
Date: October 2003

WSDL-SOAP to CORBA Interworking
Convenience Document for FTF Final Report

ptc/03-10-17

1 Scope

This specification defines a mapping between WSDL specifications, with a SOAP Binding, to a corresponding set of
OMG IDL interface specifications.

This specification is applicable to the domain of WSDL specifications which use only the constructs which result
from the CORBA to WSDL-SOAP specification. This simplifies the mapping, and allows for mapping from a
restricted WSDL-SOAP subset to CORBA IDL interfaces.

This specification assumes that the CORBA to WSDL-SOAP mapping includes an identifier for the source OMG
IDL file in the resulting WSDL specification. The WSDL to IDL translator can key off this identifier to revert to the
original IDL specification, rather than performing the translation algorithm specified in this specification.

2 Conformance

This interworking specification defines three four conformance points. Implementations must support at least one of
these conformance points:

Implementations must support at least one of the following three conformance points:

• Interworking between RPC/Encoded WSDL Soap Bindings and OMG IDL.

• Interworking between RPC/Literal WSDL Soap Bindings and OMG IDL.

• Interworking between Document/Literal WSDL Soap Bindings and OMG IDL.

A system that does not support a particular SOAP binding use for interaction translation (i.e., encoded vs. literal),
need not translate unsupported WSDL Soap bindings.

An additional optional conformance point pertains to the reverse translation optimization, specified in section 6.2.

• An implementation may support a CORBA Client interworking with a WSDL Port, for a WSDL Port Type
which was originally defined as an OMG IDL interface.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

Reference to CORBA - WSDL/SOAP mapping specification.

Reference to CORBA Core Chapter 3 IDL Standard.

Reference to WSDL Standard

Reference to SOAP Standard

Reference to W3C Working Draft “XML Schema Part2: Datatypes”

Reference to OMG’s “Java™ Language to IDL Mapping Specification”

The FTF should complete this clause
2

CORBA to WSDL/SOAP Interworking, version FTF output, OMG Document ptc/03-05-15

Common Object Request Broker Architecture (CORBA/IIOP), version 3.0.3, OMG Document formal/2002-12-02
(Chapter 3 has IDL specification)

Java™ Language to IDL Mapping Specification, version 1.2, OMG Document formal/2002-08-06

Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, http://www.w3.org/TR/SOAP

XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001, http://www.w3.org/TR/xmlschema-2/

4 Terms and definitions

For the purposes of this specification, the terms and definitions given in the normative reference and the following
apply.

term
Text of the definition

The Terms and definitions clause is an optional element giving definitions necessary for the understanding of
certain terms used in the specification.

The term and definition list is introduced by a standard wording (above), which shall be modified as appropriate.

The FTF should complete this clause

5 Symbols

List of symbols/abbreviations

The Symbols (and abbreviated terms) clause is an optional element giving a list of the symbols and
abbreviated terms necessary for the understanding of the standard.

Unless there is a need to list symbols in a specific order to reflect technical criteria, all symbols should be
listed in alphabetical order in the following sequence:

— upper case Latin letter followed by lower case Latin letter (A, a, B, b, etc.);

— letters without indices preceding letters with indices, and with letter indices preceding numerical
ones (B, b, C, Cm, C2, c, d, dext, dint, d1, etc.);

— Greek letters following Latin letters (Z, z, Α, α, Β, β … Λ, λ, etc.);

— any other special symbols.

The FTF should complete this clause

The following terms are defined in CORBA/IIOP Specification:
 3

• Interface

• Attribute

• Operation

• Module

• Exception

The following terms are defined in WSDL 1.1 Specification:

• Service

• Port

• Port type

• Message

• Binding

• Part

• Documentation

• Target namespace

The following terms are defined in SOAP 1.1 Specification:

• Soap Encoding

This specification defines no new additional terms.

6 Symbols

List of symbols/abbreviations

WSDL Web Services Description Language
SOAP Simple Object Access Protocol
IDL Interface Definition Language
CORBA Common Object Request Broker Architecture

7 WSDL to IDL Mapping

7.1 Feature Description

The overall goal of this specification is to provide a natural mapping from a valid set of WSDL service definition files
to a valid set of OMG IDL specification files.

An IDL file can be generated from a WSDL file, but the generated IDL file lacks some information required to
implement a CORBA/SOAP interaction translation gateway. To supplement the information, WSDL to IDL
converter could (in an implementation specific manner) generate an Identifier information file and a SOAP
information file in addition to the IDL file.

