = 3;
 [is_read_only] attribute valid_states;

 [is_read_only]
 relationship history Aggregates WfEventAudit inverse source;

 // Dynamic state transitions
 [is_query]
 string get_current_state();
 void change_state(in string new_state) raises (InvalidState);

 // Rules
 apply StateTransitionRule terminate_trans {
 trigger = {terminate};
 source = open;
 target = terminated;
 };
 apply StateTransitionRule abort_trans {
 trigger = {abort};
 source = open;
 target = aborted;
 };
 apply StateTransitionRule suspend_trans {
 trigger = {suspend};
Workflow Management V1.2 Consolidated CDL April 2000 C-3

C

 source = running;
 target = suspended;
 };
 apply StateTransitionRule resume_trans {
 trigger = {resume};
 source = suspended;
 target = running;
 };
 };

 [is_abstract]
 process WfProcess : WfExecutionObject {
 exception CannotStart {};
 exception AlreadyRunning {};
 exception ResultNotAvailable {};

 [INITIALIZED]
 relationship requester References 1..1 WfRequester inverse performer;
 [is_read_only]
 relationship step Aggregates WfActivity inverse container;
 relationship manager IsPartOf WfProcessMgr inverse process;

 signal start() raises(CannotStart,AlreadyRunning);

 ProcessData get_result() raises(ResultNotAvailable);

 // Rules
 apply StateTransitionRule start_trans {
 trigger = {start};
 source = not_running;
 target = running;
 };
 };

 [is_abstract]
 business_object WfActivity : WfExecutionObject, WfRequester {

 exception CannotComplete {};

 [is_read_only]
 relationship assignment Aggregates WfAssignment inverse activity;
 [is_read_only]
 relationship container IsPartOf WfProcess inverse step;

 void set_result(in NameValues result);

 signal complete() raises(CannotComplete);

 apply StateTransitionRule complete_trans {
 trigger = {complete};
 source = open;
 target = completed;
C-4 Workflow Management V1.2 April 2000

C

 };
 };

 // treat status as a state rather than enum
 enum /*state_set*/ assignment_state { potential, accepted };

 [keys={activity, assignee}, is_abstract]
 entity WfAssignment {
 exception InvalidResource {};

 [is_read_only, INITIALIZED]
 relationship activity IsPartOf WfActivity inverse assignment;
 relationship assignee References 1..1 WfResource inverse work_item;
 attribute assignment_state assignment_state;

 // create new relationship to a different resource
 void reassign (in WfResource new_resource,
 in AssignmentStatus new_status) raises(InvalidResource);
 };

 typedef sequence<WfAssignment> WfAssignmentSequence;

 [keys={resource_key},is_abstract]
 business_object WfResource {
 [is_read_only]
 relationship work_item Many WfAssignment inverse assignee;

 attribute string resource_key;
 attribute string resource_name;

 // Inform resource that the workflow no longer needs it
 void release(in WfAssignment from_assigment
 in string release_info);
 };

 [FROZEN, is_abstract]
 business_event WfEventAudit {
 [is_read_only] relationship source IsPartOf WfExecutionObject;
 readonly attribute TimeBase::UtcT timestamp;
 readonly attribute string event_type;
 readonly attribute string activity_key;
 readonly attribute string activity_name ;
 readonly attribute string process_key ;
 readonly attribute string process_mgr_name;
 readonly attribute string process_mgr_version;
 readonly attribute string domain_id; // BSD of source
 };

 [is_abstract]
 business_event WfCreateProcessEventAudit : WfEventAudit {
 readonly attribute string activity_key;
Workflow Management V1.2 Consolidated CDL April 2000 C-5

C

 readonly attribute string process_key ;
 readonly attribute string process_mgr_name;
 readonly attribute string process_mgr_version;
 readonly attribute string domain_id; // BSD of parent
 };

 [is_abstract]
 business_event WfStateEventAudit : WfEventAudit {
 readonly attribute string old_state;
 readonly attribute string new_state;
 };

 [is_abstract]
 business_event WfDataEventAudit : WfEventAudit {
 readonly attribute ProcessData old_data;
 readonly attribute ProcessData new_data;
 };

 [is_abstract]
 business_event WfAssignmentEventAudit : WfEventAudit {

readonly attribute string old_assignment_state;
readonly attribute string old_resource_key;
readonly attribute string old_resource_name;
readonly attribute string new_assignment_state;
readonly attribute string new_resource_key;
readonly attribute string new_resource_name;

 };
}; // End - Workflow
C-6 Workflow Management V1.2 April 2000

Conformance D
D.1 Summary of Optional versus Mandatory Interfaces

All interfaces, at each compliance level, are mandatory.

