Date: December 2018

Unified POS Retail Peripheral Architecture

FTF - Beta 2

OMG Document Number: dtc/18-12-20
Standard document URL: https://www.omg.org/spec/UPOS/

ii UnifiedPOS Retail Peripheral Architecture

UnifiedPOS Technical Committee Members:

Bizerba GmbH & Co. KG

Datalogic Scanning, Inc.

Epson America, Inc.

Fujitsu Frontech Limited

IBM Corporation,

Microsoft Corporation,

NCR Corporation,

OPOS-Japan,

Seiko Epson Corporation,
Sorimachi Giken CO, LTD

Star Micronics, CO. LTD

Toshiba Global Commerce Solutions, Inc.
Wincor Nixdorf International GmbH.

Information regarding the activities of the UnifiedPOS Committee can be viewed at the
following web site: http://retail.omg.org

JavaPOS is a trademark of Sun Microsystems, Inc.
Windows is a trademark of Microsoft Corporation.
Epson is a trademark of Seiko Epson Corporation.

UnifiedPOS Version 1.15

http://retail.omg.org
http://retail.omg.org
http://www.nrf-arts.org

UnifiedPOS Retail Peripheral Architecture iii

Copyright © 2018 Object Management Group.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, condi-
tions and notices set forth below. This document does not represent a commitment to implement any portion of this spec-
ification in any company's products. The information contained in this document is subject to change without notice.

This specification was originally created under the ARTS IP Policy which can be found here: http://www.omg.org/cgi-bin/
doc?retail/2017-12-01

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this speci-
fication to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright no-
tice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications
is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and
will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specifica-
tion. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon
termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may re-
quire use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a li-
cense may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those
patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are re-
sponsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or me-
chanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

UnifiedPOS Version 1.15

http://www.omg.org/cgi-bin/doc?retail/2017-12-01
http://www.omg.org/cgi-bin/doc?retail/2017-12-01

iv UnifiedPOS Retail Peripheral Architecture

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, IN-
CLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CON-
SEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PER-
FORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This dis-
claimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acqui-
sition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may
be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its desig-
nees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software
to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specifica-
tion. Software developed only partially matching the applicable compliance points may claim only that the software was
based on this specification, but may not claim compliance or conformance with this specification. In the event that testing
suites are implemented or approved by Object Management Group, Inc., software developed using this specification may
claim compliance or conformance with the specification only if the software satisfactorily completes the testing

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture v

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http.//www.omg.org, under Documents, Report a Bug/Issue.

UnifiedPOS Version 1.15

vi

UnifiedPOS Retail Peripheral Architecture

This page intentionally left blank.

UnifiedPOS Version 1.15

Table of Contents ix

TABLE OF CONTENTS

PREFACE

About the Object Management GIOUD..........ecveeeerieeeereeeieneeseesesresseseeesessaesesseenns vii

INTRODUCTION AND ARCHITECTURE
UnifiedPOS Architecture for Retail.........c..ooovvveeiiiioiieiceeeeeeee e 1
WHAT IS UNIFIEDPOS? 1
ABOUT THIS DOCUMENTATIONvveeeeeeeeeeseeeeeeeeeeeseeeeeeeeseeeeee e s s eseeeeeseseseenes 2
GOALS ettt et e e e e e e e e et e e e et e e e et e e e eaae e e tteeeatreeeetaeeeaaaaeans 5
DEPENDENCIES <....veteeeeeeeeeeeeeeeeeeeee e eeeee e e eeeeeeeseees s seeeseseseeeeeeeseseseseeeeeseseseenaes 5
UNIFIEDPOS RELATIONSHIP TO CONFORMING PLATFORM MAPPINGS................... 5
WHO SHOULD READ THIS DOCUMENTcccviiiiiiieeiieeeetee e 6
CONFORMANCE 7
UNIFIED POS ...ttt e et e v e e e e aaeeeaaeaen 7
ARCHITECTURAL OVERVIEW 8
ARCHITECTURAL COMPONENTScccuviiiiurieeirirenreeeesseeesereeesssesessseesssesessssessssseeans 8
USE OF UML ...ttt tte ettt et e s vae e eatae e enssaeesbaeesasaaeans 9
Package Diagram..........ccccveeeviiieniiieeieeeee e 11
DATA TYPES .ottt e e et e e et e e e ab e e e ts e e esaseeeebeeesaaaeeenraeans 12
Device Behavior MOAEIS. 13
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTScoeveveveeeeeeeeeeeeesean 13
Properties (UML AUFIDULES)ooeveeeveeiiaaieeeieeeee e, 13
Methods (UML Operations)ccceeeveeeeieeeeieeencreeenneeannn, 14
Events (UML Interfaces)cccccooveevoeeioianciaieeiieseaeeee 14
DEVICE INITIALIZATION AND FINALIZATIONcoouiueeieieeeeeeeeeeeeeeeeee e 15
TNItQLIZALION ... 15
Initialization and Error Reportingcccccccceeveevveecveencnneane. 15
FIRALIZATTON <. 18
SUMIATY ... 18
Device Sharing Modelccooviiiiiiiiniiieece e 19
Exclusive-UsSe DeVviCesouuueeeeeeeeeeeieiiiiiiiiiiiiiiiienenenen, 19
Sharable Devices....................ccccccciii 19
EVENTS Lottt ettt e et e et e e et e e et e e e e ssaeesabaaeessseeenssaeessseanns 20
BITOTS e ananananaas 21
ERROR CODES......ccitiiiiiiieciieeeciiee et e ettt e e st e e et e e etteeetbeeetveeesasaeesseeesssseeeasaeans 21
Extended Evror COAeoooueeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiini 22
DEVICE INPUT IMODEL.......cuvtiiiiiiiiiiiee ettt eetre e e e e eaareea e e eraaeee s 23
Error Handlingc..ccooooioiiiiiiiiieeee et 24
MISCEIIANEOUS ...t 25
DEVICE OUTPUT MODELSooiiiiiiiiiiiee e ettt e e eeetieeeeeeeetaaeeeeeearaeeeeeeeanreeaseeensnaeaeas 26
SYNChronous OQUIDULcccueeeeueeeiiieeiieeeee e 26
ASYNChrONOUS OQUIPULooeveeeeiieeeiieeeeee e 26
Device Power Reporting Model...........ccoecienieiiiiiniiiiiciecieee 27

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

X Table of Contents
MOAEL.............oooeeeiieeeeee e 27
Power State Diagram..................cccoceeeveiiiieaiiiiieeeiee e 28
POWer PrOPErties.............ccccviicuiiiiiiiiiieiieeee e 29
Power Reporting Requirements for DeviceEnabled 30

Device Information Reporting Model.............ccccoeviiiiiininiinnenne. 31
Statistics Reporting Properties and Methods............................. 31
XML Definitions for POS Device Statistics................cc..ccoooue..... 32
Update Firmware Device Model...........cocooieiiniininninicniiicneee. 34
DEVICE STATES ..ottt ettt ettt et s st neae 35
Device State Diagramcccoeeveeiiieiaiiieaiieeeie e, 36
VERSION HANDLINGc.uciiiiiiiiiiiieienit ettt st s s 37
DEPRECATION HANDLINGootiiiiiiiiiieie ettt s e 38
HYDRA DEVICE CONSIDERATIONScoouiiuiiiiiiieienieeienieeiesieenesieereseeeeeseeene e 39
Initial Connectivity Model..............cc..cccoovvviviiianiiiiniieaieane, 39
Control Object or Device Control (Control)cc........ 39
Service Object or Device Service (Service)cccceeeveennnnne. 39
Multi-Function (Hydra) Peripheral Devices............ccceeueeee. 40
CONSIACTALIONS ... 42
CHAPTER 1
COMMON PROPERTIES, METHODS, AND EVENTS 1
SUMMARY ...ttt ettt et st st e s h et e s e e eeae e esne e e e eneennesaee 1
GENERAL INFORMATION. ..ottt sttt et s 4
Common PME Class Diagram.................ccccoeecveevieenieeencnnannen. 4
PROPERTIES (UML ATTRIBUTES) ..c.veeuvertieieseietesiienteseaensesseensesssesseeneessesnsessessensens 6
METHODS (UML OPERATIONS)ccutietieiieeieeeseiesesseesessaesesseensesseensesseensesseensenses 17
EVENTS (UML INTERFACES)eettetieiieteeeieeeseensesseesessaessesseensesssensesseensesseensenses 28
CHAPTER 2
BELT 1
SUMMATY .ttt e st eeaeees 1
GENERAL INFORMATION. ..ottt sttt 5
CAPABILITIES ...ttt ettt et s et 5
BELT CLASS DIAGRAMooiiiiiiiiiiieiieie et 6
Belt Sequence Diagram..................cccocvcueeeieeeiieeniieenieeieeenenns 7
IMODEL ...ttt et e 9
DEVICE SHARING ...c.outiuiiiiiiiiiieiieiieie sttt sttt 10
Belt State Diagram..................ccccccoeeveiieniiiiiniieiiieiieeees 10
PROPERTIES (UML ATTRIBUTES) ...eeovteeuieetienireereensrenveesseesseesseesssesssesssessssesnseens 11
METHODS (UML OPERATIONS) ..c.uvieiuiereieeteeneeeereensrenseesseesaesseesssesssessseesssessseens 18
EVENTS (UML INTERFACES)covtiuiriiriitiniententetereeeeeeeetene et ere e s sse e saeseenenne 21
CHAPTER 3
BILL ACCEPTOR 1
SUMMARY ...ttt ettt et et st st e s h et e b e et e esae e e ene e saee 1
GENERAL INFORMATION. ..ottt sttt et 5
[0 T2 031 18 SRS 5
Bill Acceptor Class Diagramc..ccoceveevevceeenceeesreeennnn 6

UnifiedPOS Version 1.15

Table of Contents Xi

MOdEL.............oooeeeeieeie e s 7
Bill Acceptor Sequence Diagramccceeeveveecineecneeenne.. 8
Bill Acceptor State Diagramc.cccoeeeeeceeveeeieenieaieenennn 9
Device SHAVINGoooevuiiiiiieeie et 9
PROPERTIES (UML ATTRIBUTES) ...uveevtetieeietesnieniesseeeesseesesseensesseensesseensesseensesses 10
METHODS (UML OPERATIONS)ccutietieiieeieresniessesseesessaensesseensesseensesseensesseensesses 15
EVENTS (UML INTERFACES)veettetieiierteeeteeeseensesseesessaessesseensesssensesssensesseensenses 19
CHAPTER 4
BILL DISPENSER 1
SUMMARY ..ottt ettt st sttt et eae bbb s b aenae e 1
GENERAL INFORMATION.......ccoiumitntinineiseiseese st ise st st 5
(02 o103 1 1 T OSSR SUUUSRTRPRRRPRNE 5
Bill Dispenser Class Diagram....................ccccecueeeeeevreneenenannnn. 6
MO EL.............oooeeeeiieee e s 7
Bill Dispenser Sequence Diagramcccccccecveeenveenennn. 9
Bill Dispenser State Diagramcccccoeceeeceeeeeencenaneennnn 10
Device SHAVINGooveueeeeiieiie e 10
PROPERTIES (UML ATTRIBUTES) ...uveevteiieeietesnientesseeneesseesesseensesseensesseensesseensesss 11
METHODS (UML OPERATIONS)c.vcuiieiiieiiieieeneaeeteeeneeeneaenesaesesne e e nesesnenenne 16
EVENTS (UML INTERFACES)eettetieiierteeeteeeseensesseesessaesesseessesssensesseensesseensenses 19
CHAPTER 5
BIOMETRICS 1
SUMMARY ...ttt ettt ettt st sttt et eae bbb e b s ae e 1
General INformationooeiieieiieiieie e e 5
CAPADIIILIES ...t 5
Biometrics Class Diagramccccoveveeeeieencienenieaiieeennnn 7
MOAEL.............ooooeieiiieieeee e 8
Device SHAVINGc..occcveviiiiiiiiieieeeee e 9
Biometrics Sequence Diagramscccceceveveivenceeancunnane, 10
Biometrics State Diagram................ccccocccveieniieniiiniiniinenene. 13
PROPERTIES (UML ATTRIBUTES)...cccuteetteteeeeesreessrenseesseessesseesseessesssessssesnseens 14
Methods (UML OPEIations)cc.eeuerueeieniieienieeieeieeienieseeeiesieeie s eeee e eeee e eee 21
Events (UML INtETTACES) ...cveevuiiiiieiieeiieieeeie ettt eae e s 27
CHAPTER 6
BUMP BAR 1
SUMMATY ...ttt e e eeeabeeeaeees 1
GENERAL INFORMATION........ocveiiieisisiisesseiseseseessessessssessesse s sssssessesssssse s ssssnns 5
CaAPADILILICS ..ottt 5
Bump Bar Class Diagramcccooeoveeeeioeeiieiieaieseens 6
MO L. 7
Input — Bump Bar.........coooviiiiiiee e 8
OUtPUL — TONE ...eeiiiiiiiiicee e 9
Device SHAVINGc..occcviviiiiieiiieeee et 9
Bump Bar State Diagramcccccocoveueeeiiiiieeeiiiiieeeiiieean, 10
PROPERTIES (UML ATTRIBUTES) ...eevteuteentieniiesteenieenieeenteeseesseessnessessseessesnseens 11

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Xii Table of Contents
METHODS (UML OPERATIONS)uviiitiererieteeneeeereesseesseesseesssesseessessseessesssseessenns 17
EVENTS (UML INTERFACES) ..uvtiiutiestiesiieeteeseeeereesseessseesseessessseesssessseessessseessenns 22

CHAPTER 7
CASH CHANGER 1
STUMMARY ...eiiiiteiteteeitesie ettt ettt ettt ete st et et essesaeessesheeesesbeesnesteesnenueennesueennenaee 1
GENERAL INFORMATION.....c.ceimtieiiiiieienieentenitete st eetesisentesteenneseeenaeeneesesnnenaeennennens 5
[T2 031 8 SRS 5
Cash Changer Class Diagramccccoceeveveeniienicnoencnnns 6
MOAEL..............oocooeieeieeieeeee e 7
Cash Changer Sequence Diagram..................cccoeceveeeceveeeenanne. 11
Cash Changer State Diagramccccccouieeenceenincennanne. 12
Device SHAVINGc..cccviviiiiiiiieeiieeeee e 12
PROPERTIES (UML ATTRIBUTES) ...eeovteiutieteeseeeereesseesreesseessesaseesssesseessesssesssenss 13
METHODS (UML OPERATIONS)uviietieseiiereeseeeereesseesseesseesssesseesssessseessessseessenns 25
EVENTS (UML INTERFACES) ...uvtiitviestiesiteeteesteeteesseessseesseessseassesssseesseessesssesssenns 33
CHAPTER 8
CASH DRAWER 1
STUMMARY ..ottt ettt ettt ettt eate st et saeestesaeessesbeeesesbeennesbeessenaeennesueenaenaee 1
GENERAL INFORMATIONutiitiiniiteniieniteitesteeieesiteeteesieesseenseesseanseesaseenseesnsesnne 4
[T T2 031 8 SRS 4
Cash Drawer Class Diagram...................ccccocceecenvcniiencncencnnns 4
Cash Drawer Sequence Diagram.................cccccoeceeceaneencenannnnn. 5
Device SHAVINGc..oooveueiiiiiieeie e 6
PROPERTIES (UML ATTRIBUTES) ..c.vveuvetieieseieiesiienteseaeeesseensesseesseensessesnsessessensens 7
METHODS (UML OPERATIONS)evteieeteenresiiesesseensenssensesseensesssessessessesnsessesssensens 9
EVENTS (UML INTERFACES)eettetieiieteeeieeeseensesseesessaessesseensesssensesseensesseensenses 10
CHAPTER 9
CAT - CREDIT AUTHORIZATION TERMINAL 1
SUMMARY ...ttt ettt ettt ettt sheeee s bt et e sb e es e st e et e sbeentesbeeneeseeeneesees 1
GENERAL INFORMATION........ccuiuieteietiiereniesisesessesessesessesessesessesessessesessssensasessesensens 5
DeSCrIPLION Of TETMIS ..o 5
[0 T2 03 1 18 SRS 6
CAT Class DiQ@ramccoeeeeueeesiueeeiieeeieeeieeeee e 8
MoOdel...............oooooeeeiii e 9
Device SHAVINGc..cccvioiiiiiiiieeeeieee e 13
CAT Sequence Dia@ram................ccceeeceeeeieeeeiiieeiieeeieeeeeeennss 14
CAT State Diagramcccccceveevciiniiniiiiieniieiieneeeees 15
PROPERTIES (UML ATTRIBUTES) ...eeotteeutietienieeeteentrenveesseesssesseesssesssesssesssessseens 16
METHODS (UML OPERATIONS) ..c.uvieouiereieeteenneesreensrenseessaessaesseesssesssessseessessseens 33
EVENTS (UML INTERFACES)cetteutieitenteetteeesitentesteeniesieeeesieentesieentesteeneeseeeneeseee 43
CHAPTER 10
CHECK SCANNER 1
SUMMARY ..ttt ettt ettt et sttt e sbt e eat e e bt e st e bt e sb bt e bt e sat e et aesabesabeeseseebeennees 1
GENERAL INFORMATION.uutiitiiriiienttenitteieeete et e siteebeesieesbeebeesteenbeesaseenbeesmnesnne 5
[0 T2 031 18 SRS 5
Check Scanner Class Dia@ramcccceeeveeevceeenieeenienennnnn 6

UnifiedPOS Version 1.15

Table of Contents xiii
MOdel............coiiiiiiii e 7
Device SHAVINGcocovveeeiiieiiieeeee e 10
Check Scanner Sequence Diagram..................cccccoeeeveeeeeenane.. 11
Check Scanner State Diagramcccceeecveeceeenieeanenaane, 12

PROPERTIES (UML ATTRIBUTES) ...uveevtetieeietesnieniesseeeesseesesseensesseensesseensesseensesses 13
METHODS (UML OPERATIONS)ccutietieiieeieresniessesseesessaensesseensesseensesseensesseensesses 28
EVENTS (UML INTERFACES)veettetieiierteeeteeeseensesseesessaessesseensesssensesssensesseensenses 37
CHAPTER 11
COIN ACCEPTOR 1
SUMMARY ..ottt 1
GENERAL INFORMATION.......ccoiumitntinineiseiseese st ise st st 5
(02 o103 1 1 T OSSR SUUUSRTRPRRRPRNE 5
Coin Acceptor Class Diagramcccoeeeeveeeeieeceaneeaieannen. 6
MOdeL............ooiiiiiiii e 7
Coin Acceptor Sequence Diagramcccoccevviaeicnccnncen. 8
Coin Acceptor State Diagramccccceeeeeiiiieeniieeneeennsn. 9
Device SHAVINGc..oooveeiiiiiieeie e 9
PROPERTIES (UML ATTRIBUTES) ...uveevteiieeietesnientesseeneesseesesseensesseensesseensesseensesss 10
METHODS (UML OPERATIONS)ceutietieiieeietesiensesseesessaesesseensesseensesseensesseensesses 15
EVENTS (UML INTERFACES)eettetieiierteeeteeeseensesseesessaesesseessesssensesseensesseensenses 19
CHAPTER 12
COIN DISPENSER 1
SUMMATY ittt sebee e e eaeees 1
GENERAL INFORMATION. ..ottt sttt ettt et 4
CAPADBIITLIES ... 4
Coin Dispenser Class Diagram................c..ccccccceecerciencnoenncannnn 5
Coin Dispenser Sequence Diagramcccccccceeveeeenceneanne.. 6
Coin Dispenser State Diagramccccooeecveeeveeniceeencnnennnen. 7
MOAEL.............ooooeieiiieieeee e 8
Device SHAVINGc..cccoveviiiiiiiiieeee e 8
PROPERTIES (UML ATTRIBUTES) ...eecvteeetieiieeieeiteesereeseeseseeseesseeesseesseessseesssessseenns 9
METHODS (UML OPERATIONS)uviiouieseriereesereereesseesseesseessseaseesssessseessessseessenns 10
EVENTS (UML INTERFACES) ..uviiittiestiesiieeteeseeeereesseessseesseesssssseesssessseessesssseensenns 12
CHAPTER 13
ELECTRONIC JOURNAL 1
SUMMARY ..ottt 1
General INformationcoooiririiireeee e 5
CAPABILILIES ... 5
Electronic Journal Class Diagramcccocceeveaeeennennn. 6
MOdeL............coeiiiiiiii e 7
Device SHAVINGc.cccooiiiiiiiiiiiiiit e 8
Electronic Journal Sequence Diagrams....................cccccoeeeueenni.. 9
Electronic Journal State Diagramccccccoveverveencnnanne. 11
PROPERTIES (UML ATTRIBUTES)...cccutertteteenitesteensreneeenieeseesseessessessseessesnseens 12
Methods (UML OPETAtiONS)cc.ccveruerieierueieiieiieieeieeteetesteseesee e see et eee e sne e 18

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Xiv Table of Contents
Events (UML INtEIfaces)c.coovieiiieiieeii ittt eae e s 27
CHAPTER 14
ELECTRONIC VALUE READER / WRITER 1
SUMIMATY .ot s 1
GENERAL INFORMATION.ocuimiiiiiiiiiiiiieiiieeic st 8
CAPADIIILIES ... 8
EVRW Class DiG@ram..............ccccccoeeeeeeeeiieeaiieeeiieeseeeneeennn, 14
MOAEL.............oooeeeeiieeieeeee e 17
Life Cycle of Sub-Serviceccccocvevviiiiiiniiaiiaiiieseene 26
The Service With Variations.................cccccoceeeveenoiinicnieaneenne. 27
The Connection Model of EVR/W Devices and Payment
COMIET ...t 28
Transaction Mode SUpport................ccoceeveveeiceeecieeiiieeeeeennen 29
Device SHAVINGc.cccoiiiiiiiiiiiiiicie e 29
EVRW Sequence Diagram...................cccccoevueevieeenioieanieaanneennne, 30
EVRW State Diagram...............ccccccoueeeceeeeeeeeaiieesiieeniee e 34
Error Model..................ccccocoooeveviiiiiiiiiiiiiiieeceeee e, 35
PROPERTIES (UML ATTRIBUTES) ...eeovteettieteenieeereensrenueesseesseesseesssessseessessssesnseens 39
METHODS (UML OPERATIONS)uvieitieruieeteeneeesreensrenseessaessaesseesssessseessesssessseens 76
EVENTS (UML INTERFACES)uvteitieittesteenieenteeneeeseessseesseesssessaesssesssessssessseenns 121
CHAPTER 15
FISCAL PRINTER 1
SUMMARY ...ttt ettt st et st st e s h et e e et e e ae e ereennesaee 1
GENERAL INFORMATION. ...ttt ettt 10
Fiscal Printer Class Diagram..................ccccoueveeeecieenceeanenannne, 11
General ReqUIrements...............c.ccoueeueioeenieoienieneseneeeeeees 12
Fiscal Printer MOdes..............ccccccooceioeiiioiiiiniiiieieeee 13
MOdel........c...ooiiiiiiiii e 14
Error Model..................ccccocooviveuiiiiiiiiiiiiiieeeceeee e, 15
Release 1.8 Additional Model Clarifications 17
Fiscal Printer States..............cccococouviiviieiiiiiiiiieiiieec e 19
Fiscal Printer State Diagram..................cccccoccouceeeenccnieenencnenne. 21
Document PYiNEINGccccoeeiueeiiiiiiiieeee e 22
Ordering of Fiscal Receipt Print Requestsc..ccccoeeeuuenn.. 23
Fiscal Receipt LaAYOULSc..cccoevuiiiiaiiiiiieiiese e 25
Example of a Fiscal Receipt................cccccovvevevieaceenieaaraeennnn. 26
Totalizers and Fiscal MemoOry..............c.ccovevveeeeieeniieeneeenen. 27
COUNLES ...t e e e aee e 27
VAT TADIES ... 27
Receipt DUPLICALION.cccuveeeieeeiiieiieeeee e 27
Currency Amounts, Percentage Amounts, VAT Rates, and Quan-
1Y AMIOURLS ...t 28
Currency CRANGEccccueeeceeeeiieeiiieeeee e 28
Device SHAVINGc.cccoviiiiiiiiiiiiiit e 28

UnifiedPOS Version 1.15

Table of Contents XV

PROPERTIES (UML ATTRIBUTES) ...eecvteitiietienereereesteesreesseesseeeseesssesseessesssseessenss 29
METHODS (UML OPERATIONS)uviiiuieseiierienireereesseesseesseessseeseesssessseessessseesseess 67
EVENTS (UML INTERFACES)uvteitieitiesieesreesreesseereessseeseesseeeseesssesseesssessseenns 147
CHAPTER 16
GATE 1
SUMIMATY .ot 1
GENERAL INFORMATION.......coutiuiiiiriiniiniiniententetetete ettt ereesesaeseessesaesaessennennens 4
CAPABILITIES ... uvtettetteeteeetteeteessteesseesaessseesseesssaessessssesnsesssssssessseesssesssessssenns 4
GATE CLASS DIAGRAMocoiiiiiiiiiiiiiiieiiiiesie ettt s 5
Gate Sequence Diagram.................cccccccceeeeceeeeiieeniieeiieeiieeeenns 6
DEVICE SHARING ...ttt ettt e e sn e e e 7
PROPERTIES (UML ATTRIBUTES) ...eccvteeevieiieeieeteeseveeseesereesseesseeesseesseessseesssessseenns 8
METHODS (UML OPERATIONS)uviiitieeirieieeeeeesteesseeseessseesseesssesssesssesssseesssesseenns 9
EVENTS (UML INTERFACES) ...uvtiitviestiesiteeteesteeteesseessseesseessseassesssseesseessesssesssenns 10
CHAPTER 17
HARD TOTALS 1
SUMIMATY .ottt e 1
GENERAL INFORMATION.......cotettieineeessseese et seesse s essess e s s s s ssesnees 5
CAPADIIILIES ...t 5
Hard Totals Class Diagram................ccccccocueveevenceeeniieeiieeanenn 6
Hard Totals Sequence Diagram..................cccccccvcueviavinnienennnn. 7
MO L. 8
Device SHAVINGooooveeeeiieiie e 10
PROPERTIES (UML ATTRIBUTES) ...uveevietieeietesientesseesessaesesseensesseensesseensesseensesss 11
METHODS (UML OPERATIONS)c.ecutieuiieiiieieeneeeeteeeneeeneneneseese st esnesesnenenne 13
EVENTS (UML INTERFACES)eettetieiieteeeieeeseensesseesessaessesseensesssensesseensesseensenses 23
CHAPTER 18
IMAGE SCANNER 1
SUMMATY .ttt e st eeaeees 1
GENERAL INFORMATION. ..ottt sttt 5
CAPADBIITLIES ... 5
Image Scanner Class Diagramccccocccvceviiaoinniencnnenn. 6
Image Scanner Sequence Diagram 1cccccccoevvevvvnennne.. 7
Image Scanner Sequence Diagram 2cccccccveveeveeecenennnn.. 8
Image Scanner Sequence Diagram 3cccccccouvevcienccnanienn 9
Image Scanner Sequence Diagram 4cccccceeveveveenennannne. 10
MOAEL.............oooeeeiieeeeee e 11
Device SHAVINGc.cccoviiiiiiiiiiiiicie e 11
Image Scanner State Diagramcccovceeeeecieenieeennanne, 12
PROPERTIES (UML ATTRIBUTES)eovttintintentetetententeneeeteaeeneesessesieseessesseseeneensenne 13
METHODS (UML OPERATIONS)uvieetieserietieeeeeereesseesseesseesssesseesssessseessessseessenns 21
EVENTS (UML INTERFACES)covtritriintintinienteneeteteeeaeeeteeeneereesesiesaessesseseeneensenne 22
CHAPTER 19
ITEM DISPENSER 1
SUMIMATY .ottt s 1

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Xvi Table of Contents
GENERAL INFORMATION.uutiittiriitenitenitteiteeteeieesiteeieesbeesbeebeesteenbeesateenbeesneesnne 4
CAPABILITIES ...ttt it et st e st e et et e sate et e sbteebeesbeesbeebtesaseesseessteenbeesnaennne 4
ITEM DISPENSER CLASS DIAGRAMcccutiiiiiiiiiiiieiee ettt ettt s 5
Item Dispenser Sequence Diagram................cccccceevevcveveenennnn.. 6
IMODEL ..ottt sttt ettt et ettt st st st st be e sa e e bt e sae e 7
DEVICE SHARINGcoveitieitintieienitetteieenteeete st eieesieesne st sesesieeesesteesnesseennesneennenuee 7
Item Dispenser State Diagramcccocceevcveniineienccnancn. 7
PROPERTIES (UML ATTRIBUTES) ...eeetteevieiieeieenieesereeieeseressseenseesssessseessseessnesssennns 8
METHODS (UML OPERATIONS) ..c.uvieiuieeuieeteenireereessrensseessaessaesseesssesssesssessssessseens 10
EVENTS (UML INTERFACES) ...uvteittiesttesieeeteentesreessressseesseesssesseesssesssesssessssessseens 12
CHAPTER 20
KEYLOCK 1
SUMMATY ...t e e e ee e e eaeees 1
GENERAL INFORMATION.....c.ceimtieiiiiieienitetenieetenieentesisentesteenneseeenaeeseesesmnesaeennennens 4
CAPABILITIES ...ttt eeeeteeteenaeeetesaeeeeesaessnesaesesesbeeasesteennesbeennesseennenuee 4
KEYLOCK CLASS DIAGRAM......coutiiiiieiieiienttnitenieeee ettt 4
Keylock Sequence Diagramcccccvceeeivciniiioinneenennn, 5
|\ (0] 5] 21 SO SO RO RPSTST 6
DEVICE SHARINGcoutetieitintieieetteitette st etestesitesaesaesbeestesbeeseesteeneesbeeneesaeeneesaes 6
PROPERTIES (UML ATTRIBUTES) ...eeevteeetieiieereesieesereeseessressseenseesssessseessseessnesssennns 7
METHODS (UML OPERATIONS)uvieetieeieeieeereesteesereeseesssessseenseesssesssesssseessnssssennns 9
EVENTS (UML INTERFACES) ...uvtiittiestieseeeeteeneesteesseessseessaesssesseesssesssesssessssesnseens 10
CHAPTER 21
LIGHTS 1
SUMMATY ...t e e eeeaaeeeaaees 1
GENERAL INFORMATION.....c.ceimiieuiiiieienieetenitete st eetesitetesueenseseeenaeeseesesnnenueennennens 4
CAPABILITIES ..ottt ettt eieenaeeetesaeeaee it sanesaesesesbeeesesteensesbeennesneennenuee 4
LIGHTS CLASS DIAGRAM......coiiiiiiiiiieiietenteeeesie ettt 4
Lights Sequence Diagramc.ccccoccevoeeeinccneioineenennenn, 5
DEVICE SHARINGcouteitieuiitieteetteieeete st eitestesitesie s e sbesstesbeeneesteeneesbeeneesaeeneesees 6
PROPERTIES (UML ATTRIBUTES) ...eecuteetieiieeieeiteesereeieessnessseenseesssessseessseessnesssennes 7
METHODS (UML OPERATIONS) ..c.cvteeuieeerieieeereesteeseseeseesssessseenseesssesssesssseessnesssennns 9
EVENTS (UML INTERFACES) ...uvteittiestteseteeteeneeeteesseessseesseesssesseesssesssesssessssesnseens 11
CHAPTER 22
LINE DISPLAY 1
SUMMATY ...t e sbee e ee e e eeeees 1
GENERAL INFORMATION.......ccutittetintintintintentestentetentetete et et ebesbesiesee st saesaensensenaens 5
CAPABILILIES ... 5
Line Display Class Diagram..................ccoccevveeeeienieaieaneannn. 6
Line Display Sequence Diagram................cc.ccccouveueeniveencnennn.. 7
MoOdel...............oooooeeeiii e 8
DiSplay MOdes..............c..ccceeeiaeiiiiiiaiieeiieeeee e 9
Data Characters and Escape Sequences...................ccc.cccuvnn... 10
Device SHAVINGc.ccceiiiiiiiiiiiiiiie e 10
PROPERTIES (UML ATTRIBUTES) ...eeottesutieteeneeeeteensrenaeesieesseesseesssesssesssessssesnseens 11
METHODS (UML OPERATIONS) ..c.uviesuieeuieeteenireereessrenseesseesseesseesssessseessessssessseens 32

UnifiedPOS Version 1.15

Table of Contents

Xvii

EVENTS (UML INTERFACES) ..uvtiitviestiesieeeteesieeereesseessseesseesssssseesssessseessessseensenns 47

CHAPTER 23
MICR - MAGNETIC INK CHARACTER RECOGNITION READER.............

CAPADIIILIES ...
MICR Class Dia@ram...............ccc.ccccueeeveeeeeieeniieeeiieeneeeneee s

Device SHAVINGoooecueiiiiiieeie e
MICR Character SUbSHIULION.................cccoueeeeeieeeeeciieeeeeceeeea,
PROPERTIES (UML ATTRIBUTES) ...eeovteettieteenieeereensrenueesseesseesseesssessseessessssesnseens 11
METHODS (UML OPERATIONS) ...uvieiuieruieeteenieeereensrenseessaessaesseesssessseessesssseesseens 16
EVENTS (UML INTERFACES) ...uvteittiesttesieeeteentesreessressseesseesssesseesssesssesssessssessseens 20

CHAPTER 24
MOTION SENSOR

CAPABILILIES ...
Motion Sensor Class Diagramcc.cccoeeeeeecveeceeaceeninannnn.

Device SHAVINGc.cccooviioiiiiiiiiiit e
Motion Sensor Sequence Diagram..................ccccceccueeeceeencenennnne..

Motion Sensor State Diagram...................cccevecueevceeenceeeeiineennnn
PROPERTIES (UML ATTRIBUTES) ..c.veeuvertieieseietesiienteseaensesseensesssesseeneessesnsessessensens
METHODS (UML OPERATIONS)evteieeteenresiiesesseensenssensesseensesssessessessesnsessesssensens
EVENTS (UML INTERFACES)eettetieiieteeeieeeseensesseesessaessesseensesssensesseensesseensenses 10

CHAPTER 25
MSR - MAGNETIC STRIPE READER

SUMMARY ...ttt ettt ettt st et bt et s bt emtesbees e sbeemeesbeenteebeeneeseeeneesaes
GENERAL INFORMATION.cvoveveverererereresasasasasesesenans
CaPADIIILICS ...veeivieiieiie ettt et e et e et e et e et e s beesaeeesbeesrbeenaeenes
Clarifications for JIS-II Data Handlingccceccvevveenennen.

MSR Class DiGgrami................ccccooeceeeeceeeiiieesiieeeieeeee e
Device Behavior Model...................cccccooooiiioiiioiiiiiiiiiiiiieiieen.
Input —MSR ..o
Output — MSR ..o
MSR Encryption and Authentication — Updated in Release 1.148
Encryption - MSR.......ciiiiiiiiieeeeee e
Authentication - MSR.........cccoiiiiinininininnncecccen 10
MSR Sequence Diagram.................ccccccoeceenviinienciniiiineneene. 11
MSR Device Authentication Sequence Diagram........................ 12

MSR State Diagramsc.cc.couccueeeeieiieeeaiiieeeeiiee e 13
PROPERTIES (UML ATTRIBUTES) ...eevteuteentieniiesteenieenieeenteeseesseessnessessseessesnseens 15
METHODS (UML OPERATIONS)uvieiiereieeteenitesteenseensteesseeseesnseessseesessseesssesnseens 39

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

xviii Table of Contents
EVENTS (UML INTERFACES) ...uviiittiesteesiteeteeseteereesseessseesseesssssseesssessseessesssessseens 44
CHAPTER 26
PIN PAD 1
SUMMARY ..ottt 1
GENERAL INFORMATION........coviuiiiiiiiiiiiiieecieicetetc e 5
[T2 031 18 TSP 5
PIN Pad Class Diagram...............c...cccccccueeniioinoecniioiniecnnen, 6
PIN Pad Sequence Diagramccoccueeeeeeeenienaneaaieannen. 7
Feature Not Supported..................cccoovveveviiieniiiiiiieeiieeeeeenn 8
Note on Terminology.............cccccoeivieioiiiiiiiiiiiieiieee e 8
MOdeL...........ocoiiiiieee e 9
Device SHAVINGoooveeeiiieiie e 10
PIN Pad State Diagram...................ccccccocievinieniieneneiniaennennes 11
PROPERTIES (UML ATTRIBUTES) ...eeovteettieteenieeereensrenueesseesseesseesssessseessessssesnseens 12
METHODS (UML OPERATIONS)uvieitieruieeteeneeesreensrenseessaessaesseesssessseessesssessseens 23
EVENTS (UML INTERFACES) ...uvteittiesttesieeeteentesreessressseesseesssesseesssesssesssessssessseens 28
CHAPTER 27
POINT CARD READER / WRITER 1
SUMMARY ...ttt ettt et st st e et e b e e ea e e eene e eneenneseee 1
General INformationccoeieiirieiieeee e e 6
CAPADBIITLIES ... 6
Point Card Reader Writer Class Diagram....................cccc.c........ 7
MOdel...........ooooiiiieee e 8
Input Modelcooviieiiiiieeeeeee e 8
Output Model........ooiiiiiiiiiiiinieiieceeeeeeeee 9
Card Insertion Dia@ram.................cccccueeeeeveeneeaieiieee e 10
Printing Capability.............cccoocoveeeiiiiiiiiiieeeie e 11
Cleaning Capabilitycccccoceviioiiiiiniiiiinieiiieieeee 12
Initialization of Magnetic Stripe Datacc.cccceeveenenn... 12
Device SHAVINGooveueeeiiiieiie e 12
Data Characters and Escape Sequences....................ccccccouen.. 13
Point Card Reader Writer Sequence Diagram 15
Point Card Reader Writer State Diagram.................................. 16
PROPERTIES (UML ATTRIBUTES) ..ccottertteteentesieenieeneeenieeseesseesseesessseesssesnseens 17
Methods (UML OPEIations)ceeverveeieriieienieeriesieeresieseeeseereesesseessesseessesseenes 38
Events (UML INtErfaces)c.oovieieriieieniiiienieeieste sttt eee 47
CHAPTER 28
POS KEYBOARD 1
SUMMATY ..ttt e sebee st eeaeees 1
GENERAL INFORMATION. ..ottt sttt ettt 4
CaAPADBIITLIES ... 4
POS Keyboard Class Diagramcccccoccevceeiacinneencnnenn. 4
POS Keyboard Sequence Diagramccccccoeveeeevennnnnnn. 5
MOdel............ooiiiiiii e 6

UnifiedPOS Version 1.15

Table of Contents Xxix
Keyboard Translationcccceeeevierieeiienieenieenieeie e, 6
Device SHAVINGooocvveiiiiieeiii e 6
PROPERTIES (UML ATTRIBUTES) ...eeetteevieiieeieenteesereesseessreesseesseesssessseessseesssesssennes 7
EVENTS (UML INTERFACES) ...uvtiittestieeieeireereesteessseesseesssessseesseesnsessseessseesssesssennns 9
CHAPTER 29
POS POWER 1
SUMMARY ...ttt ettt et st st e s h et sa e ea e e ne e ene e e saee 1
GENERAL INFORMATION.cuuiiiiiieitiiieeeeeiitiieeeeeeitreeeeeeeiateeeeeeeessaseseeeessseeaeesnnnsaeeens 4
[0 T2 03 1 18 S SRR TR 4
Device SNATINGooviieieiiieiee ettt 4
IMOEI ...ttt sttt ettt 5
POSPower Class Diagram.................cccceeeveeeeceeenceeeniieenieeennnns 6
POSPower Sequence Diagram..................cccccoccevienvenceencncnancns 7
POSPower Standby Sequence Diagram....................ccccceeeuvenni... 8
POSPower State Diagram...................ccceeevueeeeeeesieeeiiieeiieennnnns 9
POSPower PowerState Diagram - Part I...............cccccccocueen... 10
POSPower PowerState Diagram - Part 2.............ccccccceeveuennne. 11
POSPower PowerState Diagram - Part 3.............ccccoeeveeeunannne. 12
POSPower State Chart Diagram for Fan and Temperature......13
POSPower Battery State Diagram................ccccococvevceeennnnnne. 14
POSPower Power Transitions State Diagram........................... 15
PROPERTIES (UML ATTRIBUTES) ...uveevietieeietesientesseesessaesesseensesseensesseensesseensesss 16
METHODS (UML OPERATIONS)c.ecutieuiieiiieieeneeeeteeeneeeneneneseese st esnesesnenenne 23
EVENTS (UML INTERFACES)ccutestteiesteeeteeeeeensesseesesssesesseensesssensesseensesseensesses 26
CHAPTER 30
POS PRINTER 1
SUMMARY ..ottt 1
GENERAL INFORMATION. ..ottt e 9
CaPADIIILICS ...t 9
POS Printer Class Diagram.................cccccccovevceeeenoeeneaneneene. 10
POS Printer Class Diagram Updatesccccccccevevancenne.. 11
MOAEL.............oooeeeeiiieieeeee e 12
Device SHAVINGc.c.cccoiviiiiiiieeeeeeee e 18
POS Printer State Diagram..................ccccccveeceueencieancieasneennne, 19
Page Mode Printing State Diagram...................cccccccoovveeennene. 20
“Both sides printing” sequence Diagram....................c..c......... 21
Page Mode printing sequence Diagram.................c.ccc.occue.n.... 22
Data Characters and Escape Sequences....................cccccceuen.. 23
POS Printer State Diagrams (Low Level).................ccccccc...... 30
PROPERTIES (UML ATTRIBUTES) ...eeovteeiietiesieeereesseesreesteessaeeseesssesseessesssesssenss 35
METHODS (UML OPERATIONS)c.euiiiiieiiiiiieieieetesee e 83
EVENTS (UML INTERFACES)uvteiuieiiiestiesieenteeereereeseseeseesseseseesssessseesssssssesnns 124
CHAPTER 31
REMOTE ORDER DISPLAY 1
SUMIMATY .ottt s 1

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XX Table of Contents
GENERAL INFORMATION. ..ottt sttt et 6
[0 T2 031 18 SRS 6
Remote Order Display Class Diagramccccecveeecuveanne... 7
MOAEL.............ooooeeeiieeieeee e 8
Device SHAVINGc..cccoiviiiiiiiieieeieee e 12
PROPERTIES (UML ATTRIBUTES) ...eectieuiietieeeeeereesseessreesseessaesseesssesseessessseessenss 13
METHODS (UML OPERATIONS)uviiiuieseiieteeseeeereesseesseesseesssesseesssessseessessseessenss 24
EVENTS (UML INTERFACES) ..uviiittiesttesiieeteeseeeereesseessseesseesssssseesssessseessesssesssenns 41
CHAPTER 32
RFID SCANNER 1
SUMMARY ..ottt s sttt s 1
General INfOrmationcocviveriniinieieieee et 5
CAPABILILIES ...t 5
RFID Scanner Class Diagramcccccceeeeeeienieeeieeaneeennn. 6
MOAEL............ooooeeeiieee e s 7
INPUL. ..o 7
OULPUL ..ttt e 8
RFID Scanner Sequence Diagrams.................ccccoeeeueeeceveencenennnne.. 9
RFID Scanner State Diagramcccccoovevceeeniuinciennennne. 12
Device SHAVINGc..cccviviiiiiiieeieeeeee e 12
PROPERTIES (UML ATTRIBUTES)...cccttesttieitiesieereesreesreesseessseseessessseessessseessenns 13
Methods (UML OPEIrations)cc.eeeerueeieriieienieeecenieeeeseeseeeeesseeee s eneesee e seeenes 17
Events (UML INtEITaCes)veevvieiiieiieeii ettt et eae e s 24
CHAPTER 33
SCALE 1
SUMIMATY .ottt e 1
GENERAL INFORMATION......cututtiminieessseeseesesesiesse s essesse s sssssessesnees 5
CAPADIIILIES ... 5
Changes in Release 1.14........cccoovieviiiiieeiieiecieeeee e, 6
Scale Class Diagram..................ccccccecceeeniiininoiniiiniieneee e 7
Scale Sequence Diagram..................ccccccoeeeeveeeiiaieeiiiaieeeene 8
MO EL.............oooeeeeiieeie e s 9
Device SHAVINGc.cccooviiviiiiiiiiiiicet e 9
PROPERTIES (UML ATTRIBUTES) ...eeovteeuieetienireereensrenveesseesseesseesssesssesssessssesnseens 10
METHODS (UML OPERATIONS) ..c.uvieuieeuieeteeniresreesseenseesseessaesseesssessseessesssessseens 20
EVENTS (UML INTERFACES) ...uvteitviestteseteeteenseeereesseessaeesseessaesseesssesssesssessssessseens 35
CHAPTER 34
SCANNER (BAR CODE READER) 1
SUMMATY ...t e e e ee e e eaeees 1
GENERAL INFORMATION.........cuviutaiasiiasiessseeissie s sessesssesssesssesessesessessssesessnsnnns 4
CAPABILILIES ... 4
Scanner Class Diagramcccocceeeeeeceeneeaiiaiieeieaeeee 4
Scanner Sequence Diagramccccocueeeeeieeeiiiieeeiiieeeene, 5
MOAEL.............ooooeeeiieeie e 6
Device SHAVINGc..occcvivieiiiiiieeeee et 6

UnifiedPOS Version 1.15

Table of Contents XXi

PROPERTIES (UML ATTRIBUTES) ...eecvteeetieiieeiieeiteesereeseesesessseessseesseessesssseesssessseenns 7
EVENTS (UML INTERFACES) ...uviiiuviesteesiieeteeseeeereesseessseesseessessseesssessseessessssessseens 14
CHAPTER 35
SIGNATURE CAPTURE 1
SUMIMATY .ot s 1
GENERAL INFORMATION.....cutiitieiiiiiitenteetesitetesttentesttetesteentesieesaesaeeneesmeesaeeneenneas 4
CAPADIIILIES ... 4
Signature Capture Class Diagram................cccoccevevevvenceennenanns 5
Signature Capture Sequence Diagram.................c..ccccccoceveueen... 6
MOAEL.............ooccooeeiieeeeeee e 7
Device SHAVINGoooecueiiiiiieeie e 8
PROPERTIES (UML ATTRIBUTES) ..c.vveuvetieiesiieiesiienteseaenteeseensesseesseensessesnsessessensens 9
METHODS (UML OPERATIONS)ccutietieiieeieteseiesesseesessaesesseensesseensesseensesseensesses 13
EVENTS (UML INTERFACES)veettetieiiesteeeieeesseensesseesesssesesseensesssensesssensesseensenses 15
CHAPTER 36
SMART CARD READER / WRITER 1
SUMMARY ...ttt ettt ettt st she et e s bt etesbees e sbeemtesbeentesbeeneeseeeneesaes 1
General INfOrmMatioNc.eecueeriiiriierie ettt st e eae et e saeensee e 5
CAPADIIILIES ...t 5
Smart Card Reader / Writer Class Diagram................................ 6
MoOdel...............oooooneeiiie e 7
Card Insertion Dia@rami.................cccccveveeieeienieaienieeeeeeenes 10
Device SHAVINGooocuieeeiieiieeeee e 11
Data Transfer Modesccccooivciaiiiiiiiiieiiiiieie e 12
Smart Card Reader / Writer Sequence Diagram 13
Smart Card Reader / Writer State Diagram.............................. 14
PROPERTIES (UML ATTRIBUTES).....eetertietiettsieeesseesesseesesseensesseensesseensesseensesses 15
Methods (UML OPEIations)c.cc.eeverveeieriieienieeierseseenseseeesesseesesseensessesssenseenes 21
Events (UML INtEIfaces)c.oovieieriieieniiiieniieiesie ettt eee 26
CHAPTER 37
TONE INDICATOR 1
SUMMATY ..ttt ee s eeaeees 1
GENERAL INFORMATION.uutiitiiriiienitenitteitesiteeieesiteeieesbtesteebeesteenbeesateenbeesseeenne 4
CAPADBIITLIES ... 4
Tone Indicator Class Diagram..................ccccocceveeeniecenieencnnenn. 4
Tone Indicator Sequence Diagramccccceveeeeveveeeennnnnne. 5
MOdel..............oooooeiiiae e 6
Device SHAVINGc.cccooviiviiiiiiiiieit e 8
PROPERTIES (UML ATTRIBUTES) ...eecvteevieiieeieeiteesereeseessreesseenseesnsessseessseessnesssennns 9
METHODS (UML OPERATIONS)coutiiieiiaitenttaitentesteeniesieeeesteensesieeneeseeeneeseeeneesees 14
EVENTS (UML INTERFACES) ...uvteitviestteseteeteenseeereesseessaeesseessaesseesssesssesssessssessseens 16
APPENDIX A
OLE for Retail POS — OPOS Implementation Referencecccceeeveevvenieenieeneens 1
WHAT IS “OLE FOR RETAIL POS?” ..ottt 1
Who Should Read This Sectioncccccueeeeiiieriieeniieeeeiee e 2

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

xxii Table of Contents
GENERAL OLE FOR RETAIL POS CONTROL MODELcccccimiinieiiiiiienceeennene 2
OPOS DefiNitioNns ...cceeeveenieeieriierieeieeieeteeee sttt 3

DeViICe CIASScc.eeaiiiiiaiiii ettt 3
Control Object or CO............cccooueeeieiiiieiiaieeieeieee e 3
Service Object OF SOcccooveeoiiaiiiieeiieeeee e 3
OPOS Control or Controlccc.ccoeeeveeeiieeeeiiiieeiieeeieeenen 3
How an Application Uses an OPOS Controlccceeveevvenieniennene. 4
When Methods and Properties May Be Accessedccceeuveennnnee. 5
MEIROCS ... 5
Propertieos...........oooouviiiiiiiiiiic e 5
Status, Result Code, and State Model..........ccoooveevviiieiiiiiieiiiieeeene, 7
Status Model..................cccooeeeiieiiieiiiieiiieeeee e 8
Result Code Modelccccooeiiiiiioiiiiiiiiiieeeee, 8
State Model................ccccocoiiiiiiiiiiiiiiiiiiiee e 9
Device Sharing Modelcccooerviniininiiniiiineeeeeeeeeeee 10
Exclusive-Use DeViCescccceuiioeiieniiieiieeseeeee s 10
Sharable DevicCes.............ccccceiciiiiiiiiiiiiieiieee st 10
EVENES ..ottt 11
OPOS Event Registration Sequence Diagram........................... 13
INput Model......cooviiiieieee e 14
Output MOdel ..o 16
SYRChronous QUIPULc..cccueeceiaiiieiecieee e 16
ASYNChronouS QUIPULcccueeeeeeeaeiieeeieeee e 16
Device Power Reporting Model...........ccoeoeeniiiiiiniiiiiiieeieeee 17
MOdeL...........ooiiiiiee e 17
PrOPETtiesccc.oovveiiiiieee e 18
Power Reporting Requirements for DeviceEnabled 19
Device Information Reporting Model...........c.ccccoveiieiienieniiennne. 20
Statistics Reporting Properties and Methods............................. 20
Update Firmware Device Model...........cccooieviniininniniiniiicneene. 21
OPOS Component DesCriptions..........cceeveerveeeveenieniveenieeseeeneennnes 22
Section 1: OPOS Data TYPeScccceeeriieerieeeiieenieeeiee e 23
Section 2: OPOS Interface Descriptions.........c.ccecveveeveeeeeniennicneene 25
OPOS COMMON PROPERTIES, METHODS, AND EVENTScccccoiiiiiiiiiiinnnn 26
COMMON PROPERTIEScuiiiiiiiiiiiiiiieiiiieiieeenceic e 26
COMMON METHODS ..ottt 27
OPOS Programmatic Names..........ccceccveevveerieeiiienienieeiieeieeeeeees 28
PIrOPEITIES ..eevviiiiieiieiie ettt et ebeeaee e 29
IMETHODS. ...ttt st s eene 46
EVENTS ..ottt 58
Peripheral Interfacescccoviieiiiiiiiiiieeeeeee e 62
OPOS: Cash DIaWeTcccueviiriiriiniieieiienieeesteeeee e 63
Visual Basic Command Examples.cccccoevveveveencnnnnne. 63
Initializing Properties, Methods, and Events.................c........... 63

UnifiedPOS Version 1.15

Table of Contents

xxiii

Capabilities, Assignments and Descriptions Properties, Methods,

ANA EVENLS ...t 63
Cash Drawer Operations Properties and Methods................... 64
Terminating Methodsccccoeevieeeiiiieiiiieieeee e 64
Visual C++ Command Examples.................c.cccccevievinianennnn. 65
Initializing Properties, Methods, and Events................c........... 65
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVERLS ... 65
Cash Drawer Operations Properties and Methods................... 66
Terminating Methodscccccoeeveieeiiiiaiiieeeeeee e 66
OPOS: MICR ...ceeiiiieieiee ettt 67
Visual Basic Command EXamples.cccoccovveeevveneennnnne. 67
Initializing Properties, Methods, and Events............................. 67
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ...ttt 67
MICR Operations Properties, Methods, and Events.................. 68
Terminating Methodsccccoeiioiiiciiiiiiiieie e 69
Visual C++ Command Examples..................ccccccoveeavvennennnnnn. 70
Initializing Properties, Methods, and Events............................. 70
Capabilities, Assignments and Descriptions Properties, Methods,
ANA EVENLS ...c..oceeieeeet e 70
MICR Operations Properties, Methods, and Events.................. 71
Terminating Methodscccocoeiiiiiciiiiiiiiaie e 72
Section 3: OPOS Registry Usage........cccecveeveeviieniieeiieiieeieeeeeeee. 73
Service Object Root Registry Keycccccvvevvieviienieniieienne, 73
Device Class KeyS....cocoviiiriiniriieniiienecieeieseee e 73
Device Name Keys and Valuesccccceeeeenieniiienienieeinn. 74
Logical Device Name Values..........ccccoeveeiiienieeiieeniienieeinen. 74
Service Provider Root Registry Keycccccoceeviriiniincnnne 75
EXaMPIC..ceviiiiiiiiiiieceeeceee e 75
Section 4: OPOS Application Header Files.........c.ccccceevvveniienennen. 77
Section 5: Technical Detailsccoeceeriiiiieniieieiccceeeeeee, 78
System Strings (BSTR).........ccccoeuvieiiiieiieeiieeeeeee e 78
System String CharacteriStiCs.........cvervrerierieerieenieeieeneeenns 78
System String USage.......ccceevvervinienienieniiienicneeieseeneeeene 78
System Strings and Binary Data..................ccccoeeveveeeavvencinnnnnn. 79
Mapping of CharacterSetccccueeveeeeeeeieeeceeeniieeeeeeneennns 80
Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
Section 7: OPOS APG Change HiStorycccceevevieecieeniieeeieenee, 82
Release 1.01ccccocvveveueiiiiiiiciiieeee e 82
ReLEASE 1.1 ...t 83
Release 1.2coooouiiiiiiiiiiiie ittt 85

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XXiv Table of Contents
Release 1.3cccooiiiiiiiiiiiiiee e 87
Release 1.4cccooiiiiiiiiiie e 89
ReleASE 1.5 ...t 90
Release 1.6ccoccuiviiiiiiiiiiiiic et 92
RelCASE 1.7 ... 93

Section 8: OPOS Control Programmer’s Guideccccecvvenneenee. 94
Who Should Read This Section...............c.cccocccuvievceioeanieenncnn. 94
General OLE for Retail POS Control Model............................. 95
OPOS DEfiRitiONSceoeeueeeiiaieeeeieeee e 96

DEVICE ClaSS ..cuvevieiiriierieeieeee e 96
Control Object 0r COooiiviiiiiriiieeieeeeeeeeeeeseee 96
Service Object OF SOoiviiiiiieeiieieee e 96
OPOS Control or Controlccocvevveevienienieienieneeieseeene 96
INterface OVerviewccccccuceeiicieiieiinienieesee e 98
MEROGS ... 99
Open Method........c.oooiieiieiiecieccce e 99
Close Method..........oovuiiiiiiiieiieeiee e 99
Other Methodscc.eeviiiiiiiiiiiieieccceeeeee e 99
PrOPETLIES ... 100
String Propertiescoceveeveeieneeieniineeieseeeeeeseeeeeeee 100
LONG and BOOL Propertiescccueeeeeveeneesveeneeereenes 100
Other Property TYPES ..cccvveevierieeiieieeeieeieeere e 100
EVEORES ..o 101
Architecture: Firing an Event..........ccccooovvviiieniiniiieniee, 101
Architectural Issue: Freezing Events by the Container 101
Architectural Feature: Freezing Events by the Application 102
Summary of Event Firing...........cccoocveeiiniiiiiiinieceeieeen 102
Control Object Responsibilitiesccocuuvvcueeniveeiineanennns 103
MELhOAS ...t 103
PrOPerti€s....ccuvieiiieiiieiieeieeee e 106
EVENTS (i 107
Service Object Responsibilities and Implementation............... 111
MEthOdS ... 111
PrOPEIti€s...cccuvieiiieiiieiieeie et 118
EVENLS ..o 120
OPOS CPG Change HiStOTYccccoeeeeeeeaiieiieeeeeieeieeins 121
Release 1.01 ..o 121
Release 1.1 .o 121
Release 1.2....coiiiiiiiiieeteeceeeee e 122
Release 1.3 e 123
Release 1.4 ..o 124
Release 1.5 . oo 124
Release 1.6..c...oouiiiiiiiiee e 125

UnifiedPOS Version 1.15

Table of Contents XXV

REICASE 1.7 oot 125
Common Control ODJects...............ccooevueeeceeeiieeeiieeaiieeeieeans 126
FeatUres. ..c..vveiiiieeieeee e 126
Availability and FUture...........ccccoevveveiienieeiieniecieeee e 126
OPOS Internal Header Files..................cccccooeeeeiiveiieeaaann.. 127
APPENDIX B
Java for Retail POS — JavaPOS IMPLEMENTATION REFERENCE 1
WHAT IS JAVA FOR RETAIL POS?..c..oiiiiiiii et 1
BENEFITS ...ttt ettt ettt et e st et e shte bt et e s bt e bt e sateenbeesaeeeane 1
DEPENDENCIES ...cettteuttentteiieestteniteesttesiteebtesiteebeesisesbeesbeesbeebeesbeenseesuseenseesnsennne 2
RELATIONSHIP TO OPOS ...ttt 2
WHO SHOULD READ THIS SECTIONcutiiiiiiieeieeriieeieeniteeieeite st eniee st siee e 2
APPENAIX OVEIVIEW ...oeenviiiiiieiieeieeiieeiieeieeeveeveeseaeereesseeesseenseeennees 3
Architectural OVETVIEWcccvieeiiiieeiieeeiee et eee et eaeee e 3
ARCHITECTURAL COMPONENTSeoutrtiiiniiiititenientetetententeseesesnesreesesaesaessesaennens 4
Additional Layers and APISccceevvievieeiiienieeiieiecieeiee 5
JavaPOS Development Environmentcccoeeverveecneennnnne. 5
Device Behavior Models..........cooueieiiieiciieiiiiecieeeee e 6
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS........cocovririririiieieinns 6
DEVICE INITIALIZATION AND FINALIZATIONcouevuiveiiieeriessessissesssnssassesessensenes 7
INIQLIZATION ... 7
Finalizationcccccoooovviiieiiiiiiiieeee e 7
SUIIATY ..o 8
Device Sharing Modelcccoeviiiiiiiieniieieeeeee e 9
Exclusive-Use DeViCesccccvueeeeeieeieeciiieeeeiiiee e 10
Sharable Devices...............cccccccocvveeieeiiieeeeeiiieeeeeeieee e, 10
DAt TYPES weeveveeeeiriieeiie ettt st 11
EXCEPHIONS ..civiieciiieeetie ettt e 12
ErrorCodecc..oooooeeiiiiiiiiiieeiiee e 13
ErrorCodeExtendedcc.cccoooveuiieiieiiaiiiiiiiieeiieeeieeen, 14
EVENTS oo 15
Registering for EVERLScccccouviiiieiiiiiieie e 17
EVvent Delivery.........ccccccouvieiiiiiiiiiieiieeeee e 17
JavaPOS Event Registration Sequence Diagram....................... 18
Device Input Modelcoooiiiiiiiii e 19
Error HAndlingccoccoooiiiiiiiiieie et 20
MISCEIIANCOUSoceveeeeeie ettt 21
Device Output Modelsc.ooviieiieiiiiiieiieeieeeeeee e 22
SYNChronous OQUIPULcccueeeceeeeiiieeeiee e 22
ASynchronous QUIPULccccoeeciniiniaiinieeseeeeeeees 22
Error HAndlingccoccoooiiiiiiiiieie et 23
MISCEIIANCOUSoceeeeeeeie ettt s 23
Device Power Reporting Model..........cccoevievieiiiienieeiicieeieeee 24
MOAEL.............oooeeeiieeieeeee e 24
Properties ... 25

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XXVi Table of Contents
Power Reporting Requirements for DeviceEnabled 26
Device Information Reporting Model..........c.cccocevveiieiiiieniiiennen. 27
Statistics Reporting Properties and Methods............................ 27
Update Firmware Device Model...........cccoocveevieniienieniieiiecieeiee 28
DEVICE StAES...eeiieriiiiiieeiie e ettt e e s 29
TRICAAS ...t 30
VERSION HANDLINGc.ueiiiiiiiiiiiieieeiteteee et st s 30
Classes and Interfacesceverierierieiienieeseeeeeee e 31
SYNOPSIS ..ottt e sttt 31
APPLICATION ... 31
Device CONIOLcccooceeiiieiieiiieiieee e 32
DeViCe SEFVICEcc.uvveeeiieeiieeeee e 32
Helper ClASSes...........ccccoiiiiiiiiniiiiiiciieese e 33
Sample Class and Interface Hierarchies..........c.ccoceveevieniencnnicnnnns 34
Application Samplecc.ccoovevvvieiciiiiiiieiieeeee e 34
Device Control Sample.................ccccccouvivviiniiniianiiniiniinieeene. 34
SCANMET ..ot 34
POSPIINEET ...t 35
Device Service Samplec.cccccovceiiiiiiiiiniiiiiiiiieeeee 35
“MySCaNNETSEIVICE ..covvieniieeiieeiieeieeieeste e siee e eeeeene 35
“MyPrinterSerVICe™ccovieriieeieeiieeie ettt 36
SAMPLE APPLICATION CODEccciiiiiiiiiiiiiiiiiiiiiie st 37
PACKAGE STRUCTUREccoutiiiiiiiiiiiiiiiiiitcteseeeeteee et st s 38
JDOS e e 39
JDOS.@VEILS ...ttt 43
JDOS.SCFVICES ...eeeeeeie et 43
Device Controls.......ccceeeeviiieiieeiee e 47
DEVICE CONTROL RESPONSIBILITIEScovuvuertaraniseesiscassessessessessssssssseessensns 47
DEVICE SERVICE MANAGEMENTccutitiitiniititeteieteeetetentereere e sse e s seeaene 48
Jjpos.config/loader (JCL) and JavaPOS Entry Registry (JER)...48
Jjpos.config/loader (JCL) Characteristics................ccuevvevcveennn. 48
Property and Method Forwardingccccoeveeeiiiniiiniinniiiiieee 51
EVENT HANDLINGotiiiieiieiciteieeteitetce ettt ettt et s s 52
Event Listeners and Event Deliveryc.cccccccevvevecvannnnnn.. 52
Event Callbacks..............cccoveveeeiiiiiiiiiiiiiiieeieeee e, 53
DEVICE CONTROL VERSION HANDLINGccueiiiieieieiieieieteteesc et 54
DEVICE SEIVICES .. uviiiiiieeeiiieeciiee et ettt e aaeeeneees 56
DEVICE SERVICE RESPONSIBILITIEScovutuertateniseiseesecsseseisesessessessessssesessesens 56
PROPERTY AND METHOD PROCESSING.......cvuiuiiniiniereininseneiseieesessessessseeseseeanes 56
EVENT GENERATION ..ottt eetesseteeene et ene st ebesaesae st saesaesaeeene 57
PHYSICAL DEVICE ACCESS.....cctetiiriiriintiniententeteteteeeeeeet et ere e s ese s s eene 58
APT MAPPING RULEScoiiiiiiiiiiiiiiiiiniiieteniee ettt st 58
JavaPOS Component DesCriptionsceeeveereeeiieeniienieenieennnennn. 59
Section 1: JavaPOS Data TypesS......cccecvveevvieerieeeieeeee e 60
DA TYPES ..ot 60

UnifiedPOS Version 1.15

Table of Contents XXvii
Section 2: JavaPOS Interface Descriptions...........ccceeveeeveerveeneenne. 61
JavaPOS Common Properties, Methods, and Events 62
CommOn Properties.........cecuieruieriieniieeieeiiesieeieeeee et 62
CommON MethOdSoooiiiiiiieeieeee et 63
JAVAPOS ClasS NAIMESeeeeeee e 64
PLrOPEITIES ..eoviieniieeiiieiee ettt e e 65
IMEtROAS ... aaaeaaees 74
BEVEINES ..ot e et 84
Peripheral INterfacesccceviieiiieiiiiiieieeeeece e 89
JavaPOS: Cash DIaWeTccooovoeieiiieiieeeeeeeeeeeeeee e 90
JAVA COMMAND EXAMPLESovtiiiiiieiiieeiiieeeiieeeiteeesireeesveeeseveesssaeesssseesssseanns 90
INITIALIZING PROPERTIES, METHODS, AND EVENTSoooeiiiiiiiieiieiireeee e 90
CAPABILITIES, ASSIGNMENTS AND DESCRIPTIONS PROPERTIES, METHODS, AND
EVENTS Lottt et e et e et e e e tbae e abeeeessaeesabaaaessseeenssaeensseanns 90
CASH DRAWER OPERATIONS PROPERTIES, METHODS, AND EVENTS................... 91
CASH DRAWER TERMINATING METHODScccoiuiiiiiiieeirieenieeeeieeeeieeeeereeeseveeens 91
JAVAPOS: MICR ...t 92
JAVA COMMAND EXAMPLESouiiiiiiiieiieeeiee et eae e e v eaae e eaaeeen 92
INITIALIZING PROPERTIES, METHODS, AND EVENTScooveiviiiivieiiecceeceeeee e 92
CAPABILITIES, ASSIGNMENTS AND DESCRIPTIONS PROPERTIES, METHODS, AND
EVENTS oot e e et e e et e e e etae e eeaaeeeaaeaens 92
MICR OPERATIONS PROPERTIES, METHODS, AND EVENTScooivviiiieiieiinnenn. 94
MICR TERMINATING METHODS......cuiiiiiieeeiiieeeieeeeeieeeeeiieeeeaeeeeaeeeeeteeeeeaaeeeeaeeaen 94
Section 3: Technical Detailsooovvuvvviiiiiiiiiiiiiieieee e, 95
OPOS TO JAVAPOS - API MAPPING RULESovviiiiiiiiieee e 95

DALA TYPES.....oooeeeeeeeeee e 95
Property and Method Names................c..cccccoccoucievinoiniancnnenne. 96
EVERLS ... 96
CORSTANLS ... 96
APT DEVIATIONSoviiiiiiieeiiee ettt eeie et eve e e tee e etteeeave e e taesesaveeassaeessssesentaeans 97
MAPPING OF CHARACTERSETviiiiitiieiiieeiiieeeieeeeiteeeiveeeeaeeesiveeesvaeeeaaneeenaneaens 98
HANDLING BINARY DATA INSIDE STRINGS......ccouvvieeeieitireeeeeriereeeeeesiareeeeeennsneeeees 99
Section 4: JavaPOS Change HiStorycccccoveeverienenicneencnnene. 100
REIEASE 1.3 ettt e e e s e e eate e e e e ennnaes 100
REIEASE 1.4 .ottt e et e e e 101
REIEASE 1.5 oottt e et e e 102
REIEASE 1.6 ..ot eenaes 104
REIEASE 1.7 .ottt e e e et e e e e 105

APPENDIX C

POS FOR .NET IMPLEMENTATION REFERENCE 1
WHAT IS “POS FOR INET 2”7 ...ttt 1
Who Should Read ThiS SECIONeeevviiieeeieeeeeeeeeeeeeeeeeeeee e 2
OVERVIEW OF POS FOR .NEToooiiiiiiiiiiiiie et 2
POS for NET DefINitionSueeeeeeee e 4
DeVice CLASS ..., 4
Service ObJect OF SOccooueeeeeieiiiieeieeeeee e 4
KEY POS FOR .NET FEATURES.......ccotiiiiiiieiiieeiieeecitee ettt e s e evaeeeaneeens 4

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

xxviii Table of Contents
.NET Interfaces for POS Peripherals..............cc.cccoeuvvcvennennn... 4
Base Classes for Service Objectscccevvvuveviiueencinanieeannn.. 4
Basic Classes for Service ObJectsccoouveeecienieacianieanan. 4
Plug and Playcccoooovveviiiiaiiiiiiie e 4
Standardized Setup..................ccccoceeviioiiiiiiiiiii 5
Device ERUMEFQIION.cccceeiiiiiiiiiieiiiie e 5
Software-Based Device StAtiStiCScc.cccvevceeeeievieeacieeeiaeeannn, 5
Support for OPOS (COM-Based) Service Objects....................... 5
Service Object Verification Program...................cccccceveeveeecnn... 5
Device Category Support Level..............ccccceveceeviceeeniinaneeannnn. 6

KEY PROGRAMMING CONSTRUCT DIFFERENCES FROM OPOS ... 7
Naming CONVENTIONScccceveercuiiiiinieiiiienieeieeneeeie e 7
ERUMEratiOnsSocooviiiiiiiiiiiiiie e 7
SIPUCTUTES ..ot 25

CashCount StruCtUre..........ccoveeeiiiieeiie e e 25
CashCounts StrUCTUIEcevveerueriirienienieeieeieneeee e 25
CashUnits StruCtUIe.ccvevueeiiiriieieeieseeieee e 26
DirectlOData Structure.........cceeevveeeeieeeiieeeiie e eevee e 26
FiscalDataltem Structure...........cccceevvieniieeiiienienieeiiesve e 27
TotalsFileInfo Structure...........ccoceeviiiiiiiniiieee 28
VatInfo Structureoeeeviieeiiieciee e 28
VideoMode Structurecoceeveeriereenieeieneeieneeeeeeeees 29
Complete Class Libraries Provided.................cc.ccccoevvuvvenunnnn.. 29
Returnt VAlUescccoooeveueiiiiiiiiiiiieiiieceeeeeee e 30
Returning Properties..............ccceveveeeieieieiiaiiieeieeeee e 30
RetUrNING LiSTScc.ooveeeeieeiieee et 30

KEY PARAMETER DIFFERENCEScccouiiiiiiiiiiiiiiiieieiee e s 32

KEY PROPERTY SIGNATURE DIFFERENCESccccoueniiiiiiieieiieinicniieiesie s 33

MORE INFORMATIONcuoiiiiiiiiiiiiiiiniiniitiieste ettt s s 33

POSEXPLOTer API ..o 34
POSEXPIOTer Properties.............ccouueevieceeeieaiieeieeeeenieeeeeens 34
PosExplorer Methodscc.cccoueviiiiiiieeniiieeiieeeee e, 35
POSEXPIOTer EVENLScccccccoiiiiiiiiiiiiiiiieieee e 37
Global Configurationccceceeveeeeceeeceenieeieeeee e 38

SERVICE OBJECT REGISTRYcotiiiiiiiiiiiiiiienieeiieie et 38

CONSUMING SERVICE OBJIECTScciiuiiiiiiieiiiieiesieeiesieeee s sneeeeseeene e 38
OPOS.......oooeeeeeeee e 38
POS for INET.......ccooooiiiiiiiiiiiieiiceiet e 39

WRITING SERVICE OBIECTS ...cveovieuiniiniiniinienienteteteteeeeeeenteseesesie e ssessesaessessenne 39
POS fOr INET.......oooioiiiieeee et 39

Status, State Model, and EXceptions.........c.cceccveeveveercieeenieeeenieenne, 40

StatusUpdateEventc.cccoeevierieneniieniiienicecceecee 40
CoNtrolStAte......eouviiieiieieeeeeeeee e 40
EXCEPHIONS ..ottt 40
DEVICE SHARING MODEL.......ccciiiiiiiiiiinienieieieieeeeeeee et s 42

UnifiedPOS Version 1.15

Table of Contents XXiX

EXclusive-Use DeVICES......cccvieruieriieriieeiieniieeieeiieeveeniee e 42
Sharable DevICesccoovuiiiieiiiiieeceee e 42
EVENTS ..o e 43
INPUT MODELcciiiiiieeiiieciieeeieeete et et e e e e e seaeeeseteessaeeesnseaasnsaeeensseesnsseenns 44
OUtPUt MOdE] ...t 46
SYRChronous QUIPULc.ccccceeiiiiiiiiieiieee e 46
ASYNChronous QUIPULc.ccccveeeeecieeieeieeeie e 46
DEVICE POWER REPORTING MODELceeiiiiieeiiieeiieeeiiieeeieeesveeeeeeeeseneesneneeens 47
MOeL..........ooooooiiiieieeeeee e 47
POWER REPORTING PROPERTIESccueevuiiiiiiniieriieniieniieenitenieeeiteeseeeieesieesaveenae s 48
Power Reporting Requirements for DeviceEnabled 49
DEVICE INFORMATION REPORTING MODELc.vvieieeeieeieeeeeeeeseneeeeeesenseeseesan 49
Statistics Reporting Properties and Methods............................. 50
POS FOR .NET COMPONENT DESCRIPTIONS.......cccecvieeririeerreeenreeeeseeeessnneesneneanns 51
POS for NET Data TYPESccooeceeeeaeeeeiiesieeieeeieee e 51
POS for NET Common Properties, Methods, Events, Statistics,
ANA CONSIANLS ... 52
Common Propertiesc.eeeceeerieeeniieenieeeieeeiie e e 52
Common MethodSevviiiiiiiiiiiiiiiieieeeeeeee e 53
Common EVENtSoeeieiiiiiiieiiiee e 53
CommON StatiStICS.....ueeevurreeirieeerieeeiee et e e 54
Common CONSLANTSuueeeererierneireeeieieeeiererereeereeeeeeere—————— 54
COMMON PROPERTIEScovveeteieeeeeeeeseeeeeeeeseseeeeeeseseseeeeessaessses s eessesesesssnenen 55
COMMON METHODSoeitiiiiieeniieriteesieeneeeseessnesseesseessseesseesssesssessssesssessseesssessseens 62
COMMON EVENTS....cootiiiiiiiieitiecieesitesite et e sitesveesteessaeesbeessaeseseessneenseenseesssesnseens 75
POS FOR .NET VS. UNIFIEDPOS MEMBERSccovtieiieniieeieeiienieenieenieeeveenaeens 76
Interim Procedure Available For Legacy OPOS Services...