This specification focuses on the standard mapping of the WSDL file to the corresponding IDL specification. In
4

addition to the service definition, a WSDL file can have service endpoint information. This information cannot be
translated into an IDL construct.

The WSDL 1.1 specification describes bindings of the following protocols.

• SOAP

• HTTP GET/POST

• MIME

However, this specification of WSDL to IDL only converts SOAP bindings. All others are considered out of scope of
this specification.

In particular, this specification supports WSDL SOAP bindings with style attribute value of “rpc” and use attribute
value of either “literal” or “encoded”. In addition, it supports WSDL with style attribute value of “document” and
use attribute value of “literal”.

7.2 Optimization to Avoid Round-Trip Translation

If a WSDL specification is the result of translation of an OMG IDL specification, then the reverse mapping from that
translated WSDL specification should be the original IDL specification.

To accomplish this, the IDL to WSDL translation specified by the CORBA to WSDL/SOAP Interworking
specification provides a hint, in the form of an XML schema annotation giving both a reference to the source IDL and
the version of the mapping used. Hints may be provided that refer to the source IDL file, or to the repository ID for a
given generated construct (including any prefixes defined by a #pragma prefix directives).

The reverse translation from WSDL to IDL would use this hint to shortcut the translation process by having the
original IDL specification be the reverse translation from the WSDL.

This will avoid round trip divergence of the IDL specifications associated with a WSDL service, which would result
using the WSDL to IDL mapping translations to generate a new IDL specification associated with the WSDL output
from the CORBA to WSDL-SOAP mapping specification.

Note – The interaction time translations must correspond to the appropriate specification translation. In particular, the
interaction translation mechanisms for a service originally described in IDL are different than the interaction translation
mechanisms for a service originally described in WSDL.

The interaction translation mechanisms required to support a CORBA Client accessing a WSDL Port differ
depending on the origin of the port definition.

In particular, an implementation of this specification may encounter a WSDL port type that resulted from a
translation of an IDL definition. When that happens, the interaction translation mechanisms, defined in this
specification, to support a CORBA client accessing such a WSDL Port are inappropriate. The appropriate

WSDL file

WSDL to IDL Conversion

 IDL SOAP Information File Identifier Information
File
 5

mechanisms are similar to those required to support a CORBA server sending a response to a WSDL port for an
Operation which originated as an IDL interface operation. These translation mechanisms are specified in the
CORBA to WSDL/Soap specification.

Since the interaction time translation mechanisms to support this reverse specification translation option are different
that those designed to support specifications originating as WSDL port types, this feature is an optional conformance
point for this specification.

7.3 WSDL to IDL Conversion

IDL specification is generated from a given WSDL according to the rules shown in the following sub-sections.

7.3.1 Generation of IDL Modules

An IDL module is generated for each WSDL file.

A WSDL document may contain several different target namespaces associated with WSDL and XML constructs
which are translated to corresponding IDL constructs.

A WSDL description can contain multiple namespaces, including:

• the wsdl:definitions element can have its own target namespace

• the wsdl:definition can use wsdl:import to import a wsdl namespace

• zero or more schema in the types section each have a target namespace (which is allowed, by WS-I profile, to
be same as target namespace for the wsdl description

• the schema in a types section can use xsd:import to import multiple namespaces.

An IDL module declaration is created from the WSDL <definitions> element.

The WSDL <definitions> element has two optional attributes, “targetNamespace” and “name”. An IDL module is
generated for a WSDL file as below:

1) If the targetNamespace attribute is present for the WSDL <definitions> element, everything before the

final “/” is mapped to IDL typeprefix or #pragma prefix directive in the generated IDL file. The portion

of the targetNamespace after the final “/” is mapped as the IDL module name for the generated IDL

definition. Any ‘:’ character is mapped to an underscore ‘_’ character. If the generated module name

contains a “.” or any special character, it is mapped to an underscore ‘_’ character.

2) If the targetNamespace attribute is not present, and the WSDL name attribute is present, the value of

the WSDL name attribute is used as the IDL module name. No IDL typeprefix or #pragma prefix

directive is generated in this case.

3) If neither targetNamespace nor the WSDL name attribute is present in the <definitions> element, then

no IDL module is generated.

Using the same algorithm as specified above to map from the target namespace value to an IDL module name and
type prefix, the mapping from WSDL to IDL shall use a separate IDL module for each of the target namespaces
which contain constructs which are mapped to IDL constructs.

For example:

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote" ...>
6

...

...
</definitions>

is mapped to IDL as below:

// OMG IDL

module StockQuote {
…
…

};

The following WSDL construct maps as shown below

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace=”http://example.com/stockquote.wsdl”
... >

...

