
UML 2.0 Testing Profile Specification

This OMG document replaces the submission document (ad/03-03-26) and the Draft Adopted
specification (ptc/03-07-01). It is an OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by September 8, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 30, 2004. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

OMG Adopted Specification
ptc/03-08-03

Date: April 2004

Unified Modeling Language: Testing Profile

version 2.0

Final Adopted Specification

ptc/2004-04-02

Copyright © 2002-2003, Ericsson
Copyright © 2002-2003, International Business Machines Corporation
Copyright © 2002-2003, FOKUS
Copyright © 2002-2003, Motorola, Inc.
Copyright © 1997-2003, Object Management Group.
Copyright © 2002-2003, Rational
Copyright © 2002-2003, Softeam
Copyright © 2002-2003, Telelogic

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con-
ditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specifica-
tion set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this specifi-
cation, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both
the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use
of the specifications is for informational purposes and will not be copied or posted on any network computer or
broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifica-
tions are made to this specification. This limited permission automatically terminates without notice if you breach
any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regula-
tions and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part
of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, elec-
tronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--with-
out permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLI-
CATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE,
DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FUR-
NISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as speci-
fied in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indi-
cated above and may be contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494,
U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®,
XMI® and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management
Group™, CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Chang-
ing World™, CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware
That's Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The
CWM Logo™, Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven
Architecture™, OMG MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its des-
ignees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these mate-
rials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents

1 Scope - 10
2 Conformance - 11

Summary of optional versus mandatory features . 11
Proposed compliance points . 11

3 Normative references- 11
4 Terms and definitions - 12

Test Architecture . 12
Test Behavior . 13
Test Data . 14
Time Concepts. 15

5 Additional Information - 16
Acknowledgements . 16
Guide to material in the submission . 16
References . 17

6 The UML Testing Profile - 18
Overview . 18
Structure of the UML Testing Profile . 18
The Profile . 20

Test Architecture... 20
Test Behavior .. 24
Test Data... 35
Time Concepts .. 40

MOF-based Metamodel. 48
Test Architecture and Test Behavior .. 48
Test Data... 53
Time .. 56

Examples . 59
Money Example .. 59
Bank ATM Example .. 63
Money Transfer Example.. 70

Mappings . 76
Mapping to JUnit .. 76
Mapping to TTCN-3.. 81

A Profile Summary - 88
A.1 The Profile . 88
A.2 The MOF-based Metamodel. 92

B XMI Schema - 95
B.1 The Profile . 95
B.2 The MOF-based Metamodel. 95

C Arbiter and Scheduler protocols - 105
General Index - 108
 5

Class Index of the Profile - 111
Class Index of the MOF-based Metamodel- - - - - - - - - - - - - - - - - - 112
6

 7

List of Figures

Figure 1. Test Architecture. 21
Figure 2. Test case and test objective. 26
Figure 3. Defaults . 26
Figure 4. Actions . 26
Figure 5. Deterministic Alt Operator (in Combined Fragements) . 26
Figure 6. Test Log . 27
Figure 7. Test objective . 31
Figure 8. Validation actions . 32
Figure 9. Example on Test Log . 34
Figure 10. Test data . 36
Figure 11. Timer concepts . 41
Figure 12. Timezone concepts . 41
Figure 13. Test architecture and test behavior portion of the MOF-based metamodel 49
Figure 14. Test data portion of the MOF-based metamodel . 54
Figure 15. Time portion of the MOF-based metamodel . 57
Figure 16. Predefined interfaces for implementing timer, arbiter and scheduler. 58
Figure 17. Overview on the InterBank Exchange Network . 59
Figure 18. Packages for the InterBank Exchange Network . 59
Figure 19. Money structure . 60
Figure 20. SWIFTUnitTest package . 60
Figure 21. Unit test behavior for addSameMoney . 61
Figure 22. Unit test behavior for addDifferentMoney . 62
Figure 23. ATM and related packages. . 63
Figure 24. Elements of the system to be tested . 63
Figure 25. The ATMTest package . 64
Figure 26. The composite structure of the ATMSuite test context . 64
Figure 27. The behavior of the invalidPIN test case . 65
Figure 28. Classifier behavior for ATMSuite . 66
Figure 29. The validWiring test case . 66
Figure 30. Default for individual message reception . 67
Figure 31. A statemachine default applied to a test component. 67
Figure 32. Package level default . 68
Figure 33. Test component behavior . 68
Figure 34. Interbank Exchange Network overview . 70
Figure 35. Package structure of the Interbank Exchange Network . 70
Figure 36. BankNetwork . 71
Figure 37. SWIFTNetwork . 71
Figure 38. SWIFTTest package . 72
Figure 39. TestData package . 72
Figure 40. The composite structure of the SWIFTSuite test context . 73
Figure 41. Main test behavior . 73
Figure 42. US initiated wiring transaction . 74
Figure 43. Arbitration behavior . 74
8

Figure 44. Transaction detail . 75
Figure 45. LoadArbiter behavior . 75
Figure 46. JUnit framework overview . 76
Figure 47. Test Architecture. 88
Figure 48. Test case and test objective. 88
Figure 49. Defaults . 88
Figure 50. Actions . 89
Figure 51. Deterministic Alt Operator (in Combined Fragements) . 89
Figure 52. Test Log . 89
Figure 53. Timer concepts . 90
Figure 54. Timezone concepts . 90
Figure 55. Timezone concepts . 91
Figure 56. Test architecture and test behavior portion of the MOF-based metamodel 92
Figure 57. Test data portion of the MOF-based metamodel . 93
Figure 58. Time portion of the MOF-based metamodel . 94
Figure 59. Predefined interfaces for implementing timer, arbiter and scheduler. 94
Figure 60. Scheduler/Arbiter protocol #1 . 105
Figure 61. Scheduler/Arbiter protocol #2 . 106
 9

10 UML Testing Profile 2.0 Adopted Specification

1 Scope

The UML Testing Profile defines a language for designing, visualizing, specifying, analyzing, constructing and
documenting the artifacts of test systems. It is a test modelling language that can be used with all major object and
component technologies and applied to testing systems in various application domains. The UML Testing Profile can
be used stand alone for the handling of test artifacts or in an integrated manner with UML for a handling of system
and test artifacts together.

The UML Testing Profile extends UML with test specific concepts like test components, verdicts, defaults, etc. These
concepts are grouped into concepts for test architecture, test data, test behavior and time. Being a profile, the UML
testing profile seamlessly integrates into UML: it is based on the UML metamodel and reuses UML syntax.

The UML Testing Profile is based on the UML 2.0 specification. The UML Testing Profile is defined by using the
metamodeling approach of UML. It has been architected with the following design principles in mind:

• UML integration: as a real UML profile, the UML Testing Profile is defined on the basis of the metamodel
provided in the UML superstructure volume and follows the principles of UML profiles as defined in the
UML infrastructure volume of UML 2.0.

• Reuse and minimality: wherever possible, the UML Testing Profile makes direct use of the UML concepts
and extends them and adds new concepts only where needed. Only those concepts are extended/added to
UML, which have been demonstrated in the software, hardware and protocol testing area to be of central
relevance to the definition of test artifacts and are not part of UML.

UML Testing Profile 2.0 Adopted Specification 11

2 Conformance

2.1 Summary of optional versus mandatory features
Mandatory features for a UML Testing Profile implementation are the concepts for Test Architecture, Test Behavior,
Test Data and Time Concepts.

2.2 Proposed compliance points
The compliance points are as follows:

1. UML Profile for Testing: a compliant implementation supports the UML profiling mechanism, the UML entities
extended by the Testing Profile, and the stereotyped entities of the UML Testing Profile.

2. MOF-based Metamodel for Testing: the compliant implementation supports all of the entities in the MOF-based
metamodel.

3. Notation: If graphical notation is used, the compliant implementation recognizably supports the notation defined
by the Testing Profile specification.

4. XMI: An XMI compliant implementation of the Testing Profile and/or MOF metamodel provides the XMI
exchange mechanism using the Testing Profile XMI schema definitions.

5. Static Requirements: The compliant implementation checks the specified constraints automatically.

Compliance requires meeting 1 and/or 2. Points 3-5 are optional and can be claimed in any combination. A
compliance statement should address every point.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

• UML 2.0 Infrastructure Specification

• UML 2.0 Superstructure Specification

• UML 2.0 OCL Specification

• MOF 2.0 Specification

4 Terms and definitions

This section provides the terms and concepts of the UML Testing Profile.

4.1 Test Architecture
The set of concepts (in addition to the UML 2.0 structural concepts) to specify the structural aspects of a test context
covering test components, the system under test, their configuration, etc.

Test Context A collection of test cases together with a test configuration on the basis of
which the test cases are executed.

Test Configuration The collection of test component objects and of connections between the test
component objects and to the SUT. The test configuration defines both (1) test
component objects and connections when a test case is started (the initial test
configuration) and (2) the maximal number of test component objects and
connections during the test execution.

Test Component A test component is a class of a test system. Test component objects realize
the behavior of a test case. A test component has a set of interfaces via which
it may communicate via connections with other test components or with the
SUT.

SUT The system under test (SUT) is a part and is the system, subsystem, or
component being tested. A SUT can consist of several objects.
The SUT is exercised via its public interface operations and signals by the test
components. No further information can be obtained from the SUT as it is a
black-box.

Arbiter A property of a test case or a test context to evaluate test results and to assign
the overall verdict of a test case or test context respectively. There is a default
arbitration algorithm based on functional, conformance testing, which
generates Pass, Fail, Inconc, and Error as verdict, where these verdicts are
ordered as Pass < Inconc < Fail < Error. The arbitration algorithm can be
user-defined.

Scheduler A property of a test context used to control the execution of the different test
components. The scheduler will keep information about which test
components exist at any point in time, and it will collaborate with the arbiter
to inform it when it is time to issue the final verdict. It keeps control over the
creation and destruction of test components and it knows which test
components take part in each test case.
12 UML Testing Profile 2.0 Adopted Specification

Utility Part A part of the test system representing miscellaneous components which help
test components to realize their test behavior. Examples of utility parts are
miscellaneous features of the test system.

4.2 Test Behavior
The set of concepts (in addition to the UML 2.0 behavioral concepts) to specify test behaviors, their objectives and
the evaluation of systems under test.

Test Control A test control is a specification for the invocation of test cases within a test
context. It is a technical specification of how the SUT should be tested with
the given test context.

Test Case A test case is a specification of one case to test the system, including what to
test with which input, result, and under which conditions. It is a complete
technical specification of how the SUT should be tested for a given test
objective.
A test case is defined in terms of sequences, alternatives, loops and defaults of
stimuli to and observations from the SUT. It implements a test objective. A
test case may invoke other test cases. A test case uses an arbiter to evaluate
the outcome of its test behavior.
A test case is a property of a test context. It is an operation specifying how a
set of cooperating test components interacting with a system under test realize
a test objective. Both the system under test and the different test components
are parts of the test context to which the test case belongs.

Test Invocation A test case can be invoked with specific parameters and within a specific
context. The test invocation leads to the execution of the test case. The test
invocation is denoted in the test log.

Test Objective A test objective is a named element describing what should be tested. It is
associated to a test case.

Stimulus Test data sent to the SUT in order to control it and to make assessments about
the SUT when receiving the SUT reactions to these stimuli.

Observation Test data reflecting the reactions from the SUT and used to assess the SUT
reactions which are typically the result of a stimulus sent to the SUT.
UML Testing Profile 2.0 Adopted Specification 13

Coordination Concurrent (and potentially distributed) test components have to be
coordinated both functionally and in time in order to assure deterministic and
repeatable test executions resulting in well-defined test verdicts. Coordination
is done explicitly with normal message exchange between components or
implicitly with general ordering mechanisms.

Default Default is a behavior triggered by a test observation that is not handled by the
behavior of the test case per se. Defaults are executed by test components.

Verdict Verdict is the assessment of the correctness of the SUT. Test cases yield
verdicts. Verdicts can also be used to report failures in the test system.
Predefined verdict values are pass, fail, inconclusive and error. Pass indicates
that the test behavior gives evidence for correctness of the SUT for that
specific test case. Fail describes that the purpose of the test case has been
violated. Inconclusive is used for cases where neither a Pass nor a Fail can be
given. An Error verdict shall be used to indicate errors (exceptions) within the
test system itself.
Verdicts can be user-defined. The verdict of a test case is calculated by the
arbiter.

Validation Action An action to evaluate the status of the execution of a test case by assessing the
SUT observations and/or additional characteristics/parameters of the SUT. A
validation action is performed by a test component and sets the local verdict
of that test component.

Log Action An action to log information in the test log.

Test Log A log is an interaction resulting from the execution of a test case. It represents
the different messages exchanged between the test components and the SUT
and/or the states of the involved test components.
A log is associated with a verdict representing the adherence of the SUT to the
test objective of the associated test case.

4.3 Test Data
The set of concepts (in addition to the UML 2.0 data concepts) to specify data used in stimuli to the SUT,
observations from the SUT and for coordination between test components.

Wildcard Wildcards allow the user to explicitly specify whether the value is present or
not, and/or whether it is of any value. Wildcards are special symbols to
represent values or ranges of values. Wildcards are used instead of symbols
14 UML Testing Profile 2.0 Adopted Specification

within instance specifications. Three wildcards exist: a wildcard for any value,
a wildcard for any value or no value at all (i.e. an omitted value) and a
wildcard for an omitted value.

Data Pool A data pool is a collection of data partitions or explicit values that are used by
a test context, or test components, during the evaluation of test contexts and
test cases. In doing so, a data pool provides a means for providing values or
data partitions for repeated tests.

Data Partition A logical value for a parameter used in a stimulus or in an observation. It
typically defines an equivalence class for a set of values, e.g. valid user names
etc,.

Data Selector An operation that defines how data values or equivalence classes are selected
from a data pool or data partition.

Coding Rule The interfaces of a SUT use certain encodings (e.g. CORBA GIOP/IIOP, IDL,
ASN.1 PER or XML), which have to be respected by the test systems. Hence,
coding rules are part of a test specification.

4.4 Time Concepts
The set of concepts (in addition to the UML 2.0 time concepts) to specify time constraints, time observations and/or
timers within test behavior specifications in order to have a time quantified test execution and/or the observation of
the timed execution of test cases.

Timezone Timezone is a grouping mechanism for test components. Each test component
belongs to a certain timezone. Test components in the same timezone have the
same time, i.e. test components of the same timezone are time synchronized.

Timer Timers are mechanisms that may generate a timeout event when a specified
time value occurs. This may be when a pre-specified time interval has expired
relative to a given instant (usually the instant when the timer is started). Timers
belong to test components. They are defined as properties of test components.
A timer is started with an expiration time being the time when the timeout is
to be issued. A timeout indicates the timer expiration. A timer can be stopped.
The expiration time of a running timer and its current status (e.g. active/
inactive) can be checked.
UML Testing Profile 2.0 Adopted Specification 15

5 Additional Information

5.1 Acknowledgements
The following person served as chair person up to the submission was adopted (June 2003):

• Ina Schieferdecker (schieferdecker@fokus.fraunhofer.de), Fraunhofer Fokus

During the FTF Dr. Ina Schieferdecker will also serve as co-chair together with:

• Øystein Haugen (oystein.haugen@ericsson.com), Ericsson

In addition the following persons have written parts of the specification and been central to the discussions:

• Paul Baker, Motorola

• Zhen Ru Dai, University of Lübeck

• Jens Grabowski, University of Lübeck

• Serge Lucio, IBM

• Eric Samuelson, Telelogic

• Clay Williams, IBM

Furthermore Softeam was also a submitter of the adopted document, and additional supporters were iLogix, IRISA
and Scapa Technologies.

5.2 Guide to material in the submission
So far, UML technology has focused primarily on the definition of system structure and behavior and provides
limited means for describing test procedures only. However, with the approach towards system engineering according
to model-driven architectures with automated code generation, the need for solid conformance testing, certification
and branding is increased.

The UML Testing Profile

• is based upon the UML 2.0 specification

• enables the specification of tests for structural (static) and behavioral (dynamic) aspects of computational
UML models, and

• is capable of inter-operation with existing test technologies for black box testing.

The work is based on recent developments in black-box testing such as the results from TTCN-3 (Testing and Test
Control Notation) and COTE (Component Testing using the Unified Modelling Language). The UML Testing Profile is
defined such that mappings onto TTCN-3 and JUnit are possible in order to enable the reuse of existing test
infrastructures.

Major generalizations are

• the separation of test behavior and test evaluation by introducing a new test component: the arbiter. This
enables the easy reuse of test behavior for other testing kinds.

• the integration of the concepts test control, test group and test case into just one concept of a test case,
which can be decomposed into several lower level test cases. This enables the easy reuse of test case def-
initions in various hierarchies. A test context is just a top-level test case.
16 UML Testing Profile 2.0 Adopted Specification

• the integration of defaults for handling unexpected behaviors, verdicts and wildcards.

• the support of data partitions not only for observations, but also for stimuli. This allows to describe test
cases logically without having the need to define the stimulus data completely but as a set or range of val-
ues.

Furthermore, some additions widen the practical usability of the UML Testing Profile:

• a test configuration (as an internal structure of a test context) is used to enable the definition of test com-
ponents realizing a test case, it describes the initial setup of the test components and the connection to the
SUT and between each other

• a deployment diagram is used to place requirements regarding test execution on certain nodes in a network

The UML Testing Profile provides concepts for:

• test behavior addressing observations and activities during a test,

• test architecture, i.e. the elements and their relationships involved in a test,

• test data, i.e. the structures and meaning of values to be processed in a test, and

• time, i.e. the time constraints and time observation for test execution.

Part 2 contains the terminology, the metamodel, examples and mappings for these concepts.

5.3 References
• OMG ADTF: RFP on a UML Testing Profile, ad/01-07-08, 2001.

• OMG ADTF: RFP on UML 2.0 Superstructure, ad/00-09-02, 2000.

• OMG ADTF: Final Adopted Specificion on Unified Modelling Language: Superstructure, version 2.0,
ptc/03-08-02, 2003.

• OMG ADTF: RFP on UML 2.0 Infrastructure, ad/00-09-01, 2000.

• OMG ADTF: Final Adopted Specificion on: Unified Modeling Language: Infrastructure, version 2.0, ptc/
03-09-15, 2003

• JUnit: http://www.junit.org.

• ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.
V2.2.1 (2002-10), 2002; also an ITU-T standard Z.140.

• ETSI ES 201 873-3: The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical Presen-
tation Format (GFT). V2.2.1 (2002-10), 2002; also an ITU-T standard Z.142.

• ITU-T Z.120: Message Sequence Charts (MSC), Nov. 1999.
UML Testing Profile 2.0 Adopted Specification 17

6 The UML Testing Profile

6.1 Overview
This section provides an overview and introduction to the UML Testing Profile.

The UML Testing Profile defines a language for designing, visualizing, specifying, analyzing, constructing and
documenting the artifacts of test systems. It is a test modelling language that can be used with all major object and
component technologies and applied to testing systems in various application domains. The UML Testing Profile can
be used stand alone for the handling of test artifacts or in an integrated manner with UML for a handling of system
and test artifacts together.