D.2 Proposed Compliance Points

All implementations of this specification require that interfaces be implemented in a
CORBA environment and can be invoked through the Internet Inter-Operability
Protocol (IIOP). Operations are to be invoked in a transactional context and the effects
of those operations will be made persistent or rolled back through commit or rollback
of associated transactional resources.

The levels of compliance described below recognize that legacy or otherwise
incompatible systems may provide lesser levels of compliance which still provide
value.

Base Level

Provides interfaces for requesting and obtaining status of a process.

• Provides the WfProcessMgr and WfProcess interfaces

• Responds to the WfRequester interface.

Process Level

Supports enactment of non-nested processes. The interfaces to be supported are:

• WfProcessMgr, Wfprocess, WfActivity, WfAssignment, WfResource

Master process

Invokes other processes through the requester-process protocol.
Workflow Management V1.2 April 2000 D-1

D

• Provides activities with the WfRequester interface.

• Can invoke external processes through the WfProcessMgr and WfProcess
interfaces.

Full compliance

All interfaces defined in this specification are supported.
D-2 Workflow Management V1.2 April 2000

Index
A
Attributes 2-9

B
Base Business Object Interfaces 2-51

BaseBusinessObject 2-51
BaseIterator 2-51
IDL 2-51
names_in_expression 2-52
Operations 2-52
query_expression 2-52
query_grammar 2-52

Build-time Functions 1-4

C
CORBA

contributors 3
documentation set 2

D
Data Structures 2-7
Distribution & System Interfaces 1-5

E
Exceptions 2-7
Extended state access 2-18

H
how_closed state set 2-18

I
Interface Usage Example 2-52

O
Object Management Group 1

address of 3

P
Patterns 2-9
Process Data 2-7
Process Enactment 2-5
Process Monitoring 2-5
process_context 2-15

R
receive_event 2-11
Relationships 2-10
Run-time Activity Interactions 1-4
Run-time Process Control Functions 1-4

S
State sets 2-7

W
WfActivity 2-30

Activity Context and Result 2-31
Activity Realizations 2-31
Activity States 2-30
Activity-Process Interaction 2-32
Attributes 2-33
IDL 2-32
Operations 2-34
Process Monitoring 2-32

Relationships 2-33
Resource assignment 2-31
WfActivityIterator 2-34

WfAssignment 2-34
IDL 2-35
Relationships 2-35
WfAssignmentIterator 2-36

WfAssignmentEventAudit 2-46
IDL 2-47
new_resouce_key and new_resource_nam e2-47
old_resource_key and old_resource_name 2-47
Publication via Notification Service 2-47

WfBase Module 2-48
Base Error 2-49
BaseException 2-50
NameSequence 2-49
NameValue 2-49
NameValueInfo 2-49
Query Exceptions 2-50

WfCreateProcessEventAudit 2-43
IDL 2-43
p_activity_key 2-43
p_process_key 2-44
p_process_mgr_name and p_process_mgr_version2-44
Publication via Notification Service 2-44

WfDataEventAudit 2-45
IDL 2-45
new_data 2-46
old_data 2-46
Publication via Notification Service 2-46

WfEventAudit 2-38
activity_key and activity_name 2-41
event_type 2-40
IDL 2-39
process_key and process_name 2-41
process_mgr_name and process_mgr_versio n2-41
Publication via Notification Service 2-42
Relationships 2-42
time_stamp 2-40
WfEventAuditIterator 2-42

WfExecutionObject 2-12
abort 2-20
Attributes 2-14
change_state 2-21
description 2-14
history 2-19
IDL 2-12
key 2-14
last_state_time 2-16
name 2-14
priority 2-15
Relationships 2-19
resume 2-19
States 2-16
suspend 2-20
terminate 2-20

WfProcess
Attributes 2-28
IDL 2-27
Operations 2-29
Process context and results 2-25
Workflow Management v1.2 April 2000 Index-1