...
</definitions>

In pre-CORBA 3.0 IDL using pragma prefix as shown below:

// OMG IDL

#pragma prefix “http_//example.com”
module stockquote_wsdl {

…
…

};

Or in CORBA 3.0 or later IDL using typeprefix as shown below:

// OMG IDL

module stockquote_wsdl {
typeprefix stockquote_wsdl “http_//example.com”;

…
…

};

7.3.2 Generation of IDL Interfaces

An IDL interface declaration is created for each WSDL <portType> defined in the WSDL file.

The value of the name attribute of WSDL <portType> element is used as the IDL interface name.

For example:

<!--WSDL -->
<portType name="StockQuotePortType">

...

...
</portType>

is mapped to IDL as below:

// OMG IDL

interface StockQuotePortType {
 7

…
…

};

7.3.3 Generation of IDL Operations

An IDL operation declaration is created for each WSDL <operation> element appearing inside a WSDL <portType>
element.

The syntax of an IDL operation declaration is given below. It consists of operation name <op_name>, operation
return type <return_type>, a comma seperated list of parameters <parameter>, and optional raises and
context expression, each of which is generated from the WSDL <operation> element as mentioned below:

<return_type> <op_name> (<parameter> [,])
 [raises (exeption_ name [,])]
 [context (context_name [,])];

Operation name:

The IDL operation name <op_name> is generated from the value of the name attribute in
<operation> element in WSDL <portType> declaration.

Operation type:

WSDL defines four types of operations namely, One-way, Request-response, Solicit-response and
Notification. All of these are mapped to normal IDL operations. If only <input> message element
exists in the <portType> element, then it is mapped to an IDL operation with return type void and
with no output parameters. IDL oneway operations are not used.

Data type of return value:

The return type of the IDL operation is determined based on the following rules.

• If the Operation is of Request-Response format, the return type is the first part under the
element <wsdl:output> if that part doesn’t appear in the “parameterOrder” list. Otherwise the
return type is void.

• If the Operation is of Solicit-Response format, the return type is the first part under the element
<wsdl:input> if that part doesn’t appear in the “parameterOrder” list. Otherwise the return type
is void.

• If it is One-Way or Notification, the return type is void.

Parameters:

An IDL <parameter> is generated for each WSDL <part> element appearing inside a WSDL
<message> element.

The syntax of the IDL operation parameter is given below. IDL supports “in”, “out” and “inout”
parameter attributes.

in
out data_type parameter_name
inout

IDL operation parameter generation is determined based on the following rules.
8

If the parameterOrder attribute is specified in the <wsdl:operation> element in <portType>
declaration, parameter list is returned in the same order specified as the parts in the parameterOrder
attribute. Each parameter type is determined as follows.

1) Part that is specified in both a Request/Solicit message and a Response message will be an “inout”
parameter.

2) Part that is specified only in a Request/Solicit message will be an “in” parameter. One-Way, Notifi-

cation will only have “in” parameters.

3) Part that is specified only in Response message will be an “out” parameter.

If the parameterOrder attribute is not specified in the <wsdl:operation> element in <portType>
declaration, it is determined as follows.

1) Construct a list of all the parts in Request/Solicit/One-Way/Notification messages in the order of

parts specified, excluding the first part of the Response message of Request/Solicit-Response oper-

ations.

2) Use the list as if specified for the parameterOrder attribute and process accordingly.

If the <part> element specifies “element” attribute instead of “type”, it points to the Schema that
defines the element. This becomes the “in” parameter if the ‘message’ is referred by <wsdl:input>
element in a <wsdl:operation> element in <wsdl:portType>, or the “out” parameter if the
‘message’ is referred by <wsdl:output> element and appears in the parameterOrder attribute. If the
<wsdl:output> element doesn’t appear in the parameterOrder attribute, then it becomes the return
type.

Raises expressions:

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an
IDL User Exception, and a raises expression is generated for the corresponding IDL operation
declaration. The generated raises expression lists all the mapped user exception for that IDL
operation.

The name of the generated IDL User Exception is the value of the name attribute in the
<wsdl:fault> element. The generated User Exception structure consists of mapped data members
which are list of “parts” that comprise the <wsdl:message> pointed to by the fault message name in
<wsdl:fault> element (<wsdl:fault name="fault_message_name">).

Refer to Section 7.3.6 below for an example mapping.

Context expressions:

Context expression is not generated. It is not necessary for SOAP.

The following is an example of mapping a WSDL <operation> element to an IDL operation.