The UML Testing Profile is based on the UML 2 Superstructure Adopted Specification. The UML Testing Profile is
defined by using the metamodeling approach of UML. It has been architected with the following design principles in
mind:

• UML integration: as a real UML profile, the UML Testing Profile is defined on the basis of the metamodel
provided in the UML superstructure volume and follows the principles of UML profiles as defined in the
UML infrastructure volume of UML 2.0.

• Reuse and minimality: wherever possible, the UML Testing Profile makes direct use of the UML concepts
and extends them and adds new concepts only where needed. Only those concepts are extended/added to
UML, which have been demonstrated in the software, hardware and protocol testing area to be of central
relevance to the definition of test artifacts and are not part of UML.

Being a UML profile, the UML Testing Profile inherits the characteristics of UML:

• Layering: separate concerns across metalayers of abstraction (along the 4-layer metamodel architecture).

• Partitioning: use of packages for coarse- or fine-grained structures.

• Extensibility: profiling the test profile for an adaptation to particular platforms (e.g., J2EE/EJB, .NET/
COM+) and domains (e.g., finance, telecommunications, aerospace).

6.2 Structure of the UML Testing Profile
The proposed UML Testing Profile is organized in four logical groups of concepts:

• Test architecture defining concepts related to test structure and test configuration

• Test data defining concepts for test data used in test procedures

• Test behavior defining concepts related to the dynamic aspects of test procedures

• Test time defining concepts for a time quantified definition of test procedures

The UML Testing Profile is specified by

• giving the terminology for a basic understanding of the UML Testing Profile concepts

• defining the UML 2.0 based metamodel of UML Testing Profile

• defining a MOF model for the pure UML Testing Profile enabling the use of the Testing Profile indepen-
dent of UML

• giving examples to demonstrate the use of the UML Testing Profile for component-level and system-level
tests
18 UML Testing Profile 2.0 Adopted Specification

• outlining mappings from the UML Testing Profile to test execution environments like JUnit and TTCN-3

All sections form the definition of the UML Testing Profile. In case of ambiguities, the UML 2.0 based metamodel
takes precedence.
UML Testing Profile 2.0 Adopted Specification 19

6.3 The Profile

6.3.1 Test Architecture

The Test Architecture section contains the concepts needed to describe the elements which the test cases defined
using the profile. These elements include the test context, which contains a collection of test cases. These cases are
realized by a set of test components. The verdict of a test case is determined by an implementation of the arbiter
interface.

Arbiter

Arbiter is a predefined interface provided with the Testing Profile. The purpose of an arbiter implementation is to
determine the final verdict for a test case. This determination is done according to a particular arbitration strategy,
which is provided in the implementation of the arbiter interface.

The arbiter interface provides two operations for use in verdict setting: getVerdict and setVerdict. The setVerdict
operation is used to provide updated information to the arbiter by a test component regarding the current status of the
test case in which it is participating. Every validation action causes the setVerdict operation on the arbiter
implementation to be invoked (see section 2.3.2 - Test Behavior for more information on validation actions.)

Every test context must have an implementation of the arbiter interface, and the tool vendor constructing tools based
on the Testing Profile will provide a default arbiter to be used if one is not explicitly defined in the test context.

Scheduler

Scheduler is a predefined interface provided with the Testing Profile. The purpose of a scheduler implementation is to
control the execution of the different test components. The scheduler will keep information about which test compo-
nents exist at any point in time, and it will collaborate with the arbiter to inform it when it is time to issue the final
verdict. It keeps control over the creation and destruction of test components and it knows which test components
take part in each test case.

Every test context must have an implementation of a scheduler. Any tool must provide such an implementation which
will be used if there are no explicit realization defined in the test context.

SUT

The SUT is the system under test. As the profile only addresses black-box conformance testing, the SUT provides
only a set of operations via publicly available interface(s). No information on the internal structure of the SUT is
available for use in the specification of test cases using the Testing Profile.

Test Elements

Two test elements are defined in the architecture section: test contexts and test components. A test context contains a
collection of test cases, an instance of the arbiter interface, normally an instance of the SUT, and possibly high level
behavior used to control the execution of the test cases. Test components are the various elements which interact with
the SUT to realize the test cases defined in the test context.
20 UML Testing Profile 2.0 Adopted Specification

Figure 1. Test Architecture

Arbiter (a predefined interface)

Description

Arbiter is a predefined interface defining operations used for arbitration of tests. Test cases, test contexts, and the
runtime system can use realizations of this interface to assign verdicts of tests and to retrieve the current verdict of a
test (verdicts are discussed in section 2.3.2.)

Operations

• getVerdict() : VerdictReturns the current verdict.

• setVerdict(v : Verdict)Sets a new verdict value.

Semantics

The verdict setting semantics is defined by the classifier realizing the arbiter interface. One example of how to
implement the setVerdict operation is the following:

• if a verdict is pass, it can be changed to inconclusive, fail or error only,

• if a verdict is inconclusive, it can be changed to fail or error only,

• if a verdict is fail, it can be changed to error only,

• if a verdict is error, it cannot be changed.

Examples

An example arbiter can be found in Figure 45.

Arbiter
<<interf ace>>

getVerdict() : Verdict
setVerdict(v : Verdict)

Scheduler

startTestCase()
finishTestCase(t : TestComponent)
createTestComponent(t : TestComponent)

<<Interface>>

Scheduler

startTestCase()
finishTestCase(t : TestComponent)
createTestComponent(t : TestComponent)

<<Interface>>

<<stereotype>>

SUT

<<stereotype>>

SUT

0..10..1

<<metaclass>>

Property

<<metaclass>>

Property

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

0..10..10..10..1

<<metaclass>>

StructuredClassifier
<<metaclass>>

StructuredClassifier

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

0..10..10..10..1

<<metaclass>>

StructuredClassifier
<<metaclass>>

StructuredClassifier

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :
UML Testing Profile 2.0 Adopted Specification 21

Scheduler (a predefined interface)

Description

Scheduler is a predefined interface defining operations used for controlling the tests and the test components. None of
the operations of the Scheduler is available to the UML specifier.

Operations

• Scheduler() : The constructor of Scheduler. It will start the SUT and the Arbiter.

• startTestCase() : The scheduler will start the test case by notifying all involved test components.

• finishTestCase(t:TestComponent) : Records that the test component t has finished its execution of this test
case. When all test components involved in the current test case have finished, the arbiter will be notified.

• createTestComponent(t:TestComponent) : Records that the test component t has been created by some
other test component.

Semantics

The implementation of the predefined interface will determine the detailed semantics. The implementation must
make sure that the scheduler has enough information to keep track of the existence and participation of the test
compoenents in every test case. The test context itself will ensure the creation of a scheduler.

Examples

Example protocols for how the scheduler could work is found in Appendix C.

SUT

Description

Extends Property. The SUT stereotype is applied to one or more properties of a classifier to specify that they
constitute the system under test. The features and behavior of the SUT is given entirely by the type of the property to
which the stereotype is applied.

Notation

The notation for SUT is a part with stereotype << SUT>>. It is to be used in the composite structure of a test context.

Examples

Examples of SUTs can be found in Figure 26 and Figure 40.

TestComponent

Description

A test component is a structured classifier participating in test behaviors. A test component is commonly an active
class with a set of ports and interfaces. Test components are used to specify test cases as interactions between a
number of test components. The classifier behavior of a test component can be used to specify low level test behavior,
such as test scripts, or it can be automatically generated by deriving the behavior from all test cases in which the
component takes part.
22 UML Testing Profile 2.0 Adopted Specification

Attributes

• zone : Timezone [0..1]Specifies the timezone to which a test component belongs (Timezones are dis-
cussed in section 2.3.4.)

Semantics

The zone attribute is available at run-time, and GetTimezoneAction and SetTimezoneAction are used to get and set
the timezone in run-time. The run-time representation of the timezone is not specified. The initial timezone of the
component is specified in the model as a tagged value on the zone attribute.

Notation

The notation for test component is a classifier with stereotype <<TestComponent>>.

Examples

Examples of test components can be found in Figure 25 and Figure 38.

TestContext

Description

A structured classifier acting as a grouping mechanism for a set of test cases. The composite structure of a test context
is referred to as test configuration. The classifier behavior of a test context is used for test control.

Attributes

• arbiter : Arbiter [1] Realizes the arbiter interface.

• scheduler : Scheduler [1] Realizes the scheduler interface.

Constraints

[1] A test context must contain exactly one property realizing the Arbiter inter-
face.

[2] A test context must contain exactly one property realizing the Scheduler
interface.

Notation

The notation for test context is a classifier with stereotype <<TestContext>>.

Examples

Examples of test contexts can be found in Figure 20, Figure 25 and Figure 38.
UML Testing Profile 2.0 Adopted Specification 23

6.3.2 Test Behavior

The area of test behavior includes concepts to specify the behavior of tests in the context of a test context (see
“TestContext” on page 23). The public test case operations of a test context are the test cases that represent the
interface towards the testers. In addition there may be other private or protected test cases that are used as utilities
within the concrete realization of the public test cases.

The implementation of test cases is specified by a test behavior. The test behavior may include a number of special
constructs defined by the Testing Profile.

A test case will return a verdict.

Verdict

The verdict is a predefined enumeration datatype which contains at least the values fail, inconclusive, pass, error
indicating how this test case execution has performed. A pass verdict indicates that the test case is successful and that
the SUT has behaved according to what should be expected. A fail verdict on the other hand shows that the SUT is
not behaving according to the specification. An inconclusive verdict means that the test execution cannot determine
whether the SUT performs well or not. An error verdict tells that the test system itself and not the SUT fails.

The final verdict of a test case is determined by an arbiter. Every test context has an arbiter and the tool vendor will
provide a default arbiter if the test context does not explicitly specify one.

During the test execution of the test behavior, each test component will report verdicts to the arbiter, and the arbiter
will produce the final verdict from these intermediate test component specific verdicts when all test components have
finished executing this test case.

The predefined arbiter interface defines setVerdict and getVerdict that may be used directly if the arbiter is described
explicitly. Even the default arbiter can appear explicitly in the specifications of the test behavior.

Furthermore the Testing Profile has defined a few actions that can be applied by test components to define and
observe the verdict. The ValidationAction action is an implicit setVerdict message to the arbiter informing it about an
intermediate (or final) local verdict from that test component.

Default

A UML specification is not necessarily complete. To be complete in this sense means that it specifies every possible
trace of execution. In particular if Interactions are used to specify the behavior, the normal situation is that the
specification is partial only specifying in detail those scenarios that are of particular importance. In a testing context,
however, there is a need to have complete definitions such that the number of erroneous test case executions can be
kept to a minimum.

The Default specifications are units of specification defined in the Testing Profile as a means to make partial
definitions of test components complete in a compact, yet flexible way. The Testing Profile defines mechanisms for
defaults on Interactions as well as State Machines.

The general idea about defaults is the following. A test behavior specification typically describes the normative or
expected behaviors for the SUT. However, if during test execution an unexpected behavior is observed then a default
handler is applied. We have included default behavior definitions on several different levels. If the innermost default
fail to recognize the observed behavior the default of the next level is tried.

The reason for designing with defaults rather than making sure that the main description is complete, is to separate
the most common and normal situations from the more esoteric and exceptional. The distinction between the main
part and the default is up to the designer and the test strategies.

The Testing Profile has chosen to associate the default applications to static behavioral structures. In Interactions we
may apply defaults to interaction fragments, in State Machines to StateMachines, States or Regions, and in Activties
to Actions and Activities. Since each default in an Interaction applies only to one test component, we attach the
defaults on interaction fragments to the intersection between the fragment and the test component.
24 UML Testing Profile 2.0 Adopted Specification

We said above that default behavior is invoked when the main description cannot describe the observed behavior.
More precisely the default mechanism is invoked when a trigger in a State Machine or message reception in an
Interaction or an action in an Activity is not defined by the main description or an explicit runtime constraint is
violated. The point of default invocation will be well-defined as an event occurrence in Interactions or a State (-stack)
in State Machines or an accept event action in Activities.

Whenever a default behavior has executed, there is the question of where the main behavior should resume. There are
several options, and the Testing Profile has chosen to distinguish between these different situations:

• The default execution is considered an interrupt, and the main behavior should resume exactly at the trig-
ger that led to the default interruption. This situation is called repeat.

• The default execution is considered a limited disruption such that the resumption should be after the unit
to which the executed default was attached. This situation is called continue.

• The default execution is considered to conclude the test case execution. The test component should not
return to its main description for this test case. This situation can be considered a special case of the con-
tinue-situation provided that there exists an action called FinishAction which ensures the completion of
the test case execution locally for this test component.

We acknowledge that defaults are often described in the notation that the main description is made in. If the main
specification is written with Interactions the defaults will normally be Interactions. But it is possible with hybrid
descriptions where e.g. some defaults to a main description written in Interactions, are in fact State Machines.

For a more precise and detailed description of the semantics of defaults for Interactions and StateMachines the reader
is referred to the sections on Default and DefaultApplication.

Utilities

The Testing Profile has defined a few action utilities that may come in handy when defining test behavior.

FinishAction is an action that completes the test case for one test component. The action has no implicit effect on
other test components involved in the same test case, but it is recognized the need for other test components to be
notified of the finish such that they may no longer expect messages from the finished test component. This must be
specified explicitly.

LogAction is an action that indicates that information about the test should be recorded for the test component
performing the action.

determAlt is an interaction operator and is a shorthand for an Alternative where the operands are evaluated in
sequence such that it is deterministic which operand is chosen given the value of the guards, regardless of the fact that
the guard for more than one operand may be true.

TestLog

Both a test context and a test case may trace their executions. These traces are behaviors in general. They can be
recorded as test logs and become part of the test specification. A test log has to be attaced to a test context or a test
case such that it is specified from which test context or test case that test log has been taken.
UML Testing Profile 2.0 Adopted Specification 25

Figure 2. Test case and test objective

Figure 3. Defaults

Figure 4. Actions

Figure 5. Deterministic Alt Operator (in Combined Fragements)

TestCase
<<stereoty pe>>

Operation
<<metaclass>>

0..10..1TestObjective
<<stereoty pe>>

0..10..1

Dependency
<<metaclass>>

Behavior
<<metaclass>>

0..10..1

Default
<<stereoty pe>>

0..10..1

Behavior
<<metaclass>>

DefaultApplication
<<stereoty pe>>

Dependency
<<metaclass>>

0..10..1

ValidationAction
<<stereoty pe>> LogAction

<<stereoty pe>>

0..10..1
0..10..1

CallOperationAction
<<metaclass>>

SendObjectAction
<<metaclass>>

Verdict
<<enumeration>>

pass
fail
inconclusive
error

Action
<<metaclass>>

FinishAction
<<stereoty pe>>

0..10..1

InteractionOperator
seq
alt
opt
break
par
strict
loop
region
neg
assert
ignore
consider

<<enumeration>>

determAlt

InteractionOperator
seq
alt
opt
break
par
strict
loop
region
neg
assert
ignore
consider

<<enumeration>>

determAlt
26 UML Testing Profile 2.0 Adopted Specification

Figure 6. Test Log

Default

Description

Extends Behavior. A default is a behavior used to handle unexpected or exceptional messages or events on one test
component.

Semantics

We describe the semantics of defaults differently for Interaction, Activities and State Machines since UML itself
describes the semantics of these concepts in different terms.

For defaults that are described on Interactions, we define the semantics as an algorithm that combines the traces of the
default behavior with the traces of the main description.

The combination algorithm is given here. Assume that there is a main description of an interaction fragment. Its
semantics can be calculated to a set of traces. We project this set of traces onto the test component with the default by
removing all event occurrences of other lifelines from the traces. The result is a set of traces only involving event
occurrences of the test component. This is what we call the main description. Every trace in this set can be split in
three portions: a head, a trigger and a tail. The trigger is normally a receiving event occurrence. One particular trace
can therefore be constructed in portions in several ways. The default is a behavior and is therefore also a set of traces,
each of which can be divided in two portions: a trigger and a tail.

For every portioned trace in the main description, construct more traces, by concatenating main-head with every
default trace provided that main-trigger is different from default-trigger. Retain the information on a trigger that it
was originally a default-trigger by a flag. Finally filter out all traces starting with main-head+trigger-with-default-flag
if there is another trace in the set starting with main-head+main-trigger and the main-trigger is equal to the trigger-
with-default-flag. This makes up the set of traces for the interaction fragment with associated default.

These rules will ensure that main descriptions are considered before defaults, and inner defaults are considered before
outer ones.1

The above rule applies when the default is defined as continue which is the situation if nothing is explicitly specified.
When the default is defined as repeat, the resulting set of traces is more elaborate since the default portions are
repeated a number of times depending on the repetition count of the repeat.

For defaults that are described on Activities, we consider the actions of the Activity together with the actions of the
Default. The simple rule to combine the default with the main description is that the result is the union of all actions,

1. When one package with an associated default imports another package with a default, the
imported default is considered more outer than that of the importing package. Likewise if one class
with a default is a specialization of another with a default, the default of the specialized class is
considered more inner than that of the general class.

<<stereotype>><<stereotype>>

TestLog

0..10..1

<<metaclass>>

Behavior
<<metaclass>>

Behavior

<<stereotype>>

TestLogApplication
<<stereotype>>

<<metaclass>>

Dependency
<<metaclass>>

Dependency

0..10..1
UML Testing Profile 2.0 Adopted Specification 27

but such that initial actions being part of the Default can only occur (and by doing so triggering the execution of that
default) if there are no equal initial accept event in the Activity where the default is attached to.

For defaults that are described on State Machines, we consider the default as well as the State (or Region) applying
the default to be transition matrices. The simple rule to combine the default with the main description is that the result
is the union of all transitions, but such that transitions triggered by a default-trigger can only appear if there are no
transition from the same state with a main-trigger equal to that default-trigger. The start transition of the default is
always removed from the resulting set of transitions.

We may have hybrid defaults where a default may be applied within an Interaction, but defined as a State Machine. In
such cases the default State Machine is considered equivalent to the set of traces that it can produce (or said
differently, the strings that the automata may accept). We may have also hybrid defaults where a default may be
applied within an Interaction or State Machine, but defined as an Activity. In such cases the default Activity is
considered equivalent to the set of traces the Activity can produce (along the Petri-net like semantics of Activities).

If there is no user-defined default that applies, what happens is a Semantic Variation Point.

The Semantic Variation Point may have the following interpretations or other interpretations decided by the tool
vendors.

• Corresponding to UML 2.0 where the reaction to an unexpected trigger (in State Machines) is that the
event is ignored if there is no matching trigger on a transition.

• The event can be deferred.

• The test component may perform a FinishAction. (see “FinishAction” on page 29)

• The activity may conclude.

Notation

A Default is a Behavior and has no special notation. The Testing Profile gives examples of the usage of Interactions
and State Machines as default notations in Figure 30 and Figure 31.

Examples

Examples of defaults can be found in Figure 30, Figure 31 and Figure 32.

DefaultApplication

Description

A default application is a dependency used to apply a default behavior to a unit of testing on a test component.

Constraints

[1] The default application relates a default to a unit of test behavior. That unit
of test behavior must be one of the following: Package, Classifier, Behavior,
InteractionFragment, State, Region or Activity.