Shim Code USAZE......c.eevvieiieeiiieiiecieeie ettt ettt 77
Architecture STFUCTUFEScc.c....oueieieieeeiiiiiiieeeeeeeeeieeeeee e 78
Method of Implementationcccccccoeeevevciesceeecnencnaeennen. 79

Shim Code Naming rules..........ccccoeveeriieriienieerieenieeieeeeeenns 79

Shim Method Redefinition Rulescooovvvvvvviiiiviiiiniiienennn, 80

Shim Code Rules For In/Out Parametersccccveeeene... 80

Method of AdMInIStrAtion...............c..cccveveeeeceeecieaieeeieeieeeeens 81

Shim Code File Namescccococeciiiiiiiieeiiiiiiiiiiiiiieeieeee 81

Shim file LIStoooeiiiiiiieiiiie e 82

Class DIQ@IAMScccueeeiieeiieeeiee e e 83

INterface ClassSooovveivviiiiiiiiieeeieeeeee e 83

Basic Class.......uueevuiieiiiieeiieecee et 83

SHim ClaSSeeeiiiiieiieieiee ettt et 84

SErVICE ClaSS .ot 84
APPENDIX D

XMLPOS - XML POS Mapping Referencecoceveeeenenienenenincieeienceienieens 1

OVERVIEW ..oiiiiiiieeitieesitie ettt eseeteeassseeesssaesassseessseeassseesassseessssesansseessssesssssseesnsseeans 1

XMLPOS 1eqUITEMENLSccccueeeeeiiiieeeeiiieeeeeeee e 1

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XXX Table of Contents
OUL OF SCOPC ..o 1
REFERENCED DOCUMENTSccuiiiiiiiiiiiiiiiiiiiiieieie e 2
TAXONOMY FOR CONVERSION FROM UNIFIEDPOS TO0 XML
UPDATED IN VERSION 1.14.1 2
CHANGES TO XMLPOS UPDATED IN VERSION 1.13 2
XMLPOS ARCHITECTURE OVERVIEW UPDATED IN RELEASE 1.143
UnifiedPOS XML ReqUirements..............cccoccecerceenencenieenennennes 3
Converting UnifiedPOS Methods and Events.........c..ccccue... 3
UnifiedPOS Synchronous XML Communications........................ 5
UnifiedPOS Asynchronous XML Communications...................... 5
XMLPOS Common Properties Schema Architecture.............. 6
XMLPOS Common Methods Schema Architecture 7
Single Commands...........cccceveeririiniinienenieeee e 8
Command SetS.........eeverieriieiiinienieeieeeeee e 8
UNIFIEDPOS XML ERRORSoooiiiiiiiiiiiieie ettt 10
Device Error Codes and Message Severity Codes..................... 10
Message Severity Codes.........oviriniininiineniienienenieneens 10
Standard Error Codes to Severity Codescccceeeeeannn. 11
Standard Status Codes to Severity Codesccoeeecueene... 12
UnifiedPOS Synchronous XML E¥FOFSccccccvveeeinceneannn. 13
UnifiedPOS Asynchronous XML ETrorscccccceeeeveecueannen. 13
XMLPOS COMMON EVENTSooiiiiiiiiiiiieieie oottt 14
UnifiedPOS Synchronous XML EVEntsccccccoeevveeeueennnn. 15
UnifiedPOS Asynchronous XML Eventscccccccccceueenni.. 15
Single EVENtScc.oiiiiiiieiiieiieieceee e 15
EVent SetS...c.c.ooiiiiiiiiee e 15
XMLPOS COMMON PROPERTIESccuiuiiiiiiiiiiiiiiienieieieieeerec et 16
XMLPOS COMMON DATA ..ottt 17
ARTS COMMON DATAc.oiiiiiiiiiiiiiiiiiiiicc s 18
UNIFIEDPOS DEVICESccuiiiiiiiiiiiiiiiiiiiic s 19
Belt ..o 20
Belt ExampleV 1.1 ..ot 20
Move Belt Forward..........ccocovoieiiniiniiinieeeeeeeeeee 20
Belt Domain VIEW........coccoeiiiiiiiiiiiiieieeeeeeee e 21
Belt Propertiescocveeciienieeiieiieeieeiie et 22
Belt Methodscc.oooviviiiiiiieeeeeee e 22
Belt EVENtS......ooiiiiiiiiiieece e 23
Device Error Codes to Message Severity Codes................... 24
Status Codes to Message Severity Codes.........c.ccccverveennennne. 24
Device Specific Status Messagescccceeeevvereenerieneennennen 24
Bill ACCEPIOT ... 24
Bill Acceptor EXampleccooveeviieeiiieeiieeeieeeeeeeiee e 24
Bill Acceptor Domain............cecueeviieriieniieeiienieeieeiie e 26
Bill Acceptor Propertiescceeveeeiieniieeiieniieeieeiie e 27
Bill Acceptor Methodsccceeeviiieiiieeiieecieeceeeee e 27

UnifiedPOS Version 1.15

Table of Contents XXXi

Bill Acceptor EVents.........cocveeviieriieiiieieeieecieeieeee e 28
Device Error Codes to Message Severity Codes................... 29
Status Codes to Message Severity Codes.........c.cccceerveennennne. 29
Device Specific Status MeSsagesccvevveerveerveecveenvennnnnn 29
Bill DiSPENSerc.coccuiiiiiiiiiieiieee e 29
Bill Dispenser Example..........ccccoooieiiiieniiniiienieeieeiiecieeieane 29
Bill Dispenser Domaincccceecveeviienieeiiienieeieeieesre e 30
Bill Dispenser Properties.........ccceveeevieniienieeniienieeiiesie e 31
Bill Dispenser Methodsccceevveeiiienieniieieeieeicecre e 31
Bill Dispenser EVENtScccccocvierieiiieniienieeieeeieeieesive e 32
Device Error Codes to Message Severity Codes................... 33
Status Codes to Message Severity Codes.........c.cocceerveennennne. 33
Device Specific Status MeSsagesccvevveevreerieecveenvennnnnn 33
BIOMEITICS. ..ot 33
Biometrics EXampleccccoeeviiiiiiiiiieieeiicieeeeee e 33
Biometrics DOmain..........coceeierieiienienieeieeeiesee e 36
Biometrics Propertiesc.ceevueerierieeniieniieiieseeeiceee e 37
Biometrics Methods.........cccovieviiriieniiniinieieciescccseereee 37
Biometrics EVents.ccccoviiieiiiiiiniieceeeieeecee e 38
Device Error Codes to Message Severity Codes................... 39
Status Codes to Message Severity Codes.........c.ccccverveennennne. 39
Device Specific Status MeSsagesccvevveerveerveerieenveennnnn 39
BUMD BT ... 39
Bump Bar Examplecccooceeiiiiiiiiiiieecceeeeee 39
Bump Bar Domain...........cccoeevieiiiieeiiieeiieecee e 40
Bump Bar Propertiesccoceeeerieniienienieeieecieeieeee e 41
Bump Bar Methods.........ccoooiiiiiiiiiiiieieiececeeeee e 41
Bump Bar Events.........ccooovviiiiiiiiiicieeeceeeece e 42
Device Error Codes to Message Severity Codes................... 43
Status Codes to Message Severity Codes.........c.ccoceerveennennne. 43
Device Specific Status MeSsagesccvevveerveerveerveenvennnnnn 43
CaSh CRANGEF ...t 44
Cash Changer EXamplecccooovievieniieiieieciceie e 44
Cash Changer Domain............cceeeveeviienieeiieenieeieesie e 46
Cash Changer Propertiesc.ccooeevvereevienienennienecnenienene 47
Cash Changer Methods...........coeviieieenienieeiieeeeeee e 47
Cash Changer EVents..........cccocevvieriieiieeniecieeee e 48
Device Error Codes to Message Severity Codes................... 49
Status Codes to Message Severity Codes.........c.ccocverveennennne. 50
Device Specific Status Messagescceevvvveercveeeriveeeeveeennnennn 50
CASH DFAWEF ... 51
Cash Drawer Example..........ccccoevieiiieiiiinieiiieiecieeee 51
Cash Drawer Domaincccceeiieniiiiiiniciiceeeeeee 52

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Xxxii Table of Contents
Cash Drawer Properties..........cceeevereeeieenieeieenieeeie e 53
Cash Drawer Methodscoceeiiiiiiiiiiiiiiieeceee 53
Cash Drawer EVentsccccooeeviinieniniinieecieneeeseesieee 54
Device Error Codes to Message Severity Codes................... 55
Status Codes to Message Severity Codes........ccccocveveeruennnene 55
Device Specific Status Messagesccceerverreeenieeieenvennnenn 55

CAT ..o 56
CAT EXaMPIe...couviriiiiiiiiiiiieeicieceeeseceeese e 56
CAT DOMAIN ..ottt 57
CAT Properti€s.....ccccueeerieeeiiieeiieenieeenieeeieeeeieeesreeennaee s 58
CAT Methodscoouvieiiiiiieiieeeee et 58
CAT EVENLS ..ottt 59
Device Error Codes to Message Severity Codes................... 60
Status Codes to Message Severity Codes........c.ccocueveeuennnene 62
Device Specific Status Messagesccceerveerieenieereenvennnenn 62

Check SCannerccccevciiiiiiiiiiieii e 62
Check Scanner Example.........ccccoooveviniiiniininiiniincnicneens 62
Check Scanner Domaincocueveevierieneenienieneeiesiesieens 66
Check Scanner Properties.........coveeveeveeneeecieenieesieeieeeeeenn 67
Check Scanner Methods..........ccooveiiiiiiiiiiiiieeeee 67
Check Scanner EVentscccccocvevienenienienenieneeie e 68
Device Error Codes to Message Severity Codes................... 69
Status Codes to Message Severity Codes........cccecveveeuennnee 70
Device Specific Status Messagesccceerveevieenieecieennennnenn 70

COIN ACCEPLOF ... e 71
Coin Acceptor EXxamplecocevviviniiniininiiniiicnicieee 71
Coin Acceptor Domain..........cceeveierieeniienieeieerie e 73
Coin Acceptor Propertiesccceecveeeeenieeiieeneeeieeieeseneenns 74
Coin Acceptor Methods.......cccocveriereniinieninicneeiciceeee 74
Coin Acceptor EVENtS.......ccvevieeiiienieeiiecieeieeee e 75
Device Error Codes to Message Severity Codes................... 75
Status Codes to Message Severity Codes........ccccocveveeruennnene 76
Device Specific Status Messagesccceevveerveenieeireenvennnenn 76

COIN DISPOISEE ... e 77
Coin Dispenser EXamplec.cccoceeveriiniininicnienenicneeens 77
Coin Dispenser Domainccccceeveeeieenieeieenieenie e 78
Coin Dispenser Propertiesccueevveeeveerieecieeneenieeieeenenn, 79
Coin Dispenser Methodscccccovevirviiniininiicnieincnicneee 79
Coin Dispenser EVentscccoeoievieeiiienienieeiiecie e 80
Device Error Codes to Message Severity Codes................... 81
Status Codes to Message Severity Codes........c.ccocveveeuennnene 81
Device Specific Status Messagescccvereeevieeneeeieeenvennnenn 81

Electronic Journal..................ccccccoooiiiiiaiiiiiiiiiiiiee e 82

UnifiedPOS Version 1.15

Table of Contents Xxxiii
Electronic Journal Example..........ccccccvevieeiiieniiniiciiecieei, 82
Electronic Journal Domain...........cccoceeviiiiiiiiiniiiiienieeene 83
Electronic Journal Properties..........ccccoevveriiienienieeniienieeieane 84
Electronic Journal Methods..........cccoceeviriinieniinieniiieceee 84
Electronic Journal Events..........cccccooevvieeiiiiiiiiecieeciee e, 85
Device Error Codes to Message Severity Codes................... 86
Status Codes to Message Severity Codes.........c.ccccvevveennennne. 87
Device Specific Status Messagesc.cceeeevvereenerieneeniennnen 87

Electronic Value Reader / Writer............cc.ccoeveeveenceencrannanne.. 87
Electronic Value Reader / Writer Example............cccceennieen. 87
Electronic Value Reader / Writer Domainccceeeuneen. 90
Electronic Value Reader / Writer Properties............ccccocu.e... 91
Electronic Value Reader / Writer Eventsc.ccccccvcveneene. 93
Device Error Codes to Message Severity Codes................... 94
Status Codes to Message Severity Codes.........c.ccecverveennennne. 94
Device Specific Status MeSsagesccvevveevveerieecreenveennnnn 94

FiSCAL PFINEEE ... 94
Fiscal Printer EXamplec.cccoviiiiiiniieiicieciecceeeiee 94
Fiscal Printer Domain..........ccccevevieniiienieneeieeeeeeeene 100
Fiscal Printer Propertiesccooceevvieiienieeiienieeieeeeee, 101
Fiscal Printer Methods..........cccoevievieniniinieniiiciiciceienene 102
Fiscal Printer EVeNts.........ccccooieviinieniiienieneeeeeeeeeee 103
Device Error Codes to Message Severity Codes................. 104
Status Codes to Message Severity Codes.........cccecverreennnnns 117
Device Specific Status MeSSagescccveevveerveerreenveeneennns 117

GALC ... 118
Gate EXamMPLeooovieviiieiieiieieceee e 118
Gate DOmaiN.....cccceveiiiieiiiieieeie e 119
Gate Propertiesccoeeverienienienieieeececeseee e 120
Gate Methods........coeiviiiieniiiinieeeeeeee e 120
Gate EVENLS....cooiiiiiiiiiiieecee e 121
Device Error Codes to Message Severity Codes................. 122
Status Codes to Message Severity Codes.........ccceevereveennenns 122
Device Specific Status MeSSagesccceevveerveerieerveeveennns 122

Hard Totalscc.ooooevieiiiiiiiiieiiieeee e 123
Hard Totals Example........cccccoeviiniiiiiieniieieiecieeeeee 123
Hard Totals DOmaincccoecuerieninienieieeiesieeieeceieeee 124
Hard Totals Properties.........ccoeoeeveeriiienieeieieeieeee e 125
Hard Totals Methodsc.ccooeeiinieniniiinieieiieeceeeee 125
Hard Totals EVeNntscocceeiiiiiiiiiiiieiceceee e 126
Device Error Codes to Message Severity Codes................. 127
Status Codes to Message Severity Codes.........ccceeverveennenn. 130
Device Specific Status Messagesccceeeevveerereeenreeenveeennne. 130

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XXXiv Table of Contents
IMAZE SCANNET ..o 131
Image Scanner Example........ccccooovvivviiiiiiiiicieecie e, 131
Image Scanner Domainccceceevieeiienienieeieeie e, 133
Image Scanner Properties........ccoecveeevveeicieenciieeniieeeiee e, 134
Image Scanner Methodsccceoeviiniiiiniiniiiiiice 134
Image Scanner Eventscccccovviieiniieniieiniieeieeeeee, 135
Device Error Codes to Message Severity Codes................. 136
Status Codes to Message Severity Codes........c.ccceeevennennee. 136
Device Specific Status MeSSagesccceevveerveerieenveeneennes 136
T1eMm DISPEHSETooeeeeeieeee e 136
Item Dispenser Example.........ccccoooeiiiiniiiiiniiiienieeee 136
Item Dispenser Domain...........cccoocveevieniieniienieenieeie e 137
Item Dispenser Properties..........ccocvvevverieeriienieenieenieeneenens 138
Item Dispenser Methods..........cccoooveviiieniiniiinieiieeee 138
Item Dispenser Events.........cccccceevieiiienieeiiienieceeeeeeene 139
Device Error Codes to Message Severity Codes................. 140
Status Codes to Message Severity Codes........c.cevevvennennee. 140
Device Specific Status MeSsagesccceevveerveerieenveeneennes 140
KEYIOCK ..o 140
Keylock Examplec.cooieiiiiiiiiiiiiieieeceeeeeeee e 140
Keylock Domainc.cccceeeiieiiiinieiiieieeceee e 141
Keylock Propertiesooovveevieeeiiieeniieeeiie e 142
Keylock Methods.........coocuieiiiiiiiiieiiieeeeeee, 142
Keylock EVEnts........cooiiiiieiieniieiiecieeeee e 143
Device Error Codes to Message Severity Codes................. 144
Status Codes to Message Severity Codes........c.cceeevvennnnne. 144
Device Specific Status MeSsagesccceevveerveerieeneeeneenne 144
LIGRLS ..o 145
Lights Example.........ccccoooiiiiiniiiiieeieeeeeeeeeee e, 145
Lights DOMainc.ccoceeviieniieiiieiieeieeieee e 146
Lights Properties........ccceeviieeriieeiieeeieeeiie e 147
Lights Methods........coocieiiieiiiiieiieeeeee e 147
Lights EVENtS ...cc.coooiiiiiiiiieiecieeeece e 148
Device Error Codes to Message Severity Codes................. 149
Status Codes to Message Severity Codes........ccceeeevenneenee. 149
Device Specific Status MeSsagesccceevveerveenieeneeeneennes 149
Line DiSPIAYooooeeieeiiiiieeee e 149
Line Display Example........ccccooviiiiiiniiiiieieeieieeieees 149
Line Display Domainccceceeviieriienieeiieieeie e 148
Line Display Properties........cccccuveevieeriieerciieenieeeeiee e 151
Line Display Methodscccooieviiiiiiiniiiieieceeeeeee 152
Line Display EVENtsccoeoiieiiiiiiieiieieeeece e 153
Device Error Codes to Message Severity Codes................. 154

UnifiedPOS Version 1.15

Table of Contents XXXV
Status Codes to Message Severity Codes.........ccecverveennnnns 155
Device Specific Status Messagesccceeeevveereveeerveeenveeennne. 155
MICR .. 156
MICR EXample.......c.cooviiviieriiiniieiieciecieeeeeee e 156
MICR DOMAIN......uviiiiiieeiieeeiee et 158
MICR Properti€s........ccceecveerieriieniienieeiienieeeeesieeeveeniee s 159
MICR Methods......ccueeieriieiiiieeieieeeee e 159
MICR EVENLSuviiiieiiiie et 160
Device Error Codes to Message Severity Codes................. 161
Status Codes to Message Severity Codes.........cccccvverveennnnns 161
Device Specific Status Messagesccccveevervieneenenneennens 161

MOLION SEHSOF ... 162
Motion Sensor EXampleccceevveveiienieiiiienieeieeieeneene 162
Motion Sensor Domain..........ccceeevveeeeiieeeiiieeniee e 163
Motion Sensor Propertiescccceeeveevieenieecieeneeeieeieeenne 164
Motion Sensor Methodscocevierinienienenieneeieeieene 164
Motion Sensor EVents..........cccvvveevvieeeciieeeiie e 166
Device Error Codes to Message Severity Codes................. 167
Status Codes to Message Severity Codes.........ccccvereveennnnns 167
Device Specific Status Messagesccceveevervveneenernuennns 167

MSR ..o 168
MSR EXamPIe......cccooeviiiiiiiiiieiieiieeie e 168
MSR DOMAIN......cccuiiiiiiieeiieeciee et 169
MSR PrOPertiescoveeviieriieniieiieeieeieesie e 170
MSR Methods.......coouieiiiiiiiiieeeeeeeeeee e 171
MSR EVENLS...ccoiiiiieeiiiie ettt 172
Device Error Codes to Message Severity Codes................. 173
Status Codes to Message Severity Codes.........ccecvereveennnnns 173
Device Specific Status Messagesccccoveereevieneenerneennns 173

PIN PaA........coooiiiiiiiiiiiieee e 174
PIN Pad EXamplecocveeviiiiiieiieciicieeceeeeee e 174
PIN Pad DOmain........cc.ceecviieeiiieiie e 177
PIN Pad Propertiescceeeeriienieenieeiiesie et 178
PIN Pad Methods.......ccovieiiiiinieiieieieeeeeee e 178
PIN Pad EVENtS......ooeeiiieciieeieeeeeeeeee e 180
Device Error Codes to Message Severity Codes................. 181
Status Codes to Message Severity Codes...........ccvereveennenns 181
Device Specific Status Messagesccceeveeveeveereenienneennnns 181

Point Card Reader/Writer.............ccccccueveeeeoeeiieiiaieiieen. 182
Point Card Reader Examplecccccovvvvviieiniieeciieeiee e, 182
Point Card Reader Domain............cccccceeeeiveeciieeciieeieeenee, 184
Point Card Reader Propertiesccceeeeevieenveeiienieeeneenne 185
Point Card Reader Methods..........cccoceeniiniiiniiniiiiciee 186

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

XXXVi Table of Contents
Point Card Reader Events..........cccccoviiriiiniiniiniiiicceee, 187
Device Error Codes to Message Severity Codes................. 188
Status Codes to Message Severity Codes.........cccecveruveennenns 189
Device Specific Status MeSSagesccceevveerreenreenveeneennes 189

POS Keyboard................cccocoviioiioiiniiiiiiiiiiiiiiecee, 190
POS Keyboard Example..........ccccceeviiniieiieniieiieieeieee, 190
POS Keyboard Domain...........c.ecvveeiienieeiienieeieeeeeeveene 191
POS Keyboard Properties...........ccoveevverveneenenieneenienicnens 192
POS Keyboard Methods..........ccceeveeiienieniieieeiieeee 192
POS Keyboard Events..........cccccoevvieeeiienieeiieniecieeeie e 193
Device Error Codes to Message Severity Codes................. 194
Status Codes to Message Severity Codes..........cecverveennenn. 194
Device Specific Status MeSSagesccceevvverveereeenveeneennes 194

POS POWET ...t 195
POS Power Examplecccoeviieiieiiieiieiecieeeeeeeee e, 195
POS Power Domain.........ccceeierieninienieieeesceeseee 196
POS Power Propertiescoceeeeverienenneneeneeieneeneeeeenne 197
POS Power Methods........cocevieniiiiinicniiienieccieeee 197
POS Power Events........cocccoviiiiiiiiiniiieeneecceecee 198
Device Error Codes to Message Severity Codes................. 199
Status Codes to Message Severity Codes.........cccecuverureennenn. 199
Device Specific Status MeSSagesccceevveerveenieenveeneennes 200

POS PFINEEE ... 201
POS Printer Example.........ccccoooiiniiiiieniieieieceeee e 202
POS Printer Domain.........cooceeeiiniiniiiniiieiceecceee 202
POS Printer Properties.........ccoceevuerievenieneenenicnecieneenens 203
POS Printer Methods........ccccevieiiniiniiiinieceieeceeene 204
POS Printer EVents.......c.cccooieiiiiiiiiiiiniceeicecceee 205
Device Error Codes to Message Severity Codes................. 206
Status Codes to Message Severity Codes.........ccceevevveennenn. 214
Device Specific Status MeSSagesccceevveerreenreenveeneennes 214

Remote Order Display...............ccccccooieviroiniiioiiniiniiiiienn, 215
Remote Order Display Example.........ccccoevvienieiciieniennenne. 215
Remote Order Display Domain...........cccceeevvevveeciienveennenne. 216
Remote Order Display Properties..........ccoceeveevienicnenncnnns 217
Remote Order Display Methods..........ccceeevieniiiiiieniinnenne. 218
Remote Order Display Events.........ccccoevveeviienieeciienieeneenne, 219
Device Error Codes to Message Severity Codes................. 220
Status Codes to Message Severity Codes.........cccecveruveennenn. 222
Device Specific Status Messagescceeeevveererveerveeenveeennne. 222

REID SCANNETooooviiiiiiaeiiiieeeciiie e 222
RFID Scanner Example.........ccccoeeveeviieiiienieniieieeieeeeee, 222
RFID Scanner Domaincoceeveeniiniiienieniceeeeieeeeen 225

UnifiedPOS Version 1.15

Table of Contents XXXVii
RFID Scanner Properties.........cccevveevvveerviieeniieeenieeeeiee e 226
RFID Scanner Methodscocoeveeiiiiiiiniiniciieiceeeee, 226
RFID Scanner EVentscccccocueevieniiniieenienicceceieeeeeen 227
Device Error Codes to Message Severity Codes................. 228
Status Codes to Message Severity Codes........c.ceeeevennnenee. 228
Device Specific Status MeSSagesccceevveerveerieeneeeneennes 228

SCALE ... 228
Scale EXampleccooeeviiiiiniiiiiicnicicnceccceceee 228
Scale DOmMAIN.......cccuevieriirienieieeieeeeee e 230
Scale Propertiescveeveeeieerieiiienie et esee e 231
Scale Methodsccceeiiiiiiiiiiiieieee e 231
Scale EVENLS.....coouiiiiiiiiiiieniieiceeeeesee e 232
Device Error Codes to Message Severity Codes................. 233
Status Codes to Message Severity Codes........c.cccoeevenneenne. 233
Device Specific Status MeSSagescccceevveerveerieeneeeneennes 233

Scanner DevicCe...............ccccouciiviiioiiiiiiiiiiiesee e 234
Scanner Device Example..........ccoceeveniineniiniinenicnceene. 234
Scanner Domaincoceveeveriinienenienieeeeeeee e 236
Scanner Propertiescccvvvvueeercierenieeeiiee e eireeeiee e 237
Scanner Methodscooviiiiieiiiiiieieeeee e, 237
Scanner EVentscccooeiviiiiiiiiiiiiiieeceeee 238
Device Error Codes to Message Severity Codes................. 239
Status Codes to Message Severity Codes........c.ccceeevennennee. 239
Device Specific Status MeSSagesccceevveerveerieeneeeneennes 239

SigNature CAPIUFEcccueeeceeeeiiieeiiieeeiee et 240
Signature Capture Example.........ccccevvveniiviniincnicnienennn. 240
Signature Capture Domaincccceeeeveenieeciienieeieeneeeenn 242
Signature Capture Properties.........ocovevveeevieeeiiveeniieeeieeens 243
Signature Capture Methodscccevveveeiiiniineniicncecnne. 243
Signature Capture Eventscccoeevevieniieiiienieeicecieeen 244
Device Error Codes to Message Severity Codes................. 245
Status Codes to Message Severity Codes........ccceeeevenneenne. 245
Device Specific Status MeSSagescccceevveerveerieeneeeneenne 245

Smart Card Reader / WEitercccoecveeveeecieiieaieeeeeennn, 245
Smart Card Reader / Writer Example..........cccccoerieneenennee. 245
Smart Card Reader Domain...........cccceeevvenienienieneeniennenne. 248
Smart Card Reader Propertiesc.cooceeeevverieeiieeniienneenenns 249
Smart Card Reader Methodscccoooeeiiiiiiiniiiiiiee, 249
Smart Card Reader Events.........cccccoovevenieniencnienieiciene, 250
Device Error Codes to Message Severity Codes................. 251
Status Codes to Message Severity Codes........c.cceeeevennennee. 252
Device Specific Status MeSSagescccceevveerveerieenveeneennes 252

Tone INAiCALOTccccovuiiiiiiiiieeee e 253

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

xxxviii Table of Contents
Tone Indicator Examplecccccveviiiiienieniicieeeieeeee, 253
Tone Indicator Domain..........ccccoeeeeiiiniienieniienieeieeeeee, 254
Tone Indicator Propertiescccceevveeiieniienieenieenieeieeeee. 255
Tone Indicator Methodscccceveeieniiiienieniiieceene, 255
Tone Indicator Events.........ccoccoevviieiiiniiieniiiiciecieeceee, 256
Device Error Codes to Message Severity Codes................. 257
Status Codes to Message Severity Codes.........c.cccvereveennnnns 257
Device Specific Status Messagescccvveeveevieneenennuennens 257
NAFEM PROTOCOLoouiiiiiiiiiiiiiiiiiiiccceicc e 258
Administration Enterprise GrOUp.............ccccccevveeeeveneeaceannnnns 259
Asset Management Enterprise Groupccccoeveveeveeveanne.. 260
Bulk Transfer Enterprise GrOUpccccoceeeececneeceennennnn. 261
Clock Calendar Enterprise GrOUpcccooeeeeveneeacenennnnn. 262
Inventory Management Enterprise Groupcocveen..n. 263
Maintenance Enterprise Group.............ccccoccvcievecnceinoeennenn. 264
Monitor Enterprise Groupcccoceeeeeceeeiiieeieeeiieeeeans 265
Notification Enterprise GrOUpcccccoeeveeveeceeaceeeeeennnn. 266
Security Enterprise GrOUpcccccevceivcieniecncienieiniieneeee. 267
Utility Enterprise GFOUDccccccoeveeeciaiieeieaieee e 268
DISTRIBUTED FILESoiiiiiiiiiiiiiieee e 269
GLOSSARY ...ttt ettt ettt ettt e et e st eane s 270
APPENDIX E
Change HiStOIYccueiuiiiieieee ettt neeeneas 1
Release VErsion L.4.........oooiiuioiiieeeeee et s 1
Release VErsion 1.5.. ..ottt s 1
Release VErsion L1.6......ccoooiiieiiriieieeieeeeee ettt s 2
Release Version 1.7.. ..ottt 6
Release Version L.8..... ..ottt 12
Release Version 1.9......co.ooiiiiieieeeeee et 15
Release Version 1.10........cccoii ittt 17
Release Version 111 ...t 20
Release Version 1.12.......cooiiiiiiiiieieeiiee et 24
Release Version L.13ot 28
Release Version L.14........ocoiiiiiiiieieiiee ettt 33
Release Version L.14. 1. ..ottt 37
Release Version 1.15.0.....cci it 40
APPENDIX F
Additional Software Referencescccovverieierieiinieere e 1
UML RETETENCES ...ttt sttt ettt 1
Web Location Referencescccocceuveecianeeiiiaiianeaeeee 1
Reading Material References...............cccccouveeeeevienieeaieanieannn. 1
APPENDIX G
Additional Hardware References..........ccovveiieierieieiieiese e 1
USB PLUSPOWER CONNECTORcccoiuiiiiiiiiiieieieieieitet et st sae s snesnennens 1
OVEIVICW.....ceee et e e et a e e e eaaaeeeenns 1
Host Side CONNECIOF.............cccccueeieiiiiiieieeeeeeee e 1

UnifiedPOS Version 1.15

Table of Contents XXXiX
CADIE ... 2
Peripheral Side Connectioncccocveueveceeeecieeenceeenieeennnn. 2
Web Location References - USB connector EIA approval........... 2
Reading Material References..............c..cccoovueevveveeeieaieeainannn, 3
ARTS Standard Endorsementcccoevveeeieeeecenencnenenn.. 3

APPENDIX H
Deprecation HiStOTYc..iccuiiiieeieeciie ettt ettt et e s e sebe e sareeaeesaesnaeenseenes 1

APPENDIX I

Systems Management Informationcceeecverciierieerieeiie e 1
WHAT IS “SYSTEMS MANAGEMENT?” L....ociiiiiiiiiiiiiiienieeieieete st s 1
How 1S UNIFIEDPOS INVOLVED IN SYSTEMS MANAGEMENT?.......cccoiviininnannen. 1
Who Should Read This Sectioncccoeceevieiierienenienieieseieeen 2
UnifiedPOS Device Information Reporting Model 3
CIM SIPUCTUF@. ...ttt 3
Architectural OVerVIEWcc.eevuevieriieieeiieieeeseee e 6
EXCIUSIVE USE ... 6
Multiple INSTANCEScooeoeieeiieieiieei e 6
Limited Lifetime................cccocovevieiiiiaiieeiiecieeie e 6
SOIULION CTEALION ... 6
Utilized CIM Data Types Updated in Release 1.139
COMMON PROPERTIES, METHODS, AND EVENTSccooiiiiiiiiiiiieeceeciieee e 10
Common Properties Updated in Release 1.1410
Common Methods................cc..ccoeeveuiiiiiieiiiiiiiiieecie e 11
PROPERTIEStuteeseetaetntese s ese st e is st ss et 11
Peripheral INterfacescccveeiieiiieriieiieieeece e 12
Belt Updated in Release 1.13....13
Belt Class Diagram..........cccceeeeviriienienienicneeicneeesecseens 15
Bill Acceptor Updated in Release 1.1316
Bill Acceptor Class Diagram............ccceeeveereeercieenieeeneennennnnnn 18
Bill Dispenser Updated in Release 1.13......19
Bill Dispenser Class Diagramcccceeeveveevienienenieenennns 21
Biometrics Updated in Release 1.13.....22
Biometrics Class Diagram..........cccccoceeveriineeiicneencnecneenen. 24
Bump Bar Updated in Release 1.13.....25
Bump Bar Class Diagram..........ccccceeevvevieeciieiienieeieeniieeiens 27
Cash Changer Updated in Release 1.1328
Cash Changer Class Diagram..........ccccccoevveeviienieeieenieennenne 30
Cash Drawer Updated in Release 1.13.....31
Cash Drawer Class Diagramcccceceeeeveriicniencnicneenen. 33
Credit Authorization Terminal — Updated in Release 1.13....... 34
Credit Authorization Terminal Class Diagram...................... 36
Check Scanner Updated in Release 1.1337
Check Scanner Class Diagramccccoecveeeiieniienieenieennnennn 39
Coin Acceptor Updated in Release 1.1340

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

xl Table of Contents
Coin Acceptor Class Diagram.........cccccceevveeeiienienieenneennnennn, 42
Coin Dispenser Updated in Release 1.13......43
Coin Dispenser Class Diagram............cccoeeveeviienieeieenieennnnne. 45
Electronic Journal Updated in Release 1.13 46
Electronic Journal Class Diagramccccccceeveevenicneennenne. 48
Electronic Value Reader/Writer Updated in Release 1.1349
Electronic Value Reader/Writer Class Diagram.................... 50
Fiscal Printer Updated in Release 1.13.....51
Fiscal Printer Class Diagram............cceeveeivienienieeniienieeien. 54
Gate Updated in Release 1.13.....55
Gate Class Diagram.........ccceeeevienienienienennieniencecneenieene 56
Hard Totals Updated in Release 1.13....57
Hard Totals Class Diagramcccceeeieeviienienieeniienieeienne 59
Image Scanner Updated in Release 1.1360
Image Scanner Class Diagram............ccccoevvienierieeniienneennan. 61
Item Dispenser Updated in Release 1.1362
Item Dispenser Class Diagramcccceeeveieneeneniicneennennnn. 64
Keylock Updated in Release 1.13.....65
Keylock Class Diagram..........cccceecveeviieniieecieenienieesieesveeiens 67
Lights Updated in Release 1.13.....68
Lights Class Diagramcccccceeveieenieeciienienieeieeeieeseee e 70
Line Display Updated in Release 1.13....71
Line Display Class Diagram...........ccccevevvevencieneencneenennns 74
MICR Updated in Release 1.13...75
MICR Class DIagramc.ccceeveeriienienieenieeneeereeneneeneens 77
Motion Sensor Updated in Release 1.13......78
Motion Sensor Class Diagram..........ccccoceeevvienienieeniiennennnnn. 79
MSR Updated in Release 1.13....80
MSR Class Diagram........ccccceceeveriieneenienieneeieneene e 82
PINPad Updated in Release 1.13....83
PINPad Class Diagram............cccecueeeviieeiieeniiieeniee e 84
Point Card Reader/Writer Updated in Release 1.13.....85
Point Card Reader/Writer Class Diagramccccccvenienn. 88
POS Keyboard Updated in Release 1.1389
POS Keyboard Class Diagramccccceceeveevienvenensieneenens 91
Properties (UML attributes)ceeevevieeviienieeiieniieeveeieene 92
Methods (UML 0perations).........ccceeeveeerveereieeeniiieenieesneeens 93
POS Power Updated in Release 1.13.....94
POS Power Class Diagram...........ccoeceevieriienienieeiiecreeieene 95
POS Printer Updated in Release 1.13.....96
POS Printer Class Diagramccccccceveveveenenicneencniicnnens 101
Remote Order Display Updated in Release 1.13 ...102
Remote Order Display Class Diagram..........cccccccvveeeuveenneee. 104

UnifiedPOS Version 1.15

Table of Contents xli
RFID Scanner Updated in Release 1.13..105
RFID Scanner Class Diagramccccceevveeeciveenieeenveeennen. 107
Scale Updated in Release 1.13...108
Scale Class Diagram..........c.ccoceeveiierieeiienienieeniieeieesee e 110
Methods (UML operations)..........ceeceereeeieeeneesieeeneesneenees 111
Scanner Updated in Release 1.13 ...112
Scanner Class Diagram............ccccceevveeviienieinieenieereenee e 115
Properties (UML attributes)ccoeceeeveenieniieenieeieeeeee, 116
Signature Capture Updated in Release 1.13....120
Signature Capture Class Diagramccccccveeeveeenieenneennen. 122
Smart Card Reader/Writer Updated in Release 1.13....123
Smart Card Reader/Writer Class Diagramcc......... 125
Tone Indicator Updated in Release 1.13.....126
Tone Indicator Class Diagram............cccceevvieeiiienveniiieneennee. 128
Technical DetailS.........cooiiiiiiiiiiiiiiiie et 129
MOF FILES ..o 129
APPENDIX J
DEVICE STALISTICS .. vveeierieeeereee et e eeteee et e eeee e e et e e et e e e e e eenreeeeaseeeensaeeenreeennseeeenreeeennees 1
DEVICE CATEGORY NAMES.......oiiitiiiieietieeteeeteeeteeeeeeeeaeeeeteeeaeeeeseeeseeeneeeeseseneeesee e 1
COMMON STATISTICS FOR ALL DEVICE CATEGORIESccocvieiiiiieeeiieeeieee e, 3
XML DEFINITIONS FOR BIOMETRICS DEVICE STATISTICSccovvieevieereeereeeueeeneenns 3
XML DEFINITIONS FOR BUMPBAR DEVICE STATISTICScovveeuveeivieeneeereeeneeeneenns 3
XML DEFINITIONS FOR CASHDRAWER DEVICE STATISTICS......ccvveeeviieereeeernenen. 4
XML DEFINITIONS FOR CHECKSCANNER DEVICE STATISTICSooeeeviieeiieeeiienen. 4
XML DEFINITIONS FOR ELECTRONICJOURNAL DEVICE STATISTICSvecoveennenn. 4
XML DEFINITIONS FOR FISCALPRINTER DEVICE STATISTICScceeeveeveeereeeneenns 4
XML DEFINITIONS FOR IMAGESCANNER DEVICE STATISTICSccveeeeeeveeereeeneens 5
XML DEFINITIONS FOR KEYLOCK DEVICE STATISTICScovveeuveeirieereeereeereeeneenns 5
XML DEFINITIONS FOR LINEDISPLAY DEVICE STATISTICScovveeevieeueeereeereeeneenns 6
XML DEFINITIONS FOR MICR DEVICE STATISTICSeeeeviieiiieeeetiee e eeaeeeeeieeens 6
XML DEFINITIONS FOR MOTIONSENSOR DEVICE STATISTICScveeeveeveeereeeneenns 6
XML DEFINITIONS FOR MSR DEVICE STATISTICS......eeeeitiieeiieeeetieeeereeeeeaeeeeeieeens 6
XML DEFINITIONS FOR PINPAD DEVICE STATISTICScuvieoueeeueeeeveeereeeveeeeeeneenns 7
XML DEFINITIONS FOR POSKEYBOARD DEVICE STATISTICSccooeeeviieeieeeeinenen. 7
XML DEFINITIONS FOR POSPRINTER DEVICE STATISTICSeeeeeviieeiieeereeeeennenen. 7
XML DEFINITIONS FOR RFIDSCANNER DEVICE STATISTICS.....ccvteeeviieevieeevnenen. 8
XML DEFINITIONS FOR SCALE DEVICE STATISTICS.....cceiueieiitieeeetieecereeeeereeeeeieeens 8
XML DEFINITIONS FOR SCANNER DEVICE STATISTICSoccovuieeeetiieeereeeeieeeeereeeans 9
XML DEFINITIONS FOR SIGNATURECAPTURE DEVICE STATISTICScccvveeennnn.. 9
XML DEFINITIONS FOR TONEINDICATOR DEVICE STATISTICSveeeeeeveeereeeneenns 9

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
xlii Table of Contents

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture vii

PREFACE
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http.://'www.omg.org/technology/documents/spec_catalog.htm

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue Street
Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
https://www.omg.org/report_issue.htm.

UnifiedPOS Version 1.15

viii UnifiedPOS Retail Peripheral Architecture

This page intentionally left blank.

UnifiedPOS Version 1.15

What Is UnifiedPOS?:

Intro-1

INTRODUCTION AND ARCHITECTURE

UnifiedPOS Architecture for Retail

What Is UnifiedPOS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural
specification for application interfaces to point-of-service devices that are used in
the retail environment. This standard is both operating system independent and
language neutral and defines:

An architecture for application interface to retail devices.

A set of retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

The UnifiedPOS Retail Peripheral Architecture overview.

Text descriptions of the interface to the functions of the device.

UML terminology and diagrams for each device category, to describe:
* Relationships between classes/interfaces and objects in the system.

Basis for creating C++, Java, IDL, or other OO technology to implement the
UML design.

Operational characteristics and details for implementations which are
compliant to the UnifiedPOS architecture. These were added in the
Appendices for UnifiedPOS starting in Version 1.6. As new Implementations
become available, additional Appendices will be added in future versions of
the standard.

The UnifiedPOS standard will not include:

Specific language API specifications.

Complete software components. Hardware providers, software providers, or
third-party providers develop and distribute these components.

Certification mechanism; this must be handled by individual language
standard committees (such as the OLE for Retail POS (OPOS), POS for .NET,
and Java for Retail POS (JavaPOS) committees).

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-2 Introduction and Architecture

About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees
had been maintaining three separate standard documents, OPOS, JavaPOS and
UnifiedPOS. The architecture and device characteristics are identical in each of
these documents. The addition of new device categories and/or enhancements to
existing chapters required consultation and agreement on the technical content for
the each of the separate standards. However, in addition to that technical work,
there is a heavy administrative burden in generating the correct documentation
for three different versions of the standard’s specification. That process was
inherently error prone in that the same changes had to be maintained in multiple
documents. Confusion has resulted in cases where differences have inadvertently
appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing
modifications of the documentation, the UnifiedPOS standard committee made a
change in the process for documenting its requirements. Beginning with
UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the
documentation includes the abstracted generic description of all device categories
plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included Appendices that outline the
implementation information for each of the specific existing implementations,
such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J, the POS
Standards body from Japan, has and plans to continue to maintain a translated
Japanese version of the OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to
gather a general education about the UnifiedPOS Standard by reading the
“Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of
the design features that must be adhered to for a developer to implement the
standard. For a first time reader, this section should be read and understood, as it
will make the remaining chapters and appendices more beneficial. For a familiar
user, this section may serve as a “fall-back” reference for clarification of the
requirements when developing a Device Service or usage of the Device Services
by an Application.

Following the “Introduction and Architecture”, “Chapter 1 outlines the
Properties, Methods, and Events that are Common to all peripheral devices. It is
important to understand this section and make reference to it when questions arise
on the common functionality that apply to all device classes.

The following Chapters define each of the POS peripheral devices that are
covered in the standard. The specific Properties, Methods, and Events that are
peculiar to the peripheral are defined. Any additional helpful information relevant
to the POS peripheral are also included. As new POS peripherals are added a new
chapter will be added to describe the devices unique requirements.

UnifiedPOS Version 1.15

What Is UnifiedPOS?: About This Documentation Intro-3

Following the Chapters describing the POS peripheral devices, Appendices are
included that outline specific details on implementation dependencies for each of
the supported Operating Systems and/or language specific development
platforms.

“Appendix A” includes the definition, goals, and deliverables for OPOS. There
are explanations for the input/output and device sharing for Microsoft’s COM
model for the operation of the interface. Event and error handling unique to this
implementation is described. It concludes with a version change history that
guides the user in understanding the evolution of the OPOS implementation of
the standard.

“Appendix B” includes the definition, goals, and deliverables for JavaPOS.
There are explanations for the input/output and device sharing for the Java model
for the operation of the interface. Event and error handling unique to this
implementation is included. It also concludes with a version change history that is
helpful to the user to understand the evolution of the JavaPOS implementation
requirements.

“Appendix C” includes the definition, goals, and deliverables for POS for .NET.
There are explanations for the input/output and device sharing for Microsoft’s
NET model for the operation of the interface and the differences from the OPOS
COM architecture that affect implementation. Event and error handling unique to
this implementation are described. It also includes a version change history
section and brief clarifications of the design philosophy.

“Appendix D” is included to provide information on the usage of XML for
peripheral message mapping. Future versions of the UnifiedPOS standard will
evolve to a greater dependence upon XML as the command and interoperability
infrastructure of choice. There is increasing interest and focus on using XML for
communicating with peripheral devices. It opens up many new possibilities for
creating Device Services that, when coupled with Universal Plug and Play
hardware connection technologies such as USB, will provide for true language
and operating system independence.

“Appendix E” incorporates an overall Change History for the documentation. It
is highly recommended that the experienced user refer to this section as an aide
for understanding the version to version documentation changes as a resource to
help in the updating of the device support and/or implementation changes
necessary to the software for efficient usage.

“Appendix F” provides some additional software reference material that may
prove helpful to the understanding of the principals and documentation constructs
that the UnifiedPOS standard incorporates. The developer is encouraged to check
this section as additional resource material will be added as the standard evolves
from version to version.

“Appendix G” includes additional hardware reference material that is pertinent
to the hardware design for compliance to the UnifiedPOS standard. The USB Plus
Power connector recommendations are outlined in this section as well.

UnifiedPOS Version 1.15

Intro-4

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

“Appendix H” provides information on functionality and changes that are
documented in the UnifiedPOS standard in a version that will cause a previously
defined function to be deprecated. While every attempt is made to minimize the
use of Deprecation, the reader is highly encouraged to review this section to
ensure a firm understanding of direction the standard is evolving.

“Appendix I” includes the definition, goals, and deliverables for Systems
Management. Appendix I is targeted at a systems management solution developer
who requires access to POS-specific device information. It is also targeted to the
system developer who will provide device information from within the Services
he provided.

“Appendix J” includes the definitions and deliverables for UnifiedPOS Device
Statistics. This information was previously issued in a separate document, but
starting with v1.12, the device statistics appendix was added as an appendix to the
specification

UnifiedPOS Version 1.15

What Is UnifiedPOS?: Goals Intro-5

Goals
The goals of UnifiedPOS are to provide:
* Common device architecture that is international and extends across vendors,
platforms, and retail format.
« Standards for application to device interfaces in an operating system
independent and language neutral manner.
* Reduced implementation costs for vendors to support multiple (for example,
Windows/COM, Windows/.NET, and Java) platforms because they share the
same architecture. This should produce speed to market for innovation.
* An environment avoiding competition between standards while encouraging
competition among implementations.
Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard
committees (such as JavaPOS and OLE for Retail POS (OPOS) technical
committees) to advance the architecture into platform specific documentation,
API definitions and implementations.

The specific technical implementations require:

» Platform specific implementation references. (See Appendices A, B, C, & D.)
e Source files, including:

¢ Definition files. Various interface and class files described in the
standard.

« Example files. These will include a set of sample Control classes, to
illustrate the interface presented to an application.

UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by the JavaPOS, OPOS, and POS for .NET standards,
in an operating system independent and language neutral manner. The first
release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as
conformant platform mappings of the UnifiedPOS specification. In UnifiedPOS
Version 1.6, appendices were added in order to document specific implementation
details for each of these platforms. JavaPOS will be recognized as the only
UnifiedPOS conformant, operating system neutral, Java language mapping (See
Appendix B). OPOS will be recognized as the only UnifiedPOS conformant
language neutral COM mapping (See Appendix A). POS for .NET will be
recognized as the only UnifiedPOS conformant language neutral NET mapping
(See Appendix C). Future UnifiedPOS mappings to platforms other than Java,
COM, and .NET will be included as appendices to the UnifiedPOS specification
as they become available.

UnifiedPOS Version 1.15

Intro-6

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

This acceptance of the existing standards is based on their close conformance to a
common design model. Historically, the OPOS standards provided device
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

* Similar purposes. Both standards involved developing device interfaces for
a segment of the software community.

* Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

* Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write
their code in conformance with one or both of the JavaPOS or OPOS standards.
The content of the UnifiedPOS specification, however, along with the appropriate
Appendix, will constitute the definition of how an application can be developed
to meet the UnifiedPOS standard. The standards committees do not intend to
release future versions of the specific OPOS and JavaPOS documents after the
Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET
implementation, which similarly adheres to this common approach for the access
and control of POS peripherals.

Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will
provide the language specific mapping and Programmer’s Guides. However, the
application developer who will use POS devices, the system developer who will
write POS device code, and the suppliers of POS devices for retail may be
interested in the device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the
following:

* General characteristics of POS peripheral devices.

* UnifiedPOS terminology and architecture.

e UML for reading the design.

UnifiedPOS Version 1.15

CONFORMANCE: Unified POS Intro-7

CONFORMANCE

Unified POS

IP Policy

The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by JavaPOS, OPOS, and POS for .NET, which
provide standard platform specific mappings of the UnifiedPOS specification.
JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to
be used for implementations of UnifiedPOS conformant device interfaces. To be
UnifiedPOS conformant POS applications and device vendors have to provide
implementation using an appropriate platform-specific mapping.

This specification was originally created under the ARTS IP Policy which can be
found here: http://www.omg.org/cgi-bin/doc?retail/2017-12-01. With the
transition to the Object Management Group, this standard is now published under
a default reasonable and non-discriminatory (“RAND”) licensing obligation for
members with only limited exceptions.

UnifiedPOS Version 1.15

http://www.omg.org/cgi-bin/doc?retail/2017-12-01

UnifiedPOS Retail Peripheral Architecture
Intro-8 Introduction and Architecture

Architectural Overview

UnifiedPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the UnifiedPOS Control
layer.

POS Application

UnifiedPOS Device

y
UnifiedPOS Control

¢

UnifiedPOS Service

Y
Physical (or logical) Device

Architectural Components

The POS Application (or Application) is an Application that uses one or more
UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such
as Cash Drawer and POS Printer.

Each UnifiedPOS Device is a combination of these components:

* Control for a device category. The Control class provides the interface
between the Application and the device category. It contains no graphical
component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device
category’s control will be compatible. Therefore, the Control can be
developed independently of the Service for the same device category (they
can even be developed by different companies).

UnifiedPOS Version 1.15

Architectural Overview: Use of UML Intro-9

Use of UML

* Service, which is a component called by the Control through the Service
Interface. The Service is used by the Control to implement UnifiedPOS-
prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with
multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the platform specific APIs which conform to the
UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and
some Bar Code Scanners include an integrated Scale. However with UnifiedPOS,
an application treats each of these device categories as if it were an independent
Physical Device. The UnifiedPOS Device standard developer is responsible for
presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

The UnifiedPOS standard includes the use of UML terminology and diagrams to
define device categories. Following is a brief description of the extensions to
UML to make it better fit the UnifiedPOS architecture (this extension is expected
and allowed by the UML, see Booch98 reference in the “UML References” on
page D-1).

Should any discrepancies exist between the UML diagrams and the specification
text, then the text takes precedence.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-10 Introduction and Architecture

Table of extensions to UML for UnifiedPOS.

Applies to UML .
Name ol Meaning
<<capability>> Class attribute :}Eli‘f(‘igg];poesw (f;l;:bfi]l?tgys the attribute as a
. stereotype which flags the attribute as a
<<prop>> Class attribute UnifiedPOS property
stereotype to indicate that the class/interface
will be mapped to a UnifiedPOS event which in
<<event>> Class

turn is mapped to a JavaPOS event class or a
COM event for OPOS or a .NET event
constraint that indicates this Device Service or
Service Object follows the exclusive-use
exclusive-use Class behavior defined in the UnifiedPOS
documentation in section “Exclusive-Use
Devices” on page Intro-19.

constraint that indicates this Device Service or
Service Object follows the sharable behavior

sharable Class defined in the UnifiedPOS documentation in
section “Sharable Devices” on page Intro-19.
constraint that indicates the mutability of the
read-only attribute. For example, in JavaPOS, read-only
. Class attribute |attributes translate to having a getter method for
read-write the attribute and read-write attributes have getter
and setter methods for attributes.
access after constraint that indicates this attribute is
<open>| accessible when the service is in the state

indicated. For example {access after opened-

Class attribute claim-enable} indicates that the attribute is
<open-enable>] accessible when the service has been opened,

<open-claim-enable> claimed and enabled in the order indicated.

<open-claim>|

constraint that indicates this method can throw
an exception if the implementation language
supports exception; otherwise, some mechanism

raises-exception Class operation is used to notify the application that an invalid
condition occurred. A value is returned to
indicate the error.
use after constraint that indicates this operation is
<open>| gcc;ssible when the service is in the state ‘
<open-claim>| Class operation 1nd10atec}. Fpr example {use after f)pen-clal'm-
enable} indicates that the method is accessible
<open-enable>| when the service has been opened, claimed and
<open-claim-enable> enabled in the order indicated.

UnifiedPOS Version 1.15

Architectural Overview: Use of UML

Intro-11

Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

I

upos

I

events

(from upos)

Note: This package diagram is included to give some logical structure to the
interfaces in the UnifiedPOS interfaces UML diagrams. Some implementations
may have a corresponding equivalence for the packages and some may not. Also,
note that the name “upos’ may be replaced by an implementation specific prefix
(eg. JavaPOS uses Java packages and maps the prefix “upos’ to ‘jpos’).

UnifiedPOS Version 1.15

Intro-12

UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

Data Types

Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for
specific language usage:

POS for

UnifiedPOS JavaPOS OPOS NET UML UnifiedPOS text Usage

boolean boolean BOOL bool n boolean Boolean true or false.

boolean by boolean[1] BOOL* Not used ** inout Mutable boolean.

reference boolean

binary byte[] BSTR byte[] in binary ~ Immutable array of bytes.

binary by byte[1][] BSTR* Not used ** inout Mutable array of bytes. (Both its size

reference binary and contents may be modified.)

array of byte[][] SAFEARRAY Notused ** in binary/] Immutable array of array of bytes.

binary of BSTR

byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)

int32 int LONG int or enum in int32 32-bit integer.

int32 array int[] SAFEARRAY int[] in int32 Immutable array of 32-bit integers.

of LONG array

int32 array int[1][] SAFEARRAY* Not used ** inoutint32 Mutable array of 32-bit integers. (Both

by reference of LONG array its size and contents may be modified.)

int32 by int[1] LONG* Not used ** inout int32 Mutable 32-bit integer.

reference

currency long CURRENCY decimal n 64-bit integer. Sometimes used for

or CY currency currency values where 4 decimal

places are implied. E.g., if the integer
is “1234567”, then the currency value
is ©“123.4567”. See footnote?

currency by long[1] CURRENCY* Notused ** inout Mutable 64-bit integer.

reference or CY* currency

string String BSTR string Instring Text character string. See footnote?

string by String[1] ~ BSTR* Not used ** inout Mutable text character string. (Both its

reference string size and contents may be modified.)

array of Point[] BSTR Point[] nout Immutable array of points. Used by

points point[] Signature Capture.

object Object BSTR* object nout An object. This will usually be

object subclassed to provide a Service-

specific parameter.

nls String LONG Culturelnfo in nls Operating System National Language

Support data type.

a. Six decimal place precision 1s required for all computations in conversion between currencies but 1S not
required for the representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless
that whitespace is part of the data element. Comma delimited string data is typically used for a series of
numbers, in which no whitespace should be included in the string.

For Java:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s
primitive types, such as int and boolean, are passed by value, and its primitive wrapper types, such as Integer and
Boolean, do not support modification. For strings and arrays, do not use a null value to report no information.

Instead use an empty string (

(130

) or an empty array (zero length). In some chapters, an integer may contain a “bit-

wise mask”. That is, the integer data may be interpreted one or more bits at a time. The individual bits are

numbered beginning with Bit 0 as the least significant bit.

** POS for .NET does not use “out” parameters, return values are used instead.

UnifiedPOS Version 1.15

Device Behavior Models: Introduction to Properties, Methods, and Events Intro-13

Device Behavior Models

Introduction to Properties, Methods, and Events
An application accesses a POS Device via platform specific APIs.
The three elements of UnifiedPOS standard for APIs are:

* Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or string. An application may
retrieve a property’s value, and it may set a writable property’s value.

* Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

* Events. A Device implementation may call back into the application via
events. The application may need to register for events. The mechanism to do
this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the
interface will be included in a table. The properties are indicated as attributes.
The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }
where:

visibility in this document is always public for application visible interfaces but is
not explicitly shown.

Name 1s the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types
defined in section “Data Types” on page Intro-12.

defauh‘-value1 the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define
two such strings: read-only and read-write, which indicates the mutability of the
attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

I Not used by UnifiedPOS standard

UnifiedPOS Version 1.15

Intro-14

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Methods (UML Operations)

The generic UML pattern for methods is the following:
visibility name (parameter-list): return-type-expr { property string }
where:

parameter - list is a comma separated list of formal parameters using the
following generic UML naming pattern:

kind name: type-expression (= default-value)2
where:
kind is either: ‘in’, ‘out’, or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an
additional property string called ‘raises-exception’ is defined which means that
this method can throw the exception if the implementation language supports
exception; otherwise, some mechanism is used to notify the application that an
invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes
stereotyped with the event stereotype. The generic UML pattern for events is a
UML box with the stereotype <<event>> (class diagram) with the event name
and a list of the properties. This representation is different from Properties and
Methods.

<< event >>
XxxEvent

where:
XxxEvent stands for the UnifiedPOS event name and the second compartment of
the box would contain a list of attributes for the event.

2. default-value is not used by the UnifiedPOS standard

UnifiedPOS Version 1.15

Device Behavior Models: Device Initialization and Finalization Intro-15

Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:

e Obtain a reference to a Control,

* Prepare Control for the events that the application needs to receive, if
necessary.

To initiate activity with the Physical Device, an application calls the Control’s
open method:

The logicalDeviceName parameter specifies a logical device to associate with the
Device. The open method performs the following steps:

* Creates and initializes an instance of the proper Service class for the specified
name.

« Initializes many of the properties, including the descriptions and version
numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same
time. Therefore, after the Device is opened, an application might need to call the
claim method to gain exclusive access to it. Claiming the Device ensures that
other Control instances do not interfere with the use of the Device. An application
can release the Device to share it with another Control instance— for example, at
the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner Device is disabled, the Physical Device will
be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the
initialization APIs - open, claim, and/or DeviceEnabled=true. The following are
recommendations for initialization-time error handling by Service implementers.
These guidelines are not mandated, however, because of the wide variation in
some hardware devices and their initialization requirements, and due to variations
in already released Services.

open Primary purpose: Initialize the software stack, including the creation of
the Service and initialization of its supporting software components.

1) The Service must fail an open API call if software initialization fails.

Example: Supporting software components are not installed or
available, so fail the API call.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Intro-16

Introduction and Architecture

claim

2)

3)

If the Service must probe the device in order to correctly set open-
time properties (such as capabilities), then the Service should fail an
open API call if it cannot access the device.

Example: A Service supports several line display models and sets the
UnifiedPOS capabilities after communicating with the device. If the
device’s port is not available or the device does not respond, then the
Service cannot complete its open work and will need to fail the API
call.

For other cases, the Service should succeed the open API call and
report a failure (if needed) later.

Example: A Service cannot open an RS232 port during open. If the
previous case (#2) above does not apply, then the Service should
succeed the open and report the port open failure during claim, if the
port is still not available.

Primary purpose: Acquire exclusive access to the device, for exclusive-
use devices.

1)

2)

3)

The Service must fail a claim API call if another process has claimed
the device and the claim timeout expires.

If the device is not accessible, then the Service should fail a claim
API call.

Examples: A required communications or I/O port cannot be opened
or claimed. The Service determines that the device is not present or
is offline. For each of these cases, the Service should fail the API
call.

For other cases, the Service should succeed the claim API call. This
specifically includes cases where runtime faults exist.

Examples: A POSPrinter receipt station is out-of-paper, or the
POSPrinter receipt station detects a printer jam. These are runtime
faults that occur from time to time during operation, and are user
correctable. The Service should succeed the claim. POSPrinter
runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as
printNormal.

DeviceEnabled=true Primary purpose: Final preparation for operation and

1)

2)

application use.

If the device is not accessible, then the Service should fail a
DeviceEnabled= true API call. (Note that the device may have been
accessible at claim but is now inaccessible.)

Example: The Service determines that the device is not present or is
offline, so the Service should fail the API call.

For other cases, the Service should succeed the DeviceEnabled=true
API call. This specifically includes cases where runtime faults exist.

Examples: See claim case (#3) above.

UnifiedPOS Version 1.15

Device Behavior Models: Device Initialization and Finalization Intro-17

An application developer must be prepared for failures at any of the initialization
points. With the variations in hardware devices and in their Service
implementations, a well-written application will respond predictably to the widest
range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of
ports, including RS232, RS485, Parallel, USB, Ethernet, and Wireless. In
addition, devices may be powered directly by the terminal or by an external
power source. These guidelines may be applied to all of these devices. Two
examples with typical initialization follow.

Example 1: Hand-held scanner attached to a terminal's powered RS232 port.
» open: Succeed if software initialization is successful.

+ claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

» DeviceEnabled = true: Succeed if claim was successful and if an attempt
to communicate with the device is successful.

« While enabled: If the device is unplugged from the powered RS232 port,
then detect the power state change and report to the application. If the device
is later plugged back in, then detect the power state change and report to the
application. For many devices, power state changes can be accomplished by
monitoring the RS232 DSR signal. (Note that hot unplugging and plugging in
with this port type is probably not recommended by the hardware vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a
“brick”.

» open: Succeed if software initialization is successful.

+ claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

» DeviceEnabled = true: Succeed if claim was successful and if an attempt
to communicate with the device is successful.

» While enabled: If the device is unplugged from the USB port or from its
power source, then detect the power state change and report to the application.
If the device is later plugged back in, then detect the power state change and
report to the application. An operating system-specific mechanism detects
power state changes, such as an open, write, or read failure with specific
failure statuses.

Notice that the general initialization handling is very similar, even though the
second example will typically require somewhat more logic within the Service to
monitor and re-initialize the device connection.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-18 Introduction and Architecture

Finalization

After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device
resources in a timely manner.

Summary

In general, an application follows this general sequence to open, use, and close a
Device:

Obtain a Control reference.
Prepare for events if necessary.
Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical
Device. Required for exclusive-use Devices; optional for some
sharable Devices. (See “Device Sharing Model” on page 19 for more
information).

Set the DeviceEnabled property to true to make the Physical
Device operational. (For sharable Devices, the Device may be
enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical
Device.

Call the release method to release exclusive access to the Physical
Device.

Call the close method to unlink the Service from the Control.
Release events receipt if necessary

Remove the reference to the Control

UnifiedPOS Version 1.15

Device Behavior Models: Device Sharing Model Intro-19

Device Sharing Model

Devices fall into two sharing categories:

* Devices that are to be used exclusively by one Control instance.

* Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time.
However, activities that an application can perform with a Control may be
restricted to the Control instance that has claimed access to the Physical Device.

Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Control at a time. An application must call the
Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a failure condition to
occur.

An application may in effect share an exclusive-use device by calling the
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable
device allows multiple Control instances to call its methods and access its
properties. Also, it may deliver its events to multiple Controls. A sharable device
may still limit access to some methods or properties to the Control that has
claimed it, or it may deliver some events only to the Control that has claimed it.

UnifiedPOS Version 1.15

Intro-20

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Events

Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various
activities or changes with the Device. The five event types follow.

Supported When A
Event Class Description Device Category
Supports...
DataEvent Input data has been placed into device Event-driven input
class-category properties.
ErrorEvent An error has occurred during event- Event-driven input
driven input or asynchronous output. -or-
Asynchronous
output
OutputCompleteEvent An asynchronous output has Asynchronous
successfully completed. output
StatusUpdateEvent A change in the Physical Device’s Status change
status has occurred. notification
Devices may be able to report device
power state. See “Device Power
Reporting Model” on page 27.
DirectlOEvent This event may be defined by a Service ~ Always, for Service-
provider for purposes not covered by specific use

the specification.

The Service must enqueue these events on an internally created and managed
queue. All events are delivered in a first-in, first-out manner. (The only exception
is that a special input error event is delivered early if some data events are also
enqueued. See “Device Input Model” on page 23.) Events are delivered by an
internally created and managed Service thread. The Service causes event delivery
by calling an event firing callback method in the Control, which then delivers the
event to the application.

The following conditions cause event delivery to be delayed until the condition is
corrected:

* The application has set the property FreezeEvents to true.
* The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page 23.)

Unless specified otherwise, properties that convey device state information (e.g.,
JrnEmpty and DrawerOpened) are kept current while the device is enabled,
regardless of the setting of the FreezeEvents property.

Rules for event queue management are:

* The Device may only enqueue new events while the Device is enabled.

* The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

* For input devices, the clearInput method clears data and input error events.

* For output devices, the clearOutput method clears data and output error
events.

UnifiedPOS Version 1.15

Device Behavior Models: Errors

Intro-21

Errors

Error Codes

UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods
(UML Operations)” on page Intro-14 and explanation of exceptions:

* Errors that are “invalid or bad invocations” which are recognized by the
Service validation of the request. Method invocations and property accesses
may be valid or invalid. If the action is invalid, an invalid condition is set and
the application is notified in a fashion appropriate to the platform. For specific
implementations, OPOS would produce a ResultCode other than
OPOS_SUCCESS and JavaPOS would produce an exception.

» Errors that are caused by errant device behavior and produce error events.

Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid
condition occurs. In general, the property and method descriptions in later
chapters list error codes only when specific details or information are added to
these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E_CLOSED An attempt was made to access a closed Device.
E CLAIMED An attempt was made to access a Physical Device that

E_NOTCLAIMED

E_NOSERVICE

E_DISABLED

E ILLEGAL

is claimed by another Control instance. The other
Control must release the Physical Device before this
access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.

If the Physical Device is already claimed by another
Control instance, then the status E_ CLAIMED is
returned instead.

The Control cannot communicate with the Service,
normally because of a setup or configuration error.

Cannot perform this operation while the Device is
disabled.

An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-22 Introduction and Architecture

E NOHARDWARE The Physical Device is not connected to the system or
is not powered on.

E OFFLINE The Physical Device is off-line.

E NOEXIST The file name (or other specified value) does not exist.
E_EXISTS The file name (or other specified value) already exists.
E _FAILURE The Device cannot perform the requested procedure,

even though the Physical Device is connected to the
system, powered on, and on-line.

E TIMEOUT The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E BUSY The current Service state does not allow this request.
For example, if asynchronous output is in progress,
certain methods may not be allowed.

E _EXTENDED A device category-specific error condition occurred.
The error condition code is held in an extended error
code.

E DEPRECATED The requested operation can not be performed since it

has been deprecated. See “Deprecation Handling” on
page Intro-38 for additional information.

When more than one error code is valid, the most descriptive code should be
selected. For example, the closed, claimed, not claimed, and disabled errors must
follow this order of error reporting precedence, from higher to lower:

E CLOSED The device must be opened.

E CLAIMED The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

E NOTCLAIMED The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E _DISABLED The device is opened and claimed (if this is an exclusive-
use device), but not enabled.

Extended Error Code

The extended error code is set as follows:

e When the error code is E EXTENDED, the extended error code is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

* When the error code is any other value, the extended error code may be set by
the Service to any Service-specific value. These values are only meaningful if
an application adds Service-specific code to handle them.

UnifiedPOS Version 1.15

Device Behavior Models: Device Input Model Intro-23

Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application.

If the AutoDisable property is true when data is received, then the Device will
automatically disable itself, setting DeviceEnabled to false. This will inhibit the
Device from enqueuing further input and, when possible, physically disable the
device.

When the application is ready to receive input from the Device, it sets the
DataEventEnabled property to true. Then, when input is received (usually as a
result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the Device disables further data events by
setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting
DeviceEnabled=false, or by setting AutoDisable=true and a subsequent input
event is enqueued), then it may need logic to ignore additional data until it
reenables the device. In particular, input that is already received and enqueued
will continue to be delivered (unless the clearInput, release or close API is
called, at which time undelivered input is discarded). As stated in the Events
section, the application may control the input delivery by using the
DataEventEnabled or FreezeEvents properties.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-24 Introduction and Architecture

Error Handling Updated in Release 1.12

If the Device encounters an error while gathering or processing event-driven
input, then the Device:

* Changes its State to S ERROR.

* Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the
error condition. This event is added to the end of the queue

* Ifone or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus EL_INPUT DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input
ErrorEvents; it leaves the DataEventEnabled property value at true. Note that
the application may set DataEventEnabled to false within its event handler if
subsequent input events need to be disabled for a period of time.

ErrorLocus Description

EL_INPUT DATA Only delivered if the error occurred when one or more
DataEvents are already enqueued.

This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.

This locus was created especially for the Scanner: When this
error event is received from a Scanner Device, the operator can
be immediately alerted to the error so that no further items are
scanned until the error is resolved. Then, the application can
process any backlog of previously scanned items before error
recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data
available.

If some input data was buffered when the error occurred, then
an ErrorEvent with the locus EL_INPUT _DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.

If the Service has partial data that can be delivered with an
ErrorEvent, the related data properties should be filled in prior
to delivery of the event with this ErrorLocus. If there is no
partial data to be delivered with the ErrorEvent, the data
properties should be cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an
EL INPUT_DATA event was delivered and the application
event handler responded with an ER_CLEAR error response.

UnifiedPOS Version 1.15

Device Behavior Models: Device Input Model Intro-25

The application can cause the ErrorResponse property to be set one of the

following:
ErrorResponse Description
ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit

the error state, changing State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.

This is the default response when the locus is
EL_INPUT_DATA, and is legal only with this locus.

ER_RETRY This response directs the Device to retry the input. The
error state is exited, and State is changed to S_IDLE.
This response may only be selected when the device

chapter specifically allows it and when the locus is
EL_INPUT. An example is the scale.

The Device exits the Error state when one of the following occurs:

* The application returns from the EL_INPUT ErrorEvent.

* The application calls the clearInput method.

* The application returns from the EL_ INPUT DATA ErrorEvent with
ErrorResponse set to ER_CLEAR.

Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
Device.

Calling the clearInput method deletes all input enqueued by a Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were
populated as a result of firing a DataEvent or ErrorEvent, back to their default
values. This call does not reset the DataCount or State properties.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock device.
This type of input is sometimes called “synchronous input.”

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-26 Introduction and Architecture

Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and
asynchronous. A device category may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device
does not return until the output is completed; this means the physical device has
performed the intended operation. For example the printer has successfully
transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device
validates the method parameters and produces an error condition immediately if
necessary. If the validation is successful, the Device does the following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the
Physical Device can receive and process it.

2. Sets the OutputID property to a unique integer identifier for this request. (For more
information about the QutputID property, see page 12.)

3. Returns as soon as possible.

When the Device successfully completes a request, an QutputCompleteEvent is
enqueued for delivery to the application. A property of this event contains the
output ID of the completed request. The application should compare the returned
OutputCompleteEvent property OutputID value with the OutputID value set
by the asynchronous process method call used to send the data in order to track
what data has been successfully sent to the device. If the request is terminated
before completion, due to reasons such as the application calling the clearOutput
method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which
will be delivered to the application after the events already enqueued, including
OutputCompleteEvents (according to the normal Event delivery rules on page
20). No further asynchronous output will occur until the event has been delivered
to the application. If the response is ER_CLEAR, then outstanding asynchronous
output is cleared. If the response is ER_RETRY, then output is retried; note that if
several outputs were simultaneously in progress at the time that the error was
detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

UnifiedPOS Version 1.15

Device Behavior Models: Device Power Reporting Model Intro-27

Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use.
Note: This model is not intended to report Workstation or POS Terminal power
conditions (such as “on battery” and “battery low”). Reporting of these conditions
is now managed by the POSPower device category, see page 1.

Model

UnifiedPOS architecture segments device power into three states:
* ONLINE. The device is powered on and ready for use. This is the
“operational” state.

e OFF. The device is powered off or detached from the terminal. This is a “non-
operational” state.

* OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

* OFF_OFFLINE. The device is either off or offline, and the Service cannot
distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)

If a device is “offline”, then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Intro-28

Power State Diagram

PowerState Unknown

‘ PS_UNKNOWN |
Device is dlosed]
|

[Device is C'g?i‘ﬂ,;@

Known PowerStates

Off/Offline States

[Device is Off or Offline]
PowerState Standard Off/Offline
T

Vv —
PowerState Online S
PS_ONLINE j PS_OFF_OFFLINE
\] |
Device is Onlin [CapPowerReporti‘ng == PR_ADVANCED]
v
Advanced Off/Offline States

PowerState Advanced Offline
PS_OFFLINE

|
[Device is Off] (; [Device is Offline]

PowerState Advanced Off
PS_OFF

UnifiedPOS Version 1.15

Device Behavior Models: Device Power Reporting Model Intro-29

Power Properties

The UnifiedPOS device power reporting model adds the following common
elements across all device classes.

* CapPowerReporting property. Identifies the reporting capabilities of the
device. The UML pattern for the property is:
PR _xxx : int32 { frozen }
This property may be one of:
* PR NONE. The Service cannot determine the state of the device.

Therefore, no power reporting is possible.

PR _STANDARD. The Service can determine and report two of the power
states - OFF_OFFLINE (that is, off or offline) and ONLINE.

* PR _ADVANCED. The Service can determine and report all three power
states - ONLINE, OFFLINE, and OFF.

* PowerState property. Maintained by the Service at the current power
condition, if it can be determined. The UML pattern for the property is:

PS_xxx :int32 { frozen }
This property may be one of:

< PS_UNKNOWN

« PS_ONLINE

- PS OFF

« PS_OFFLINE

.« PS_OFF_OFFLINE

* PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }
This property may be one of:

PN _DISABLED
« PN _ENABLED

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Intro-30

Introduction and Architecture

Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN ENABLED:

When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

» Ifthe Physical Device is ONLINE, then:
PowerState is set to PS_ ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_ONLINE.

» Ifthe Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Service may choose to fail the enable by
notifying the application with error code E NOHARDWARE or
E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Service chooses to return success for the enable, then:

PowerState is set to PS_OFF, PS_OFFLINE, or
PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_OFF, SUE POWER OFFLINE, or
SUE POWER_OFF_ OFFLINE.

When the Device changes from DeviceEnabled true to false, UnifiedPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to PS_ UNKNOWN

UnifiedPOS Version 1.15

Device Behavior Models: Device Information Reporting Model Intro-31

Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to
monitor the current configuration and usage metrics of the various POS devices
that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware
Version, and Connection Type. Examples of usage data for the POSPrinter device
are the Number of Lines Printed, Number of Hours Running, Number of paper
cuts, etc. Examples of usage data for the Scanner device are the Number of scans,
Number of Hours Running, etc. Examples of usage data for the MSR device are
the Number of successful swipes, Number of swipes resulting in errors, Number of
Hours Running, etc. See below for examples of XML definitions of the device
statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In
other cases, the data may be accumulated by the Service and stored, possibly on
the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System
Management application) to obtain statistics from the same device, proper care
must be taken by both applications so that the device can be made accessible
when required. This is done by using the claim method and by setting
DeviceEnabled to true when access to a device is required and then setting
DeviceEnabled to false and using the release method when access to the device
is no longer needed. Coordination of device access via this mechanism is the
responsibility of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common
properties and methods across all device classes.

* CapStatisticsReporting property. Identifies the reporting capabilities of the
device. When CapStatisticsReporting is false, then no statistical data
regarding the device is available. This is equivalent to Services compatible
with prior versions of the specification. When CapStatisticsReporting is
true, then some statistical data for the device is available.

* CapUpdateStatistics property. Defines whether gathered statistics (or some
of them) can be reset/updated by the application. This property is only valid if
CapStatisticsReporting is true. When CapUpdateStatistics is false, then
none of the statistical data can be reset/updated by the application. Otherwise,
when CapUpdateStatistics is true, then (some of) the statistical data can be
reset/updated by the application.

* resetStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method resets one, some, or all of the
resettable device statistics to zero.

* retrieveStatistics method. Can only be called if CapStatisticsReporting is
true. This method retrieves one, some, or all of the accumulated statistics for
the device.

* updateStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method updates one, some, or all of
the resettable device statistics to the supplied values.

UnifiedPOS Version 1.15

Intro-32

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

XML Definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device
category are provided as downloads from the web sites that also host this
specification. These statistics can be referenced individually by name or as a
group using the “U_” string as (part of) the parameter to the statistics methods.

Manufacturers/Service providers can add their specific statistics in the provided
“ManufacturerSpecific” section. These statistics can be referenced individually
by name or as a group using the “M_” string as (part of) the parameter to the
statistics methods.

The following table contains the definitions of the information contained in the
UnifiedPOS defined Devicelnformation section covering all device categories.

<DeviceInformation>
Definition description

XML Definition Name
UnifiedPOSVersion Version of the UnifiedPOS specification supported
DeviceCategory Device category (e.g., POSPrinter)
ManufacturerName Device manufacturer’s name
ModelName Device model name
SerialNumber Device serial number
ManufactureDate Device manufacture date
MechanicalRevision Device hardware revision
FirmwareRevision Device firmware revision
Interface Device hardware interface (e.g., serial, USB)
InstallationDate Device installation date

UnifiedPOS Version 1.15

Device Behavior Models: Device Information Reporting Model Intro-33

The following is an example of the XML file that describes the “UnifiedPOS”
defined statistics for the CashDrawer device category.

<?xml version='1.0’ ?>
<UPOSStat version="1.15.0” xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance” xmlns="http://www.omg.org/UnifiedP0OS/
namespace/” xsi:schemalocation="http://www.omg.org/UnifiedPOS/
namespace/UPOSStat.xsd” >
<Event>
<Parameter>
<Name>DrawerGoodOpenCount</Name>
<Value>1353</Values>
</Parameters
<Parameter>
<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>
</Parameters
<ManufacturerSpecifics>
<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasures
</ManufacturerSpecifics>
</Event>
<Equipment>
<UnifiedPOSVersion>1.15</UnifiedPOSVersions>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName >
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevisions>
<Interface>RS8232</Interface>
<InstallationDate>2000-03-01l</InstallationDate>
</Equipment>
</UPOSStat>

The most up-to-date files defining the XML tag names that conform to the Retail Data

Dictionary and example schemas for the statistics for all device categories can be
downloaded from the OMG web site at https://www.omg.org/retail.

UnifiedPOS Version 1.15

http://www.nrf-arts.org
http://www.nrf-arts.org

UnifiedPOS Retail Peripheral Architecture

Intro-34

Introduction and Architecture

Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the
various POS devices that are attached to the POS terminal. This model defines a
consistent application interface for updating the firmware in a device controlled
by a UnifiedPOS control.

This model has the following capabilities:

A property, CapUpdateFirmware, that indicates whether a device supports
firmware updating.

A property, CapCompareFirmwareVersion, that indicates whether a
firmware file’s version can be compared against the firmware version of the
device.

A method, updateFirmware, to perform an asynchronous update of the
firmware in a device.

A method, compareFirmwareVersion, to compare the firmware file’s
version against the firmware version of the device.

Additional StatusUpdateEvent Status values to report the progress of an
asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its
progress via StatusUpdateEvents. This update firmware process applies to all
device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not
covered by this document, only the means by which the update firmware process
is started and progress is reported.

UnifiedPOS Version 1.15

Device Behavior Models: Device States Intro-35

Device States

UnifiedPOS defines a property State with the following values:

S _CLOSED
S IDLE

S BUSY

S _ERROR

The State property is set as follows:

« State is initially S CLOSED.
* State is changed to S_IDLE when the open method is successfully called.

e State is set to S BUSY when the Service is processing output. The State is
restored to S_IDLE when the output has completed.

* The State is changed to S ERROR when an asynchronous output encounters
an error condition, or when an error is encountered during the gathering or
processing of event-driven input.

After the Service changes the State property to S ERROR, it notifies the
application of this error. The properties of this event are the error code and
extended error code, the locus of the error, and a mutable response to the error.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-36 Introduction and Architecture

Device State Diagram

Closed
State == S_CLOSED

m
/closé‘

|
Opened

/open

[async output in progress]

Idle e e & Busy
State == S_IDLE State == S_BUSY
J—

[async outplterrororinput event error]

[error eventdone and no async oufput]

Error
State == S_ERROR

UnifiedPOS Version 1.15

Device Behavior Models: Version Handling Intro-37

Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of
some Devices. UnifiedPOS imposes the following requirements on Control and
Service versions:

Control requirements. A Control for a device category must operate with
any Service for that category, as long as its major version number matches the
Service's major version number. If they match, but the Control's minor version
number is greater than the Service’s minor version number, then the Control
may support some new methods or properties that are not supported by the
Service’s release. If an application calls one of these methods or accesses one
of these properties, the application will be notified of an error condition
(E_NO_SERVICE).

Service requirements. A Service for a device category must operate with any
Control for that category, as long as its major version number matches the
Control's major version number. If they match, but the Service's minor version
number is greater than the Control's minor version number, then the Service
may support some methods or properties that cannot be accessed from the
Control.

When an application wishes to take advantage of the enhancements of a version,

it must first determine that the Control and Service are at the proper major version
and at or greater than the proper minor version. The versions are reported by the

properties DeviceControlVersion (see page 9) and DeviceServiceVersion (sece

page 11).

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-38 Introduction and Architecture

Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the
specification, a method of deprecation is required in order to eliminate these
items over time.

Deprecation can be applied to Properties and Methods, as well as parameters,
constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to
support the element’s functionality for the following two minor releases of the
standard. Starting with the third release of the standard after an element has been
marked as deprecated, usage of the element will result in an E DEPRECATED
status.

When an element is marked as deprecated, then support for the element will be
removed from the standard in the next major release of the standard after it is
marked as deprecated.

All deprecated elements and the related versions when they were first marked as
deprecated are listed in Appendix H, Deprecation History on page H-1.

UnifiedPOS Version 1.15

Device Behavior Models: Hydra Device Considerations Intro-39

Hydra Device Considerations Updated in Release 1.12

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that
the most flexible methodology would be to have an application be able to
communicate to a peripheral through a two-layer process. Since the Microsoft’s
COM platform was the first supported architecture, Control Object and Service
Object names were chosen. Later when Java was defined and the technology used
precluded the use of “objects” as defined in the Windows world, the names were
closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly
called “connecting the pipes” wherein a communication port would be opened
and a device name would be assigned so that the application is able to
communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral
device to allow for accessing, monitoring, processing, all the functionality of the
peripheral device and exposing it to a common set of properties, methods, and
events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the
most simplistic system one instance of a Control is instantiated to connect to the
Service. As example for a simple POSPrinter:

Note that only one physical connection port (RS-232 for example) is used in this example...

Application

A

Control

A

Service
Service for Functionality of Peripheral
Device and supports Physical

Connection to the Peripheral Device
A

A 4

POS Receipt
Printer

UnifiedPOS Version 1.15

Intro-40

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Keeping things simple but adding another level of complexity is the case when
more than one application needs to use the device. In this case, another Control is
instantiated to the peripheral Service and all applications need to recognize that
the peripheral is capable of being shared (for this example, assuming a shareable
device) and utilize the claim and release methodology that the standard provides.
In the POSPrinter example, this would look like...

Note that only one physical connection port (RS-232 for example) is used in this example...

Application One Application Two
y A
A 4 A 4
Control One Control Two
y A
A 4 A 4
Service

Service for Functionality of Peripheral Device and
supports Physical Connection to the Peripheral

Device
A
v
POS Receipt
Printer

Note, that as far as each application is concerned, it is connected to the peripheral
device and only one physical connection to the device is required... via the RS-
232 serial connection in this example. This served the needs of device sharing
where cooperating applications were utilized.

Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that
include multiple device class functionality in a single unit. An
example of such a device is a POS printer that may have
additional functionality of being able to control a Customer
Line Display, Cash Drawer, MICR, or other devices. These
peripherals are referred to as “Hydra” peripherals alluding to
the Greek mythology of a multi-headed animal that was
connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be
agnostic in its knowledge in either of the following cases...one where multiple
physical peripheral devices are used or the other where one physical peripheral
device incorporates the functionality of multiple physical peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232
serial ports for instance) are required...one for each of the physical peripheral
devices.

UnifiedPOS Version 1.15

Device Behavior Models: Hydra Device Considerations Intro-41

In a Hydra peripheral only one “pipe” is required and it is used to communicate
with all the various Device peripheral functionality of the connected peripheral
device.

For example, consider the cases where in one instance a separate POSPrinter
device and a separate MICR device is present; in another instance, a Hydra
POSPrinter that has an incorporated MICR reader. The “look” to the
Application(s) has to be agnostic...it should not care nor should it have to know
which type of hardware device(s) are physically present. Ideally it should be able
to use the same Application code to interact with either of the two
implementations. For example:

Application interfacing with two distinct peripherals...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control
A
A 4 \ 4
MICR Service POSPrinter Service
Separate Physical Separate Physical
Device Device
RS-232 Port 1 RS-232 Port 2

Note that in this case the application running the MICR and the POSPrinter
consumes two separate ports but as far as the Application is concerned it
interfaces to the MICR and POSPrinter functionality without regard to the fact
that the two ports are used.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-42 Introduction and Architecture

Application interfacing with a Hydra peripheral...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control

v t v i

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One
Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

Note that in this case the application running the MICR and POSPrinter
consumes only one port but as far as the application is concerned it interfaces to
the MICR and POSPrinter functionality without regard to the fact that only one
port is used. It is up to the Hydra Service to control the port and route the
functionality to and from the proper interface.

Considerations

While the desire is to have both interconnection techniques work the same with
regards to the Application interface, problems do arise. In the Hydra case, an
error state in one of the specific device functions may block the usage of the other
function. This would not happen in the non-Hydra case since each peripheral is
truly separate.

In our Printer and MICR Hydra case, the printer running out of paper might
present a condition that would prevent reading a MICR code for instance. An
error condition of “Out of Paper” would be reported through the POSPrinter
interface but would not have any meaning to a route through the MICR interface.
The Application requesting a MICR read in the Hydra case would be presented
with an error or status condition that it would not get in the discrete MICR
peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using
the MICR functionality to alert it of a problem and allow for resolution. Rather
than reporting a meaningless error of “Out of Paper” to the MICR application, a
general E_FAILURE error would be sent back to the MICR application to alert it
of the problem. The MICR application would then be responsible to go through
an error recovery procedure to rectify the situation. It would go through an error
recover operation that would present a console message informing the operator of
an impending problem with usage of the MICR device.

UnifiedPOS Version 1.15

Device Behavior Models: Hydra Device Considerations Intro-43

Operator knowledge of the specific device would then be used to correct the
problem. In this case knowing that the MICR is part of the printer would focus the
attention of the Operator to the “Paper Out” status indicator. The resolution would
be to replace the paper which would then clear the error condition for the MICR
as well as the Printer.

Notice that every attempt is made to make the interaction with the peripheral
device or Hydra peripheral device “look the same” to the application. Careful
Service design needs to be used to make sure this is accomplished. Device
vendors should define any limitations and unusual error conditions that may exist
when accessing such hydra devices in their user documentation. Application
developers should be aware of the possibility of discrete and Hydra POS devices
when crafting their software and plan their error resolution accordingly.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
Intro-44 Introduction and Architecture

UnifiedPOS Version 1.15

Summary

11

CHAPTER 1

Common Properties, Methods, and Events

Summary

The following Properties, Methods, and Events are used for all device categories
unless noted otherwise in the Usage Notes table entry. For an overview of the
general rules and guidelines, see “Device Behavior Models" on page Intro-13.

Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties.
This list is used throughout the main UnifiedPOS chapters. Further details may be
found in Appendix B, “Common Properties” on page B-62.

The OPOS implementation adds the following Common Properties:
BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.

Also, the last six properties are replaced by:
ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription,
ServiceObjectVersion, DeviceDescription, and DeviceName.

Further details may be found in Appendix A, “Common Properties” on page A-26.

Properties (UML attributes)

e . Usage

Name Type Mutability Version No tfs
AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0
Claimed: boolean { read-only } 1.0
DataCount: int32 { read-only } 1.2 1
DataEventEnabled: boolean { read-write } 1.0 1
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0
OutputID: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0
DeviceControlDescription: string { read-only } 1.0
DeviceControlVersion: int32 { read-only } 1.0
DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Usage Notes:
1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-2 Common Properties, Methods, and Events

Methods (UML operations)

Name Version

open (logicalDeviceName: string): 1.0
void { raises-exception }

close (): 1.0
void { raises-exception }

claim? (timeout: int32): 1.0
void { raises-exception }

release® (): 1.0
void { raises-exception }

checkHealth (level: inz32): 1.0
void { raises-exception }

clearInput (): 1.0
void { raises-exception }

clearInputProperties (): 1.10
void { raises-exception }

clearOutput (): 1.0

void { raises-exception }

directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively
due to Release being a reserved method used by Microsoft’s Component
Object Model (COM).

UnifiedPOS Version 1.15

Summary 1-3
Events (UML interfaces)
e . Usage

Name Type Mutability Version Notes
upos::events::DataEvent 1.0 1

Status: int32 { read-only }
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.0

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent 1.0 2

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.0

Status:

Usage Notes:

int32 { read-only }

1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-4 Common Properties, Methods, and Events

General Information

This section lists properties, methods, and events that are common to many of the
peripheral devices covered in this standard.

The summary section of each device category marks those common properties,
methods, and events that do not apply to that category as “Not Supported.” Items
identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is
required. Please see “Device Behavior Models" on page Intro-13 for additional
information.

Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

UnifiedPOS Version 1.15

General Information

1-5

<<event>>
UposEvent

(fromevents)

<fires

<<uses>>/"

<<utility>>
UposConst

(from upos)

[

[
<<’&ses>>
\
\

—

\ <<s¥nds>,

<<Interface>>
BaseControl
(fromupos)

gi<<capability>> CapCompareFirmwareVersion : boolean
i<<capability>> CapPowerReporting : int32
gi<<capability>> CapStatisticsReporting : boolean
i<<capability>> CapUpdateFirmware : boolean
i<<capability>> CapUpdateStatistics : boolean
& <<prop>> AutoDisable : boolean

<<prop>> CheckHealthText : string
&<<prop>> Claimed : boolean

«i<<prop>> DataCount : int32

<<prop>> DataEventEnabled : boolean
«i<<prop>> DeviceEnabled : boolean

& <<prop>> FreezeEvents : boolean

& <<prop>> OutputID : int32

i<<prop>> PowerNotify : int32

& <<prop>> PowerState : int32

& <<prop>> State : int32

«i<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceSeniceDescription : string
w<<prop>> DeviceSeniceVersion : int32
<<prop>> PhysicalDeviceDescription : string
i<<prop>> PhysicalDeviceName : string

Sopen(logicalDeviceName : string) : void

Bclose() : void

Sclaim(timeout : int32) : void
ScompareFirmwareVersion(firmwareFileName : string, out result : int32) : void
Brelease() : void

SresetStatistics(statisticsBuffer : string) : void

ScheckHealth(level : int32) : void

®clearinput() : void

SiclearinputProperties () : void

SclearOutput() : void

SdirectlO(command : int32, inout data : int32, inout obj : Object) : void
SretrieveStatistics(inout statisticsBuffer : string) : void
BupdateFirmware(firmwareFileName : string) : void

SlupdateStatistics (statisticsBuffer : string) : void

T 4 A 5

\<<sends>>
<<sends>> \

<<US€S>>J," <<uses>>

— <<exception>>
UposException
(from upos)

I

<<Interface>>
BumpBarControl
(from upos)

<<Interface>>
MSRControl
(from upos)

<<Interface>>
POSPrinterControl
(from upos)

/é<sends>>

<<interface>>
<DevCat>Control

(from upos)

Notes:

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

— —~

AutoDisable, DataCount, and DataEventEnabled are used only with
Devices that have Event Driven Input.
OutputID is used only with Asynchronous Output Devices.

UnifiedPOS Version 1.15

1-6

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Properties (UML attributes)
AutoDisable Property

Syntax

Remarks

Errors

See Also

AutoDisable: boolean { read-write }

If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives
and enqueues data as a DataEvent. Before any additional input can be received,
the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when
data is received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23.

CapCompareFirmwareVersion Property Revised in Release 1.14

Syntax

Remarks

Errors

See Also

CapCompareFirmwareVersion: boolean { read-only, access after open }

If true, then the Service/device supports comparing the version of the firmware in
the physical device against that of a firmware file; initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

compareFirmwareVersion Method.

CapPowerReporting Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

CapPowerReporting: int32 { read-only }

Identifies the reporting capabilities of the Device. It has one of the following
values:

Value Meaning

PR NONE The UnifiedPOS Service cannot determine the state of
the device. Therefore, no power reporting is possible.

PR STANDARD The UnifiedPOS Service can determine and report two
of the power states - OFF_OFFLINE (that is, off or
offline) and ONLINE.

PR _ADVANCED The UnifiedPOS Service can determine and report all
three power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Power Reporting Model" on page Intro-27, PowerState Property,
PowerNotify Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 1-7

CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage;
otherwise no usage statistics are accumulated. The information accumulated and
reported is device specific, and is retrieved using the retrieveStatistics method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also retrieveStatistics Method.

CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware
method; initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also updateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the
resetStatistics method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics

Method.

CheckHealthText Property

Syntax

Remarks

Errors

See Also

CheckHealthText: string { read-only }

Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:

* “Internal HCheck: Successful”

» “External HCheck: Not Responding”

e “Interactive HCheck: Complete”

This property is empty (“”’) before the first call to the checkHealth method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21

checkHealth Method.

UnifiedPOS Version 1.15

1-8

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Claimed Property

Syntax

Remarks

Errors

See Also

Claimed: boolean { read-only }

If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15, “Device Sharing
Model" on page Intro-19, claim Method, release Method.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only }
Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23, DataEvent.

DataEventEnabled Property

Syntax

Remarks

Errors

See Also

DataEventEnabled: boolean { read-write }

Iftrue, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input
error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Events" on page Intro-20, DataEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 1-9

DeviceControlDescription Property

Syntax

Remarks

Errors

See Also

DeviceControlDescription: string { read-only }
Holds an identifier for the UnifiedPOS Control and the company that produced it.
A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998
Epson”

This property is always readable.
None.

DeviceControlVersion Property.

DeviceControlVersion Property

Syntax

Remarks

Errors

See Also

DeviceControlVersion: int32 { read-only }
Holds the UnifiedPOS Control version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control
developer. Updated when corrections are made to the
UnifiedPOS Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the UnifiedPOS Control.

This property is always readable.
None.

“Version Handling" on page Intro-37, DeviceControlDescription Property.

UnifiedPOS Version 1.15

1-10

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DeviceEnabled Property

Syntax

Remarks

Errors

See Also

DeviceEnabled: boolean { read-write }

If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

The Device’s power state may be reported while DeviceEnabled is true; See
“Device Power Reporting Model" on page Intro-27 for details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15.

DeviceServiceDescription Property

Syntax

Remarks

Errors

DeviceServiceDescription: string { read-only }
Holds an identifier for the UnifiedPOS Service and the company that produced it.
A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver,
(C) 1998 Epson”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 1-11

DeviceServiceVersion Property

Syntax

Remarks

Errors

See Also

DeviceServiceVersion: int32 { read-only }
Holds the UnifiedPOS Service version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service
developer. Updated when corrections are made to the
UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Version Handling" on page Intro-37, DeviceServiceDescription Property.

UnifiedPOS Version 1.15

1-12

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

FreezeEvents Property Updated in Release 1.12

Syntax

Remarks

Errors

FreezeEvents: boolean { read-write }

If true, the UnifiedPOS Control will not deliver events. Events will be enqueued
until this property is set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g.,
JrnEmpty and DrawerOpened) are kept current while the device is enabled,
regardless of the setting of this property.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

OutputID Property

Syntax

Remarks

Errors

See Also

OutputID: int32 { read-only }
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are
guaranteed to be unique among the set of outstanding asynchronous outputs. No
other facts about the ID should be assumed.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

“Device Output Models" on page Intro-26, OutputCompleteEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 1-13

PowerNotify Property

Syntax

Remarks

Errors

See Also

PowerNotify: int32 { read-write }

Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

PN _DISABLED The UnifiedPOS Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized to PN_DISABLED by the open method. This value
provides compatibility with earlier releases.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following occurred:
e The device is already enabled.

* PowerNotify = PN _ENABLED but
CapPowerReporting = PR NONE.

“Device Power Reporting Model" on page Intro-27, CapPowerReporting
Property, PowerState Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1

1-14

Common Properties, Methods, and Events

PowerState Property

Updated in Release 1.11

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value

Meaning

PS UNKNOWN

PS_ONLINE

PS_OFF

PS OFFLINE

PS_OFF_OFFLINE

Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting =PR_NONE; the device does not
support power reporting.

PowerNotify = PN DISABLED; power notifications
are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

The device is powered on and ready for use. Can be
returned if CapPowerReporting=PR_STANDARD or
PR_ADVANCED.

The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
=PR_ADVANCED.

The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

The device is either off or off-line. Can only be returned
if CapPowerReporting = PR_STANDARD.

This property is initialized to PS_ UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the UnifiedPOS Service detects power condition changes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also “Device Power Reporting Model" on page Intro-27, CapPowerReporting
Property, PowerNotify Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 1-15

PhysicalDeviceDescription Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceDescription: string { read-only }
Holds an identifier for the physical device.
A sample returned string is:
“NCR 7192-0184 Printer, Japanese Version”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PhysicalDeviceName Property.

PhysicalDeviceName Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceName: string { read-only }

Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PhysicalDeviceDescription Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
116 Common Properties, Methods, and Events

State Property
Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

S CLOSED The Device is closed.

S IDLE The Device is in a good state and is not busy.

S BUSY The Device is in a good state and is busy performing
output.

S _ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.
Errors None.

See Also “Device Information Reporting Model" on page Intro-31.

UnifiedPOS Version 1.15

Methods (UML operations) 117

Methods (UML operations)

checkHealth Method

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting
UnifiedPOS Service will typically display a modal
dialog box to present test options and results.

Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The specified health check level is not supported by the
UnifiedPOS Service.

CheckHealthText Property.

UnifiedPOS Version 1.15

1-18

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

claim Method

Syntax

Remarks

Errors

See Also

Updated in Release 1.11
claim (timeout: int32):
void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If FOREVER (-1), the method
waits as long as needed until exclusive access is satisfied.

Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

E TIMEOUT Another application has exclusive access to the device,

and did not relinquish control before timeout
milliseconds expired.

“Device Initialization and Finalization" on page Intro-15, “Device Sharing
Model" on page Intro-19, release Method.

clearlnput Method

Syntax

Remarks

Errors

See Also

clearInput ():
void { raises-exception }

Clears all device input that has been buffered.

Any data events or input error events that are enqueued — usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false — are also
cleared.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

“Device Input Model" on page Intro-23.

UnifiedPOS Version 1.15

Methods (UML operations) 1-19

clearlnputProperties Method Added in Release 1.10

Syntax

clearInputProperties ():
void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or
ErrorEvent back to their default values. This does not reset the DataCount or
State properties.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also “Device Input Model" on page Intro-23.

clearOutput Method Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when
possible, halts outputs that are in progress.
Any output error events that are enqueued — usually waiting for FreezeEvents to
be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also “Device Output Models' on page Intro-26.

close Method

Syntax

Remarks

Errors

See Also

close ():
void { raises-exception }

Releases the device and its resources.
If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

“Device Initialization and Finalization" on page Intro-15, open Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1

1-20 Common Properties, Methods, and Events
compareFirmwareVersion Method Added in Release 1.9
Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the

firmware or a file containing a set of firmware files
whose versions are to be compared against those of the
device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the
specified file is newer than, older than, or the same as the version of the firmware
in the physical device.

The Service should check that the specified firmware file exists and that its
contents are valid for this device before attempting to perform the comparison
operation.

The result of the comparison is returned in the result parameter and will be one of
the following values:

Value Meaning

CFV_FIRMWARE OLDER Indicates that the version of one or more of the
firmware files is older than the firmware in the
device and that none of the firmware files is
newer than the firmware in the device.

CFV_FIRMWARE SAME Indicates that the versions of all of the firmware
files are the same as the firmware in the device.

CFV_FIRMWARE NEWER Indicates that the version of one or more of the
firmware files is newer than the firmware in the
device and that none of the firmware files is
older than the firmware in the device.

CFV_FIRMWARE DIFFERENT
Indicates that the version of one or more of the
firmware files is different than the firmware in
the device, but either:

* The chronological relationship cannot be
determined, or

* The relationship is inconsistent -- one or
more are older while one or more are newer.

CFV_FIRMWARE UNKNOWN
Indicates that a relationship between the two
firmware versions could not be determined. A
possible reason for this result could be an
attempt to compare Japanese and US versions
of firmware.

If the firmwareFileName parameter specifies a file list, all of the component
firmware files should reside in the same directory as the firmware list file. This
will allow for distribution of the updated firmware without requiring a
modification to the firmware list file.

UnifiedPOS Version 1.15

Methods (UML operations) 1-21

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapCompareFirmwareVersion is false.
E_NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.
E_EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapCompareFirmwareVersion Property.

directlO Method

Syntax

Remarks

Errors

See Also

directlO (command: inf32, inout data: inf32, inout obj: object):
void { raises-exception }

Parameter Description

command Command number whose specific values are assigned
by the UnifiedPOS Service.

data An array of one mutable integer whose specific values
or usage vary by command and UnifiedPOS Service.

obj Additional data whose usage varies by command and

UnifiedPOS Service.
Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality
to the application that is not otherwise supported by the standard UnifiedPOS
Control for its device category. Depending upon the UnifiedPOS Service’s
definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

DirectlOEvent.

UnifiedPOS Version 1.15

1-22

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

open Method Updated in Release 1.7

Syntax open (logicalDeviceName: string):

void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent 1/0.

The device name specifies which of one or more devices supported by this
UnifiedPOS Control should be used. The logicalDeviceName must exist in the
operating system’s reference locater system (such as the JavaPOS Configurator/
Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference
locator’s system are created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during
the open method call processing to allow the creation of the Service and its binding
to the Control.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" API to accomplish the same task.

:ClientApp :<DevCat> :Config :Loader :<DevCat>
(registry of senice properties) Senice

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
senices that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories ‘

1: open(logicalName

2: find properties of senice Lith logicalName ‘ ‘

Errors

‘ 3: pass loader properties, and ask to %reate senice ‘

\ 4: Ioaderyrses properties ard loads the <DevCat>Sen/icr

7:|

\ / L 5: create and/or bind to service

6: retum égrvfce instance/fo control

|

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.

However, logically the actions above are happening on the
system. ‘

444:4
—

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the UnifiedPOS software layers. Additional category-
specific properties may also be initialized.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Methods (UML operations) 1-23

See Also

release Method

Syntax

Remarks

Errors

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The UnifiedPOS Control is already open.

E NOEXIST The specified logicalDeviceName was not found.

E NOSERVICE Could not establish a connection to the corresponding

UnifiedPOS Service.

“Device Initialization and Finalization" on page Intro-15, “Version Handling"
on page Intro-37, close Method.

release ():
void { raises-exception }

Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The application does not have exclusive access to the
device.

“Device Sharing Model" on page Intro-19, claim Method.

resetStatistics Method Updated in Release 1.10

Syntax

Remarks

resetStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
resettable statistics are to be reset, “U_" means all UnifiedPOS defined resettable
statistics are to be reset, “M_" means all manufacturer defined resettable statistics
are to be reset, and “actual namel, actual name2” (from the XML file definitions)
means that the specifically defined resettable statistic(s) are to be reset.

Resets the defined resettable statistics in a device to zero. All the requested
statistics must be successfully reset in order for this method to complete
successfully, otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

UnifiedPOS Version 1.15

1-24

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/resettable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be reset.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be reset in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

retrieveStatistics Method Added in Release 1.8

Syntax

Remarks

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics to be retrieved and
in which the retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
statistics are to be retrieved, “U_” means all UnifiedPOS defined statistics are to
be retrieved, “M_ means all manufacturer defined statistics are to be retrieved,
and “actual namel, actual name2” (from the XML file definitions) means that the
specifically defined statistic(s) are to be retrieved.

Retrieves the requested statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.
This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version='1.0’ ?>

<UPOSStat version="1.15.0” xmlns:xsi="http://www.w3.0org/2001/
XMLSchema-instance” xmlns="http://www.omg.org/UnifiedP0OS/
namespace/” xsi:schemalLocation="http://www.omg.org/UnifiedP0OS/
namespace/UPOSStat.xsd” >

<Event>

<Parameter>
<Name>RequestedStatistic</Name>
<Value>1234</Value>
</Parameters>

</Event>
<Equipment>

<UnifiedPOSVersion>1.15</UnifiedPOSVersions>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevisions>
<Interface>RS232</Interfaces>
<InstallationDate>2000-03-01l</InstallationDates>

</Equipment >

</UPOSStat>

UnifiedPOS Version 1.15

Methods (UML operations) 1-25

If the application requests a statistic name that the device does not support, the
<Parameters> entry will be returned with an empty <values. e.g.,
<Parameter>
<Name>RequestedStatistic</Name>
<Value></Value>
</Parameters
All statistics that the device collects that are manufacturer specific (not defined in the
schema) will be returned in a <ManufacturerSpecifics taginstead of a <Parameters
tag. e.g.,
<ManufacturerSpecific>
<Name>TheAnswer</Name>
<Value>42</Value>
</ManufacturerSpecific>
When an application requests all statistics from the device, the device will return a
<Parameter> entry for every defined statistic for the device category as defined by the
XML schema version specified by the version attribute in the <UPOSStat > tag. If the
device does not record any of the statistics, the <value> tag will be empty.

The most up-to-date files defining the XML tag names that conform to the Retail Data
Dictionary and example schemas for the statistics for all device categories can be

downloaded from the OMG web site at https://www.omg.org/retail.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapStatisticsReporting is false or the named statistic is
not defined.
See Also CapStatisticsReporting Property.
updateFirmware Method Added in Release 1.9
Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the

firmware or a file containing a set of firmware files that
are to be downloaded into the device.

Remarks This method updates the firmware of a device with the version of the firmware
contained or defined in the file specified by the firmwareFileName parameter
regardless of whether that firmware’s version is newer than, older than, or the
same as the version of the firmware already in the device. If the firmwareFileName
parameter specifies a file list, all of the component firmware files should reside in
the same directory as the firmware list file. This will allow for distribution of the
updated firmware without requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware
file exists and that its contents are valid for this device. If so, this method should
return immediately and the remainder of the update firmware process should
continue asynchronously.

UnifiedPOS Version 1.15

http://retail.omg.org
http://retail.omg.org

1-26

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

The Service should notify the application of the status of the update firmware
process by firing StatusUpdateEvents with values of SUE_ UF_ PROGRESS +an
integer between 1 and 100 indicating the completion percentage of the update
firmware process. For application convenience, the StatusUpdateEvent value
SUE_UF_COMPLETE is defined to be the same value as SUE_ UF_PROGRESS
+100.

For consistency, the update firmware process is complete after the new firmware
has been downloaded into the physical device, any necessary physical device reset
has completed, and the Service and the physical device have been returned to the
state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with
an incomplete progress completion percentage (i.e. a percentage between 1 and
99), even if the device cannot physically report the progress of the update firmware
process. If the update firmware process completes successfully, the Service must
fire a StatusUpdateEvent with a progress of 100 or use the special constant
SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level
of progress notification.

If an error is detected during the asynchronous portion of a update firmware
process, one of the following StatusUpdateEvents will be fired:

Value Meaning

SUE _UF FAILED DEV_OK The update firmware process failed but the
device is still operational.

SUE UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the
device is neither usable nor recoverable
through software. The device requires service
to be returned to an operational state.

SUE _UF FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the
device will not be operational until another
attempt to update the firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the
device is in an indeterminate state.

A UposException may be thrown when this method is invoked. For further

information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapUpdateFirmware is false.
E NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.

E EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapUpdateFirmware Property.

UnifiedPOS Version 1.15

Methods (UML operations) 1-27

updateStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

See Also

updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics with values that
are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name
(““”=valuel”) means ALL resettable statistics are to be set to the value “valuel”,
“U_=value2” means all UnifiedPOS defined resettable statistics are to be set to the
value “value2”, “M_=value3” means all manufacturer defined resettable statistics
are to be set to the value “value3”, and “actual namel=value4,

actual name2=value5” (from the XML file definitions) means that the specifically
defined resettable statistic(s) are to be set to the specified value(s).

Updates the defined resettable statistics in a device. All the requested statistics
must be successfully updated in order for this method to complete successfully,
otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/updatable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be
updated.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be updated in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-28 Common Properties, Methods, and Events

Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive
a specific implementation case. The UML event base control model and interfaces
are shown below for the events.

upos::BaseControl

<<utility>>
UposConst

(from upos)

7
' <<uses>>
/
<< >>) <<Interface>>
event fires
UposEvent BaseControl
(from events) (from upos)

~\\<<sends>>

N
A\

<<exception>>
UposException
(from upos)

UnifiedPOS Version 1.15

Events (UML interfaces)

1-29
upos::events interfaces

<<event>>
UposEvent
<<event>> | (fromevents) | <<event>>
DataEvent —] N OutputCompleteEvent
(from events) | (from events)
<<prop>> Status : int32 <<prop>> OutputID : int32

S

\
<<event>> ‘ <<event>>
DirectlOEvent ‘ StatusUpdateEvent
(from events) ‘ (from events)
g<<prop>> EventNumber : int32 ‘ <<prop>> Status : int32
g<<prop>> Data : int32 \
g<<prop>> Obj : object)
\
\

|
<<event>>
ErrorEvent
(from events)
&<<prop>> ErrorCode : int32

<<prop>> ErrorCodeExtended : int32
&<<prop>> ErrorLocus : int32

<<prop>> ErrorResponse : int32

UnifiedPOS Version 1.15

1-30

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DataEvent

<<event>>

Description

Attribute

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available from the device.
This event contains the following attribute:

Attribute Type Description

Status int32 The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

“Errors" on page Intro-21, “Device Input Model" on page Intro-23,
DataEventEnabled Property, FreezeEvents Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 1-31

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

Updated in Release 1.7

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides UnifiedPOS Service information directly to the application. This event
provides a means for a vendor-specific UnifiedPOS Service to provide events to
the application that are not otherwise supported by the UnifiedPOS Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
UnifiedPOS Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the UnifiedPOS Service. This
attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the UnifiedPOS Service. This attribute is settable. !

This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the UnifiedPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the UnifiedPOS Service’s need for this
event.

“Events" on page Intro-20, directlO Method.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-32 Common Properties, Methods, and Events

ErrorEvent Updated in Release 1.13

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes under “Errors" on page Intro-21.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this attribute is settable). See
values below.

The ErrorLocus attribute has one of the following values:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event handler can set the ErrorResponse attribute to one of
the following values: (Updated in 1.13)

Value Meaning

ER _RETRY Retry sending the data. The error state is exited.
May be valid for some input devices when the locus is
EL_INPUT, in which case the input is retried and the
error state is exited. Typically valid for asynchronous
output devices when the locus is EL_ OUTPUT, in
which case the asynchronous output is retried and the
error state is exited. This is the default response when
the locus is EL_OUTPUT.

UnifiedPOS Version 1.15

Events (UML interfaces) 1-33

Remarks

See Also

ER CLEAR Valid for all loci: EL_ INPUT, EL_ INPUT DATA, and
EL _OUTPUT. Clear all buffered input or output data
(including all asynchronous output). The error state is
exited. This is the default response when the locus is
EL _INPUT.

ER_CONTINUEINPUT
Only valid when the locus is EL_INPUT _DATA.
Acknowledges that a data error has occurred and directs
the Device to continue input processing. The Device
remains in the error state and will deliver additional
DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and
DataEventEnabled is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT.
This is the default response when the locus is
EL INPUT DATA.

This event is enqueued when an error is detected and the Device’s State transitions
into the error state. Input error events are not delivered until DataEventEnabled
is true, so that proper application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input
ErrorEvents; it leaves the DataEventEnabled property value at true. Note that
the application may set DataEventEnabled to false within its event handler if
subsequent input events need to be disabled for a period of time.

“Device Input Model" on page Intro-23, “Error Handling'" on page Intro-24,
“Device Output Models" on page Intro-26.

OutputCompleteEvent Updated in Release 1.13

<<event>>

upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the

Attribute

Remarks

See Also

OutputID attribute has completed successfully.
This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

This event is enqueued after the requested data has been both sent and the
UnifiedPOS Service has confirmation that is was processed by the device
successfully.

“Device Output Models" on page Intro-26, OutputID Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-34 Common Properties, Methods, and Events

StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.
Attribute This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of
status change.

Release 1.3 and later — Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning

SUE POWER ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
PR_STANDARD or PR_ ADVANCED.

SUE POWER_OFF The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
PR_ADVANCED.

SUE POWER_OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

SUE POWER _OFF OFFLINE
The device is either off or off-line. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at the current power state of
the device.

Release 1.9 and later — Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status
values for communicating the status/progress of an asynchronous update firmware
process:

Value Meaning

SUE_UF_PROGRESS + 1 to 100
The update firmware process has successfully
completed 1 to 100 percent of the total operation.
SUE_UF _COMPLETE The update firmware process has completed
successfully. The value of this constant is identical to
SUE_UF PROGRESS + 100.

UnifiedPOS Version 1.15

Events (UML interfaces)

1-35

Remarks

See Also

SUE_UF_COMPLETE DEV_NOT _RESTORED
The update firmware process succeeded, however the
Service and/or the physical device cannot be returned to
the state they were in before the update firmware
process started. The Service has restored all properties
to their default initialization values.
To ensure consistent Service and physical device states,
the application needs to close the Service, then open,
claim, and enable again, and also restore all custom
application settings.

SUE_UF_FAILED DEV_OK
The update firmware process failed but the device is still
operational.

SUE _UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is
neither usable nor recoverable through software. The
device requires service to be returned to an operational
state.

SUE_UF_FAILED DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will
not be operational until another attempt to update the
firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the device is in
an indeterminate state.

This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the
application of the device state. This behavior, however, is not required.

“Events" on page Intro-20, “Device Power Reporting Model' on page Intro-27,
CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify
Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 1
1-36 Common Properties, Methods, and Events

UnifiedPOS Version 1.15

Summary 2-1

CHAPTER 2

Belt

This Chapter defines the Belt device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: String { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 Not Supported
DataEventEnabled: boolean { read-write } 1.12 Not Supported
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 Not Supported
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --
DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

UnifiedPOS Version 1.15

2-2

UnifiedPOS Retail Peripheral Architecture

Chapter 2
Belt

Properties (Continued)

Specific
CapAutoStopBackward:

CapAutoStopBackwardItemCount:

CapAutoStopForward:

CapAutoStopForwardItemCount:

CapLightBarrierBackward:
CapLightBarrierForward:
CapMoveBackward:
CapSecurityFlapBackward:
CapSecurityFlapForward:
CapSpeedStepsBackward:
CapSpeedStepsForward:

AutoStopBackward:
AutoStopBackwardDelayTime:
AutoStopBackwardItemCount:
AutoStopForward:
AutoStopForwardDelayTime:
AutoStopForwardItemCount:

LightBarrierBackwardInterrupted:

LightBarrierForwardInterrupted:

MotionStatus:
SecurityFlapBackwardOpened:
SecurityFlapForwardOpened:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

int32

boolean
int32
int32
boolean
int32
int32
boolean
boolean
int32
boolean

boolean

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

void { raises-exception, use after open }

claim (timeout: int32):

void { raises-exception, use after open }

release ():

Version
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

void { raises-exception, use after open, claim }

checkHealth (level: int32):

void { raises-exception, use after open, enable }

clearInput ():
void {}

May Use After
open
open
open
open
open
open
open
open
open
open

open

open

open

open

open

open

open
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

Version

1.12
1.12
1.12
1.12
1.12

Not
supported

UnifiedPOS Version 1.15

Summary 2-3
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: inz32, inout obj: object): 1.12
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.12
void { raises-exception, use after open, enable }
resetStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
updateFirmware (firmwareFileName: string): 1.12
void { raises-exception, use after open, enable }
updateStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }
Specific
Name
adjustItemCount (direction: inz32, count: int32): 1.12
void { raises-exception, use after open, claim, enable }
moveBackward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }
moveForward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }
resetBelt (): 1.12
void { raises-exception, use after open, claim, enable }
resetltemCount (direction: int32): 1.12
void { raises-exception, use after open, claim, enable }
stopBelt (): 1.12

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-4 Belt

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.12

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.12

Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 2-5

General Information

The Belt programmatic name is “Belt”.

This device category was added to Version 1.12 of the specification.

Capabilities

The Belt Control has the following capability:

* Supports a command to move the belt in forward direction.

* Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward
direction, moving with different speeds, light barriers, security flap, controlling an
automatic stop and emergency stop. See the Model section and the capabilities
properties for specific information.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-6 Belt

Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

«exception» «interface» «utility» «utility»
UposException «sends» | BaseControl «ses» UposConst BeltConst

,,,,,,,,,,,,,,,,,,,,, 47

«uses»

— «sends» \/\ =

«interface»
BeltControl

+CapAutoStopBackward : boolean
+CapAutoStopBackwardltemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardltemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardltemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardltemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

+adjustltemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void

+resetBelt() : void

+resetltemCount(direction : int32) : void

+stopBelt() : void

«fires»//,”/ \\\\gfires»

«event» «event»
StatusUpdateEvent DirectlOEvent
+Status : int32 +EventNumber : int32

+Data : int32
+0bj : object

UnifiedPOS Version 1.15

General Information

2-7

Belt Sequence Diagram

The following sequence diagram shows the typical usage of the Belt device during
an automatic stop scenario.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardltemCount are true.

Application

Belt Control

1: setDeviceEnabled(true)

4: adjustitemCount
(BELT_AIC_FORWARD, 5)

6: setAutoStopForward(true)

8: moveForward(speed1)

11: notify client of new event

Belt Service Belt
| |
o 0
2: setDeviceEnabled(true)
3: connect or somehow have
access to the hardware
5: adjustltemCount
(BELT_AIC_FORWARD, 5)
7: setAutoStopForward(true)
9: moveForward(speed1)
10: moves the belt forward
Assume that five items passed the light barrier
and another one is detected. The belt stops.
11: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

Application event handling
code takes appropriate action

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-8 Belt

The following sequence diagram shows the typical usage of the Belt device during
an emergency StOp scenario caused by an open securlty ﬂap.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device

and is registered to receive events from the control. Emergency stop caused by an open security flap, that

means CapSecurityFlapForward is true.

Application Belt Control Belt Service Belt

1: setDeviceEnabled(true)

4: moveForward(speed1)

2: setDeviceEnabled(true)

8: notify client of new event

5: moveForward(speed1)

3: connect or somehow have
access to the hardware

1|

6: moves the belt forward

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

7: update MotionStatus to BELT_MT_EMERGENCY
and deliver SUE

and the problem is finally fixed.

Application event handling code takes
appropriate action, calls for assistance

9: resetBelt()

13: notify client of new event

10: resetBelt()

12: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

11: resets the belt

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

UnifiedPOS Version 1.15

General Information

Model

The general model of a Belt is:

After the belt is enabled an application can call moveForward and stopBelt
in order to control the motion.

If CapMoveBackward is true, the application may also call moveBackward.

Moving forward and backward may be available in different speeds defined
by CapSpeedStepsBackward and CapSpeedStepsForward.

Due to safety regulations a belt is usually equipped with security flaps at the
end of the belt, at both ends if it can move backwards.
CapSecurityFlapBackward and CapSecurityFlapForward are defining
the availability of them.

CapAutoStopBackward and CapAutoStopForward tell an application if
the belt supports an automatic stop. Whether the application wants to use this
feature can be controlled by setting AutoStopBackward and
AutoStopForward properties. The belt is stopped if an automatic stop
condition becomes true. Usually such a condition is controlled by light
barriers, but it can also correspond to an internal state of the device which is
not exposed. The condition is device specific and has to be explained in the
device documentation.

Light barriers may be available for handling an automatic stop feature.
CapLightBarrierBackward and CapLightBarrierForward define the
availability of such barriers.

If CapAutoStopForwardItemCount is true the application may control the
automatic stop feature depending on a number of items passing the light
barrier or any other item counting mechanism in forward direction by calling
adjustItemCount and resetItemCount. In this case the belt is automatically
stopped if AutoStopForwardItemCount is zero and an additional item is
detected. This feature may be also available for backward direction.

If CapAutoStopForward is true, an application may also delay automatic
stop in forward direction by setting AutoStopForwardDelayTime. The delay
time starts when an automatic stop condition becomes true. The belt is stopped
when the delay time has expired. During delay time automatic stop is
cancelled if the automatic stop condition becomes false. This feature may be
also available for backward direction.

The application will be informed about any status change with a
StatusUpdateEvent, also all corresponding status properties will be updated
before event delivery.

An emergency stop will occur if one of the security flaps is open or the
operator presses an emergency button. In this case technical assistance is
needed and the application has to reset the belt by calling resetBelt. A security
stop will occur if the belt has been stopped due to safety requirement
regulations but no technical assistance is needed.

UnifiedPOS Version 1.15

210

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties and methods, or receiving events.

e See the “Summary” table for precise usage prerequisites.

Belt State Diagram

The following diagram illustrates the various state transitions within the Belt
device category.

moveForward motor fault
stopBelt

moveBackward
H Backward
emergency stop

open claim
N Closed]/ /[Opened]/ /[Claimed
close release
close release
)
@«:‘Q
Enabled h

émergency stop Emergency

Stop

fire
event done

done

fire event
g]:[ﬁre Events
done

fire
event

automatic stop
pJemio4arow

fire
event

°
(0]

done

done

Motor Fault

automatic stop
piemyoegarowl

motor fault

UnifiedPOS Version 1.15

Properties (UML attributes) 2-11

Properties (UML attributes)

AutoStopBackward Property

Syntax

Remarks

Errors

See Also

AutoStopBackward: boolean { read-write, access after open }

If true, the automatic stop feature in backward direction is enabled. If false, it is
disabled. The belt will automatically stop if an automatic stop condition becomes
true.

If CapAutoStopBackward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackward Property.

AutoStopBackwardDelayTime Property

Syntax

Remarks

Errors

See Also

AutoStopBackwardDelayTime: in#32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in backward direction.
The delay time starts when an automatic stop condition becomes true. The delay
time counting stops and automatic stop is cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this
property will be ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackward Property.

AutoStopBackwarditemCount Property

Syntax

Remarks

Errors

AutoStopBackwardItemCount: int32 { read-only, access after open }

Holds the actual item counter for an automatic stop in backward direction. If an
item is detected this property will be decreased. The automatic stop condition
becomes true if the item counter mechanism detects an additional item and the
counter is already zero.

This property can be increased or decreased by calling the adjustIitemCount
method and can be reset to zero by calling the resetitemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then
this property has no meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
212 Belt

information, see “Errors" on page Intro-21.

See Also CapAutoStopBackward Property, CapAutoStopBackwardItemCount
Property, adjustitemCount Method, resetitemCount Method.

AutoStopForward Property
Syntax AutoStopForward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in forward direction is enabled. If false, it is
disabled. The belt will automatically stop if an automatic stop condition becomes
true.

If CapAutoStopForward is false, then this property is always false.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoStopForward Property.

AutoStopForwardDelayTime Property
Syntax AutoStopForwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in forward direction.
The delay time starts when an automatic stop condition becomes true. The delay
time counting stops and automatic stop is cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this
property will be ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoStopForward Property.

AutoStopForwarditemCount Property
Syntax AutoStopForwardItemCount: int32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in forward direction. If an item
is detected this property will be decreased. The automatic stop condition becomes
true if the item counter mechanism detects an additional item and the counter is
already zero.

This property can be increased or decreased by calling the adjustItemCount
method and can be reset to zero by calling the resetitemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then
this property has no meaning.

This property is initialized to zero (0) by the open method.

UnifiedPOS Version 1.15

Properties (UML attributes) 2-13

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopForward Property, CapAutoStopForwardItemCount Property,
adjustltemCount Method, resetitemCount Method.

CapAutoStopBackward Property

Syntax

Remarks

Errors

CapAutoStopBackward: boolean { read-only, access after open }

Iftrue, the device supports an automatic motor stop when moving backward, based
on an automatic stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopBackwardltemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopBackwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward
depending on the number of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AutoStopBackwardItemCount Property.

CapAutoStopForward Property

Syntax

Remarks

Errors

CapAutoStopForward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward, based
on an automatic stop condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoStopForwarditemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopForwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward
depending on the number of items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AutoStopForwardItemCount Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
214 Belt

CapLightBarrierBackward Property
Syntax CapLightBarrierBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward light barrier and
LightBarrierBackwardInterrupted holds the actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LightBarrierBackwardInterrupted Property.

CapLightBarrierForward Property
Syntax CapLightBarrierForward: boolean { read-only, access after open }

Remarks If true, the device has a forward light barrier and
LightBarrierForwardInterrupted holds the actual state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LightBarrierForwardInterrupted Property.

CapMoveBackward Property
Syntax CapMoveBackward: boolean { read-only, access after open }
Remarks If true, the belt can move backward.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapBackward Property
Syntax CapSecurityFlapBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward security flap and
SecurityFlapBackwardOpened holds the actual state of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also SecurityFlapBackwardOpened Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 2-15

CapSecurityFlapForward Property

Syntax

Remarks

Errors

See Also

CapSecurityFlapForward: boolean { read-only, access after open }

If true, the device has a forward security flap and SecurityFlapForwardOpened
holds the actual state of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SecurityFlapForwardOpened Property.

CapSpeedStepsBackward Property

Syntax

Remarks

Errors

See Also

CapSpeedStepsBackward: int32 { read-only, access after open }

Defines how many speed steps the belt motor supports in backward direction,
minimum is one (1). This property is only valid if CapMoveBackward is true. If
CapMoveBackward is false this property is initialized to zero (0).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMoveBackward Property.

CapSpeedStepsForward Property

Syntax

Remarks

Errors

CapSpeedStepsForward: int32 { read-only, access after open }

Defines how many speed steps the belt motor supports in forward direction,
minimum is one (1).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

LightBarrierBackwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierBackwardInterrupted: hoolean { read-only, access after open-
claim-enable }

If true, the light barrier in backward direction is interrupted, otherwise it is false.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapLightBarrierBackward Property.

UnifiedPOS Version 1.15

2-16

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

LightBarrierForwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierForwardInterrupted: hoolean { read-only, access after open-
claim-enable }

If true, the light barrier in forward direction is interrupted, otherwise it is false. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapLightBarrierForward Property.

MotionStatus Property

Syntax

Remarks

Errors

MotionStatus: in#32 { read-only, access after open-claim-enable }
Holds the current motion state of the device. It has one of the following values:

Value Meaning

BELT MT FORWARD The device is moving forward.
BELT MT BACKWARD The device is moving backward.

BELT MT_STOPPED The device has stopped due to an automatic stop,
security stop or motor timeout stop.

BELT MT_EMERGENCY Emergency stop, either a security flap is open or the
emergency button was pressed. Technical
assistance is needed in order to reactivate the belt
device.

BELT MT MOTOR_FAULT The device has stopped due to a motor failure like
overheating or a defective fuse. Technical
assistance may be needed in order to reactivate the
motor.

This property is initialized and kept current while the device is enabled.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 217

SecurityFlapBackwardOpened Property

Syntax

Remarks

Errors

See Also

SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-
enable }

If true, the security flap in backward direction is open, otherwise it is closed. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapBackward Property.

SecurityFlapForwardOpened Property

Syntax

Remarks

Errors

See Also

SecurityFlapForwardOpened: boolean { read-only, access after open-claim-
enable }

If true, the security flap in forward direction is open, otherwise it is closed. An
appropriate StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSecurityFlapForward Property.

UnifiedPOS Version 1.15

218

UnifiedPOS Retail Peripheral Architecture Chapter 2
Belt

Methods (UML operations)

adjustitemCount Method

Syntax

Remarks

Errors

See Also

adjustItemCount (direction: int32, count: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

direction Specifies the auto stop item count property to be
adjusted. May be either BELT AIC BACKWARD or
BELT_AIC_FORWARD.

count The count parameter contains the number of items to be
adjusted.

Depending on direction either AutoStopBackwardItemCount or
AutoStopForwardItemCount will be adjusted by count. It can be an increment
or decrement depending on whether count is positive or negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is
true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

A possible value of the exception’s ErrorCode property is:

Value Meaning

E ILLEGAL adjustItemCount is not supported or an invalid
direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount
Property, CapAutoStopForwardItemCount Property,
AutoStopForwardItemCount Property, resetltemCount Method.

moveBackward Method

Syntax

Remarks

Errors

moveBackward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsBackward.

Starts the belt motor to move backward with the specified speed.

This method is only valid if CapMoveBackward is true.
Subsequent calls to moveBackward will change the speed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Methods (UML operations) 2-19

A possible value of the exception’s ErrorCode property is:

Value Meaning

E ILLEGAL moveBackward is not supported or an invalid speed
step was specified.

See Also CapMoveBackward Property, CapSpeedStepsBackward Property.

moveForward Method

Syntax moveForward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsForward.

Remarks Starts the belt motor to move forward with the specified speed.

Subsequent calls to moveForward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CapSpeedStepsForward Property.

resetBelt Method

Syntax resetBelt ():
void { raises-exception, use after open-claim-enable }

Remarks Resets the belt after an emergency stop caused by an open security flap or a
pressed emergency button.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-20 Belt

resetltemCount Method

Syntax resetitemCount (direction: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

direction Specifies the auto stop item count property to be reset.
May be either BELT RIC BACKWARD or
BELT _RIC FORWARD.

Remarks Depending on direction either AutoStopBackwardItemCount or
AutoStopForwardItemCount will be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is
true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

A possible value of the exception’s ErrorCode property is:
Value Meaning

E ILLEGAL resetIltemCount is not supported or an invalid direction
was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount
Property, CapAutoStopForwardItemCount Property,
AutoStopForwardItemCount Property, adjustitemCount Method.

stopBelt Method
Syntax stopBelt ():

void { raises-exception, use after open-claim-enable }
Remarks Stops the belt motor.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Events (UML interfaces) 2-21

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Belt Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Belt devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-22 Belt

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Belt changes.
Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description

BELT SUE_AUTO_STOP
The belt has automatically stopped.

BELT SUE_EMERGENCY_STOP
The belt has stopped caused by an emergency condition,
either a security flap is open or an emergency button has
been pressed. Technical assistance is needed.

BELT SUE _SAFETY_STOP
The belt has stopped for safety reasons. Technical
assistance is not needed.

BELT SUE TIMEOUT STOP
The belt has stopped due to a hardware timeout
protecting the motor against overheating.

BELT SUE MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT SUE MOTOR _FUSE DEFECT
The belt has stopped due to a defective fuse.

BELT SUE LIGHT BARRIER BACKWARD INTERRUPTED
The light barrier in backward direction is interrupted.

BELT SUE LIGHT BARRIER BACKWARD OK
The light barrier in backward direction is no longer
interrupted.

BELT SUE LIGHT BARRIER FORWARD_INTERRUPTED
The light barrier in forward direction is interrupted.

BELT SUE LIGHT BARRIER FORWARD OK
The light barrier in forward direction is no longer
interrupted.

BELT SUE _SECURITY_FLAP BACKWARD OPENED
The security flap in backward direction is open.

BELT SUE_SECURITY _FLAP BACKWARD_ CLOSED
The security flap in backward direction is closed.

BELT SUE SECURITY FLAP FORWARD OPENED

UnifiedPOS Version 1.15

Events (UML interfaces) 2-23

The security flap in forward direction is open.
BELT _SUE _SECURITY _FLAP FORWARD CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

Remarks This event applies for status changes of the belt. It depends on the capabilities of
the device which status changes can be reported.

See Also “Events' on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 2
2-24 Belt

UnifiedPOS Version 1.15

Summary 3-1

CHAPTER 3

Bill Acceptor

This Chapter defines the Bill Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-2 Bill Acceptor
Properties (Continued)
Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapFullSensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearFullSensor: boolean {read-only} 1.11 open
CapPauseDeposit: boolean {read-only} 1.11 open
CapRealTimeData: boolean {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.11 open
DepositCashList: string {read-only} 1.11 open
DepositCodeList: string {read-only} 1.11 open
DepositCounts: string {read-only} 1.11 open
DepositStatus: int32 {read-only} 1.11 open, claim, & enable
FullStatus: int32 {read-only} 1.11 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

UnifiedPOS Version 1.15

Summary 3-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: inz32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): 1.11
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void {} supported

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-4 Bill Acceptor

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.11

Status: int32 { read-only }
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information

3-5

General Information

The Bill Acceptor programmatic name is “BillAcceptor”.

This device category was added to Version 1.11 of the specification.

Capabilities

The Bill Acceptor has the following capabilities:

Reports the cash units and corresponding unit counts available in the Bill
Acceptor.

Reports jam conditions within the device.

Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

Reporting the levels of the Bill Acceptor’s cash units. Conditions which may
be indicated include full, and near full states.

Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

The money (bills) which are deposited into the device between the start and
end of cash acceptance is reported to the application. The contents of the
report are cash units and cash counts.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-6 Bill Acceptor

Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
\
\
\
N 4L
<<sends>> \\ <<utility>>
N BillAcceptorConst
<<Interface>> (from upos)
<<event>> BillAcceptorControl <<uses>>
DataEvent (from upos) S
(from events) Q><<capability>> CapDiscrepancy : boolean -7
T~ &<<capability>> CapFullSensor : boolean

=~ [E%<<capability>> CapJamSensor : Boolean

~ _ |B<<capability>> CapNearFullSensor : boolean
<<fireg>> &% <<capability>> CapPauseDeposit : boolean
&}<<capability>> CapRealTimeData : Boolean
&% <<prop>> CurrencyCode : string
&}<<prop>> DepositAmount : int32
- J%<<prop>> DepositCashList : string
&}<<prop>> DepositCodeList : string
l%<<prap>> DepositCounts : string
®<<prop>> DepositStatus : int32
E<<prop>> FullStatus : int32

_ ®<<prop>> RealTimeDataEnabled : boolean

<<event>>
DirectlOEvent

(from events)

<<event>> = ®adjustCashCounts(cashCounts : string)
StatusUpdateEvent <<fires>> | [®beginDeposit()
(from events)

®endDeposit(amount : int32)

®fixDeposit()

®pauseDeposit(control : int32)

®readCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15

General Information

3-7

Model

The general model of a Bill Acceptor is:

Supports several bill denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

The removal of cash from the device (for example, to empty deposited cash)
is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is BACC STATUS FULL.

Cash acceptance into the “cash acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
pauseDeposit method is executed with a parameter value of

BACC _DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount propertiecs. When pauseDeposit
method is executed with a parameter value of BACC_DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a

BACC _DEPOSIT_COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-8 Bill Acceptor

Bill Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientA - BillAcceptorControl ‘ BillAcceptorSenvice ‘ ‘ _: DataEvent ‘ ‘ Human Actor
| setRealTimeDataEvents(tru D D D

;| setRealTimeDataEvents (tru#) Set so DepositAmount and
U DepositCounts are updated for

T

|

|

|

|

|

|

|

|

|

|

|

" | each Data Event

1

4: beginDeposit()

|
|
|
|
|
|
|
|
|
: 3: beginDeposit()
11:

| I

| 5: initialize DepositAmount and DepositCounts

‘ [Pm— ‘

| | |

| | |

: | T 6: accept Fash
|

! |

| |

! |

: ! 8: enqueue Data Event for delivery
|

| | =1 |

: : 9: update DepositAmount and DepositCourhs

| | =— !

|

| : 10: deliver Data Event

|

' 11: notify ClientApp of event

i) J

12: fixDeposit() !

P=—

15: endDeposit(int32)

16: endDeposit(int32) }

) U

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
7: create Data Event | U
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

u 13: fixDeposit
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
14: updateDeposjtAmount and DepositCouq‘ts
|
|
|
|
|
|
|
|
|
|

UnifiedPOS Version 1.15

General Information 39

Bill Acceptor State Diagram

clearlpput

¢Enabled(true)

Enabled

readCashCo@

clearlnput Clearlnput processing ‘

entry/ empty data queue

earlnput

beginDeposit

Fix Mode ‘

‘ entry/ sync DepostAmount and DepositCount

Cash Acceptance

fixDeposj fixDeposit
entry/ DepositAmount = 0
entry/ DepositCount = 0
Pause Mode
pauseDerlosi - oS R S?Rw‘lsync DepostAmount and DepositCount
has room
h
payiseDeposit(BACCA OSIT_PAUSE)

adjustCashCourt

7

adjustCashCounts /

Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

3-10

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the bill acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Bill Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 3-11

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Bill Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.15

312

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the ASCII
semicolon character (*‘;”) followed by ASCII numeric comma delimited values for
the bills that can be used with the Bill Acceptor. The semicolon (*;”) is present to

denote the start of bills when integrated within the bill dispenser
Below are sample DepositCashList values in Japan.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, DepositCodeList Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis alist of ASCII three-character ISO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Bill Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, DepositCashList Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 3-13

DepositCounts Property Updated in Release 1.12

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the bill acceptor. Cash units inside the
string are the same as the DepositCashList property, and are in the same order.
For example if the currency is Japanese yen and string of the DepositCounts
property is set to:

“;1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen
bills and 77 five thousand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

BACC_STATUS DEPOSIT START
Cash acceptance started.

BACC _STATUS_DEPOSIT END
Cash acceptance stopped.

BACC_STATUS DEPOSIT COUNT
Counting or repaying the deposited money.

BACC_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to BACC_STATUS DEPOSIT END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

3-14

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

BACC STATUS OK All cash slots are neither nearly full nor full.
BACC _STATUS FULL Some cash slots are full.
BACC STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 3-15

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the adjustCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

UnifiedPOS Version 1.15

3-16

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Acceptor

beginDeposit Method

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

e The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The call sequence is not correct.

DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.

endDeposit Method

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

BACC_DEPOSIT COMPLETE The deposit is accepted and the mode is
complete.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 317

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
e The call sequence is invalid. beginDeposit must be
called before calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:
Parameter Description

BACC DEPOSIT PAUSE Cash acceptance is paused.
BACC DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to BACC_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Bill Acceptor. The property
values are not changed again until the deposit process is resumed.

If control is BACC_DEPOSIT _RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to BACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
BACC _DEPOSIT RESTART.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3

318 Bill Acceptor
readCashCounts Method Updated in Release 1.12
Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):

void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also DepositCashList Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 3-19

Events (UML interfaces)

DataEvent

<< event >>

Description
Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when the Bill Acceptor has accepted a bill.

This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for
a vendor-specific Bill Acceptor Service to provide events to the application that are not
otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Acceptor devices which may not have
any knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 3
3-20 Bill Acceptor

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Acceptor
device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning

BACC _STATUS FULL Some cash slots are full.

BACC _STATUS NEARFULL Some cash slots are nearly full.