<!--WSDL -->
<message name="GetTradePricesInput">

<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd:int"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd:string"/>
 9

<part name="frequency" type="xsd:float"/>
</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices"

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

The above WSDL fragment is mapped to an IDL operation as below:

// OMG IDL

interface StockQuotePortType {
wstring GetTradePrices(in wstring tickerSymbol,

in long timePeriod, out float frequency);
};

7.3.4 Generation of IDL Attributes

IDL attributes are not generated from WSDL.

7.3.5 Generation of IDL Typedef

An IDL typedef is generated for the XML schema type restrictions for XML schema data types used as the datatype
of return values and parameters.

For example:

<!--WSDL -->
<xsd:simpleType name="Number">

<xsd:restriction base="xsd:int"/>
</xsd:simpleType>

<xsd:simpleType name="AnotherNumber">
<xsd:restriction base="Number"/>

</xsd:simpleType>

is mapped to IDL as below:

// OMG IDL

typedef long Number;
typedef Number AnotherNumber;

7.3.6 Generation of User Exceptions

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an IDL User
Exception.

The name of the generated IDL User Exception is the value of the name attribute in the <wsdl:fault> element. The
generated User Exception structure consists of mapped data members which are list of “parts” that comprise the
<wsdl:message> pointed to by the fault message name in <wsdl:fault> element (<wsdl:fault
name="fault_message_name">).

For example:

<!--WSDL -->
<message name="BadInput">

<part name="errorMessage" type="xsd:string"/>
<part name="errorCode" type="xsd:int"/>
10

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices" Ö>

<input Ö />
<output Ö />
<fault message="BadInput"/>

</operation>
</portType>

is mapped to IDL as below:

// OMG IDL

interface StockQuotePortType {

exception BadInput {
wstring errorMessage;
long errorCode;

};

GetTradePrices(…) raises BadInput;
};

7.4 Simple Type Conversion

This section shows how simple types used in WSDL are mapped to CORBA.

7.4.1 Mapping for SOAP Data Types

According to SOAP 1.1 specification, all types defined in section “3. Built-in datatypes” of “W3C Working Draft
“XML Schema Part2: Datatypes” are adopted as simple types. The SOAP-ENC schema and namespace declares an
element for all these simple types. Mapping of SOAP data type to IDL data type is performed according to the table
below.

(In the following table, the SOAP data types are shown in the conventional “SOAP-ENC” namespace, to distinguish
them from the IDL types).

SOAP data type CORBA data type

SOAP-ENC:int long

SOAP-ENC:unsignedInt unsigned long

SOAP-ENC:short short

SOAP-ENC:unsignedShort unsigned short

SOAP-ENC:long long long

SOAP-ENC:unsignedLong unsigned long long

SOAP-ENC:float float

SOAP-ENC:double double

SOAP-ENC:boolean boolean

SOAP-ENC:string wstring

The mapping for string datatype is discussed in Section 7.4.5.

SOAP-ENC:unsignedByte octet
 11

7.4.2 Mapping for XML Schema Built-in Datatypes

WSDL supports the XML Schema built-in datatypes which are defined in “3. Built-in datatypes” of W3C Working
Draft “XML Schema Part2: Datatypes”. These XML Schema built-in datatypes maps onto a corresponding IDL type
as shown in the table below.

(In the following table, the XML Schema types are shown in the conventional “xsd” namespace, to distinguish them
from the IDL types).

Enumerations
.

enum

Error if the base is not a string.
The mapping for enumerations is discussed in Section 7.4.4

Arrays sequence, if one-dimensional variant,
array, otherwise
The mapping for Array datatype is discussed in Section 7.6

Structs struct

XML Schema Data Type CORBA Data Type

primitive xsd:string wstring

The mapping for string datatype is discussed in
Section 7.4.5.

xsd:boolean boolean

xsd:float float

xsd:double double

xsd:decimal See Section 7.4.3

xsd:duration See Section 7.4.3

xsd:dateTime See Section 7.4.3

xsd:time See Section 7.4.3

xsd:date See Section 7.4.3

xsd:gYearMonth See Section 7.4.3

xsd:gYear See Section 7.4.3

xsd:gMonthDay See Section 7.4.3

xsd:gDay See Section 7.4.3

xsd:gMonth See Section 7.4.3

xsd:hexBinary See Section 7.4.3

xsd:base64Binary See Section 7.4.3

xsd:anyURI wstring

xsd:QName See Section 7.4.3

xsd:NOTATION See Section 7.4.3

derived xsd:normalizedString wstring

xsd:token wstring

xsd:language wstring

xsd:NMTOKEN wstring

xsd:NMTOKENS wstring
12

If the XML Schema name space is one of the following, the above conversion takes place. It will be possible to
override the conversion rule with external property files.