[2] The multiplicity of clientDependency is restricted to [0..1].

Semantics

Please refer to the semantics of Default.

Notation

The notation for a default is identical to a Comment, i.e. a rectangle with a bent corner. The text in the comment
28 UML Testing Profile 2.0 Adopted Specification

symbol has the following syntax:

default default-identifier [continue | repeat [repetition-count]]

If nothing is given following the default identifier, continue is assumed. If no repetition-count is given infinity is
assumed.

For Interactions the comment is attached to an intersection point between the interaction fragment and the lifeline of
the test component.

For State Machines, the comment is attached to a state symbol. If the state is divided in regions, the attachment point
designate on which region the default is associated.

Defaults may also be attached to class symbols.

Examples

Examples of DefaultApplication are found in Figure 29 and Figure 31.

determAlt (an interaction operator)

Description

The deterministic alternative is a shorthand for an Alternative where the operands are evaluated in sequence such that
it is deterministic which operand is chosen given the value of the guards, regardless of the fact that the guard for more
than one operand may be true

Semantics

Textually in prefix notation the definition is as follows:

determAlt([guard1]op1) = alt([guard1]op1)

determAlt([guard1]op1, [guard2]op2) = alt([guard1]op1, [else] determAlt([guard2]op2))

In general

determAlt([guard1]op1, [guard2]op2, ..., [guardn]opn) =

alt([guard1]op1, [else]determAlt([guard2]op2,...,[guardn]opn))

Notation

The determAlt uses the notation for combined fragments in interactions: a determAlt in the small compartment in the
upper left corner of the CombinedFragment frame.

Examples

An example determAlt operator can be found in Figure 30.

FinishAction

Description

A FinishAction is an action that determines that the test component will finish its execution of the test case
immediately. This does not mean that the test component is terminated.
UML Testing Profile 2.0 Adopted Specification 29

Semantics

A FinishAction means that the test component will move to a state where it awaits the conclusion of the test case
which is now running. This may mean waiting for other test components to finish their behavior corresponding to that
test case.

In the traces of the test behavior for that test case, there will be no event occurrences on a test component after its
FinishAction.

Notation

The FinishAction is in Interaction diagrams shown as a black rectangle on the lifeline.

In StateMachine diagrams, the FinishAction is shown as a flow branch ending in a black quadrat.

In Activity diagrams, the FinishAction is shown as a black quadrat.

Examples

An example finish action can be found in Figure 30.

LogAction

Description

A log action is used to log entities during execution for further analysis. The logged entities can be simple strings,
complete diagrams, instance values or any other entity of interest.

Semantics

The target of a log action refers to a logging mechanism in the run-time system. The request refers to the information
that is logged. The representation of the logging mechanism is not specified. The LogAction records some snapshot
of the test component.

TestCase

Description

A test case is a behavioral feature or behavior specifying tests. A test case specifies how a set of test components
interact with a SUT to realize a test objective to return a verdict value.

Test cases are owned by test contexts, and has therefore access to all features of the test context, e.g. the SUT and test
components of the composite structure.

A test case always returns a verdict. The verdict may be arbitrated, i.e., calculated by the arbiter, or non-arbitrated,
i.e.,provided by the test behavior.

Constraints

[1] The type of the return result parameter of a test case must be Verdict.

[2] A test case stereotype can not be applied both to a behavior and its specifi-
cation.

[3] If a test case stereotype is applied to an operation, the featuring classifier
must have test context stereotype applied.
30 UML Testing Profile 2.0 Adopted Specification

[4] If a test case stereotype is applied to a behavior, the context of the behavior
must have the test context stereotype applied.

Semantics

The semantics of test cases are given by the semantics of the (test) behavior that realizes it.

Notation

The notation for Test Case is an Operation with stereotype <<TestCase>>.

Examples

Examples of test cases can be found in Figure 21, Figure 29 and Figure 41.

TestObjective

Description

A dependency used to specify the objectives of a test case or test context. A test case or test context can have any
number of objectives and an objective can be realized by any number of test cases or test contexts.

Constraints

[1] The client of a test objective must be a named element with a test case or
test context stereotype applied.

Notation

A test objective is shown using a dashed line with a stick arrowhead pointing from a test case or test context to the
element(s) that represents the objective. The keyword «objective» is shown near the dashed line.

Examples

The test objective in Figure 7 specifies that the objective of the ValidWithdrawal test case is WithdrawMoney use
case.

Figure 7. Test objective

ValidationAction

Description

Validation actions are used to set verdicts in test behaviors by calling the setVerdict operation on the arbiter.

Constraints

[1] The operation of the action must be the setVerdict operation from the arbiter
interface.

[2] The target of the action must refer to a classifier realizing the arbiter inter-
face.

ValidWithdrawal
<<operation, testcase>>

WithdrawMoney
<<usecase>>

<<objective>><<objective>>
UML Testing Profile 2.0 Adopted Specification 31

[3] The argument of the action must be a expression evaluating to a Verdict lit-
eral.

[4] Validation actions can only be used in test cases i.e. a behavior where the
test case stereotype is applied to the behavior or its specification.

Semantics

A ValidationAction calls the setVerdict operation on the arbiter of the test context.

Notation

The notation for a validation action is an ordinary action with the validation action stereotype applied.

If the arbiter is depicted explicitly, a message may be shown describing the communication between the test
component performing the Validation Action, and the arbiter.

Examples

In Figure 8 two validation actions are shown. The left most one contains the pass literal and will always set the
verdict to pass. The right most one contains an expression, and will set the verdict to pass if x is greater than 10 and
fail otherwise.

Figure 8. Validation actions

Verdict (a predefined enumeration)

Description

A verdict is a predefined enumeration specifying the set of possible evaluations of a test. Four literals are defined:
pass, fail, inconclusive, error.

• pass The system under test adheres to the expectations

• inconclusive The evaluation cannot be evaluated to be pass or fail

• fail The system under test differs from the expectation

• error An error has occurred within the testing environment

The Verdict type may be extended by the users with more literals.

pass
<<v alidationAction>>

x > 10 ? pass : fail
<<v alidationAction>>
32 UML Testing Profile 2.0 Adopted Specification

Semantics

The Verdict has no semantics other than that of a plain enumeration. The order of the predefined literals are: error,
fail, inconclusive, pass.

Notation

The predefined literals pass, inconclusive, fail and error are shown as keywords (normally in bold face).

TestLog

Description

Extends behavior. A test log represents the behavior resulting from the execution of a test case or a test context. Also,
it helps to understand potential actions and validations performed by the test context behavior which might impact the
test case verdict. A test case or a test context may have any number of test logs.

Constraints

No constraints for TestLog defined.

Notation

No additional notation for TestLog is defined.

TestLogApplication

Description

A dependency to a test case or a test context.

Constraints

[1] The client of a test log application must be a named element with a test case
or test context stereotype applied.

[2] The supplier of a test log must be a named element with a test log stereotype
applied.

Notation

The notation for a test log is identical to a comment, i.e. a rectangle with a bent corner, with the keyword testlog.

Examples

See example in Figure 9 . ATMSuite_log is a test log of the test context ATMSuite. invalidPIN_log is a test log of the
test case invalidPIN.
UML Testing Profile 2.0 Adopted Specification 33

Figure 9. Example on Test Log

<<TestCase>>
invalidPIN

testlog
invalidPIN_log
testlog
invalidPIN_log

<<TestContext>>
ATMSuite testlog

ATMSuite_log

<<TestCase>>
+ invalidPIN(): Verdict
34 UML Testing Profile 2.0 Adopted Specification

6.3.3 Test Data

The Test Data section contains concepts additional to UML data concepts needed to describe test data. It covers:
wildcards for a flexible specification of test data, data pools, data partitions, data selection, and coding rules for the
specification of test data transmission.

Wildcards

Wildcards are literals and denote an omitted value, any value or any value or omit. These literals can be used
wherever value specifications can be used. They are typically used for a loose specification of data to be expected
from the SUT or provided to the SUT.

UML 2.0 provides LiteralNull, which is used by the Testing Profile for the representation of omitted values.
Wildcards for any value (LiteralAny) and any value or omit (LiteralAnyOrNull) are extensions to UML 2.0.

Data Pool

Test cases are often executed repeatly with different data values to stimulate the SUT in various ways. Also when
observing data, abstract equivalence classes are used to defined sets of allowable values. Typically these values are
taken from data partitions, or lists of explicit values. For this purpose a data pool provides a means for associating
data sets with test contexts and test cases. A data pool is a classifier containing either data partitions (equivalence
classes), or explict values; and can only be associated with either a test context or test components.

Data Partition

A data partition is used to defined an equivalence class for a given type e.g. “ValidUserNames” etc. By denoting the
partitioning of data explicitly we provide a more visible differentiation of data. A data partition is a stereotyped
classifier that must be associated with a data pool.

Data Selector

To facilitate the different data selection strategies and data checking one or more data selectors can be associated with
either a data pool or data partition. Typically, these data selectors are operations that operate over the contained values
or value sets.

Coding Rules

Coding rules are shown as strings referencing coding rules defined outside the Testing Profile such as by ASN.1,
CORBA or XML. Coding rules are basically applied to value specification to denote the concrete encoding and
decoding for these values during test execution. They can also be applied to properties and namespaces in order to
cover all involved values of the property and/or namespace at once.
UML Testing Profile 2.0 Adopted Specification 35

Figure 10. Test data

Coding Rule

Description

A coding rule specifies how values are encoded and/or decoded. Coding rules are defined outside the Testing Profile
and referred to within Testing Profile specifications. Referring to such coding rules allows the specification of both
valid and invalid codings. A simple string is used to refer to a coding scheme(s) e.g. “PER” (Packed Encoded Rules).

Attributes

• coding : StringA string defining the selected coding scheme.

Semantics

If a coding rule is applied to a value specification it specifies how the value(s) are coded. If it is applied to a
namespace it specifies the coding for all values contained within the namespace. If it is applied to a property it
specifies how the values of this property are encoded. If coding rules are applied to several places in a hierarchy, rules
defined at a lower level have precedence over rules defined at a higher level.

Notation

The notation for a coding rule is identical to a comment in UML, i.e. a rectangle with a bent corner. The text in the
comment symbol begins with the keyword coding followed by the string defining the coding scheme. A dashed line
is used to connect the comment symbol to the namespace, property and value specification.

Examples

A coding rule example is given in Figure 26.

CodingRule
<<stereoty pe>>

+ coding : String

ValueSpecification
<<metaclass>>

0..10..1

Namespace
<<metaclass>>

0..10..1

Property
<<metaclass>>

0..10..1

LiteralSpecification
<<metaclass>>

LiteralAny
<<stereoty pe>>

LiteralAnyOrNull
<<stereoty pe>>

0..10..1
0..10..1

<<stereotype>>
DataPartition

<<metaclass>>
Classifier

0..1

<<stereotype>>
DataSelector

<<metaclass>>
Operation

0..1

<<stereotype>>
DataPool

<<metaclass>>
Classifier

0..1

<<metaclass>>
Property

0..1
36 UML Testing Profile 2.0 Adopted Specification

DataPool

Description

The data pool stereotype extends a classifier or property to specify a container for explicit values or data partitions
that are used by test contexts or test cases. A data pool provides an explicit means for associating data values for
repeated tests (e.g. values from a database etc.), and equivalence classes that can be used to defined abstract data sets
for test evaluation.

Constraints

[1] A data pool stereotyped classifier can only be referenced by a test context or
test component.

[2] A data pool stereotyped property can only be applied to a property associ-
ated connected with a test component within the context of a test context
stereotyped classifier.

[3] A datapool stereotyped classifier cannot be associated with both a test con-
text and a test component.

Semantics

The semantics of a data pool are given by the classifier, and contained data partitions, that realises it.

Notation

The notation for data pool is a classifier with stereotype <<DataPool>>

Examples

A data pool example is given in Figure 39

DataPartition

Description

The data partition stereotype extends a classifier to specify a container for a set of values. These data sets are used as
abstract equivalence classes during test context and test case evaluation.

Constraints

[1] A data partition stereotyped classifier can only be associated with a data
pool or another data partition.

Semantics

The semantics of a data partition are given by the classifier that realises it.

Notation

The notation for data partition is a classifier with stereotype <<DataPartition>>

Examples

A data partition example is given in Figure 39
UML Testing Profile 2.0 Adopted Specification 37

DataSelector

Description

The data selector stereotype extends an operation to allow the implementation of different data selection strategies.

Constraints

[1] If a data selector stereotype is applied to an operation, the featuring classifier
must have either a data pool or data partition stereotype applied.

Semantics

The semantics of a data selector are given by the behaviour that realises it.

Notation

The notation for data selector is an operation with stereotype <<DataSelector>>

Examples

A data selector example is given in Figure 39

LiteralAny

Description

LiteralAny is a wildcard specification representing any value out of a set of possible values.

Semantics

If a LiteralAny is used as a literal specification it denotes any possible value out of a set of possible values. If it is
used e.g. for the reception of a message in an interaction, it specifies that the specified message with any value at the
place of the LiteralAny is to be received. If it is used e.g. for the sending of a message in an interaction, it specifies
that this message with a selected value at the place of the LiteralAny is to be sent. The selection of this value can be
done along different selection schemes such as default values or random values.

Notation

The notation for LiteralAny is the question mark character, ‘?’.

LiteralAnyOrNull

Description

LiteralAnyOrNull is a wildcard specification representing any value out of a set of possible values, or the lack of a
value.
38 UML Testing Profile 2.0 Adopted Specification

Semantics

If a LiteralAnyOrNull is used as a literal specification it denotes any possible value out of a set of possible values or
the lack of the value. If it is used e.g. for the reception of a message in an interaction, it specifies that the specified
message with any value at the place of the LiteralAnyOrNull or without that value is to be received. If it is used e.g.
for the sending of a message in an interaction, it specifies that this message with a selected value or without a value at
the place of the LiteralAnyOrNull is to be sent. The selection of this value or the selection of the absence can be done
along different selection schemes such as default values or random values.

Notation

The notation for LiteralAnyOrNull is the star character, ‘*’.
UML Testing Profile 2.0 Adopted Specification 39

6.3.4 Time Concepts

When specifying tests, time concepts are essential to provide complete and precise specifications. The simple time
concepts of UML do not cover the full needs for test specification, and therefore the Testing Profile provides a small
set of useful time concepts.

Timers are used as a means to manipulate and control test behavior, or to assure that a test case terminates properly.
Timezones are used to group and synchronize test components within a distributed test system.

Timer and Timeout

Timer is a predefined interface. Timer propreties may only be owned by active objects. An active class may own
multiple timers. Operations like start, stop and read are defined for the timer interface. By means of the start()
operation, a timer may be started with a certain time value. The predefined time value of a timer has always to be
positive. For example, "start Timer1(now+2.0)" means to start a timer and to stop it at latest in 2 time units,
otherwise it expires. With the stop() operation, an active timer can be stopped. The expiration time of an active timer
can be retrieved by the read() operation. The timer attribute isRunning is a boolean value and indicates whether the
timer is still active or not.

When a timer expires after its predefined time, a special timeout message is generated automatically. It is sent
immediately to the active class which owns the timer. A timeout is only allowed to be sent to the owning class of the
timer.

In order to provide more flexibility, no restriction is made about the visibility of a timer. If a timer is private, the timer
can only be accessed by its owning class. If the timer is public, any other active classes of the test system is allowed
to manipulate the timer.

The graphical syntax for starting, stopping a timer and receiving the timeout message within the owner class of the
timer are adopted from the Message Sequence Charts (MSC) language. Herein, keywords like "start" or "stop" are
not used. Only the name of the timer and its expiration time value need to be specified. When a timer is manipulated
by other classes, common message with the keywords "start" and "stop" are used. No specific syntax is defined for
reading a timer.

Timezone

Timezones serve as a grouping mechanisms for test components within a test system. Each test component belongs at
most to one timezone. Test components in the same timezone have the same perception of time, i.e. test components
of the same timezone are considered to be time synchronized. The time zone of a test component can be accessed
both in the model and in run-time.

Comparing time-critical events within the same timezone is allowed. Comparing time-critical events of different
timezones is a matter of semantic variation point and should be decided by the tool vendor. By default, comparison
between events in two different timezones is illegal.
40 UML Testing Profile 2.0 Adopted Specification

Figure 11. Timer concepts

Figure 12. Timezone concepts

GetTimezoneAction

Description

An action to dynamically retrieve the current timezone of a test component.

CallOperationAction
<<metaclass>>

ReadTimerAction
<<stereoty pe>>

StartTimerAction
<<stereoty pe>>

StopTimerAction
<<stereoty pe>>

0..10..1
0..10..1

0..10..1

ReadStructuralFeatureAction
<<metaclass>>

TimerRunningAction
<<stereoty pe>>

0..10..1

TimeOut
<<stereoty pe>>

TimeTrigger
<<metaclass>>

0..10..1

Message
<<metaclass>>

TimeOutMessage
<<stereoty pe>>

0..10..1

Timer
<<interf ace>>

{readOnly} isRunning : Boolean

start(expire : Time)
stop()
read() : Time

Time
<<primitiv e>>

Duration
<<primitiv e>>

TimeoutAction
<<stereotype>>
TimeOutAction

<<stereotype>>

AcceptEventAction

<< >>

AcceptEventAction

metaclass

0..1

TimeoutAction
<<stereotype>>
TimeOutAction

<<stereotype>>

AcceptEventAction

<< >>

AcceptEventAction

metaclass

0..1

ReadStructuralFeatureAction
<<metaclass>>

SetTimezoneAction
<<stereoty pe>>

GetTimezoneAction
<<stereoty pe>>

WriteStructuralFeatureAction
<<metaclass>>

0..10..1 0..10..1

Timezone
<<primitiv e>>
UML Testing Profile 2.0 Adopted Specification 41

Constraints

[1] The type of the structural feature of the action must be Timezone.

[2] The type of the result must be Timezone.

Semantics

The GetTimezone action can be invoked at run-time by a test component to retrieve its current time zone. The result
is a Timezone value.

Notation

The notation for a get timezone action is an ordinary action with the get timezone action stereotype applied.

SetTimezoneAction

Description

An action to dynamically set the timezone of a test component.

Constraints

[1] The type of the structural feature of the action must be Timezone.

[2] The value must be a Timezone value.

Semantics

The SetTimezone action can be invoked at run-time by a test component to set its current time zone. The value of a
SetTimezone action refers to a Timezone value.

Notation

The notation for a set timezone action is an ordinary action with the set timezone action stereotype applied.

Duration (a predefined type)

Description

Duration is a predefined primitive type used to specify a duration. Durations are used in time constraints and together
with time values. Adding or subtracting a duration to a time value results in a time value. Adding or subtracting two
durations results in a duration.

Time (a predefined type)

Description

Time is a predefined primitive type used to specify concrete time values. Time values are used to express time
constraints and to set timers. A predefined keyword ‘now’ may be used to represent the current time in a system. How
this value is obtained is not specified. The difference between two Time values is a Duration.
42 UML Testing Profile 2.0 Adopted Specification

TimeOut

Description

Extends TimeTrigger. A TimeOut is generated by a timer when it expires and may trigger an associated behavior, e.g.
a transition in a statemachine.