BACC _STATUS FULLOK No cash slots are either full or nearly full.
BACC STATUS JAM A mechanical fault has occurred.
BACC_STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15

Summary 41

CHAPTER 4

Bill Dispenser

This Chapter defines the Bill Dispenser device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 Not Supported
DataEventEnabled: boolean {read-write} 1.11 Not Supported
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-2 Bill Dispenser
Properties (Continued)
Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapEmptySensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.11 open
AsyncMode: boolean {read-write} 1.11 open
AsyncResultCode: int32 {read-only} 1.11 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.11 open, claim, & enable
CurrencyCashList: string {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
CurrencyCodeList: string {read-only} 1.11 open
CurrentExit: int32 {read-write} 1.11 open
DeviceExits: int32 {read-only} 1.11 open
DeviceStatus: int32 {read-only} 1.11 open, claim, & enable
ExitCashList: string {read-only} 1.11 open

UnifiedPOS Version 1.15

Summary 4-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: inz32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void { raises-exception, use after open, claim } supported

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void { } supported

directlO (command: int32, inout data: inz32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific
Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-4 Bill Dispenser
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 4.5

General Information

The Bill Dispenser programmatic name is “BillDispenser”.
This device category was added in Version 1.11 of the specification.

Capabilities

The Bill Dispenser has the following capabilities:
* Reports the cash units and corresponding unit counts available in the Bill
Dispenser.

« Dispenses a specified number of cash units from the device in bills into a user-
specified exit.

* Reports jam conditions within the device.

* Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:
* Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions
which may be indicated include empty and near empty states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-6 Bill Dispenser

Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
N
N T

. |

N
<<sends>> \ ‘

<<Interface>> |

BillDispenserControl <<utility>>
(from upos) BillDispenserConst
B<<capability>> CapDiscrepancy: boolean <<uges>> (from upos)
B¥<<capability>> CapEmptySens or : boolean
%«capability» CapJamSensor : Boolean _

B<<capability>> CapNearEm ptySensor : boolean
B<<prop>> AsyncMode : boolean

B<<prop>> AsyncRes ultCode : int32
B<<prop>> AsyncRes ultCodeExtended :int32

<<event>> B¥<<prop>> CurrencyCashList : string
DirectlOEvent B¥<<prop>> CurrencyCode : string
(from events) T 7 7~ =~~~ — ~|<<prop>> CurrencyCodeList : string

&j<<prop>> CurrentExit: int32
<<fires>> B¥<<prop>> DeviceExits : int32
B5<<prop>> DeviceStatus : int32
B<<prop>> ExitCashList : string

<<event>> -
StatusUpdateEvent

(from events)

®adjustCashCounts(cashCounts : string)

<«<fres>> $beginDeposit()

®dispenseCas h(cash Counts : string)
®dispenseChange(amount : int32)

®endDeposit(amount :int32)

$fixDeposit()

®pauseDeposit(control : int32)
®readCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15

General Information

Model

The general model of a Bill Dispenser is:

Supports several bill denominations. The supported bill denomination for a
particular currency is noted by the list of cash units in the CurrencyCashList

property.
Consists of any combination of features to aid in the cash processing functions
such as a number of slots or bins which can hold the cash, and cash exits.

This specification provides programmatic control only for the dispensing of
cash. The accepting of cash by the device (for example, to replenish cash) is
controlled by the adjustCashCounts method, unless the device can determine
the amount of cash on its own. The application can call readCashCounts to
retrieve the current unit count for each cash unit, but cannot control when or
how cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

Dispenses cash into the exit specified by CurrentExit when dispenseCash is
called. With dispenseCash, the application specifies a count of each cash unit
to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by dispenseCash, then
the method is performed asynchronously and its completion is indicated by a
StatusUpdateEvent with its Data property set to BDSP_STATUS ASYNC.
The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one
asynchronous method can be processed at a time.

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 4

Bill Dispenser

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status. If there are one or more empty cash slots,
then DeviceStatus is BDSP_ STATUS EMPTY.

UnifiedPOS Version 1.15

General Information

Bill Dispenser Sequence Diagram

claimed and enabled the device

NOTE: We are assuming the clienApp has already successfully opened, ﬁ

::ClientApp : BillDispenserControl ::BillDispenserSenice

: StatusUpdateEvent

|
|
1: dispenseCash(string) :

2: dispenseCash(string)

J

5: deliver SUE to control

getting low

=1

4: create new SU

Assume Bill
/U ~ ~ 7| Dispenser is

E Event

6: 'notify ClientApp of new event

U

| |
| |
| |
| |
|
|
|
| |
| |
| |
|] |
: 3: updat‘e deviceStatus to BDSP_STATPS_NEAREMPTY (CapNearErinptySensor = true)		
[

e

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 4
4-10 Bill Dispenser

Bill Dispenser State Diagram

Claimed

s¢tDeviceEnabled(false)

setDeviceEnabléd(trug’)

Enabled
setAsyncMode(false)

Neai/ Empty

ynchronous

Has Bills

™ N
adCash@

Asynchronous

jams

Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

Properties (UML attributes) 4-11

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash method will be performed asynchronously. If false, this
method will be performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method.

UnifiedPOS Version 1.15

412

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the occurrence of a mechanical fault in the
Bill Dispenser.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Bill Dispenser can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 4-13

CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Dispenser for the currency represented
by the CurrencyCode property.

The string consists of an ASCII semicolon character (*;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Bill Dispenser.

The semicolon (*;”) is present to indicate the units are bills. This is used for
merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
« %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Bill Dispenser operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

CurrencyCodeList Property.

UnifiedPOS Version 1.15

414

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

CurrencyCodelList Property

Syntax

Remarks

Errors

See Also

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Bill Dispenser supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater than 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

» Bill Dispenser supports bills; an auxiliary exit is used for larger quantities
of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentExit value was specified.
CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentExit Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 4-15

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS OK The current condition of the Bill Dispenser is
satisfactory.

BDSP_STATUS_EMPTY

Some cash slots are empty.
BDSP_STATUS NEAREMPTY

Some cash slots are nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

UnifiedPOS Version 1.15

4-16

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be initialized because an
asynchronous method is outstanding.

readCashCounts Method.

UnifiedPOS Version 1.15

Methods (UML operations) 417

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of ““;cash unit:cash counts,, cash unit:cash counts”.

[T

Units must be preceded by ““;” to represent bills.

Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

* 51000:10”
Dispense 10 one thousand yen bills.

e 51000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
E _EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15

4-18

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

readCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is
some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

“1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills and 77 five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Dispenser. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Dispenser. An example would be
when a bill dispenser has diverted unusable bill to a holding area.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.15

Events (UML interfaces) 4-19

Events (UML interfaces)
DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for
a vendor-specific Bill Dispenser Service to provide events to the application that are not
otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Dispenser devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events” on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

4-20

UnifiedPOS Retail Peripheral Architecture Chapter 4
Bill Dispenser

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser

Attributes

Remarks

See Also

device.

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Bill Dispenser status condition:

Value Meaning

BDSP_STATUS EMPTY Some cash slots are empty.

BDSP_STATUS NEAREMPTY Some cash slots are nearly empty.

BDSP STATUS EMPTYOK No cash slots are either empty or nearly
empty.

BDSP_STATUS JAM A mechanical fault has occurred.

BDSP _STATUS JAMOK A mechanical fault has recovered.

BDSP_STATUS_ASYNC Asynchronously performed method has
completed.

Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page Intro-20.

UnifiedPOS Version 1.15

Summary 51

CHAPTER 5

Biometrics

This Chapter defines the Biometrics device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 Not Supported
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --
DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

UnifiedPOS Version 1.15

5-2

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

Properties (Continued)

Specific:

Algorithm:
AlgorithmList:

BIR:
CapPrematchData:
CapRawSensorData:
CapRealTimeData:
CapSensorColor:
CapSensorOrientation:

CapSensorType:

CapTemplateAdaptation:

RawSensorData:
RealTimeDataEnabled:
SensorBPP:
SensorColor:
SensorHeight:
SensorOrientation:
SensorType:
SensorWidth:

Type
int32
string
binary
boolean
boolean
boolean
int32
int32
int32

boolean
binary
boolean
int32
int32
int32
int32
int32
int32

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-write }

{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open & claim
open
open & claim
open
open
open
open
open

open

open
open & claim
open
open
open
open
open, claim, & enable
open, claim, & enable

open

UnifiedPOS Version 1.15

Summary 5.3
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.10
void { raises-exception }
close (): 1.10
void { raises-exception, use after open }
claim (timeout: int32): 1.10
void { raises-exception, use after open }
release (): 1.10
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }
clearInput (): 1.10
void { raises-exception, use after open, claim }
clearInputProperties (): 1.10
void { raises-exception, use after open, claim }
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.10
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
Specific Updated in Release 1.11
Name
beginEnrollCapture (referenceBIR: binary, payload: binary): 1.10
void { raises-exception, use after open, claim, enable }
beginVerifyCapture (): 1.10
void { raises-exception, use after open, claim, enable }
endCapture (): 1.10
void { raises-exception, use after open, claim, enable }
identify (maxFARRequested: in732, maxFRRRequested: int32, 1.11

FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5

5-4 Biometrics
identifyMatch (maxFARRequested: in732, maxFRRRequested: inz32, 1.11
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):
void { raises-exception, use after open, claim, enable }
processPrematchData (capturedBIR: binary, prematchDataBIR: binary, 1.10

inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }
verify (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved:
int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }
verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information

General Information

The Biometrics programmatic name is “Biometrics”.
This device was introduced in Version 1.10 of this specification.

Capabilities

All Biometric devices have the following capabilities:

The device captures biometrics data from a biometrics sensor. The biometrics
data is in the form of a Biometrics Information Record (BIR) containing one
or more Biometrics Data Blocks (BDB) which in turn contain one or more
biometric data samples or biometric templates.

This standard uses the term template (as adapted from the BioAPI') to refer
to the biometric enrollment data for a user. The term biometric information
record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for
verification or identification, as well as enrollment data. Typically, the only
data stored persistently by the application is the BIR generated for enrollment
(i.e., the template). The format of the Opaque Biometric Data Block (BDB) is
indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is
optional, and may be used to ensure integrity of the data during transmission
and storage. When present, it is calculated on the Header + BDB. For
standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats
(all that exists at the present time), the signature can take any form that suits
the Service. For this reason, there is no C structure definition of the signature.
The BIR Data Type indicates whether the BIR is signed and/or encrypted.

1 BioAPI is defined by the BioAPI consortium (www.bioapi.org).

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5

Biometrics

Length Header | BIR Data CQuality Purpose

‘Opagque” Digital
Headsr Biometric Data Block Signature
Format ID

Biometric Type
(Header + BDE) Wersion Type Cwner Type ¥P
4 1 1 2 2 1 1 4
< Product ID) .
Creation | Creation | Subtype | Index Index

Date Time Flag (unoy

Owner Type

2 2 4 3 1 1 16

The Device captures Biometric data for the purposes of enrollment. The
notion of enrollment requires a higher level of quality for the final BIR that is
created. Generally, the BIR will be the aggregation of series of biometric
captures.

The Device captures Biometric data for the purposes of verification.
Verification does not require the same level of quality as enrollment.

The Device has the ability to determine if two BIRs match within the degree
of error specified by the False Accept Rate (FAR) and False Reject Rate
(FRR). The FAR is the margin of percentage error acceptable that two non-
matching biometric samples will be falsely deemed to match. The FRR is the
margin of percentage error acceptable that two matching biometric samples
will be falsely deemed not to match.

The Device has the ability to compare a BIR against a sample population of
BIRs and create a rank ordering of the population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

The Device Returns the raw biometric data in “real time” as it is captured by
the device. If this capability is true and has been enabled by application by
setting the RealTimeDataEnabled property to true, then a series of
StatusUpdateEvents are enqueued, each as a raw image defined by
SensorBPP, SensorColor, SensorHeight, and SensorWidth representing a
partial biometrics image capture.

UnifiedPOS Version 1.15

General Information

5-7

Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

«exception»
UposException

«sends»

«interface»
BaseControl

«uses»

«eventy»
DataEvent

+Status : int32

«sends»

UposConst

«utility»

«utility»
BiometricsConst

«uses»

«interface»
BiometricsControl

+Algorithm : int32

+AlgorithmList : string

+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32

Note: Method parameters are
not listed due to space
limitations - refer to the
Methods section for details.

+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void
+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void

+verifyMatch() : void

«fires»

«fires»

T

|

|

|

I

| |
«fires» |
|

|

|

|

«event»
DirectlOEvent

«event»
ErrorEvent

+EventNumber : int32
+Data : int32
+Obj : object

+ErrorCode : int32

+ErrorLocus : int32

+ErrorResponse : int32

+ErrorCodeExtended : int32

«event»
StatusUpdateEvent|

+Status : int32

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5

Biometrics

Model

The Biometrics device usage model is:

Open and claim the device.
Enable the device and set the property DataEventEnabled to true.

Begin capturing biometrics data by calling on of the following asynchronous
methods beginVerifyCapture or beginEnrollCapture. These methods
activate the biometrics sensor to begin acquiring the biometrics data in the
relevant manner for the particular biometrics device. The result biometric
data is stored in the BIR property. The BIR data can be provided to the
identifyMatch method and verifyMatch method for comparison and
matching purposes. The archival process of the BIR for future verification is
application dependent.

Perform synchronous biometric verifications through the verify method or
synchronous biometric identifications through the identify method.

If the device is capable of supplying biometrics data in real time as the
biometric sample is captured (CapRealTimeData is true), and if
RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData
property and notified to the application through StatusUpdateEvents until
the biometric sample is fully acquired. RawSensorData is not queued rather
it is up to the application to capture the data upon receiving the
StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-
driven input:

When input is received by the Service, it enqueues a DataEvent.

If AutoDisable is true, then the Device automatically disables itself when a
DataEvent is enqueued.

A queued DataEvent can be delivered to the application when the property
DataEventEnabled is true and other event delivery requirements are met.
Just before delivering this event, data is copied into properties, and further
data events are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the
current input and associated properties. When the application has finished
processing the current input and is ready for more data, it re-enables events
by setting DataEventEnabled to true.

An ErrorEvent (or events) is enqueued if the an error occurs while gathering
or processing input, and is delivered to the application when
DataEventEnabled is true and other event delivery requirements are met.
The DataCount property may be read to obtain the number of queued
DataEvents.

All enqueued input may be deleted by calling clearInput. See the clearInput
method description for more details.

UnifiedPOS Version 1.15

General Information

Deviations from the general “Device Input Model” for event-driven input are:
* The capture of biometrics data begins when beginEnrollCapture or
beginVerifyCapture is called.

* Ifbiometrics capture is terminated by calling endCapture, then no
DataEvent or ErrorEvent will be enqueued.

Device Sharing

The Biometrics is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Biometrics specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device or before changing some writable properties.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-10 Biometrics

Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.
Application Biometrics Control Biometrics Service Hardware

Il I I Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

‘\::; 13: BIR data persisted
k-

—_——— - —— — — — A

UnifiedPOS Version 1.15

General Information

5-11

The following diagram illustrates the verify sequence for the Biometrics device

category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics

Se

1: setDataEventEnabled(true)

3: beginVerifyCapture()

2: setDataEventEnabled(true)

8: Data Event delivered

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

9: getBIR()

12: BIR data returned

10: getBIR()

11: BIR data returned

The application provides a set of enroliment Bl

Rs

from which a match is to be found.

13: verify()

18: Return status and match data

14: verify()

15: Hardware

compares each enrollment BIR against

the verify BIR

16: Hardware returns match data

17: Return status and match data

—_— —

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-12 Biometrics

The following diagram illustrates the verify - match sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service Hardware

I I Il Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides the enroliment BIR of the user to verify.

13: verifyMatch()

14: verifyMatch()

15: Hardware compares enroliment BIR against verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

- — —

UnifiedPOS Version 1.15

General Information

513

Biometrics State Diagram

The following diagram illustrates the various state transitions within the

Biometrics device category.

/ close()
/ open() / claim()
Closed]/ / close() /[Opened]/ / release() /[Claimed
N~
/ close() / release() | setDeviceEnabled(true)

Enroll Capture
/ beginEnrollCapture()
~
/ endCapture()

~—

/ DataEvent fired

/ beginVerifyCapture() Verify Capture
pture()

/ DataEvent fired

|/ setDeviceEnabled(false)

/ identify ()

/ identifyMatcy

Identify

() / processPrematchData()

/ verify()

Identify Matching

Preprocess Data

[verifyMatch()

Verify Matching

UnifiedPOS Version 1.15

5-14

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Properties (UML Attributes)

Algorithm Property

Syntax

Remarks

Errors

See Also

Algorithm: in#32 { read-write, access after open-claim }

Contains the biometric algorithm currently in use for generating the biometrics
template. The values can be set to index the values contained in AlgorithmList.
For example:

Value Meaning

0 Default value

1 First algorithm in AlgorithmList

2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not
enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AlgorithmList Property.

AlgorithmList Property

Syntax
Remarks

Errors

See Also

BIR Property 2
Syntax

Remarks

AlgorithmList: string { read-only, access after open }
Contains the comma-delimited list of algorithms that are supported by the device.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Algorithm Property.

BIR: binary { read-only, access after open-claim-enable }3

This standard uses the term template to refer to the biometric enrollment data for
a user. The term biometric information record (BIR) refers to any biometric data
that is returned to the application; including raw data, intermediate data, processed
sample(s) ready for verification or identification, as well as enrollment data.
Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block
(BDB) is indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is optional,
and may be used to ensure integrity of the data during transmission and storage.
When present, it is calculated on the Header + BDB.

2 Biometrics Information Record (BIR) was originally defined by the BioAPI
consortium (wWww.bioapi.org).

3 In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

Properties (UML Attributes)

5-15

For standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats (all that
exists at the present time), the signature can take any form that suits the Service.
For this reason, there is no C structure definition of the signature. The BIR Data

Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture,
beginVerifyCapture, and verify are stored in this property upon successful
completion.

Header “Opaque’ Digital
Biometric Data Block Signature
Lenaih Head 8IR Da Format ID
eng eader 13 "
{Header + BOA) \ersion Type Quality Purpose

4

< Product ID))
Creation | Creation | Subtype | Index Index

Errors

See Also

CapPrematchData Property

Syntax

Remarks

Errors

See Also

CapRawSensorData Property

Syntax
Remarks

Errors

See Also

Biometric Type
Owner Type
1 1 2 2 1 1 4

Date Time Flag (LIDy

Cwner Type

2 2 4 3 1 1 16

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

beginEnrollCapture Method, beginVerifyCapture Method, verify Method.
Updated in Release 1.11
CapPrematchData: boolean { read-only, access after open }

If true, the Service is capable of using MOC (Match-On-Card) SmartCard
technology to generate a processed BIR based on prematch data stored on a
SmartCard.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

processPrematchData Method.
Updated in Release 1.12

CapRawSensorData: boolean { read-only, access after open }

If true, the Service is able to return unprocessed raw data from the biometrics
sensor.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RawSensorData Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

5-16

Chapter 5
Biometrics

CapRealTimeData Property

Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks

If true, the device is able to supply raw biometrics data as the biometrics

information is being captured (“real time”). This property value will be false if
CapRawSensorData is false, since real time data is only delivered via the
RawSensorData property which requires that CapRawSensorData is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also

RawSensorData Property, SensorBPP Property, SensorColor Property,

SensorHeight Property, SensorWidth Property.

CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks

This capability indicates if this device supports image formats other than bi-tonal.

CapSensorColor is a logical OR combination of any of the following values:

Value Meaning
BIO_CSC_MONO Bi-tonal (B/W)
BIO CSC_GRAYSCALE Gray scale

BIO CSC 16 16 Colors

BIO _CSC 256 256 Colors

BIO_CSC_FULL

Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSensorOrientation Property

Syntax CapSensorOrientation: int32 { read-only, access after open }

Remarks

This capability indicates the ability of the sensor image to be rotated prior to

processing. CapSensorOrientation is a logical OR combination of any of the

following values:

Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO_INVERTED 180°
BIO_CSO_LEFT 270°

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML Attributes) 517

CapSensorType Property Updated in Release 1.11
Syntax CapSensorType: int32 { read-only, access after open-claim-enable }
Remarks This capability indicates the types of biometrics data that can be captured by the

attached sensor. CapSensorType is a logical OR combination of any of the
following values:
Value Meaning
BIO CST FACIAL FEATURES Facial Features/Topography
BIO _CST _VOICE Voice
BIO _CST FINGERPRINT Fingerprint
BIO_CST _IRIS Iris
BIO _CST RETINA Retina
BIO_CST HAND_ GEOMETRY Hand Geometry
BIO_CST _SIGNATURE DYNAMICS Signature
BIO CST KEYSTROKE DYNAMICS Keystrokes
BIO_CST_LIP. MOVEMENT Lip Movement
BIO _CST THERMAL FACE IMAGE Face Image
BIO CST THERMAL HAND IMAGE Hand Image
BIO _CST GAIT Gait/Stride
BIO _CST PASSWORD Password
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also SensorType Property.

CapTemplateAdaptation Property

Syntax CapTemplateAdaptation: boolean { read-only, access after open }

Remarks If true, the Service is able to return an adapted BIR that is the result of updating a
reference BIR with information taken from a sample BIR or capture BIR. The
purpose of this adaptation is to keep the reference BIR current as biometric data
shifts over time.

This capability must be populated after open, claim, and enable because it is
dependent on the selected Algorithm.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

RawSensorData Property Updated in Release 1.12

Syntax RawSensorData: binary { read-only, access after open-claim-enable }4

Remarks Holds the biometrics image data as raw pixel data scan lines from the top, left to

the bottom, right. SensorHeight and SensorWidth define the number of pixels.
SensorBPP defines the number of bits per pixel. SensorColor defines the
interpretation of the pixel data. If CapRawSensorData is false, then this property
contains no meaningful value.

4 In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

5-18

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapRawSensorData Property, CapRealTimeData Property,
RealTimeDataEnabled Property, SensorBPP Property, SensorColor Property,
SensorHeight Property, SensorWidth Property.

RealTimeDataEnabled Property Updated in Release 1.12

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean { read-write, access after open }

If true, then StatusUpdateEvents will be fired as updated partial biometric data is
captured until biometric capture is completed. Otherwise, the captured biometric
data is enqueued as a single DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginEnrollCapture or beginVerifyCapture method is
performed. This prevents confusion regarding what would happen if it were
modified between a beginEnrollCapture - endCapture or beginVerifyCapture
- endCapture pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot set to true because CapRealTimeData
is false.

CapRealTimeData Property, RawSensorData Property, SensorBPP Property,
SensorColor Property, SensorHeight Property, SensorWidth Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

SensorBPP Property

Syntax SensorBPP: int32 { read-only, access after open }
Remarks Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
SensorColor Property Updated in Release 1.11
Syntax SensorColor: int32 { read-write, access after open }
Remarks This property is used to select the image capture mode for subsequent biometric

capture operations. Certain SensorType devices may not work with all the
“colors” or color image type may not make sense. Changing the SensorColor
property will not affect any previously stored data currently residing in the
RawSensorData property or BIR property.

It may contain one of the following values:

UnifiedPOS Version 1.15

Properties (UML Attributes) 5-19
Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO _SC GRAYSCALE Gray scale
BIO _SC 16 16 Colors
BIO _SC 256 256 Colors
BIO _SC FULL Full color

This property can only be set to a value if the value is defined in CapSensorColor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL Invalid sensor color specified. See
CapSensorColor.
See Also CapSensorColor Property, RawSensorData Property, Sensor BPP Property,

SensorHeight Property, SensorWidth Property.

SensorHeight Property

Syntax

Remarks

Errors

SensorOrientation Property

SensorHeight: int32 { read-only, access after open }

Holds the height of the RawSensorData in pixels.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Updated in Release 1.11

Syntax SensorOrientation: int32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR
creation.
Value Meaning
BIO_SO NORMAL 0°
BIO_SO _RIGHT 90°
BIO SO _INVERTED 180°
BIO SO _LEFT 270°
This property can only be updated when the device is opened and claimed, but not
enabled.
This property can only be set to a value if the value is defined in
CapSensorOQOrientation.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL Invalid sensor orientation specified. See
CapSensorQOrientation.
See Also CapSensorQOrientation Property.

UnifiedPOS Version 1.15

5-20

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

SensorType Property

Syntax

Remarks

Errors

See Also

Updated in Release 1.11

SensorType: int32 { read-write, access after open-claim-enable }

Holds the type of biometrics sensor being accessed.

Value Meaning

BIO ST FACIAL FEATURES Facial Topography
BIO ST VOICE Voice

BIO ST FINGERPRINT Fingerprint

BIO ST IRIS Iris

BIO ST RETINA Retina

BIO_ ST HAND GEOMETRY Hand Geometry
BIO ST SIGNATURE DYNAMICS Signature

BIO ST KEYSTROKE DYNAMICS Keystrokes

BIO ST LIP MOVEMENT

BIO ST THERMAL FACE IMAGE
BIO ST THERMAL HAND IMAGE
BIO_ST GAIT

BIO ST PASSWORD

Lip Movement
Thermal Face Image
Thermal Hand Image
Gait/Stride

Password

This property can only be set to a value if the value is defined in CapSensorType.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid sensor type specified. See
CapSensorType.

CapSensorType Property.

SensorWidth Property

Syntax
Remarks

Errors

See Also

SensorWidth: int32 { read-only, access after open }

Holds the width of the RawSensorData in pixels.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RawSensorData Property.

UnifiedPOS Version 1.15

Methods (UML operations) 5-21

Methods (UML operations)

beginEnroliCapture Method Updated in Release 1.11

Syntax beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description

referenceBIR’ Optional BIR to be adapted (updated). This parameter is
ignored, if EMPTY.

payload® Data that will be stored by the BSP. This parameter is

ignored, if EMPTY.

Remarks Starts capturing biometrics data for purposes of enrollment. Although not
required, enrollment captures customarily result in a series of biometrics data
captures whose aggregation form the final BIR. Optionally if
CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation
with the enrollment. If a payload is provided that data is added into the resulting
BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E _FAILURE referenceBIR could not be adapted.
E ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, CapTemplateAdaptation Property, endCapture Method.

beginVerifyCapture Method Updated in Release 1.11
Syntax beginVerifyCapture ():

void { raises-exception, use after open-claim-enable }

Remarks Starts capturing biometrics data for the purposes of verification. The resulting
processed data is stored in the BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture is already in progress.
See Also BIR Property, endCapture Method.

> In the OPOS environment, the format of referenceBIR and payload depends upon
the value of the BinaryConversion property. See BinaryConversion property on
page A-29.

UnifiedPOS Version 1.15

5-22

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

endCapture Method

Syntax

Remarks

Errors

See Also

identify Method

Syntax

endCapture():
void { raises-exception, use after open-claim-enable }

Stops (terminates) capturing biometrics data.

If RealTimeDataEnabled is false and biometrics data was captured, then it is
placed in the properties BIR and RawSensorData. If no biometrics data was
captured, then BIR and RawSensorData are EMPTY.

If RealTimeDataEnabled is true and there is biometric data remaining which
have not been delivered to the application by a StatusUpdateEvent, then the
remaining biometric data is placed into the properties BIR and RawSensorData.
If no biometrics data was captured or all biometric data has been delivered to the
application, then BIR and RawSensorData are EMPTY.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture was not in progress.

BIR Property, RawSensorData Property, RealTimeDataEnabled Property,
beginEnrollCapture Method, beginVerifyCapture Method, DataEvent.

Updated in Release 1.12

identify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,

as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

referenceBlRPopulation6
An array of BIRs against which the Identify match is
performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.

% In the OPOS environment, the format of referenceBIRPopulation depends upon the

value of the BinaryConversion property. See BinaryConversion property on page
A-29.

UnifiedPOS Version 1.15

Methods (UML operations) 5-23

timeout Maximum number of milliseconds to attempt a
successful biometric capture before failing.

Remarks This function captures biometric data from the attached device within the allotted
timeout, and compares it against a set of referenceBIRPopulation. It then returns a
rank ordered array of referenceBIRPopulation indices in candidateRanking. If
nothing matches, an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIRPopulation was not valid or Biometrics
capture is in progress.

E TIMEOUT The specified timeout has elapsed before biometric data
was captured.

identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

sampleBIR’ The BIR to be identified

referenceBIRPopulation
An array of BIRs against which the Identify match is
performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of

referenceBIRPopulation. It then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking. If nothing matches, an
array with zero elements is returned.

7- In the OPOS environment, the format of sampleBIR and referenceBIRPopulation

depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.15

5-24

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

Errors

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIRPopulation was not valid or Biometrics
capture is in progress.

processPrematchData Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout
processedBIR: binary)
void { raises-exception, use after open-claim-enable}

Parameter Description

sampleBIR® BIR to be processed

prematchDataBIR BIR containing prematch data previously emitted by the
associated MOC Library.

processedBIR 8 The newly constructed processed BIR

This function creates processed biometric samples suitable for Match-on-Card
(MOC). It enables MOC implementations that require the retrieval of “prematch”
data from the card prior to the subsequent matching operation. Since smart cards
generally do not have the capability to capture and process biometric samples, the
on-card MOC functionality needs a host to perform off-card operations such as
sample acquisition and feature extraction. In this case, the card needs the host to
perform an operation based on prematch data that is retrieved from the card.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL sampleBIR was not valid, Biometrics capture is in
progress, or CapPrematchData is false.

CapPrematchData Property.

8 In the OPOS environment, the format of sampleBIR, prematchDataBIR, and

processedBIR depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

Methods (UML operations)

5-25

verify Method
Syntax

Remarks

Errors

See Also

Updated in Release 1.12

verify(maxFARRequested: inf32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved: int32,
inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.

adaptedBIR ? A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

result A boolean value of true for a successful match or false
for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload® If a payload is associated with the referenceBIR, it is
returned in an allocated binary if a successful match was
made.

timeout Maximum number of milliseconds to attempt a

successful biometric capture before failing.

This function captures biometric data from the attached device within the allotted
timeout, and compares it against the referenceBIR. If the match is successful as
indicated by a positive result and an adaptedBIR handle was provided, the Service
will attempt to adapt the referenceBIR from information take form the captured
BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or
referenceBIR was not valid or Biometrics capture is in
progress.

E TIMEOUT The specified timeout has elapsed before biometric data

was captured.

BIR Property, CapTemplateAdaptation Property.

% In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload
depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.15

5-26

UnifiedPOS Retail Peripheral Architecture

Chapter 5
Biometrics

verifyMatch Method

verifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32, inout
FRRACchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Syntax

Remarks

Errors

Parameter

Updated in Release 1.12

Description

maxFARRequested

maxFRRRequested

FARPrecedence

sampleBIR'"
referenceBIR
adaptedBIR '°

result

FARAchieved
FRRAchieved
payload '*

The requested FAR criterion for successful verification,
as defined in the BioAPI specification.

The requested FRR criterion for successful verification,
as defined in the BioAPI specification. If zero, then this
criterion is not provided.

If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
(TRUE) indicates that maxFARRequested takes
precedence, BIO FRR PRECEDENCE (FALSE)
indicates that maxFRRRequested takes precedence.
The BIR to be identified.

The BIR to be verified against.

A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

A boolean value of true for a successful match or false
for a failed match.

FAR Value indicating the closeness of the match.

FRR Value indicating the closeness of the match.

If a payload is associated with the referenceBIR, it is
returned in an allocated binary if a successful match was
made.

This function compares a sampleBIR against the referenceBIR. If the match is
successful as indicated by a positive result and an adaptedBIR handle was
provided, the Service will attempt to adapt the referenceBIR from information
taken from the captured BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

maxFARRequested, or maxFRRRequested, or
referenceBIR was not valid or Biometrics capture is in
progress.

10-1n the OPOS environment, the format of sumpleBIR, referenceBIR, adaptedBIR,

and payload depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

Events (UML Interfaces) 5-27

Events (UML Interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available.
This event contains the following attribute:

Attributes Type Description

Status int32 BIO_DATA_ENROLL if enroll capture is completed.
BIO_DATA_VERIFY if verify capture is completed.

The properties BIR and RawSensorData are set to appropriate values prior to a
DataEvent being delivered to the application.

“Events" on page Intro-20, BIR Property, RawSensorData Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Biometrics Capture Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendors’ Biometric devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page Intro-20, directIO Method.

UnifiedPOS Version 1.15

5-28

UnifiedPOS Retail Peripheral Architecture Chapter 5
Biometrics

ErrorEvent

Updated in Release 1.11

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a Biometrics device error has been detected and a
suitable response by the application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page Intro-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. It may
contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available. (Very unlikely - see Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear all buffered input data. The error state is exited.
Default when locus is EL._INPUT.

ER _CONTINUEINPUT
Used only when locus is EL_ INPUT DATA.
Acknowledges the error and directs the Service to
continue processing. The Service remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT. Default when locus isEL_INPUT _DATA.

UnifiedPOS Version 1.15

Events (UML Interfaces)

5-29

Remarks

See Also

Enqueued when an error is detected while trying to read biometric capture data.
This event is not delivered until DataEventEnabled is set to true and other event
delivery requirements are met, so that proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_ INPUT DATA will
not occur. This is because each biometrics capture requires an explicit
beginXxxxxxCapture method, which can generate at most one DataEvent. The
application would need to defer the DataEvent by setting DataEventEnabled to
false and request another capture before an EL_INPUT _DATA would be possible.

“Device Input Model" on page Intro-23, “Device Information Reporting

Model" on page Intro-31, “Events” on page Intro-20.

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Updated in Release 1.13

Description Notifies the application that there is a change in the status of a Biometric Capture

Attributes

device.

This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Biometrics
device or reports a requested user interaction with the
Biometrics sensor to complete the capture. In the case of
the latter, the following directives can be issued:

Value Meaning

BIO_SUE RAW DATA
BIO_SUE_MOVE_LEFT
BIO_SUE_MOVE_RIGHT
BIO_SUE_MOVE_DOWN
BIO_SUE_MOVE_UP
BIO_SUE_MOVE_CLOSER
BIO_SUE_MOVE_AWAY
BIO_SUE_MOVE_BACKWARD
BIO_SUE_MOVE_FORWARD
BIO_SUE_MOVE_SLOWER
BIO_SUE_MOVE_FASTER
BIO_SUE_SENSOR_DIRTY
BIO_SUE_FAILED READ

BIO_SUE_SENSOR_READY

BIO_SUE_SENSOR_COMPLETE

Raw image data is available.

The position was too far to the right.
The position was too far to the left.
The position was too high.

The position was too low.

The position was too far away.

The position was too near (close).

The position was too far forward.

The position was too far backward.
The motion was too fast, move slower.
The motion was too slow, move faster.
The sensor is dirty and requires cleaning.
Unable to capture data from the sensor,
please retry the operation.

(Added in Release 1.13)
The sensor is ready to scan a Biometric
object

(Added in Release 1.13)
The sensor reports that the scan of a
Biometric object is complete.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 5
5-30 Biometrics

Remarks Enqueued when the Biometric Capture device detects a power state change or user
interaction.

See Also “Events” on page Intro-20.

UnifiedPOS Version 1.15

Summary 6-1

CHAPTER 6

Bump Bar

This Chapter defines the Bump Bar device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 open
DataEventEnabled: boolean { read-write } 1.3 open
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --
DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 6

6-2 Bump Bar
Properties (Continued)
Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
Keys: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

UnifiedPOS Version 1.15

Summary 6-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.3
void { raises-exception }

close (): 1.3
void { raises-exception, use after open }

claim (timeout: int32): 1.3
void { raises-exception, use after open }

release (): 1.3
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }

clearInput (): 1.3
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { raises-exception, use after open, claim } supported”

clearQutput (): 1.3
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name
bumpBarSound (units: int32, frequency: int32, duration: int32, 1.3
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, claim, enable }
setKeyTranslation (units: inf32, scanCodes: int32, logicalKey: int32): 1.3

void { raises-exception, use after open, claim, enable }

a. No sensitive information is generated or stored.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-4 Bump Bar
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.3
Status: int32 { read-only }
upos::events::DirectlOEvent 1.3
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.3
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent 1.3
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.3
Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 6-5

General Information

The Bump Bar programmatic name is “BumpBar”.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

* Supports broadcast methods that can communicate with one, a range, or all
bump bar units online.

e Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

* Supports bump bar enunciator output with frequency and duration.

* Supports tactile feedback via an automatic tone when a bump bar key is
pressed.

UnifiedPOS Version 1.15

6-6

Chapter 6

UnifiedPOS Retail Peripheral Architecture
Bump Bar

Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

<<event>> <<utility>> <<ufility>> | _ <uses>> <<Interface>>
DataEvent BumpBarConst UposConst |~ ™~ BaseControl
(from events) (from upos) (from upos)] (from upos)
N /‘;¥<uses>> ~ /
\T<uses>> - ~ | <<sends>>
) / <<exception>>
ires \ | /
<<event>> ‘ ! UposException
DirectlOEvent \ / (from upos)
(from events) !
\ | /
\ | 7
\ /
fires | / / <<sends>>
\ |
<<Interface>>
BumpBarControl
(from upos)

4£<<capability>> CapTone : boolean
£<<prop>> AsyncMode : boolean
&<<prop>> Timeout : int32

£<<prop>> UnitsOnline : int32
£<<prop>> CurrentUnitID : int32
£<<prop>> AutoToneDuration : int32
4<<prop>> AutoToneFrequency : int32
£<<prop>> BumpBarDataCount : int32
&<<prop>> Keys : int32

£<<prop>> ErrorUnits : int32
4<<prop>> ErrorString : string
£<<prop>> EventUnitID : int32
£<<prop>> EventUnits : int32
<<prop>> EventString : string

*bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void

| #setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

yﬁi

7 ﬁ“fes
/ v

<<event>> <<event>> <<event>>
ErrorEvent StatusUpdateEvent OutputCompleteEvent
(from events) (from events) (from events)

UnifiedPOS Version 1.15

General Information

Model

The general model of a bump bar is:

The bump bar device class is a subsystem of bump bar units. The initial
targeted environment is food service, to control the display of order
preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage
and control the entire subsystem of bump bars. If applications on the same or
other workstations and POS Terminals will need to access the subsystem, then
this application must act as a subsystem server and expose interfaces to other
applications.

All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID 1 through BB_UID 32 are bitwise ORed to form
the bitmask.) The Service will attempt to satisfy the method for all unit(s)
indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors
received. The method will then notify the application of the error condition. In
the case where two or more units encounter different errors, the Service should
determine the most severe error to report.

The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. (One of the constants BB_UID 1 through BB_UID 32 are
selected.) See the description of these common methods to understand how
the current unit ID property is used.

When the current unit ID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the depen-
dent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The defini-
tions range from BB_UID 1 to BB_UID 32. These definitions are also used
to create the bitwise parameter, units, used in the broadcast methods.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6

Bump Bar

Input — Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input
with some differences:

When input is received, a DataEvent is enqueued.

This device does not support the AutoDisable property, so the device will not
automatically disable itself when a DataEvent is enqueued.

An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it reenables events by setting DataEventEnabled to true.

An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

The BumpBarDataCount property may be read to obtain the number of
bump bar DataEvents for a specific unit ID enqueued. The DataCount
property can be read to obtain the total number of data events enqueued.

Queued input may be deleted by calling the clearInput method. See
clearInput method description for more details.

The Bump Bar Service provider must supply a mechanism for translating its inter-
nal key scan codes into user-defined codes which are returned by the data event.
Note that this translation must be end-user configurable. The default translated key
value is the scan code value.

UnifiedPOS Version 1.15

General Information

Output - Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhance-
ments:

The bumpBarSound method is performed either synchronously or
asynchronously, depending on the value of the AsyncMode property.

When AsyncMode is false, then this method operates synchronously and the
Device returns to the application after completion. When operating
synchronously, the application is notified of an error if the method could not
complete successfully.

When AsyncMaode is true, then this method operates as follows:

* The Device buffers the request in program memory, for delivery to the
Physical Device as soon as the Physical Device can receive and process
it, sets the QutputID property to an identifier for this request, and returns
as soon as possible. When the device completes the request successfully,
the EventUnits property is updated and an QutputCompleteEvent is
enqueued. A property of this event contains the output ID of the
completed request.

» Ifan error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a broadcast method, then ErrorUnits and ErrorString are
set instead.

The event handler may call synchronous bump bar methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

* Asynchronous output is performed on a first-in first-out basis.

* All output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This
method also stops any output that may be in progress (when possible).

Device Sharing

The bump bar is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing many
bump bar specific properties.

The application must claim and enable the device before calling methods that
manipulate the device.

When a claim method is called again, settable device characteristics are
restored to their condition at release.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-10 Bump Bar

Bump Bar State Diagram

e iceEna}ﬁIed(faIse)

Enabled

/setDeviceEnabled(true)

[AsyncMode == true]/bumpBarSound

[async requests done

bar input error]

UnifiedPOS Version 1.15

Properties (UML attributes) 6-11

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open-claim-enable }

If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

bumpBarSound Method, “Device Output Models" on page Intro-26.

AutoToneDuration Property

Syntax

Remarks

Errors

See Also

AutoToneDuration: int32 { read-write, access after open-claim-enable }

Holds the duration (in milliseconds) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

AutoToneFrequency Property

Syntax

Remarks

Errors

See Also

AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Holds the frequency (in Hertz) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15

6-12

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

BumpBarDataCount Property

Syntax

Remarks

Errors

See Also

BumpBarDataCount: in#32 { read-only, access after open-claim-enable }

Holds the number of DataEvents enqueued for the bump bar unit specified by the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a bump bar unit, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property, DataEvent.

CapTone Property

Syntax

Remarks

Errors

See Also

CapTone: boolean { read-only, access after open-claim-enable }

If true, the bump bar unit specified by the CurrentUnitID property supports an
enunciator.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 6-13

CurrentUnitID Property

Syntax

Remarks

Errors

CurrentUnitID: inf32 { read-write, access after open-claim-enable }

Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar
device. The unit ID definitions range from BB_UID_1 to BB UID_32.

Setting this property will update other properties to the current values that apply to
the specified unit. The following properties and methods apply only to the selected
bump bar unit ID:

* Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount,
CapTone, and Keys.

* Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID 1 when the device is first enabled
following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only, access after open }

Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
BumpBarDataCount property.

The application may read this property to determine whether additional input is
enqueued, but has not yet been delivered because of other application processing,
freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

BumpBarDataCount Property, DataEvent Event, “Device Input Model" on
page Intro-23.

UnifiedPOS Version 1.15

6-14

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

ErrorString Property

Syntax

Remarks

Errors

See Also

ErrorString: string { read-only, access after open }

Holds a description of the error which occurred on the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ErrorUnits Property.

ErrorUnits Property

Syntax

Remarks

Errors

See Also

ErrorUnits: int32 { read-only, access after open }

Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ErrorString Property.

EventString Property

Syntax

Remarks

Errors

See Also

EventString: string { read-only, access after open-claim }

Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

EventUnits Property, ErrorEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 6-15

EventUnitID Property

Syntax

Remarks

Errors

See Also

EventUnitID: int32 { read-only, access after open-claim }

Holds the bump bar unit ID causing a DataEvent. This property is set just before
a DataEvent is delivered. The unit ID definitions range from BB_UID 1 to
BB UID 32.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DataEvent.

EventUnits Property

Syntax

Remarks

Errors

See Also

Keys Property
Syntax

Remarks

Errors

See Also

EventUnits: int32 { read-only, access after open-claim }

Holds a bitwise mask of the unit(s) when an OutputCompleteEvent,
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

Keys: int32 { read-only, access after open-claim-enable }

Holds the number of keys on the bump bar unit specified by the CurrentUnitID
property.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentUnitID Property.

UnifiedPOS Version 1.15

6-16

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

Timeout Property

Syntax

Remarks

Errors

See Also

Timeout: int32 { read-write, access after open }

Holds the timeout value in milliseconds used by the bump bar device to complete
all output methods supported. If the device cannot successfully complete an output
method within the timeout value, then the method notifies the application of the
error.

This property is initialized to a Service dependent timeout following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, ErrorString Property, bumpBarSound Method.

UnitsOnline Property

Syntax

Remarks

Errors

See Also

UnitsOnline: in#32 { read-only, access after open-claim-enable }

Bitwise mask indicating the bump bar units online, where zero or more of the unit
constants BB_UID 1 (bit 0 on) through BB_UID 32 (bit 31 on) are bitwise ORed.
32 units are supported.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

checkHealth Method, StatusUpdateEvent.

UnifiedPOS Version 1.15

Methods (UML operations)

6-17

Methods (UML operations)

bumpBarSound Method

Syntax

Remarks

bumpBarSound (units: int32, frequency: int32, duration: int32,

numberOfCycles: int32, interSoundWait: in#32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to
operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat
continuously. Else perform the specified number of
cycles.

interSoundWait When numberOfCycles is not one, then pause for

interSoundWait milliseconds before repeating the tone
cycle (before playing the tone again)

Sounds the bump bar enunciator for the bump bar(s) specified by the units

parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be
stopped by using the clearQutput method. (When a numberOfCycles value of
FOREVER was used to start the sound, then the application must use clearOutput
to stop the continuous sounding of tones.)

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6

6-18

Bump Bar

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

E_FAILURE

One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value
nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is
false.

A negative interSoundWait was specified.
units is zero or a non-existent unit was specified.
A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be
updated before the exception is thrown.

An error occurred while communicating with one of the
bump bar units specified by the units parameter. The
ErrorUnits and ErrorString properties are updated
before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone
Property, clearOutput Method.

UnifiedPOS Version 1.15

Methods (UML operations) 6-19

checkHealth Method (Common)

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device.

CH_INTERACTIVE Perform an interactive test of the device. The Service
will typically display a modal dialog box to present test
options and results.

When CH_INTERNAL or CH_EXTERNAL level is requested, the method will
check the health of the bump bar unit specified by the CurrentUnitID property.
When the current unit ID property is set to a unit that is not currently online, the
device will attempt to check the health of the bump bar unit and report a
communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E FAILURE An error occurred while communicating with the bump
bar unit specified by the CurrentUnitID property.

CurrentUnitID Property, UnitsOnline Property.

UnifiedPOS Version 1.15

6-20

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

clearinput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the
CurrentUnitID property.
Any data events that are enqueued — usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CurrentUnitID Property, “Device Input Model" on page Intro-23.

clearOutput Method (Common) Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output,
for the unit specified by the CurrentUnitID property.
Any output complete and output error events that are enqueued — usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false — are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CurrentUnitID Property, “Device Qutput Models" on page Intro-26.

UnifiedPOS Version 1.15

Methods (UML operations)

6-21

setKeyTranslation Method

Syntax

Remarks

Errors

See Also

setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set
key translation for.

scanCode The bump bar generated key scan code. Valid values 0-
255.

logicalKey The translated logical key value. Valid values 0-255.

Assigns a logical key value to a device-specific key scan code for the bump bar
unit(s) specified by the units parameter. The logical key value is used during
translation during the DataEvent.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL

One of the following errors occurred:
scanCode or logicalKey are out of range.
units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are
updated prior to notifying the application of the error.

ErrorUnits Property, ErrorString Property, DataEvent.

UnifiedPOS Version 1.15

6-22

UnifiedPOS Retail Peripheral Architecture Chapter 6
Bump Bar

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 {read-only }

Notifies the application when status from the bump bar is available.
This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type,
located in the low word, the remaining 2 bytes will contain additional data. The
diagram below indicates how the Status property is divided:

High Word Low Word (Event Type)

High Byte Low Byte
Unused. Always zero. LogicalKeyCode BB DE KEY

Enqueued to present input data from a bump bar unit to the application. The low
word contains the Event Type. The high word contains additional data depending
on the Event Type. When the Event Type is BB DE_KEY, the low byte of the
high word contains the LogicalKeyCode for the key pressed on the bump bar unit.
The LogicalKeyCode value is device independent. It has been translated by the
Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

“Device Input Model" on page Intro-23, EventUnitID Property,
DataEventEnabled Property, FreezeEvents Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 6-23

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DirectiIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Bump Bar Service to provide events to the application
that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bump Bar devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page Intro-20, directlOQ Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6

6-24

Bump Bar

ErrorEvent

Updated in Release 1.10

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type

Description

ErrorCode int32

ErrorCodeExtended
int32
ErrorLocus int32

ErrorResponse int32

Error code causing the error event. See a list of Error
Codes on page Intro-21.

Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

Location of the error. See values below.

Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-

EL_INPUT DATA

driven input. No previously buffered input data is
available.

Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

UnifiedPOS Version 1.15

Events (UML interfaces) 6-25

Remarks

See Also

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error event listener may change ErrorResponse
to one of the following values:

Value Meaning

ER RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER _CLEAR Clear all buffered output data (including all
asynchronous output) or buffered input data. The error

state is exited.
Default when locus is EL._INPUT.

ER _CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT DATA.

Enqueued when an error is detected while gathering data from or processing
asynchronous output for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

“Device Output Models'" on page Intro-26, “Device Information Reporting
Model" on page Intro-31, DataEventEnabled Property, EventUnits Property,
EventString Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 6
6-26 Bump Bar

OutputCompleteEvent

<<event>> upos::events::QutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete. The EventUnits property is updated before
delivering.

Remarks Enqueued when a previously started asynchronous output request completes
successfully.

See Also EventUnits Property, “Device Qutput Models" on page Intro-26.
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.
Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent”

description on page 1-34)

* Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

* When the bump bar device is enabled, then a StatusUpdateEvent is enqueued
to specify the bitmask of online units.

e While the bump bar device is enabled, a StatusUpdateEvent is enqueued
when the power state of one or more units change. If more than one unit
changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

UnifiedPOS Version 1.15

Summary 7-1

CHAPTER 7

Cash Changer

This Chapter defines the Cash Changer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string {read-only} 1.2 open
Claimed: boolean {read-only} 1.2 open
DataCount: int32 {read-only} 1.5 open
DataEventEnabled: boolean {read-write} 1.5 open
DeviceEnabled: boolean {read-write} 1.2 open & claim
FreezeEvents: boolean {read-write} 1.2 open
OutputID: int32 {read-only} 1.2 Not Supported
PowerNotify: int32 {read-write} 1.3 open
PowerState: int32 {read-only} 1.3 open
State: int32 {read-only} 1.2 --
DeviceControlDescription: string {read-only} 1.2 --
DeviceControlVersion: int32 {read-only} 1.2 --
DeviceServiceDescription: string {read-only} 1.2 open
DeviceServiceVersion: int32 {read-only} 1.2 open
PhysicalDeviceDescription: string {read-only} 1.2 open
PhysicalDeviceName: string {read-only} 1.2 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-2 Cash Changer
Properties (Continued)
Specific Type Mutability Version May Use After
CapDeposit: boolean {read-only} 1.5 open
CapDepositDataEvent: boolean {read-only} 1.5 open
CapDiscrepancy: boolean {read-only} 1.2 open
CapEmptySensor: boolean {read-only} 1.2 open
CapFullSensor: boolean {read-only} 1.2 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.2 open
CapNearFullSensor: boolean {read-only} 1.2 open
CapPauseDeposit: boolean {read-only} 1.5 open
CapRealTimeData: boolean {read-only} 1.11 open
CapRepayDeposit: boolean {read-only} 1.5 open
AsyncMode: boolean {read-write} 1.2 open
AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable
CurrencyCashList: string {read-only} 1.2 open
CurrencyCode: string {read-write} 1.2 open
CurrencyCodeList: string {read-only} 1.2 open
CurrentExit: int32 {read-write} 1.2 open
CurrentService: int32 {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.5 open
DepositCashList: string {read-only} 1.5 open
DepositCodeList: string {read-only} 1.5 open
DepositCounts: string {read-only} 1.5 open
DepositStatus: int32 {read-only} 1.5 open, claim, & enable
DeviceExits: int32 {read-only} 1.2 open
DeviceStatus: int32 {read-only} 1.2 open, claim, & enable
ExitCashList: string {read-only} 1.2 open
FullStatus: int32 {read-only} 1.2 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable
ServiceCount: int32 {read-only} 1.11 open
Servicelndex: int32 {read-only} 1.11 open

UnifiedPOS Version 1.15

Summary 7-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.2
void { raises-exception }

close (): 1.2
void { raises-exception, use after open }

claim (timeout: int32): 1.2
void { raises-exception, use after open }

release (): 1.2
void { raises-exception, use after open, claim }

checkHealth (level: inz32): 1.2
void { raises-exception, use after open, claim, enable }

clearInput (): 1.5
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void { } supported

directIO (command: int32, inout data: int32, inout obj: object): 1.2

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.5
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.2
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: int32): 1.2
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.5
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.5

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-4 Cash Changer

pauseDeposit (control: int32): 1.5
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.2
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.5

Status: int32 { read-only }
upos::events::DirectlOEvent 1.2

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.2

Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 7-5

General Information

The Cash Changer programmatic name is “CashChanger”.

Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:
* Reports the cash units and corresponding unit counts available in the Cash
Changer.

* Dispenses a specified amount of cash from the device in either bills, coins, or
both into a user-specified exit.

» Dispenses a specified number of cash units from the device in either bills,
coins, or both into a user-specified exit.
* Reports jam conditions within the device.

* Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

* Reporting the fullness levels of the Cash Changer’s cash units. Conditions
which may be indicated include empty, near empty, full, and near full states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

Release 1.5 and later — Support for the cash acceptance is added
as an option.

* The money (bills and coins) which is deposited into the device between the
start and end of cash acceptance is reported to the application. The contents of
the report are cash units and cash counts.

Release 1.11 and later — Support for the use of cash device sub-

services

* The service can use sub-services for other cash devices to create a full-
function cash changer service. Properties are added for the extraction of
information from the sub-services.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture
7-6

Chapter 7
Cash Changer

Cash Changer Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

<<exception>>

UposException
(fomupog

’\\\ <<sends>>
\
<<Interface>>
CashChangerControl
(from upos)

% <<capability>> CapDeposit : boolean

& <<capability>> CapDepositDataE \ent : boolean
<<ewent>> &% <<capability>> CapDiscrepancy : boolean
DataEvent 8<<capatility>> CapEmptySensor : boolean
fomevsnt) &% <<capalility>> CapFullSensor : bodean

) & <<capability>> CapJamSensor : Boolean

fires B <<capaility>> CapNearEmptySensor : boolean
% <<capability>> CapNearFullSensor : boolean
& <<capability>> CapPauseDeposit : boolean

5 <<capability>> CapRealTimeData : Boolean

<<ewent>> & <<capability>> CapRepayDeposit : boolean
DirectiOEvent & <<prop>> AsyncMode : boolean
fromeverts) fires | BB<<prop>> AsyncResultCode : int32
< &% <<prop>> AsyncResultCodeExtended : int32
B5<<prop>> CurrencyCashist : string

& <<prop>> CurrencyCode : string
& <<prop>> CurencyCodeList : string
& <<prop>> CurrentExit : int32

<<event>> fires | B<<prop>> CumrentSenice : int32
StatusUpdateEvent |- —| Ba<<prop>> DepositAmourt : int32
(fom events) B <<prop>> DepositCashList : string
B <<prop>> DepositCodeList : string
&% <<prop>> DepositCounts : string

fires | B4<<prop>> DepositStatus : int32
&% <<prop>> DeviceExits : int32
<<event>> / B <<prop>> DeviceStatus : int32
ErrorEvent & <<prop>> ExitCashList : string
(from events) & <<prop>> FullStatus : int32
E<<prop>> Real TimeDataEnabled : boolean

&5 <<prop>> SeniceCount : int32
& <<prop>> Senicelndex : int32

FadjustCashCounts(cashCaunts : stiing)

SbeginDeposit()

SdispenseCash(cashCaunts : string)
SdispenseChange(@amount : int32)

¥endDepoasit(amount : int32)

SfixDeposit()

®paus eDeposit(contral : int32)

®readCashCounts(cashCounts : string, discrepancy : boolean)

<<utility>>
UposConst

(from upos)

<<utility>>
CashChangerConst

(from upos)

Z,
s
-

.7 <<uses>>

UnifiedPOS Version 1.15

General Information 7-7

Model Updated in Release 1.11

The general model of a Cash Changer is:

* Supports several cash types such as coins, bills, and combinations of coins and
bills. The supported cash type for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

* Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

* Prior to Release 1.5 this specification provides programmatic control only for
the dispensing of cash. The accepting or removing of cash by the device (for
example, to replenish cash) is controlled by the adjustCashCounts method,
unless the device can determine the amount of cash on its own. The
application can call readCashCounts to retrieve the current unit count for
each cash unit, but cannot control when or how cash is added to the device.

* May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

* Dispenses cash into the exit specified by CurrentExit when either
dispenseChange or dispenseCash is called. With dispenseChange, the
application specifies a total amount to be dispensed, and it is the responsibility
of the Cash Changer device or the Control to dispense the proper amount of
cash from the various slots or bins. With dispenseCash, the application
specifies a count of each cash unit to be dispensed.

* Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMaode is true and no exception is thrown by either
dispenseChange or dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with
its Data property set to CHAN_STATUS ASYNC. The request’s completion
status is set in the AsyncResultCode and AsyncResultCodeExtended
properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one
asynchronous method can be processed at a time.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

Cash Changer

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status, and in the FullStatus property to show full
and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS EMPTY, and if there are one or more full
cash slots, then FullStatus is CHAN STATUS FULL.

After Release 1.5 — Support for cash acceptance is added as an
option.
The cash acceptance model is as follows:

Note that the AsyncMode property has no affect on methods that have been
added for cash acceptance, since these are treated as input methods.

The dispensing of change function of this device is not dependent upon the
availability of a “cash acceptance” function option. Dispensing of change and
collection of money are two independent functions.

Receipt of cash (cash acceptance function) is an option that may be provided
by the Cash Changer device. Cash acceptance into the “cash acceptance
mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to
Zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a
DataEvent is generated to inform the application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of
CHAN_DEPOSIT PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CHAN DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until an endDeposit method is executed. At this point
the “cash acceptance” mechanism is notified to stop accepting cash. If
endDeposit method receives a CHAN_DEPOSIT CHANGE parameter, then
the mechanism will dispense cash change back to the user. If endDeposit is
invoked with a CHAN DEPOSIT NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if
endDeposit is invoked with a CHAN_DEPOSIT REPAY parameter, then all
collected cash is returned back to the user by the mechanism.

Two types of Cash Changer mechanisms are covered by this standard. In one
case where CapRepayDeposit is true, the bins that are used for collecting the
cash are the same bins that are used for dispensing the cash as change. In the

UnifiedPOS Version 1.15

General Information 7-9

other case where CapRepayDeposit is false, the bins that are used for
collecting the cash are different from the bins that are used for dispensing the
change. In the first case, if a transaction is aborted for any reason, the same
cash the user input to the mechanism will be returned to the user. In the second
case, it is up to the application to dispense an equivalent amount of cash (not
the same physical cash collected) back to the user for an aborted transaction.

¢ The Cash Changer mechanisms can only be used in one mode at a time. While
the mechanism is collecting deposited cash, it cannot dispense change at the
same time. Therefore, while beginDeposit method is being executed, no
payment of change can occur. Only after an endDeposit method call can the
proper amount of change be determined (either by the application or by a
“smart” Cash Changer) and dispensed to the user. Each Cash Changer
manufacturer must determine the amount of time it takes to process the
received cash and place in storage bins before it completes the endDeposit
method.

* When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

» After Release 1.11 — Support for the use of cash device sub-
services.

¢ The cash device sub-service model is as follows:

* Cash Changer service can utilize other cash device sub-services, such as coin
dispensers, coin acceptors, bill dispenser, bill acceptors and other cash
changers to access device hardware, creating a full function cash changer
service. Each call to the cash changer service will invoke the corresponding
call to the sub-services. Therefore, an open call will call the open method of
all of the sub-services, claim will call claim, and so forth. The same can be said
for the cash changer properties. Some properties are available for dispensers,
while others are available only for acceptors. It is up to the aggregating cash
changer service to analyze and interpret the results of its communications to
the sub-services and report to the application. For example, if the open call
fails for one of the sub services, the exception should be passed up to the
application. The mapping of the properties and methods from service to sub-
service is as follows:

Cash Coin Bill Coin Bill

Changer Dispenser Dispenser Acceptor Acceptor
CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X
CapEmptySensor X X
CapJamSensor X X X X
CapFullSensor X X
CapNearEmptySensor X X
CapNearFullSensor X X
CapPauseDeposit X X
CapRealTimeData X X
CapRepayDeposit
AsyncMode X
AsyncResultCode X

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-10 Cash Changer
Cash Coin Bill Coin Bill
Changer Dispenser Dispenser Acceptor Acceptor
AsyncResultCodeExtended X
CurrencyCashList X
CurrencyCode X X X
CurrencyCodeList X
CurrentExit X
CurrentService
DepositAmount X X
DepositCashList X X
DepositCodeList X X
DepositCounts X X
DepositStatus X X
DeviceExits X
DeviceStatus DispenserStatus X
ExitCashList X
FullStatus X X
ServiceCount
Servicelndex
RealTimeDataEnabled X X
beginDeposit() X X
dispenseCash() X
dispenseChange() X
endDeposit() X X
fixDeposit() X X
pauseDeposit() X X
readCashCounts() X X X X

* ServiceCount lists the number of sub-services used by the cash changer.

* Servicelndex is a byte segmented property containing the index for each sub-
service.

» Ifaccess to sub-service property and method information is desired, setting the
CurrentService property to the desired index will allow the application to
request property information of the specified sub-service.

Coin Cash Changer Senice

P08 <<Interface>> CashChangerSenice
o CashChangerControl - -
Application - — — — = > fomupoy |~~~ > L > Bill Accleptor
Senice
- -7
|
|
|
|
l
. . . : Bill Dispenser
Example of a Cash Changer Service using a coin cash changer ---= Senvice
service, a bill acceptor service and a bill dispenser service.

UnifiedPOS Version 1.15

General Information 7-1

Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
CashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp | :CashChanger | |:CashChangerService| | :Human Actor |

—— register to receive Dataalent with Control i

J_ [
setDataEventEnabIed(t[ulel) setDataEventEnabIedﬁrLe)

-

T |

—beginDeposit() | beginDeposit() i DepositCounts and DepositAmount
\T] property values are initialized

N e |

! ! | accepting cash H;l

! ! DepositCounts and DepositAmount

| | property values are Updated

| . deliver DataEvent PR

! deliver DataEvent ||

pauseDeposit(Pause) ﬂpauseDeposn (Pause) _ |

while checL amount accepted |

is < amounjt of sale |

setDataEventEnabled(true)
|

setDataEventEnabled(i rue)

pauseDeposit(Restart)

L’ pauseDeposit(Restart)

accepting cash

DepositCounts and DepositAmount
property values are Upc‘ated

’J__deliver DataEvent |

eliver DataEvent

endloop T | |
—fixDeposit U . | DepositCounts and DepasitAmount
bosit) J_' fixDeposit() | property values are finalized
endDeposit(Change/ \T‘ .
Nochange/Repayment) ! endDeposit(Change/ ||

if there is change !
dispenseChange() or

|

Nochange/Repayment i

T D| EJ |
|

dispenseCash() dispenseChange() or |

L dispenseCash() J-l change E;I
endif [\T‘ IT[

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
712 Cash Changer

Cash Changer State Diagram Updated in Release 1.8

/\
open() CIaIm()
. close() release()

setDeviceEnabled(fals

clearlnput()

ceEnabled(true)

Clearlnput Processing
entry/ empty data queue

cear&()\/

FixMode

entry/ sync DepositCounts and DepositAmount

. Pay Money

done
[asyncMode == false] [asyncMode == true] Fire Events
‘ Synchronous Pay ‘ ‘ Async

fire event entry/ enqueue StatusUpdateEvents

Device Sharing

The Cash Changer is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

Properties (UML attributes) 713

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash and dispenseChange methods will be performed
asynchronously. If false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseChange Mecthod, dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: in#32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-14 Cash Changer
CapDeposit Property Added in Release 1.5
Syntax CapDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.
CapDepositDataEvent Property Added in Release 1.5
Syntax CapDepositDataEvent: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit

Method.

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapEmptySensor Property

Syntax

Remarks

Errors

See Also

CapEmptySensor: boolean { read-only, access after open }
If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 7-15

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceStatus Property, StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-16 Cash Changer

CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also pauseDeposit Method.

CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real
time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also RealTimeDataEnabled property.

CapRepayDeposit Property Added in Release 1.5
Syntax CapRepayDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also endDeposit Method.

CurrencyCashList Property
Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash dispensing units supported in the Cash Changer for the currency
represented by the CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the
units of coins, then the ASCII semicolon character (“;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Cash Changer. If

(73%1)

a semicolon (*;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.

UnifiedPOS Version 1.15

Properties (UML attributes) 717

e “1,5,10,50,100,500” ---
1, 5,10, 50, 100, 500 yen coin.

e “1,5,10,50,100,500;1000,5000,10000” ---
1,5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.
CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

See Also CurrencyCodeList Property.

CurrencyCodelList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-18

Cash Changer

CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater then 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”

DeviceExits = 1

CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

Cash Changer supports both coins and bills; an auxiliary exit is used for
larger quantities of bills:

CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits =2

When CurrentExit = 1 : ExitCashList =
“1,5,10,50,100,500;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

Cash Changer supports bills; an auxiliary exit is used for larger quantities
of bills:

CurrencyCashList = ““;1000,5000,10000”

DeviceExits = 2

When CurrentExit = 1 : ExitCashList = “;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 7-19

CurrentService Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

CurrentService: int32 { read-write, access after open }

Holds the current service. The value 0 represents the primary service, while values
greater than 0 and less than or equal to ServiceCount are used to request
information from the integrated services. Legal values range from 0 to
ServiceCount. The readCashCounts method and all of the properties, common
and specific, are accessible when the CurrentService is greater than 0.
CurrentService, ServiceCount and ServiceIndex will always reflect the primary
service.

Below are examples of a cash changer service using services for separate Coin
Acceptor and Dispenser and a bills only cash changer. A StatusUpdateEvent
indicting a jam has been received by the application. Only the bill changer and the
coin dispenser can detect a jam.

* Checking the values of the primary service:
CurrentService = 0
ServiceCount =3
Servicelndex = 50528769 (X03030201°)
DeviceStatus = CHAN _STATUS JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

« Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount =3
Servicelndex = 50528769 (X’03030201°)
DeviceStatus = CHAN STATUS OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”

* The coin dispenser looks ok. Check the bill changer:
CurrentService = 3
ServiceCount =3
ServiceIndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentService value was specified.

ServiceCount Property, ServiceIndex Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-20 Cash Changer
DepositAmount Property Added in Release 1.5

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash
Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode property. It is set to an empty string when the cash
acceptance process is not supported.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (*;””) followed by ASCII numeric
comma delimited values for the bills that can be used with the Cash Changer. If
the semicolon (“;”) is absent, then all units represent coins.
Below are sample DepositCashList values in Japan.
« “1,5,10,50,100,500 ---
1, 5,10, 50, 100, 500 yen coin.
« “1,5,10,50,100,500;1000,5000,10000” ---
1, 5,10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.
+ “1000,5000,10000” ---
1000, 5000, 10000 yen bill.
This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 7-21

DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to an empty string
when the cash acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by com-
mas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is
the same as cashCounts in the dispenseCash method. Cash units inside the string
are the same as the DepositCashList property, and are in the same order. It is set
to an empty string when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash
Changer.

This property is initialized by the open method

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CurrencyCode Property.

UnifiedPOS Version 1.15

7-22

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

DepositStatus Property Added in Release 1.5

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

CHAN_STATUS DEPOSIT START

Cash acceptance started.
CHAN_STATUS _DEPOSIT END

Cash acceptance stopped.
CHAN_STATUS DEPOSIT NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT COUNT

Counting or repaying the deposited money.

CHAN_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CHAN STATUS DEPOSIT END after initialization, or to
CHAN_STATUS DEPOSIT NONE if the device does not support cash
acceptance.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentExit Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 7-23

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS _OK The current condition of the Cash Changer is
satisfactory.

CHAN_STATUS _EMPTY

Some cash slots are empty.
CHAN_STATUS NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ExitCashList Property

Syntax

Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

FullStatus Property Updated in 1.14

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open, claim, enable }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CHAN_STATUS _OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS _NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

7-24

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

RealTimeDataEnabled Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData property, DepositAmount property, DepositCounts
property, beginDeposit Method, endDeposit Method, fixDeposit Method.

ServiceCount Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

ServiceCount: int32 { read-only, access after open }

The number of integrated services used by the cash changer service. If the service
does not utilize other services, this value will be zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentService Property, ServiceIndex Property.

Servicelndex Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

Servicelndex: int32 { read-only, access after open }

The value is divided into four bytes indicating the service index for each of the
integrated service types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor | Coin Dispenser | Coin Acceptor

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrentService Property, ServiceCount Property.

UnifiedPOS Version 1.15

Methods (UML operations) 7-25

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the cash changer after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set cach denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Cash Changer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

readCashCounts Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-26 Cash Changer

beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is
reported by DataEvents until fixDeposit is called while the deposit process is not
paused.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Either the Cash Changer does not support cash
acceptance, or the call sequence is not correct.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, endDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 7-27

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”.
Units before ““;” represent coins, and units after “;” represent bills. If “;” is absent,
then all units represent coins.

Dispenses the cash from the Cash Changer into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five
hundred yen coins.

e “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand
yen bills.

+ 51000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
e Cash could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7
7-28 Cash Changer

dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to
the Cash Changer to determine what combination of bills and coins will satisfy the
tender requirements from its available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit
represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY The specified change cannot be dispensed because an
asynchronous method is in progress.

E ILLEGAL One of the following errors occurred:

* A negative or zero amount was specified.

e The amount could not be dispensed based on the
values specified in ExitCashList for the current
exit.

* Change could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified change cannot be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.15

Methods (UML operations) 7-29

endDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

CHAN_DEPOSIT _CHANGE The deposit is accepted and the deposited
amount is greater than the amount required.

CHAN_DEPOSIT NOCHANGE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.

CHAN_DEPOSIT _REPAY The deposit is to be repaid through the cash
deposit exit or the cash payment exit.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the
amount required then success is set to CHAN DEPOSIT NOCHANGE.

If success is set to CHAN _DEPOSIT_REPAY then the deposit is repaid through
either the cash deposit exit or the cash payment exit without storing the actual
deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were
deposited. Depending on the actual device, the cash repaid may be the exact same
bills and coins that were deposited, or it may not.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 7

7-30 Cash Changer
fixDeposit Method Added in Release 1.5
Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks When this method is called, all property values are updated to reflect the current
values in the Cash Changer.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit must be
called before calling this method.
See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

endDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 7-31

pauseDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CHAN_DEPOSIT PAUSE Cash acceptance is paused.
CHAN DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CHAN_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount
properties are updated to reflect the current state of the Cash Changer. The
property values are not changed again until the deposit process is resumed.

If control is CHAN_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

» Cash acceptance is not supported.

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to CHAN_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CHAN_DEPOSIT RESTART.

CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount
Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

UnifiedPOS Version 1.15

7-32

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

readCashCounts Method

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Cash Changer. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Cash Changer. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.15

Events (UML interfaces) 7-33

Events (UML interfaces)
DataEvent Updated in Release 1.11

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has accepted cash.
Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for
a vendor-specific Cash Changer Service to provide events to the application that are not
otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Changer devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events” on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

7-34

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Changer

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer

Attributes

Remarks

See Also

device.

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN _STATUS _EMPTY Some cash slots are empty.

CHAN _STATUS NEAREMPTY Some cash slots are nearly empty.

CHAN STATUS EMPTYOK No cash slots are either empty or nearly
empty.

CHAN_STATUS FULL Some cash slots are full.

CHAN_STATUS NEARFULL Some cash slots are nearly full.

CHAN _STATUS _FULLOK No cash slots are either full or nearly full.

CHAN_STATUS JAM A mechanical fault has occurred.