• http://www.w3.org/2001/XMLSchema

• http://www.w3.org/2000/10/XMLSchema

• http://www.w3.org/1999/XMLSchema

7.4.3 Restriction to WSDL Type System

The following datatypes cannot be directly mapped to a corresponding OMG IDL datatype. This interworking
specification provides a generic mapping of these unsupported types to individual typedefs of OMG IDL wstring, to
hold the UTF encoding of the XML schema type value.

decimal,

nonPositiveInteger,

nonNegativeInteger,

PositiveInteger,

NOTATION,

duration,

time,

dateTime,

date,

xsd:Name wstring

xsd:NCName wstring

xsd:ID wstring

xsd:IDREF wstring

xsd:IDREFS wstring

xsd:ENTITY wstring

xsd:ENTITIES wstring

xsd:integer fixed

xsd:nonPositiveInteger See Section 7.4.3

xsd:negativeInteger See Section 7.4.3

xsd:long long long

xsd:int long

xsd:short short

xsd:byte See Section 7.4.3

xsd:nonNegativeInteger See Section 7.4.3

xsd:unsignedLong unsigned long long

xsd:unsignedInt unsigned long

xsd:unsignedShort unsigned short

xsd:unsignedByte octet

xsd:positiveInteger See Section 7.4.3
 13

gYearMonth,

gYear,

gMonthDay,

gDay,

gMonth,

hexBinary,

base64Binary,

Qname,

The IDL module (using omg.org type prefix) which defines the corresponding types is:

module stringmappedXMLtypes {
 typeprefix stringmappedXMLtypes "omg.org";
 typedef wstring decimal;
 typedef wstring nonPositiveInteger;
 typedef wstring nonNegativeInteger;
 typedef wstring PositiveInteger;
 typedef wstring NOTATION;
 typedef wstring duration;
 typedef wstring time;
 typedef wstring dateTime;
 typedef wstring date;
 typedef wstring gYearMonth;
 typedef wstring gYear;
 typedef wstring gMonthDay;
 typedef wstring gDay;
 typedef wstring gMonth;
 typedef wstring hexBinary;
 typedef wstring base64Binary;
 typedef wstring Qname,
};

7.4.4 Mapping for Enumerators

The enumeration in XML Schema is used to constrain the values of almost every simple type, except the boolean
type. It limits a simple type to a set of distinct values.

Enumeration in XML Schema derived by restriction on ‘string’ can be mapped to IDL enumeration.

Here is an example.

<!--WSDL -->
<simpleType name =”A_or_B_or_C” restriction base=”string”

<enumeration value = “A” />
<enumeration value = “B” />
<enumeration value = “C” />

</simpleType name>

// OMG IDL

enum A_or_B_or_C {A, B, C};

If the restriction is on any other datatype, it cannot be mapped to OMG IDL.
14

7.4.5 Mapping for String Types

String is the set of finite-length sequences of characters in XML. It is mapped to OMG IDL wstring datatype.

String datatypes derived by restriction of Schema components <length> and <maxLength> are treated as bounded
wstring.

Note – If the value of the <length> element is 1 and value of attribute fixed is true, it can be mapped to OMG IDL
wchar datatype. This specification only specifies mapping to IDL wstring datatype.

 Here is an example.

<!--WSDL -->
<element name="Country" type="string"/>

<element name="Place">
<simpleType>

<restriction base="string">
<length value="5"/>

</restriction>
</simpleType>

</element>

// OMG IDL

wstring Country;
const short N=5;
wstring Place<N>;

7.4.6 Mapping for Any

The anyType represents an abstraction called the ur-type which is the base type from which all simple and complex
types are derived. An anyType type does not constrain its content in any way. It is possible to use anyType like other
type. It can be mapped to the OMG IDL datatype any.

Here is an example:

<!--WSDL -->
<element name="T" type="anyType"/>

// OMG IDL

any T;

7.4.7 Anonymous XML types

Anonymous types are deprecated in CORBA. While it is allowable, in some cases, to map an anonymous XML type

String Type WSDL IDL

bounded string derived by restriction of

• length N

• maxLength N

wstring <N>

wstring <N>

unbounded string wstring

string derived by restriction of

• minlength N

• pattern

wstring

wstring
 15

specification to an anonymous IDL type spec (e.g.., for sequences as members of an IDL struct), there are cases
which require an explicit IDL type name (e.g., for operation parameters).