Index
Process Monitoring and Control 2-26
Process Requester 2-26
Process States 2-25
Process Steps 2-26
Relationships 2-28
WfProcess usage scenarios 2-27

WfProcessIterator 2-30
WfProcessMgr 2-21

Attributes 2-22
category 2-23
create_process 2-25
description 2-23
IDL 2-21
name 2-23
process 2-24
Process signature informatio n2-23
process_mgr_state state set 2-24
Relationships 2-24
version 2-23

WfRequester 2-10
IDL 2-10
Relationships 2-11

WfResource 2-36
Attributes 2-37
IDL 2-36
Operations 2-38
resource_key 2-37
resource_name 2-37
work_item 2-38

WfStateEventAudit 2-44
IDL 2-44
new_state 2-45
old_state 2-45
Publication via Notification Servic e2-45

while_open state set 2-17
why_not_running state set 2-17
Workflow Interfaces 2-3
Workflow Management Coalition (WfMC) 1-1

Workflow 1-2
Workflow Management Systems 1-3

Workflow object sequences 2-7
Workflow Reference Model 1-5
workflow_state state set 2-16
WorkflowModel Module 2-6
Index-2 Workflow Management v1.2 April 2000

	Contents
	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Overview
	1.1 Workflow Management Coalition (WfMC)
	1.2 Introduction to Workflow Management
	1.2.1 Workflow
	1.2.2 Workflow Management Systems
	1.2.3 The Workflow Reference Model

	Workflow Management Interfaces
	2.1 Chapter Overview
	2.2 Interfaces Overview
	2.2.1 Workflow Interfaces
	2.2.2 Process Enactment
	2.2.3 Process Monitoring

	2.3 WorkflowModel Module
	2.3.1 Data Structures
	2.3.2 Exceptions
	2.3.3 Patterns

	2.4 WfRequester
	2.4.1 IDL
	2.4.2 Relationships
	2.4.3 Operations

	2.5 WfExecutionObject
	2.5.1 IDL
	2.5.2 Attributes
	2.5.3 States
	2.5.4 Relationships
	2.5.5 Operations

	2.6 WfProcessMgr
	2.6.1 IDL
	2.6.2 Attributes
	2.6.3 Relationships
	2.6.4 States
	2.6.5 Operations

	2.7 WfProcess
	2.7.1 Process States
	2.7.2 Process context and results
	2.7.3 IDL
	2.7.4 Attributes
	2.7.5 Relationships
	2.7.6 Operations
	2.7.7 WfProcessIterator

	2.8 WfActivity
	2.8.1 Activity States
	2.8.2 Activity Context and Result
	2.8.3 Resource assignment
	2.8.4 Activity Realizations
	2.8.5 Process Monitoring
	2.8.6 Activity - Process Interaction
	2.8.7 IDL
	2.8.8 Attributes
	2.8.9 Relationships
	2.8.10 Operations
	2.8.11 WfActivityIterator

	2.9 WfAssignment
	2.9.1 IDL
	2.9.2 Relationships
	2.9.3 WfAssignmentIterator

	2.10 WfResource
	2.10.1 IDL
	2.10.2 Attributes
	2.10.3 Relationships
	2.10.4 Operations

	2.11 WfEventAudit
	2.11.1 IDL
	2.11.2 Attributes
	2.11.3 Relationships
	2.11.4 WfEventAuditIterator
	2.11.5 Publication via Notification Service

	2.12 WfCreateProcessEventAudit
	2.12.1 IDL
	2.12.2 Attributes
	2.12.3 Publication via Notification Service

	2.13 WfStateEventAudit
	2.13.1 IDL
	2.13.2 Attributes
	2.13.3 Publication via Notification Service

	2.14 WfDataEventAudit
	2.14.1 IDL
	2.14.2 Attributes
	2.14.3 Publication via Notification Service

	2.15 WfAssignmentEventAudit
	2.15.1 IDL
	2.15.2 Attributes
	2.15.3 Publication via Notification Service

	2.16 The WfBase Module
	2.16.1 Data Types
	2.16.2 Exceptions

	2.17 Base Business Object Interfaces
	2.17.1 BaseBusinessObject

	2.18 BaseIterator
	2.18.1 IDL
	2.18.2 Attributes
	2.18.3 Operations

	2.19 Interface Usage Example

	References
	Consolidated IDL
	CDL
	Conformance