Semantics

A TimeOut is generated by a timer when it expires and may trigger an associated behavior. The TimeOut is placed in
the input pool of the object owning the timer.

Notation

The notation for a TimeOut reuses the notation for TimeTrigger.

TimeOutMessage

Description

Extends Message. A TimeOutMessage is generated by a timer when it expires. The timeout message is sent to the
active class which owns the timer.

Semantics

A TimeOutMessage is generated by a timer when it expires. The timeout message is sent to the active class which
owns the timer.

Notation

The notation for the TimeOutMessage is an empty hourglass. An arrow with a filled head connects the hourglass and
the line where the timeout occurs.

Examples

A timeout message example can be found in Figure 27.

TimeOutAction

Description

Extends AcceptEventAction. A timeout is enabled by a timer when it expires. An activity having the TimeOutAction
as input condition occurs, when the timeout is enabled (and when all further input conditions are satisified).

Semantics

A timeout is enabled when the timer expires. It may trigger an associated activity. The TimeOutAction occurs, when
all input conditions for that activity are satisfied (including the TimeOutAction).

Notation

The notation for the TimeOutAction is an empty hourglass (it reuses the syntax for the accept time event action in
UML Testing Profile 2.0 Adopted Specification 43

activities). An arrow with an unfilled head connects the hourglass and the activity to which the timeout is an input
condition.

Timer (a predefined interface)

Description

A predefined interface specifying features needed to specify a timer.

A timer is owned by an active class and is started with a predefined time of expiration. A timeout is generated
automatically when a timer expires and is sent to the timer owner. A timer can either be private or public. If private,
the timer can only be accessed by its owned active class. If public, anyone with sufficient visibility may access and
manipulate the timer.

Attributes

• isRunning : Boolean Returns true if the timer is currently active,
false otherwise. isRunning is a read only
property.

Operations

• start(expires : Time) Starts the timer, and sets the time of expira-
tion.

• stop() Stops the timer.

• read(): Time Reads the expiration time of the timer.

Constraints

[1] Only active classes may own properties realizing the timer interface.

[2] Timer may only be started with positive expiration time.

Semantics

Timers can be started, stopped and checked by StartTimerAction, StopTimerAction, TimerRunningAction and
ReadTimerAction. A timeout is generated when the timer expires. A public timer is allowed to be started or stopped
by any other active class. Start an active timer means a restart of the timer.

Notation

A timer has no specific notation, but the timer actions used to access the features of the timer has. For details, look in
the sections for StartTimerAction, StopTimerAction and ReadTimerAction.

Examples

An example for a timer definition can be found in Figure 25.

Timezone (a predefined type)

Description

Timezone is a predefined primitive type representing a timezone. Timezones are used to group test components
44 UML Testing Profile 2.0 Adopted Specification

together. Test components belonging to the same timezone, i.e. having the same value on the zone attribute, are
synchronized and can share time values.

Semantics

Timezones are used to group test components together. Test components with the same timezone value constitute a
group and are considered to be synchronized. The semantics of synchronization is not specified. Timezone values can
be compared for equality.

Semantic Variation Point

The comparison of time-critical events from different timezones are illegal by default.

StartTimerAction

Description

An action used to start a timer.

Constraints

[1] The operation of the action must be the start operation of the Timer inter-
face.

[2] The target of the action must refer to a classifier realizing the Timer inter-
face.

[3] The argument of the action must be a Time value.

Semantics

The StartTimerAction starts a timer. The StartTimerAction on a running timer restarts the timer.

Notation

The notation for a StartTimerAction is an empty hourglass. A thin line connects the hourglass and the line where the
timer is started.

Examples

A start timer action example can be found in Figure 27.

StopTimerAction

Description

An action used to stop a timer. Stops the timer if it is currently running, does nothing otherwise.

Constraints

[1] The operation of the action must be the stop operation of the Timer inter-
face.
UML Testing Profile 2.0 Adopted Specification 45

[2] The target of the action must refer to a classifier realizing the Timer inter-
face.

Semantics

The StopTimerAction stops a running timer. The StopTimerAction on a timer that is not running has no effect.

Notation

The notation for a StopTimerAction is a cross. A thin line connects the cross and the line where the timer is stopped.

Examples

A stop timer action example can be found in Figure 27.

ReadTimerAction

Description

An action used to read a timer to obtain the expiration time of a timer.

Constraints

[1] The operation of the action must be the read operation from the Timer inter-
face.

[2] The target of the action must refer to a classifier realizing the Timer inter-
face.

[3] The type of the result must be Time.

Semantics

The ReadTimerAction reads the expiration time of a timer. The ReadTimerAction returns null for timers that are not
running.

Notation

The notation for a read timer action is an ordinary action with the read timer stereotype applied.

TimerRunningAction

Description

An action used to check if a timer is currently running or not. Returns a boolean value, true if the timer is running,
false otherwise.

Constraints

[1] The structural feature of the action must be the isRunning attribute of the
Timer interface.

[2] The type of the result must be Boolean.
46 UML Testing Profile 2.0 Adopted Specification

[3] The target of the action must refer to a classifier realizing the Timer inter-
face.

Semantics

The TimerRunningAction checks the running status of a timer.

Notation

The notation for a timer running action is an ordinary action with the timer running action stereotype applied.
UML Testing Profile 2.0 Adopted Specification 47

6.4 MOF-based Metamodel
This section provides a standalone metamodel for the UML Testing Profile. This metamodel is an instance of the
MOF metamodel, providing the ability for MOF based tools to comply with the Testing Profile standard. The
compliance provided by the MOF-based metamodel is limited to the architecture elements of the Testing Profile
enabling traceability and management of tests assets across tools. Specifically, the behavioral aspects of the testing
profile are left out of the current metamodel as they would not provide any susbstantial improvement over this goal,
while requiring a significant portion of the UML 2.0 metamodel to be included in the standalone metamodel.

We present the MOF metamodel diagrams and provide more detailed information as it pertains to the metamodel. A
majority of the concepts from the Testing Profile are also present in the metamodel. Except for the information
regarding profile alignment with the UML 2 Superstructure Adopted Specification, the information provided in the
profile section (section 2.3) also applies to the MOF based metamodel unless we provide other information and state
that it supersedes the information from the profile section.

Figure 16 (at the end of this section) provides three interfaces that are not technically part of the MOF-based
metamodel. These are used to describe the semantics that should provided by instances of the Timer, Arbiter and
Scheduler metaclasses.

6.4.1 Test Architecture and Test Behavior

The test architecture concepts are related to the organization and realization of a set of related test cases. These
include test contexts, which consist of one or more related test cases. The test cases are potentially realized by test
components, and the verdict of a test case is assigned by an arbiter.

Similarly, test behavior concepts describe the behavior of the test cases that are defined within a test context.
Associated with test cases are test objectives, which describe the capabilities the test case is supposed to validate. Test
cases consist of behavior, which includes validation actions, which update the verdict of a test case, and log actions,
which write information to a test log. Behavioral concepts also include the verdicts that are used to define the test
case outcomes, and default behavior which is applicable when the something other than the specified behavior is
observed.

Figure 13 presents the metamodel diagram for the Test Architecture and Test Behavior concepts.
48 UML Testing Profile 2.0 Adopted Specification

Figure 13. Test architecture and test behavior portion of the MOF-based metamodel

Behavior

Semantics

Behavior represents the dynamic behavior of a test context, test case, or test component in the testing system. In the
MOF metamodel, it is a high level concept that allows the programmed behavior of the aforementioned elements to
be explicitly referenced.

Attributes

• name: String [1] The name of the behavior.

• behaviorDefinition: String [1] The definition of the behavior.

Behavior
name : String
behaviorDefinition : String

0..1

1

TestContext
name : String
testContextDefinition : String

1

0..*

Scheduler
name : String
schedulerDefinition : String

Verdict
pass
fail
inconclusive
error

<<enumeration>>

TestObjective
name : String
testObjectiveDefinition : String

Arbiter
name : String
arbiterDefinition : String

Deployment
name : String
deploymentDefinition : String

SUT
name : String
SUTdefinition : String

TestCase
name : String
testCaseDefinition : String

1

1..*

1

+testObjective1..*

TestLog
name : String
testLogDefini tion : String
verdict : Verdict

1

0..*

1

+executions 0..*

0..* 10..*

+testConfiguration

1

DataPool
name : String
dataPoolDefinition : String

TestComponent
name : String
testComponentDefinition : String

0..*

0..*

+dataPool
0..*

0..*0..*

1

0..*

+arbiter1

0..*

0..*

0..*

+testConfiguration 0..*

0..*

1..*

0..*

+sut

1..*

10..*

+testContext

1

+testCase

0..*

[feature]

0..*

1

+executions0..*

1
0..*

0..*

0..*

+dataPool

0..*

0..* 0..*0..*

+component

0..*

1
+scheduler

0..*1

1

1

+behavior

1

0..1

1

+behavior

0..1

1

1

0..1

1

+behavior 0..1

1

1

1

+behavior

1

1

0..1+behavior
UML Testing Profile 2.0 Adopted Specification 49

TestContext

Semantics

A test context contains a set of zero or more test cases. The test cases are realized within the context by instances of
test components which are deployed and act against the SUT. The test context has behavior, which is used to control
the execution of the test cases that the context owns.

Associations

• testConfiguration:Deployement[0..*] A deployment describing the configu-
ration of test components and the SUT.

• testCase:TestCase[0..*] The collection of test cases owned by the test
context.

• sut:SUT[1..*] The elements representing the system under
test.

• behavior:Behavior[0..*] The behavior of the test context, which is
used to control test case execution.

• component:TestComponent[0..*] The collection of test components that
realize the test cases within the test context.

• arbiter:Arbiter[1] The implementation of the IArbiter interface
used to determine the verdicts of the test
cases within the test context.

• executions:TestLog[0..*] Traced elements representing the logged
information for each execution of a test con-
text.

• dataPool:DataPool[0..*] Data pools associated to the test context.

Attributes

• name: String [1] The name of the test context.

• testContextDefinition: String [1]The definition of the test context (in addi-
tion to the behavior definition of the test con-
text).

SUT

Semantics

The SUT is a black-box from the point of view of the test specification. Thus, test components only have access to the
public operations defined on the interface of the SUT.

Attributes

• name: String [1] The name of the SUT.

• SUTdefinition: String [1] The definition of the SUT.
50 UML Testing Profile 2.0 Adopted Specification

TestComponent

Semantics

Zero or more test components realize the behavior associated with a test case. A test component executes sequences
of stimuli and observations against the SUT. It can also take part in coordination with other components. Whenever a
test component performs a validation action, the arbiter is notified of the outcome so that it may update the test case
verdict if necessary. The timezone is an attribute that is available at runtime.

Associations

• behavior:Behavior[1] The behavior of the test component.

• zone:Timezone [0..1] Specifies the timezone to which a test com-
ponent belongs.

• dataPool:DataPool[0..*] Data pools associated to the test component.

Attributes

• name: String [1] The name of the test component.

• testComponentDefinition: String [1]The definition of the test component (in
addition to the behavior definition of the test
component).

Arbiter

Semantics

An arbiter is an entity within a test context which is capable of determining the final verdict of a test case based on
input from the test components realizing the test case. An instance of the Arbiter metaclass should provide the
operations defined by the IArbiter interface shown in Figure 16.

Associations

• behavior:Behavior[1] The behavior of the arbiter.

Attributes

• name: String [1] The name of the arbiter.

• arbiterDefinition: String [1] The definition of the arbiter (in addition to
the behavior definition of the arbiter).

Scheduler

Semantics

A scheduler is an entity within a test context which controls the running of the test cases. It will keep track of the
creation and destruction of test components and give instructions to the existing test components when to start
executing a given test case. It will communicate with the arbiter when the time is right to produce the verdict for a test
case.

Associations

• behavior:Behavior[1] The behavior of the scheduler.
UML Testing Profile 2.0 Adopted Specification 51

Attributes

• name: String [1] The name of the scheduler.

• schedulerDefinition: String [1] The definition of the scheduler (in addition
to the behavior definition of the scheduler).

TestCase

Semantics

A test case is a set of behavior performed against the SUT and owned by a test context. Test cases have access to all
elements in a test context, including the SUT elements and test components. A test case produces a log containing all
log actions and the verdict.

Associations

• behavior:Behavior[1] The dynamic behavior of the test case.

• executions:TestLog[0..*] Log elements representing the logged infor-
mation for each execution of a test case.

• testObjective:TestObjective[1..*] A test objective is a description of the
capability being validated by the test case.

• testContext:TestContext[1] The test context to which the test case
belongs.

Attributes

• name: String [1] The name of the test case.

• testCaseDefinition: String [1] The definition of the test case (in addition to
the behavior definition of the test case).

TestObjective

Semantics

A test objective is a dependency to another element which describes the purpose of a test case. Test objectives have
no dynamic behavior, and only serve to describe the rationale for a test case.

Attributes

• name: String [1] The name of the test objective.

• arbiterDefinition: String [1] The definition of the test objective.

Verdict

Verdict is defined exactly as in profile section 2.3
52 UML Testing Profile 2.0 Adopted Specification

Deployment

Semantics

The deployment represents a configuration of test components and the SUT. It specifies the execution architecture for
a test context. In the profile, deployment concepts and capabilities come directly from the UML 2 Superstructure
Adopted Specification.

TestLog

Semantics

The log represents a snapshot of the execution of a test case. It contains deployment information, the ordered set of
log actions performed during the test case, and the final verdict.

Associations

• testConfiguration:Deployment[1] The deployment information for the test
case producing this log.

Attributes

• name: String [1] The name of the test log.

• testLogDefinition: String [1] The definition of the test log (in addition to
the behavior definition of the test log).

• verdict:Verdict [1] The final verdict achieved by the test case
producing this log.

6.4.2 Test Data

The test data concepts provide the capabilities to specify data values, associate specific encodings with data values,
and specify wildcard such as “?” (any value) and “*” (any value including none). These rudimentary features are all
that are required in the Testing Profile, as higher level constructs such as data pools can be defined as test components
within the standard or provided by specific tool implementations.
UML Testing Profile 2.0 Adopted Specification 53

Figure 14 is a diagram illustrating the data concepts.

Figure 14. Test data portion of the MOF-based metamodel

InstanceValue

Semantics

An instance value is a specification of a data instance for use in the test context. It is based explicitly on the
InstanceValue concept form the UML 2 Superstructure Adopted Specification.

Associations

• coding:CodingRule [1..*] The set of coding rules which are applied to
the instance value.

• literalAny:LiteralAny [0..*] A “?” character indicating that the instance
value can be any non-null value.

LiteralAny LiteralAnyorNull

CodingRule
- coding : String

InstanceValue

0..*

1

+literalAny 0..*

+value 1

0..*

1

+literalAnyOrNull0..*

+value1

1

1..*

+value 1

+coding 1..*

LiteralNull
0..*

1

0..* +literalNull

1 +value

DataPool
name : String
dataPoolDefinition : String

DataPartition
name : String
dataPartitionDefinition : String

1

0..*

1

+partition

0..*

DataSelector
name : String
dataSelectorDefinition : String

10..* 1

+selector

0..*

1

0..*

1

+selector
0..*
54 UML Testing Profile 2.0 Adopted Specification

• literalAnyOrNull:LiteralAnyOrNull [0..*] A “*” character indicating that
the instance value can be any value (includ-
ing null.)

• literalNull:LiteralNull[0..*] A “-” character indicating that the instance
value can be null.

CodingRule

Semantics

A rule which specifies how an instance value is to be encoded. As defined in the profile section 2.3, it contains a
string attribute which specifies the coding scheme

Associations

• value: InstanceValue [1] The instance value to which the coding rule
applies.

LiteralAny

Semantics

A “?” symbol specifying that any value except null may be associated with a particular instance value.

Associations

• value: InstanceValue [1] The instance value to which the specification
applies.

LiteralAnyOrNull

Semantics

A “*” symbol specifying that any value (including null) can be associated with a particular instance value.

Associations

• value: InstanceValue [1] The instance value to which the specification
applies.

LiteralNull

Semantics

A “-” symbol specifying that the absence of a value for a particular instance value.

Associations

• value: InstanceValue [1] The instance value to which the specification
applies.
UML Testing Profile 2.0 Adopted Specification 55

DataPool

Semantics

Zero or more data pools can be associated to test contexts or test components. Data pools specify a container for
explicit values or data partitions. They provide an explicit means for associating data values for repeated tests (e.g.
values from a database etc.), and equivalence classes that can be used to defined abstract data sets for test evaluation

Associations

• partition:DataPartition[0..*] A set of data partitions defined for this data
pool.

• selector:DataSelector[0..*] A set of data selectors defined for this data
pool.

Attributes

• name: String [1] The name of the data pool.

• dataPoolDefinition: String [1] The definition of the data pool.

DataPartition

Semantics

Zero or more data partition can be defined for a data pool. A data partition is a container for a set of values. These
data sets are used as abstract equivalence classes within test context and test case behaviors.

Associations

• selector:DataSelector[0..*] A set of data selectors defined for this data
partition.

Attributes

• name: String [1] The name of the data partition.

• dataPartitionDefinition: String [1]The definition of the data partition.

DataSelector

Semantics

Zero or more data selectors can be defined for data pools or data partitions. Data selectors allow the definition of
different data selection strategies.

Attributes

• name: String [1] The name of the data selector.

• dataSelectorDefinition: String [1]The definition of the data selector.

6.4.3 Time

As discussed in section 2.3.4, key time concepts are required to allow the specification of complete and precise test
56 UML Testing Profile 2.0 Adopted Specification

contexts and components. Within the MOF-aligned metamodel, we provide a subset of the timing concepts defined in
the profile. This is because many of the actions defined in the profile are not required in MOF-aligned model as they
can be implemented directly in tools realizing the metamodel. The concepts included in the model include two
primitive types (time and duration), as well as timers and timezones.

Figure 15 illustrates the time concepts for the metamodel.

Figure 15. Time portion of the MOF-based metamodel

Time

Time is defined exactly as in the profile section 2.3.4.

Duration

Duration is defined exactly as in the profile section 2.3.4.

Timer

Semantics

A timer is an element which can provide information regarding time to a test component. It can be started, stopped,
queried for the current time, and queried to determine whether or not it is running. Instances of the Timer metaclass
should provide these capabilities by implementing the ITimer interface defined in Figure 16.

Timezone

Semantics

Timezone is a primitive type that serves as a grouping concept for test components. Test components that are

Duration
< < prim itive> >

Tim e
< < prim itive> >

Tes tCom ponent

Tim e r

Tim ezone

+ getTim ezone()
+ s etTim ezone()

< < prim it ive> >

0..* 0..1

+ co mpon ent

0..*
+ zone

0..1
UML Testing Profile 2.0 Adopted Specification 57

associated with the same timezone are synchronized and can share time values.

Associations

• component:TestComponent [0..*] The set of test components belonging to
the timezone.