Whenever it is explicitly required by the IDL syntax, the anonymous XML types are mapped to an explicit IDL
typedef.

The name of the type to use for the generated IDL typedef is constructed by prefixing the name of the element (which
has an anonymous XML type specification attached) with the string "T_". In case of collision with another type
starting with "T_", the translator will add sufficient extra "_" character(s) to the end of the prefix to resolve the
collision.

7.5 Mapping for Complex XML Schema Types

This section shows how complex XML schema types used in WSDL are mapped to CORBA.

7.5.1 Mapping for Sequence Group Element

The sequence element in WSDL specifies that the child elements must appear in the order it is specified. It can be
mapped OMG IDL struct datatype.

Here is an example

<!--WSDL -->
<complexType name = “myStruct">

<sequence>
<element name="member_1" type="short"/>
<element name="member_2" type="long"/>

</sequence>
</complexType>

// OMG IDL

struct myStruct {
short member_1:
long member_2;

};

7.5.2 Mapping for Choice Group Element

The choice group element in WSDL allows only one of its children to appear in an instance. It can be mapped to
discriminated union of OMG IDL with the discriminator type taken as IDL datatype long.

Here is an example.

<!--WSDL -->
<complexType name="myUnion">

<choice>
<element name="c" type="char"/>
<element name="s" type="short"/>

</choice>
</complexType>

// OMG IDL

union myUnion switch (long) {
case 1: char c;
case 2: short s;

};
16

7.5.3 Mapping for All Group Element

The all element in WSDL specifies that the child elements do not need to appear in the order they are specified. It is
mapped OMG IDL struct datatype, using the same rules as for a Sequence Group Element..

The interaction translator is responsible to arrange the child elements in the proper order to be mapped to the
corresponding IDL Struct.

Here is an example

<!--WSDL -->
<complexType name = "myAll">

<all>
<element name="a_member_1" type="short"/>
<element name="a_member_2" type="long"/>

</all>
</complexType>

/ OMG IDL
struct myAll {

short a_member_1:
long a_member_2;

};

7.5.4 Mapping elements with cardinality constraints to IDL sequence member

For use in the complex type mappings above, there is a special rule for mapping elements of an XML complex types,
when those elements have minOccurs=0, or maxOccurs>1.

If an element, which is a member of an XML complex type, has minOccurs=0 or has maxOccurs>1, that element will
be mapped to an unnamed IDL Sequence.

Example:

<complexType name = "mesgInfoType">
 <xsd:sequence>
 <xsd:element name="infoItem1" type="short"/>
 <xsd:element name="optInfo" type="myStruct" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

// OMG IDL
struct mesgInfoType {
 short infoItem1:
 sequence<myStruct> optInfo;
};

7.5.5 Mapping attributes of complex type

Attributes of sequence and all group complex types are mapped as additional members of the IDL struct.

Complex types which use attribute groups have the attributes in that group mapped explicitly as members of the IDL
struct, in the same order as if the attribute group definitions were expanded in line.

If a Complex Type with simpleContent has one or more attributes, that complex type is mapped to an IDL Struct, with
the first member of the IDL struct being of the simple type and having the name "value". The attributes are each
mapped as additional members of the IDL Struct.

If an XML schema attribute is defined anonymously (e.g., it uses an inline enumeration extension of string), the
 17

mapping shall generate an explicit IDL typedef using the "T_" prefix applied to the name of the attribute as the type
name, just is for XML schema elements which are defined anonymously.

Attributes of a choice group element are not mapped.

If an attribute of the complex type is optional, then it is mapped to a struct member which is a sequence (just as if it
were an element with minOccurs=0). Optional attributes are represented as IDL sequences in order to allow zero
members, to cover the case of the attribute not being present.

Example:

<xsd:complexType> taggedShort
 <xsd:simpleContent>
 <xsd:extension base="xsd:short">
 <xsd:attribute name="type" tag="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

// OMG IDL
struct taggedShort {
 short value;
 sequence<wstring> tag;
};

7.6 Mapping for SOAP Array Type

SOAP Array types extends the “SOAP-ENC:Array” type defined in the SOAP 1.1 encoding Schema. SOAP array
datatype is mapped to either a sequence or array OMG IDL construct based on the following cases:

1) One-dimensional SOAP array without size specification maps to OMG IDL unbounded sequence

datatype.

2) One-dimensional SOAP array with size specification maps to OMG IDL bounded sequence datatype.