CHAN_STATUS JAMOK A mechanical fault has recovered.

CHAN_STATUS _ASYNC Asynchronously performed method has
completed.

Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page Intro-20.

UnifiedPOS Version 1.15

Summary 8-1

CHAPTER 8

Cash Drawer

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

8-2

Chapter 8
Cash Drawer

Properties (Continued)

Specific Type
CapStatus: boolean
CapStatusMultiDrawerDetect: boolean

DrawerOpened: boolean

Methods (UML operations)

Mutability
{ read-only }
{ read-only }
{ read-only }

Version

1.0
1.5
1.0

May Use After
open
open

open & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception })
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open })
release (): 1.0
void { raises-exception, use after open, claim } :
checkHealth (level: int32): 1.0
void { raises-exception, use after open, enable } Note :
clearInput (): Not
void {} supported
clearInputProperties (): Not
void { } supported
clearOQutput (): Not
void { } supported
directlO (command: int32, inout data: inz32, inout obj: object): 1.0
void { raises-exception, use after open } ’
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific
Name
openDrawer (): 1.0
void { raises-exception, use after open, enable } Note ’
waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32): 1.0

void { raises-exception, use after open, enable }

Note

Note: Also requires that no other application has claimed the cash drawer.

UnifiedPOS Version 1.15

Summary 8-3
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.0

Status: int32 { read-only }

UnifiedPOS Version 1.15

8-4

UnifiedPOS Retail Peripheral Architecture

Chapter 8
Cash Drawer

General Information

<<exception>>
UposException
(from upos)

<

<~

The Cash Drawer programmatic name is “CashDrawer”.

Capabilities

The Cash Drawer Control has the following capability:

* Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

* Drawer status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where the
drawer is the only drawer accessible via a hardware port.

* Drawer unique status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where more
than one drawer is accessible via the same hardware port.

Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

<<Interface>>
BaseControl
(fromupos)

<<sends>>

IS

<<sends>>\

>

<<uses>>

<<utility>>
UposConst
(from upos)

<<utility>>
CashDrawerConst
(from upos)

<<uses>> 7
e

<<Interface>>

CashDrawerControl

(from upos)

l%«capability» CapStatus : boolean
t%«capability» CapStatusMultiDrawerDetect : boolean
t%«prop» DrawerOpened : boolean

openDrawer() : void
SwaitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

fires

<<event>>

StatusUpdateEvent

(from events)

<<prop>> Status: int32

fires

<<event>>
DirectlOEvent
(from events)

<<<prop>> EventNumber : int32
¢<<prop>> Data : int32
ca<<prop>> Obj : object

UnifiedPOS Version 1.15

General Information

8-5

Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open()
-> setDeviceEnabled(true) > getDrawerOpened() = openDrawer(); as well as
showing the unique sharing model of the Cash Drawer device when used with
multiple control instances open on the same physical device but by different
applications.

NOTE: we are assuming that the :ClientApp(s) already successfully opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

:ClientApp0 :ClientApp1 cd0:CashDrawe cd1:CashDrawer :StatusUpdateEvent : :CashDrawer :CashDrawer Physical CD
r StatusUpdateEvent Service0 Service1 Device
‘ 1: setDevigeEnabled(true) ‘ 2: setDeviceEnabled(true) ‘
3: connedt or somehow have access to the hardware
{ Service retumns

4:0

current state of

penDrawer() T 5: openDrawer() cash drawer

‘ 1 6: send commapnd to open physical (CD

If the command to open the physical CD! - CashDrawer AN
is successful then this will result in device is
T StatusUpdateEvent delivered to any assumed open
registered listeners. Thisisnot shown in successfully and
this diagram for simplicity. DrawerOpened
property is now
7: setDeviceEnabled(true) true

8: setDeviceEnabled(true)

9: might communicate with
device (e.g. get ¢current drawer
state)

10: openDrawer() CashDrawer is now

open by call to cd1.
Assume that some
human actor closes
11: openDrawer() after open

12: send command to open drawer

Assume the CashDrawer
is successfully claimed
at this point by
:ClientApp1

13: clain(timeout) 4: clai

Thiscall resultsin a

penDrawer() UposException since

L isclaimed by the cd1

the CashDi devi
16: openDrawer() e CashDrawer device

~|instance that isused by
:ClientApp1

jtion

17: throw UposExcey

Assume that both

— not shown.

:ClientApp0 and :ClientApp1 Thiscall is
registered to receive events successful and

CashDrawer device

18: opephDrawer()

_|isopen since cd1

28: notify cl

claimed the device
successfully

L 21: send commangd to open CD

2

N

: leliver SUE to control

23: deliver evept to all registered handlers

P—|

—__ | StatusUpdateEvent is delivered

to all registered handlers, even

though, in the situation above,

25: new only :ClientApp1 is allowed to
call openDrawer() - since it

L | successfully claimed the CD.

24: notify client of new event

26: deliver SUE to control

~
~

~ ‘ ‘
Service0 also detects the cash drawer is
= 1 opened, either via a message from

ient of new event Service1, a StatusUpdateEvent from

27: deliver evet to all registered handlers

Service 1, or from a lower level interface

T | |

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 8
8-6 Cash Drawer

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

* After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

* Ifmore than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
delivered to all of these applications.

* Ifone application claims the cash drawer, then only that application may call
openDrawer and waitForDrawerClose. This feature provides a degree of
security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

Properties (UML attributes) 8-7

Properties (UML attributes)
CapStatus Property

Syntax

Remarks

Errors

CapStatus: boolean { read-only, access after open }

If true, the drawer can report status. If false, the Service is not able to determine
whether the cash drawer is open or closed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapStatusMultiDrawerDetect: boolean { read-only, access after open }

If true, the status unique to each drawer in a multiple cash drawer conﬁguration1
can be reported.

If false, the following possibilities exist:
DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it
might be the particular drawer in question. This case can occur in multiple cash
drawer configurations where only one status is reported indicating either a) all
drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or
printer supports opening more than one cash drawer independently via the same
channel or hardware port. A typical example is a configuration where a “Y” cable,
connected to a single hardware printer port, has separate drawer open signal lines
but the drawer open status from each of the drawers is “wired-or” together. It is not
possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatus Property, DrawerOpened Property.

L Multiple cash drawer configuration -- A hardware configuration where a printer or

terminal controls more than one cash drawer independently via the same channel or
hardware port. A typical example is a configuration with a “Y”’ cable connected to a
single hardware port that controls two cash drawers.

UnifiedPOS Version 1.15

8-8

UnifiedPOS Retail Peripheral Architecture Chapter 8
Cash Drawer

DrawerOpened Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

DrawerOpened: boolean { read-only, access after open-enable }
If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status
reporting, and this property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a
DrawerOpened value of true indicates at least one drawer is open, and it might be
the particular drawer in question in a multiple cash drawer configuration. See
CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.15

Methods (UML operations) 89

Methods (UML operations)

openDrawer Method

Syntax

Remarks

Errors

openDrawer ():
void { raises-exception, use after open-enable }

Opens the drawer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

waitForDrawerClose Method

Syntax

Remarks

Errors

See Also

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: in#32, beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert
beeper.

beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be
sounded.

beepDelay Number of milliseconds between the sounding of beeper
tones.

Waits until the cash drawer is closed. If the drawer is still open after beep Timeout
milliseconds, then the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert
beeper. However, by setting these parameters the application will insure that the
system alert beeper will be utilized if it is present.

Unless a UposException is thrown, this method will not return to the application
while the drawer is open. In addition, in a multiple cash drawer configuration
where the CapStatusMultiDrawerDetect property is false, this method will not
return to the application while any of the drawers are open. When all drawers are
closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this
method will return immediately.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.15

8-10

UnifiedPOS Retail Peripheral Architecture Chapter 8
Cash Drawer

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 {read-write}
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Drawer Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Drawer devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

Events (UML interfaces) 8-11

StatusUpdateEvent Updated in Release 1.13

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while

Attributes

Remarks

See Also

the device is enabled. A StatusUpdateEvent may be enqueued when the device
is enabled, to inform the application of the initial or current state. However, this
behavior is not required; the application must not depend upon it.

This event contains the following attribute:

Attributes Type Description

Status int32 The status reported from the Cash Drawer.
The Status property has one of the following values:

Value Meaning

CASH_SUE DRAWERCLOSED The Cash Drawer has been closed.

CASH _SUE DRAWEROPEN (Updated in Release 1.13) The Cash Drawer
has been opened. Can only be reported if the Cash
Drawer is not locked (by Key or other locking means).

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See description “StatusUpdateEvent" on page 1-34.

If CapStatus is false, then the device does not support status reporting, and this
event will never be delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE DRAWEROPEN
value indicates that at least one cash drawer is open and it might be the particular
drawer in question for multiple cash drawer configurations.

“Events” on page Intro-20, CapStatus Property, CapStatusMultiDrawerDetect
Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 8
8-12 Cash Drawer

UnifiedPOS Version 1.15

Summary 9-1

CHAPTER 9

CAT - Credit Authorization Terminal

This Chapter defines the Credit Authorization Terminal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.4 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.4 open
Claimed: boolean { read-only } 1.4 open
DataCount: int32 { read-only } 1.4 Not Supported
DataEventEnabled: boolean { read-write } 1.4 Not Supported
DeviceEnabled: boolean { read-write } 1.4 open & claim
FreezeEvents: boolean { read-write } 1.4 open
OutputID: int32 { read-only } 1.4 open
PowerNotify: int32 { read-write } 1.4 open
PowerState: int32 { read-only } 1.4 open
State: int32 { read-only } 1.4 --
DeviceControlDescription: string { read-only } 1.4 --
DeviceControlVersion: int32 { read-only } 1.4 --
DeviceServiceDescription: string { read-only } 1.4 open
DeviceServiceVersion: int32 { read-only } 1.4 open
PhysicalDeviceDescription: string { read-only } 1.4 open
PhysicalDeviceName: string { read-only } 1.4 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-2 CAT - Credit Authorization Terminal

Properties (Continued)

Specific Type Mutability Version May Use After
AccountNumber: string { read-only } 1.4 open
AdditionalSecurityInformation: string { read-write } 1.4 open
ApprovalCode: string { read-only } 1.4 open
AsyncMode: boolean { read-write } 1.4 open
Balance: currency { read-only } 1.9 open
CapAdditionalSecurityInformation: boolean { read-only } 1.4 open
CapAuthorizeCompletion: boolean { read-only } 1.4 open
CapAuthorizePreSales: boolean { read-only } 1.4 open
CapAuthorizeRefund: boolean { read-only } 1.4 open
CapAuthorizeVoid: boolean { read-only } 1.4 open
CapAuthorizeVoidPreSales: boolean { read-only } 1.4 open
CapCashDeposit: boolean { read-only } 1.9 open
CapCenterResultCode: boolean { read-only } 1.4 open
CapCheckCard: boolean { read-only } 1.4 open
CapDailyLog: int32 { read-only } 1.4 open
Caplnstallments: boolean { read-only } 1.4 open
CapLockTerminal: boolean { read-only } 1.9 open
CapLogStatus: boolean { read-only } 1.9 open
CapPaymentDetail: boolean { read-only } 1.4 open
CapTaxOthers: boolean { read-only } 1.4 open
CapTransactionNumber: boolean { read-only } 1.4 open
CapTrainingMode: boolean { read-only } 1.4 open
CapUnlockTerminal: boolean { read-only } 1.9 open
CardCompanylID: string { read-only } 1.4 open
CenterResultCode: string { read-only } 1.4 open
DailyLog: string { read-only } 1.4 open
LogStatus: int32 { read-only } 1.9 open
PaymentCondition: int32 { read-only } 1.4 open
PaymentDetail: string { read-only } 1.4 open
PaymentMedia: int32 { read-write } 1.5 open
SequenceNumber: int32 { read-only } 1.4 open
SettledAmount: currency { read-only } 1.9 open
SlipNumber: string { read-only } 1.4 open
TrainingMode: boolean { read-write } 1.4 open
TransactionNumber: string { read-only } 1.4 open
TransactionType: int32 { read-only } 1.4 open

UnifiedPOS Version 1.15

Summary 9-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.4
void { raises-exception }

close (): 1.4
void { raises-exception, use after open }

claim (timeout: int32): 1.4
void { raises-exception, use after open }

release (): 1.4
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.4
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void {} supported

clearInputProperties (): Not

void { } supported
clearOutput (): 1.4

void { raises-exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object): 1.4
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32): 1.4
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: inf32, amount: currency, 1.4
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: inf32, amount: currency, 1.4
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: inf32, amount: currency, taxOthers: 1.4
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

lockTerminal ():
void { raises-exception, use after open, claim, enable }

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Type Mutability
upos::events::DataEvent Not supported
upos::events::DirectlOEvent

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent

Status: int32 { read-only }

1.4

1.4

1.4

1.9

1.4

1.9

1.9

Version

1.4

1.4

1.4

1.4

UnifiedPOS Version 1.15

General Information

General Information

The CAT programmatic name is “CAT”.

Description of terms

Authorization method

Methods defined by this device class that have the Authorize prefix in their
name. These methods require communication with an approval agency.
Authorization operation

The period from the invocation of an authorization method until the
authorization is completed. This period differs depending upon whether
operating in synchronous or asynchronous mode.

Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card
reader, receipt printing device, and a communications device. CAT devices
are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message
formatting, and communication functions of an electronic funds transfer
(EFT) operation from an application.

Purchase

The transaction that allows credit card or debit card payment at the POS. It is
independent of payment methods (for example, lump-sum payment, payment
in installments, revolving payment, etc.).

Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.

Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This
differs from cancel purchase in that a cancel purchase operation can often be
handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.
Authorization Completion

The state of a purchase when the response from the approval agency is
“suspended”. The purchase is later completed after a voice approval is
received from the card company.

Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual
purchase with customer's credit card presentation and card entry at CAT.
Cancel Pre-Authorization

The transaction to request canceling pre-authorization.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

CAT - Credit Authorization Terminal

Card Check

The transaction to perform a negative card file validation of the card presented
by the customer. Typically negative card files contain card numbers that are
known to fail approval. Therefore the Card Check operation removes the need
for communication to the approval agency in some instances.

Daily log

The daily log of card transactions that have been approved by the card
companies.

Payment condition

Condition of payment such as lump-sum payment, payment by bonus,
payment in installments, revolving payment, and the combination of those
payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

Approval agency

The agency to decide whether or not to approve the purchase based on the card
information, the amount of purchase, and payment type. The approval agency
is generally the card company.

Capabilities

The CAT control is capable of the following general mode of operation:

This standard defines the application interface with the CAT control and does
not depend on the CAT device hardware implementation. Therefore, the
hardware implementation of a CAT device may be as follows:

* Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for
instance, via an RS-232 connection).
* Built-in type
The hardware structure is the same as the separate type but is installed
within the POS housing.
The CAT device receives each authorization request containing a purchase
amount and tax from CAT control.

The CAT device generally requests the user to swipe a magnetic card when it
receives an authorization request from CAT control.

Once a magnetic card is swiped at the CAT device, the device sends the
purchase amount and tax to the approval agency using the communications
device.

The CAT device returns the result from the approval agency to the CAT
control. The returned data will be stored in the authorization properties by the
CAT control for access by applications.

UnifiedPOS Version 1.15

General Information

Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that
has the following attributes.

A CAT device typically consists of a display, keyboard, magnetic stripe
reader, receipt printing device, and a communications device. CAT devices
are predominanly used in Japan where they are required by law. Essentially, a
CAT device can be considered a device that shields the encryption message
formatting and communications functions of an Electronic Funds Transfer
(EFT) operation from an application.

The Electronic Money Device receives the tendering information (amount of
tender, tax, and other transaction based information) from CAT control, and
then starts the authorization processing.

When the Electronic Money Device is required, a Credit Card swipe on the
CAT device is generally required for authorization.

When a Card [Contact Type / Contactless Type] is input by the Electronic
Money Device, it is formatted into the authorization format with the
transaction information and then communicated for authorization.

When the authorization is completed, the Electronic Money Device sends the
settlement result to CAT control. The settlement result is stored by the CAT
control and passed back to the calling application.

The Electronic Money Device may save settlement result as DealingLog in
the memory of the device. The device may also send DealingLog to the Center
by settlement processing.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-8 CAT - Credit Authorization Terminal

CAT Class Diagram Updated in Release 1.9

<<utility>> <<exception>>
UposConst UposException
(from upos) (from upos)
[N A
<<sends>>
<<event>> <<uses> <<Interface>>
ErrorEvent CATControl
(from events) (from upos)
B <<prop>> AccountNumber : string
& <<prop>> AdditionalSecurityInformation : string
&¥<<prop>> ApprovalCode : string
E¥<<prop>> AsyncMode : boolean
<<event>> fires & <<prop>> Balance : currency
OutputCompleteEvent B¥<<capability>> CapAdditionalSecurity Information : boolean
(from events) & <<capability>> CapAuthorizeCompletion : boolean
&% <<capability>> CapAuthorizePreSales : boolean
< i< <capability>> CapAuthorizeRefund : boolean
i & <<capability>> CapAuthorizeVoid : boolean
<<event>> fires B¥<<capability>> CapAuthorizeVoidPreSales : boolean
StatusUpdateEvent & <<capability>> CapCashDeposit : boolean
(from events) & <<capability>> CapCenterResultCode : boolean
&< <capability>> CapCheckCard : boolean
fires &% <<capability>> CapDailyLog : int32
B¥<<capability>> Caplnstallments : boolean
&% <<capability>> CapLockTerminal : boolean
&% <<capability>> CapLogStatus : boolean
,«event» B¥}<<capability>> CapPaymentDetail : boolean
DirectlOEvent fires &% <<capability>> CapTaxOthers : boolean
(from events) <""*‘f‘—\,,,,\7% &% <<capability>> CapTransactionNumber : boolean
|[B<<capability>> CapTrainingMode : boolean

& <<capability>> CapUnlock Terminal : boolean
[&<<prop>> CardCompanyID : string
&5 <<prop>> CenterResultCode : string
& <<prop>> DailyLog : string
E¥<<prop>> LogStatus : int32

& <<prop>> PaymentCondition : int32
E¥<<prop>> PaymentDetail : string

&5 <<prop>> PaymentMedia : int32

& <<prop>> SequenceNumber : int32
E¥<<prop>> SettledAmount : currency
& <<prop>> SlipNumber : string

¥ <<prop>> TrainingMode : boolean

¥ <<prop>> TransactionNumber : string
¥ <<prop>> TransactionType : int32

WaccessdailyLog()
SauthorizeCompletion()
SauthorizePreSales()
FauthorizeRefund()
®authorizeSales()
SauthorizeVoid()
®authorizeVoidPreSales()
WcashDeposit()
¥checkCard()

®lock Terminal()
Sunlock Terminal()

UnifiedPOS Version 1.15

General Information

9-9

Model

The general models for the CAT control are shown below:

* The CAT control basically follows the output device model. However,
multiple methods cannot be issued for asynchronous output; only one

outstanding asynchronous request is allowed.

* The CAT control issues requests to the CAT device for different types of
authorization by invoking the following methods.

Function Method name Corresponding Cap property
Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization

authorizeVoidPreSales

CapAuthorizeVoidPreSales

* The CAT control issues requests to the CAT device for special processing
local to the CAT device by invoking the following methods.

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

e The CAT control stores the authorization results in the following properties
when an authorization operation successfully completes:

Description

Property Name

Corresponding Cap Property

Credit Account number

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanylID None

anoecLeCf/rom the approval CenterResultCode CapCenterResultCode
Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

UnifiedPOS Version 1.15

UnifiedPOS Retail Per

ipheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

* The accessDailyLog method sets the following property

Description Property Name Corresponding Cap Property
Daily log DailyLog CapDailyLog
Electronic Money Device: Added in Release 1.9

e The CAT Control requires the Electronic Money Device to track each

settlement and closing in the DealingLog.

Function Method name Corresponding Cap property
Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

¢ When the CAT Control receives the settlement results from the Electronic
Money Device it stores these results in the following properties:

Description Property Name Corresponding Cap Property
Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None

Settled amount Settled Amount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

¢ The accessDai

lyLog method sets the following property

Description

Property Name

Corresponding Cap Property

DealingLog

DailyLog

CapDailyLog

* Sequence numbers are used to validate that the properties set at completion of
a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method
has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

* The AsyncMode property determines if methods are run synchronously or
asynchronously.

UnifiedPOS Version 1.15

General Information

9-11

When AsyncMode is false, methods will be executed synchronously and their
corresponding properties will contain data when the method returns.

When AsyncMode is true, methods will return immediately to the application.
When the operation associated with the method completes, each
corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be
issued immediately after issuing a prior method; only one outstanding
asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending on
the CAT control implementation. Applications should verify that particular
Cap properties are supported before utilizing the capability dependent
methods and properties.

Results of synchronous calls to methods and writable properties will be stored
in ErrorCode. Results of asynchronous processing will be indicated by an
OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The error code from the approval agency will be stored
in CenterResultCode in either mode.

Training mode occurs continually when TrainingMode is true. To
discontinue training mode, set TrainingMode to false.

An outstanding asynchronous method can be canceled via the clearOutput
method.

The Daily log can be collected by the accessDailyLog method. Collection will
be run either synchronously or asynchronously according to the value of
AsyncMode.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-12

CAT - Credit Authorization Terminal

Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()
- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method
- Wait for QutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)
- release

- close

UnifiedPOS Version 1.15

General Information 9-13

Device Sharing

The CAT is an exclusive-use device, as follows:

* After opening the device, properties are readable.
* The application must claim the device before enabling it.

* The application must claim and enable the device before calling methods that
manipulate the device.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-14 CAT - Credit Authorization Terminal

CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the
AuthorizeSales process of the CAT device.

:Client App :CAT :CAT Service :CAT Hardware

i open(logicalName) i i

open(logicalName) |

T claim(timeout)

claim(timeout)

I A

setDeviceEnabled(true) T

setDeviceEnabled(true)

s 7h3aymentMedia(mediaTy§e)

setPaymentMedia()

SequenceNumber

Definition of the argumeﬁ

AuthorizeSaIesI(sequenceNumber, amoulnt, tax, timeout)

{
BN N

Q}

AuthorizeSales(sequenceNumber, amount, tax, timeout)

send commands to
physical CAT

After human actor swipes the card,
the device sends the purchase amount
and tax to approval agency using the
communications device.

|_|_l

p—

1
1
Set properties on |
return from successful |
I
I

authorization.

on successful retur

Check properties ﬁ T
n. |
|

UnifiedPOS Version 1.15

General Information 9-15

CAT State Diagram

The following diagram depicts the CAT states.

close()

ﬁ claim()
.ﬁ[Closed @ Opened Claimed]

close() release()
release()

Iset DeviceEnabled (false) clearOutput

Iset

Logging Enabled
Processing

accessDailyLog(

viceEnabled (true)

Clear Output
Processing

Method processing

Done delivering even authorizeXyz(),
checkCard()

authorizeXyz(),
[SV":nhrgm“S TcheckCard() 4 Async Mode N
ode

ErrorEvent OutputCompleteEvent
Processing Processing

- /

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-16 CAT - Credit Authorization Terminal

Properties (UML attributes)

AccountNumber Property Updated in Release 1.9
Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
AdditionalSecuritylnformation Property Updated in Release 1.7
Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before
issuing an authorization method. Also, data obtained from the CAT device and not
stored in any other property as the result of an authorization operation (for
example, the account code for a loyalty program) can be provided to an application
by storing it in this property. Since the data stored here is device specific, this
should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAdditionalSecurityInformation Property.
ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Electronic Money Device: Approval Code for the settled account.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.
If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Authorization Methods.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

Properties (UML attributes) 9-17

Balance Property Added in Release 1.9
Syntax Balance: currency { read-only, access after open }
Remarks Electronic Money Device: The balance of Credit Card.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapAdditionalSecuritylnformation Property

Syntax

Remarks

Errors

See Also

CapAdditionalSecurityInformation: boolean { read-only, access after open }

If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AdditionalSecurityInformation Property.

CapAuthorizeCompletion Property

Syntax

Remarks

Errors

See Also

CapAuthorizeCompletion: boolean { read-only, access after open }

If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeCompletion Method.

CapAuthorizePreSales Property

Syntax

Remarks

Errors

See Also

CapAuthorizePreSales: boolean { read-only, access after open }

If true, the authorizePreSales method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizePreSales Method.

CapAuthorizeRefund Property

Syntax

Remarks

Errors

See Also

CapAuthorizeRefund: boolean { read-only, access after open }

If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeRefund Method.

UnifiedPOS Version 1.15

9-18

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

CapAuthorizeVoid Property

Syntax
Remarks

Errors

See Also

CapAuthorizeVoid: boolean { read-only, access after open }
If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

authorizeVoid Method.

CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeVoidPreSales Method.

CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Electronic Money Device: Show the device has charged method by cashDeposit
method or not. If true, the cashDeposit method is implemented, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also cashDeposit Method.

CapCenterResultCode Property

Syntax
Remarks

Errors

See Also

CapCenterResultCode: boolean { read-only, access after open }

If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CenterResultCode Property.

CapCheckCard Property

Syntax
Remarks

Errors

See Also

CapCheckCard: boolean { read-only, access after open }
If true, the checkCard method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

checkCard Method.

UnifiedPOS Version 1.15

Properties (UML attributes) 9-19

CapDailyLog Property

Syntax
Remarks

Errors

See Also

CapDailyLog: int32 { read-only, access after open }
Shows the daily log ability of the device.

Value Meaning

CAT DL _NONE The CAT device does not have the daily log functions.

CAT DL _REPORTING The CAT device only has an intermediate total function
which reads the daily log but does not erase the log.

CAT DL SETTLEMENT The CAT device only has the “final total” and “erase
daily log” functions.

CAT DL REPORTING SETTLEMENT
The CAT device has both the intermediate total function
and the final total and erase daily log function.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DailyLog Property, accessDailyLog Method.

Caplnstallments Property

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DailyLog Property.

CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can set the lock using the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also lockTerminal Method.

CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log
by the LogStatus property, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also LogStatus Property.

UnifiedPOS Version 1.15

9-20

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

CapPaymentDetail Property

Syntax

Remarks

Errors

See Also

CapPaymentDetail: boolean { read-only, access after open }
If true, the PaymentDetail property has been implemented; otherwise it is false.
This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

PaymentDetail Property.

CapTaxOthers Property

Syntax

Remarks

Errors

See Also

CapTaxOthers: boolean { read-only, access after open }

If true, the item “TaxOthers” which is stored in the DailyLog property as the result
of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DailyLog Property.

CapTransactionNumber Property

Syntax

Remarks

Errors

See Also

CapTransactionNumber: boolean { read-only, access after open }

If true, the TransactionNumber property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TransactionNumber Property.

CapTrainingMode Property

Syntax

Remarks

Errors

See Also

CapTrainingMode: boolean { read-only, access after open }
If true, the TrainingMode property has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TrainingMode Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 9-21

CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: hoolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can release the lock using the unlockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also unlockTerminal Method.

CardCompanylID Property

Syntax

Remarks

Errors

CardCompanylID: string { read-only, access after open }

This property is updated when an authorization operation successfully completes.
It shows credit card company ID.

The length of the ID string varies depending upon the CAT device.
This property is initialized to an empty string by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CenterResultCode Property

Syntax

Remarks

Errors

CenterResultCode: string { read-only, access after open }

Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

9-22

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

DailyLog Property

Syntax DailyLog: string { read-only, access after open }
Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13

decimal)+LF(10 decimal) for each transaction and is stored in ASCII code. The

[13E 2]

detailed data of each transaction is comma separated [i.e., delimited by “,” (44)].

The details of one transaction are shown as follows:

No | Item Property Corresponding Cap Property
Card company ID CardCompanyID None
2 Transaction type TransactionType None
Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition | PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 | Amount The argument Amount of the None
Note 4) authorization method or the
amount actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 Installments None Caplnstallments
Note 3)
13 | Additional data AdditionalSecurityInformation | CapAdditionalSecurityInfor-
Note 2) mation

Notes from the previous table:

1) Format
Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some CAT devices may not support seconds by the internal clock. In that
case, the seconds field of the transaction date is filled with “00”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables
an application to receive data other than that defined in this specification. The
data stored here is vendor specific and should not be used for development
which places an importance on portability.

UnifiedPOS Version 1.15

Properties (UML attributes) 9-23

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data.
In such instances, the item cannot be displayed so the next comma delimiter
immediately follows. For example, if “Amount” is 1234 yen and “Tax/others”
is missing and “Installments” is 2, the description will be “1234,,2”. This
makes the description independent of Cap property and makes the position of
each data item consistent.

4) Amount
Amount always includes “Tax/others” even if item 11 is present.
5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning
Card company ID 102 JCB
Transaction type CAT TRANSACTION_SALES Purchase
Transaction date 19980116134530 1/16/199813:45:30
Transaction number 123456 123456
Payment condition CAT PAYMENT INSTALLME | Installment 1
NT 1
Slip number 12345 12345
Approval code 0123456 0123456
Purchase date None None
Account number 1234123412341234 1234-1234-1234-1234
Amount 12345 12345JPY
Tax/others None None
Number of payments 2 2
Additional data 12345678 Specific information

The actual data stored in DailyLog will be as follows:

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

Electronic Money Device: Setting DealingL.og which is a result of the Electronic

Money Device which does not have the communication module for closing
processing done closing processing. It may be the device which is enciphered
DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also

CapDailyLog Property, accessDailyLog Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-24 CAT - Credit Authorization Terminal
LogStatus Property Added in Release 1.9
Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of
the device.
Value Meaning
CAT LOGSTATUS OK DealingLog has enough capacity.
CAT LOGSTATUS NEARFULL DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
This property is initialized by the open method and kept current while the device
is enabled.
If DealingLog becomes full, depending on the device, the settlement processing
may not be able to operate.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also StatusUpdateEvent Event.
PaymentCondition Property Updated in Release 1.9
Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization
operation.
This property will be set to one of the following values. See PaymentDetail for
the detailed payment string that correlates to the following PaymentCondition
values.
Value Meaning
CAT PAYMENT LUMP Lump-sum
CAT PAYMENT BONUS 1 Bonus 1
CAT _PAYMENT BONUS 2 Bonus 2
CAT _PAYMENT BONUS 3 Bonus 3
CAT _PAYMENT BONUS 4 Bonus 4
CAT_PAYMENT BONUS 5 Bonus 5
CAT PAYMENT INSTALLMENT 1 Installment 1
CAT _PAYMENT INSTALLMENT 2 Installment 2
CAT PAYMENT INSTALLMENT 3 Installment 3
CAT_PAYMENT BONUS COMBINATION 1
Bonus combination payments 1
CAT PAYMENT BONUS COMBINATION 2
Bonus combination payments 2
CAT_PAYMENT BONUS COMBINATION 3
Bonus combination payments 3
CAT _PAYMENT BONUS COMBINATION 4
Bonus combination payments 4
CAT PAYMENT REVOLVING Revolving
CAT _PAYMENT DEBIT Debit card
CAT PAYMENT ELECTRONIC MONEY
Electronic Money
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also PaymentDetail Property.

UnifiedPOS Version 1.15

Properties (UML attributes)

9-25

PaymentDetail Property

Updated in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. An empty string means that no data is
stored and represents a string with zero length data.

PaymentCondition PaymentDetail
CAT PAYMENT_LUMP An empty string
CAT PAYMENT BONUS 1 An empty string

CAT PAYMENT BONUS 2

Number of bonus payments

CAT_PAYMENT BONUS_3

1% bonus month

CAT PAYMENT BONUS_4*

Number of bonus payments, 15 bonus month, 2" bo-
nus month, 3" bonus month, 4™ bonus month, 5t po-
nus month, 6" bonus month

CAT _PAYMENT BONUS_5*

Number of bonus payments, 15 bonus month, 15! bo-
nus amount, 2™ honus month, 2™ honus amount, 3rd
bonus month, 3" bonus amount, 4™ bonus month, 4th
bonus amount, 5t bonus month, 5" bonus amount, 6th
bonus month, 6™ bonus amount

CAT PAYMENT INSTALLMENT 1|

15 billing month, Number of payments

CAT PAYMENT INSTALLMENT 2*

15 billing month, Number of payments, 15" amount,

2" amount, 3" amount, 4™ amount, 5™ amount, 6
amount

CAT PAYMENT INSTALLMENT 3

13! billing month, Number of payments, 1% amount

CAT_PAYMENT_BONUS_COMBINATION_1

15t billing month, Number of payments

CAT PAYMENT BONUS COMBINATION 2

13! billing month, Number of payments, bonus amount

CAT PAYMENT BONUS_COMBINATION 3*

15 billing month, Number of payments, number of bo-

nus payments, 15 bonus month, 2"4 bonus month, 3™
bonus month, 4™ bonus month, 5% bonus month, 6th
bonus month

CAT PAYMENT BONUS_COMBINATION 4%*

15t billing month, Number of payments, number of bo-

nus payments, 1% bonus month, 1% bonus amount, 2"4
bonus month, 2" bonus amount, 3™ bonus month, 34
bonus amount, 41 ponus month, 4" bonus amount, sth
bonus month, 5™ bonus amount, 6™ bonus month, 6™
bonus amount

CAT_PAYMENT_REVOLVING

An empty string

CAT _PAYMENT DEBIT

An empty string

CAT PAYMENT_ELECTRONIC_MONEY

An empty string

*Maximum 6 installments

UnifiedPOS Version 1.15

9-26

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

The payment types and names vary depending on the CAT device. The following
are the payment types and terms available for CAT devices. Note that there are
some differences between UnifiedPOS terms and those used by the CAT devices.
The goal of this table is to synchronize these terms.

o o CAT CAT G-CAT JET-S SG-CAT Master-T
& 2 Name (Old CAT)
S = Credit Not Not ICB VISA MASTER
g ;E Card specified specified
£ E
2 S A
& £ 2 UnifiedPOS Card Company Terms
s &= g Term
) =3} A
Lump- | (None) 10 Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof |22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not ex- | Does not ex- | Bonus 3 Bonus 3
month(s) ist. ist.
Numberof |24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
Bonus bonus
month (1) month)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

UnifiedPOS Version 1.15

Properties (UML attributes)

9-27

Number of
bonus
payments

Bonus
month (1)

Bonus
amount

(M

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

UnifiedPOS Version 1.15

9-28

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62

Installment 2

Installment 2

Does not
exist.

Does not
exist.

Does not
exist.

Does not
exist.

Payment
start
month

Number of
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not
exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32

Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
exist.

Does not
exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

UnifiedPOS Version 1.15

Properties (UML attributes)

9-29

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
exist.

Does not
exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

UnifiedPOS Version 1.15

9-30

UnifiedPOS Retail Peripheral Architecture

Chapter 9

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4

(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

Debit

(None)

110

Debit

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapPaymentDetail Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 9-31

PaymentMedia Property Updated in Release 1.9

Syntax
Remarks

Errors

PaymentMedia: int32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the CAT device, not by the POS application.

Value Meaning

CAT MEDIA UNSPECIFIED None specified.
CAT MEDIA CREDIT Credit card.
CAT MEDIA DEBIT Debit card.
CAT MEDIA_ELECTRONIC MONEY
Electronic Money.

This property is initialized to CAT _MEDIA UNSPECIFIED by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT
control set this property to zero.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeSales Method, cashDeposit Method.

SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

9-32

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

TrainingMode Property

Syntax

Remarks

Errors

TrainingMode: boolean { read-write, access after open }

If true, each operation will be run in training mode; otherwise each operation will
be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from
training mode, because it will not automatically be set to false after the completion
of an operation.

This property will be initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapTrainingMode is false.

TransactionNumber Property

Syntax

Remarks

Errors

TransactionNumber: string { read-only, access after open }
Stores a “transaction number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TransactionType Property Updated in Release 1.10

Syntax

Remarks

Errors

TransactionType: int32 { read-only, access after open }
Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT _TRANSACTION_SALES Sales

CAT _TRANSACTION_VOID Cancellation

CAT _TRANSACTION_ REFUND Refund purchase

CAT _TRANSACTION_COMPLETION Purchase after approval

CAT TRANSACTION_PRESALES Pre-authorization

CAT _TRANSACTION_ CHECKCARD Card Check

CAT TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION CASHDEPOSIT Charge

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Methods (UML operations) 9-33

Methods (UML operations)
accessDailyLog Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or

final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Application must specify one of the following values for #ype for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Electronic Money Device: Gets the DealinglLog from the Electronic Money
Device to send to the Center. If the Electronic Money Device has communication
capabilities, the DealingLog will be sent from the Electronic Money Device to the
Center and nothing is stored in the DailyLog. Otherwise, the DealingLog is stored
in the DailyLog Property.

Value Meaning

CAT DL _REPORTING Intermediate total.

CAT DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of
the Electronic Money device.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported #ype or timeout parameter was
specified, or CapDailyLog is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapDailyLog Property, DailyLog Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-34

CAT - Credit Authorization Terminal

authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
taxOthers

timeout

Sequence number for approval.
Purchase amount for approval.
Tax and other amounts for approval.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified

by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E_ILLEGAL

E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.

The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

UnifiedPOS Version 1.15

Methods (UML operations) 9-35

authorizePreSales Method

Syntax

Remarks

Errors

See Also

authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizePreSales Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-36 CAT - Credit Authorization Terminal

authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

UnifiedPOS Version 1.15

Methods (UML operations) 9-37

authorizeSales Method

Syntax

Remarks

Errors

authorizeSales (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-38

CAT - Credit Authorization Terminal

authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
taxOthers

timeout

Sequence number for approval.
Purchase amount for approval.
Tax and other amounts for approval.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E_ILLEGAL

E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.

The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

UnifiedPOS Version 1.15

Methods (UML operations) 9-39

authorizeVoidPreSales Method

Syntax

Remarks

Errors

See Also

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have
not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with CAT device and / or CAT control.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoidPreSales Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9

9-40

CAT - Credit Authorization Terminal

cashDeposit Method

Added in Release 1.9

Syntax cashDeposit (sequenceNumber: in#32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter

Description

sequenceNumber
amount
timeout

Remarks Chargings.

Sequence number for charge.
Amount of money for charge.

The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait
forever until the Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value

Meaning

E ILLEGAL
E TIMEOUT

E_EXTENDED
E_BUSY

Invalid timeout parameter was specified, or
CapCashDeposit is false.

No response was received from CAT during the
specified timeout time in milliseconds.

The detail code has been stored in ErrorCodeExtended.
The CAT device cannot accept any commands now.

See Also CapCashDeposit Property.

UnifiedPOS Version 1.15

Methods (UML operations) 9-41

checkCard Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Card Check is intended.
Card Check will be made as specified by sequenceNumber-.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The
Balance will be stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Balance Property, CapCheckCard Property.

UnifiedPOS Version 1.15

9-42

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

lockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

lockTerminal ():
void { raises-exception, use after open-claim-enable }

Sets the security lock. When locked, the Electronic Money Device cannot accept
any commands.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapLockTerminal Property.

unlockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

unlockTerminal ():
void { raises-exception, use after open-claim-enable }

Releases the security lock.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapUnlockTerminal Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 9-43

Events (UML interfaces)

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

ErrorEvent

upos::events::DirectlOEvent
EventNumber: int32 {read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific CAT Service to provide events to the application that
are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber

and the Service. This attribute is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s CAT devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page Intro-20, directlO Method

Updated in Release 1.9

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a CAT error has been detected and suitable response
by the application is necessary to process the error condition.
This event contains the following attributes:

Attributes Type Description

ErrorCode int32 The code which caused the error event. See
ErrorCode for the values.

ErrorCodeExtended int32 The extended code which caused the error
event. See ErrorCodeExtended below for

values.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred
during asynchronous action.

ErrorResponse int32 Pointer to the error event response. See

ErrorResponse below for values.

UnifiedPOS Version 1.15

9-44

UnifiedPOS Retail Peripheral Architecture Chapter 9
CAT - Credit Authorization Terminal

Remarks

See Also

If ErrorCode is E EXTENDED, ErrorCodeExtended will be set to one of the
following values:

Value Meaning

ECAT _CENTERERROR
An error was returned from the approval agency. The
detail error code is defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never
returned so long as CAT control is working correctly.

ECAT RESET CAT was stopped during processing by CAT reset key
(stop key) and so on.

ECAT _COMMUNICATIONERROR
Communication error has occurred between the
approval agency and CAT.

ECAT DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has
been stopped and the value of DailyLog property is
uncertain.
Electronic Money Device:
A failure will occur if the DealingLLog on the device is
full and the device is attempting to be closed.

ECAT_DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close
settlement.

ECAT OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted
that is over the chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default
value of ER_ RETRY. An application may set one of the following values.

Value Meaning

ER RETRY Retries the asynchronous processing. The error state is
exited.

ER CLEAR Clear the asynchronous processing. The error state is
exited.

Fired when an error is detected while processing an asynchronous authorize group
method or the accessDailyLog method. The control's State transitions into the
error state.

“Device Output Models' on page Intro-26, Device Information Reporting Model
on page 31.

UnifiedPOS Version 1.15

Events (UML interfaces) 9-45

OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputlD: int32 {read-only }

Description Notifies the application that the queued output request associated with the
OutputlD attribute has completed successfully.

Attribute This event contains the following attribute:
Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that

is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models" on page Intro-26.
StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT
device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the
Electronic Money Device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Electronic Money Device:
The Status parameter contains the DealingLog status condition.
Value Meaning

CAT LOGSTATUS OK DealingLog is enough capacity.
CAT _LOGSTATUS NEARFULL
DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 9
9-46 CAT - Credit Authorization Terminal

UnifiedPOS Version 1.15

Summary 10-1

CHAPTER 10

Check Scanner

This Chapter defines the Check Scanner device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.7 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.7 open
Claimed: boolean { read-only } 1.7 open
DataCount: int32 { read-only } 1.7 open
DataEventEnabled: boolean { read-write } 1.7 open
DeviceEnabled: boolean { read-write } 1.7 open & claim
FreezeEvents: boolean { read-write } 1.7 open
OutputID: int32 { read-only } 1.7 Not Supported
PowerNotify: int32 { read-write } 1.7 open
PowerState: int32 { read-only } 1.7 open
State: int32 { read-only } 1.7 --
DeviceControlDescription: string { read-only } 1.7 --
DeviceControlVersion: int32 { read-only } 1.7 --
DeviceServiceDescription: string { read-only } 1.7 open
DeviceServiceVersion: int32 { read-only } 1.7 open
PhysicalDeviceDescription: string { read-only } 1.7 open
PhysicalDeviceName: string { read-only } 1.7 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-2 Check Scanner

Properties (Continued)

Specific Type Mutability Version — May Use After
CapAutoContrast: boolean { read-only } 1.9 open
CapAutoGenerateFileID: boolean { read-only } 1.7 open
CapAutoGeneratelmageTagData: boolean { read-only } 1.7 open
CapAutoSize: boolean { read-only } 1.7 open
CapColor: int32 { read-only } 1.7 open
CapConcurrentMICR: boolean { read-only } 1.7 open
CapContrast: boolean { read-only } 1.9 open
CapDefineCropArea: boolean { read-only } 1.7 open
CapImageFormat: int32 { read-only } 1.7 open
CaplmageTagData: boolean { read-only } 1.7 open
CapMICRDevice: boolean { read-only } 1.7 open
CapStorelmageFiles: boolean { read-only } 1.7 open
CapValidationDevice: boolean { read-only } 1.7 open
Color: int32 { read-write } 1.7 open
ConcurrentMICR: boolean { read-write } 1.7 open
Contrast: int32 { read-write } 1.9 open & enable
CropAreaCount: int32 { read-only } 1.7 open
DocumentHeight: int32 { read-write } 1.7 open
DocumentWidth: int32 { read-write } 1.7 open
FileID: string { read-write } 1.7 open
FileIndex: int32 { read-write } 1.7 open
ImageData: binary { read-only } 1.7 open
ImageFormat: int32 { read-write } 1.7 open
ImageMemoryStatus: int32 { read-only } 1.7 open & claim
ImageTagData string { read-write } 1.7 open
MapMode: int32 { read-write } 1.7 open
MaxCropAreas: int32 { read-only } 1.7 open
Quality: int32 { read-write } 1.7 open
QualityList: string { read-only } 1.7 open
RemainingIlmagesEstimate: int32 { read-only } 1.7 open

UnifiedPOS Version 1.15

Summary

10-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.7
void { raises-exception }

close (): 1.7
void { raises-exception, use after open }

claim (timeout: int32): 1.7
void { raises-exception, use after open }

release (): 1.7
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.7
void { raises-exception, use after open, claim, enable }

clearInput (): 1.7
void { raises-exception, use after open, claim }

clearInputProperties (): 1.10
void { raises-exception, use after open, claim }

clearOutput (): Not supported
void { }

directlO (command: int32, inout data: int32, inout obj: object): 1.7

void { raises-exception, use after open, claim }

compareFirmwareVersion(firmwareFileName: string,out result: int32):1.9

void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string):

void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }

Specific
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
beginRemoval (timeout: inf32):

void { raises-exception, use after open, claim, enable }
clearImage (by: int32):

void { raises-exception, use after open, claim, enable }
defineCropArea (cropArealD: int32, x: int32,y: int32,

cx: int32, cy: int32):

void { raises-exception, use after open, claim, enable }
endInsertion ():

void { raises-exception, use after open, claim, enable }
endRemoval ():

void { raises-exception, use after open, claim, enable }
retrievelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }
retrieveMemory(by: int32):

void {raises-exception, use after open, claim, enable }
storelmage (cropArealD: inf32):

void { raises-exception, use after open, claim, enable }

1.8

1.8

1.9

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-4 Check Scanner

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.7
Status: int32 { read-only }
upos::events::DirectlOEvent 1.7
EventNumber: int32 { read-only }
Data: . .
Obj: int32 { read-write }
object { read-write }
upos::events::ErrorEvent 1.7
ErrorCode: int32 { read-only }
ErrorCodeExtended: K
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }
int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.7
Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 10-5

General Information

The Check Scanner programmatic name is “CheckScanner”.

Capabilities

The primary purpose of this device is to capture the image of a personal or business
check for Electronic Check Conversion. However, other documents (vouchers,
signature receipts, etc.) may be scanned if they fall within the capture size
parameters of the Check Scanner. Therefore, in the description used in this
standard the overall term “document” may be used to indicate the multiplicity of
uses of which the device may be capable. When the term “check” is used, it should
be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:

* Reads image data from a Check Scanner device.

* Has programmatic control of check insertion, reading, and removal. For some
Check Scanner devices, this will require no processing in the Control since the
device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:

* The Check Scanner may store successive check images in its hardware
memory.

* Cropping of areas of interest within the check image may be supported by the
Check Scanner to aid in the reduction of the memory needed to transmit or
store the check image data.

* The retrievelmage data is deposited in the ImageData property in binary
form.

* The Check Scanner may allow for retrieval of images stored in its hardware
memory.

* The Check Scanner may support Image tag data information to identify the
check image.

* The application reads the contents of ImageData property when it wants to
further process the check image.

* The Check Scanner device may be physically attached to or incorporated into
a check validation print device and/or a MICR device. If this is the case, once
a check is inserted via Check Scanner Control methods, the check can still be
used by the Printer and MICR Control prior to check removal.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-6 Check Scanner

Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner

classes.
<<sends>>

<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CheckScannerConst

(from upos) (fromupos) = (om upos) (from upos)

<<ust >>
<<sends>>

<<event>> <<Interface>>
DataEvent CheckScannerControl
(from events) (from upos)

[iG<<prop>> Status : int32

2 < <capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFilelD : boolean
<capability>> CapAutoGeneratelmageTagData : boolean

<<fires>>

<<ewent>>
DirectlOEvent
(from events)

[<<prop>> EventNumber : int32
[g<<prop>> Data : int32
[i&<<prop>> Obj : object

<<fires>>

<capability>> CapStorelmageFiles : boolean
<<capability>> CapValidationDevice : boolean

<prop>> Color : int32

<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32

<prop>> CropAreaCount : int32
<prop>> DocumentHeight : int32
<<prop>> DocumentWidth : int32
<prop>> FilelD : string

<<fires>>

<<event>>
ErrorEvent
(from events)

<prop>> Filelndex : int32
<<prop>> ImageData : binary
<prop>> ImageFormat : int32

[&<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32

[<<prop>> EmorResponse : int32

<prop>> ImageMemoryStatus : int32
<<prop>> ImageTagData : string
<prop>> MapMode : int32

<prop>> MaxCropAreas : int32

<<prop>> Quality : int32

<<event>>
StatusUpdateEvent

(from events)

g<<prop>> Status : int32

<prop>> QualityList : string
<<prop>> Remaining ImagesEstimate : int32

.beginlnser‘tion(timeout :int32) : void

beginRemoval(timeout : int32) : void

®clearimage(by : int32) : void

efineCropArea(cropArealD : int32, x : int32,y : int32, cx : int32, cy : int32) : void
‘endlInsertion() : void

.endRemovaI() :void

retrievelmage(cropArealD : int32) : void

[BretrieveMemory(by : int32) : void

.smrelmage(cropAreaID :int32) : void

UnifiedPOS Version 1.15

General Information

10-7

Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model”. One point of

difference is that the Check Scanner Control requires the execution of methods to

insert and remove the check for processing. Therefore, this Control requires more
than simply setting the DataEventEnabled property to true in order to receive
data. The basic model is as follows:

* The Check Scanner Control is opened, claimed, and enabled.

» Starting with Version 1.9, the application has the ability to adjust the darkness
of the scanned image for devices that have the ability to adjust the scan
mechanism so that it can darken or lighten the image. The CapContrast
property controls whether the device supports this feature.

* When the beginInsertion method is called, the Check Scanner is ready to read
the check within the specified time as indicated by the time-out value. If the
check is not inserted before the time-out value expires, a UposException is
raised.

e Inthe event of a time-out, the Check Scanner device will remain in a state that
allows a check to be inserted. The application may provide an operator prompt
which requests that a check be inserted. Following this prompt, the application
would then reissue the beginInsertion method and wait for the check to be
inserted.

* Once a check is inserted, the beginInsertion method returns and the
application calls the endInsertion method, which results in the Check
Scanner device exiting the check insertion mode and causes the check image
to be captured.

* Following the endInsertion method, the scan image data is stored in a
working buffer memory area and a StatusUpdateEvent will occur to
indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the
ImageData property at this point.

* The application must use the retrievelmage method to retrieve the
current scan image data. However, if the check image was not
successfully captured by the device, the Control enqueues a ErrorEvent
to indicate the capture was not successful.

* Ifthe AutoDisable property is true, then the device is automatically
disabled when the image is successfully captured.

* An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met. Just before delivering this event, the Control copies
data into specific properties, and disables further data events by setting the
DataEventEnabled property to false. This causes subsequent input data
to be enqueued by the Control while the application processes the current
input and associated properties. When the application has finished the
current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

* Ifthe CapAutoSize property is true, when the DataEvent is delivered,
the height and width of the of entire captured image are automatically
stored in the corresponding DocumentHeight and DocumentWidth
properties. If the CapAutoSize property is false, the application must
manually set the DocumentHeight and the DocumentWidth property
values prior to the beginInsertion method being invoked.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-8

Check Scanner

« If the application needs to retrieve the entire or a cropped portion of the
captured image, the retrievelmage method is called. The image data is
sent from the device to the service and stored in the ImageData property.
When the corresponding DataEvent is delivered, the current image or
cropped image may be accessed by the application reading the image file
contained in the ImageData property.

* Ifthe CapStorelmageFiles property is true, then the current image, or
cropped image, can be stored in the memory by using the storeImage
method.

* Any previously stored image may be retrieved by using the
retrieveMemory method. The stored image may be identified using the
“by” parameter and requesting that the image be located by FilelD,
FileIndex, or ImageTagData.

e If CapDefineCropArea is true, then the application can use the
defineCropArea method to define crop areas in the captured image.

* AnErrorEvent (or events) is (are) enqueued if the Control encounters an
error while reading the check, and is delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met.

* All input data enqueued by the Control may be deleted by calling the
clearInput method.

» All data properties that are populated as a result of firing a DataEvent or
ErrorEvent can be set back to their default values by calling the
clearInputProperties method.

After processing the endInsertion DataEvent, the application may query the
CapMICRDevice property to determine if the device supports Magnetic Ink
Character Recognition. If CapMICRDevice property is true, then a MICR
read function may be performed in a “single pass” or “multiple pass” cycle but
prior to the check being removed from the device. If CapConcurrentMICR
property is true, then the device is capable of supporting a “single pass” MICR
read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and
calling the MICR's beginInsertion and endInsertion methods would not be
needed to reposition the check for MICR reading.

Additionally, after processing a DataEvent, the application should query the
CapValidationDevice property to determine if validation printing can be
performed on the check prior to check removal. If this property is true, the
application may call the Printer Control's beginInsertion and endInsertion
methods. This positions the check for validation printing. The Printer
Control's validation printing methods can then be used to perform validation
printing.

If the CapImageTagData property is true, then an identifying name, for
example the transaction number, date and time, or some other naming
element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

Once the check is no longer needed in the device, the application must call
beginRemoval of the Check Scanner, the MICR (if CapMICRDevice is
true), or the POS Printer (if CapValidationDevice is true), also specifying a
timeout value. This method will raise a UposException if the check is not

UnifiedPOS Version 1.15

General Information

10-9

removed within the timeout period. In this case, the application may perform
any additional prompting prior to calling the method again. Once the check is
removed, the application should call the same device’s endRemoval method
to take the device out of removal mode.

In order to accommodate many different Check Scanning devices, the
application should follow the above sequence of method calls even though the
device may not physically require one or more of the methods. An example
may be a Check Scanner that is “auto armed” and is capable of detecting a
check present and initiating a Check Scan and MICR read cycle automatically.
In this case the beginInsertion, endInsertion, beginRemoval, and
endRemoval method calls may actually do no more than return from the
Service.

The model assumes that the device has a work area that can be used in the
following ways:

* When a document is scanned its image will be loaded as raw data into this
work area. When the retrievelmage method is invoked the data from the
work area may be modified by a previously defined crop area, as specified
by the cropArealD parameter, and loaded into the ImageData property.
The work area will still contain the original scanned image data.
Additional retrievelmage method calls using different crop area criteria
can then be accomplished to load the ImageData property.

* The work area contains image data either from a recently scanned image
or as a result of a retrieveMemory method. Prior to invoking the
storelmage method, the FileIndex property is set to the correct index
number (as maintained by the service) and if used, the FileID and/or
ImageTagData properties are set. When the storeImage method is
invoked the data from the work area may be modified by a previously
defined crop area, as specified by the cropArealD parameter, and stored
in the device memory. The work area will still contain the original
scanned image data. Additional storeImage method calls using different
crop area criteria can then be accomplished to store the image data in the
device’s memory. The RemaininglmagesEstimate property is adjusted
to reflect the approximate number additional images that may be stored in
the device memory based upon the file size history of previously stored
images.

* When the retrieveMemory method is invoked, the work area is loaded
with an image data file that was previously stored in the device memory.
Either the FileIndex, FileID, or ImageTagData may be used to locate the
previously stored image. The ImageData property is also loaded with the
retrieved image data.

In order to accommodate the various storage and retrieval architectures that
are in use for the Check Scanner device class, the model has been designed to
allow for three different addressing ways to locate previously stored image
data: FileIndex, FileID, and ImageTagData.

* The FileIndex is an addressing scheme that is automatically provided by
the service to physically store and retrieve the file data. The definition of
file data in this case includes any and/or all of the following: image data,
tag data information (that is appended and included with the image data
file), and a file identification (a file name associated with the image data

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10

10-10

Check Scanner

file). The FileIndex is only used by the service to save and retrieve the
scan data and its associated data elements.

The FilelD is a “file name” that may be provided automatically by the
hardware device or the service. It also may be populated by the
application prior to a storelmage method being called. Once created it
remains with the ImageData and can be used to randomly locate a
specific file for uploading to the POS system and post processing
applications.

The ImageTagData property contains a set of information about the
image that has been scanned. It is required that the format of the data be
XML and compliant to the ARTS Data Dictionary and ARTS XML
standards to ensure interoperability. Typically, it contains information
about when the image was captured, e.g., Date and Time, Store number,
Lane Number, Clerk identification, etc. This data may be pre- or post-
appended to the ImageData and remains a part of the combined data file
as a record of the origin of the data.

Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following
constraints:

The application must claim the device before enabling it.

The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

General Information 10-11

Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner
device.

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. Thisl
means that the platform specific loading/configuration/creation code executed successfully. We also assume

that the application already registered some event handlers with the controls.
CheckScanner
Service

‘ :ClientApp ‘ \:CheckScanner} ‘ :DataEvent ‘ ‘smu UpdateEvent

\
i i

2: sptDataEventEnabled(trug)

1:|setDataEventEnabled(true,

3: sptMapMode(CHK_MM_ENG|.ISH) 4: setMapMode(CHK_MM_ENGLISH)

5: defineCropArea(1,0,0,1500,1000) 6: defiheCropArea(1,0,0,1500,1000)

fineCropArea(1,0,2000,CHK_CROP_AREA_BOJTOM,CHK_CROP_AREA_RIGHT)

8: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_|AREA_RIGHT)

1l

9: begininsertion(timeout)

{: beginlnsertion(timeout

Detect check
insertion and
scan check

[11:endinsertiong i endlnw{)//

14: set status update

15: enqueue StatusUpdateEvent to servigels internal queue
m—|

16: deliver StatusUpdateEvent [FreezeEyents == false]

17:|deliver event to all registered handlers
18:|nptify client of new event | (=1

retrieve the
image within the

econd crop
T 19: retrievelmage(2) 20: retrievelmage(2)—| area defined

21: nej

\Tl\ 22: copy data to new DataEvent

(I~

23: enqueue DataEvent to [service's internal queue

24: set Check $canner properties and deliver DataEvent
[DataE: 1abled == true && F its == falsg]
25: deliver event to all registered handlers L]
26: notify client of new eventle 1
T 27: storelmage(1) /J 28: storelmage(1)

29: beginRemoval(timeout, 3(: beginRemoval(timeout

dicate user to start removing check

R

32: endRemoval() 33: endRemoval()

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-12 Check Scanner

Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

[Opened && [Closed ||
Claimed && Released ||

Enabled] . @ Disabled]

\\ /beginRemoval
/ [Failed]

Removal

Begin
Removal

Begin
Insertion

/begininsertion

[Success]
/endRemoval

Insertlon Idle

/defineCropAre
/s age /retrieyelmage
[retriev

Define
Retrieve
CropArea ‘ Store Image Image Retrieve Memory ‘ Clear Image

[Success |
/endInserti

Insertion

UnifiedPOS Version 1.15

Properties (UML attributes) 10-13

Properties (UML attributes)

CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the
darkness of the image to provide the best contrast for the image.
If true, then when Contrast is set to CHK_AUTOMATIC_CONTRAST, the device
attempts to automatically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapContrast Property, Contrast Property.

CapAutoGenerateFilelD Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateFilelD: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate a file name
that can be used to reference the file containing the captured image.

If CapAutoGenerateFilelD is true, then the device can automatically create a file
name for the captured image file.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FileID Property.

CapAutoGeneratelmageTagData Property

Syntax

Remarks

Errors

See Also

CapAutoGeneratelmageTagData: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate tag data
used in reference to the image file for the captured image.

If CapAutoGenerateImageTagData is true, then the device can automatically
create image tag data which can be appended to the image file to provide
information about the captured image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ImageTagData Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-14 Check Scanner

CapAutoSize Property

Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of
the document automatically.

If CapAutoSize is true, then the height and width of the scanned document will be
automatically placed in the DocumentHeight and DocumentWidth properties
when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set
in the DocumentHeight and DocumentWidth properties by the application prior to
scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DocumentHeight Property, DocumentWidth Property.

CapColor Property

Syntax CapColor: int32 { read-only, access after open }
Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning

CHK _CCL_MONO Bi-tonal (B/W)
CHK CCL_GRAYSCALE Gray scale

CHK CCL 16 16 Colors

CHK CCL 256 256 Colors
CHK CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also Color Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-15

CapConcurrentMICR Property

Syntax

Remarks

Errors

See Also

CapConcurrentMICR: boolean { read-only, access after open }

This capability indicates if this device supports a Magnetic Ink Character
Recognition read during the image scanning process.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR is false, then it would be necessary to read the MICR
data (if the device supports MICR reading) by using the MICR beginInsertion
and endInsertion methods. Usually the MICR read is performed prior to the
Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.
A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapMICRDevice Property, ConcurrentMICR Property.

CapContrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

CapContrast: boolean { read-only, access after open }
This capability indicates the ability of the device to lighten or darken the scanned
image. This affects the image regardless of the value of the CapColor property.

If true then the darkness of the image can be adjusted using the Contrast property. If
false then the application cannot adjust the darkness of the image.

A UposException may be thrown when this property is accessed. For further
information see “Errors" on page Intro-21.

CapAutoContrast Property, Contrast Property.

CapDefineCropArea Property

Syntax

Remarks

Errors

See Also

CapDefineCropArea: boolean { read-only, access after open }

This capability indicates if this device supports a feature that allows cropping of
areas of interest within the scan image area defined by the DocumentHeight and
DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed;
otherwise it is set to be false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

UnifiedPOS Version 1.15

10-16

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

CaplmageFormat Property

Syntax CaplmageFormat: int32 { read-only, access after open }

Remarks This capability indicates the image file formats that this device supports. The
image data is stored in the ImageData property using one of the following formats
supported by the CapImageFormat Property:

CaplmageFormat is a logical OR combination of any of the following values:
Value Meaning

CHK CIF NATIVE Hardware native format

CHK _CIF_TIFF TIFF format

CHK CIF_BMP BMP format

CHK CIF _JPEG JPEG format

CHK CIF_GIF GIF format

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageFormat Property.

CaplmageTagData Property Updated in Release 1.11

Syntax CaplmageTagData: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to utilize ARTS XML
compliant tag names to identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the
ImageTagData property, to the image data file stored in the ImageData property.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageTagData Property, retrievelmage Method, storelmage Method.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-17

CapMICRDevice Property

Syntax

Remarks

Errors

See Also

CapMICRDevice: boolean { read-only, access after open }
This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in
addition to check scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR property is false, then it would be necessary to read the
MICR data by using the MICR beginInsertion and endInsertion methods. In this
case the MICR read is usually performed prior to the Check Scanning process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapConcurrentMICR Property, ConcurrentMICR Property.

CapStorelmageFiles Property

Syntax

Remarks

Errors

See Also

CapStorelmageFiles: boolean { read-only, access after open }

This capability indicates if this device has the ability to store check images in its
hardware memory.

If CapStorelmageFiles is true, one or more images can be stored in the memory
provided by the device by using the storelmage method.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrievelmage Method, storelmage Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-18 Check Scanner

CapValidationDevice Property
Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print
function on the check using a print station.

If CapValidationDevice is true, a check does not have to be removed from the
Check Scanner device prior to performing validation printing. For devices that are
both a Check Scanner device as well as a POS Printer, the device will
automatically position the check for validation printing after successfully
performing a Check Scanner read. Either the Check Scanner Control’s or the POS
Printer Control’s beginRemoval and endRemoval methods may be called to
remove the check once the process is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan
operations. The available options may be affected by the current file type as
specified by the ImageFormat property. Certain file types may not work with all
the “colors” that the device may support. It is up to the application to insure that
the proper Color and ImageFormat properties are compatible. Changing the
Color property will not affect any previously stored data currently residing in the
ImageData property.

It may contain one of the following values:

Value Meaning
CHK_CL_MONO Bi-tonal (B/W)

CHK CL GRAYSCALE Gray scale

CHK CL_16 16 Colors
CHK CL 256 256 Colors
CHK_CL_FULL Full color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapColor Property, ImageFormat Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-19

ConcurrentMICR Property

Syntax

Remarks

Errors

See Also

ConcurrentMICR: boolean { read-write, access after open }

This property indicates whether a MICR read should be performed at the same
time the check image is captured (single pass operation).

This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check
scanning cycle (single pass scanning). For devices that are both a Check Scanner
device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to
read MICR data by using the MICR beginInsertion and endInsertion method
calls. In this case the MICR read is usually performed prior to the Check Scanning
process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapConcurrentMICR Property, CapMICRDevice Property.

Contrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

Contrast: int32 { read-write, access after enable }

This property allows the application to adjust the darkness of the image. The
property is valid only if the CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible.
A value of 100 sets or indicates that the device will generate the darkest image possi-
ble. All values between 0 and 100 produce images with varying degrees of darkness.
A value of 50 should produce an image that is the optimal brightness for the best
image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to
CHK_AUTOMATIC _CONTRAST to allow the device to automatically adjust the
darkness of the image based on sensing of the paper to produce the optimal brightness
for the best image under normal circumstances.

If CapAutoContrast is false, then attempting to set this property to
CHK AUTOMATIC CONTRAST is illegal.

If CapAutoContrast is true, then this property is initialized to
CHK_AUTOMATIC_CONTRAST when the device is enabled. If CapAutoContrast
is false, this property is initialized either to 50 or to a user configured value when the
device is enabled.

A UposException may be thrown when this property is accessed. For further
information see “Errors' on page Intro-21.

CapAutoContrast Property, CapContrast Property.

UnifiedPOS Version 1.15

10-20

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

CropAreaCount Property

Syntax

Remarks

Errors

See Also

CropAreaCount: int32 { read-only, access after open }

This property indicates the number of Crop areas that have been defined which
may be applied to the captured image.

If CapDefineCropArea is false, then this property is always zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, MaxCropAreas Property, defineCropArea
Method.

DocumentHeight Property

Syntax

Remarks

Errors

See Also

DocumentHeight: int32 { read-write, access after open}

This property is used to define the height of the document scanned or the height of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the height of the scanned document will be

automatically placed in the DocumentHeight property when the image is
captured.

If CapAutoSize is false, the height of the document can be manually set in the
DocumentHeight property by the application prior to scanning a document.

This property is initialized to the maximum height supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoSize Property, MapMode Property.

DocumentWidth Property

Syntax

Remarks

Errors

See Also

DocumentWidth: int32 { read-write, access after open}

This property is used to define the width of the document scanned or the width of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the width of the scanned document will be
automatically placed in the DocumentWidth property when the image is
captured.

If CapAutoSize is false, the width of the document can be manually set in the
DocumentWidth property by the application prior to scanning an image.

This property is initialized to the maximum width supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoSize Property, MapMode Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-21

FilelD Property

Syntax FileID: string { read-write, access after open }

Remarks This property is used to store a “file name” associated with the image data file. If
the application chooses to create the data for this property, it must set the FileID
property prior to calling the storelmage method.

After a retrieveMemory method call the FileID property will be set to the image
data file name if available, otherwise it will be set to an empty string. Its value is
set prior to a DataEvent being delivered to the application.

If the CapAutoGenerateFilelD property is true then the FileID will
automatically be generated by the hardware device or the service when the image
is scanned.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapAutoGenerateFileID Property, retrievelmage Method, retrieveMemory
Method, storelmage Method.

FileIndex Property Updated in Release 1.13

Syntax FileIndex: int32 { read-write, access after open }

Remarks This property is used to store a file location reference to the image data file when
either the storeIlmage or retrieveMemory methods are called. Its value is set prior
to a DataEvent being delivered to the application.

The FileIndex property is used only by the service in conjunction with the device
to manage the storage and retrieval of an image data file. The application may
write a value into the FileIndex property. However, it is normally the
responsibility of the service to ensure that a unique integer value is used to store
or retrieve the image file.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also clearImage Method, retrievelmage Method, retrieveMemory Method

storelmage Method.

UnifiedPOS Version 1.15

10-22

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ImageData Property

Syntax

Remarks

Errors

See Also

ImageData: binary { read-only, access after open }1

This property is used to store the image data after the retrievelmage or
retrieveMemory methods are called. If no image data was available, the
ImageData property will be set to zero length (or empty). Its value is set prior to
a DataEvent being delivered to the application.

This property is initialized to zero length by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrievelmage Method, DataEvent.

ImageFormat Property

Syntax

Remarks

Errors

See Also

ImageFormat: int32 { read-write, access after open }

This property is used to define the data format of the image file that the device will
use when it captures an image. The availability of acceptable file types is specified
in the CapImageFormat property.

The ImageFormat property must be set before a document is scanned. Any
previously stored data in the ImageData property will not be affected by changing
the value of the ImageFormat property.

If the device provides support, it may be one of the following values:

Value Meaning

CHK IF NATIVE Hardware native format
CHK IF_TIFF TIFF format

CHK IF BMP BMP format

CHK IF JPEG JPEG format

CHK _IF GIF GIF format

The default value of this property is CHK IF TIFF.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CaplmageFormat Property, Color Property, DataEvent.

I In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-23

ImageMemoryStatus Property

Syntax

Remarks

Errors

See Also

ImageMemoryStatus: int32 { read-only, access after open-claim }

This property is used to indicate the current memory availability status if the
device has the ability to store multiple image files. The ImageMemoryStatus
value is only valid if the CapStoreImageFiles is true.

The following values are supported.

Value Meaning

CHK IMS _EMPTY The image memory is empty.

CHK IMS OK The image memory is has storage available.
CHK IMS FULL The image memory is full.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStorelmageFiles Property, storeImage Method.

UnifiedPOS Version 1.15

10-24

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ImageTagData Property Updated in Release 1.13

Syntax

Remarks

Errors

See Also

ImageTagData: string { read-write, access after open }

This property is used to define a string that specifies the ARTS XML compliant
tag name for the captured image data. The recommended way is to use XML
CDATA to transfer this data to the application to prevent inadvertent parsing of
the data.

An example of one possible data set would be:

<![CDATA[
<Transaction>192345782</Transaction>
<Operator>35467</Operator>
<SellingLocation>Store Number 762</SellingLocation>
<DateTime>2008-11-21T12:21:30.5Z</DateTime>
<CheckAccountNumber>0089543219</CheckAccountNumber>
<ImageData>12546a92b7c5........ 45d3</ImageData>

1>

Note: The example shown would pass the XML data for the image intact to the
application. When the CDATA constructs were removed, the resultant XML data
could then be parsed by another application process.

The tag name may be specified by the application or auto-generated by the Check
Scanner device. Information contained in the data may refer to the date, time, lane
number, location, clerk, or other information of interest associated with the image
at the time of capture.

If the application chooses to create the data for this property, it must set the
ImageTagData property prior to calling the storelmage method. After a
retrieveMemory method call, the ImageTagData property will be set if
available, otherwise it will be set to an empty string. Its value is set prior to a
DataEvent being delivered to the application.

If the CapAutoGeneratelmageTagData property is true, the ImageTagData
will automatically be generated by the hardware device or the service when the
image is scanned.

All ImageTagData information must be formatted using XML that is conformant
to the ARTS Data Model and XML Dictionary. It is the responsibility of the
Application and/or Service to encode or parse the XML data.

Some possible entries from the ARTS XML Dictionary are:

DateTime, SellingLocation, Operator, CheckAccountNumber and Transaction.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAutoGenerateImageTagData Property, retrievelmage Method,
retrieveMemory Method, storeImage Method.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-25

MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks This property is used to specify the units of measure that are currently valid for the
Check Scanner.
The mapping mode defines the unit of measure used by other properties, such as
the DocumentHeight and DocumentWidth properties.
The following units of measure may be selected for storing the image:
Value Meaning
CHK_ MM _DOTS The scanner’s dot width.
CHK_MM_TWIPS 1/1440 of an inch.
CHK MM ENGLISH 0.001 inch.
CHK MM _ METRIC 0.01 millimeter.
Note: The value of MapMode for the Check Scanner is initialized to
CHK_MM_ENGLISH when the device is first enabled following the open
method. This default value may be different from other device categories in the
UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DocumentHeight Property, DocumentWidth Property, defineCropArea

Method.