Figure 16. Predefined interfaces for implementing timer, arbiter and scheduler

ITimer
- isRunning : Boolean

+ start(expire : Time)
+ stop()
+ read() : Time

<<Interface>>

IArbiter

+ getVerdict() : Verdict
+ setVerdict(v : Verdict)

<<Interface>>

+ startTestCase()
+ finishTestCase(t:TestComponent)
+ createTestComponent(t:TestComponent)

IScheduler
<<Interface>>ITimer

- isRunning : Boolean

+ start(expire : Time)
+ stop()
+ read() : Time

<<Interface>>

IArbiter

+ getVerdict() : Verdict
+ setVerdict(v : Verdict)

<<Interface>>

+ startTestCase()
+ finishTestCase(t:TestComponent)
+ createTestComponent(t:TestComponent)

IScheduler
<<Interface>>
58 UML Testing Profile 2.0 Adopted Specification

6.5 Examples
This section contains an example of using the Testing Profile to specify test cases, from unit level, to integration and
system level, to cross-enterprise system level. The example is motivated using an interbank exchange scenario in
which a customer with an European Union bank account wishes to deposit money into that account from an
Automated Teller Machine (ATM) in the United States.

The diagram in Figure 17 provides an overview of the architecture of the system. The ATM used by this customer
interconnects to the European Union Bank (EU Bank), through the SWIFT network, who plays the role of a gateway
between the logical networks of the US Bank and the EU Bank.

Figure 17. Overview on the InterBank Exchange Network

The packages for this example are shown in Figure 18. They are used in the subsequent sections.

Figure 18. Packages for the InterBank Exchange Network

6.5.1 Money Example

This subsection illustrates the use of the Testing Profile to define unit test level test cases. It reuses and extends the
Money and MoneyBag classes provided as examples of the now famous JUnit test framework (see www.junit.org). In
this scenario, these classes are used by the ATM to count the bills entered by a user when making a deposit in cash.

SWIFTNet SWIFTBureau

US Bank
SSSB Client

Clearing
Company

OTC Market Makers

EU Bank
SSSB Client

EU Bank
Network

US Bank
Network

SWIFTBureau

ATMATM HWControl

BankBank

«import»

«import»

MoneyMoney

«import»

SWIFTNetwork

«import»

«import»
UML Testing Profile 2.0 Adopted Specification 59

As illustrated by the figure, these classes belong to the Money package.

Figure 19. Money structure

The Test Objective is given as follows:

• Verify that the Money and MoneyBag classes are appropriately counting the bills added by the user:

• When bills from the same currency are entered

• When bills from different currencies are entered

The following diagram illustrates the test package. In this example, no test components are used, but rather the test
behavior is implemented using the behavior of the Test Context classifier. The System Under Test is limited to the
classes defined in the Bank package. As shown in the following diagram, the test package includes only the Test
Context.

Figure 20. SWIFTUnitTest package

The first Test Objective primarily consists in exercising the Money interfaces and ensuring that the Money class
returns an object of type Money with the correct amount and currency. The following diagram highlights the behavior

Money

IMoney
+ fAmount : Integer
+ fCurrency : String

+ equals(m:Object): Boolean

Money
+ fAmount : Integer
+ fCurrency : String

+ Money(a: Amount, c:String)
+ add(m: Money): IMoney

Money
+ fAmount : Integer
+ fCurrency : String

+ Money(a: Amount, c:String)
+ add(m: Money): IMoney

MoneyBag
fAmount : Integer
fCurrency : String

+ contains(m: IMoney): Boolean
+ add(m: IMoney): IMoney

MoneyBag
fAmount : Integer
fCurrency : String

+ contains(m: IMoney): Boolean
+ add(m: IMoney): IMoney

SWIFTUnitTest

«TestContext»
MoneyTest

<<Test Case>>
addSameMoney():Verdict
addDifferentMoney():Verdict

«TestContext»
MoneyTest

<<Test Case>>
addSameMoney():Verdict
addDifferentMoney():Verdict

MoneyMoney
<<import>>
60 UML Testing Profile 2.0 Adopted Specification

of the addSameMoney behavioral feature.

Figure 21. Unit test behavior for addSameMoney

The second Test Objective consists in exercising the Money interfaces and ensuring that the Money class returns an
object of type MoneyBag with the currencies of the two Money objects that were added during the call to the add
operation. The following diagram highlights the behavior of the addDifferentMoney behavioral feature.

sd addSameMoney():Verdict

return passreturn pass

MoneyTest

«sut»
money1:Money

Money(20, ”USD”)

add(money2)

add (-) : new Money (70, ”USD”)

«sut»
money2:Money

Money(50, ”USD”)
UML Testing Profile 2.0 Adopted Specification 61

Figure 22. Unit test behavior for addDifferentMoney

sd addDifferentMoney():Verdict

MoneyTest

«sut»
money1:Money

Money(20, ”USD”)

«sut»
money2:Money

Money(50, ”EUR”)

return passreturn pass

«sut»
bag1:MoneyBag

contains(money1)

contains (-) : true

contains(money2)

contains (-) : true

add(money2)

add(money1)
62 UML Testing Profile 2.0 Adopted Specification

6.5.2 Bank ATM Example

This part of the example illustrates how the Testing Profile can be used for specifying tests at integration and system
levels. The purpose of these tests is to verify the logic of the ATM machine when a user initiates a transaction to
deposit and wire money to an account in another part of the world. This includes authorizing a card and a pin-code
and initiating communication with the bank network. The hardware, bank and network connections are all emulated,
since we are testing the logic of the ATM machine itself only.

The ATM logic is specified in the ATM package. The ATM package imports the HWControl package where the
interfaces to the hardware is specified, and the Bank package, where the interface to the bank is specified. Figure 23
below shows the packages involved in this part of the example.

Figure 23. ATM and related packages.

Figure 24 shows the public parts of these packages. The BankATM class controls the ATM logic and is the focus of
our tests. It implements the IATM interface for the control logic and relies on a number of interfaces to communicate
with the hardware and the bank.

Since the hardware and the bank is emulated, only the interfaces of the HWControl and Bank packages used by the
BankATM class are shown.

Figure 24. Elements of the system to be tested

ATMATM HWControl

BankBank

«import»

«import»

ATM

BankATM

IATM IHardware

atmPort

IBank

bankCom

«interface»
IATM

withdraw(amount : IMoney) : Boolean
deposit(amount : IMoney) : Boolean
isPinCorrect(c : Integer) : Boolean
selectOperation(op : OpKind) : Boolean
storeCardData(c : CardData)
storeSWIFTNumber(id : SwiftId, account : String)

«interface»
IATM

withdraw(amount : IMoney) : Boolean
deposit(amount : IMoney) : Boolean
isPinCorrect(c : Integer) : Boolean
selectOperation(op : OpKind) : Boolean
storeCardData(c : CardData)
storeSWIFTNumber(id : SwiftId, account : String)

«enumeration»
OpKind

withdrawMoney
getBalance
wireMoney

CardData
pinCode : Integer
cardNumber : String

isPinCorrect(c : Integer) : Boolean

«interface»
IBank

debitAccount(accnt : String, amount : IMoney) : Boolean
depositAccount(account: String, amount: IMoney) : Boolean
findAccount(c : CardData) : String
wireMoney(amount : IMoney, target: SwiftId, account: String): Boolean
checkCredentials(account : String) : Boolean

«interface»
IBank

debitAccount(accnt : String, amount : IMoney) : Boolean
depositAccount(account: String, amount: IMoney) : Boolean
findAccount(c : CardData) : String
wireMoney(amount : IMoney, target: SwiftId, account: String): Boolean
checkCredentials(account : String) : Boolean

Bank

«interface»
IHardware

getStatus() : Boolean
ejectMoney(amount : IMoney)
acceptMoney() : IMoney
display (message : String)
ejectCard() : Boolean
getTransactionInfo(inout account : String, inout bic : SwiftId)

HWControl
UML Testing Profile 2.0 Adopted Specification 63

Figure 25. The ATMTest package

ATMTest package in Figure 25 contains all model elements necessary to fully specify our tests. ATMTest imports the
ATM package to get access to the elements to be tested. ATMTest consists of one test context, ATMSuite, and two
test components, BankEmulator and HWEmulator. ATMSuite has three testcases: validWiring(), invalidPIN() and
authorizeCard(). Two have public visibility and one private. The test components implements the interfaces of the
HWEmulator and BankNetwork packages and will serve as emulators for these packages.

Figure 26. The composite structure of the ATMSuite test context

The test configuration, i.e. the composite structure of the test context, is shown in Figure 26 above. The test
configuration specifies how the SUT, a number of test components and one utility part are used in a particular test
context. Ports and connectors are used to specify possible ways of communication. Each test configuration must
consist of at least one SUT.

The ATMSuite composite structure consists of one SUT, two test components and one utility part. The SUT, atm, is
typed by the BankATM class from the ATM package. The SUT is connected to two parts typed by test components,
be and hwe. In addition, there’s a utility part, current, used by hwe. A coding rule is applied to the ports of the atm and
the be to show that the communication between these properties is encrypted.

ATMTest

«testContext»
ATMSuite

-verdict : Verdict
-amount : IMoney
-targetBank : SwiftId
-targetAccount : String
-sourceAccount : String

«testCase» +validWiring() : Verdict
«testCase» +invalidPIN() : Verdict
«testCase» -authorizeCard() : Verdict

*

-accounts«testComponent»
BankEmulator

IBank

ATM
«import»

«interface»
IAccount

-pinOk : Boolean
-enteredPIN : String
-message : String
-t1 : Timer

«testComponent»
HWEmulator

hwCom
IATM

IHardware

«sut»
atm : BankATM

hwe : HWEmulator

be : BankEmulator

atmPort

bankCom

current : CardData

«testContext»
class ATMSuite

coding
”Encrypted”
coding
”Encrypted”
64 UML Testing Profile 2.0 Adopted Specification

Figure 27. The behavior of the invalidPIN test case

The sequence diagram in Figure 27 specifies the behavior for the invalidPIN() test case. The test objective of this test
case is:

Verify that if a valid card is inserted, and an invalid pin-code is entered, the user is prompted to re-enter the pin-code.

Behaviors of test contexts and test cases can be specified using any UML behavior, but in this case an interaction is
used. When used as a test behavior, the interaction specifies the expected sequence of messages. During a test case,
validation actions can be used to set the verdict. Validation actions use an arbiter to calculate and maintain a verdict
for a test case. Test cases always return verdicts. This is normally done implicitly through the arbiter and doesn’t have
to be shown in the test case behavior. In the example above, an arbitrated verdict is returned implicitly.

The diagram above also illustrates the use of a timer and a duration constraint. The timer is used to specify how long
the hardware emulator will wait for the display(“Enter PIN”) message. Once the message has been received, the timer
is stopped. If the message does not appear within the time limit, the timer times out and the specification is violated.
In this example the timeout is handled in the default of this test component, see Figure 31 for details. The timer t1 is
an attribute of the HWEmulator test component, see Figure 25.

sd invalidPIN

storeCardData(current)

«sut»
atmhwe

display(”Enter PIN”)

isPinCorrect(invalidPIN)

isPinCorrect : false

«validationAction»
pass

current

{readOnly} Integer invalidPIN; { current.isPinCorrect(invalidPIN) == false }

isPinCorrect(invalidPIN)

display(”Invalid PIN”)

display(”Enter PIN again”)

isPinCorrect : false

t1(2.0)

t1

{0 .. 3}
UML Testing Profile 2.0 Adopted Specification 65

Figure 28. Classifier behavior for ATMSuite

Execution of the test cases of a test context, commonly referred to as test control, can be specified in the classifier
behavior of the test context. Figure 28 above shows an example of this using an interaction overview diagram.
Another way to control the execution is to call the test cases just as ordinary operations from outside of the test
context.

Figure 29. The validWiring test case

The validWiring test case is slightly more elaborated, with the following test objective:

Verify that when a user with the right credentials initiates a wiring of US dollars to his European account the

sd ATMSuite

verdict = invalidPIN

[verdict == fail]
[verdict == pass]

verdict = validWiring

refref

refref

sd validWiring

hwe be

refref
authorizeCard

selectOperation(wireMoney)

atmPort bankCom

checkCredentials : true

checkCredentials(sourceAccount)

findAccount(current)

sourceAccount = findAccount

display(”Enter SWIFT and account
numbers”)

display(”Deposit money”)

wireMoney(amount, targetBank, targetAccount)

wireMoney : true

acceptMoney()

amount = acceptMoney

display(”Transaction Accepted”)

selectOperation : true

«sut»
atm

default
DisplayDefault
default
DisplayDefault

«validationAction»
pass

getTransactionInfo(account=targe
tBank, bic=targetAccount)

getTransactionInfo(targetBank=
account, targetAccount=bic)
66 UML Testing Profile 2.0 Adopted Specification

transaction is correctly handled

One of the other test cases in the context, authorizeCard() is referenced through an interaction occurrence. This
illustrates how test case definitions can be reused within a test context. General ordering is used to illustrate how to
sequence messages between two test components. Finally, the default concept is introduced.

A default specifies how to respond to messages or events not specified in the original test case behavior. Defaults are
typically used for exception handling. To include all possible message sequences in the test case behavior would be
cumbersome. Defaults can be applied on many different levels, e.g. test components and upon reception of individual
messages.

Figure 30. Default for individual message reception

Figure 30 specifies the DisplayDefault, a default for the reception of the display(“Transaction accepted”) message in
the validWiring test case. The DisplayDefault describes what happens when a different message is received. An
inconc verdict is assigned if a display message is received with a parameter different to the expected one. Otherwise,
fail is assigned and the test component finishes.

Figure 31. A statemachine default applied to a test component

sd DisplayDefault

self

determAlt display(*)

*

«validationAction»
inconc

«validationAction»
fail

sd DisplayDefault

self

determAlt display(*)

*

«validationAction»
inconc

«validationAction»
fail

*

t1 / setverdict(fail);

display(msg) /
if (msg == ”Connection lost”) then

setverdict(inconc);
else

setverdict(fail);

ejectCard /
setverdict(fail)

hweDefault

*

t1 / setverdict(fail);

display(msg) /
if (msg == ”Connection lost”) then

setverdict(inconc);
else

setverdict(fail);

ejectCard /
setverdict(fail)

hweDefault

-pinOk : Boolean
-enteredPIN : String
-message : String
-t1 : Timer

«testComponent»
HWEmulator

hwCom
IATM

default
HWEmulator::hweDefault

IHardware

-pinOk : Boolean
-enteredPIN : String
-message : String
-t1 : Timer

«testComponent»
HWEmulator

hwCom
IATM

default
HWEmulator::hweDefault

IHardware
UML Testing Profile 2.0 Adopted Specification 67

Figure 31 specifies and applies a default to a single test component, the HWEmulator test component. This default
applies to all test behaviors owned by the test component.

Figure 32. Package level default

In some cases it is necessary to apply a default to many or all elements in a test model. Assume, for example, that you
need to adjust the UML semantics for events. Unless explicitly deferred, events will be discarded on reception. This
might not be desirable from a testing perspective where all events are considered important. Figure 32 shows how this
can be accomplished by defining a default with the desired behavior and applying it to a package. Defaults applied to
a package will apply to all test components in the package and therefore, they often need to be very general in their
specification. The ATMTestDefault contains wildcards to be applicable to all test components in the package. The
star ‘*’ in the state symbol means ‘any state’, and the star before the defer statement means any signal.

For any test behavior, several defaults may be applied at the same time. In our example when receiving the
display(“Transaction Accepted”) message, three defaults are active: the DisplayDefault, the hweDefault and the
ATMTestDefault. If one default does not handle a message, the next default is checked, and so on. The evaluation
order is given by the scope on which the defaults are applied. Evaluation starts at the innermost scope and traverses
outwards.

Figure 33. Test component behavior

In many cases, there’s a need to specify the detailed behavior of individual test components, e.g. for test generation

*

* / defer

ATMTestDefault

default
ATMTestDefault ATMTest *

* / defer

ATMTestDefault

default
ATMTestDefault
default
ATMTestDefault ATMTestATMTest

WaitMessage

storeCardData()

displayMessage(message)

[message == ”Enter PIN”] [else]

pinOk := isPinCorrect(enteredPIN);

[pinOK == false]
[pinOK == true]

«validationAction»
pass

«validationAction»
fail

coding
”PIN is Encrypted”

HWEmulator

WaitMessage

storeCardData()

displayMessage(message)

[message == ”Enter PIN”] [else]

pinOk := isPinCorrect(enteredPIN);

[pinOK == false]
[pinOK == true]

«validationAction»
pass

«validationAction»
fail

coding
”PIN is Encrypted”
coding
”PIN is Encrypted”

HWEmulator
68 UML Testing Profile 2.0 Adopted Specification

purposes. This is done by specifying the classifier behavior of a test component. Statemachine diagrams are suitable
for this. Figure 33 contains parts of the test behavior for the HWEmulator test component. (The part corresponding to
the invalidPIN test case.)
UML Testing Profile 2.0 Adopted Specification 69

6.5.3 Money Transfer Example

This subsection contains an example of using the Testing Profile to specify cross-enterprise system level test cases.
The example is motivated using an interbank exchange scenario in which a customer with an European Union bank
account wishes to deposit money into that account from an Automated Teller Machine (ATM) in the United States.
Likewise, we wish to emulate the same scenario being initiated from an ATM in Europe. This example builds on the
unit level and sub-system level examples covered in the previous two sections. This example illustrates several key
concepts from the Testing Profile, including: test configuration (with multiple components), test control, arbiter,
validation actions, data pools, as well as concepts from load/stress testing. The load/stress test objective states that a
combination of European and US initiated transactions must behave correctly and 98% of them must be completed
within 4 seconds.

Figure 34. Interbank Exchange Network overview

Five packages are used to structure the classes and interfaces for the example. Three of these are known from the
previous examples (ATM, Money, and HWControl). Two additional packages are introduced that are unique to this
example (BankNetwork and SWIFTNetwork). Figure 35 illustrates the package structure of the system under test.

Figure 35. Package structure of the Interbank Exchange Network

Figure 36 illustrates the contents of the Bank package, while Figure 37 illustrates of the SWIFT package. The IBank
interface provides operations to find, credit, and debit accounts, to check credentials, and to wire money from one
account to another. The IAccount interface provides operations to credit and debit accounts, and to check the balance
of an account. The ISWIFT interface provides an operation to transfer a given amount from a source account to a
target account. These interfaces are the focus of this subsection, although the example also uses interfaces and classes

SWIFTNet SWIFTBureau

US Bank
SSSB Client

Clearing
Company

OTC Market Makers

EU Bank
SSSB Client

EU Bank
Network

US Bank
Network

SWIFTBureau

SWIFTNet SWIFTBureau

US Bank
SSSB Client

Clearing
Company

OTC Market Makers

EU Bank
SSSB Client

EU Bank
Network

US Bank
Network

SWIFTBureau

ATM HWControl

Bank

«import»

«import»

Money

«import»

SWIFTNetwork

«import»

«import»

ATMATM HWControl

BankBank

«import»

«import»

MoneyMoney

«import»

SWIFTNetwork

«import»

«import»
70 UML Testing Profile 2.0 Adopted Specification

from the previous two examples.