3) Multi-dimensional array with size specification maps to OMG IDL array datatype.

4) Multi-dimensional array without size specification cannot be mapped to an IDL construct and it is valid

for the translation mechanism to generate an error for this case.

The name of the mapped IDL sequence or array datatype is generated from the value of the <xsd:complexType>
element.

The type of the SOAP array item, mentioned in the “type” attribute of the <xsd:element> or in the “wsdl:arrayType”
attribute, becomes the base type of the mapped IDL sequence or array. This type is mapped to an OMG IDL construct
according to the datatype mapping rules in this specification.

The IDL sequence or array bound is determined from the “maxOccurs” attribute of the <xsd:element>. If
“maxOccurs” value is “unbounded” for a multi-dimensional array, it can’t be mapped.

The dimension of the array is determined from the “SOAP-ENC:arrayType” attribute.

The following example shows the mapping of a SOAP Array datatype to OMG IDL unbounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">
18

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:attribute
ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

// OMG IDL

typedef sequence<long> ArrayOfLong;

The following example shows the mapping of a SOAP Array datatype to OMG IDL bounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:sequence>
<xsd:element

name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

// OMG IDL

typedef sequence<long, 10> ArrayOfLong;

7.7 Mapping IDL Name

Normally, names in WSDL map to identical names in IDL. However, names (e.g., IDL keywords) that cannot be used
in IDL need to be converted. Following OMG specification “Java™ Language to IDL Mapping Specification”, the
conversion below shall be applied.

1) IDL keyword

If the WSDL identifier clashes with an IDL keyword, prepend an underscore “_” (to form an
escaped identifier).

For example, the WSDL name oneway is mapped to the OMG IDL identifier _oneway.

2) WSDL Names starting with underscore

If the WSDL identifier begins with an underscore “_”, the underscore is replaced by “J_”.

For example, the WSDL name _fred is mapped to J_fred in IDL.

3) Unicode characters in WSDL

IDL does not support Unicode. Thus, if ‘$’ or a kanji character is included in the identifier, it is
replaced by “U” and a 4-digit hexadecimal number (in upper case)

For example, the WSDL name a$b is mapped to aU0024b in IDL.
 19

4) Method is overloaded

IDL does not support overloaded methods. If the WSDL operation is overloaded, two underscores
“__” are added to the method name, followed by IDL type names of the parameters separated by
two underscores “__”. A space in the type (like in long long) is replaced with an underscore “_”.
The underscore at the beginning of an escaped identifier is removed.

For example, if the WSDL mapping results in the following two IDL operations, they are
transformed as shown below:

void hello();
void hello(in long x, in abc y);

This is transformed as below

void hello__();
void hello__long__abc(in long x, in abc y);

If the in/out parameter names are overloaded in the same method, it is an error. Also, if a method
that doesn’t include in/out is overloaded, it is an error.

5) WSDL identifiers that differ only in case

IDL names are not case sensitive. Thus, if there are two or more names that are distinguished only
by case, an underscore “_” is appended to the original name, and then decimal numbers indicating
the positions of the uppercase characters are appended, separated by an underscore. Indices are zero
based.

For example, the WSDL names jack, Jack, and jAcK are mapped to IDL as jack_, Jack_0, and
jAcK_1_3 respectively.

However, it is an error for the following names to be distinguished only by case.

• module name

• interface name

6) If the identifiers are not unique after application of the mapping rules above, it is an error.

7.8 Identifier Information File

Identifier information file is a text file in XML format that collects identifiers.

• <name>~</name> sets the name before conversion (IDL)

• <name_to>~</name_to> sets the name after conversion (WSDL).

• <name_to>~</name_to> is not generated if identifiers were not converted
20

.

*: 0 or more
?: 0 or 1
+: 1 or more

7.9 Input Data

Input data is a WSDL file containing a WSDL document. Structure of a WSDL document is shown below

<?xml version="1.0"?>
<definitions >

<types> </types>
<message> </message>
<portType> </portType>
<binding> </binding>
<service> </service>

</definitions>

7.10 Output Data

7.10.1 IDL File

Format of the generated IDL file is as follows.

module module_name {
interface interface_name {

typedef type type_name;
exception exception_structure_name {

data_type member_name;
};

type_name operation_name(in|inout|out
data_type parameter_name,...)
[raises(exception_structure_name,....)];

<module>*
 <name>~</name>
 <name_to>~</name_to>?
 <interface>*
 <name>~</name>
 <name_to>~</name_to>?
 <typedef>*
 <name>~</name>
 <name_to>~</name_to>?
 </typedef>
 <exception>*
 <name>~</name>
 <name_to>~</name_to>?
 </exception>
 <method>*
 <name>~</name>
 <name_to>~</name_to>?
 </method>
 </interface>
</module>

module information

interface information

typedef information(includes struct,
enum)

exception information

method information
 21

};
};

7.10.2 SOAP Information File

This file contains the information that is missing from IDL but necessary for the SOAP-CORBA gateway.
Information described in the SOAP information files is as follows.