MaxCropAreas Property

Syntax

Remarks

Errors

See Also

MaxCropAreas: int32 { read-only, access after open }

This property is used to specify the maximum number of crop areas that the device
can support.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, CropAreaCount Property, defineCropArea
Method.

UnifiedPOS Version 1.15

10-26

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

Quality Property

Syntax

Remarks

Errors

See Also

Quality: int32 { read-write, access after open }

This property is used to set the resolution of the device when a scan image is to
take place. It is defined as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the
Quality property value is changed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

QualityList Property.

QualityList Property

Syntax

Remarks

Errors

See Also

QualityList: string { read-only, access after open }

This property is used to define the resolutions that the Check Scanner is capable
of supporting.

The string data consists of comma separated values that indicate the available
scanning resolutions that the device supports measured in dots per inch (dpi). An
empty string indicates that resolution is not selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi
and 320 dpi.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Quality Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 10-27

RemaininglmagesEstimate Property
Syntax RemaininglmagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number
of images that can be stored. It is updated after every new image is stored or
cleared from the device’s available memory. The RemaininglmagesEstimate
along with the ImageMemoryStatus properties are intended to be used by the
application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image
files that can be stored in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also ImageMemoryStatus Property.

UnifiedPOS Version 1.15

10-28

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

Methods (UML operations)

begininsertion Method

Syntax

Remarks

Errors

See Also

beginInsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if
successful. otherwise a UposException is raised. If FOREVER (-1), the method
tries to begin insertion mode, then waits as long as needed until either the check is
inserted or an error occurs.

Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
insertion mode. This method is paired with the endInsertion method for
controlling the check insertion. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to
ensure application portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a
UposException is raised. Otherwise, check insertion is monitored until either:

* The check is successfully inserted.

* The check is not inserted before timeout milliseconds have elapsed, or an error
is reported by the Check Scanner device. In this case, a UposException is
raised, The Check Scanner device remains in check insertion mode. This
allows an application to perform some user interaction and reissue the
beginInsertion method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly inserted.

beginRemoval Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15

Methods (UML operations) 10-29

beginRemoval Method

Syntax

Remarks

Errors

See Also

beginRemoval (timeout: inz32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if
successful. otherwise a UposException is raised. [f FOREVER (-1), the method
tries to begin removal mode, then waits as long as needed until either the check is
removed or an error occurs.

Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
ejection mode. This method is paired with the endRemoval method for controlling
check removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a
UposException is raised. Otherwise, check removal is monitored until either:

* The check is successfully removed.

e The check is not removed before timeout milliseconds have elapsed, or an
error is reported by the Check Scanner device. In this case, a UposException
is raised, The Check Scanner device remains in check removal mode. This
allows an application to perform some user interaction and reissue the
beginRemoval method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly removed.

beginInsertion Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15

10-30

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

clearimage Method

Syntax

Remarks

Return

See Also

clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be removed from the storage.

Called to clear a specific image or all the images in the device memory.
The following values may be selected for by to initiate clearing of the memory:

Value Meaning

CHK CLR ALL All images in the device are cleared
CHK _CLR_BY_FILEID Locate file to be cleared using the FileID property.

CHK _CLR _BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK CLR BY IMAGETAGDATA
Locate file to be cleared using the ImageTagData

property.
A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* Device does not support stored images
* Device does not support clearing one image

E NOEXIST Image was not found.

CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageTagData Property.

UnifiedPOS Version 1.15

Methods (UML operations) 10-31

defineCropArea Method

Syntax

Remarks

Errors

See Also

defineCropArea (cropArealD: int32, x: int32, y: int32, cx: int32, cy: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD The numeric identifier for the defined crop area.
x The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.
cx The value added to the “X-coordinate” in order to

determine the “X” endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to
determine the “Y” endpoint for the cropping area.

If the cropArealD parameter is set to CHK_ CROP_AREA RESET ALL, thenall
the crop area definitions allowed (as specified by the MaxCropAreas property)
will reset their (x,y) and (cx,cy) values to (0,0) and

(DocumentWidth, DocumentHeight) respectively.

If the cropArealD parameter is set to CHK CROP_AREA ENTIRE IMAGE,
then the crop area is equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA RIGHT, then the “X” endpoint
value will be set to the value of the DocumentWidth property.

If ¢y is set to the parameter CHK_CROP_AREA BOTTOM, then the “Y”
endpoint value will be set to the value of the DocumentHeight property.

This method is used to establish one or more cropping areas that may be applied
to a scanned image. The values are in MapMode units and use the top left corner
of the scanned document as the origin (0,0). All values are positive.

The defineCropArea method specifies an area of interest that is contained within
a crop box and given an index number for reference. Only the data defined by
defineCropArea index number will be sent when the retrievelmage method is
called.

The crop areas should be set before the retrievelmage method is called and will
be in effect until changed.

A crop box cannot contain an area larger than that defined by the current
DocumentHeight and DocumentWidth properties. If the resultant value for the
endpoint (x+cx) is greater than the DocumentWidth value, then the “X” endpoint
value will be set to DocumentWidth. If the resultant value for endpoint (+cy) is
greater than the DocumentHeight value, then the “Y” endpoint value will be set
to DocumentHeight.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

CapDefineCropArea Property, CropAreaCount Property, DocumentHeight
Property, DocumentWidth Property, MapMode Property, MaxCropAreas
Property.

UnifiedPOS Version 1.15

10-32

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

endInsertion Method

Syntax

Remarks

Errors

See Also

endInsertion ():
void { raises exception, use after open-claim-enable }

Ends the document insertion processing. If this method call is successful, the
device will place the captured image in a working buffer memory area. A
StatusUpdateEvent will occur to indicate that a successful scan image process
has taken place. No DataEvent is enqueued since data has not been transferred to
the ImageData property at this point. The application must invoke retrievelmage
in order to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a
check is not detected in the device, a UposException is raised with an extended
error code of ECHK NOCHECK. This allows an application to prompt the user
prior to calling this method to ensure that the form is correctly positioned.

This method is paired with the beginInsertion method for controlling check
insertion. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check insertion mode.
E EXTENDED ErrorCodeExtended = ECHK NOCHECK:

The device was taken out of insertion mode without a
check being inserted.

beginlnsertion Method, beginRemoval Method, endRemoval Method,
retrievelmage Method.

UnifiedPOS Version 1.15

Methods (UML operations) 10-33

endRemoval Method

Syntax

Remarks

Errors

See Also

endRemoval ():
void { raises exception, use after open-claim-enable }

Ends the document removal processing.

When called, the Check Scanner is taken out of check removal or ejection mode.
If a check is detected in the device, a UposException is raised with an extended
error code of ECHK CHECK .

This method is paired with the beginRemoval method for controlling check
removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check removal mode.
E _EXTENDED ErrorCodeExtended = ECHK _CHECK:

The device was taken out of removal mode while a
check is still present.

beginInsertion Method, beginRemoval Method, endInsertion Method.

UnifiedPOS Version 1.15

10-34

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

retrievelmage Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrievelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to the most recently scanned
image held in the working area memory of the device. If
the value is CHK _CROP_AREA ENTIRE IMAGE
then the entire area of the most recently scanned image
is retrieved.

Called to retrieve the most recently scanned image which is resident in the work
area memory to the ImageData property. If this method call is successful, the
device will deliver either a DataEvent or an ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set
to the ARTS XML compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID
property will be set to the file name; if none is available then the FileID property
will be set to an empty string.

Many models of Check Scanner devices do not require any check handling
processing from the application. Such devices may always be capable of receiving
a check, scanning the image into their working memory area, and require no
commands to actually read and eject the check. For these type of Check Scanner
devices, the beginInsertion, endInsertion, beginRemoval and endRemoval
methods simply return, and the Control will enqueue the data until the
DataEventEnabled property is set to true. However, applications should still use
these methods to ensure application portability across different Check Scanner
devices.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The following error has occurred:
* Cropped area that is specified by cropArealD
parameter is invalid.

CaplmageTagData Property, FileID Property, ImageData Property,
ImageTagData Property, beginlnsertion Method, beginRemoval Method,
endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.15

Methods (UML operations) 10-35

retrieveMemory Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrieveMemory (by: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be retrieved from the device memory storage.

Called to retrieve an image that was previously stored in memory to the work area
and the ImageData property. If this method call is successful, the device will
deliver either a DataEvent or an ErrorEvent at a later time.

The following values may be selected for by:

Value Meaning

CHK _LOCATE BY_FILEID
Locate image file using the FileID property.

CHK LOCATE BY_FILEINDEX
Locate image file using the FileIndex property.

CHK LOCATE BY IMAGETAGDATA
Locate image file using the ARTS XML compliant
ImageTagData property.

The FilelD, FileIndex, and ImageTagData properties will all be updated to
reflect their respective values associated with the image data file after this method
is called. A value for FileIndex will always be available. The FileID and
ImageTagData properties will be set to empty strings if the image file does not
have respective data to be retrieved for these properties.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* by parameter is invalid.

* The image data file could not be located due to an
invalid value stored in either the FileID, FileIndex,
or ImageTagData properties that was being used
with the by value.

FileID Property, FileIndex Property, ImageData Property, ImageTagData
Property.

UnifiedPOS Version 1.15

10-36

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

storelmage Method Updated in Release 1.13

Syntax

Remarks

Return

See Also

storelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to image data file currently in
the buffer memory area of the device. If the value is
CHK _CROP_AREA_ENTIRE IMAGE, then an exact
image of the buffer memory is stored in the device
memory (no cropping is applied).

Called to store an image or a cropped area of the image in the memory of the
device.

The RemainingImagesEstimate property is adjusted to reflect the approximate
number additional images that may be stored in the device memory based upon the
file size history of previously stored images.

The ImageMemoryStatus property indicates whether or not the device memory
is full and is adjusted as a result of this method.

The FilelD, FileIndex, and ImageTagData properties must all be updated to
reflect their respective values associated with the image data file before this
method is called. A value for FileIndex will always be available and is supplied
by the service. The FileID and/or ImageTagData properties will be set to empty
strings if the device does not support the respective property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXIST Image already exists in the store location specified by
the FileIndex property.

E ILLEGAL One of the following errors occurred:
* Device does not support storing images

* Cropped area that is specified by cropArealD
parameter is invalid.

E FAILURE Internal error storing image.

E_EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageMemoryStatus Property, ImageTagData Property,
RemaininglmagesEstimate Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 10-37

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when data from the Check Scanner device is available to be
read.

This event contains the following attribute:

Attributes Type Description

Status int32 Setto 0.
Before this event is delivered, the scanned check image is placed into ImageData.

ImageData Property, endInsertion Method, retrievelmage Method, storelmage
Method.

upos::events::DirectiIOEvent
EventNumber: in#32 { read-only }
Data: int32 {read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Check Scanner Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Check Scanner devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

10-38

UnifiedPOS Retail Peripheral Architecture Chapter 10
Check Scanner

ErrorEvent

<< event >>

Description

Attributes

upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that an error has been detected at the Check Scanner
device and a suitable response by the application is necessary to process the error
condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL _INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER _CONTINUEINPUT Use only when locus is EL_INPUT DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.

Default when locus is EL_INPUT DATA.

UnifiedPOS Version 1.15

Events (UML interfaces) 10-39

Remarks This event is not delivered until DataEventEnabled is true and other event
delivery requirements are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26.

StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Check Scanner
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the Check Scanner
device.

The Status parameter has one of the following values:

Value Meaning

CHK_SUE_SCANCOMPLETE
The process of scanning a document image has been
successfully completed.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

Remarks Enqueued after the endInsertion method has been called and the Check Scanner
device has successfully completed the process of scanning a new image into a
working buffer memory area. Also enqueued when the Check Scanner device
detects a power state change.

See Also “Events” on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 10
10-40 Check Scanner

UnifiedPOS Version 1.15

Summary 111

CHAPTER 11

Coin Acceptor

This Chapter defines the Coin Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-2 Coin Acceptor

Properties (Continued)

Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapFullSensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearFullSensor: boolean {read-only} 1.11 open
CapPauseDeposit: boolean {read-only} 1.11 open
CapRealTimeData: boolean {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.11 open
DepositCashList: string {read-only} 1.11 open
DepositCodeList: string {read-only} 1.11 open
DepositCounts: string {read-only} 1.11 open
DepositStatus: int32 {read-only} 1.11 open, claim, & enable
FullStatus: int32 {read-only} 1.11 open, claim, & enable
RealTimeDataEnabled: boolean {read-only} 1.11 open, claim & enable

UnifiedPOS Version 1.15

Summary 11-3

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: inz32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): 1.11
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void {} supported

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-4 Coin Acceptor

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.11

Status: int32 { read-only }
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information

11-5

General Information

The Coin Acceptor programmatic name is “CoinAcceptor”.

This device category was added to Version 1.11 of the specification.

Capabilities

The Coin Acceptor has the following capabilities:

Reports the cash units and corresponding unit counts available in the Coin
Acceptor.

The coins which are deposited into the device between the start and end of
cash acceptance are reported to the application. The contents of the report are
cash units and cash counts.

Reports jam conditions within the device.

Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:

Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions
which may be indicated include full, and near full states.

Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-6 Coin Acceptor

Coin Acceptor Class Diagram

<<ewent>>
DataEvent
(from events)

The following diagram shows the relationships between the Coin Acceptor

classes.

<<exception>>
UposException
(from upos)

N

N

<<sends>>

<<fires>>

<<ewent>>
DirectIOEvent

(from events)

S

<<fires>>

<<ewent>>

(fom events)

StatusUpdateEvent

<<fires>>

<<utility>>
UposConst
(from upos)
N
N
N
N |
<<Interface>> <<utility>>
CoinAcceptorControl CoinAcceptorConst
from upos) uses>> (from upos)
B <<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean <
bilit CapJam$S Bool 2

% <<capability>> CapNearFullSensor : boolean
%<<capability>> CapPauseDeposit : boolean

N %<<capability>> CapReal TimeData : Boolean

E5<<prop>> CurencyCode : string
B5<<prop>> DepositAmount : int32
BJ<<prop>> DepositCashList : sting

_|B5<<prop>> DepositCodeList : stiing

EJ<<prop>> DepositCounts : string
B5<<prop>> DepositStatus : int32
B5<<prop>> FullStatus : int32

B<<prop>> RealTimeDataEnabled : boolean

®adjustCash Counts(cashCounts : string)
SbeginDeposit()

SendDeposit(amount : int32)
®ixDeposit()

®pauseDeposit(control : int32)

WreadCashCounts (cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.15

General Information

Model

The general model of a Coin Acceptor is:

Supports several coin denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

This specification provides programmatic control only for the accepting of
cash. The removal of cash from the device (for example, to remove deposited
cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit, but
cannot control when or how cash is removed from the device.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list DepositCodeList.
DepositCashList and readCashCounts all act upon the current currency
only.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is CACC_STATUS FULL.

Coin acceptance into the “coin acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties.

If the pauseDeposit method is executed with a parameter value of
CACC_DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount propertics. When pauseDeposit
method is executed with a parameter value of CACC_DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a
CACC_DEPOSIT_COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-8 Coin Acceptor

Coin Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientApp : CoinAcceptorControl CoinAcceptorSenice : DataEvent Human Actor
| setRealTimeDataEvents(tru D D D

| |
| setRealTimeDataEvents (true?) Set so DepositAmount and
| DepositCounts are updated for
M each Data Event

3: beginDeposit()

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
5: initialize DepositAmount and DepositCounts
P=—

|
|
|
|
[6: accept Cash
|
|
|
|

7: create Data Event

8: enqueue Data Event for delivery M

|

|
9: update DepositAmount and Deposit Counts

|

|
|
|
|
|
|
|
|
|
|
|
:
U 4: beginDeposit()
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

:

|

10: deliver Data Event I I

| |

| |

11: notify ClientApp of event I :
|

H ‘ !

| | [

|

I 12: fixDeposit() T : : I

| L | | !

| | [

u 13: fixDeposit I I :
| |

| | |

: 14: updateDeposjitAmount and DepositCoths :

LJ

|

1 | < 1 !

I 15: endDeposit(int32) | I :
| L e |

| | [

u 16: endDeposit(int32) : : :

| |

| |

| |

| |

| |

; T

UnifiedPOS Version 1.15

General Information 11-9

Coin Acceptor State Diagram

sefDeviceEngbled(false)

Enabled clearinput ClearinputProcessing

readCashC@

Coin Acceptance

entry/ empty data queue

be'nDeposil

endDeposT clearinput

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins
<1
O
NColns

emove

Fix Mode }

fixDeposit { entry/ sync DepositAmount and DepositCounts

fix Depasit

adjustCas .
pauseDeposit(CACC_DEPOSIT_PAUSE)

adusta

Pause Mode
pauseDeposit(CACC_DEPOSIT_RERTART Y e positAm ount and DepositCounts ‘

‘

Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

11-10

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Coin Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.15

Properties (UML attributes) 11-11

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Coin Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Coin Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.15

11-12

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Coin Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the units of
the coins.

Below are sample DepositCashList values in Japanese yen.

* “1,5,10,50,100,500” ---
1, 5,10, 50, 100, and 500 yen coin.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis a list of ASCII three-character ISO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Coin Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 11-13

DepositCounts Property

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the cash units. Cash units inside the string
are the same as the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to:

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin
Acceptor.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the coin acceptance operation. It may be one of the
following values:

Value Meaning

CACC _STATUS DEPOSIT START
Cash acceptance started.

CACC_STATUS_DEPOSIT _END

Cash acceptance stopped.
CACC _STATUS DEPOSIT _COUNT

Counting or repaying the deposited money.
CACC _STATUS DEPOSIT _JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CACC_STATUS DEPOSIT _END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-14 Coin Acceptor

FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }
Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CACC_STATUS _OK All cash slots are neither nearly full nor full.
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true, each data event fired will update the DepositAmount and DepositCounts
properties. Otherwise, DepositAmount and DepositCounts are updated with the
value of the money collected when fixDeposit is called. Setting
RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding
what would happen if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Mecthod, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 11-15

Methods (UML operations)

adjustCashCounts Method

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

UnifiedPOS Version 1.15

11-16

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Acceptor

beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks Cash acceptance is started.
The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.
* The DepositAmount property is set to zero.
After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL The call sequence is not correct.
See Also DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.
endDeposit Method
Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }
The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:
Parameter Description
CACC _DEPOSIT COMPLETE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.
Remarks Cash acceptance is completed.
Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.
The application must call the fixDeposit method before calling this method.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:

e The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.15

Methods (UML operations) 1117

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be
called before calling this method.
DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CACC_DEPOSIT PAUSE Cash acceptance is paused.
CACC _DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CACC_DEPOSIT _RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Coin Acceptor. The
property values are not changed again until the deposit process is resumed.

If control is CACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to CACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CACC _DEPOSIT RESTART.

CapPauseDeposit Property, DepositAmount Property, DepositCounts Property,
beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-18 Coin Acceptor

readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Coin Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Coin Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also DepositCashList Property.

UnifiedPOS Version 1.15

Events (UML interfaces) 11-19

Events (UML interfaces)

DataEvent

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when one or more coins have been accepted.
Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for
a vendor-specific Coin Acceptor Service to provide events to the application that are not
otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the
EventNumber and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Acceptor devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events” on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 11
11-20 Coin Acceptor

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.

The Status parameter contains the Coin Acceptor status condition:

Value Meaning

CACC_STATUS _FULL Some cash slots are full.

CACC _STATUS _NEARFULL Some cash slots are nearly full.
CACC_STATUS_FULLOK No cash slots are either full or nearly full.
CACC _STATUS JAM A mechanical fault has occurred.
CACC_STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page Intro-20.

UnifiedPOS Version 1.15

Summary 121

CHAPTER 12

Coin Dispenser

This Chapter defines the Coin Dispenser device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: String { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

UnifiedPOS Version 1.15

12-2

UnifiedPOS Retail Peripheral Architecture

Chapter 12
Coin Dispenser

Properties (Continued)

Specific
CapEmptySensor:
CapJamSensor:
CapNearEmptySensor:

DispenserStatus:

Type
boolean
boolean
boolean
int32

Methods (UML. operations)

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version May Use After
1.0 open
1.0 open
1.0 open
1.0 open, claim, & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception }
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open }
release (): 1.0
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.0
void { raises-exception, use after open, claim, enable }
clearInput (): Not
void { } supported
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

Summary 12-3
Methods (UML operations) - continued
Specific
Name
adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }
dispenseChange (amount: int32): 1.0
void { raises-exception, use after open, claim, enable }
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent

Status: int32 { read-only } 1.0

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-4 Coin Dispenser

General Information

The Coin Dispenser programmatic name is “CoinDispenser”.

Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

* Supports a method that allows a specified amount of change to be dispensed
from the device.

The coin dispenser may have the following additional capabilities:
* Status reporting, which indicates empty coin slot conditions, near empty coin
slot conditions, and coin slot jamming conditions.

* Starting with Release 1.11, reporting of a possible (or probable) cash count
discrepancy in the data reported by the readCashCounts method.

UnifiedPOS Version 1.15

General Information

12-5

Coin Dispenser Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Coin Dispenser

classes.

<<Interface>>
BaseControl
(fromupos)
®open()
[®close()
®claim()
[®compareFimwareVersion() <<utility>>
.release()' . | <<uses>> UposConst
[®reset Statistics() T2 (rom upos)
e <<sends>> _ _ -~ “i@checkHeal th()
UposException < - =~ ~ [Sclearinput())
" [®clearinputProperties ()
[®clearOutput ()
[®directlO()
NN [®retrieweStatistics()
N "
N [®updateFirmware() -
N . <<utility>>
N [BupdateStatistios() CoinDispenserConst
~ N (fom upos)
S :
<<sends>> . ! =
~ | <<uses>>
S | - g
|
<<event>> <<Interface>>
DirectlOEvent CoinDispenserControl
(from events) i from upos)
[igl<<prop>> EventNumber : int32 res [&<<capability>> CapEmptySensor : boolean
[Gi<<prop>> Data : int32 ~ 2 <<capability>> CapJam Sensor : boolean
[<<prop>> Obj : object i<<capability>> CapNearEmptySensor : boolean
[E<<capability>> DispenserStatus : int32
®adjustCashCounts(cashCounts : string) : void
fires [Wdispens eChange(amount : int32) : void
[®readCashCounts(cashCounts : string, discrepancy : boolean) : void
<<event>>
StatusUpdateEvent

(from events)

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-6 Coin Dispenser

Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser
device, showing coin dispensing and the firing of a StatusUpdateEvent due to
coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

‘ :ClientApp ‘ ‘ :CoinDispenser

| | |

1: dispenseChange(amount1)

‘ :StatusUpdateE vent ‘ :CoinDispenserSenice

2: dispense#hange(amounﬂ)

i /I.ﬁ
4: dispensecihange(amountz) ‘

/I-H\Assume that after this

point the CoinDispenser
‘ change is getting low

7

3: dispenseChange(amquntZ)

5: update %ispenserStatus to COIN_STAﬂJS_NEAR_EMPW [CapNearEmptyStatus == true]

At this point the ‘ :l
:ClientApp event 6: create new SUE event
handling code executes ‘ E]
and takes appropriate
action (like informing
user) ‘ 7: deliver SU% ewent to control

I \ 1

L L 8: deliver StatusUpdateE#ent to all registered handlers

: notify cI|eN\t of new event
T | | y

UnifiedPOS Version 1.15

General Information 12-7

Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin
Dispenser device category.

release
setDeviceEnabled

Enabled

readCashC@

fire event

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 12

12-8

Coin Dispenser

Model Updated in Release 1.11

The general model of a coin dispenser is:

Consists of a number of coin slots which hold the coinage to be dispensed. The
application using the Coin Dispenser Service is not concerned with
controlling the individual slots of coinage, but rather calls a method with the
amount of change to be dispensed. It is the responsibility of the coin dispenser
device or the Service to dispense the proper amount of change from the
various slots.

Starting with Release 1.11:

Sets cash in the device programatically by adding amount to counts when cash
is added.

Reads cash counts from device, either directly from the hardware, or from the
service, by tracking what is dispensed and what has been added to the device.

Device Sharing

The coin dispenser is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing some of the
properties, dispensing change, or receiving status update events.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

Properties (UML attributes) 12-9

Properties (UML attributes)
CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report an out-of-coinage condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

CapNearEmptySensor Property

Syntax

Remarks

Errors

CapNearEmptySensor: boolean { read-only, access after open }
If true, the coin dispenser can report when it is almost out of coinage.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DispenserStatus Property

Syntax

Remarks

Errors

DispenserStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the dispenser. It has one of the following values:

Value Meaning

COIN_STATUS _OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is synonymous to the DeviceStatus in the Cash Changer.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

12-10

UnifiedPOS Retail Peripheral Architecture Chapter 12
Coin Dispenser

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readCashCounts Method.

dispenseChange Method

Syntax

Remarks

Errors

dispenseChange (amount: inf32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Dispenses change. The value represented by the amount parameter is a count of
the currency units to dispense (such as cents or yen).

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An amount parameter value of zero was specified, or the
amount parameter contained a negative value or a value
greater than the device can dispense.

UnifiedPOS Version 1.15

Methods (UML operations) 12-11

readCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is an ASCII string. The string has a set of
comma separated units. Each unit in cash Counts indicates a denomination of a unit
as well as a count of those units, separated by a colon (“:”).

For example if the currency is Japanese yen and string returned in cashCounts is
set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, and 54 fifty yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-12 Coin Dispenser

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Coin Dispenser Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Dispenser devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events" on page Intro-20, directIO Method.

UnifiedPOS Version 1.15

Events (UML interfaces) 12-13

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.
Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The status reported from the Coin Dispenser.
The Status attribute has one of the following values:

Value Meaning

COIN_STATUS OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 1-34.
Remarks This event applies for status changes of the sensor types supported, as indicated by
the capability properties. It also applies if Power State Reporting is enabled.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 12
12-14 Coin Dispenser

UnifiedPOS Version 1.15

Summary 131

CHAPTER 13

ELECTRONIC JOURNAL

This Chapter defines the Electronic Journal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.10 open
CapCompareFirmwareVersion: boolean { read-only } 1.10 open
CapPowerReporting: int32 { read-only } 1.10 open
CapStatisticsReporting: boolean { read-only } 1.10 open
CapUpdateFirmware: boolean { read-only } 1.10 open
CapUpdateStatistics: boolean { read-only } 1.10 open
CheckHealthText: string { read-only } 1.10 open
Claimed: boolean { read-only } 1.10 open
DataCount: int32 { read-only } 1.10 open
DataEventEnabled: boolean { read-write } 1.10 open
DeviceEnabled: boolean { read-write } 1.10 open & claim
FreezeEvents: boolean { read-write } 1.10 open
OutputID: int32 { read-only } 1.10 open
PowerNotify: int32 { read-write } 1.10 open
PowerState: int32 { read-only } 1.10 open
State: int32 { read-only } 1.10 --
DeviceControlDescription: string { read-only } 1.10 --
DeviceControlVersion: int32 { read-only } 1.10 --
DeviceServiceDescription: string { read-only } 1.10 open
DeviceServiceVersion: int32 { read-only } 1.10 open
PhysicalDeviceDescription: string { read-only } 1.10 open
PhysicalDeviceName: string { read-only } 1.10 open

UnifiedPOS Version 1.15

13-2

UnifiedPOS Retail Peripheral Architecture

Chapter 13
Electronic Journal

Properties (Continued)

Specific:

AsyncMode:
CapAddMarker:
CapErasableMedium:
CaplhnitializeMedium:
CapMediumlIsAvailable:
CapPrintContent:
CapPrintContentFile:
CapRetrieveCurrentMarker:

CapRetrieveMarker:

CapRetrieveMarkerByDateTime:

CapRetrieveMarkersDateTime:
CapStation:
CapStorageEnabled:
CapSuspendPrintContent:
CapSuspendQueryContent:
CapWaterMark:
FlagWhenldle:
MediumFreeSpace:
MediumID:
MediumIsAvailable:
MediumSize:

Station:

StorageEnabled:
Suspended:

WaterMark:

Type
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
currency
string
boolean
currency
int32
boolean
boolean

boolean

Mutability
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-only}

{read-write}

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open, claim & enable
open, claim & enable
open, claim & enable
open, claim & enable
open
open, claim & enable
open

open

UnifiedPOS Version 1.15

Summary 13-3
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.10
void { raises-exception }
close (): 1.10
void { raises-exception, use after open }
claim (timeout: int32): 1.10
void { raises-exception, use after open }
release (): 1.10
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }
clearInput (): 1.10
void { raises-exception, use after open, claim }
clearInputProperties (): Not
void { } supported
clearOQutput (): 1.10
void { raises-exception, use after open, claim }
directlO (command: int32, inout data: int32, inout obj: object): 1.10
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }
Specific
Name
addMarker (marker: string): 1.10
void { raises-exception, use after open, claim, enable }
cancelPrintContent (): 1.10
void { raises-exception, use after open, claim, enable }
cancelQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }
eraseMedium (): 1.10
void { raises-exception, use after open, claim, enable }
initializeMedium (mediumlID: string): 1.10
void { raises-exception, use after open, claim, enable }
printContent (fromMarker: string, toMarker: string): 1.10

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-4 Electronic Journal

printContentFile (fileName: string): 1.10
void { raises-exception, use after open, claim, enable }

queryContent (fileName: string, fromMarker: string, toMarker: string): 1.10
void { raises-exception, use after open, claim, enable }

resumePrintContent (): 1.10
void { raises-exception, use after open, claim, enable }

resumeQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

retrieveCurrentMarker (markerType: inf32, out marker: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveMarker (markerType: int32, sessionNumber: int32, document- 1.10
Number: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkerByDateTime (markerType: int32, dateTime: string, 1.10
markerNumber: string, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkersDateTime (marker: string, out dateTime: string): 1.10
void { raises-exception, use after open, claim, enable }
suspendPrintContent (): 1.10

void { raises-exception, use after open, claim, enable }

suspendQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent 1.10
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

UnifiedPOS Version 1.15

General Information 13-5

General Information

The Electronic Journal programmatic name is “ElectronicJournal”.
This device was introduced in Version 1.10 of this specification.

Capabilities

The Electronic Journal device stores records of transactions into digital media as
electronic data. If the recording function of the Electronic Journal device is
enabled, then it starts storing all print data that is output to the POSPrinter or
FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing
output is stored at all times.

The Electronic Journal has the following capabilities.

 Stores transaction data.
 Transfers stored data.

The Electronic Journal may also have the following additional capabilities.
* Prints stored data on the attached POSPrinter or FiscalPrinter.
* Erases stored data.
* Initializes recording medium.

The Electronic Journal may also have the following special capabilities in fiscal
environments.

* Provides the ability to re-print entire fiscal documents and tickets specifying
a range of ticket numbers or ticket dates and times.

UnifiedPOS Version 1.15

13-6

UnifiedPOS Retail Peripheral Architecture

Chapter 13
Electronic Journal

Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal
device classes.

Upos!|
(fro

<<exception>>

Exception
m upos)

<<sends;\

<<event>>
DataEvent
(from events)

< —

<<utility>>

<<Interface>> <<utility>>
BaseControl LprosConst ElectronicJournalConst
(from upos) =} (from upos) (from upos)
<<sends>> <<uses>>

N

\

7
<<uses>>/

<2<<prop>> Status : int32

<<Interface>>
ElectronicJournalControl
(from upos)

fires

<<event>>
ErrorEvent
(from events)

&<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32

w<<prop>> ErrorLocus : int32 fires
&<<prop>> ErrorResponse : int32 <
prop: P! ~—|
<<event>>
OutputCompleteEvent fires
(from events) < |

“<<prop>> OutputD : int32

@<<prop>> AsyncMode : boolean

@<<capability>> CaplnitializeMedium : boolean
<z<<capability>> CapErasableMedium : boolean
<z<<capability>> CapPrintContent : boolean
2<<capability>> CapPrintContentFile : boolean
w<<capability>> CapStation : int32

w@<<capability>> CapSuspendPrintContent : boolean
@<<capability>> CapSuspendQueryContent : boolean
sz<<capability>> CapWaterMark : boolean
<z<<capability>> CapMediumlsAvailable : boolean
2<<capability>> CapRetrieveMarker : boolean
<<<capability>> CapRetrieveMarkerByDateTime : boolean
w<<capability>> CapRetrieveCurrentMarker : boolean
@<<capability>> CapRetrieveMarkersDateTime : boolean
z<<capability>> CapAddMarker : boolean
<z<<capability>> CapStorageEnabled : boolean
2<<prop>> FlagWhenldle : boolean

@<<prop>> MediumID : string

@<<prop>> MediumSize : currency

@<<prop>> MediumFreeSpace : currency

w<<prop>> MediumisAvailable : boolean

s2<<prop>> StorageEnabled : boolean

2<<prop>> Station : int32

<@<<prop>> Suspended : boolean

@<<prop>> WaterMark : boolean

<<event>>
StatusUpdateEvent
(from events)

<i<<prop>> Status : int32

®addMarker(marker : string) : void

ScancelPrintContent () : void

®cancelQueryContent () : void

FinitializeMedium (mediumID : string) : void

SeraseMedium () : void

FprintContent (fromMarker : string, toMarker : string) : void

SprintContentFile (fileName : string) : void

SqueryContent (fileName : string, fromMarker : string, toMarker : string) : void

FresumePrintContent () : void

FresumeQueryContent () : void

#suspendPrintContent () : void

®suspendQueryContent () : void

SretrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
SretrieveMarkerByDate Time(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void
FretrieveCurrentMarker(markerType : int32, out marker : string) : void

FretrieveMarkersDate Time(marker : string, out dateTime : string) : void

UnifiedPOS Version 1.15

General Information

13-7

Model

The Electronic Journal writing process is started implicitly when a printing
method for the POSPrinter or FiscalPrinter is performed. All output is performed
on a first-in first-out basis. Therefore, an ErrorEvent is delivered if the writing
process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in
this case an ErrorEvent is delivered.

* The following methods are always performed synchronously: addMarker,
retrieveCurrentMarker, retrieveMarker, retrieveMarkerByDateTime,
retrieveMarkersDateTime, and checkHealth. These methods will fail if
output to the POSPrinter or FiscalPrinter is outstanding.

* The suspendPrintContent and suspendQueryContent methods are also
always performed synchronously.

These methods attempt to stop printing (that is, at the very next printer
operation). They may be called when asynchronous output is outstanding.
These methods are primarily intended for use in exception conditions when
asynchronous output is outstanding.

* The following methods are performed either synchronously or asynchronously,
depending on the value of the AsyncMode property: eraseMedium,
initializeMedium, printContent, printContentFile, and queryContent.
When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can
be added at the beginning and end of data to indicate the data range when getting
or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by
interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device.
The stored data is organized in sessions that correspond to the fiscal days. These
sessions contain documents that correspond to fiscal tickets. Sessions and
documents can be queried by the application indirectly using the
retrieveMarker, retrieveMarkerByDateTime, and retrieveCurrentMarker
methods. The returned markers are intended to be used with the printContent
and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device
(query) and an output device (store and print).

The data stored on the electronic journal medium are the printing lines that have
been issued to the attached POSPrinter or FiscalPrinter device. The data format of
the stored information depends upon the physical device model. The data should
be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and
HDD can be used as the physical media. There is no need to distinguish the
differences between the physical media.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-8 Electronic Journal

If the recording medium can be removed from or inserted into the device, a
StatusUpdateEvent is delivered when the medium status is changed.
Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no
functions to convert or reprocess the data.

Device Sharing

The Electronic Journal is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Electronic Journal specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device.

e See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

General Information

13-9

Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API
can be used. These scenarios are designed to show the rationale and key concepts
behind the structure of the API.

: Application

: ElectronicJournalControl

: POSPrinterControl

open()

claim()

]

7

T setDeviceEnabled(true) ‘

—

setDataEventEnabled(true) /I—ﬁ

setStorageEnabled(true)

U
U

addMarker(1) ‘

addMarker(2)

write data

\
u‘
|
|

printNormal PTR_SJRECEIPT, "Receipt #2")

1

pri ntNormaI(PTR_S#RECEIPT, "Receipt #1")
(

T queryContent("data.bin", 1, 2)

write data

|
|

notify of DataEvent

—

— |

close()

—

|
i

J
J

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-10 Electronic Journal

The following sequence diagram shows how markers are intended to be used in
the fiscal environment. The querying of the FiscalPrinter device for the needed
markers is processed implicitly and therefore not shown below.

: Application : ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)

I
. Y A

UnifiedPOS Version 1.15

General Information 13-11

Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the
Electronic Journal device.

. printContent(), printContentFile(), queryContent()

N

NormalMode
S .

|
. SuspendMode
/‘ suspendPnntContent()‘k

suspendQueryContent()

resumePrintContént(), cancelPrintContenty(),
resumeQueryContent(), cancelQueryContent()

UnifiedPOS Version 1.15

13-12

UnifiedPOS Retail Peripheral Architecture Chapter 13
Electronic Journal

Properties (UML Attributes)

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.
If false, they will be performed synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is
false for fiscal EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also addMarker Method.

CapErasableMedium Property

Syntax

Remarks

Errors

CapErasableMedium: boolean {read-only, access after open}

If true, the storage medium can be erased. If false, it is impossible.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CaplnitializeMedium Property

Syntax CaplnitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMediumisAvailable Property Updated in Release 1.11
Syntax CapMediumlIsAvailable: boolean { read-only, access after open }
Remarks If true, the application can check whether a recording medium is available or not.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.
See Also MediumlIsAvailable Property.

UnifiedPOS Version 1.15

Properties (UML Attributes) 13-13

CapPrintContent Property Updated in Release 1.11
Syntax CapPrintContent: boolean { read-only, access after open }
Remarks If true, the device is able to reprint stored journal documents directly on a
connected printing device.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also printContent Method.
CapPrintContentFile Property Updated in Release 1.11
Syntax CapPrintContentFile: boolean { read-only, access after open }
Remarks If true, the device is able to print journal documents extracted from the storage
medium on a connected printing device.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also printContentFile Method.

CapRetrieveCurrentMarker Property

Syntax

Remarks

Errors

See Also

CapRetrieveCurrentMarker: boolean {read-only, access after open}

If true, the application can use the retrieveCurrentMarker method. Usually this
property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrieveCurrentMarker Method.

CapRetrieveMarker Property

Syntax

Remarks

Errors

See Also

CapRetrieveMarker: boolean {read-only, access after open}

If true, the application can use the retrieveMarker method. Usually this property
is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrieveMarker Method.

UnifiedPOS Version 1.15

13-14

UnifiedPOS Retail Peripheral Architecture Chapter 13
Electronic Journal

CapRetrieveMarkerByDateTime Property

Syntax
Remarks

Errors

See Also

CapRetrieveMarkerByDateTime: hoolean {read-only, access after open}

If true, the application can use the retrieveMarkerByDateTime method. Usually
this property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrieveMarkerByDateTime Method.

CapRetrieveMarkersDateTime Property

Syntax

Remarks

Errors

See Also

CapRetrieveMarkersDateTime: boolean {read-only, access after open}

If true, the application can use the retrieveMarkersDateTime method. Usually
this property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

retrieveMarkersDateTime Method.

CapStation Property

Syntax

Remarks

Errors

CapStation: in#32 { read-only, access after open }

This capability indicates the availability of data capturing.

CapStation property is a logical OR combination of any of the following values:

Value Meaning

EJ S RECEIPT Captures data output into receipt station and stores it
into the medium.

EJ S SLIP Captures data output into slip station and stores it into
the medium.

EJ S JOURNAL Captures data output into journal station and stores it

into the medium.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapStorageEnabled Property

Syntax

Remarks

Errors

See Also

CapStorageEnabled: boolean { read-only, access after open }

This property indicates whether the recording of print data can be controlled by the
StorageEnabled property, i.e., can be changed. If false, StorageEnabled is
always set to true.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

StorageEnabled Property.

UnifiedPOS Version 1.15

Properties (UML Attributes) 13-15

CapSuspendPrintContent Property

Syntax

Remarks

Errors

See Also

CapSuspendPrintContent: hoolean { read-only, access after open }

If true, the printing process can be suspended.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Suspended Property.

CapSuspendQueryContent Property

Syntax

Remarks

Errors

See Also

CapSuspendQueryContent: boolean { read-only, access after open }

If true, the data acquiring process can be suspended.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Suspended Property.

CapWaterMark Property

Syntax

Remarks

Errors

CapWaterMark: boolean { read-only, access after open }

If true, the device is able to print specific predefined background when reprinting
journal documents.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

FlagWhenldle Property

Syntax

Remarks

Errors

See Also

FlagWhenldle: boolean { read-write, access after open }

If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.
This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the
application control when all outstanding asynchronous outputs have been
processed. The event will be enqueued if the outputs were completed successfully
or if they were cleared by the clearOutput method or by an ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a
StatusUpdateEvent is enqueued immediately. The application can therefore
depend upon the event, with no race condition between the starting of its last
asynchronous output and the setting of this flag.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

State Property, clearOutput Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-16 Electronic Journal

MediumFreeSpace Property
Syntax MediumFreeSpace: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the remained free space on the storage medium in bytes. After
each storing process caused by printing with POSPrinter or FiscalPrinter device,
this value is decreased. It notifies StatusUpdateEvent when free space is near
empty or empty.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

MediumiD Property

Syntax MediumlID: string { read-only, access after open-claim-enable }
Remarks This property indicates identification of the currently plugged medium. It holds a
value from the physical medium, so is initialized when enabled.

If it is not possible to obtain any information from the physical medium, then this
property is initialized to an empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

MediumisAvailable Property Updated in Release 1.11

Syntax MediumlIsAvailable: boolean { read-only, access after open-claim-enable }
Remarks Indicates whether a recording medium is attached or not. This information is only
available if CapMediumlIsAvailable is true.
If true, a recording medium is attached. If false, it is not attached.
If the storage medium is not exchangeable, this property is always set true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CapMediumlIsAvailable Property.
MediumSize Property
Syntax MediumsSize: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the storage medium in bytes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Station Property
Syntax Station: int32 { read-write, access after open }

Remarks Set the station for subsequent data storing into the medium. Station is a logical OR
combination of any of the following values.
Value Meaning

EJ S RECEIPT Captures data output into receipt station of POSPrinter
or FiscalPrinter and stores it into the medium.

UnifiedPOS Version 1.15

Properties (UML Attributes) 13-17

EJ S SLIP Captures data output into slip station of POSPrinter or
FiscalPrinter and stores it into the medium.
EJ S JOURNAL Captures data output into journal station of POSPrinter

or FiscalPrinter and stores it into the medium.
This property is initialized to EJ S RECEIPT by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
StorageEnabled Property Updated in Release 1.11
Syntax StorageEnabled: boolean { read-write, access after open-claim-enable }
Remarks If true, the device is in a recordable state. Data output to the POSPrinter or
FiscalPrinter is stored on the medium as electronic information sequentially. The
Station property must be specified in advance to specify what station is available
to record.
If false, the device has been disabled to record data.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E _FAILURE The device cannot move to the recordable state.

See Also Station Property.

Suspended Property

Syntax
Remarks

Errors

See Also

Suspended: boolean { read-only, access after open }
If true, the printing or data acquiring process is being suspended.

When both CapSuspendPrintContent and CapSuspendQueryContent are
false, there is no application to suspend a process. Then this property is always set
to false.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSuspendPrintContent Property, CapSuspendQueryContent Property.

WaterMark Property

Syntax
Remarks

Errors

WaterMark: boolean { read-write, access after open }

This property specifies whether a specific predefined background should be
printed or not with journal documents. If true, the background is printed and it is
clear that the output is a reprint of the stored data.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-18 Electronic Journal

Methods (UML operations)

addMarker Method

Syntax addMarker (marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

marker Marker identifier.
Remarks Adds a marker at the end of the data stored on the recording medium.

Specifies index numbers as arguments to specify the data range when acquiring
data as a file or printing data on the connected POSPrinter or FiscalPrinter system.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Characters that cannot be used as marker are included,
or the character string is too long to be used as the
marker.

E BUSY Request cannot be performed while output is in

progress. (This includes when the POSPrinter or
FiscalPrinter is busy printing.)

E _EXTENDED ErrorCodeExtended = EE] EXISTING:
The marker name is already specified in current
medium.

ErrorCodeExtended = EE] MEDIUM FULL:
There is not enough free space to add a marker in current
medium.

cancelPrintContent Method

Syntax cancelPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancels the suspended data printing process.
If this method is performed successfully, remaining data is not printed.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
cancelQueryContent Method

Syntax cancelQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancel the suspended data transfer process.
If this method is performed, no file to store data is created.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Methods (UML operations) 13-19

eraseMedium Method

Syntax

Remarks

Errors

See Also

eraseMedium ():
void { raises-exception, use after open-claim-enable }

All the data in this medium is erased. Marker information is erased too.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

When performed asynchronously, the results are notified with an event. If the
method succeeds and OutputCompleteEvent is delivered, otherwise an
ErrorEvent will be delivered.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE Failed to erase data.
AsyncMode Property.

initializeMedium Method

Syntax

Remarks

Errors

See Also

initializeMedium (mediumID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

mediumID medium identifier.

Initializes the recording medium. At this time the application can give the medium
a name expressed as character string.

If the medium is not namable, the MediumID property is set to an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

When performed asynchronously, the results are notified with an event. If the
method succeeds and OutputCompleteEvent is delivered, otherwise an
ErrorEvent will be delivered.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cannot perform while output is in progress. (This
includes when the POSPrinter or FiscalPrinter is busy
printing.)

AsyncMode Property, MediumID Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13

13-20 Electronic Journal
printContent Method Updated in Release 1.11
Syntax printContent (fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
fromMarker Marker identifier that indicates start position of the data.

Specifying an empty string means specifying the data at
the beginning of the recording medium.
toMarker Marker identifier that indicates end position of the data.
Specifying an empty string means specifying the data at
the end of the recording medium.
Remarks Prints the current journal document stored in the recording medium onto the
connected printer. This method is only supported if CapPrintContent is true.

Specifying an empty string for the fromMarker means specifying the data at the
beginning of the recording medium. Specifying an empty string for the toMarker
means specifying the data at the end of the recording medium.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

When performed asynchronously, the results are notified with an event. If the
method succeeds and OutputCompleteEvent is delivered, otherwise an
ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also AsyncMode Property, CapPrintContent Property.

printContentFile Method Updated in Release 1.11
Syntax printContentFile (fileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
fileName Name of the file that contains printing data.

Remarks Prints the journal document included in the file acquired from the recording
medium onto the connected printer system. The whole data included in the file is
printed. This method is only supported if CapPrintContentFile is true.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

When performed asynchronously, the results are notified with an event. If the
method succeeds and OutputCompleteEvent is delivered, otherwise an
ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL fileName contains invalid characters.
E_NOEXIST fileName was not found.

See Also AsyncMode Property, CapPrintContentFile Property.

UnifiedPOS Version 1.15

Methods (UML operations) 13-21

queryContent Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

queryContent (fileName: string, fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fileName Name of the file that stores acquired data.
fromMarker Marker identifier that indicates start position of the data.

Specifying an empty string means specifying the data at
the beginning of the recording medium.

toMarker Marker identifier that indicates end position of the data.
Specifying an empty string means specifying the data at
the end of the recording medium.

Retrieves the data that has been stored on the electronic journal medium and
transfers it to the file fileName.

If AsyncMode is false, then queryContent operates synchronously.

If AsyncMode is true, the content querying process is performed asynchronously.
The method will initiate the querying and then return immediately. Once the
storing of the queried content data is successfully completed, a DataEvent is
delivered to the application. If the method fails, an ErrorEvent is delivered.

Specifying an empty string for the fromMarker means specifying the data at the
beginning of the recording medium. Specifying an empty string for the toMarker
means specifying the data at the end of the recording medium.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Value Meaning

E BUSY Cannot perform while output is in progress. (This
includes when the POSPrinter or FiscalPrinter is busy
printing.)

E_EXISTS The file defined in fileName already exists.

E ILLEGAL fileName contains invalid characters.

AsyncMode Property.

resumePrintContent Method

Syntax

Remarks

Errors

resumePrintContent ():
void { raises-exception, use after open-claim-enable }

Resumes the suspended data printing process.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

resumeQueryContent Method

Syntax

Remarks
Errors

resumeQueryContent ():
void { raises-exception, use after open-claim-enable }
Resume the suspended data transfer process.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-22 Electronic Journal

retrieveCurrentMarker Method

Syntax retrieveCurrentMarker (markerType: int32, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

markerType specifies the type of the queried current marker, see
values below.

marker contains the return value, the implementation specific
marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT_SESSION_ BEG The marker for the last completed begin of a session is
returned.

EJ MT_SESSION_END The marker for the last completed end of a session is
returned.

EJ MT DOCUMENT The marker for the last completed document or ticket is
returned.

EJ MT HEAD The first implicitly stored marker on the EJ medium is
returned.

EJ MT TAIL The last implicitly stored marker on the EJ medium is
returned.

Remarks Returns the last implicitly stored marker. The queried marker is specified by the
parameter markerType. The marker is returned in the parameter marker. The
format and content of the string representing a marker is implementation specific
and has not to be known or analyzed by the application. The returned marker can
be used as an input parameter for the printContent and queryContent methods.

The values E]. MT HEAD and EJ] MT TAIL are intended to address the entire
contents of the EJ medium.

This method is only supported if CapRetrieveCurrentMarker is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The parameter markerType contains an invalid value.
E NOEXIST A marker does not exist for the specified marker type.

See Also CapRetrieveCurrentMarker Property, printContent Method, queryContent
Method.

UnifiedPOS Version 1.15

Methods (UML operations) 13-23

retrieveMarker Method

Syntax

Remarks

Errors

See Also

retrieveMarker (markerType: in#32, sessionNumber: int32,
documentNumber: inf32, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

markerType specifies the type of the queried marker, see values
below.

sessionNumber contains the number of the session the marker is queried

for. If a session concept is not supported by the device
then this parameter has to be set to an invalid value less
than zero.

documentNumber contains the number of the document the marker is
queried for. If markerType is E]_MT_SESSION BEG
or EJ MT SESSION_END, then this parameter is
ignored.

marker contains the return value, the implementation specific
marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT _SESSION BEG A marker for begin of a session is queried.
EJ MT SESSION_END A marker for end of a session is queried.
EJ MT DOCUMENT A marker for a document or ticket is queried.

Returns a marker implicitly stored on the record medium. The queried marker is
specified by the parameters markerType, sessionNumber, and documentNumber.
The marker is returned in the parameter marker. The format and content of the
string representing a marker is implementation specific and has not to be known
or analyzed by the application. The returned marker is intended to be used as an
input parameter for the printContent and queryContent methods.

TIn case of a fiscal EJ device, the sessionNumber corresponds to a fiscal day
counter number returned by the FiscalPrinter device (see the getData parameter
value FPTR_GD_Z REPORT). In the same way the documentNumber
corresponds to a fiscal ticket number.

This method is only supported if CapRetrieveMarker is true.
This method is usually used for fiscal EJ devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the parameters is invalid. Either the value in
markerType does not exist.

E NOEXIST A marker does not exist for the specified parameter
values.

CapRetrieveMarker Property, printContent Method, queryContent Method,
and the getData Method of the FiscalPrinter device category.

UnifiedPOS Version 1.15

13-24

UnifiedPOS Retail Peripheral Architecture Chapter 13
Electronic Journal

retrieveMarkerByDateTime Method

Syntax

Remarks

Errors

See Also

retrieveMarkerByDateTime (markerType: int32, dateTime: string,
markerNumber: string, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

markerType specifies the type of the queried marker, see values
below.

dateTime The date-time period the marker is queried for. The

format of dateTime is ‘“YYYYMMDDhhmmss’. If the
application is not able to specify the hours, minutes, and/
or seconds, then these fields can be omitted.

markerNumber If more than one marker exists of the requested type for
the time period given by the dateTime parameter, then
this parameter specifies the number of the marker which
has to be queried. Starts at 1 and is continuously
incremented by one for each marker.

marker contains the return value, the implementation specific
marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT_SESSION_BEG The marker for the begin of a session is queried.
EJ MT_SESSION_END The marker for the end of a session is queried.
EJ MT DOCUMENT The marker for a document is queried.

Returns a marker implicitly stored on the record medium. The queried marker is
specified by the parameters markerType, dateTime, and markerNumber. The
marker is returned in the parameter marker. The format and content of the string
representing a marker is implementation specific and has not to be known or
analyzed by the application. The returned marker can be used as an input
parameter for the printContent and queryContent methods.

This method is only supported if CapRetrieveMarkerByDateTime is true.
This method is usually used for fiscal EJ devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the parameters is invalid. The value in
markerType does not exist, dateTime is invalid, or the
markerNumber does not exist for the specified time

period.
E NOEXIST A marker does not exist for the specified time period.
E_EXTENDED ErrorCodeExtended = EE]_ MULTIPLE MARKER:
More than one marker exists for the specified time
period.

CapRetrieveMarkerByDateTime Property, printContent Method,
queryContent Method.

UnifiedPOS Version 1.15

Methods (UML operations) 13-25

retrieveMarkersDateTime Method

Syntax

Remarks

Errors

See Also

retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

marker specifies the marker for which the time has to be
determined.

dateTime contains the return value, the date and time string of the

given marker.

Returns the date and time of the given marker. The marker has either to be
instantiated by the application using addMarker, or it has to be queried by the
application using retrieveMarker or retrieveCurrentMarker. The determined
date-time is returned as a string in the marker parameter with the format
YYYYMMDDhhmmss. If the hours, minutes, and/or seconds can not be determined
then they are filled with question marks (?).

This method is only supported if CapRetrieveMarkersByDateTime is true.
This method is usually used for fiscal EJ devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The parameter marker contains an invalid marker.

CapRetrieveMarkersByDateTime Property, addMarker Method,
retrieveCurrentMarker Method, retrieveMarker Method.

suspendPrintContent Method

Syntax

Remarks

Errors

See Also

suspendPrintContent ():
void { raises-exception, use after open-claim-enable }

This suspends data transfer from the device, then move to suspended state. It must
be called when asynchronous output is outstanding. This method is primarily
intended for use in exception conditions when asynchronous output is outstanding,
such as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is
delivered.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Value Meaning
E ILLEGAL It’s not in the printing cycle.
Suspended Property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-26 Electronic Journal

suspendQueryContent Method

Syntax suspendQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks This method suspends data transfer from the device, then move to suspended state.
This method is primarily intended for use in exception conditions when
asynchronous output is outstanding, such as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is
notified.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also Suspended Property.

UnifiedPOS Version 1.15

Events (UML Interfaces) 13-27

Events (UML Interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

DirectlOEvent

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that the storing of the queried Electronic Journal content
to a host file is completed.

This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

This event is delivered after an asynchronous queryContent method call, when
DataEventEnabled is set true.

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Electronic Journal Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendors’ Electronic Journal devices which may not
have any knowledge of the Service’s need for this event.

“Events" on page Intro-20, directIO Method.

UnifiedPOS Version 1.15

13-28

UnifiedPOS Retail Peripheral Architecture Chapter 13
Electronic Journal

ErrorEvent

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that an Electronic Journal device error has been detected
and that a suitable response by the application is necessary to process the error
condition.

Concrete ErrorEvent notifications are delivered under the following conditions:

* When the POSPrinter or FiscalPrinter device asynchronously performs
printing jobs which include writing to the Electronic Journal media and this
writing fails.

* When the queryContent method fails in asynchronous mode

¢ When one of the methods - initializeMedium, eraseMedium,
printContent, printContentFile - is performed in asynchronous mode and
fails.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL _INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

EL OUTPUT Error occurred while processing asynchronous output.

If ErrorCode is E EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EEJ UNINITIALIZED MEDIUM The medium is not initialized

UnifiedPOS Version 1.15

Events (UML Interfaces) 13-29

Remarks

See Also

EEJ CORRUPTED MEDIUM The medium or data on the media is
corrupted and can not be used.

EEJ] UNKNOWN_DATAFORMAT The medium has an unknown or
unsupported format.

EEJ NOT _ENOUGH _SPACE There is not enough free space in the
medium to store data.
EEJ MULTIPLE_MARKERS More than one marker has been requested,

but only one can be returned.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER _CLEAR Clear all buffered output data including all
asynchronous output. (The effect is the same as calling
clearInput.) The error state is exited. Default when
locus is EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT DATA.
Acknowledges the error and directs the Control to
continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled
property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus is
EL _INPUT DATA.

ER RETRY Typically valid only when locus is EL_ OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.

Default when locus is EL_OUTPUT.

Input error events are generated when errors occur while reading the data from
the Electronic Journal device. Such events are not delivered until the
DataEventEnabled property is set to true so as to allow proper application
sequencing. All error information is placed into the applicable properties before
the event is delivered.

Output error events are generated and delivered when an error occurs during
asynchronous output processing. All error information is placed into the
applicable properties before the event is delivered.

“Events" on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 13
13-30 Electronic Journal

OutputCompleteEvent

<<event >> upos::events::QutputCompleteEvent
OutputlID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputlD attribute has completed successfully.

Concrete QOutputCompleteEvent notifications are delivered under the following
conditions:
¢ When one of the methods - initializeMedium, eraseMedium,
printContent, printContentFile - is performed in asynchronous mode
and succeeds.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that it was processed by the device successfully.

See Also “Device Output Models" on page Intro-26.
StatusUpdateEvent Updated in Release 1.12

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Electronic Journal
device.
Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the Electronic Journal
device.

The Status attribute may be one of the following values:
Value Meaning

EJ SUE MEDIUM NEAR FULL The medium is nearly full (that is, its free
space is low.

EJ SUE MEDIUM FULL Storage medium is full.

EJ SUE MEDIUM_REMOVED Medium was removed from the device.

EJ SUE MEDIUM INSERTED Medium was inserted into the device.

EJ SUE _SUSPENDED Data printing or transfer was suspended.

EJ SUE IDLE All asynchronous output has finished,
either successfully or because output has
been cleared. The Electric Journal State is
now S_IDLE. The FlagWhenldle property
must be true for this event to be delivered,
and is automatically reset to false just
before the event is delivered.

Remarks Fired when the status of an Electronic Journal changes.

See Also “Events" on page Intro-20.

UnifiedPOS Version 1.15

Summary 141

CHAPTER 14

Electronic Value Reader / Writer

This Chapter defines the Electronic Value Reader / Writer device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 open
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: String { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 open
DataEventEnabled: boolean { read-write } 1.12 open
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 open
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 --
DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

UnifiedPOS Version 1.15

14-2

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

Specific

CapActivateService:

CapAdditionalSecurityInforma-

tion:

CapAddValue:
CapAuthorizeCompletion:
CapAuthorizePreSales:
CapAuthorizeRefund:
CapAuthorizeVoid:
CapAuthorizePreSales:
CapCancelValue:
CapCardSensor:
CapCashDeposit:
CapCenterResultCode:
CapCheckCard:
CapDailyLog:
CapDetectionControl:
CapElectronicMoney:

CapEnumerateCardServices:

CaplndirectTransactionLog:

Caplnstallments:
CapLockTerminal:
CapLogStatus:
CapMediumlID:
CapMembershipCertificate
CapPaymentDetail:
CapPINDevice:
CapPoint:
CapSubtractValue:
CapTaxOthers:
CapTrainingMode:
CapTransaction:
CapTransactionLog:
CapTransactionNumber:
CapUnlockTerminal:
CapUpdateKey:
CapVoucher:
CapWriteValue:

Type
boolean

boolean

boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

boolean
boolean
boolean
boolean
int32

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

Mutability
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version May Use After
1.12 open
1.15 open
1.12 open
1.15 open
1.15 open
1.15 open
1.15 open
1.15 open
1.12 open
1.12 open
1.15 open
1.15 open
1.15 open
1.15 open
1.12 open
1.12 open
1.12 open
1.12 open
1.15 open
1.12 open
1.12 open
1.12 open

1.14.1 open
1.15 open
1.14 open
1.12 open
1.12 open
1.15 open
1.14 open
1.12 open
1.12 open
1.15 open
1.12 open
1.12 open
1.12 open
1.12 open

UnifiedPOS Version 1.15

Summary

14-3

AccountNumber:

AdditionalSecurityInformation:

Amount:
ApprovalCode:
AsyncMode:
Balance:
BalanceOfPoint:
CardCompanylD:
CardServiceList:
CenterResultCode:
CurrentService:
DailyLog:
DetectionControl:
DetectionStatus:
ExpirationDate:
LastUsedDate:
LogStatus:
MediumlID:
PaymentCondition:
PaymentDetail:
PaymentMedia:
PINEntry:

Point:

ReaderWriterServiceList:

ServiceType
SequenceNumber:
Settled Amount:
SettledPoint:
SlipNumber:
TrainingModeState

TransactionLog:

TransactionNumber:

TransactionType:
VoucherID:
VoucherIDList:

string
string
currency
string
boolean
currency
currency
string
string
string
string
string
boolean
int32
string
string
int32
string
int32
string
int32
int32
currency
string
int32
int32
currency
currency
string
int32
string
string
int32
string

string

{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-write }

{ read-write }

1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.15
1.12
1.15
1.12
1.15
1.12
1.12
1.12
1.12
1.12
1.12
1.15
1.15
1.15
1.14
1.12
1.12
1.14.1
1.12
1.12
1.12
1.15
1.14
1.12
1.15
1.15
1.12
1.12

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

open

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-4 Electronic Value Reader / Writer

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.12
void { raises-exception }

close (): 1.12
void { raises-exception, use after open }

claim (timeout: int32): 1.12
void { raises-exception, use after open }

release (): 1.12
void { raises-exception, use after open, claim }

checkHealth (level: inz32): 1.12
void { raises-exception, use after open, enable }

clearInput (): 1.12
void { }

clearInputProperties (): 1.12
void { }

clearOutput (): 1.12
void { }

directlO (command: int32, inout data: inz32, inout obj: object): 1.12

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.12
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.12
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.12
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32): void 1.15
{ raises-exception, use after open, claim, enable }

accessData (dataType: int32, inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

accessLog (sequenceNumber: int32, type: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

activateEVService (inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

activateService (inout data: int32, inout obj: object): 1.12
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

Summary 14-5

addValue (sequenceNumber: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: inf32, amount: currency, taxOth- 1.15
ers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers: 1.15
currency, timeout: int32):

void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers: 1.15
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers: 1.15
currency, timeout: int32):

void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: 1.15
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency, 1.15
taxOthers: currency, timeout: int32):

void { raises-exception, use after open, claim, enable }

beginDetection (type: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

beginRemoval (timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

cancelValue (sequenceNumber: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

captureCard (): 1.12

void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32): 1.15
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32): 1.15
void { raises-exception, use after open, claim, enable }
checkServiceRegistrationToMedium(sequenceNumber: int32, 1.14.1

timeout: int32):
void { raises-exception, use after open, claim, enable }

clearParameterInformation (): 1.14
void { raises-exception, use after open, claim, enable }

closeDailyEVService (inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

deactivateEVService (inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

endDetection (): 1.12
void { raises-exception, use after open, claim, enable }

endRemoval (): 1.12
void { raises-exception, use after open, claim, enable }

enumerateCardServices (): 1.12
void { raises-exception, use after open, claim, enable }

lockTerminal (): 1.12

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-6 Electronic Value Reader / Writer

openDailyEVService (inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

queryLastSuccessfulTransactionResult (): 1.14
void { raises-exception, use after open, claim, enable }

readValue (sequenceNumber: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

registerServiceToMedium (sequenceNumber: int32, timeout: int32): 1.14.1
void { raises-exception, use after open, claim, enable }

retrieveResultInformation (name: string, inout value: string): 1.14
void { raises-exception, use after open, claim }

setParameterInformation (name: string, value: string): 1.14
void { raises-exception, use after open, claim }

subtractValue (sequenceNumber: inz32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

transactionAccess (control: int32): 1.12
void { raises-exception, use after open, claim, enable }

unlockTerminal (): 1.12

void { raises-exception, use after open, claim, enable }

unregisterServiceToMedium (sequenceNumber: int32, timeout: int32): 1.14.1
void { raises-exception, use after open, claim, enable }

updateData (dataType: int32, inout data: int32, inout obj: object): 1.14.1
void { raises-exception, use after open, claim, enable }

updateKey (inout data: int32, inout obj: object): 1.12
void { raises-exception, use after open, claim, enable }

writeValue (sequenceNumber: int32, timeout: int32): 1.12
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

Summary 14-7
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.12
Status: int32 { read-only }
upos::events::DirectlOEvent 1.12
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.12
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::QutputCompleteEvent 1.12
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.12
Status: int32 { read-only }
upos::events::TransitionEvent 1.15
EventNumber: int32 { read-only }
pData: int32 { read-write }
pString: string { read-write }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-8 Electronic Value Reader / Writer

General Information

The Electronic Value Reader / Writer programmatic name is
“ElectronicValueRW”.

This device was introduced in Version 1.12 of the specification.

Electronic value is defined as a collection of services such as electronic money,
points, and voucher/ticket, maintained on a contact-less or contact IC card (this is
referred to as ‘card’ in the following sections). The Electronic Value Reader /
Writer device is a device that offers the capability to hold the settlement addition,
subtraction, setting, and reading electronically.

The electronic money service supports the post-paid type electronic money
settlement, pre-paid type electronic money settlement, the credit card settlement,
and the debit card settlement.

The point service maintains (can add or subtract) points directly on the card.
Alternatively, the points may be stored in another location and only a reference is
maintained on the card.

The voucher/ticket service maintains two or more identifiers that validate the card
holder. The card holder can receive and exchange the value at any time. The
service provider can provide value to the card holder at its discretion.

Capabilities

The Electronic Value Reader / Writer (EVR/W) has the following set of
capabilities:
* Access the card for the settlement.

e Read/write the content of electronic value that can be used for the settlement
from the card.

* Execute the settlement service using electronic value.

e Accumulate the result of the settlement in the device as a log.

UnifiedPOS Version 1.15

General Information

14-9

Added in Release 1.14

The following functionality was added for Release 1.14.

The EVR/W specification up to release 1.13 did not define the syntax and
semantics of the settlement information specified as a device or service. Each
device has the ability to define the syntax of the settlement information in the
AdditionalSecurityInformation property. Release 1.14 adds the syntax and
semantics necessary to convey the settlement information which previously was
available only through the DirectlO method and event structures. This hindered
compatibility and with the following properties, methods, and events serves to
rectify this shortcoming.

In addition to updates to the device category, the following Properties, Methods,
and Events are added:

* A CapPINDevice property to indicated if the EVR/W is equipped with a PIN
pad entry device.

* A CapTrainingMode property to indicated if the EVR/W supports an
operator training function mode.

* A PINEntry property which defines the PIN functionality supported by the
EVR/W device.

* A TrainingModeState property which provides information if the device is
in training mode or run mode.

* A clearParameterInformation method to clear all device tag values.

* A queryLastSuccessfulTransactionResult method that is used to refresh the
property values from the last device function operation.

* AretrieveResultInformation method that associates a tag name with a data
value that is read.

* AsetParameterInformation method that is used to associate a tag name with
additional data value parameters for a card.

* A TransitionEvent which is a new event only for the EVR/W device in order
to support communicating asynchronous I/O operation status between the
application and the EVR/W device.

In addition to updates to the device category, the following Properties were
updated:

e The MediumlID property which is used to specify unique information about
the card.

¢ The Settled Amount property which contains the real amount of the
settlement by the electronic money service.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-10 Electronic Value Reader / Writer

Added in Release 1.14.1

After the release of 1.14, additional changes were required based upon extensive
testing of the updated specification. These include the following:

<LInterface>> EVRWControl(from upos)

<<capability>> CapActivateService: boolean
<<capability>> CapAddValue: boolean

<Lutility>> <<capability>> CapCancelValue: boolean
UposConst <<capability>> CapCardSensor: int32
(from upos) Kuses>> <<capability>> CapDetectionStatus: int32

<<capability>> CapElectronicMoney: boolean
<<capability>> CapEnumerateCardServices: boolean
<<capability>> CaplndirectTransactionLog: boolean
<<capability>> CapLockTerminal: boolean
<<capability>> CaplLogStatus: boolean

<<exception>> <<capability>> CapMediumID: boolean
UposException <<capability>> CapMembershipCertificate: boolean
(from upos) {Csends>> <<capability>> CapPINDevice: boolean
< bility>> CapPoint: boolean

<<capability>> CapSubtractValue: boolean
<<capability>> CapTrainingMode: boolean
<<capability>> CapTransaction: boolean
<<capability>> CapTransactionLog: boolean
<<capability>> CapUnlockTerminal: boolean
<<capability>> CapUpdateKey: boolean
<<capability>> CapVoucher: boolean

<<event>> <<capability>> CapWriteValue: boolean
DataEvent <<prop>> AccountNumber: string
(from upos) fires <<prop>> AdditionalSecuritylnformation: string

<<prop>> Amount: currency
<<prop>> ApprovalCode: string
<<prop>> AsyncMode: boolean
<<prop>> Balance: currency
<<prop>> BalanceOfPoint: currency

<<Levent>> <<prop>> CardServicelList: string
DirectlOEvent <<prop>> CurrentService: string
(from upos) fires <<prop>> DetectionControl: boolean
<<prop>> DetectionStatus: int32
<<prop>> ExpirationDate: string
<<prop>> LastUsingDate: string
<<prop>> LogStatus: int32
<<prop>> MediumlID: string
<Levent>> <<prop>> PINEntry: int32
ErrorEvent <<prop>> Point: currency
(from upos) fires <<prop>> ReaderWriterServicelList: string
<<prop>> SequenceNumber: int32
<<prop>> ServiceType: int32
<<prop>> SettledAmount: currency
<<prop>> SettledPoint: currency
<<prop>> TrainingModeState: int32
<Levent>> fi <<prop>> TransactionLog: string
OutputComplete res <<prop>> VoucherID: string
(froErr\:eunptos) <<prop>> VoucherIDList: string
accessData (dataType:int32, inout data: int32, inout obj: object): void
accesslLog (sequenceNumber: int32, type: int32, timeout: int32):void
activateEVService (inout data: int32, inout obj: object):void
activateService (inout data: int32, inout obj: object):void
addValue (sequenceNumber: int32, timeout: int32):void
<Levent>> beginDetection (type: int32, timeout: int32):void
StatusUpdateEvent fires beginRemoval (timeout: int32):void

(from upos) cancelValue (sequenceNumber: int32, timeout: int32):void

captureCard ():void

checkServiceRegistrationToMedium (sequenceNumber: int32, timeout: int32): void
clearParameterInformation():void

closeDailyEVService (inout data: int32, inout obj: object): void
deactivateEVService (inout data: int32, inout obj: object): void
endDetection ():void

fires endRemoval ():void

enumerateCardServices ():void

lockTerminal ():void

openDailyEVService (inout data: int32, inout obj: object): void
querylLastSuccessfulTransactionResult ():void

readValue (sequenceNumber: int32, timeout: int32):void
registerServiceToMedium(sequenceNumber: int32, timeout: int32): void
retrieveResultinformation (name: string, inout value: string):void

<<event>>
TransitionEvent
(from upos)

setParameterInformation(name: string, in value: string):void
subtractValue (sequenceNumber: int32, timeout: int32):void
transactionAccess (control: int32):void

unlockTerminal ():void

unregisterServiceToMedium(sequenceNumber: int32, timeout: int32): void
updateData (dataType:int32, inout data: int32, inout obj: object): void
updateKey (inout data: int32, inout obj: object):void

writeValue (sequenceNumber: int32, timeout: int32):void

UnifiedPOS Version 1.15

General Information

14-11

Updated the Model to include new services: Point, Voucher/Ticket,
Membership Certificate, and Common along with their service capabilities
and corresponding methods dependability.