Figure 36. BankNetwork

Figure 37. SWIFTNetwork

Figure 38 is a package illustrating the test architecture for the example. The system under test is scoped to be the
SWIFT network, the US and European Bank Networks, and ATM systems. Two test components provide the
capability to execute and verify that the transfer occurred correctly: TransactionController and LoadManager. The
TransactionController drives the ATMs and is used to represent the accounts for both the US and EU banks. These
allow verification that transferred money is debited from the US account and deposited to the EU accounts and vice-
versa. They also provide verification that an invalid transfer does not result in the same debit/credit cycle. The
LoadManager controls the workload of the test case. Additionally, a specialization of Arbiter is provided that
supports the necessary capabilities to do load testing. Two additional types are also provided for users as utilities:
DataPool provides data management and access services, and TrxnData contains the data provided by the DataPool

«interface»
IBank

debitAccount(accnt : String, amount : IMoney) : Boolean
depositAccount(account: String, amount: IMoney) : Boolean
findAccount(c : CardData) : String
wireMoney(amount : IMoney, target: SwiftId, account: String): Boolean
checkCredentials(account : String) : Boolean

Bank

Bank

IBank

bankPort

ISWIFT

swiftPort«interface»
IAccount

credit(amount: IMoney): Boolean
debit(amount: IMoney): Boolean
checkBalance(): IMoney

IAccount

accountPort

«interface»
IBank

debitAccount(accnt : String, amount : IMoney) : Boolean
depositAccount(account: String, amount: IMoney) : Boolean
findAccount(c : CardData) : String
wireMoney(amount : IMoney, target: SwiftId, account: String): Boolean
checkCredentials(account : String) : Boolean

«interface»
IBank

debitAccount(accnt : String, amount : IMoney) : Boolean
depositAccount(account: String, amount: IMoney) : Boolean
findAccount(c : CardData) : String
wireMoney(amount : IMoney, target: SwiftId, account: String): Boolean
checkCredentials(account : String) : Boolean

Bank

Bank

IBank

bankPort

ISWIFT

swiftPort«interface»
IAccount

credit(amount: IMoney): Boolean
debit(amount: IMoney): Boolean
checkBalance(): IMoney

«interface»
IAccount

credit(amount: IMoney): Boolean
debit(amount: IMoney): Boolean
checkBalance(): IMoney

IAccount

accountPort

«datatype»
SwiftId

SWIFTNetwork

«interface»
ISWIFT

transfer(sourceAccnt : String, targetAccnt : String, amount : IMoney) : Boolean

SwiftNetwork

ISWIFT

us eu

IBank ISWIFT IBank

«datatype»
SwiftId

SWIFTNetwork

«interface»
ISWIFT

transfer(sourceAccnt : String, targetAccnt : String, amount : IMoney) : Boolean

SwiftNetwork

ISWIFT

us eu

IBank ISWIFT IBank
UML Testing Profile 2.0 Adopted Specification 71

for performing a transaction.

Figure 38. SWIFTTest package

Figure 39 is a package illustrating the data pool, data partition and data selector concepts. The TestData package
defines for TrxnData the data pool DataPool and the data partitions EUTrxnData and USTrxnData. The data
partitions have two data samples defined each. Data selectors getEUTrxnData, getUSTrxnData and
getDistributionInterval are used for the access to the data pool and the data partitions.

Figure 39. TestData package

Figure 40 illustrates the internal structure of the TestContext. This shows how the SUT components and the test
components are connect. ATMs are connected to the US & EU banks, both of which are connected via the SWIFT
network. The TransactionController is connected to the ATM components and both the US and EU banks. The
LoadManager is connected to the TransactionController and serves to ensure that the various properties of the load
test are managed correctly. The LoadArbiter is connected to the LoadManager and TransactionController test

SWIFTTest

«testContext»
SWIFTSuite

-numUsers:Integer = 0
-pc:Float

«testCase» -runUSTrxn(p:USTrxnData):Verdict
«testCase» -runEUTrxn(p:EUTrxnData):Verdict
«testCase» -Wiring():Verdict
«testCase» +loadTest
(maxUsers:Integer,p:Float): Verdict

«testComponent»
loadManager

-initUSbal: IMoney
-initEUbal: IMoney

«testComponent»
TransactionController

IHardware

ATM
«import»

IATM

«interface»
Arbiter

LoadArbiter

-numPass:Integer
-numOther:Integer

IAccount

Bank
«import»

SwiftNetwork
«import»

completed()
TestData

«import»

default
TransactionController::tcDefault

SWIFTTest

«testContext»
SWIFTSuite

-numUsers:Integer = 0
-pc:Float

«testCase» -runUSTrxn(p:USTrxnData):Verdict
«testCase» -runEUTrxn(p:EUTrxnData):Verdict
«testCase» -Wiring():Verdict
«testCase» +loadTest
(maxUsers:Integer,p:Float): Verdict

«testComponent»
loadManager

-initUSbal: IMoney
-initEUbal: IMoney

«testComponent»
TransactionController

IHardware

ATM
«import»

IATM

«interface»
Arbiter

LoadArbiter

-numPass:Integer
-numOther:Integer

IAccount

Bank
«import»

SwiftNetwork
«import»

completed()
TestData

«import»

default
TransactionController::tcDefault

TestData

*
TrxnData

account : String
balance: Integer
amount: IMoney
cardData: CardData

<<<DataPartition>>
EUTrxnData

:EUTrxnData[1]

account = ”Fred Bloggs”
balance = 10,000
amount = 3500
cardData = Card1

:EUTrxnData[2]

account = ”Dr Watson”
balance = 10,000
amount = 20
cardData = Card2

:USTrxnData[1]

account = ”Joe Senior”
balance = 10,000
amount = 3500
cardData = Card3

:USTrxnData[2]

account = ”Barbara Wall”
balance = 10,000
amount = 20
cardData = Card4

<<DataSelector>>
getEUTrxnData():TrxnData

*

«DataPool»
DataPool

<<DataSelector>>
getDistributionInterval():Integer

<<<DataPartition>>
USTrxnData

<<DataSelector>>
getUSTrxnData():TrxnData

1

2 2

TestData

*
TrxnData

account : String
balance: Integer
amount: IMoney
cardData: CardData

*
TrxnData

account : String
balance: Integer
amount: IMoney
cardData: CardData

<<<DataPartition>>
EUTrxnData

:EUTrxnData[1]

account = ”Fred Bloggs”
balance = 10,000
amount = 3500
cardData = Card1

:EUTrxnData[1]

account = ”Fred Bloggs”
balance = 10,000
amount = 3500
cardData = Card1

:EUTrxnData[2]

account = ”Dr Watson”
balance = 10,000
amount = 20
cardData = Card2

:EUTrxnData[2]

account = ”Dr Watson”
balance = 10,000
amount = 20
cardData = Card2

:USTrxnData[1]

account = ”Joe Senior”
balance = 10,000
amount = 3500
cardData = Card3

:USTrxnData[1]

account = ”Joe Senior”
balance = 10,000
amount = 3500
cardData = Card3

:USTrxnData[2]

account = ”Barbara Wall”
balance = 10,000
amount = 20
cardData = Card4

:USTrxnData[2]

account = ”Barbara Wall”
balance = 10,000
amount = 20
cardData = Card4

<<DataSelector>>
getEUTrxnData():TrxnData

*

«DataPool»
DataPool *

«DataPool»
DataPool

<<DataSelector>>
getDistributionInterval():Integer

<<<DataPartition>>
USTrxnData

<<DataSelector>>
getUSTrxnData():TrxnData

1

2 2
72 UML Testing Profile 2.0 Adopted Specification

components.

Figure 40. The composite structure of the SWIFTSuite test context

Figure 41 and Figure 42 illustrate the behavior of the loadTest method of the TestContext element. The test is invoked
with two parameters: the maximum number of virtual users that are simulated at any one time and the data pool
reference. Given these parameters, the system launches the appropriate number and types of test cases and monitors
their outcomes. The load manager lm is used as a gneration. At first, the total test duration is set by a timer. Then, the
first Wiring is started. Following the start of the Wiring test scenario, another timer is started which is used to set the
duration between generations when the second timer expires. This will loop as long as the test duration expires. Then,
the loop is left. The load manager applies a special validation action value and the arbitration is entered to calculate
the final test case verdict (see Figure 43)..

Figure 41. Main test behavior

«testContext»
SWIFTSuite

«sut»
euBank : Bank

bankPortc

«sut»
network :

SWIFTNetworkeu

«sut»
euATM: ATM

«sut»
usBank : Bank

us

bankCom

bankPort

swiftPort swiftPort

bankPort

«sut»
usATM: ATM

bankCom

bankPort

atmPort atmPort

«testComponent »
tc:

transactionController

«testComponent »
lm:

loadManager

la:
LoadArbiter

dp:
dataPool

accountPortaccountPort

«testContext»
SWIFTSuite

«sut»
euBank : Bank

bankPortc

«sut»
network :

SWIFTNetworkeu

«sut»
euATM: ATM

«sut»
usBank : Bank

us

bankCom

bankPort

swiftPort swiftPort

bankPort

«sut»
usATM: ATM

bankCom

bankPort

atmPort atmPort

«testComponent »
tc:

transactionController

«testComponent »
lm:

loadManager

la:
LoadArbiter

dp:
dataPool

accountPortaccountPort

Arbitrationref

sd loadTest(int maxUsers, float p)

lm.T1(testduration)

lm.T2

lm.T2(dp.getDistributionInterval())

Wiring(dp)ref

«testComponent»
lm

loop

lm.T1

«validationAction» finished

Arbitrationref

sd loadTest(int maxUsers, float p)

lm.T1(testduration)

lm.T2

lm.T2(dp.getDistributionInterval())

Wiring(dp)ref Wiring(dp)ref

«testComponent»
lm

loop

lm.T1

«validationAction» finished
UML Testing Profile 2.0 Adopted Specification 73

Figure 42 illustrates how an individual US wiring transaction is executed. The behavior is parameterized with the
data pool dp. Firstly, an instance of the transaction controller is created and started. The the test is started and a
transation is started using either data taken from the getEUTrxnData data partition or from the getUSTrxnData
partition. The timing constraint stipulates that the execution of the transaction should take less than 4 seconds,
otherwise the default handler will inform the Load Arbiter that the transaction has failed.

Figure 42. US initiated wiring transaction

The Arbitration behavior is given in Figure 43. A pass verdict is assigned if the number of successful tests exceeds
the given threshold, otherwise fail is assigned.

Figure 43. Arbitration behavior

Figure 44 illustrates how the system obtains balance information from the banks prior to each transaction, as well as
after each one is complete. These are used to validate that the transfer took place correctly. The information on the
percentage of test cases which should be successful is used by the arbiter to determine whether or not the load test
was successful.

«testComponent»
lm

«testComponent»
tc

«sut»
usATM

runUSTrxn(p.getUSTrxnData())ref

startTest

sd Wiring(DataPool p)

{0..4s}

<<create>>

«sut»
usBank

«sut»
euBank

«validationAction» pass

alt
runEUTrxn(p.getEUTrxnData())ref

«testComponent»
lm

«testComponent»
tc

«sut»
usATM

runUSTrxn(p.getUSTrxnData())ref

startTest

sd Wiring(DataPool p)

{0..4s}

<<create>>

«sut»
usBank

«sut»
euBank

«validationAction» pass

alt
runEUTrxn(p.getEUTrxnData())ref

sd Arbitration

self <<test component>>
LoadArbiter

alt

pass

fail

[numPassed/(numPassed+numOthers)>=pc]

[numPassed/(numPassed+numOthers)<pc]

sd Arbitration

self <<test component>>
LoadArbiter

alt

pass

fail

[numPassed/(numPassed+numOthers)>=pc]

[numPassed/(numPassed+numOthers)<pc]
74 UML Testing Profile 2.0 Adopted Specification

Figure 44. Transaction detail

Figure 45 illustrates the behavior of the LoadArbiter component, which determines whether or not the load test was
successful or not..

Figure 45. LoadArbiter behavior

sd runUSTrxn(TrxnData p)

tc
«sut»

usATM

ref authorizeCard

selectOperation(wireMoney)

atmPort

usBank euBank

startTest

«sut»«sut»

checkBalance(p.euAccount)
checkBalance = initUSbal

display(”Enter SWIFT and
account numbers”)

checkBalance = initEUbal

checkBalance(p.usAccount)

display(”Deposit money”)

acceptMoney()

acceptMoney:p.amount

getTransactionInfo(targetBank,
targetAccount)

display(”Transaction
Accepted”)

selectOperation : true

Credit(p.amount)

Credit:true

checkBalance(p.euAccount)
checkBalance = (initUSbal-p.amount)

checkBalance = (initEUbal+p.amount)

checkBalance(p.usAccount)

«validationAction» pass

sd runUSTrxn(TrxnData p)

tc
«sut»

usATM

refref authorizeCard

selectOperation(wireMoney)

atmPort

usBank euBank

startTest

«sut»«sut»

checkBalance(p.euAccount)
checkBalance = initUSbal

display(”Enter SWIFT and
account numbers”)

checkBalance = initEUbal

checkBalance(p.usAccount)

display(”Deposit money”)

acceptMoney()

acceptMoney:p.amount

getTransactionInfo(targetBank,
targetAccount)

display(”Transaction
Accepted”)

selectOperation : true

Credit(p.amount)

Credit:true

checkBalance(p.euAccount)
checkBalance = (initUSbal-p.amount)

checkBalance = (initEUbal+p.amount)

checkBalance(p.usAccount)

«validationAction» pass

numPassed = 0
numOther = 0

Running

setverdict(result)
[result == finished]

setverdict(result)
[result == fail]/numOther++ setverdict(result)

[result == pass] /
numPassed++

[numPassed/(numPassed+numOthers) >= pc]

[numPassed/(numPassed+numOthers) < pc]

LoadArbiter

«validationAction»
fail

«validationAction»
pass

numPassed = 0
numOther = 0

Running

setverdict(result)
[result == finished]

setverdict(result)
[result == fail]/numOther++ setverdict(result)

[result == pass] /
numPassed++

[numPassed/(numPassed+numOthers) >= pc]

[numPassed/(numPassed+numOthers) < pc]

LoadArbiter

«validationAction»
fail

«validationAction»
pass
UML Testing Profile 2.0 Adopted Specification 75

6.6 Mappings

6.6.1 Mapping to JUnit

JUnit is an open source regression testing framework written by Erich Gamma and Kent Beck (see www.junit.org). It
has been made popular by the eXtreme Programming community and is widely used by developers who implement
unit tests in Java. Other the past few years, it has become the de-facto standard for unit testing. JUnit has been
translated to a variety of programming languages. Furthermore JUnit has been extended in various ways to support
data driven testing, stubbing, etc.

This section provides a mapping from the UML Testing Profile to JUnit. This mapping considers primarily the JUnit
framework: When no trivial mapping exists to the JUnit framework, existing extensions to the framework are
mentioned as examples of how the framework has been extended to support some of the concepts included in the
UML Testing Profile.

The following diagram gives an overview of the JUnit framework:

Figure 46. JUnit framework overview

When you create a test with JUnit, you generally go through the following steps:

• Create a subclass of TestCase: The TestCase fixture,

• Create a constructor which accepts a String as a parameter and passes it to the superclass,

• Add an instance variable for each part of the TestCase fixture,

• Override setUp() to initialize the variables,

• Override tearDown() to release any permanent resources allocated in setUp,

• Implement a test method with a name starting with the “test” string, and using assert methods,

• Implement a “runTest” method to define the logic to run the different tests

The following source code presents an example of a JUnit TestCase fixture.
76 UML Testing Profile 2.0 Adopted Specification

public class MoneyTest extends TestCase {
 private Money f12CHF;
 private Money f24CHF;

 protected void setUp() {
 f12CHF= new Money(12, "CHF");
 f24CHF= new Money(24, "CHF");
 }

 public void testAdd() {
 Money f36CHF = f12CHF.add(f24CHF);

 assertTrue(f36CHF.equals(new Money(36, "CHF"));
 }

 public void testMultiply() {
 Money f24CHFa = f12CHF.multiply(new Money(2, "CHF"));
 assertTrue(f24CHF.equals(f24CHF));

 }

 protected void runTest throws Throwable() {
 testAdd();
 testMultiply();
 }
}

The following table gives a mapping between the Testing Profile concepts and the JUnit concepts. Because of
overlapping terminology JUnit is systematically used to prefix a term whenever appropriate.

Table 1 -Comparison between Testing Profile and JUnit concepts

UML Testing Profile JUnit

Test Behavior:

Test Control A Test Control is realized by overloading the “runT-
est” operation of the JUnit TestCase fixture. It speci-
fies the sequence in which several Test Cases have
to be ran.

Test Case A Test Case is realized in JUnit as an operation.
This operation belongs to the Test Context class, re-
alized in JUnit as class inheriting from the JUnit
TestCase class. The convention is that the name of
this operation should start with the “test” string, and
have no arguments so that the JUnit test runner can
execute all the tests of the test context without re-
quiring a Test Control.

Test Invocation A Test Case is an operation that can be invoked
from another Test Case operation or from the Test
Control.

Test Objective This concept can be realized in Junit using a call to
the “setName” operation of the testing framework.
UML Testing Profile 2.0 Adopted Specification 77

Stimulus There is no such concept. Stimuli are not formalized
in JUnit tests. They are directly part of the Test Cas-
es implementations (body of the test methods).

Observation There is no such concept. Observations are not for-
malized in JUnit tests. They are directly part of the
Test Cases implementations (body of the test meth-
ods).

Coordination A coordination can be realized using any available
synchronization mechanism available to the Test
Components such as semaphores.

Default Defaults are not supported by JUnit. One needs to
implement Defaults directly by adding complexity in
the behavior of the Test Case. Java’s exception
mechanism can be used to realize the default hierar-
chy of the Testing Profile.

Verdict In JUnit, predefined verdict values are pass, fail, and
error. Pass indicates that the test behavior gives ev-
idence for correctness of the SUT for that specific
Test Case. Fail describes that the purpose of the
Test Case has been violated. An Error verdict shall
be used to indicate errors (exceptions) within the
test system itself.
There is no such thing as an Inconclusive verdict in
JUnit. Therefore, the Inconclusive verdict will be
generally mapped into Fail.

Validation Action A Validation Action can be mapped to calls to the
JUnit Assert library.

Log Action There is no general purpose logging mechanism of-
fered by the JUnit framework.

Test Log There is no formal log provided by the JUnit frame-
work.

Test Architecture:

Test Context A test context is realized in JUnit as a class inherit-
ing from the JUnit TestCase class. To be noticed that
the concept of Test Context exists in the JUnit
framework but is different from the one defined in
the UML Testing Profile.

Test Configuration There is no such notion in JUnit. Generally speak-
ing, there is rarely Test Components used in JUnit.
The Test Behavior is most of the time implemented
by the Test Context classifier.

Test Component There is no Test Components per se in JUnit. Exten-
sions to JUnit such as Mock Objects support specific
forms of Test Components aimed at replacing exist-
ing classes. Nevertheless those components do not
include the ability to return a verdict.