7.10.3 Identifier Information File

This file contains a table of original names and converted names, in case names (identifiers) are converted. The
<name> element is generated even if they are not converted.

Parameter Name Parameter Value Description

SOAPAction Method name and
ACTION information

Specify the method name with full scope in the IDL
(e.g., ::module1::interface1::op1).

Following the method name, specify the value of soapAction
property in <soap:body> element.
Separate the method name and the value of soapAction by one
or more space.
22

A Sample Input and Output of WSDL to IDL

A.1 Input: Sample WSDL

(Example 5: SOAP binding of request-response RPC operation over HTTP. The type of startTime and endTime is
changed from "xsd:timeInstant" to "xsd:string".)

<?xml version="1.0"?>
<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://example.com/stockquote/schema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote/schema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="TimePeriod">

<all>
<element name="startTime" type="xsd:string"/>
<element name="endTime" type="xsd:string"/>

</all>
</complexType>
<complexType name="ArrayOfFloat">

<complexContent>
<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType"
wsdl:arrayType="xsd:float[]"/>

</restriction>
</complexContent>

</complexType>
</schema>

</types>

<message name="GetTradePricesInput">
<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd1:TimePeriod"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd1:ArrayOfFloat"/>
<part name="frequency" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices"

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetTradePrices">

<soap:operation soapAction="http://example.com/GetTradePrices"/>
<input>

<soap:body use="encoded"
namespace="http://example.com/stockquote"
 23

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>

<soap:body use="encoded"
namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/stockquote"/>
</port>

</service>
</definitions>

A.2 Output: Sample OMG IDL

#pragma prefix “http_//example.com"

module stockquote_wsdl {

interface StockQuotePortType {
typedef sequence<float> ArrayOfFloat;
typedef struct TimePeriod {

wstring startTime;
wstring endTime;

};

ArrayOfFloat GetTradePrices(
in wstring tickerSymbol,
in TimePeriod timePeriod,
out float frequency);

};
};

A.3 Output: Sample SOAP Information File

SOAP inforamtion file
list of SOAPAction information
SOAPAction ::StockQuoteService::StockQuoteSoapBinding::GetTradePrices http://exam-
ple.com/GetTradePrices

A.4 Output: Sample Identifier Information File

<module>
<name>stockquote_wsdl</name>
<interface>

<name>StockQuotePortType</name>
<typedef>

<name>ArrayOfFloat</name>
</typedef>
<typedef>

<name>TimePeriod</name>
</typedef>
<method>
24

<name>GetTradePrices</name>
</method>

</interface>
</module>
 25

26

	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	5 Symbols
	6 Symbols
	7 WSDL to IDL Mapping
	7.1 Feature Description
	7.2 Optimization to Avoid Round-Trip Translation
	7.3 WSDL to IDL Conversion
	7.3.1 Generation of IDL Modules
	7.3.2 Generation of IDL Interfaces
	7.3.3 Generation of IDL Operations
	7.3.4 Generation of IDL Attributes
	7.3.5 Generation of IDL Typedef
	7.3.6 Generation of User Exceptions

	7.4 Simple Type Conversion
	7.4.1 Mapping for SOAP Data Types
	7.4.2 Mapping for XML Schema Built-in Datatypes
	7.4.3 Restriction to WSDL Type System
	7.4.4 Mapping for Enumerators
	7.4.5 Mapping for String Types
	7.4.6 Mapping for Any
	7.4.7 Anonymous XML types

	7.5 Mapping for Complex XML Schema Types
	7.5.1 Mapping for Sequence Group Element
	7.5.2 Mapping for Choice Group Element
	7.5.3 Mapping for All Group Element
	7.5.4 Mapping elements with cardinality constraints to IDL sequence member
	7.5.5 Mapping attributes of complex type

	7.6 Mapping for SOAP Array Type
	7.7 Mapping IDL Name
	7.8 Identifier Information File
	7.9 Input Data
	7.10 Output Data
	7.10.1 IDL File
	7.10.2 SOAP Information File
	7.10.3 Identifier Information File