Addition of a description of the Life cycle of a Sub-Service

Addition of description of the variations of the service dependent upon
behavior of a store or a location.

Addition of description of how the EVR/W device interacts with a payment
center.

Added an updated Error model that more completely describes the EVR/W
error conditions and reporting structure.

Added the CapMembershipCertificate capability property.
Updated the CardServiceList property variations description.
Updated the CurrentService property variations description.
Added the ServiceType property.

Updated the ReaderWriterServiceList property variations description.
Added the accessData method.

Updated the accessLog method consistency information.
Added the activateEVService method.

Added the checkServiceRegistrationToMedium method.
Added the closeDailyEVService method.

Added the deactivateEVService method.

Updated the lockTerminal method.

Added the openDailyEVService method.

Added the registerServiceToMedium method.

Updated the retrieveResultInformation method by additional tags and
values and enumeration tag values.

Updated the unlockTerminal method with changes to the Remarks section.
Added the unregisterServiceToMedium method.

Added the updateData method.

Updated the updateKey method.

Updated the TransitionEvent by adding two new event type identifiers.

Corrected formatting issues throughout the chapter.

UnifiedPOS Version 1.15

14-12

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Added in Release 1.15

In order to support devices supporting credit payment function, version 1.15
included the CAT specification in the electronic value reader / writer
specification.

The following added properties and methods conform to the CAT specification,
so please refer to the description of the CAT device specification.

Added the CapAdditionalSecurityInformation capability property.
Added the CapAuthorizeCompletion capability property.
Added the CapAuthorizePreSales capability property.
Added the CapAuthorizeRefund capability property.
Added the CapAuthorizeVoid capability property.

Added the CapAuthorizeVoidPreSales capability property.
Added the CapCashDeposit capability property.

Added the CapCenterResultCode capability property.
Added the CapCheckCard capability property.

Added the CapDailyLog capability property.

Added the Caplnstallments capability property.

Added the CapPaymentDetail capability property.
Added the CapTaxQOthers capability property.

Added the CapTransactionNumber capability property.
Added the CardCompanyID property.

Added the CenterResultCode property.

Added the DailyLog property.

Added the LogStatus property.

Added the PaymentCondition property.

Added the PaymentDetail property.

Added the PaymentMedia property.

Added the SlipNumber property.

Added the TransactionNumber property.

Added the TransactionType property.

UnifiedPOS Version 1.15

General Information 14-13

e Added the accessDailyl.og method.

e Added the authorizeCompletion method.

* Added the authorizePreSales method.

* Added the authorizeRefund method.

* Added the authorizeSales method.

e Added the authorizeVoid method.

¢ Added the authorizeVoidPreSales method.
e Added the cashDeposit method.

* Added the checkCard method.

The TrainingMode property of the CAT specification corresponds to the TrainingModeState property
defined in the electronic value reader / writer specification. To deal with credit processing, the
following tag definitions and TransitionEvent event definitions have been added.
* Updated the retrieveResultInformation method by adding additional tags,
values and enumeration tag values.

* Updated the TransitionEvent by adding five new event type values.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
1414 Electronic Value Reader / Writer

EVRW Class Diagram

The following diagram shows the relationships between the EVR/W classes.

Updated in Release 1.15.

UnifiedPOS Version 1.15

General Information

14-15

<{Interface>? EVRWControlifrom upos)

CLutility>>
UposConst
(from upos) {{uses>>
<
<<exception?>
UposException
(from upos) {{sendsr>
<
<
{lavants
DataEvent
(from upos) fires
<
<leventsr
DirectiDEvent
(from upos) fires
-
-
{Leventy>
ErrorEvent
(from upos) fires
<
<<avents>
QutputGomplets fires
Event
(from upos) -
<levents>
StatusUpdateEvent
(from upos) fires
-
-
leventi
TransitienEvent
{from upos) fires
<

<<capability>> CapActivateService: boolean
<<capability>> CapAdditional Securitylnformation: boolean
<{capability>> CapAddValue: boaolean
<Leapability>> CapAuthorizeCompletion: boolean
<Loapability>> CapAuthorizePreSales: boolean
<<capabiity>> CapAuthorizeRefund: boolean
<<capabiity>> CapAuthorizeVoid: boolean
<<capability>> CapAuthorizaVaidPreSales: boolean
<¥capability>> CapCancelValue: int32
<<capability>> CapCardSenser. intd2
<Ceapability>> CapCashDeposit: boolean
<<capabiity>> CapGenterResultCode: boolean
<<capabiity>> CapCheckGard: boolean
<<capabiity>> CapDailylLog: int32
<{capability>> CapDetectionStatus: intd2
{{capability>> CapElectronicMeney: boolean
<<capability>> CapEnumerateCardServices: boolean
<<Leapability>> Caplndirect TransactionLog boolean
<<capabiity>> Caplnstallments: boolean
<<gapability>> CapLockTerminal: boolean
<<capability>> CaplogStatus: boolean
<<capability>> CapMediumiD: boclean
<<capability>> CapMembershipCertificate: boclean
<<capability>> CapPaymentDetail: boolean
<Loapability>> CapPINDevice: boolean
<Leapability>> CapPeint: boolean

<<capabiity>> CapSubtractValue: boolsan
<<capability>> CapTaxOthars: boolaan
<¥capability>> CapTrainingMede: boolean
<<capability>> CapTransaction: boolean
<<capability>> CapTransactionLog: boolean
<<eapabiity>> CapTransactionNumber: boolean
<<capabiity>> CapUnlockTerminal: boolean
<<capability>> CaplUpdateKey: boalzan
<<capabiity>> CapVoucher: boolean
<{capability>> CapWriteValue: boclean

{{prop»» AccountMumber. string

<<proprr AdditionalSecuritylnformation: string
C{prop»> Amounl: eurrency

<{prop>> ApprovalCode: string

<{props> AsyncMode: boolean

<Cpropr>» Balance: currency

<<{prop>> BalanceOfPaint: currency

{{prop>» CardCompanylD: string

<<{prop>> CardServicelist: string

<Lprop»> CenterResultCode: string

<<prop>» CurrentService: string

<<prop>> DailyLeg string

<<propr» DetectionGontrol: boolean

<4props» DetectionStatus: int32

{<prop»> ExpirationDate; string

<Lprop»> LastUsingDate: string

<Cproprr LogStatus: intd2

<<prop>> MediumlD: string

<{propr> PaymentCondition: int32

<<props» PaymentDetail: string

{{propr>» PaymentMeadia: int32

<<prop>> PINEntry: int32

<<{prop>> Peint: currency

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-16 Electronic Value Reader / Writer

Ldnterface>> EVRWControl{from upos)

<iprop>> ReaderWriterServicelist: string
<iprop»? SequenceMumber: int32
<{propr> ServiceType: intd2

<Lpropr? SettledAmount currenoy
<<prop>> SettledPaint: currency
<<prop>> SlipNumber: string

<{prop>> TrainingModeState; int32
<<prop>? TransactionLog string

<Cprop»? TransactionMumber: string
<prop>> TransactionType: int32
L<prop>> VoucherlD: string
<Lpropry VeucherlDList: string

accessDailyLog { seguenceNumber: int32, type: int32, timeout: int32) void
accessData (dataTypeint32, inout data: int32, inout obj: ohject) void
accesslog [sequenceNumber: int32, type: int32, timeout: int32 Jvoid
activateEVService (inout data- int32, inout obj: object Jvoid
activateService [inout data: int32, inout obj: object Jwvoid
addValue (seguenceMumber intd2, timeout; int32 Jveid
authorizeCempletion { seguenceMumber: intd2, amount: currency,

taxOthers: currency. timeout: int32) void
authorizePreSales (| sequenceNumber: int32, amount: currency,

taxOthers: currency, timeout: int32 J: veid
authorizeRefund { sequenceNumber; int32, amount: currency,

taxOthers: currency, timeout: intd2 J: void
authorizeSales { sequenceNumber: int32, amount: currency,

taxOthers: currency, timeout: int32) void
authorizeVoid { seguenceNumber: int3Z, amount: currency,
taxOthers: currency, timeout: intd2) void

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,

taxOthers: currency, timeout: int32 J: void
beginDetaction (type: int32, timeout: int32 Jvoid
beginRemaoval { timeout: int32 Fvoid
cancelValue { sequenceMNumber: int32, timeout: int32 Jvoid
captureCard { Jvoid
cashDeposit { sequenceNumber: intd2, amount: currency, timeout: int32) void
checkCard (sequenceNumber intd2, timeout: intd2 » void
checkServiceRegistrationToMedium (sequenceMumber: int32, timeout: int32 } void
clearParameternformation(Jvoid
closeDailyEVService (inout data: int32, inout ohi; chiect J; void
deactivateEVService (inout data: int32, inout obj: ohject) void
endDetection { Jwoid
endRemoval { hveid
enumerateCardServices (Jvoid
leckTerminal (Jivoid
operDailyEVService (inout data: int32, inout obj: object) void
queryLastSuccessful TransactionResult { Jvoid
readValue { sequenceNumber: int32, timeout: int32 Jvoid
registerServiceToMedium{sequenceMNumber: int32, timeout: int32) void
retrieveResultinformation { name: string, inout value: stringlvoid
setParameterinformation(name: string, in value: stringlvoid
subtractValue { sequenceMumber: int32, timeout: int32 kvoid
transactionAccess { control int32 Jvoid
unlockTerminal { Jveid
unregisterService ToMedium{sequenceMumber: int32, timeout: int32 1 veid
updateData (dataType:intd2, inout data: int32, inout ohj: ohiect) void
updatekey (inout data: int32, inout obj: ohject Jvoid
writeValue { seguenceNumber: int3Z, timeout: int32 kvoid

UnifiedPOS Version 1.15

General Information 1417

Model

The EVR/W supports the following services and methods.

Services Service Corresponding Methods
Capabilities

Common Deploy activateEVService method
Open openDailyEVService method
Maintenance accessData method

updateData method
accessLog method

updateKey method
Close closeDailyEVService method
Remove deactivateEVService method
Electronic Balance Inquiry readValue method
Money Balance property
Payment subtractValue method
Amount property
Settled Amount property
Deposit addValue method
Amount property
Settled Amount property
Cancel cancelValue method
ApprovalCode property
Membership Registering registerServiceToMedium method
certificate service to medium checkServiceRegistrationToMedium
method
Unregistering unregisterServiceToMedium method
service to medium
Inquiry readValue method
Updating writeValue method

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

Services Service Corresponding Methods
Capabilities
Point Registering registerServiceToMedium method
service to medium checkServiceRegistrationToMedium
method
Point property
Unregistering unregisterServiceToMedium method
service to medium
Inquiry readValue method
BalanceOfPoint property
Deposit addValue method
Point property
SettledPoint property
Redeem subtractValue method
Point property
SettledPoint property
Updating writeValue method
Point property
Cancel cancelValue method
ApprovalCode property
Voucher/Ticket Registering registerServiceToMedium method
service to medium | opockServiceRegistrationToMedium
method
Unregistering unregisterServiceToMedium method
service to medium
Inquiry/ readValue method
Enumeration VoucherIDList property
Issue addValue method
VoucherlID property
Redeem subtractValue method
VoucherID property

UnifiedPOS Version 1.15

General Information

14-19

The general model of the EVR/W is as follows:

Input Model
The readValue method follows the UnifiedPOS Input model.

When the application is ready to receive the data from the EVR/W, the readValue
method is called. Then, when input data is received, a DataEvent event is
enqueued. When the application sets the DataEventEnabled property to true, the
DataEvent event will be delivered to the application.

If an error occurs while reading the data, an ErrorEvent is enqueued instead of
the DataEvent. When the application sets the DataEventEnabled property to
true, the ErrorEvent event will be delivered to the application.

The application can obtain the number of enqueued data events by reading the
DataCount property.

If AutoDisable is true, then the device is automatically disabled when a
DataEvent is enqueued.

All input data that is queued can be cleared by executing the clearInput method.
Output Model

The accessLog, addValue, cancelValue, subtractValue, transactionAccess,
and writeValue methods can be executed asynchronously or synchronously
depending on the value of the AsyncMode property as defined by the UnifiedPOS
output model.

When AsyncMode is true, methods cannot be issued immediately after issuing a
prior method; only one outstanding asynchronous method is allowed at a time.
However, clearOutput is an exception because its purpose is to cancel an
outstanding asynchronous method.

When asynchronous processing completes, an QutputCompleteEvent is
delivered to the application.

Support of Sub-Service Use

When one EVR/W provides two or more electronic value services, and an
EVR/W Service corresponding to each service provider exists, then they can be
used as sub-service.

If the open method is executed, the open method of all sub-services is called, and
the sub-service is enumerated by the ReaderWriterServiceList property. The
close, claim, and release methods operate in the same manner on all the sub-
services.

The application selects the sub-service to be used by setting the CurrentService
property. All method and property operations thereafter effect that sub-service.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-20 Electronic Value Reader / Writer

CAT Device used for the EVR/W device: Added in Release 1.15

. The general model for the CAT control used for the EVR/W device is shown
below:

. The CAT control used for the EVR/W device basically follows the output
device model. However, multiple methods cannot be issued for asynchro-
nous output; only one outstanding asynchronous request is allowed.

. The CAT control used for the EVR/W device issues requests to the EVR/W
device for different types of authorization by invoking the following meth-

ods.
Function Method name Corresponding Cap property
Purchase authorizeSales None
Cancel Purchase authorizeVoid CapAuthorizeVoid
Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales
Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

. The CAT control used for the EVR/W device issues requests to the EVR/W
device for special processing local to the EVR/W device by invoking the
following methods.

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

. The CAT control used for the EVR/W device stores the authorization results
in the following properties when an authorization operation successfully
completes:

UnifiedPOS Version 1.15

General Information 14-21

Description Property Name Corresponding Cap Property
Credit Account number AccountNumber None
Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None
Card company 1D CardCompanyID None
Code from the approval CenterResultCode CapCenterResultCode
agency
Payment condition PaymentCondition None
Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None
Slip number SlipNumber None
Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

e The accessDailyLog method sets the following property
Description Property Name Corresponding Cap Property
Daily log DailyLog CapDailyLog

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-22 Electronic Value Reader / Writer

Electronic Money Device: Added in Release 1.9

. The CAT Control used for the EVR/W device requires the Electronic Money
Device to track each settlement and closing in the DealinglLog.

Function Method name Corresponding Cap property
Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

. When the CAT Control used for the EVR/W device receives the settlement
results from the Electronic Money Device it stores these results in the fol-
lowing properties:

Description

Property Name

Corresponding Cap Property

Card ID

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None
Settled amount Settled Amount None
Balance Balance None
Sequence number SequenceNumber None
Transaction type TransactionType None

The accessDailyLog method sets the following property.

Description Property Name Corresponding Cap Property
DealingLog DailyLog CapDailyLog
. Sequence numbers are used to validate that the properties set at completion

of a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method

UnifiedPOS Version 1.15

General Information

14-23

has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

The AsyncMode property determines if methods are run synchronously or
asynchronously.

When AsyncMode is false, methods will be executed synchronously and
their corresponding properties will contain data when the method returns.

When AsyncMode is true, methods will return immediately to the applica-
tion. When the operation associated with the method completes, each corre-
sponding property will be updated by the CAT control used for the EVR/W
device prior to an OutputCompleteEvent. When AsyncMode is true, meth-
ods cannot be issued immediately after issuing a prior method; only one out-
standing asynchronous method is allowed at a time. However, clearOutput is
an exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending
on the CAT control used for the EVR/W device implementation. Applica-
tions should verify that particular Cap properties are supported before utiliz-
ing the capability dependent methods and properties.

Results of synchronous calls to methods and writable properties will be
stored in ErrorCode. Results of asynchronous processing will be indicated
by an OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The error code from the approval agency will be
stored in CenterResultCode in either mode.

An outstanding asynchronous method can be canceled via the clearOutput
method.

The Daily log can be collected by the accessDailyLog method. Collection
will be run either synchronously or asynchronously according to the value of
AsyncMode.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-24 Electronic Value Reader / Writer

* Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open
- claim
- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for QutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

UnifiedPOS Version 1.15

General Information 14-25

- setDeviceEnabled (false)

- release

- close

UnifiedPOS Version 1.15

14-26

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

Life Cycle of Sub-Service

Added in Release 1.14.1

The life cycle of a Sub-Service is illustrated below.

EVRW service state chart

updateFirmware

installed-deactivated

activateEVService
y

A
deactivateEVService

lockTerminal

1
activated-closed-unlocked I:

openDailyEVService

A unlockTerminal

closeDailyEVService

activated-opened-unlocked !:

| lockTerminal

|
'I activated-closed-locked |

¥

unlockTerminal

Calling payment methods.

subtractValue

addValue

readValue

writeValue

q|
'! activated-opened-locked |

Installed-deactivated state:

It is in the state which is invoked by the updateFirmware method and is not
activated by activateEVService method.

Activated-closed-unlocked state:

It is in the state where Sub-Service was activated by the activateEVService
method. In order to use Sub-Service, it is necessary to open by the
openDailyEVService method.

Activated-opened-unlocked state:

It is in the state where the Sub-Service was opened by the
openDailyEVService method.

Activated-closed-locked/activated-opened-locked state:

It is in the state where Sub-Service was locked by the lockTerminal method. In order
to unlock Sub-Service, it is necessary to use the unlockTerminal method.

UnifiedPOS Version 1.15

General Information

14-27

The Service With Variations

Added in Release 1.14.1

The service can have variations depending upon the store or location which can alter
the services required behavior.

EVRW Device

Service is chosen with

CurrentService property,

Service-AMoney

Service-BPoint

Variation-ABC Store
Variation-DEF Shop
Variation-XYZ Cafe

Service-CMoney

UnifiedPOS Version 1.15

14-28

UnifiedPOS Retail Peripheral Architecture Chapter 14

Electronic Value Reader / Writer

The Connection Model of EVR/W Devices
and Payment Center

Added in Release 1.14.1

There are two ways of connecting an EVR/W device to a payment center.

Method

Definition

Direct Connection

Indirect Connection

The EVR/W device is directly connected to the Payment
Center.

The EVR/W device is connected through a POS system
to the Payment Center.

Direct connection

POS

Payment Center

\ EVRW device /

Indirect connection

POS

Payment Center

\ EVRW device

UnifiedPOS Version 1.15

General Information

14-29

Transaction Mode Support

Transaction mode is comprised of multiple method calls and property accesses.
Operations that can be included in the batch processing is a invocation of the
writeValue, addValue, subtractValue, and cancelValue methods and all properties.
When these methods are executed in transaction mode, their validation is
confirmed first. If it is valid, the operation is added to the transaction mode buffer
prior to execution. No update has yet been performed to the card.

Executing the transactionAccess method with a control value of
EVRW_TA NORMAL will cause all buffered commands to be processed.

The AsyncMode property also influences the execution of the transaction mode.

If the transaction is processed synchronously and an exception is not raised, then
the entire transaction process was successful. If the transaction is processed
asynchronously, then the asynchronous process rules listed above are followed. If
an error occurs and the Error Event handler causes a retry, the entire transaction is
retried.

Device Sharing

The EVR/W is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before calling methods that
manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14

14-30 Electronic Value Reader / Writer
EVRW Sequence Diagram
Thefollowingsequencediagramshowsthetypicalusageofthe EVR/Wdevice.
Updated in Release 1.14.1

Application Device IC chip
open(logicalName)
claim(timeout)
Initialization. >
setDeviceEnabled(true)
getCapDetectionControl()

Confirmation of DETECTION

device REMOVAL

capability. APPLICATIONCONTROL

< getReaderWriterServiceList()
“ElectronicMoney, Point, Coupon”
setDetectionControl (true)
setAsyncMode (true)
beginDetection
> Detectionof IC chip
Card detection.
StatusUpdate Event
DETECTED
endDetection
getCardServiceList()

Confirmation of <

card’s services. “ElectronicMoney, Point”

Selection of

service. setCurrentService (“ElectronicMoney”)

UnifiedPOS Version 1.15

General Information 14-31

The following sequence diagram shows the continuation of the typical usage of the
EVR/W device. Updated in Release 1.14.1

NNoviiuos s

(trom upos) <<capability>> CapPINDevice: boolean
<<capability>> CapPoint: boolean
<<capability>> CapSubtractValue: boolean
<<capability>> CapTrainingMode: boolean
<<capability>> CapTransaction: boolean
<<capability>> CapTransactionLog: boolean
<<capability>> CapUnlockTerminal: boolean
<{<capability>> CapUpdateKey: boolean
<<capability>> CapVoucher: boolean

<Levent>> <<capability>> CapWriteValue: boolean
DataEvent <<Lprop>> AccountNumber: string
(from upos) fires <{<prop>> AdditionalSecuritylnformation: string

<<prop>> Amount: currency
<<prop>> ApprovalCode: string
<<prop>> AsyncMode: boolean
<<prop>> Balance: currency
<<Lprop>> BalanceOfPoint: currency

<Levent>> <<prop>> CardServicelist: string
DirectlOEvent) <{<prop>> CurrentService: string
(from upos) fires <{<prop>> DetectionControl: boolean
<<prop>> DetectionStatus: int32
<<Lprop>> ExpirationDate: string
<<Lprop>> LastUsingDate: string
<<Lprop>> LogStatus: int32
<<Lprop>> MediumID: string
{Levent>> <<prop>> PINEntry: int32
ErrorEvent fi <<prop>> Point: currency
(from upos) res <{<prop>> ReaderWriterServiceList: string
<<prop>> SequenceNumber: int32
<<prop>> ServiceType: int32
<<Lprop>> SettledAmount: currency
<<Lprop>> SettledPoint: currency
<<prop>> TrainingModeState: int32
Kevent>> £ <<Lprop>> TransactionLog: string
OutputComplete res <<prop>> VoucherID: string
(froErr\:zn:os) <<Lprop>> VoucherIDList: string
accessData (dataType:int32, inout data: int32, inout obj: object): void
accesslLog (sequenceNumber: int32, type: int32, timeout: int32):void
activateEVService (inout data: int32, inout obj: object):void
activateService (inout data: int32, inout obj: object):void
addValue (sequenceNumber: int32, timeout: int32):void
Kevent>> beginDetection (type: int32, timeout: int32):void
StatusUpdateEvent fires beginRemoval (timeout: int32):void

(from upos) cancelValue (sequenceNumber: int32, timeout: int32):void

captureCard ():void
checkServiceRegistrationToMedium (sequenceNumber: int32, timeout: int32): void

clearParameterinformation():void

closeDailyEVService (inout data: int32, inout obj: object): void
deactivateEVService (inout data: int32, inout obj: object): void
endDetection ():void

fires endRemoval ():void

enumerateCardServices ():void
e . p— . PN .

<Levent>>
TransitionEvent
(from upos)

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-32 Electronic Value Reader / Writer

The following sequence diagram shows the continuation of the typical usage of the
EVR/W device. Updated in Release 1.14.1

Application Device ICchip

beginRemoval

Card
removal

Undetectionof IC chip

A 4

A

StatusUpdate Event

NOCARD

endRemoval

setDeviceEnabled(false)

A 4

release(timeout)

A 4

Terminating.

close()

A 4

UnifiedPOS Version 1.15

General Information

14-33

The following sequence diagram shows the CAT(EMV) usage that is used as
Updated in Release 1.15

EVR/W device.

Applicaton

Imitialization.

EMYV proces=.

Termminating.

<

Device

open/lezicalliame)

claimitmesnt)

setDeviceEnahled(true)

serAsyncliode(mas)

setPaymenthledia MEDTA CREDIT)

authorizeSales

L

L

Tram=itionEvent(TE_NOTIFY_TOUCH)

h

IC ckip

Detection of EMV card

Tram=itionEvent(TE_NOTIFY_CAFTURE_CARD)

TransitionEvent{TF, CONFIEM_SELECT)

e

Artivation

L

SELECT

TransitionEvent{TE_CONFIEM SEARCH TABLE)

"

Tran=itionEvent(TE_CONFIEM_PATMENT_CONDITION)

I--l

TransitionEvent{TE,_CONFIEM_AUTHORIZE)

DutparComplet=Evernt

i

=etDieviceEnakledifalze)

releasetimeout)

L 4

clamsd)

L 4

UnifiedPOS Version 1.15

14-34

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

bepinDatectionl)

EVRW State Diagram

The following state diagram depicts the EVR/W device model.
Updated in Release 1.15

> [Closad]

openi) closal)

alose) -
Dataction l Opened] Ramowval
A

clard} raleasell

endDetection() - begnRemoval(l endRemeoval]
Claimad J

A
setDevicsEnabled{true) satDeviceFnabledifalae)
Erablad
4
accessDadyLog Done dalivering nc:e:s:_'lallg-Log Done dalivering readValus
accessData avart accesslala awant
accasslog accesslog
activateEVService addvalie
activateServics autherzeCargletion
addValue autherizePraSales
autharizeCompletion authorizeRefund -
autharizePreSales authorizeSales f/"_ ‘\\
authorizafefund authorizeVeid Input Asyne Made
authorizeSales authorzeVoidPreSakss ' Ty
authorize Ve cancelVals ErurEvent
authorizeWedPreSales cashDaposit processang
cancelVahie chechCard
capiureard choseDallyEVService —
cashDeposit eheckServiceRegistrationTaMediu
cheokCard deactivateEVService [ratabwant
cheakServicaRegistrationToMedium popenDalyEVSarice procassng
claarParametarinformation registarSardioe ToMedium
closelailyEYServics suibiract Valus N
deactivate SV Service tranzactionAccess e
enumerateGardServics wiraglsterServiceToMediem Transition
sk Tarminal weriteValuss Evant
openDalyEVService (/ pracessng
aueryLastSuccessful TransactionResult 4, |
N Output Asyna Mode
registerServioe T obedum \\- —/-)
. g . . R
etrieveResultinformation
ErrorEvent
setParameterinformation
subtractValues prucuRmne
transactonlLog A
unloskTarminal
unregisterSarsceTobadium
updateData Outout
updataKay Coralels
weiteValon E“"t_
- processing
Synohronous
Mads
Tearaition
e Ewent
pracessing

PN —

UnifiedPOS Version 1.15

General Information 14-35

Error Model
Updated in Release 1.14.1
The EVR/W error reporting model is as follows:

Most of the EVR/W device error conditions are reported by setting the
UposException’s (or ErrorEvent’s) ErrorCode to E EXTENDED and then
setting ErrorCodeExtended as indicated in the following tables.

+3 +2 +1 +0
. A
—y ' T
Severity code Unified error code Vendor oriented error code

Bit assign Size Item Description

31-27 5 Undefined

26-24 3 Severity Code Severity of the error
condition.

23-16 8 Unified error code | Error code which
defined by UPOS
specification

15-0 16 Vendor oriented Error code which

error code oriented by vendor

Severity code indicates the severity condition and operation recovered from the
error condition.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14

14-36 Electronic Value Reader / Writer

No. | Value Description Remarks

0 NORMAL No need to recover

1 BLOCKED Need to recover by May need to
maintenance engineer replace the

device

2 RECOVERABLE Recoverable state which can Ex) Operation
be recovered by retrying with | timeout
changing condition.

3 RECOVERABLE ASK | Recoverable state which can Deficiency

CARDHOLDER be recovered by retrying with .
- . - . Transaction
changing condition which the incomplete
card holder determines. p
Over deposit
4 RECOVERABLE ASK | Recoverable state which can Log full
_OPERATOR be recovered by retrying with
. 7.] Mode
changing condition which the .
. mismatch

POS operator determines.

Unified error code indicates the type of error condition.

Value Item Description
EEVRW_ABORTED Canceling from Transaction was aborted by the
POS. request from POS.

EEVRW_DEFICIENT

Amount is deficient.

Transaction cannot perform
because the balance is
insufficient.

TIMEOUT

EEVRW_DETECTION

Medium detection
timeout.

Medium could not be detected
within the specified time.

EEVRW_HOST _
CANNOT_CLOSE

Payment center
cannot close.

Transaction cannot perform
because the payment center
cannot close.

EEVRW_HOST _
CANNOT_OPEN

Payment center
cannot open.

Transaction cannot perform
because the payment center
cannot open.

EEVRW_HOST _

CANNOT_OPERATE

The error occurred
in payment center.

Transaction cannot perform
because the error occurred in the
payment center.

EEVRW_HOST _
REFUSAL

Transaction is
refused by the
payment center.

Transaction cannot perform
because the request from
transaction is refused by the
payment center.

EEVRW_IN_PROGRESS

Transaction is in
progress.

Transaction was already
progressing and it was not able
to perform the request.

UnifiedPOS Version 1.15

General Information

14-37

EEVRW_INVALID_
MEDIUM

Invalid medium is
detected.

Transaction cannot perform
because invalid medium is
detected.

EEVRW_INVALID_
MEDIUM_ABORTED

The error occurred
in medium.

Transaction cannot perform
because the error occurred in
medium.

EEVRW_INVALID _
MEDIUM_ABORTED _
EXISTS

The error occurred
in medium.

Transaction cannot perform
because the service is already
existing in medium.

EEVRW_INVALID_
MEDIUM_ABORTED _
NOSERVICE

The error occurred
in medium.

Transaction cannot perform
because the service is not
present in medium.

EEVRW_INVALID_

The error occurred

Transaction cannot perform

MEDIUM_ABORTED in medium. because there is not enough
NOSPACE memory space in medium.
EEVRW _INVALID Medium has Transaction cannot perform
MEDIUM EXPIRED expired. because medium has expired.
EEVRW _LOG Transaction log Transaction cannot perform
OVERFLOW overflowed. because transaction log
overflowed.
EEVRW_MEDIUM Medium cannot Medium detected by EVR/W

CANNOT AUTHORIZE

authorize.

cannot authorize.

EEVRW_MESSAGE_
FORMAT

Message format is
invalid.

Transaction cannot perform
because the message format is
invalid.

EEVRW_OVERDEPOSIT

The balance after
charging is
exceeding a amount
limit.

Transaction cannot perform
because the balance after
charging is exceeding a amount
limit.

EEVRW_OVERDEPOSIT
_TO_POINT

The point balance
after adding is
exceeding a amount
limit.

Transaction cannot perform
because the point balance after
adding is exceeding a amount
limit.

EEVRW_PAYMENT_

Transaction is

Transaction cannot perform

RESTRICTION restricted. because transaction includes
restricted item.
EEVRW_RW LOCKED EVR/W device is Transaction cannot perform
locked. because EVR/W device is
locked.

EEVRW RW OUT

Permanent error on
a device.

Transaction cannot perform
because of a permanent error on
a device.

EEVRW RW _OUT_
TEMPORARY OUT

Temporary
recoverable error on
a device.

Transaction cannot perform
because of a temporary
recoverable error on a device.

EEVRW RW OUT_
TEMPORARY_OUT _
NEED TO RESET

Reset request from
EVR/W.

EVR/W needs to be reset.

EEVRW_TRANSACTION
_INCOMPLETE

Transaction
incomplete.

The problem occurred during
transaction and transaction was
aborted in the unknown state.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

14-38

Chapter 14
Electronic Value Reader / Writer

EEVRW_
UNREACHABLE_HOST

Payment center
cannot be reached.

Transaction cannot perform
because the payment center
cannot be reached.

EEVRW_UPOSI114_
COMPATIBLE

For compatibility
with the error code
defined by UPOS
older version.

The error code defined by the
ResultCodeExtended property
of UPOS1.14 is set to a Vendor
oriented error code.

A vendor oriented error code is a code from which a definition differs by the device or

a service and which shows a detailed error condition.

The contents of a vendor oriented error code are dependent on vendors.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-39

Properties (UML attributes)

AccountNumber Property Updated in Release 1.14

Syntax

Remarks

Errors

AccountNumber: string { read-only, access after open }

Information for the service provider such as card number, member number, etc.;
specifies the user (owner) of the card from data set information on the card.

Note as of Release 1.14: The AccountNumber property may contain some of the
same information found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the AccountNumber property wherever possible.

(335

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AdditionalSecuritylnformation Property

Syntax

Remarks

Errors

AdditionalSecurityInformation: string { read-write, access after open }1

An application can send data to the EVR/W device by setting this property before
issuing an authorization method. Also, data obtained from the EVR/W device and
not stored in any other property as the result of an authorization operation can be
provided to an application by storing it in this property. Since the data stored here
is device specific, this should not be used for any development that requires
portability.

(330}

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Amount Property Updated in Release 1.14

Syntax

Remarks

Errors

Amount: currency { read-write, access after open }
Holds the payment amount on the electronic money service.

Note as of Release 1.14: The Amount property may contain some of the same
information found in the tag values used by the setParameterInformation and
retrieveResultInformation methods. The tag values should be used instead of the
Amount property wherever possible.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

I In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.15

14-40

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

ApprovalCode Property

Syntax

Remarks

Errors

ApprovalCode: string { read-write, access after open }

Holds the payment approval code.

The content of the approval code depends on implementation the device. When a
unique number is issued to the processing done with the device, the information is
set.

This property is set to specify the cancellation of the payment when the device
supports cancellation of the payment and the cancelValue method is executed.

(335

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AsyncMode Property

Syntax

Remarks

Errors

AsyncMode: boolean { read-write, access after open }

If true, the writeValue, addValue, subtractValue, cancelValue, accessLog, and
transactionAccess methods will be performed asynchronously.

If false, these methods will be performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Balance Property Updated in Release 1.14

Syntax

Remarks

Errors

Balance: currency { read-only, access after open }
Holds the balance on the electronic money service.

Note as of Release 1.14: The Balance property may contain some of the same
information found in the tag values used by the setParameterInformation and
retrieveResultInformation methods. The tag values should be used instead of the
Balance property wherever possible.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-41

BalanceOfPoint Property Updated in Release 1.14

Syntax

Remarks

Errors

BalanceOfPoint: currency { read-only, access after open }
Holds the point balance on the point service.

Note as of Release 1.14: The BalanceOfPoint property may contain some of the
same information found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the BalanceOfPoint property wherever possible.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapActivateService Property

Syntax

Remarks

Errors

CapActivateService: boolean { read-only, access after open }

If true, the activation processing is supported; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAdditionalSecuritylnformation Property Added in Release 1.15

Syntax

Remarks

Errors

See Also

CapAdditionalSecurityInformation: boolean { read-only, access after open }

If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

AdditionalSecurityInformation property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-42 Electronic Value Reader / Writer

CapAddValue Property
Syntax CapAddValue: boolean { read-only, access after open }
Remarks If true, the addition of electronic value is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapAuthorizeCompletion Property Added in Release 1.15
Syntax CapAuthorizeCompletion: boolean { read-only, access after open }
Remarks If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeCompletion method.

CapAuthorizePreSales Property Added in Release 1.15
Syntax CapAuthorizePreSales: boolean { read-only, access after open }
Remarks If true, the authorizePreSales method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizePreSales method.

CapAuthorizeRefund Property Added in Release 1.15

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also authorizeRefund method.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-43

CapAuthorizeVoid Property Added in Release 1.15
Syntax CapAuthorizeVoid: boolean { read-only, access after open }
Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also authorizeVoid Method.
CapAuthorizeVoidPreSales Property Added in Release 1.15
Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }
Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
See Also authorizeVoidPreSales Method.

CapCancelValue Property

Syntax

Remarks

Errors

CapCancelValue: boolean { read-only, access after open }

If true, the cancellation of the operation to the electronic value is supported;
otherwise it is false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-44 Electronic Value Reader / Writer

CapCardSensor Property
Syntax CapCardSensor: int32 { read-only, access after open }

Remarks Contains a bit mask indicating the types of card detection supported. When the
sensor exists, the detection is set to the DetectionStatus property and a
StatusUpdateEvent is delivered.

This property is set to the logical OR of one or more of the following values:

Value Meaning
EVRW_CCS_ENTRY There is an insertion slot sensor.
EVRW_CCS DETECT There is a card detection sensor.
EVRW_CCS CAPTURE There is a stock space sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DetectionStatus Property, StatusUpdateEvent.

CapCashDeposit Property Added in Release 1.15

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Show the device has charged method by cashDeposit method or not. If true, the
cashDeposit method is implemented, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also cashDeposit method.

CapCenterResultCode Property Added in Release 1.15

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CenterResultCode property.

CapCheckCard Property Added in Release 1.15
Syntax CapCheckCard: boolean { read-only, access after open }
Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-45

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

checkCard method.

CapDailyLog Property Added in Release 1.15

Syntax

Remarks

CapDailyLog: int32 { read-only, access after open }
Shows the daily log ability of the device.

Value Meaning

Errors

See Also

EVRW_DL NONE The EVRW device does not have the daily log
functions.

EVRW_DL REPORTING
The EVRW device only has an intermediate total
function which reads the daily log but does not erase
the log.

EVRW_ DL _SETTLEMENT
The EVRW device only has the “final total” and “erase
daily log” functions.

EVRW_DL REPORTING SETTLEMENT
The EVRW device has both the intermediate total
function and the final total and erase daily log function.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

DailyLog property, accessDailyLog method.

CapDetectionControl Property

Syntax

Remarks

Errors

CapDetectionControl: inf32 { read-only, access after open }

It is shown whether the detection processing of the card, the ejection processing of
the card, the storing processing of the card and these processing can be controlled
from the application or the EVR/W.

This property is set to the logical OR of one or more of the following values:

Value Meaning

EVRW _CDC RWCONTROL Control is possible by the EVR/W device.
EVRW_CDC APPLICATIONCONTROL
Control is possible by the application.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-46 Electronic Value Reader / Writer

information, see “Errors" on page Intro-21.

See Also DetectionControl Property, DetectionStatus Property.

CapElectronicMoney Property
Syntax CapElectronicMoney: boolean { read-only, access after open }

Remarks If true, the electronic money service is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapEnumerateCardServices Property

Syntax CapEnumerateCardServices: boolean { read-only, access after open }

Remarks If true, the enumeration of service in the card is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CaplindirectTransactionLog Property

Syntax CaplndirectTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is accessed as a file; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

Caplnstallments Property Added in Release 1.15

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DailyLog property.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-47

CapLockTerminal Property

Syntax

Remarks

Errors

See Also

CapLogStatus
Syntax

Remarks

Errors

See Also

CapLockTerminal: boolean { read-only, access after open }
If true, the security lock setting is supported; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

lockTerminal Method.

Property
CapLogStatus: boolean { read-only, access after open }

If true, the reporting of the status of the transaction log is supported; otherwise it
is false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

StatusUpdateEvent.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-48 Electronic Value Reader / Writer

CapMediumID Property
Syntax CapMediumlID: boolean { read-only, access after open }

Remarks If true, the specification of the medium identifier is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapMembershipCertificate Property Added in Release 1.14.1

Syntax CapMembershipCertificate: boolean { read-only, access after open }
Remarks If true, the membership certificate service is supported otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapPaymentDetail Property Added in Release 1.15
Syntax CapPaymentDetail: boolean { read-only, access after open }
Remarks If true, the PaymentDetail property has been implemented; otherwise it is false.
This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also PaymentDetail property.

CapPINDevice Property Added in Release 1.14
Syntax CapPINDevice: boolean { read-only, access after open }

Remarks If true, the EVR/W is equipped with a PIN device.
If false, the EVR/W is not equipped with a PIN device.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapPoint Property

Syntax CapPoint: boolean { read-only, access after open }

UnifiedPOS Version 1.15

Properties (UML attributes) 14-49

Remarks If true, the point service is supported otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapSubtractValue Property

Syntax CapSubtractValue: boolean { read-only, access after open }
Remarks If true, the subtraction of electronic value is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapTaxOthers Property Added in Release 1.15

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the
result of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also DailyLog property.

CapTrainingMode Property Added in Release 1.14

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the EVR/W supports a training mode.
If false, the EVR/W does not support a training mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21

UnifiedPOS Version 1.15

14-50

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

CapTransaction Property

Syntax

Remarks

Errors

CapTransaction: boolean { read-only, access after open }
If true, the transaction mode is supported; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapTransactionLog Property

Syntax CapTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is supported; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapTransactionNumber Property Added in Release 1.15

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is
false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also TransactionNumber property.

CapUnlockTerminal Property

Syntax

Remarks

Errors

See Also

CapUnlockTerminal: hoolean { read-only, access after open }

If true, releasing of the security lock is supported; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

unlockTerminal Method.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-51

CapUpdateKey
Syntax

Remarks

Errors

Property

CapUpdateKey: boolean { read-only, access after open }

If true, the update of key information is supported; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapVoucher Property

Syntax CapVoucher: boolean { read-only, access after open }
Remarks If true, the voucher/ticket service is supported; otherwise it is false.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
CapWriteValue Property
Syntax CapWriteValue: boolean { read-only, access after open }
Remarks If true, the writing of electronic value is supported; otherwise it is false.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.
CardCompanylID Property Added in Release 1.15
Syntax CardCompanylD: string { read-only, access after open }
Remarks This property is updated when an authorization operation successfully completes.
It shows credit card company ID.
The length of the ID string varies depending upon the EVRW device.
This property is initialized to an empty string by the open method
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors' on page Intro-21.

UnifiedPOS Version 1.15

14-52

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

CardServiceList Property Updated in Release 1.14.1

Syntax

Remarks

Errors

See Also

CardServiceList: string { read-only, access after open }

Holds the comma-separated (CSV) list of services supported by the card. This list
is populated by the enumerateCardServices method.

For example, when the character string that identifies A electronic money service
is “MoneyA” and the character string that identifies B electronic point service is
“PointB”, the CardServiceList property becomes “MoneyA,PointB”.

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be
specified with the following rules.

“service [:variation [.additional]]”

€. (31}

Service is required. Variation with separator “:” and Additional with separator “:

[33E2]

are optional. Separator characters such as “,”, and “:” cannot be used for a
Service, Variation, and Additional identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and
“DEFShop”, as a variation. In this case, it will be set to a
ReaderWriterServiceList property as “XYZCustomerPoint: ABCStore,
XYZCustomerPoint: DEFShop”.

This property is initialized to an empty string (

(330

) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

enumerateCardServices Method.

CenterResultCode Property Added in Release 1.15

Syntax

Remarks

Errors

CenterResultCode: string { read-only, access after open }

Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-53

CurrentService Property Updated in Release 1.14.1

Syntax

Remarks

Errors

See Also

CurrentService: string { read-write, access after open }

Holds the character string that identifies the currently selected service.
This value is guaranteed to be one of the set of services specified by the
ReaderWriterServiceList property.

The character string being enumerated by the ReaderWriterServiceList property
can be set.

(330}

If an empty string (“”) is set, it enters the state that no service has been selected.
In this state, depending on the device, an application can operate directly to the
device.

When a valid string is set, the service is selected and started.

If the service supports the sub-service, the execution of the method and the setting
of property are done to the sub-service of the service that property shows. And
only the event fires from the sub-service which is selected by this property.

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be
specified with the following rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:”
13k

are optional. Separator characters such as “,”, and “:”” cannot be used for a
Service, Variation, and Additional identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and
“DEFShop”, as a variation. In this case, it will be set to a
ReaderWriterServiceList property as “XYZCustomerPoint: ABCStore,
XYZCustomerPoint: DEFShop”.

This property is initialized to an empty string (

(330}

) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ReaderWriterServiceList Property.

UnifiedPOS Version 1.15

14-54

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

DailyLog Property

Added in Release 1.15

Syntax DailyLog: string { read-only, access after open }
Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13
decimal)+LF(10 decimal) for each transaction and is stored in ASCII code. The
detailed data of each transaction is comma separated [i.e., delimited by “,” (44)].
The details of one transaction are shown as follows:
No | Item Property Corresponding Cap Property
1 Card company 1D CardCompanyID None
2 Transaction type TransactionType None
3 Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition | PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 | Amount The argument Amount of the None
Note 4) authorization method or the
amount actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 | Installments None Caplnstallments
Note 3)
13 | Additional data AdditionalSecurityInformation | CapAdditionalSecuritylnform
Note 2) ation

Notes from the previous table:

1) Format

UnifiedPOS Version 1.15

Properties (UML attributes) 14-55

Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some EVRW devices may not support seconds by the internal clock. In that case,
the second field of the transaction date is filled with "00"

2) Additional data

The area where the EVRW device stores the vendor specific data. This enables an
application to receive data other than that defined in this specification. The data
stored here is vendor specific and should not be used for development which
places an importance on portability.

3) If the corresponding Cap property is false

Cap property is set to false if the EVRW device provides no corresponding data.
In such instances, the item cannot be displayed so the next comma delimiter
immediately follows. For example, if "Amount" is 1234 yen and "Tax/others" is
missing and "Installments" is 2, the description will be "1234,,2". This makes the
description independent of Cap property and makes the position of each data item
consistent.

4) Amount

Amount always includes "Tax/others" even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

ExampleAn example of daily log content is shown below.

UnifiedPOS Version 1.15

14-56

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

Item Description Meaning
Card company 1D 102 JCB
Transaction type EVRW_TRANSACTION SALE | Purchase

S

Transaction date

19980116134530

1/16/199813:45:30

Transaction number

123456

123456

Payment condition

EVRW_PAYMENT INSTALLM
ENT 1

Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234
Amount 12345 12345JPY

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information

The actual data stored in DailyLog will be as follows:

UnifiedPOS Version 1.15

Properties (UML attributes) 14-57

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

Electronic Money Device: Setting DealingLog which is a result of the Electronic
Money Device which does not have the communication module for closing
processing done closing processing. It may be the device which is enciphered
DealingLog to everything except for Center.

Errors: A UposException may be thrown when this property is accessed. For
further information, see "Errors" on page Intro-21.

See Also: CapDailyLog Property, accessDailyLog Method.

DetectionControl Property

Syntax

Remarks

Errors

See Also

DetectionControl: hoolean { read-write, access after open }

If true, the detection processing of the card by the beginDetection/endDetection
methods and the card ejection processing by the beginRemoval/endRemoval
methods are controlled by the application.

This property can only be set true by the application when CapDetectionControl
is set to EVRW_CDC_APPLICATIONCONTROL.

If false, neither detection nor the ejection processing of the card are controlled
from the application. Invocation of the beginDetection/endDetection methods
and the beginRemoval/endRemoval methods from the application is invalid.
When EVRW_CDC_RWCONTROL is specified for the CapDetectionControl
property, it is possible to set it.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapDetectionControl Property, beginDetection Method, beginRemoval
Method, endDetection Method, endRemoval Method.

DetectionStatus Property

Syntax

Remarks

DetectionStatus: int32 { read-only, access after open }

Holds the state of card detection.

Value Meaning

EVRW_DS NOCARD No card. The card detection sensor does not
detect a card.

EVRW_DS DETECTED There is a card in the device. The card
detection sensor detects the card.

EVRW_DS ENTERED Card remaining at the insertion slot. The

insertion slot sensor detects the card.

UnifiedPOS Version 1.15

14-58

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Errors

EVRW_DS CAPTURED The card is in the stock space. The stock
space sensor detects the card.

This property is initialized to EVRW_DS NOCARD by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ExpirationDate Property Updated in Release 1.14

Syntax

Remarks

Errors

ExpirationDate: string { read-only, access after open }
Holds the expiration date in the format “YYYYMMDD”.

Note as of Release 1.14: The ExpirationDate property may contain some of the
same information found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the ExpirationDate property wherever possible.

(335

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

LastUsedDate Property Updated in Release 1.14

Syntax

Remarks

Errors

LastUsedDate: string { read-only, access after open }
Holds the last used date in the format “YYYYMMDDHHMMSS”.

Note as of Release 1.14: The LastUsedDate property may contain some of the
same information found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the LastUsedDate property wherever possible.

(330

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

LogStatus Property

Syntax

Remarks

Errors

LogStatus: int32 { read-only, access after open }

Holds the state of transaction log.

Value Meaning

EVRW LS OK Transaction Log has enough capacity.
EVRW_LS NEARFULL Transaction Log is nearly full.
EVRW_ LS FULL Transaction Log is full.

If transaction log becomes full, depending on the device, the settlement processing
may not be able to operate.

After this property is initialized, it is kept current as long as the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-59

MediumiD Property Updated in Release 1.14

Syntax
Remarks

Errors

See Also

MediumlD: string { read-write, access after open }
Holds the medium identifier of the card.

The medium identifier is information (manufacturer’s serial number, etc.) to
specify the card uniquely, and its content depends on implementation for the card.

The following methods are processed to the card with the medium identifier
specified by this property:

addValue
beginDetection
cancelValue
readValue
subtractValue
writeValue

The application can specify the card to be operated on by setting the medium
identifier to this property before the method call is issued. Setting an empty string
(“”) for this property means the operation can be performed with any card.

The medium identifier of the card is set when the method that have relation to the
card succeeds.

Note as of Release 1.14: The MediumID property may contain some of the same
information found in the tag values used by the setParameterInformation and
retrieveResultInformation methods. The tag values should be used instead of the
MediumlID property wherever possible.

(330

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

addValue Method, beginDetection Method, cancelValue Method, readValue
Method, subtractValue Method, writeValue Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-60 Electronic Value Reader / Writer
PaymentCondition Property Added in Release 1.15
Syntax PaymentCondition: inf32 { read-only, access after open }

Remarks Holds the payment condition of the most recent successful authorization
operation.

This property will be set to one of the following values. See PaymentDetail for
the detailed payment string that correlates to the following PaymentCondition

values.
Value Meaning
EVRW_PAYMENT LUMP Lump-sum
EVRW_PAYMENT BONUS 1 Bonus 1
EVRW_PAYMENT BONUS 2 Bonus 2
EVRW_PAYMENT BONUS 3 Bonus 3
EVRW_PAYMENT BONUS 4 Bonus 4
EVRW_PAYMENT BONUS 5 Bonus 5
EVRW_PAYMENT INSTALLMENT 1 Installment 1
EVRW_PAYMENT INSTALLMENT 2 Installment 2
EVRW_PAYMENT INSTALLMENT 3 Installment 3
EVRW_PAYMENT BONUS COMBINATION 1Bonus combination
payments 1
EVRW_PAYMENT BONUS COMBINATION 2Bonus combination
payments 2
EVRW_PAYMENT BONUS COMBINATION 3Bonus combination
payments 3
EVRW_PAYMENT BONUS COMBINATION_ 4Bonus combination
payments 4
EVRW_PAYMENT REVOLVING Revolving
EVRW_PAYMENT DEBIT Debit card
EVRW_PAYMENT ELECTRONIC MONEY Electronic Money
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors" on page Intro-21.

See Also PaymentDetail property

UnifiedPOS Version 1.15

Properties (UML attributes)

14-61

PaymentDetail Property

Added in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. An empty string means that no data is
stored and represents a string with zero length data.

PaymentCondition PaymentDetail

EVRW_PAYMENT LUMP

An empty string

EVRW_PAYMENT BONUS_1

An empty string

EVRW_PAYMENT BONUS 2

Number of bonus payments

EVRW_PAYMENT BONUS_3

1% bonus month

EVRW_PAYMENT BONUS_4*

1St 2nd

Number of bonus payments, 1°* bonus month,
bonus month, 3" honus month, 4™ bonus month, 5th

bonus month, 6™ bonus month

EVRW PAYMENT BONUS 5*

Number of bonus payments, 1% bonus month, 1%

2™ honus month, 2" bonus amount,

3rd

bonus amount,

3rd bonus amount, 4™ bonus month,

bonus month,
4™ bonus amount, 5™ bonus month, 5t bonus

amount, 61 bonus month, 6™ bonus amount

EVRW_PAYMENT INSTALLMENT 1

15t billing month, Number of payments

EVRW_PAYMENT_INSTALLMENT 2*

15t billing month, Number of payments, 15 amount,

ond amount, 3rd amount, 4th amount, sth amount, 6th

amount

EVRW_PAYMENT_INSTALLMENT_3

15 billing month, Number of payments, 1% amount

EVRW_PAYMENT BONUS_COMBINATION _
1

15 billing month, Number of payments

EVRWT_PAYMENT BONUS_COMBINATION
2

15 billing month, Number of payments, bonus

amount

EVRW_PAYMENT BONUS_COMBINATION _
3 *

15t billing month, Number of payments, number of

21’1d

bonus payments, 15 bonus month, bonus month,

3" bonus month, 4™ bonus month, 5t bonus month,

6" bonus month

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

14-62

Chapter 14
Electronic Value Reader / Writer

EVRW _PAYMENT BONUS COMBINATION
4*

15 billing month, Number of payments, number of

15! bonus month, 1 bonus amount,

21’ld

bonus payments,

2nd 3rd

bonus month, bonus amount, bonus
month, 3" bonus amount, 4™ bonus month, 4™ bonus
amount, 5™ bonus month, 5™ bonus amount, 6™

bonus month, 6™ bonus amount

EVRW_PAYMENT REVOLVING

An empty string

EVRW_PAYMENT_DEBIT

An empty string

EVRW_PAYMENT_ELECTRONIC_MONEY

An empty string

*Maximum 6 installments

The payment types and names vary depending on the EVRW device. The
following are the payment types and terms available for EVRW devices. Note that
there are some differences between UnifiedPOS terms and those used by the
EVRW devices. The goal of this table is to synchronize these terms.

UnifiedPOS Version 1.15

Properties (UML attributes)

14-63

o © CAT CAT G-CAT JET-S SG-CAT Master-T
]
2 = Name (Old CAT)
S Z | Credit Not Not ICB VISA MASTER
‘é }% Card specified specified
£ E
2 S
2 5 2 | unifieapos
= 2 £ HS Card Company Terms
o) > g Term
g 2 z
) o =¥
Lump- | (None) 10 Lump-sum | Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof | 22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not Does not Bonus 3 Bonus 3
month(s) exist. exist.
Numberof | 24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
bonus
Bonus month)
month (1)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

UnifiedPOS Version 1.15

14-64

UnifiedPOS Retail Peripheral Architecture

Chapter 14

Electronic Value Reader / Writer

Number of
bonus
payments

Bonus
month (1)

Bonus
amount

(D

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not

exist.

Does not

exist.

Does not

exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

UnifiedPOS Version 1.15

Properties (UML attributes)

14-65

Payment
start
month

Number of
payments

Installmen
t
amount(1)

Installmen
t
amount(2)

Installmen
t
amount(3)

Installmen
t
amount(4)

Installmen
t
amount(5)

Installmen
t
amount(6)

62

Installment 2

Installment 2

Does not

exist.

Does not

exist.

Does not

exist.

Does not

exist.

Payment
start
month

Number of
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not

exist.

Installment 2

Combin
ation

Payment
start
month

Number of
payments

31

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14

Electronic Value Reader / Writer

Payment
start
month

Number of
payments

Bonus
amount

32

Bonus
Combination
2

Bonus
Combination
2

Does not

exist.

Does not

exist.

Bonus
Combination
2

Bonus
Combination
2

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus
Combination
3

Bonus
Combination
3

Does not

exist.

Does not

exist.

Bonus
Combination
3

(Up to two
entries for
bonus
month)

Bonus
Combination
3

UnifiedPOS Version 1.15

Properties (UML attributes)

14-67

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus
Combination
4

Bonus
Combination
4

Bonus
Combination
2

Bonus
Combination
2

Bonus
Combination
4

(Up to two
entries for
bonus month
and amount)

Bonus
Combination
4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

UnifiedPOS Version 1.15

14-68

UnifiedPOS Retail Peripheral Architecture

Chapter 14

Electronic Value Reader / Writer

Debit (None)

110 | Debit (Support (Support (Support (Support (Support
depends on |depends on |dependson |dependson |dependson
the actual the actual the actual the actual the actual
device) device) device) device) device)

Errors

See Also

PaymentMedia Property

Syntax

Remarks

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapPaymentDetail property.

Added in Release 1.15

PaymentMedia: int32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the EVRW device, not by the POS application.

Value Meaning

Errors

EVRW_MEDIA UNSPECIFIED None specified.

EVRW_MEDIA CREDIT Credit card.

EVRW_MEDIA_ DEBIT Debit card.
EVRW_MEDIA_ELECTRONIC_MONEYElectronic Money.

This property is initialized to EVRW_MEDIA UNSPECIFIED by the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-69

PINEntry Property Added in Release 1.14
Syntax PINEntry: int32 { read-write, access after open }
Remarks The PIN entry functionality that is supported by the EVR/W.
Value Meaning
EVRW_PIN ENTRY NONE
PIN input is not supported.
EVRW_PIN_ENTRY_ EXTERNAL
The EVR/W is not equipped with the PIN input device.
When PIN input is required, it is necessary to use an
external PIN pad device.
EVRW_PIN_ENTRY INTERNAL
The EVR/W is equipped with an internal PIN input
device for PIN number entry.
EVRW_PIN ENTRY_ UNKNOWN
The PIN entry may be supported by the EVR/W device
but the CurrentService property is set to empty string
(“““) and the it is not clear where the PIN entry is to
occur.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further

Point Property

Syntax
Remarks

Errors

information, see “Errors" on page Intro-21.

Updated in Release 1.14

Point: currency { read-write, access after open }
Holds the settlement point on the point service.

Note as of Release 1.14: The Point property may contain some of the same
information found in the tag values used by the setParameterInformation and
retrieveResultIinformation methods. The tag values should be used instead of the
Point property wherever possible.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

14-70

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

ReaderWriterServiceList Property Updated in Release 1.14.1

Syntax
Remarks

Errors

ReaderWriterServiceList: string { read-only, access after open }

Holds the comma-separated list of services that are supported by the EVR/W
device.

For example, when the character string that identifies ‘A’ electronic money service
is “MoneyA” and the character string that identifies ‘B’ electronic point service is
“PointB”, the ReaderWriterServiceList property becomes “MoneyA,PointB”.

If the service supports the sub-service, the open method succeeds, the service that
all the sub-services provides is enumerated.

If the EVR/W service does not support the sub-service and an EVR/W service
supports many services, those services are enumerated by this property.

This property is initialized by the open method. The initialization value depends
on what services are supported; e.g., if the EVR/W device supports “MoneyA” and
“PointB” services, this property is initialized to “MoneyA, PointB”.

Note as of Release 1.14.1:

When a service has some variations, a string value of this property can be
specified using the following rules.

“service [:variation [:additional]]”

[73% 2] [73%2]

Service is required. Variation with separator “:” and Additional with separator

[T3E2]

are optional. Separator characters such as “,”, and “:” cannot be used for a
Service, Variation, and Additional identifier.

Expamle:

Service “XYZCustomerPoint” offers two variations, “ABCStore” and
“DEFShop”, as a variation. In this case, it will be set to a
ReaderWriterServiceList property as “XYZCustomerPoint: ABCStore,
XYZCustomerPoint: DEFShop”.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-71

SequenceNumber Property
Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Holds a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

ServiceType Property Added in Release 1.14.1
Syntax ServiceType: int32 { read-only, access after open }

Remarks This property is initialized by the open method and updated when the
CurrentService property is updated.

Value Meaning

EVRW_ST ELECTRONIC MONEY

Electronic money service
EVRW_ST POINT Point service
EVRW_ST VOUCHER Voucher/Ticket service
EVRW_ST MEMBERSHIP

Membership certificate service
EVRW_ST UNSPECIFIED

Nothing is set to CurrentService

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors' on page Intro-21.

See Also CurrentService Property.

SettledAmount Property Updated in Release 1.14
Syntax SettledAmount: currency { read-only, access after open }
Remarks Sets the real amount of the settlement on the electronic money service.

Note as of Release 1.14: The Settled Amount property may contain some of the
same information found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the Settled Amount property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

14-72

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

SettledPoint Property

Syntax

Remarks

Errors

SettledPoint: currency { read-only, access after open }
Sets the settlement point on the point service.
This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

SlipNumber Property Added in Release 1.15

Syntax

Remarks

Errors

SlipNumber: string { read-only, access after open }

Stores a “slip number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TrainingModeState Property Added in Version 1.14

Syntax

Remarks

Errors

See Also

TrainingModeState: int32 { read-write, access after open }

The current state of the EVR/W device to indicate if the device is in training mode
or not.

Value Meaning

EVRW_TM FALSE The training mode is not selected, therefore normal
operation is the current state.

EVRW_TM_TRUE The training mode is selected.

EVRW_TM_UNKNOWN
The training mode may be supported by the EVR/W
device but the CurrentService property is set to empty
string (““‘) and the it is not clear what is the current state
of the training mode.

This property is initialized to one of the these values by the open method.

If TrainingModeState is set to EVRW_TM_TRUE but the device does not
support training mode, a UposException with E_ ILLEGALmay be thrown.
A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

CapTrainingMode Property.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-73

TransactionLog Property

Syntax TransactionLog: string { read-only, access after open }

Remarks Stores the result of the accessLog method.

If the CaplIndirectTransactionLog property is true, the TransactionLog
property shows URL that shows the position such as files where the transaction log
is stored.

The content of the transaction log depends on the device and service.

This property is initialized to an empty string (“”’) by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

See Also CaplndirectTransactionLog Property, TransactionLog Property,
accessLog Method.

TransactionNumber Property Added in Release 1.15

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated
when an authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

TransactionType Property Added in Release 1.15
Syntax TransactionType: int32 { read-only, access after open }
Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning
EVRW_TRANSACTION SALES Sales
EVRW_TRANSACTION_VOID Cancellation
EVRW_TRANSACTION_REFUND Refund purchase
EVRW_TRANSACTION COMPLETION Purchase after approval
EVRW_TRANSACTION PRESALES Pre-authorization

EVRW_TRANSACTION CHECKCARD Card Check
EVRW_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval

UnifiedPOS Version 1.15

14-74

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Errors

EVRW_TRANSACTION_CASHDEPOSIT Charge

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

VoucherlID Property Updated in Release 1.14

Syntax

Remarks

Errors

VoucherlID: string { read-write, access after open }

Sets the ID of voucher/ticket on the voucher/ticket service.
It consists of pairs of the identifier and the number which validate the card holder.

For example, six tickets of identifier “001” are shown by the character string
“001:6”. The “:” is a separator between the identifier and the number of sheets.

Note as of Release 1.14: The VoucherID property may contain some of the same
information found in the tag values used by the setParameterInformation and
retrieveResultInformation methods. The tag values should be used instead of the
VoucherlD property wherever possible.

(330

This property is initialized to an empty string (“”’) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

Properties (UML attributes) 14-75

VoucherlIDList Property Updated in Release 1.14
Syntax VoucherIDList: string { read-write, access after open }
Remarks Sets the IDs of voucher/ticket are enumerated on the voucher/ticket service.

If six tickets of identifier “001”, one ticket of identifier “002”, two tickets of
identifier “034” are maintained, this is expressed by the CSV character string in
the format “001:6,002:1,034:2”. The “,” is a separator when two or more rights are
maintained.

Note as of Release 1.14: The VoucherIDList property may contain some of the
same information _found in the tag values used by the setParameterInformation
and retrieveResultInformation methods. The tag values should be used instead
of the VoucherIDList property wherever possible.

(335

This property is initialized to an empty string (“”’) by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors" on page Intro-21.

UnifiedPOS Version 1.15

14-76

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Methods (UML operations)
accessDailyLog Method Added in Release 1.15

Syntax

accessDailyLog (sequenceNumber: in#32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

ParameterDescription

Remarks

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or
final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Gets daily log from EVRW.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

Application must specify one of the following values for #ype for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Electronic Money Device: Gets the DealinglLog from the Electronic Money
Device to send to the Center. If the Electronic Money Device has communication
capabilities, the DealingLLog will be sent from the Electronic Money Device to

UnifiedPOS Version 1.15

Methods (UML operations) 14-77

the Center and nothing is stored in the DailyLog. Otherwise, the DealingLog is
stored in the DailyLog Property.

Value Meaning

EVRW DL REPORTING Intermediate total.

EVRW DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of
the Electronic Money device.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21. Some possible values of the
exception's ErrorCode property are:

ValueMeaning

E ILLEGAL Invalid or unsupported #ype or timeout parameter was
specified, or CapDailyLog is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The EVRW device cannot accept any commands now.

See Also CapDailyLog property, DailyLog property.

UnifiedPOS Version 1.15

14-78

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Syntax

Remarks

Errors

See Also

accessData Method Added in Release 1.14.1

accessData (dataType:int32, inout data: int32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

dataType Type of the data which accesses

Value Meaning

EVRW_AD KEY Key information.

EVRW_AD NEGATIVE LIST Negative list.

EVRW_AD OTHERS Other information.

data An array of one mutable integers whose specific values
or usage vary by service.

obj Additional data whose usage varies by service.

Data other than a transaction log is accessed from an EVR/W. It is supported
when an EVR/W has accessible data besides a transaction log accessible by
AccessLog method.

The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device does not have the activation.
E BUSY The device cannot accept any commands now.

accessLog Method, updateData Method, TransitionEvent.

UnifiedPOS Version 1.15

Methods (UML operations) 14-79

accessLog Method Updated in Release 1.14.1

Syntax

Remarks

accessLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get transaction log.

type Specifies whether the transaction log is intermediate
total or the last total. (see values below)

timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Gets transaction log from device.

Gets transaction log on demand by sequenceNumber, and it is stored in the
TransactionLog property.

When timeout is FOREVER(-1), a timeout never occurs and it waits indefinitely
until it receives a response from the device.

If EVR/W device needs the last total processing of a transaction, it performs this
method.

The last total processing might be cleared in the transaction log, this depends on
the implementation. However, the intermediate total must not be cleared in the
transaction log.

It depends on the implementation if the transaction log will be passed to the service
center directly and not to the application.

The application must specify one of the following values for #ype of transaction
(either intermediate total or the last total).

Value Meaning

EVRW_AL REPORTING
Gets transaction log as an intermediate total.
EVRW_AL SETTLEMENT
The transaction log for the device is fixed and erased.
(Whether it is erased or not depends on the
implementation.)
This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Added in Release 1.14.1

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

UnifiedPOS Version 1.15

14-80

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid #ype or timeout parameter was specified. Or
transaction log function is unsupported.

E TIMEOUT No response was received from device during the
specified timeout (in milliseconds).

E BUSY The device cannot accept any commands while

asynchronously processing.

TransactionLog Property, accessData Method, TransitionEvent.

UnifiedPOS Version 1.15

Methods (UML operations) 14-81

activateEVService Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

activateEVService (inout data: int32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

data An array of one mutable integer whose specific values
or usage vary by service.

obj Additional data whose usage varies by service.

Executes the device activation process.

If the device has the activation process function, it is supported.

The activation process is the initial process performed when newly installing a
device or service, or when enabling the function disabled at the time of factory
shipment.

The contents of processing and the contents of the parameter are dependent on
service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device does not have the activation.
E BUSY The device cannot accept any commands now.

deactivateEVService Method, TransitionEvent.

UnifiedPOS Version 1.15

14-82

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

activateService Method

Syntax

Remarks

Errors

See Also

activateService (inout data: int32, inout obj: object):

void { raises-exception, use after open-claim-enable }
Executes the device activation process.
If the device has the activation process function, it is supported.

The activation process is initialization or installation of device. The details of
process contents and parameters depend on implementation.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device does not have the activation.
E BUSY The device cannot accept any commands now.

CapActivateService Property.

addValue Method

Syntax

Remarks

Errors

See Also

addValue (sequenceNumber: in#32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Electronic value is added to the card as specified by sequenceNumber on demand.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified Timeout in milliseconds.

E BUSY The device cannot accept any commands now.

CapAddValue Property, cancelValue Method, readValue Method,
subtractValue Method, writeValue Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14-83

authorizeCompletion Method Added in Release 1.15

Syntax

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Remarks

Errors

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Purchase after approval is intended.

Sales after approval for amount and taxOthers are intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

See Also

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The EVRW device cannot accept any commands now.

CapAuthorizeCompletion property.

UnifiedPOS Version 1.15

14-84

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

authorizePreSales Method Added in Release 1.15

Syntax

authorizePreSales (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

Remarks

Errors

sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-20.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

See Also

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The EVRW device cannot accept any commands now.

CapAuthorizePreSales property.

UnifiedPOS Version 1.15

Methods (UML operations) 14-85

authorizeRefund Method Added in Release 1.15

Syntax

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.
Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.
When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception's ErrorCode property are:
ValueMeaning
E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.
E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.
E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The EVRW device cannot accept any commands now.
See Also CapAuthorizeRefund property.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-86 Electronic Value Reader / Writer
authorizeSales Method Added in Release 1.15
Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxQOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the
response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.
Remarks Normal purchase approval is intended.
Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.
When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.
Errors A UposException may be thrown when this method is invoked. For further

information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The EVRW device cannot accept any commands now.

UnifiedPOS Version 1.15

Methods (UML operations) 14-87

authorizeVoid Method Added in Release 1.15

Syntax

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Remarks

Errors

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

See Also

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The EVRW device cannot accept any commands now.

CapAuthorizeVoid property.

UnifiedPOS Version 1.15

14-88

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

authorizeVoidPreSales Method Added in Release 1.15

Syntax

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

Remarks

Errors

sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

Normal cancellation could be used for EVRW control and EVRW devices which
have not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with EVRW device and / or EVRW control.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

See Also

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The EVRW device cannot accept any commands now.
CapAuthorizeVoidPreSales property.

UnifiedPOS Version 1.15

Methods (UML operations) 14-89

beginDetection Method

Syntax

Remarks

Errors

See Also

beginDetection (type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Executes the card detection process.

If the timeout parameter value is zero, the method initiates the detection mode
immediately. If a value is set (in milliseconds), the card detection process will wait
for this time period if necessary. If a value of FOREVER(-1) is specified, the
method initiates the card detection process and then waits as long as necessary
until either the card is detected or an error occurs.

The type parameter specifies the type of the detected card. The value that can be
specified is as follows:

Value Meaning

EVRW _BD ANY The content of the detected card can be anything.

EVRW_BD SPECIFIC When this method is called, only the card that
corresponds to the identifier in the MediumID property
can be detected.

Starts the card detection process in the device slot.

Supports the both contactless and contact IC card devices.

When called, the device starts a card detection process, and initiates the card

detection in the device. This method is called together with the endDetection
method that ends the card detection process.

If the device cannot be set to the detection process, an error exception will be fired
such as E TIMEOUT. However, the device stays in the detection mode until the
endDetection method is called.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY cannot execute while asynchronous processing.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified timeout has elapsed without the card being
properly detected.

MediumID Property, endDetection Method.

UnifiedPOS Version 1.15

14-90

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

beginRemoval Method

Syntax

Remarks

Errors

See Also

beginRemoval (timeout: inz32):
void { raises-exception, use after open-claim-enable }

Executes the removal process

If the timeout parameter value is zero, the method initiated the detection mode
immediately. If its value is set (milliseconds), the card detection process will be
wait until time is due. If its value is FOREVER(-1), the method initiates the card
removal process and then waits as long as necessary until either the card is
removed or an error occurs.

Starts the card ejection process.

If the device is a contactless IC card device, when this method is called, device
starts the card ejection process and ejects the card and this method ends
successfully at any time.

If the device is a contact IC card device with card detection sensor, this method
completes when card ejection was detected.

If the device is a contact IC card device without card detection sensor, this method
completes when this method is executed.

This method is called together with the endRemoval method that ends the card
gjection process.