Table 1 -Comparison between Testing Profile and JUnit concepts

UML Testing Profile JUnit
78 UML Testing Profile 2.0 Adopted Specification

Following is an example mapping the test of the Money class described in the previous section - for the Test Cases
given in Figure 21 and Figure 22.

public class MoneyTest extends TestCase {

 public void addSameMoney() {
 Money money1 = new Money(20, "USD"));
 Money money2 = new Money(50, "USD"));
 money1.add(money2);

System Under Test (SUT) The system under test doesn’t need to be identified
explicitly in JUnit. Any class in the classpath can be
considered as an utility class or a SUT class.

Arbiter The arbiter can be realized as a property of Test
Context of a type TestResult. There is a default arbi-
tration algorithm which generates Pass, Fail, and Er-
ror as verdict, where these verdicts are ordered as
Pass < Fail < Error. The arbitration algorithm can be
user-defined.

Scheduler The scheduler can be realized as a property of Test
Context. There should be a default scheduler along
the protocol defined in Appendix C.

Utility Part Any class available in the Java classpath can be
considered as a utility class or a SUT part.

Test Data:

Wildcards There is no direct mapping to the JUnit frame-
work. One could use pre-defined libraries to do
such comparisons.

Data pool A class together with operations to get access
to the data pool.

Data partition A class (inheriting from a data pool) together
with operations to get access to the data parti-
tion.

Data selector An operation of a data pool or a data partition.

Coding rules There is no direct mapping to the JUnit frame-
work. One could use pre-defined libraries to do
such comparisons.

Time Concepts:

Timezone The time concepts are not supported by JUnit, but
might be realized using standard APIs available to
manipulate time.Timer

Test Deployment:

Test artifact Deployment is outside the scope of JUnit.

Test node

Table 1 -Comparison between Testing Profile and JUnit concepts

UML Testing Profile JUnit
UML Testing Profile 2.0 Adopted Specification 79

 assertTrue(money1.equals(new Money(70,"USD")));
 }

 public void addDifferentMoney() {
 Money money1 = new Money(20, "USD"));
 Money money2 = new Money(50, "USD"));
 Money bag1 = money1.add(money2);
 assertTrue(bag1.contains(money1));
 assertTrue(bag1.contains(money2));
 }

 protected void runTest throws Throwable() {
 addSameMoney();
 addDifferentMoney();
 }
}

80 UML Testing Profile 2.0 Adopted Specification

6.6.2 Mapping to TTCN-3

TTCN-3 - Testing and Test Control Notation (3rd edition) - is widely accepted as a standard for test system
development in the telecommunication and data communication area. TTCN-3 comprises concepts suitable to all
types of distributed system testing.

TTCN-3 is a test specification and implementation language to define test procedures for black-box testing of
distributed systems. Stimuli are given to the system under test (SUT); its reactions are observed and compared with
the expected ones. Based on this comparison, the subsequent test behavior is determined or the test verdict is
assigned. If expected and observed responses differ, then a fault has been discovered which is indicated by a test
verdict fail. A successful test is indicated by a test verdict pass.

TTCN-3 allows the description of complex distributed test behavior in terms of sequences, alternatives, loops and
parallel stimuli and responses. Stimuli and responses are exchanged at the interfaces of the system under test, which
are defined as a collection of ports being either message-based for asynchronous communication or signature-based
for synchronous communication. The test system can use any number of test components to perform test procedures
in parallel. Likewise to the interfaces of the system under test, the interfaces of the test components are described as
ports.

TTCN-3 is a modular language and has a similar look and feel to a typical programming language. In addition to the
typical programming constructs, it contains all the important features necessary to specify test procedures and
campaigns for functional, conformance, interoperability, load and scalability tests like test verdicts, matching
mechanisms to compare the reactions of the SUT with the expected range of values, timer handling, distributed test
components, ability to specify encoding information, synchronous and asynchronous communication, and
monitoring.

A TTCN-3 test specification consists of four main parts:

• type definitions for test data structures

• templates definitions for concrete test data

• function and test case definitions for test behavior

• control definitions for the execution of test cases

TTCN-3 was one basis for the development of the Testing Profile. Still, they differ in several respects. The Testing
Profile is targeted at UML providing selected extensions to the features of TTCN-3 as well as restricting/omitting
other TTCN-3 features. A mapping from the Testing Profile to TTCN-3 is possible but not the other way around. The
principal approach towards the mapping to TTCN-3 consists of two major steps:

• Take Testing Profile stereotypes and associations and assign them to TTCN-3 concepts

• Define procedures how to collect required information for the generated TTCN-3 modules

Table 2 compares the UML Testing Profile concepts with existing TTCN-3 testing concepts. All UML Testing Profile
concepts have direct correspondence or can be mapped to TTCN-3 testing concepts.
UML Testing Profile 2.0 Adopted Specification 81

Table 2 -Comparison between Testing Profile and TTCN-3 concepts

UML Testing Profile TTCN-3

Test Behavior:

Test Control The control part of a TTCN-3 module.

Test Case A TTCN-3 testcase.
The behavior of a testcase is defined by functions
which are generated via mapping functions applied
to the behavioral features of a test context.
The main test component (MTC) is used like a "con-
troller" that creates test components and starts their
behavior. The MTC controls also the arbiter.

Test Invocation The execution of a TTCN-3 testcase.

Test Objective Not part of TTCN-3, just a comment to a test case
definition.

Stimulus Sending messages, calling operations, and replying
to operation invocations.

Observation Receiving messages, operation invocations, and op-
eration replies.

Coordination Message exchange between test components.

Default Altstep and activation/deactivation of the altsteps
along the default hierarchy.

Verdict The default arbiter and its verdict handling is an inte-
gral part of TTCN-3.
For user-defined, a special verdict type and updating
the arbiter with set verdicts is needed.

Validation Action External function or data functions resulting in a val-
ue of the specific verdict type.

Log Action Log operation.

Test Log Not part of TTCN-3, but could be mapped just as a
strict sequential behavioral function.

Test Architecture:

Test Context TTCN-3 module definition part covering all test cas-
es and related definitions of a test context, having a
specific TSI component type (to access the SUT)
and a specific behavioral function to set up the initial
test configuration for this test context.

Test Configuration Configuration operations create, start, connect, dis-
connect, map, unmap, running and done for dynam-
ic test configurations.
Behavioral function to set up the initial test configu-
ration.

Test Component TTCN-3 component typea, used for the creation of
test components and their connection to the SUT
and to other test components.
82 UML Testing Profile 2.0 Adopted Specification

In the following, an example mapping is provided for the Bank ATM case study described in the previous section -
for the test case invalidPIN given in Figure 27.

Two TTCN-3 modules are generated: one for ATM being the SUT (and being defined in a separate UML package)
and another module for the ATM test defining the tests for the Bank ATM also in a separate UML package. The
module ATM provides all the signatures available at the SUT interfaces, which are used during testing.

module ATM {
 //withdraw(amount : Integer): Boolean
 signature withdraw(integer amount) return boolean;
 //isPinCorrect(c : Integer) : Boolean
 signature isPinCorrect(integer c) return boolean;
 //selectOperation(op : OpKind) : Boolean

System Under Test (SUT) The test system accesses the SUT via the abstract
test system interfaces (TSI). The SUT interfaces re-
sult in port types used by TSI. One additional port is
needed to communicate with a user-defined arbiter.
Potentially additional ports are needed to coordinate/
synchronize test components.

Arbiter The Testing Profile default arbiter is a TTCN-3 built-
in. User-defined arbiters are realized by the MTC.

Scheduler There is a default scheduler built in TTCN-3. User
defined schedulers can be realized by the MTC.

Utility Part External constants and/or external functions to refer
and make use of the utility part, which is outside the
TTCN-3 module.

Test Data:

Wildcards TTCN-3 matching mechanisms.

Data pool An external constant (referring to the data in the data
pool) or external functions to get access to the data
pool.

Data partition TTCN-3 matching mechanisms can be used to han-
dle data partitions for observations. For stimuli how-
ever, user defined functions are needed to realize
the test case execution with different data to be sent
to the SUT.

Data selector An external function to get access to the data of a
data pool or data partition.

Coding rules TTCN-3 encode and encode variant attributes.

Time Concepts:

Timezone Cannot be represented in TTCN-3.

Timer TTCN-3 timer.

a. Please note that due to e.g. performance aspects there might be not only a one-
to-one mapping between the Testing Profile and TTCN-3 components.
Instead, a different test configuration might be used.

Table 2 -Comparison between Testing Profile and TTCN-3 concepts

UML Testing Profile TTCN-3
UML Testing Profile 2.0 Adopted Specification 83

 signature selectOperation(OpKind op) return boolean;
 … // and so on
}

The module for the ATM test ATMTest

• imports all the definitions from the ATM module,

• defines the group for the ATM test context,

• provides within this group port and component type definitions, the function to set up the initial test con-
figuration and finally the test cases.

In order to make this mapping more compelling, a user-defined arbiter is assumed in addition and the default
handling is made explicit.

module ATMTest {
 import from ATM all;
 // utility IAccount
 type record IAccount {

integer balance,
charstring number

 }
 external const IAccount accounts[0..infinity];
 group ATMSuite {
 ... // all the definitions constituting the tests for ATM
 } // group ATMSuite
} // module ATMTest

The required and provided interfaces are reflected in corresponding port definitions atmPort_PType and
netCom_PType, which are then used in the component type definitions BankEmulator_CType and
HWEmulator_CType to constitute the component types for the PTCs:

//required interfaces: IHardware
//provided interface: IATM
type port atmPort_PType procedure {
 in display_, ejectCard, ejectMoney, acceptMoney, getStatus; //IHardware
 out withdraw, isPinCorrect, selectOperation,

 storeCardData, storeSWIFTnumber; //IBank
}

//required interface: IBank
//no provided interface
type port netCom_PType procedure {
 in debitAccount, depositAccount, findAccount,
 wireMoney, checkCredentials //IBank
}
// test component type BankEmulator
type component BankEmulator_CType {

 port netCom_PType bePort;
 port Arbiter_PType arbiter; // user defined arbiter

}
// test component type HWEmulator
type component HWEmulator_CType {
 port atmPort_PType hwCom;

 var boolean pinOk;
84 UML Testing Profile 2.0 Adopted Specification

 var charstring enteredPIN;
 var charstring message_;
 timer t1;
}

The following shows the mapping for a user-defined arbiter. A specific type MyVerdict_Type together with an
arbitration function Arbitration is used to calculate the overall verdict during test case execution. The final
assessment is given by mapping the user-defined verdicts to the TTCN-3 verdict at the end. This enables for example
the use of statistical verdicts where e.g. 5% failures lead to fail but less failures to pass. The arbiter is realized by the
MTC. It receives verdict update information via a separate port arbiter. The arbitrated verdict is stored in a local
variable mv.

//the arbitration
type enumerated MyVerdict_Type {
 pass_, fail_, inconc_, none_
}
type port Arbiter_PType message {
 inout MyVerdict_Type
}
// the MTC is just a controller
type component MTC_CType {
 port Arbiter_PType arbiter; // user defined arbiter
 var MyVerdict_Type mv:= none_;
}
function Arbitration(BankEmulator_CType be, HWEmulator_CType hwe)
runs on MTC_CType {
 while (be.running or hwe.running) {

 alt {
 [] arbiter.receive(none_) {...}

 [] ...}
 }

 }
 if (mv == pass_) { setverdict(pass) }
 else ...
}

The defaults in the defaults hierarchy are mapped to several altsteps, which will be invoked later along that hierarchy.
In this example, an altstep for every component type is defined, i.e. HWEmulator_classifierdefault and
BankEmulator_classifierdefault. The package level default ATMTestDefault does not need to be mapped -
it is automatically realized by the TTCN-3 semantics.

altstep HWEmulator_classifierdefault()
runs on HWEmulator_CType {
 var charstring s;
 [] t1.timeout {arbiter.send(fail_);}
 [] hwCom.getcall(ejectCard:{}) {arbiter.send(fail_);}
 [] hwCom.getcall(display_:{?}) -> param (s) {
 if (s == "Connection lost") { arbiter.send(inconc_) }

 else {arbiter.send(fail_)} }
 }
}
altstep BankEmulator_classifierdefault()
runs on BankEmulator_CType {
 //is empty
}

UML Testing Profile 2.0 Adopted Specification 85

The component type for the test system interface SUT_CType is constituted by the ports netCom and atmPort used
during testing in the specific test context. A configuration function ATMSuite_Configuration sets up the initial
test configuration and is invoked at first by every test case of that test context.

// SUT
type component SUT_CType {
 port netCom_PType netCom;

 port atmPort_PType atmPort;
}
// setup the configuration
function ATMSuite_Configuration
(in SUT_CType theSUT, in MTC_CType theMTC, inout

 BankEmulator_CType be, inout HWEmulator_CType hwe)
{
 be:=BankEmulator_CType.create;
 map(theSUT:netCom,be:bePort); //map to the SUT
 hwe:=HWEmulator_CType.create;
 map(theSUT:atmPort,hwe:hwCom); //map to the SUT
 connect(theMTC:arbiter,be:arbiter); // arbitration
 connect(theMTC:arbiter,hwe:arbiter); // arbitration
}

The invalidPIN test case uses two PTCs hwe and be each having its own test behavior, which is defined by
behavioral functions invalidPIN_hwe and invalidPIN_be as shown below.

function invalidPIN_hwe(integer invalidPIN) runs on HWEmulator_CType {
 activate(HWEmulator_classifierdefault());
 // here we need test derivation
 // just for that example straightforward definition along the lifeline
 var boolean enterPin_reply;
 hwCom.call(storeCardData:{current},nowait);
 t1.start(2.0);
 hwCom.getreply(display_:{"Enter PIN"});
 t1.stop;
 hwCom.call(isPinCorrect:{invalidPIN},3.0) {

 [] hwCom.getreply(isPinCorrect:{?} value false) {}
 }
 hwCom.getreply(display_:{"Invalid PIN"});
 hwCom.getreply(display_:{"Enter PIN again"});

 arbiter.send(pass_); // local verdict to the arbiter
}

function invalidPIN_be() runs on BankEmulator_CType {
 activate(BankEmulator_classifierdefault());
 // nothing more
}

Finally, the test case can be provided. According to the initial test configuration, two PTCs hwe and be are used. The
configuration is set up with ATMSuite_Configuration. After accessing the value for the data partition
giveInvalidPIN(current), the test behavior on the PTCs is started with invalidPIN_hwe and
invalidPIN_be. The arbiter Arbitration(be,hwe) controls the correct termination of the test case. This
completes the mapping.
//+invalidPIN() : Verdict
 testcase invalidPIN_test()
 runs on MTC_CType system SUT_CType {
 var HWEmulator_CType hwe;
86 UML Testing Profile 2.0 Adopted Specification

 var BankEmulator_CType be; // initial configuration
 ATMSuite_Configuration(system,mtc,be,hwe);
 const integer invalidPIN:= giveInvalidPIN(current);
 hwe.start(invalidPIN_hwe(invalidPIN));
 be.start(invalidPIN_be());

 Arbitration(be,hwe);
}

The following table summarizes the mapping of test model elements for the invalidPIN test case to TTCN-3.

Table 3 -Mapping of invalidPIN to TTCN-3

UML Testing Profile TTCN-3

package ATM module ATM

package ATMTest module ATMTest

testContext ATMSuite group ATMSuite

testComponent BankEmulator type component BankEmulator

interface of BankEmulator type port netCom_PType

testComponent HWEmulator type component HWEmulator

interface of HWEmulator type port atmPort_PType

timer of HWEmulator timer of componentHWEmulator

operation storeCardData signature storeCardData

operation display signature display_

operation isPinCorrect signature isPinCorrect

test behavior of HWEmulator function invalidPIN_hwe

classifier default of HWEmulator altstep HWEmulator_classifierdefault

composite structure of ATMSuite function ATMSuite_Configuration

testCase invalidPIN testcase invalidPIN_test
UML Testing Profile 2.0 Adopted Specification 87

A Profile Summary

A.1 The Profile

Figure 47. Test Architecture

Figure 48. Test case and test objective

Figure 49. Defaults

Arbiter
<<interf ace>>

getVerdict() : Verdict
setVerdict(v : Verdict)

Scheduler

startTestCase()
finishTestCase(t : TestComponent)
createTestComponent(t : TestComponent)

<<Interface>>

Scheduler

startTestCase()
finishTestCase(t : TestComponent)
createTestComponent(t : TestComponent)

<<Interface>>

<<stereotype>>

SUT

<<stereotype>>

SUT

0..10..1

<<metaclass>>

Property

<<metaclass>>

Property

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

0..10..10..10..1

<<metaclass>>

StructuredClassifier
<<metaclass>>

StructuredClassifier

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

<<stereotype>>

TestComponent
+ zone : Timezone [0..1]

0..10..10..10..1

<<metaclass>>

StructuredClassifier
<<metaclass>>

StructuredClassifier

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :

<< stereotype

TestContext
<< stereotype >>

+ : Arbiter+ arbiter :
+ : Scheduler+ scheduler :

TestCase
<<stereoty pe>>

Operation
<<metaclass>>

0..10..1TestObjective
<<stereoty pe>>

0..10..1

Dependency
<<metaclass>>

Behavior
<<metaclass>>

0..10..1

Default
<<stereoty pe>>

0..10..1

Behavior
<<metaclass>>

DefaultApplication
<<stereoty pe>>

Dependency
<<metaclass>>

0..10..1
88 UML Testing Profile 2.0 Adopted Specification

Figure 50. Actions

Figure 51. Deterministic Alt Operator (in Combined Fragements)

Figure 52. Test Log

ValidationAction
<<stereoty pe>> LogAction

<<stereoty pe>>

0..10..1
0..10..1

CallOperationAction
<<metaclass>>

SendObjectAction
<<metaclass>>

Verdict
<<enumeration>>

pass
fail
inconclusive
error

Action
<<metaclass>>

FinishAction
<<stereoty pe>>

0..10..1

InteractionOperator
seq
alt
opt
break
par
strict
loop
region
neg
assert
ignore
consider

<<enumeration>>

determAlt

InteractionOperator
seq
alt
opt
break
par
strict
loop
region
neg
assert
ignore
consider

<<enumeration>>

determAlt

<<stereotype>><<stereotype>>

TestLog

0..10..1

<<metaclass>>

Behavior
<<metaclass>>

Behavior

<<stereotype>>

TestLogApplication
<<stereotype>>

<<metaclass>>

Dependency
<<metaclass>>

Dependency

0..10..1
UML Testing Profile 2.0 Adopted Specification 89

Figure 53. Timer concepts

Figure 54. Timezone concepts

CallOperationAction
<<metaclass>>

ReadTimerAction
<<stereoty pe>>

StartTimerAction
<<stereoty pe>>

StopTimerAction
<<stereoty pe>>

0..10..1
0..10..1

0..10..1

ReadStructuralFeatureAction
<<metaclass>>

TimerRunningAction
<<stereoty pe>>

0..10..1

TimeOut
<<stereoty pe>>

TimeTrigger
<<metaclass>>

0..10..1

Message
<<metaclass>>

TimeOutMessage
<<stereoty pe>>

0..10..1

Timer
<<interf ace>>

{readOnly} isRunning : Boolean

start(expire : Time)
stop()
read() : Time

Time
<<primitiv e>>

Duration
<<primitiv e>>

TimeoutAction
<<stereotype>>
TimeOutAction

<<stereotype>>

AcceptEventAction

<< >>

AcceptEventAction

metaclass

0..1

TimeoutAction
<<stereotype>>
TimeOutAction

<<stereotype>>

AcceptEventAction

<< >>

AcceptEventAction

metaclass

0..1

ReadStructuralFeatureAction
<<metaclass>>

SetTimezoneAction
<<stereoty pe>>

GetTimezoneAction
<<stereoty pe>>

WriteStructuralFeatureAction
<<metaclass>>

0..10..1 0..10..1

Timezone
<<primitiv e>>
90 UML Testing Profile 2.0 Adopted Specification

Figure 55. Timezone concepts

ReadStructuralFeatureAction
<<metaclass>>

SetTimezoneAction
<<stereoty pe>>

GetTimezoneAction
<<stereoty pe>>

WriteStructuralFeatureAction
<<metaclass>>

0..10..1 0..10..1

Timezone
<<primitiv e>>
UML Testing Profile 2.0 Adopted Specification 91

A.2 The MOF-based Metamodel

Figure 56. Test architecture and test behavior portion of the MOF-based metamodel

Behavior
name : String
behaviorDefinition : String

0..1

1

TestContext
name : String
testContex tDefinition : String

1

0..*

Scheduler
name : String
schedulerDefinition : String

Verdict
pass
fail
inconclusive
error

<<enumeration>>

TestObjective
name : String
testObjectiveDefinition : String

Arbiter
name : String
arbiterDefinition : String

Deployment
name : String
deploymentDefinition : String

SUT
name : String
SUTdefinition : String

TestCase
name : String
testCaseDefinition : String

1

1..*

1

+testObjective1..*

TestLog
name : String
testLogDefini tion : String
verdict : Verdict

1

0..*

1

+executions 0..*

0..* 10..*

+tes tConfiguration

1

DataPool
name : String
dataPoolDefinition : String

TestComponent
name : String
testComponentDefinition : String

0..*

0..*

+dataPool
0..*

0..*0..*

1

0..*

+arbiter1

0..*

0..*

0..*

+tes tConfiguration 0..*

0..*

1..*

0..*

+sut

1..*

10..*

+testContext

1

+testCase

0..*

[feature]

0..*

1

+executions0..*

1
0..*

0..*

0..*

+dataPool

0..*

0..* 0..*0..*

+component

0..*

1
+scheduler

0..*1

1

1

+behavior

1

0..1

1

+behavior

0..1

1

1

0..1

1

+behavior 0..1

1

1

1

+behavior

1

1

0..1+behavior
92 UML Testing Profile 2.0 Adopted Specification

Figure 57. Test data portion of the MOF-based metamodel

LiteralAny LiteralAnyorNull

CodingRule
- coding : String

InstanceValue

0..*

1

+literalAny 0..*

+value 1

0..*

1

+literalAnyOrNull0..*

+value1

1

1..*

+value 1

+coding 1..*

LiteralNull
0..*

1

0..* +literalNull

1 +value

DataPool
name : String
dataPoolDefinition : String

DataPartition
name : String
dataPartitionDefinition : String

1

0..*

1

+partition

0..*

DataSelector
name : String
dataSelectorDefinition : String

10..* 1

+selector

0..*

1

0..*

1

+selector
0..*
UML Testing Profile 2.0 Adopted Specification 93

Figure 58. Time portion of the MOF-based metamodel

Figure 59. Predefined interfaces for implementing timer, arbiter and scheduler

Duration
< < prim itive> >

Tim e
< <prim itive> >

Tes tCom ponent

Tim e r

Tim ezone

+ getTim ezone()
+ setTim ezone()

< <prim itive> >

0..* 0. .1

+ co mpon ent

0..*
+ zone

0..1

ITimer
- isRunning : Boolean

+ start(expire : Time)
+ stop()
+ read() : Time

<<Interface>>

IArbiter

+ getVerdict() : Verdict
+ setVerdict(v : Verdict)

<<Interface>>

+ startTestCase()
+ finishTestCase(t:TestComponent)
+ createTestComponent(t:TestComponent)

IScheduler
<<Interface>>ITimer

- isRunning : Boolean

+ start(expire : Time)
+ stop()
+ read() : Time

<<Interface>>

IArbiter

+ getVerdict() : Verdict
+ setVerdict(v : Verdict)

<<Interface>>

+ startTestCase()
+ finishTestCase(t:TestComponent)
+ createTestComponent(t:TestComponent)

IScheduler
<<Interface>>
94 UML Testing Profile 2.0 Adopted Specification

B XMI Schema

B.1 The Profile
The XMI schema definition for the exchange of U2TP profile specifications follows the XMI schema definition of
UML 2.0 for UML 2.0 profiles. Please refer to the schema definition of UML 2.0

B.2 The MOF-based Metamodel
The XMI schema definition for the MOF-based metamodel is given below.

<?xml version="1.0"?>

<xsd:schema targetNamespace="http://www.omg.org/U2TPSA"

 xmlns:u2tp="http://www.omg.org/U2TPSA"

 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">

 <xsd:import namespace="http://www.omg.org/XMI" schemaLocation="XMI.xsd"/>

 <xsd:simpleType name="Verdict">

 <xsd:restriction base="xsd:NCName">

 <xsd:enumeration value="pass"/>

 <xsd:enumeration value="fail"/>

 <xsd:enumeration value="inconclusive"/>

 <xsd:enumeration value="error"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="Arbiter">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="arbiterDefinition" type="xsd:string"/>

 <xsd:element name="behavior" type="u2tp:Behavior"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="arbiterDefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="Arbiter" type="u2tp:Arbiter"/>

 <xsd:complexType name="Scheduler">
UML Testing Profile 2.0 Adopted Specification 95

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="schedulerDefinition" type="xsd:string"/>

 <xsd:element name="behavior" type="u2tp:Behavior"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="schedulerDefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="Scheduler" type="u2tp:Scheduler"/>

 <xsd:complexType name="Deployment">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="deploymentDefinition" type="xsd:string"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="deploymentDefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="Deployment" type="u2tp:Deployment"/>

 <xsd:complexType name="SUT">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="SUTdefinition" type="xsd:string"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="SUTdefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="SUT" type="u2tp:SUT"/>
96 UML Testing Profile 2.0 Adopted Specification

 <xsd:complexType name="TestComponent">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="testComponentDefinition" type="xsd:string"/>

 <xsd:element name="zone" type="xsd:string"/>

 <xsd:element name="behavior" type="u2tp:Behavior"/>

 <xsd:element name="dataPool" type="u2tp:DataPool"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="testComponentDefinition" type="xsd:string"/>

 <xsd:attribute name="zone" type="xsd:string"/>

 <xsd:attribute name="dataPool" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="TestComponent" type="u2tp:TestComponent"/>

 <xsd:complexType name="TestContext">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="testContextDefinition" type="xsd:string"/>

 <xsd:element name="sut" type="u2tp:SUT"/>

 <xsd:element name="component" type="u2tp:TestComponent"/>

 <xsd:element name="arbiter" type="u2tp:Arbiter"/>

 <xsd:element name="scheduler" type="u2tp:Scheduler"/>

 <xsd:element name="behavior" type="u2tp:Behavior"/>

 <xsd:element name="testConfiguration" type="u2tp:Deployment"/>

 <xsd:element name="testCase" type="u2tp:TestCase"/>

 <xsd:element name="executions" type="u2tp:TestLog"/>

 <xsd:element name="dataPool" type="u2tp:DataPool"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="testContextDefinition" type="xsd:string"/>
UML Testing Profile 2.0 Adopted Specification 97

 <xsd:attribute name="sut" type="xsd:string"/>

 <xsd:attribute name="component" type="xsd:string"/>

 <xsd:attribute name="arbiter" type="xsd:string"/>

 <xsd:element name="scheduler" type="u2tp:Scheduler"/>

 <xsd:attribute name="testConfiguration" type="xsd:string"/>

 <xsd:attribute name="executions" type="xsd:string"/>

 <xsd:attribute name="dataPool" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="TestContext" type="u2tp:TestContext"/>

 <xsd:complexType name="TestLog">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="testLogDefinition" type="xsd:string"/>

 <xsd:element name="verdict" type="u2tp:Verdict"/>

 <xsd:element name="testConfiguration" type="u2tp:Deployment"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="testLogDefinition" type="xsd:string"/>

 <xsd:attribute name="verdict" type="u2tp:Verdict"/>

 <xsd:attribute name="testConfiguration" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="TestLog" type="u2tp:TestLog"/>

 <xsd:complexType name="BaseDefault">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 </xsd:complexType>

 <xsd:element name="BaseDefault" type="u2tp:BaseDefault"/>

 <xsd:complexType name="Behavior">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>
98 UML Testing Profile 2.0 Adopted Specification

 <xsd:element name="behaviorDefinition" type="xsd:string"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="behaviorDefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="Behavior" type="u2tp:Behavior"/>

 <xsd:complexType name="TestCase">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="testCaseDefinition" type="xsd:string"/>

 <xsd:element name="behavior" type="u2tp:Behavior"/>

 <xsd:element name="executions" type="u2tp:TestLog"/>

 <xsd:element name="testObjective" type="u2tp:TestObjective"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="testCaseDefinition" type="xsd:string"/>

 <xsd:attribute name="executions" type="xsd:string"/>

 <xsd:attribute name="testObjective" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="TestCase" type="u2tp:TestCase"/>

 <xsd:complexType name="TestObjective">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="testObjectiveDefinition" type="xsd:string"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="testObjectiveDefinition" type="xsd:string"/>
UML Testing Profile 2.0 Adopted Specification 99

 </xsd:complexType>

 <xsd:element name="TestObjective" type="u2tp:TestObjective"/>

 <xsd:complexType name="CodingRule">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="coding" type="xsd:string"/>

 <xsd:element name="value" type="u2tp:InstanceValue"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="coding" type="xsd:string"/>

 <xsd:attribute name="value" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="CodingRule" type="u2tp:CodingRule"/>

 <xsd:complexType name="InstanceValue">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="literalAny" type="u2tp:LiteralAny"/>

 <xsd:element name="literalAnyOrNull" type="u2tp:LiteralAnyorNull"/>

 <xsd:element name="literalNull" type="u2tp:LiteralNull"/>

 <xsd:element name="coding" type="u2tp:CodingRule"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="literalAny" type="xsd:string"/>

 <xsd:attribute name="literalAnyOrNull" type="xsd:string"/>

 <xsd:attribute name="literalNull" type="xsd:string"/>

 <xsd:attribute name="coding" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="InstanceValue" type="u2tp:InstanceValue"/>

 <xsd:complexType name="LiteralAny">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="value" type="u2tp:InstanceValue"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>
100 UML Testing Profile 2.0 Adopted Specification

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="value" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="LiteralAny" type="u2tp:LiteralAny"/>

 <xsd:complexType name="LiteralAnyorNull">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="value" type="u2tp:InstanceValue"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="value" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="LiteralAnyorNull" type="u2tp:LiteralAnyorNull"/>

 <xsd:complexType name="LiteralNull">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="value" type="u2tp:InstanceValue"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="value" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="LiteralNull" type="u2tp:LiteralNull"/>

 <xsd:complexType name="ITimer">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="isRunning" type="xsd:boolean"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="isRunning" type="xsd:boolean"/>

 </xsd:complexType>

 <xsd:element name="ITimer" type="u2tp:ITimer"/>

 <xsd:complexType name="Timer">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">
UML Testing Profile 2.0 Adopted Specification 101

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 </xsd:complexType>

 <xsd:element name="Timer" type="u2tp:Timer"/>

 <xsd:complexType name="IArbiter">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 </xsd:complexType>

 <xsd:element name="IArbiter" type="u2tp:IArbiter"/>

 <xsd:complexType name="DataPool">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="dataPoolDefinition" type="xsd:string"/>

 <xsd:element name="selector" type="u2tp:DataSelector"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="dataPoolDefinition" type="xsd:string"/>

 <xsd:attribute name="selector" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="DataPool" type="u2tp:DataPool"/>

 <xsd:complexType name="DataSelector">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="dataSelectorDefinition" type="xsd:string"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
102 UML Testing Profile 2.0 Adopted Specification

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="dataSelectorDefinition" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="DataSelector" type="u2tp:DataSelector"/>

 <xsd:complexType name="DataPartition">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="dataPartitionDefinition" type="xsd:string"/>

 <xsd:element name="selector" type="u2tp:DataSelector"/>

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="dataPartitionDefinition" type="xsd:string"/>

 <xsd:attribute name="selector" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="DataPartition" type="u2tp:DataPartition"/>

 <xsd:complexType name="IScheduler">

 <xsd:choice maxOccurs="unbounded" minOccurs="0">

 <xsd:element ref="xmi:Extension"/>

 </xsd:choice>

 <xsd:attribute ref="xmi:id"/>

 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>

 </xsd:complexType>

 <xsd:element name="IScheduler" type="u2tp:IScheduler"/>

</xsd:schema>
UML Testing Profile 2.0 Adopted Specification 103

104 UML Testing Profile 2.0 Adopted Specification

C Arbiter and Scheduler protocols

This annex shows how the Scheduler and the Arbiter should work together with the test components and the SUT
such that the execution of the test cases are performed properly and the verdict delivered at the right time. Itis not
necessary that a valid implementation conforms in detail to these sequence diagrams, but the net effect should be the
same.

In the diagrams we have in addition to standard notation also applied a special kind of continuations that we have
called synchronous continuations denoted by the prefixing “synch” keyword. This is a shorthand for introducing a
number of general ordering relations such that all events above the synchronous continuation precedes all events
below the synchronous continuation. This holds for all events on those lifelines that are covered by the continuation.

Figure 60. Scheduler/Arbiter protocol #1

The protocol scenario in Figure 60 shows the normal situation when the test components are static. Notice that the
Scheduler starts the SUT and the Arbiter explicitly before any test case can be started. When a test case is initiated the
UML Testing Profile 2.0 Adopted Specification 105

Scheduler will give notice to the test components that are involved in it. They will in turn notify the Scheduler when
they are at the end of executing that test case. None of this is seen explicitly in the user specifications. Finally when
the Scheduler has recorded that no test components have pending results, the Arbiter will be asked to produce the
final verdict for the test case.

Figure 61. Scheduler/Arbiter protocol #2

The scenario in Figure 61 shows what should happen when test components are created dynamically within the
execution of the test case. The test component that creates another test component will notify the Scheduler about the
creation. Notice that the later notification from that test component that it is finished with the test case must go along
the same communication channel as the creation notification. This is to avoid possible race conditions between the
creation notification and the finishing notifications. Such race ondition would have made it theoretically possible to
create a situation where the Scheduler knows about no pending test components, while the newly created test
component is still running. The Arbiter could therefore have been instructed to give final verdict before it should.
106 UML Testing Profile 2.0 Adopted Specification

In case of test component termination (destruction) this must also be notified to the Scheduler by the test component.
It is assumed that the test component being destroyed is able to transmit its last verdict to the Arbiter before it is
deleted.

In some test cases not all eisting test components will take part. It is assumed that the Scheduler has proper
information about this from its description of the test case such that it will not initiate more test components than
necessary for a particular test case.
UML Testing Profile 2.0 Adopted Specification 107

General Index

A

Arbiter12, 20

C

Coding Rules15, 35
Coordination14

D

Data Partition15, 35
Data Pool15, 35
Data Selector15, 35
Default14, 24
determAlt25

E

Example59, 63, 70

F

FinishAction25

G

Glossary12

L

Log Action14
LogAction25

M

Mapping76, 81
MOF-based Metamodel48, 92, 95

O

Observation13
108

Overview18

P

Profile20, 88, 95

S

Scheduler12, 20
Stimulus13
SUT12, 20

T

Test Architecture12, 20, 48
Test Behavior13, 24, 48
Test Case13
Test Component12
Test Configuration12
Test Control13
Test Data14, 35, 53
Test Elements20
Test Invocation13
Test Objectives13
Test Suite12
Test Trace14
TestLog25
Time56
Time Concepts15, 40
Timeout40
Timer15, 40
Timezone15, 40

U

Utilities25
Utility Part13

V

Validation Action14
Verdict14, 24
 109

W

Wildcard14, 35

X

XMI Schema95
110

 111

Class Index of the Profile

Arbiter (a predefined interface) ... 21
Coding Rule ... 36
DataPartition .. 37
DataPool... 37
DataSelector... 38
Default ... 27
DefaultApplication... 28
determAlt (an interaction operator) 29
Duration (a predefined type).. 42
FinishAction... 29
GetTimezoneAction... 41
LiteralAny.. 38
LiteralAnyOrNull... 38
LogAction .. 30
ReadTimerAction... 46
Scheduler (a predefined interface) 22
SetTimezoneAction ... 42
StartTimerAction ... 45
StopTimerAction ... 45
SUT.. 22
TestCase... 30
TestComponent .. 22
TestContext .. 23
TestLog .. 33
TestLogApplication ... 33
TestObjective ... 31
Time (a predefined type).. 42
TimeOut ... 43
TimeOutAction .. 43
TimeOutMessage ... 43
Timer (a predefined interface) ... 44
TimerRunningAction ... 46
Timezone (a predefined type) .. 44
ValidationAction.. 31
Verdict (a predefined enumeration) 32

112

Class Index of the MOF-based Metamodel

Arbiter .. 51
Behavior... 49
CodingRule .. 55
DataPartition .. 56
DataPool... 56
DataSelector... 56
Deployment.. 53
Duration ... 57
InstanceValue... 54
LiteralAny.. 55
LiteralAnyOrNull... 55
LiteralNull.. 55
Scheduler ... 51
SUT.. 50
TestCase... 52
TestComponent .. 51
TestContext .. 50
TestLog .. 53
TestObjective ... 52
Time ... 57
Timer.. 57
Timezone ... 57
Verdict ... 52

	Contents
	List of Figures
	1 Scope
	2 Conformance
	2.1 Summary of optional versus mandatory features
	2.2 Proposed compliance points

	3 Normative references
	4 Terms and definitions
	4.1 Test Architecture
	4.2 Test Behavior
	4.3 Test Data
	4.4 Time Concepts

	5 Additional Information
	5.1 Acknowledgements
	5.2 Guide to material in the submission
	5.3 References

	6 The UML Testing Profile
	6.1 Overview
	6.2 Structure of the UML Testing Profile
	6.3 The Profile
	6.3.1 Test Architecture
	6.3.2 Test Behavior
	6.3.3 Test Data
	6.3.4 Time Concepts

	6.4 MOF-based Metamodel
	6.4.1 Test Architecture and Test Behavior
	6.4.2 Test Data
	6.4.3 Time

	6.5 Examples
	6.5.1 Money Example
	6.5.2 Bank ATM Example
	6.5.3 Money Transfer Example

	6.6 Mappings
	6.6.1 Mapping to JUnit
	6.6.2 Mapping to TTCN-3

	A Profile Summary
	B XMI Schema
	C Arbiter and Scheduler protocols
	General Index
	Class Index of the Profile
	Class Index of the MOF-based Metamodel