If the device cannot be set to the card ejection mode, an error exception will be
fired, e.g., E TIMEOUT. However, the device will remain in card ejection mode
until endRemoval method is called.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY cannot execute while asynchronous processing.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified timeout has elapsed without the card being

properly removed.
endRemoval Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14-91

cancelValue Method

Syntax

Remarks

Errors

See Also

cancelValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Cancels the Electronic value related operation specified by sequenceNumber on
demand. The targeted cancellation operation is identified by the settlement number
that is contained in the ApprovalCode property.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified timeout in milliseconds.

E BUSY The device cannot accept any commands now.

ApprovalCode Property, CapCancelValue Property, addValue Method,
readValue Method, subtractValue Method, writeValue Method.

captureCard Method

Syntax

Remarks

Errors

See Also

captureCard ():
void { raises-exception, use after open-claim-enable }
The card left in the slot is removed.

This method is effective, if the device is equipped with a card detection sensor.
When the card insertion slot sensor detects the card, since the card ejection process
was executed, application may call this method to keep and maintain the card.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E FAILURE The device cannot capture the card.

DetectionStatus Property.

UnifiedPOS Version 1.15

14-92

UnifiedPOS Retail Peripheral Architecture Chapter 14

Electronic Value Reader / Writer

cashDeposit Method

Added in Release 1.15

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number for charge.
amount Amount of money for charge.
timeout The maximum waiting time (in milliseconds) until the
response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.
Remarks Charging amounts.
The amount is stored on the Electronic Money Device.
If timeout is FOREVER(-1), a timeout will not occur and the process will wait
forever until the Electronic Money Device responds.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception's ErrorCode property are:
Value Meaning
E ILLEGAL Invalid timeout parameter was specified, or
CapCashDeposit is false.
E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.
E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The EVRW device cannot accept any commands now.
See Also CapCashDeposit property.

UnifiedPOS Version 1.15

Methods (UML operations) 14-93

checkCard Method Added in Release 1.15

Syntax

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Remarks

Errors

ParameterDescription
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the

response is received from the EVRW device.
FOREVER (-1), 0 and positive values can be specified.

Card Check is intended.
Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The
Balance will be stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the EVRW.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception's ErrorCode property are:

ValueMeaning

See Also

E ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E TIMEOUT No response was received from EVRW during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The EVRW device cannot accept any commands now.
Balance property, CapCheckCard property.

UnifiedPOS Version 1.15

14-94

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

checkServiceRegistrationToMedium Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

checkServiceRegistrationToMedium
(sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number

timeout The maximum waiting time (in milliseconds) until the
response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

To a medium, it is checked whether electronic value service can be registered.

An UposException with E EXTENDED is thrown when service cannot register to
medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified timeout in milliseconds.

E BUSY The device cannot accept any commands now.

registerServiceToMedium Method.

clearParameterinformation Method Added in Release 1.14

Syntax

Remarks

Errors

See Also

clearParameterInformation ():
void { raises-exception, use after open-claim-enable }

Used to clear the all the tag values for the control set previously stored by the
setParameterInformation method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

setParameterInformation Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14-95

closeDailyEVService Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

closeDailyEVService (inout data: in#32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

data An array of one mutable integer whose specific values
or usage vary by service.

obj Additional data whose usage varies by service.

Executes the closing process of the service selected by CurrentService property..

If the device has the closing process function, it is supported.
The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The service does not have the closing process.
E BUSY The device cannot accept any commands now.

openDailyEVService Method, TransitionEvent .

UnifiedPOS Version 1.15

14-96

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

deactivateEVService Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

deactivateEVService (inout data: in#32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

data An array of one mutable integer whose specific values
or usage vary by service.
obj Additional data whose usage varies by service.

Executes the device deactivation process.
If the device has the deactivation process function, it is supported.

The deactivation process is the terminate process performed when uninstalling a
service or removing a device.

The contents of processing and the contents of the parameter are dependent on
service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

These Service requirements allow applications using this method to be designed to
always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL The device does not have the deactivation.
E BUSY The device cannot accept any commands now.

activateEVService Method, TransitionEvent.

UnifiedPOS Version 1.15

Methods (UML operations) 14-97

endDetection Method

Syntax

Remarks

Errors

See Also

endDetection ():
void { raises-exception, use after open-claim-enable }
Ends the card detection process.

When called, the device ends card detection mode. If the card is correctly detected
in the device control is returned to the application. If the card cannot be detected
an exception is delivered with its ErrorCodeExtended property set to
EVRW_NOCARD.

This method is called together with the beginDetection method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in card detection mode.
E_EXTENDED ErrorCodeExtended=EVRW_NOCARD:

No card has been detected.
beginDetection Method.

endRemoval Method

Syntax

Remarks

Errors

See Also

endRemoval ():
void { raises-exception, use after open-claim-enable }

Ends the card removal process.

When called, the device ends the card removal mode. If the card is not detected in
the device, control is returned to the application. If the card remains in the device,
an exception is delivered with its ErrorCodeExtended property set to
EVRW_RELEASE. If the device is contactless IC card, it is not necessary to
implement this and control is always returned to the application without any
exceptions.

This method is called together with the beginRemoval method for the card
removal processing.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in card removal mode.
E_EXTENDED ErrorCodeExtended=EVRW_RELEASE:

The card remains in the device.

beginRemoval Method.

UnifiedPOS Version 1.15

14-98

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

enumerateCardServices Method

Syntax enumerateCardServices ():
void { raises-exception, use after open-claim-enable }

Remarks Enumerates the services which are used in the card and sets the CardServiceList
property.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

See Also CardServiceList Property.

lockTerminal Method Updated in Release 1.14.1

Syntax lockTerminal ():

void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock on the device or the service. If the device or the service is
locked, the device or the service cannot accept any commands except for
unlockTerminal method.

AdditionalSecurityInformation property is set if key information is required to
lock for the authentication.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The device does not have a security lock function.
CapLockTerminal is false.

E BUSY The device cannot accept any commands now.

See Also AdditionalSecurityInformation Property, CapLockTerminal Property,

unlockTerminal Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14-99

openDailyEVService Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

openDailyEVService (inout data: in#32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

data An array of one mutable integer whose specific values
or usage vary by service.

obj Additional data whose usage varies by service.

Executes the opening process of the service selected by CurrentService
property..
If the device has the opening process function, it is supported.

The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The service does not have the opening process.
E BUSY The device cannot accept any commands now

closeDailyEVService Method, TransitionEvent.

UnifiedPOS Version 1.15

14-100

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

queryLastSuccessfulTransactionResult Method Added in Release 1.14

Syntax

Remarks

Errors

queryLastSuccessfulTransactionResult ():
void { raises-exception, use after open-claim-enable }

This method is used to refresh the property values that resulted from last
successful readValue, writeValue, addValue, subtractValue, cancelValue, and
accessLog methods calls.

When the readValue method was last successfully executed, the property values
will indicate the status at the time the DataEvent event or ErrorEvent event was
sent. The tag name “TransactionType” will be set to the value of last successful
transaction method call.

The queryLast SuccessfulTransactionResult method is necessary because there
may be situations where a transaction result is unknown. This could be due to
power failure or network communication interruptions occurring just before the
transaction result updated. Some EVR/W devices support a function to provide the
last transaction results from the device and this method utilizes this functionality.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

readValue Method

Syntax

Remarks

Errors

See Also

readValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Reads the electronic value from the card.

Electronic value is read from the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), a timeout never occurs and the Service waits
indefinitely until it receives a response from the device.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified Timeout in milliseconds.

E BUSY The device cannot accept any commands now.

addValue Method, cancelValue Method, subtractValue Method, writeValue
Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14-101

registerServiceToMedium Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

registerServiceToMedium
(sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Electronic value service is registered to a medium.
When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified timeout in milliseconds.

E BUSY The device cannot accept any commands now.

checkServiceRegistrationToMedium Method,
unregisterServiceToMedium Method.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-102 Electronic Value Reader / Writer
retrieveResultinformation Method Updated in Release 1.15
Syntax retrieveResultInformation (name: string, inout value: string):
void { raises-exception, use after open, claim }
Parameter Description
name The tag name whose value is to be retrieved.
value The string value for the tag specified by the name
parameter. If the name parameter is not recognized or
not supported for the current card type, the value
returned will be an empty string (““).
Remarks The retrieveResultInformation method is used to associate a tag name with the

data value that comes from the card that is being read.

The following table defines the tag name and associated information on its value
and usage.

Tag name Type** of String and Description

AccessLoglLastDateTime The Datetime of obtaining the last
transaction log.

AccountNumber Account ID String for electronic value
service. Although it has the same
information in a property, it is
recommended to use this

tag name/value.

Amount Settlement Currency amount
requested to the EVR/W.

Although it has the same information
in a property, it is recommended to use
this tag name/value.

AmountForPoint The Currency amount targeted for
calculating points. The amount will be
specified when the EVR/W device
calculates the point values to be added
at the same time as settlement, but
there are some products not targeted
for points.

AuthenticationStatus The Enumerated number for the sta-
tus of authentication.

AutoCharge Boolean for request to conduct an au-
tomatic charge at the time of issuing a
method, or the result of automatic
charge at the time of completing the
process.

UnifiedPOS Version 1.15

Methods (UML operations) 14-103

Balance The Currency balance of electronic
value service. Although it has the
same information in a property, it is
recommended to use this

tag name/value.

BalanceOfPoint The Currency balance of point
service.Although it has the same
information in a property, it is
recommended to use

this tag name/value.

BusinessUnitID ID String for a store.

CardCompanyName The String name of a company issuing
electronic value media (card or mobile
phone).

CardTransactionLogID The ID String for transaction details

stored in electronic value service
media (card or mobile phone).

CardTransactionNumber The transaction Number assigned and
controlled by electronic value
service media (card or mobile phone).

ChargeableAmount The Currency amount for which
charging is possible

ChargeableCount The Number of times in which
charging is possible.

ChargeMethod The Enumerated value for the
method to charge an electronic value
service:

1. Cash

2. Exchanging points

DateTime The Datetime of issuing a method,
notifying an event, or completing a
process.

EffectiveDaysOfKey The Number of days the Key value is
effective.

EndAccountID The ending point specified by an
account ID String when requesting
closing or summary to the EVR/W.

EndDateTime The ending point specified by the
Datetime when requesting closing or
summary to the EVR/W.

UnifiedPOS Version 1.15

14-104

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

EndEVRWTransactionNumber

The ending point Number specified
by the EVR/W transaction

sequential number when requesting
closing or summary to the EVR/W.

EndPOSTransactionNumber

The ending point Number specified
by a POS transaction number when
requesting closing or summary to the
EVR/W.

EVRWApprovalCode

The approval code String for
processing assigned and controlled by
the EVR/W.

EVRWDataUpdateDateTime

The Datetime when the internal data
of the EVR/W was updated.

EVRWDateTime

The Datetime managed by the
EVR/W.

EVRWID

The ID Number of the EVR/W

EVRWTransactionLogID

The ID String for transaction details
stored in the EVR/W

EVRWTransactionNumber

The transaction Number assigned and
controlled by the EVR/W.

ExpirationDate

The expiration DateTime of the
medium. Although it has the same
information in a property, it is
recommended to use this

tag name/value.

ExpiredAccount]D

The String description provided when
information is held for an account

already expired in the electronic value
service media (card or mobile phone).

ForceOnlineCheck

Boolean

Specifies request to force the center to
check online/offline status at the time
of settlement.

InsufficientAmount

Insufficient Currency amount when
the balance is found insufficient by the
EVR/W.

ItemCode

The item code String for the product
handled in the settled transaction.

KeyExpirationDateTime

The DateTime when the key expires.

KeyUpdateDateTime

The DateTime when the key of the
EVR/W was last updated.

UnifiedPOS Version 1.15

Methods (UML operations) 14-105

LastTimeBalance Currency Balance before settlement

LastTimeCardTransactionLogID The ID String for last time
transaction details stored in electronic
value service media (card or mobile

phone).
LastTimeEVRWTransactionLogID The ID String for last time
transaction details stored in the
EVR/W.
LastUsedDateTime The most recent used DateTime of the

medium. Although it has the same
information in a property, it is
recommended to use this

tag name/value.

LogCheck Boolean

The flag to specify whether to check
the transaction log when voiding the
settlement.

MediaData Information String data for electronic
value media (card or mobile phone)
that is not related to POS. The content
can be freely set by service providers
or vendors.

MediumID The ID Number for electronic value
service media (card or mobile phone).
Although it has the same information
in a property, it is recommended to use
this tag name/value.

MediumlIssuerInformation The String containing the information
on the issuer of the medium.

MemberInformation The String containing the information
of the membership certificate.

MerchantID The String containing the merchant
identification information.

ModulelD The ID Number for individual
settlement modules or applications
that exist in the EVR/W that provides
multiple services.

NegativelnformationType The Enumerated value indicating the
type of negative transaction
information.

UnifiedPOS Version 1.15

14-106

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

NegativelnformationUpdateDateTime

The DateTime when the negative
information of the EVR/W
was updated.

NumberOfAddition

The Number of charge settlement
transactions

NumberOfEVRWTransactionLog

The Number of
transaction details stored
in the EVR/W.

NumberOfFreeEVRWTransactionLog

The Number value of free space for
transaction details stored
in the EVR/W

NumberOfRecord

The Number of records

NumberOfSentEVRWTransactionLog

The Number of transaction details that
are stored in the EVR/W and have
been sent to the settlement center.

NumberOfSubtraction The Number of settlement
transactions.
NumberOfTransaction The total Number of transactions

NumberOfUncompletedAddition

The Number of transactions
uncompleted due to communication
error between the EVR/W and
electronic value media (card or mobile
phone) during the charge settlement
transaction.

NumberOfUncompletedSubtraction

The Number of transactions
uncompleted due to communication
error between the EVR/W and
electronic value media (card or
mobile phone) during the settlement
transaction.

NumberOfUncompletedVoid

The Number of transactions
uncompleted due to communication
error between the EVR/W and
electronic value media (card or mobile
phone) during voiding transaction.

NumberOfVoid The Number of
voiding transactions
OtherAmount The Currency amount for extra

payment when it is used for the
transaction together with a regular
settlement.

UnifiedPOS Version 1.15

Methods (UML operations)

14-107

PaymentCondition

The Enumerated number for the type
of payment for the settlement amount
in case of post-pay type electronic
value services.

PaymentDetail

The String data of the type of payment
for the settlement amount in case of
post-pay type electronic value
services.

PaymentMethod

The Enumerated number for the
amount required by the EVR/W, it
specifies the type of settlement of
transaction amount:

1. Full settlement

2. Settlement combined with another
payment method.

PaymentMethodForPoint

The Enumerated value that represents
the settlement method that is targeted
for calculating points.

Point

The point value Number requested to
the EVR/W from POS. Although it
has the same information

in a property, it is recommended to use
this tag name/value.

POSDateTime

The Datetime of accounting managed
by POS.

POSTransactionNumber

The sequential Number that identifies
the POS transaction.

RegistrableServiceCapacity

The Number indicating the quantity of
services that can be registered.

RequestedAutoChargeAmount

The Currency amount requested for
automatic charge.

ResponseCodel

The primary result code Number for
processing.The content can be freely
set by service providers or vendors.

ResponseCode2

The secondary result code Number
for detailed processing.The content
can be freely set by service providers
or vendors.

ResultOnSettlement

The Enumerated number for the
result status of the settlement
transaction between the EVR/W and
electronic value media (card or
mobile phone)

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

RetryTimeout

Timeout Number (in milliseconds)
until the EVR/W is touched by
electronic value media (card or
mobile phone) when it is necessary to
retry processing between the EVR/W
and electronic value media (card or
mobile phone)

Settled Amount

The Currency amount actually settled
with the EVR/W. Although it has the
same information in a property, it is
recommended to use this

tag name/value.

Settled AutoCharge Amount

The automatic charge Currency value
actually settled by the EVR/W

SettledMemberInformation

The String which contains the
member information in the
membership certificate after it has
been updated.

SettledOther-Amount

The actual Currency amount of extra
payment when an electronic value
service is used with other settlement
methods.

SettledPoint

The point value Number actually
settled by the EVR/W.

SetttledVoucherID

The String which contains the updated
voucher ID.

SettlementNumber

The sequential Number for the
clearing process.

SignatureFlag

Boolean
The flag to specify whether or not it is
necessary to sign after settlement.

SoundAssistFlag

Boolean
The flag specifying whether or not to
activate voice navigation.

StartAccountID

The starting point specified by a
String account ID when requesting
closing or summary to the EVR/W.

StartDateTime

The starting point specified by the
Datetime when requesting closing or
summary to the EVR/W.

UnifiedPOS Version 1.15

Methods (UML operations)

14-109

StartEVRWTransactionNumber

The starting point Number specified
by the EVR/W transaction
sequential number when requesting
closing or summary to the EVR/W.

StartPOSTransactionNumber

The starting point Number specified
by a POS transaction number when
requesting closing or summary to the
EVR/W.

SummaryTermType The Enumerated number that
specifies the term for the summary
process.

TargetService The String which contains the
information about the target service.

TaxOthers Tax and other Currency amounts

included in the settlement amount
required by the EVR/W.

Total AmountOfAddition

The total Currency amount of charge
settlement transactions

Total AmountOfSubtraction

Total Currency amount of settlement
transactions.

TotalAmountOfTransaction

The total Currency amount of the
transactions.

Total AmountOfUncompletedAddition

The total Currency amount of
transactions not completed due to
communication errors between the
EVR/W and electronic value media
(card or mobile phone)

during the charge settlement
transaction.

Total AmountOfUncompletedSubtraction

The total Currency amount of
transactions not completed due to
communication errors between the
EVR/W and electronic value media
(card or mobile phone) during the
transaction settlement.

Total AmountOfUncompletedVoid

The total Currency amount of
transactions not completed due to
communication errors between the
EVR/W and electronic value media
(card or mobile phone) during
voiding transactions.

Total AmountOfVoid

The total Currency amount of
voided transactions.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

Chapter 14
Electronic Value Reader / Writer

TouchTimeout

Timeout Number (in milliseconds)
until the EVR/W is touched by
electronic value media (card or
mobile phone).

TransactionType

The Enumerated number for the type
of transaction for the electronic value
service.

UILCDControl

Boolean
Specifies whether or not a LCD is
controlled if the EVR/W has a LCD.

UILEDControl

Boolean
Specifies whether or not a LED is
controlled if the EVR/W has a LCD.

UISOUNDControl

Boolean
Specifies whether or not sound is
controlled if EVR/W has sounds.

VOIDorRETURN

The Enumerated value for how a
transaction is voided:

1. Void

2. Return

VoidTransactionType

The Enumerated value for the type of
transaction to be voided:

1. Cash

2. Exchanging points

VoucherID

The ID String of the voucher/ticket.

VoucherIDList

The enumerated IDs String of the
voucher/ticket.

WorkstationID

ID String for POS.

WorkstationMaker

The String which identifies the
manufacturer’s code of the
workstation manufacturer.

WorkstationSerialNumber

The String which contains the
manufacturer’s serial number or the
identification code of the POS
workstation.

UnifiedPOS Version 1.15

Methods (UML operations)

14-111

All the values for the tags are typed as character strings. The following table
shows the format for the string values.

Type**

Format

String

Text character string.

Number

32 bit Integer value represented by text characters.

Currency

64 bit Integer value represented by text characters.The 4 fixed
numbers of digits define below a decimal point.

E.g., if the integer is “1234567”, then the currency value is
“123.4567".

Datetime

Datetime format is: yyyy '-' mm '-' dd 'T" hh """ mm "' ss . sss zzzzzz
where '-' is the character separator between the date elements.
yyyy is a 4-digits numeral representing the year.

mm is a 2-digits numeral representing the month (from 01 to 12) .
dd is a 2-digits numeral representing the day of the month

(from 01 to 31).

'T' is the character separator between the date and the time.

"' is the character separator between the time elements.

hh is a 2-digits numeral representing the hours (from 00 to 23).
mm (the second one) is a 2-digits numeral representing the minute
(from 00 to 59).

ss is a 2-digits numeral representing the integer part of the seconds
(from 00 to 59).

'."is the character separator between the time and the fractional
seconds.

sss is a 1-digit to 3-digits numeral representing the fractional
seconds.

zzzzzz represent the time zone which is the character 'Z' fora GMT
time, or the delta from the GMT time, with a string of the form
(('+']'-") hh """ mm) where '+ represent a positive delta from the
GMT time '-' represent a negative delta from the GMT time hh is a
2-digits numeral representing the delta hours (from 00 to 14) mm is
a 2-digits numeral representing the delta minute (from 00 to 59)
Requesting a mandatory time zone resolves the problem of Daylight
Saving Time or Summer Time, because the time is absolute.
Examples 2008-04-12T23:20:50.275 represents the date of 12 April
2008 on the local time of 20 minutes, 50 seconds and 275 millisec-
onds past 23 hours. 2008-04-12T22:20:50.275+01:00 represents the
same date and time in Geneva. 2008-04-12T17:20:50.275-05:00
represents the same date and time in New-York.

Boolean

A logical type of string value “True” or “False”.

Enumerated

One of the text character strings defined by each tag.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

14-112

Chapter 14

Electronic Value Reader / Writer

The following values are used for the Enumerated tags.

Tag Definition Remarks
Authentication | EVRW_TAG_AS AUTHENTICATED Authenticated
Status
EVRW_TAG_AS UNAUTHENTICATED Unauthenticated
Cancel EVRW _TAG CTT_CANCEL Canceling
Transaction -
Type EVRW _TAG CTT CHARGE Canceling charge
EVRW_TAG_CTT_RETURN Return
EVRW _TAG _CTT_SALES Canceling sales
Charge EVRW_TAG CM_CASH Charge by cash
Method .
EVRW _TAG CM _CREDIT Charge by credit
EVRW_TAG _CM_POINT Charge by points
Negative EVRW_TAG NIT ALL Full list of negative
Information settlement
Type information.
EVRW_TAG_NIT UPDATED Updated list of
negative
settlement
information

UnifiedPOS Version 1.15

Methods (UML operations)

14-113

Payment EVRW_TAG PC_INSTALLMENT 2 Installment 2
Condition
EVRW _TAG PC INSTALLMENT 3 Installment 3
EVRW_TAG_PC BONUS 1 Bonus 1
EVRW _TAG PC BONUS 2 Bonus 2
EVRW_TAG PC BONUS 3 Bonus 3
EVRW_TAG_PC _BONUS 4 Bonus 4
EVRW _TAG PC BONUS 5 Bonus 5
EVRW_TAG PC BONUS COMBINATION 1 | With extra
payment by
bonus 1
EVRW_TAG PC BONUS COMBINATION 2 | With extra
payment by
bonus 2
EVRW _TAG PC BONUS COMBINATION 3 | With extra
payment by
bonus 3
EVRW_TAG PC BONUS COMBINATION 4 | With extra
payment by
bonus 4
EVRW_TAG_PC_INSTALLMENT 1 Installment 1
EVRW_TAG PC LUMP Lump-sum
EVRW TAG PC_REVOLVING Revolving
Payment EVRW_TAG PM_COMBINED Settlement
Method combined with
other payment
EVRW _TAG PM FULL SETTLEMENT Full settlement
Payment EVRW_TAG PMFP_CASH Cash
Method .
ForPoint EVRW_TAG PMFP CREDIT Credit card
EVRW_TAG PMFP_EM Electronic money
EVRW_TAG PMFP_OTHER Other

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture

14-114

Chapter 14

Electronic Value Reader / Writer

ResultOnSet-
tlement

EVRW_TAG _ROS NG

Abnormal
termination

EVRW_TAG_ROS_OK

Normal
termination

EVRW_TAG ROS_UNKNOWN

Unidentified

Summary
TermType

EVRW_TAG STT 1

From the previous
type of summary
result to current.

EVRW_TAG_STT 2

From the summary
result before the
previous type of
result to the
previous summary
result.

EVRW_TAG_STT 3

From the summary
result two times
before the previous
type of summary
result to the
summary result
before the previous
result.

Transaction-
Type

EVRW_TAG_TT_ADD

Adding (Charge)

EVRW _TAG TT CANCEL CHARGE

Canceling charge

EVRW_TAG TT CANCEL_RETURN

Canceling/Return

EVRW_TAG TT_CANCEL_SALES

Canceling sales

EVRW_TAG TT COMPLETION

Authorizing com-
pletion

EVRW_TAG TT GET_LOG

Acquiring a
transaction log

EVRW _TAG TT PRE-SALES Authorizing pre-
sales

EVRW_TAG TT READ Reading
(Reference)

EVRW_TAG _TT RETURN Return

EVRW _TAG TT SUBTRACT Subtracting (Sales)

EVRW _TAG TT WRITE Writing

UnifiedPOS Version 1.15

Methods (UML operations) 14-115

Errors

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

setParameterinformation Method Added in Release 1.14

Syntax

Remarks

Errors

See Also

setParameterInformation (name: string, value: string):void
{ raises-exception, use after open, claim }

Parameter Description

name The tag used to identify the specific card data item.

value The string value associated with the tag name.
If the name parameter is not recognized or not supported
for the current card type, the value returned will be an
empty string (“).

The setParameterInformation method is used to associate a tag name with
additional the data value parameters that are associated with the card that is being
read. Refer to explanation of a retrieveResultInformation method for the tags
and values that can be used.

The application can call a clearParameterInformation method which will set the
value to the empty string (““‘).

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

clearParameterInformation Mcthod, retrieveResultInformation Method.

subtractValue Method

Syntax

Remarks

subtractValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Subtracts the electronic value from the card.

Electronic value is subtracted from the card specified by sequenceNumber on
demand.

When timeout is FOREVER(-1), timeout never occurs and the Service waits
indefinitely until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and

UnifiedPOS Version 1.15

14-116

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

Errors

See Also

asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified timeout in milliseconds.

E BUSY The device cannot accept any commands now.

CapSubtractValue Property, addValue Method, cancelValue Method,
readValue Method, writeValue Method.

transactionAccess Method

Syntax

Remarks

Errors

See Also

transactionAccess (control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

control The transaction control, can be set to one of the
following values:

Value Meaning

EVRW_TA TRANSACTION Begin a transaction
EVRW_TA NORMAL End the transaction mode by executing the
buffer operation.

Enters or exits transaction mode.

If control is EVRW_TA TRANSACTION, then transaction mode is entered.
Subsequent calls to readValue, writeValue, addValue, subtractValue, and
cancelValue will buffer the data until transactionAccess is called with the control
parameter set to EVRW_TA NORMAL. It depends on the implementation if
buffering is done in the EVR/W device or buffering is done within the Service.

If control is EVRW_TA NORMAL, then transaction mode is exited. If some
requests were buffered by calls to the methods readValue, writeValue,
addValue, subtractValue, and cancelValue, then the buffered requests will be
executed.

The entire transaction requests are treated as one message. This method is
performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print
lines are also cleared.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

AsyncMode Property, CapTransaction Property, addValue Method, cancelValue
Method, readValue Method, subtractValue Method, writeValue Method.

UnifiedPOS Version 1.15

Methods (UML operations) 14117

unlockTerminal Method Updated in Release 1.14.1

Syntax

Remarks

Errors

See Also

unlockTerminal ():

void { raises-exception, use after open-claim-enable }
Releases the security lock on the device or the service.
When the device has a security lock function, it is supported.

AdditionalSecurityInformation property is set when key information is required
to release the lock.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The device does not have a security lock function.
CapUnlockTerminal is false.
E BUSY The device cannot accept any commands now.

AdditionalSecurityInformation Property, CapUnlockTerminal Property
lockTerminal Method.

unregisterServiceToMedium Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

unregisterServiceToMedium
(sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number

timeout The maximum waiting time (in milliseconds) until the
response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Electronic value service is deleted from a medium.
When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.
E TIMEOUT No response was received from device during the

specified timeout in milliseconds.
E BUSY he device cannot accept any commands now.

registerService Method.

UnifiedPOS Version 1.15

14-118

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

updateData Method Added in Release 1.14.1

Syntax

Remarks

Errors

See Also

updateData (dataType:int32, inout data: int32, inout obj: object):
void { raises-exception, use after open-claim-enable }

Parameter Description

dataType Type of the data which accesses

Value Meaning

EVRW_AD KEY Key information.
EVRW_AD NEGATIVE LIST Negative list.
EVRW_AD OTHERS Other information.

data An array of one mutable integer whose specific values
or usage vary by service.
obj Additional data whose usage varies by service.

The data of an EVR/W is updated.

The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL The device does not have the activation.
E BUSY The device cannot accept any commands now.

accessData Method, TransitionEvent.

UnifiedPOS Version 1.15

Methods (UML operations) 14-119

updateKey Method Updated in Version 1.14.1

Syntax

Remarks

Errors

See Also

updateKey (inout data: int32, inout obj: object):

void { raises-exception, use after open-claim-enable }
Updates the key information in the device.
If the device has the function to the key information, it is supported.

The content of processing and the content of the parameter depend on the
implementation.

Added in Release 1.14.1

For consistency, a Service must always fire at least one TransitionEvent with an
incomplete progress completion percentage (i.e. a percentage between 1 and 99),
even if the device cannot physically report the progress of the process. If the
process completes successfully, the Service must fire a TransitionEvent with a
progress of 100. These Service requirements allow applications using this method
to be designed to always expect some level of progress notification.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The device does not have the update function of key
information.
E BUSY The device cannot accept any commands now.

TransitionEvent.

UnifiedPOS Version 1.15

14-120

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

writeValue Method

Syntax

Remarks

Errors

See Also

writeValue (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the

response is received from the device. FOREVER(-1), 0,
and positive values can be specified.

Writes the electronic value in the card.

Electronic value is written in the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely
until it receives a response from the device.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors" on page Intro-21.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported parameter was specified.

E TIMEOUT No response was received from device during the
specified timeout in milliseconds.

E BUSY The device cannot accept any commands now.

CapWriteValue Property, addValue Method, cancelValue Method, readValue
Method, subtractValue Method.

UnifiedPOS Version 1.15

Events (UML interfaces)

14121

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application about the available input data from the device.
This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

Before this event is delivered, the data is set into the appropriate property.

“Events" on page Intro-20.

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific EVR/W Service to provide events to the application

that are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber

and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s EVR/W devices which may not have any

knowledge of the Service’s need for this event.

“Events" on page Intro-20, directlO Method.

UnifiedPOS Version 1.15

14-122

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

ErrorEvent

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that an EVR/W error has been detected and a suitable
response by the application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 0-21.
ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.
ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

If ErrorCode is E_ EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EVRW_CENTERERROR
An error was returned from the approval agency.
EVRW_COMMANDERROR
The command sent to the device is wrong. This error is
never returned so long as device control is working
correctly.
EVRW_RESET The device was stopped during processing by device
reset key (stop key) and so on.
EVRW_COMMUNICATIONERROR
Communication error has occurred between the
approval agency (center) and device.
EVRW_LOGOVERFLOW
Transaction log was too big to be stored. Getting
transaction log has been stopped and the value of
TransactionLog is uncertain.
EVRW_DAILYLOGOVERFLOW
Try to processing, a failure will occur if the transaction
log on the device is full and cannot be settle.
EVRW_DEFICIENT Because the balance is insufficient, it cannot be
subtracted.
EVRW_OVERDEPOSIT
Because the amount that was able to be charged was
exceeded, it cannot be added.

UnifiedPOS Version 1.15

Events (UML interfaces) 14-123

Remarks

See Also

The ErrorLocus property may be one of the following:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER _RETRY Typically valid only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_ OUTPUT.

ER _CLEAR Clear all buffered output data (including all
asynchronous output) or buffered input data. The error
state is exited. Default when locus is EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_ INPUT DATA.
Acknowledges the error and directs the Control to
continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled
property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus is
EL _INPUT_DATA.

Notifies when the error is detected when a method is asynchronously executed,
and the state of the control moves to the error state.

Input error events are generated when errors occur while reading the data from a
card, directed by readValue method. These error events are not delivered until
the DataEventEnabled property is set to true so as to allow proper application
sequencing. All error information is placed into the applicable properties before
this event is delivered.

Output error events are generated and delivered when errors occur during
asynchronous output processing. The errors are placed into the applicable
properties before the events are delivered.

“Events” on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-124 Electronic Value Reader / Writer
OutputCompleteEvent
<<event >> upos::events::QutputCompleteEvent
OutputID: int32 { read-only }
Description Notifies the application that the queued asynchronous output request associated
with the OutputID attribute has completed successfully.
Attributes This event contains the following attribute:
Attributes Type Description
OutputIlD int32 The ID number of the asynchronous output request that
is complete.
Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that it was processed by the device successfully.
See Also “Device Output Models" on page Intro-26.
StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when the device detects a status change.

Attributes

This event contains the following attribute:

Attribute Type Description

Status int32 The status condition of the EVR/W.
The Status attribute has one of the following values:

Value Description

EVRW _SUE LS OK The transaction log has enough capacity.
EVRW_SUE LS NEARFULL

The transaction log is nearly full.
EVRW _SUE LS FULL The transaction log is full.
EVRW_SUE DS NOCARD

The card detection sensor does not detect the card.
EVRW_SUE DS DETECTED

The card detection sensor detected the card.
EVRW_SUE DS ENTERED

The insertion slot sensor detected the card.
EVRW_SUE DS CAPTURED

The stock space sensor detected the card.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware

UnifiedPOS Version 1.15

Events (UML interfaces) 14-125

process.

See description “StatusUpdateEvent" on page 1-34.

Remarks This event is enqueued when a EVR/W detection undergoes a change or if Power
State Reporting is enabled and a change in the power state is detected.
The state of the transaction log is reported only if CapLogStatus is true.
See Also CapLogStatus Property, LogStatus Property, “Events” on page Intro-20.
TransitionEvent Updated in Release 1.15

<<event >> upos::events::TransitionEvent

Description

Attributes

EventNumber: int32 { read-only }
pData:int32{ read-write }
pString:string{ read-write }

Notifies the application that an important device process condition has occurred during
an asynchronous I/0O operation and a suitable response is necessary by the application.

Note: In the OPOS environment, the format of this data depends upon the value of
the BinaryConversion property. See BinaryConversion property on page A-29.

This event contains the following attribute:

Attribute Type Description

EventNumber int32 The ID number of the asynchronous I/0 device process
condition that is the cause for the event.

pData int32 Additional information about appropriate response
which is dependent upon the specific process condition.

pString string Information about the specific event that has occurred.
The EventNumber attribute has one of the following values:

Value Description

EVRW_TE NOTIFY_TOUCH_RETRY
Update retry notification
Notification of retouching request (Retouching cannot
be canceled until a certain period of time passes)

EVRW_TE NOTIFY_TOUCH_RETRY_CANCELABLE
Update retry notification (can be canceled)
Notification of retouching request (Retouching can be
canceled at any time)

EVRW_TE CONFIRM_TOUCH_RETRY
Confirmation of update retry (continued or canceled)
At the time of completing the event, it specifies in
pData whether to continue waiting for retouching (1),
or to cancel (0).

UnifiedPOS Version 1.15

14-126

UnifiedPOS Retail Peripheral Architecture Chapter 14
Electronic Value Reader / Writer

EVRW_TE CONFIRM CANCEL
Confirmation of process cancellation
At the time of completing the event, it specifies in
pData whether to cancel the process (1), or to
continue (0).

EVRW_TE NOTIFY_INVALID OPERATION
Notification of issuing an invalid operation
The event code is set in pData

EVRW_TE CONFIRM INVALID OPERATION
Confirmation of invalid operation
The event code is set in pData. Specifies whether to
continue the process (1), or to terminate the process
abnormally (0).

EVRW_TE CONFIRM_REMAINDER SUBTRACTION
Confirmation of insufficient funds and the deductible
amount from the balance.
The balance is set in Balance property during
notification. After completing the event, specify in
pData whether to deduct all the balance (1), or to
cancel (0).

EVRW_TE CONFIRM_CENTER_CHECK
Confirmation of a center check
At the time of completing the event, specify in pData
whether to conduct a center check (1), or not (0).

EVRW_TE CONFIRM _TOUCH_TIMEOUT
Confirmations of timeout to wait for touching
At the time of completing the event, specify in pData
whether to continue touching (1) or not (0).

EVRW_TE CONFIRM_AUTO_CHARGE
Confirmation of automatic charge
At the time of completing the event, specify in pData
whether to continue touching (1) or not (0).

EVRW_TE NOTIFY_CAPTURE_CARD
Notification of card detection

EVRW_TE NOTIFY CENTER CHECK
Notification of center checkis being conducted.

EVRW_TE NOTIFY COMPLETE
Notification of process completion.
Used when it is necessary to provide this information
before same information is available through an
OutputCompleteEvent event.

UnifiedPOS Version 1.15

Events (UML interfaces)

14-127

EVRW_TE NOTIFY_PIN Notification that PIN input data is available in the PIN

input status

EVRW _TE NOTIFY TOUCH

Status Notification of waiting for touching.

EVRW _TE NOTIFY BUSY

Status Notification that a processis underway
requires some time before it is completed.

EVRW_TE CONFIRM CENTER CHECK COMPLETE

The confirmation that a center check has been
completed.

After the check is completed, specify in pData
whether to continue the process after the completion
(1) or cancel the process (0).

EVRW_TE CONFIRM SELECT

Confirmation of settlement option when there are
options available for settlement.

Options are set in pString in CSV format.

After completing the event, specify in pData the
selected element number, starting with number 1).

EVRW _TE NOTIFY LOCK

Notification that unlocking card or device is required.
Notifies that a user must unlock the card (mobile
phone) which is currently in a locked state.

EVRW _TE NOTIFY CENTER CHECK COMPLETE

Notifies that a center check has finished.

EVRW_TE NOTIFY PROGRESS 1 TO 100

Notification of process progress
The process has successfully completed 1 to 100
percent of the total operation.

EVRW _TE CONFIRM DEVICE DATA

The required confirmation of a data event.

The confirmation of a data event occurs when an
EVR/W device requires the delivery of data during
processing of a method call. The data is delivered by
using the AddditionalSecurityInformation property

EVRW _TE CONFIRM PIN ENTRY BY OUTER PINPAD

Requesting PIN input from an external device.
Confirmation of PIN input request from an external
PIN input device. The pData is used to specify
whether to cancel the process at the time of event
completion (0), or to continue the process (1).

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14

14-128

Electronic Value Reader / Writer

To continue the process, specify in pString the PIN
data acquired from the PIN pad device. When the
effective PIN is not obtained from a PIN pad, (2) it is
returned in pData.

EVRW_TE_CONFIRM_SEARCH_TABLE

Confirmation of table search request.

The encrypted information block is passed through
the AdditionalSecurityInformation property. The
content of the information block and the method of
encryption are implementation dependent.

EVRW_TE_CONFIRM_PAYMENT_CONDITION

Confirmation of payment method selection request.
At event notification, pString lists selectable payment
method strings in CSV format. The character string
indicating the payment method is the value of the
enumerator that can be specified in the
PaymentCondition tag. At the end of the event,
specify both the PaymentCondition tag enumerator
that indicates the payment method in the pData
argument and the payment type details in the CSV
format as the pString argument. The CSV format that
defines the details of the payment type follows the
specification of the PaymentCondition property.

EVRW_TE_CONFIRM_AUTHORIZE

Confirmation of authorization communication
request.

The encrypted information block is passed through
the AdditionalSecurityInformation property. The

UnifiedPOS Version 1.15

Events (UML interfaces) 14-129

Remarks

See Also

content of the information block and the method of
encryption are implementation dependent.

EVRW_TE NOTIFY CHECK CARD
Notification of card check.

EVRW_TE NOTIFY_SELECT PAYMENT CONDITION
Notification of payment method selection.

The event codes specified in pData during the EventNumber(s)
EVRW_TE NOTIFY_INVALID OPERATION and
EVRW_TE CONFIRM_INVALID OPERATION have the following meanings.

PData Parameter Description
1 Mismatch of a retouched card
2 Card authentication error
3 An uncompleted process occurs again when
requesting re-touching.
4 Failure of PIN input
5 Requests processing after a detailed check.
6 Mismatch of cards
7 Detects multiple cards
8 Detects a card with the balance at 0.

This event is enqueued when the EVR/W process requires notification of
application or device service of impending activity that requires immediate action
or response.

“Events” on page Intro-20.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 14
14-130 Electronic Value Reader / Writer

UnifiedPOS Version 1.15

Summary 151

CHAPTER 15

Fiscal Printer

This Chapter defines the Fiscal Printer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.3 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.3 open
Claimed: boolean { read-only } 1.3 open
DataCount: int32 { read-only } 1.3 Not Supported
DataEventEnabled: boolean { read-write } 1.3 Not Supported
DeviceEnabled: boolean { read-write } 1.3 open & claim
FreezeEvents: boolean { read-write } 1.3 open
OutputID: int32 { read-only } 1.3 open
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.3 --
DeviceControlDescription: string { read-only } 1.3 --
DeviceControlVersion: int32 { read-only } 1.3 --
DeviceServiceDescription: string { read-only } 1.3 open
DeviceServiceVersion: int32 { read-only } 1.3 open
PhysicalDeviceDescription: string { read-only } 1.3 open
PhysicalDeviceName: string { read-only } 1.3 open

UnifiedPOS Version 1.15

15-2

UnifiedPOS Retail Peripheral Architecture

Chapter 15
Fiscal Printer

Properties (Continued)

Specific
CapAdditionalHeader:
CapAdditionalLines:
CapAdditionalTrailer:
CapAmountAdjustment:
CapAmountNotPaid:
CapChangeDue:
CapCheckTotal:
CapCoverSensor: (1)
CapDoubleWidth:
CapDuplicateReceipt:
CapEmptyReceiptlsVoidable:
CapFiscalReceiptStation:
CapFiscalReceiptType:
CapFixedOutput:
CapHasVatTable:
CaplndependentHeader:
CapltemList:

CapJrnEmptySensor: (1)
CapJrnNearEndSensor: (1)
CapJrnPresent: (1)

CapMultiContractor:
CapNonFiscalMode:
CapOnlyVoidLastItem:
CapOrderAdjustmentFirst:
CapPackageAdjustment:
CapPercentAdjustment:
CapPositiveAdjustment:
CapPositiveSubtotalAdjustment
CapPostPreLine:
CapPowerLossReport:
CapPredefinedPaymentLines:
CapReceiptNotPaid:

CapRecEmptySensor: (1)
CapRecNearEndSensor: (1)
CapRecPresent: (1)

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
boolean

boolean

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
boolean

boolean

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }

Version
1.6
1.3
1.6
1.3
1.3
1.6
1.3
1.3
1.3
1.3
1.6
1.6
1.6
1.3
1.3
1.3
1.3

1.3
1.3
1.3

1.6
1.3
1.6
1.3
1.6
1.3
1.3
1.11
1.6
1.3
1.3
1.3

1.3
1.3
1.3

May Use After

open
open
open
open

Deprecated v1.11

open
open
open
open
open
open
open
open
open
open
open

open

open
open
open

open
open
open
open
open
open
open
open
open
open
open
open

open
open

open

UnifiedPOS Version 1.15

Summary

15-3

Properties (Continued)

Specific (continued)

CapRemainingFiscalMemory:

CapReservedWord:
CapSetCurrency:
CapSetHeader:
CapSetPOSID:
CapSetStoreFiscallD:
CapSetTrailer:
CapSetVatTable:

CapSlpEmptySensor: (1)
CapSlpFiscalDocument:
CapSlpFullSlip: (1)
CapSlpNearEndSensor: (1)
CapSlpPresent: (1)
CapSlpValidation:
CapSubAmountAdjustment:
CapSubPercentAdjustment:
CapSubtotal:
CapTotalizerType:
CapTrainingMode:
CapValidateJournal:
CapXReport:

ActualCurrency:
AdditionalHeader:
AdditionalTrailer:
AmountDecimalPlaces:
AsyncMode:
ChangeDue:
CheckTotal:
Contractorld:
CountryCode:
CoverOpen: (1)
DateType:
DayOpened:
DescriptionLength:
DuplicateReceipt:
ErrorLevel:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

int32
string
string
int32
boolean
string
boolean
int32
int32
boolean
int32
boolean
int32
boolean
int32

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-write }
{ read-only }

Version
1.3
1.3
1.6
1.3
1.3
1.3
1.3
1.3

1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.6
1.3
1.3
1.3

1.6
1.6
1.6
1.3
1.3
1.6
1.3
1.6
1.3
1.3
1.6
1.3
1.3
1.3
1.3

May Use After
open
open
open
open
open
open
open
open

open
open
open
open
open
open
open
open
open
open
open
open

open

open
open

open

open
open

open

open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

UnifiedPOS Version 1.15

15-4

UnifiedPOS Retail Peripheral Architecture

Chapter 15
Fiscal Printer

Properties (Continued)

Specific (continued)
ErrorOutID:
ErrorState:
ErrorStation:
ErrorString:
FiscalReceiptStation:
FiscalReceiptType:
FlagWhenldle: (1)

JrnEmpty:
JrnNearEnd:

MessageLength:
MessageType:
NumHeaderLines:
NumTrailerLines:
NumVatRates:

PostLine:
PredefinedPaymentLines:
PreLine:

PrinterState:

QuantityDecimalPlaces:

QuantityLength:

RecEmpty: (1)
RecNearEnd: (1)

RemainingFiscalMemory:
ReservedWord:

SlpEmpty: (1)
SlpNearEnd: (1)

SlipSelection:
TotalizerType:
TrainingModeActive:

Type
int32
int32
int32
string
int32
int32

boolean

boolean

boolean

int32
int32

int32
int32
int32
string
string
string

int32

int32
int32

boolean

boolean

int32

string

boolean

boolean

int32
int32

boolean

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }

{ read-write }

{ read-only }
{ read-only }

{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-write }

{ read-only }

{ read-only }
{ read-only }

{ read-only }
{ read-only }

{ read-only }
{ read-only }

{ read-only }
{ read-only }

{ read-write }
{ read-write }

{ read-only }

Version
1.3
1.3
1.3
1.3
1.6
1.6
1.3

1.3
1.3

1.3
1.6

1.3
1.3
1.3
1.6
1.3
1.6
1.3

1.3
1.3

1.3
1.3

1.3
1.3

1.3
1.3

1.3
1.6
1.3

May Use After
open, claim, & enable
open
open
open
open, claim, & enable
open, claim, & enable

open

open, claim, & enable

open, claim, & enable

open
open
open
open
open

open, claim, & enable
open

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open

open, claim, & enable

open, claim, & enable

open, claim, & enable
open, claim, & enable

open, claim, & enable

UnifiedPOS Version 1.15

Summary 15-5
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.3
void { raises-exception }
close (): 1.3
void { raises-exception, use after open }
claim (timeout: int32): 1.3
void { raises-exception, use after open }
release (): 1.3
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }
clearInput (): Not
void { } supported
clearInputProperties (): Not
void { } supported
clearQutput (): 1.3
void { raises-exception, use after open, claim }
directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific - Presetting Fiscal
setCurrency (newCurrency: int32): 1.6
void { raises-exception, use after open, claim, enable }
setDate (date: string): 1.3
void { raises-exception, use after open, claim, enable }
setHeaderLine (lineNumber: int32, text: string, doubleWidth: boolean): 1.3
void { raises-exception, use after open, claim, enable }
setPOSID (POSID: string, cashierID: string): 1.3
void { raises-exception, use after open, claim, enable }
setStoreFiscallD (ID: string): 1.3
void { raises-exception, use after open, claim, enable }
setTrailerLine (lineNumber: int32, text: string, doubleWidth: boolean): 1.3
void { raises-exception, use after open, claim, enable }
setVatTable (): 1.3

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15
15-6 Fiscal Printer

Specific - Fiscal Receipt

setVatValue (vatlD: int32, vatValue: string): 1.3
void { raises-exception, use after open, claim, enable }

beginFiscalReceipt (printHeader: boolean): 1.3
void { raises-exception, use after open, claim, enable }

endFiscalReceipt (printHeader: boolean): 1.3
void { raises-exception, use after open, claim, enable }

printDuplicateReceipt (): 1.3
void { raises-exception, use after open, claim, enable }

printRecCash (amount: currency): 1.6
void { raises-exception, use after open, claim, enable }

printRecltem (description: string, price: currency, quantity: int32, 1.3
vatInfo: int32, unitPrice: currency, unitName: string):
void { raises-exception, use after open, claim, enable }

printRecltemVoid (description: string, price: currency, quantity: int32, 1.11
vatInfo: int32, unitPrice: currency, unitName: string):
void { raises-exception, use after open, claim, enable }

printRecltemAdjustment (adjustmentType: int32, description: string, 1.3
amount: currency, vatlnfo: int32):
void { raises-exception, use after open, claim, enable }

printRecltemAdjustmentVoid (adjustmentType: int32, description: string, 1.11
amount: currency, vatInfo: int32):
void { raises-exception, use after open, claim, enable }

printRecltemFuel (description: string, price: currency, quantity: int32, 1.6
vatInfo: int32, unitPrice: currency, unitName: string,
specialTax: currency, specialTaxName: string):
void { raises-exception, use after open, claim, enable }

printRecltemFuelVoid (description: string, price: currency, vatInfo: int32, 1.6
specialTax: currency):
void { raises-exception, use after open, claim, enable }

printRecltemRefund (description: string, amount: currency, quantity: int32, 1.12
vatInfo: int32, unitAmount: currency, unitName: string):
void { raises-exception, use after open, claim, enable }

printRecltemRefundVoid (description: string, amount: currency, quantity: 1.12
int32, vatInfo: int32, unitAmount: currency, unitName: string):
void { raises-exception, use after open, claim, enable }

printRecMessage (message: string): 1.3
void { raises-exception, use after open, claim, enable }

printRecNotPaid (description: string, amount: currency): 1.3
void { raises-exception, use after open, claim, enable }

printRecPackageAdjustment (adjustmentType: int32, description: string, 1.6
vatAdjustment: string):
void { raises-exception, use after open, claim, enable }

printRecPackageAdjustVoid (adjustmentType: int32, 1.6
vatAdjustment: string):
void { raises-exception, use after open, claim, enable }

printRecRefund (description: string, amount: currency, vatinfo: int32): 1.3
void { raises-exception, use after open, claim, enable }

printRecRefundVoid (description: string, amount: currency, vatInfo: int32): 1.6
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

Summary 15-7

printRecSubtotal (amount: currency): 1.3
void { raises-exception, use after open, claim, enable }

printRecSubtotalAdjustment (adjustmentType: int32, description: string, 1.3
amount: currency):
void { raises-exception, use after open, claim, enable }

printRecSubtotalAdjustVoid (adjustmentType: int32, amount: currency): 1.6
void { raises-exception, use after open, claim, enable }

printRecTaxID (taxld: string): 1.6
void { raises-exception, use after open, claim, enable }

printRecTotal (total: currency, payment: currency, description: string): 1.3
void { raises-exception, use after open, claim, enable }

printRecVoid (description: string): 1.3
void { raises-exception, use after open, claim, enable }

printRecVoidltem (description: string, amount: currency, quantity: int32, 1.3
adjustmentType: int32, adjustment: currency, vatinfo: int32): Deprecated
void { raises-exception, use after open, claim, enable } v1.11

Specific - Fiscal Document

beginFiscalDocument (documentAmount: int32): 1.3
void { raises-exception, use after open, claim, enable }

endFiscalDocument (): 1.3
void { raises-exception, use after open, claim, enable }

printFiscalDocumentLine (documentLine: string): 1.3
void { raises-exception, use after open, claim, enable }

Specific - Item Lists

beginltemList (vatID: int32): 1.3
void { raises-exception, use after open, claim, enable }
endItemList (): 1.3

void { raises-exception, use after open, claim, enable }

verifyltem (itemName: string, vatID: int32): 1.3
void { raises-exception, use after open, claim, enable }

Specific - Fiscal Reports

printPeriodicTotalsReport (datel: string, date2: string): 1.3
void { raises-exception, use after open, claim, enable }

printPowerLossReport (): 1.3
void { raises-exception, use after open, claim, enable }

printReport (reportType: int32, startNum: string, endNum: string): 1.3
void { raises-exception, use after open, claim, enable }

printXReport (): 1.3
void { raises-exception, use after open, claim, enable }

printZReport (): 1.3

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15
15-8 Fiscal Printer

Specific - Slip Insertion

beginInsertion (timeout: int32): 1.3
void { raises-exception, use after open, claim, enable } (1)

beginRemoval (timeout: inf32): 1.3
void { raises-exception, use after open, claim, enable } (1)

endInsertion (): 1.3
void { raises-exception, use after open, claim, enable } (1)

endRemoval (): 1.3

void { raises-exception, use after open, claim, enable } (1)

Specific - Non-Fiscal

beginFixedOutput (station: inf32, documentType: int32): 1.3
void { raises-exception, use after open, claim, enable }

beginNonFiscal (): 1.3
void { raises-exception, use after open, claim, enable }

beginTraining (): 1.3
void { raises-exception, use after open, claim, enable }

endFixedOutput (): 1.3
void { raises-exception, use after open, claim, enable }

endNonFiscal (): 1.3

void { raises-exception, use after open, claim, enable }

endTraining (): 1.3
void { raises-exception, use after open, claim, enable }

printFixedOutput (documentType: inz32, lineNumber: int32, data: string): 1.3
void { raises-exception, use after open, claim, enable }

printNormal (station: int32, data: string): 1.3
void { raises-exception, use after open, claim, enable } (1)

Specific - Data Requests

getData (dataltem: int32, inout optArgs: int32, inout data: string): 1.3
void { raises-exception, use after open, claim, enable }

getDate (inout date: string): 1.3
void { raises-exception, use after open, claim, enable }

getTotalizer (vatlD: int32, optArgs: int32, inout data: string): 1.3
void { raises-exception, use after open, claim, enable }

getVatEntry (vatID: int32, optArgs: int32, inout vatRate: int32): 1.3

void { raises-exception, use after open, claim, enable }

Specific - Error Corrections

clearError (): 1.3
void { raises-exception, use after open, claim, enable }
resetPrinter (): 1.3

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.15

Summary 15-9

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.3

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.3

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }
upos::events::OQutputCompleteEvent 1.3

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.3

Status: int32 { read-only }

Note:

(1) Properties and methods marked with (1) are adapted from the POS Printer
device.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15
15-10 Fiscal Printer

General Information

The Fiscal Printer programmatic name is “FiscalPrinter”.

The Fiscal Printer Control does not attempt to encapsulate a generic graphics
printer. Rather, for performance and ease of use considerations, the interfaces are
defined to directly control the normal printer functions.

Since fiscal rules differ between countries, this interface tries to generalize the
common requirements at the maximum extent specifications. This interface is
based upon the fiscal requirements of the following countries, but it may fit the
needs of other countries as well:

* Brazil
* Bulgaria
* Germany

e Greece

* Hungary

o taly

e Poland

* Romania

¢ Russia

e Turkey

¢ Czech Republic
e Ukraine

* Sweden

The Fiscal Printer model defines three stations with the following general uses:

* Journal Used for simple text to log transaction and activity information. Kept
by the store for audit and other purposes.

* Receipt Used to print transaction information. It is mandatory to give a
printed fiscal receipt to the customer. Also often used for store reports.
Contains either a knife to cut the paper between transactions, or a tear bar to
manually cut the paper.

« Slip Used to print information on a form. Usually given to the customer.

The Slip station is also used to print “validation” information on a form. The
form type is typically a check or credit card slip.

It may also be used to print complete transaction information instead of
printing it on the receipt station.

Sometimes, limited forms-handling capability is integrated with the receipt or
journal station to permit validation printing. Often this limits the number of print
lines, due to the station’s forms-handling throat depth. The Fiscal Printer Control
nevertheless addresses this printer functionality as a slip station.

Configuration and initialization of the fiscal memory of the Fiscal Printer are not
covered in this specification. These low-level operations must be performed by

UnifiedPOS Version 1.15

General Information 15-11

authorized technical assistance personnel.

UnifiedPOS Version 1.15

15-12

UnifiedPOS Retail Peripheral Architecture

Chapter 15
Fiscal Printer

Fiscal Printer Class Diagram

The following diagram shows the relationships between the Fiscal Printer classes.

<<event>>
DataEvent
(from events)

G<<prop>> Status: int32

<<event>>
DirectlOEvent
(from events)

&<<prop>> EventNumber : int32
<<prop>> Data : int32
&<<prop>> Obj : object

<<event>>
ErrorEvent
(from events)

&<<prop>> ErrorCode : int32

g<<prop>> ErrorCodeExtended : int32

g<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

<<exception>>
UposException
(from upos)

<<Interface>>
BaseControl
(from upos)

= ———

<<sends>>

AN

fires

<<event>>

OutputCompleteEvent
(from events)

<<prop>> OutputID : int32

<<sends>> /

<<Interface>>

— FiscalPrinterControl —

(from upos)

fires

<<event>>
StatusUpdateEvent
(from events)

<<prop>> Status : int32

<<uses>>

<<utility>>
UposConst
(from upos)

<<uses>>

<<utility>>
FiscalPrinterConst
(from upos)

UnifiedPOS Version 1.15

General Information

15-13

General Requirements

Fiscal Printers do not simply print text similar to standard printers. They are used
to monitor and memorize all fiscal information about a sale transaction. A Fiscal
Printer has to accumulate totals, discounts, number of canceled receipts, taxes, etc.
and has to store this information in different totalizers, counters and the fiscal
memory. In order to perform these functions, it is not sufficient to send
unformatted strings of text to the Fiscal Printer; there is a need to separate each
individual field in a receipt line item, thus differentiating between descriptions,
prices and discounts. Moreover, it is necessary to define different printing
commands for each different sale functionality (such as refund, item or void).

Fiscal rules are different among countries. This interface tries to generalize these
requirements by summarizing the common requirements. Fiscal law requires that:

* Fiscal receipts must be printed and given to the customer.

* Fiscal Printers must be equipped with memory to store daily totals. Each
receipt line item must increment totals registers and, in most countries
(Greece, Poland, Brazil, Hungary, Romania, Bulgaria, Russia and Turkey) tax
registers as well.

* Discounts, canceled items and canceled receipts must increment their
associated registers on the Fiscal Printer.

e Fiscal Printer must include a clock to store date and time information relative
to each single receipt.

* Each fiscal receipt line item is normally printed both on the receipt and on the
journal (Italy, Greece, Poland), but as an extension it can also be printed on
the slip and journal.

* After a power failure (or a power off) the Fiscal Printer must be in the same
state as it was before this event occurred. This implies that care must be taken
in managing the Fiscal Printer status and that power failure events must be
managed by the application. In some countries, a power failure must be logged
and a report must be printed.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15

15-14

Fiscal Printer

Fiscal Printer Modes

According to fiscal rules, it is possible for a Fiscal Printer to also offer
functionality beyond the required fiscal printing mode. These additional modes are
optional and may or may not be present on any particular Fiscal Printer.

There are three possible Fiscal Printer modes:

Fiscal: This is the only required mode for a Fiscal Printer. In this mode the
application has access to all the methods needed to manage a sale transaction
and to print a fiscal receipt. It is assumed that any lines printed to the receipt
station while in fiscal mode are also printed on the journal station.

Training: In this mode, the Fiscal Printer is used for training purposes (such
as cashier training). In this mode, the Fiscal Printer will accept fiscal
commands but the Fiscal Printer will indicate on each receipt or document that
the transaction is not an actual fiscal transaction. The Fiscal Printer will not
update any of its internal fiscal registers while in training mode. Such printed
receipts are usually marked as “training” receipts by Fiscal Printers.
CapTrainingMode will be true if the Fiscal Printer supports training mode,
otherwise it is false.

Non-Fiscal: In this mode the Fiscal Printer can be used to print simple text on
the receipt station (echoed on the journal station) or the slip station. The Fiscal
Printer will print some additional lines along with the application requested
output to indicate that this output is not of a fiscal nature. Such printed receipts
are usually marked as “non-fiscal” receipts by Fiscal Printers.
CapNonFiscalMode will be true if the Fiscal Printer supports non-fiscal
printing, otherwise it is false.

UnifiedPOS Version 1.15

General Information

15-15

Model Updated in Release 1.12

The Fiscal Printer follows the output model for devices, with some enhancements:

Most methods are always performed synchronously. Synchronous methods
will throw a UposException if asynchronous output is outstanding.

The following methods are performed either synchronously or
asynchronously, depending on the value of the AsyncMode property:

printFiscalDocumentLine
printFixedOutput
printNormal

printRecCash

printRecltem
printRecltemVoid
printRecltemAdjustment
printRecltemAdjustmentVoid
printRecltemFuel
printRecltemFuelVoid
printRecltemRefund
printRecltemRefundVoid
printRecMessage
printRecNotPaid
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTaxID
printRecTotal

printRecVoid

When AsyncMode is false, then these methods print synchronously.
When AsyncMode is true, then these methods operate as follows:

* The Device buffers the request in program memory, for delivery to the
Physical Device as soon as the Physical Device can receive and process
it, sets the QutputID property to an identifier for this request, and returns
as soon as possible. When the device completes the request successfully,
the OutputCompleteEvent is enqueued. A parameter of this event
contains the QutputID of the completed request.

Asynchronous Fiscal Printer methods will not throw a UposException due to
a printing problem, such as out of paper or Fiscal Printer fault. These errors
will only be reported by an ErrorEvent. A UposException is thrown only if
the Fiscal Printer is not claimed and enabled, a parameter is invalid, or the re-
quest cannot be enqueued. The first two error cases are due to an application
error, while the last is a serious system resource exception.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15

15-16

Fiscal Printer

If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The ErrorStation property is set to the station
or stations that were printing when the error occurred. The ErrorLevel,
ErrorString and ErrorState and ErrorOutID properties are also set.

The event handler may call synchronous print methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

Asynchronous output is performed on a first-in first-out basis.

All buffered output data, including all asynchronous output, may be
deleted by calling clearOutput. OutputCompleteEvents will not be
delivered for cleared output. This method also stops any output that may
be in progress (when possible).

The property FlagWhenldle may be set to cause a StatusUpdateEvent
to be enqueued when all outstanding outputs have finished, whether
successfully or because they were cleared.

Error Model Updated in Release 1.13

The Fiscal Printer error reporting model is as follows:

Most of the Fiscal Printer error conditions are reported by setting the
UposException’s (or ErrorEvent’s) ErrorCode to E_ EXTENDED and then
setting ErrorCodeExtended to one of the following:

EFPTR_COVER_OPEN
The Fiscal Printer cover is open.

EFPTR _JRN_EMPTY
The journal station has run out of paper.

EFPTR_REC_EMPTY
The receipt station has run out of paper.

EFPTR_SLP_EMPTY
The slip station has run out of paper.

EFPTR_SLP_FORM

A form is still present in the document station even though it should have
been removed by the last action.

EFPTR_MISSING_DEVICES

Some of the other devices that according to the local fiscal legislation are
to be connected are missing. In some countries in order to use a Fiscal
Printer a full set of peripheral devices are to be connected to the POS
(such as cash drawer and customer display). In case one of these devices
is not present, sales are not allowed.

EFPTR_WRONG _STATE

The requested method could not be executed in the Fiscal Printer’s current
state.

EFPTR_TECHNICAL_ASSISTANCE

The Fiscal Printer has encountered a severe error condition. Calling for
Fiscal Printer technical assistance is required.
EFPTR_CLOCK_ERROR

The Fiscal Printer’s internal clock has failed.

UnifiedPOS Version 1.15

General Information

1517

EFPTR_FISCAL_MEMORY_FULL

The Fiscal Printer’s fiscal memory has been exhausted.
EFPTR_FISCAL_MEMORY_DISCONNECTED

The Fiscal Printer’s fiscal memory has been disconnected.
EFPTR_FISCAL_TOTALS_ERROR

The Grand Total in working memory does not match the one in the
EPROM.

EFPTR_BAD_ITEM_QUANTITY

The quantity parameter is invalid.

EFPTR _BAD ITEM_AMOUNT

The amount parameter is invalid.

EFPTR_BAD_ITEM DESCRIPTION

The description parameter is either too long, contains illegal characters or
contains a reserved word.
EFPTR_RECEIPT_TOTAL_OVERFLOW

The receipt total has overflowed.

EFPTR_BAD_VAT

The vat parameter is invalid.

EFPTR_BAD_PRICE

The price parameter is invalid.

EFPTR_BAD DATE

The date parameter is invalid.

EFPTR NEGATIVE TOTAL

The Fiscal Printer’s computed total or subtotal is less than zero.
EFPTR_WORD NOT_ALLOWED

The description contains the reserved word.
EFPTR_BAD_LENGTH

The length of the string to be printed as post or pre line is too long.
EFPTR_MISSING_SET_CURRENCY

The Fiscal Printer is expecting the activation of a new currency.
EFPTR_DAY_END REQUIRED

The completion of the fiscal day is required.

Other Fiscal Printer errors are reported by setting the exception’s (or
ErrorEvent’s) ErrorCode to E_FAILURE or another error status. These failures
are typically due to a Fiscal Printer fault or jam, or to a more serious error.

UnifiedPOS Version 1.15

15-18

UnifiedPOS Retail Peripheral Architecture Chapter 15
Fiscal Printer

Release 1.8 Additional Model Clarifications

While the Fiscal Printer is enabled, the printer state is monitored, and changes are
reported to the application. Most Fiscal Printer statuses are reported by both firing
a StatusUpdateEvent and by updating a printer property. Statuses, as defined in

the later properties and events sections, are:

Prior to Release 1.8
StatusUpdateEvent

Property

FPTR_SUE_COVER_OPEN
FPTR_SUE_COVER_OK
FPTR_SUE_JRN_EMPTY
FPTR_SUE_JRN_NEAREMPTY
FPTR_SUE_JRN_PAPEROK
FPTR_SUE_REC_EMPTY
FPTR_SUE_REC_NEAREMPTY
FPTR_SUE_REC_PAPEROK
FPTR_SUE_SLP_EMPTY
FPTR_SUE_SLP NEAREMPTY
FPTR_SUE_SLP_PAPEROK

CoverOpen = true

CoverOpen = false

JrnEmpty = true

JrnNearEnd = true

JrnEmpty = JrnNearEnd = false
RecEmpty = true

RecNearEnd = true

RecEmpty = RecNearEnd = false
SIpEmpty = true

SIpNearEnd = true

SlpEmpty = SlpNearEnd = false

Release 1.8 and later

FPTR SUE JRN COVER_OPEN CoverOpen = true

FPTR SUE JRN COVER OK CoverOpen = false if all covers closed;
CoverOpen = true if any other cover is
open

FPTR_SUE REC COVER OPEN CoverOpen = true

FPTR SUE REC COVER OK CoverOpen = false if all covers closed;
CoverOpen = true if any other cover is
open

FPTR_SUE SLP COVER _OPEN CoverOpen = true

FPTR SUE SLP COVER OK CoverOpen = false if all covers closed,;
CoverOpen = true if any other cover is
open

Release 1.8 — Clarification

The Fiscal Printer’s slip station statuses must be reported independently from the
slip insertion and removal methods — beginInsertion / endInsertion and
beginRemoval / endRemoval. This is important because some applications base
logic decisions upon Fiscal Printer state changes. That is, the application will only
perform slip insertion after knowing that a slip has been placed at the entrance to
the slip station. An example: After the Total key is pressed, the application enters
tendering mode. It begins to monitor peripherals and the keyboard to determine the
type of tender to perform. If a credit or debit card is swiped at an MSR, then its
DataEvent causes the application to begin credit/debit tender. But if a form is
placed at the slip station, then its StatusUpdateEvent or SlpEmpty property
change causes the application to begin a check MICR read.

When a form is placed at the entrance to the slip station, the Fiscal Printer must
firea PTR_SUE _SLP PAPEROK StatusUpdateEvent and set the SlpEmpty
and SlpNearEnd properties to false. The application may then call the
beginInsertion and endInsertion methods with reasonable confidence that they
will succeed. Note that it must not be assumed that the form is ready for printing

UnifiedPOS Version 1.15

General Information

15-19

after the PTR_SUE SLP PAPEROK is received. Only after successful
beginInsertion and endInsertion calls is the form ready for printing.

When a form is removed from the slip station, the Fiscal Printer must fire a
PTR_SUE_SLP_EMPTY StatusUpdateEvent and set the SipEmpty property to
true. If the beginInsertion and endInsertion method sequence has not been
called, then removing the form from the slip station entrance will cause this to
occur. If this method sequence has successfully completed, then the event and
property change will typically occur after a beginRemoval and endRemoval
method sequence. But they would also occur if the slip prints beyond the end of
the form or if the form is forcibly removed.

Exception: The design of some Fiscal Printers makes it impossible for a service to
determine the presence of a form until the printer “jaws” are opened, which occurs
when beginInsertion is called. This exception is largely limited to cases where the
CapSlpFullslip property is false, indicating a “validation” type of slip station.
Validation stations typically use the same Fiscal Printer mechanism as the receipt
and/or journal stations. In these cases, the slip status events must be fired as soon
as possible, given the constraints of the device.

UnifiedPOS Version 1.15

UnifiedPOS Retail Peripheral Architecture Chapter 15

15-20

Fiscal Printer

Fiscal Printer States Updated in Release 1.8

As previously described, a Fiscal Printer is characterized by different printing
modes. Moreover, the set of commands that can be executed at a particular
moment depends upon the current state of the Fiscal Printer.

The current state of the Fiscal Printer is kept in the PrinterState property.

The Fiscal Printer has the following states:

Monitor:

This is a neutral state. From this state, it is possible to move to most of the
other Fiscal Printer states. After a successful call to the claim method and
successful setting of the DeviceEnabled property to true the Fiscal Printer
should be in this state unless there is a Fiscal Printer error.

Fiscal Receipt:

The Fiscal Printer is processing a fiscal receipt. All printRec... methods
except printRecNotPaid and printRecTaxID are available for use while in
this state. This state is entered from the Monitor state using the
beginFiscalReceipt method.

Fiscal Receipt Total:

The Fiscal Printer has already accepted at least one payment method, but the
receipt’s total amount has not yet been tendered. This state is entered from the
Fiscal Receipt state by use of the printRecTotal method. The Fiscal Printer
remains in this state while the total remains unpaid. This state can be left by
using the printRecTotal, printRecNotPaid or printRecVoid methods.
Fiscal Receipt Ending:

The Fiscal Printer has completed the receipt up to the Total line. In this state,
it may be possible to print tax information using the printRecTaxID method
if this is supported by the Fiscal Printer. This state is entered from the Fiscal
Receipt state via the printRecVoid method or from the Fiscal Receipt Total
state using either the printRecTotal, printRecNotPaid, or printRecVoid
methods. This state is exited using the endFiscalReceipt method at which
time the Fiscal Printer returns to the Monitor state.

Fiscal Document:

The Fiscal Printer is processing a fiscal document. The Fiscal Printer will
accept the printFiscalDocumentLine method while in this state.

This state is entered from the Monitor state using the beginFiscalDocument
method. This state is exited using the endFiscalDocument method at which
time the Fiscal Printer returns to the Monitor state.

Monitor and TrainingModeActive are true:

The Fiscal Printer is being used for training purposes. All fiscal receipt and
document commands are available. This state is entered from the Monitor
state using the beginTraining method. This state is exited using the
endTraining method at which time the Fiscal Printer returns to the Monitor
state.

Fiscal Receipt and TrainingModeActive are true:

The Fiscal Printer is being used for training purposes and a receipt is currently
opened. To each line of the receipt, special text will be added in order to
differentiate it from a fiscal receipt.

Fiscal Total and TrainingModeActiv