

ISO/IEC 19501:2005(E)
Date: January 2005

Unified Modeling Language Specification
Version 1.4.2
formal/05-04-01

This specification is also available from ISO as ISO/IEC 19501.

 ISO/IEC 19501:2005(E)
1 Scope... 1

2 Normative references ...1
2.1 Identical Recommendations | International Standards .. 1

3 General Information ...2
3.1 Description .. 2
3.2 Outside the Scope of the UML .. 3

 3.2.1 Programming Languages... 3
 3.2.2 Tools .. 3
 3.2.3 Process ... 3

3.3 Primary Artifacts of the UML ... 4
 3.3.1 UML-defining Artifacts ... 4
 3.3.2 Development Project Artifacts ... 4

3.4 Motivation to Define the UML .. 5
 3.4.1 Why We Model .. 5
 3.4.2 Industry Trends in Software .. 5
 3.4.3 Prior to Industry Convergence .. 6

3.5 Goals of the UML .. 6
 3.5.1 Comparing UML to Other Modeling Languages .. 8
 3.5.2 Features of the UML ... 8

3.6 UML - Past, Present, and Future ... 10
 3.6.1 UML 0.8 - 0.91 .. 10
 3.6.2 UML Partners ... 11
 3.6.3 UML - Present and Future ... 11

4 UML Semantics ..13

Part 1 - Background

4.1 Introduction ... 13
 4.1.1 Purpose and Scope .. 13
 4.1.2 Approach ... 13

4.2 Language Architecture .. 14
 4.2.1 Four-Layer Metamodel Architecture .. 14
 4.2.2 Package Structure.. 15

4.3 Language Formalism .. 17
 4.3.1 Levels of Formalism... 17
 4.3.2 Package Specification Structure ... 18
 4.3.3 Use of a Constraint Language .. 19
 4.3.4 Use of Natural Language .. 19
 4.3.5 Naming Conventions and Typography.. 20

Part 2 - Foundation

4.4 Foundation Package ... 20
4.5 Core .. 21

 4.5.1 Overview .. 21
 4.5.2 Abstract Syntax ... 21
 4.5.3 Well-Formedness Rules .. 51
 4.5.4 Detailed Semantics ... 63
© ISO/IEC 2005 - All rights reserved iii

ISO/IEC 19501:2005(E)
4.6 Extension Mechanisms ... 69
 4.6.1 Overview ... 69
 4.6.2 Abstract Syntax ... 71
 4.6.3 Well-Formedness Rules .. 74
 4.6.4 Detailed Semantics ... 76
 4.6.5 Notes ... 77

4.7 Data Types .. 78
 4.7.1 Overview ... 78
 4.7.2 Abstract Syntax ... 78

Part 3 - Behavioral Elements

4.8 Behavioral Elements Package ... 85
4.9 Common Behavior .. 85

 4.9.1 Overview ... 85
 4.9.2 Abstract Syntax ... 85
 4.9.3 Well-Formedness Rules... 96
 4.9.4 Detailed Semantics ... 101

4.10 Collaborations ... 103
 4.10.1 Overview ... 103
 4.10.2 Abstract Syntax ... 104
 4.10.3 Well-Formedness Rules.. 111
 4.10.4 Detailed Semantics ... 115
 4.10.5 Notes ... 118

4.11 Use Cases ... 119
 4.11.1 Overview ... 119
 4.11.2 Abstract Syntax ... 119
 4.11.3 Well-Formedness Rules.. 122
 4.11.4 Detailed Semantics .. 124
 4.11.5 Notes ... 128

4.12 State Machines .. 128
 4.12.1 Overview ... 128
 4.12.2 Abstract Syntax ... 128
 4.12.3 Well-FormednessRules ... 136
 4.12.4 Detailed Semantics ... 140
 4.12.5 Notes ... 148

4.13 Activity Graphs .. 152
 4.13.1 Overview ... 152
 4.13.2 Abstract Syntax ... 152
 4.13.3 Well-Formedness Rules .. 156
 4.13.4 Detailed Semantics ... 159
 4.13.5 Notes ... 160

Part 4 - General Mechanisms

4.14 Model Management ... 161
 4.14.1 Overview ... 161
 4.14.2 Abstract Syntax ... 161
 4.14.3 Well-Formedness Rules .. 165
 4.14.4 Semantics ... 170
 4.14.5 Notes ... 174
iv © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5 UML Notation Guide .. 177

Part 1 - Background

5.1 Introduction ... 177

Part 2 - Diagram Elements

5.2 Graphs and Their Contents ... 178
5.3 Drawing Paths ... 178
5.4 Invisible Hyperlinks and the Role of Tools .. 179
5.5 Background Information .. 179

 5.5.1 Presentation Options ... 179
5.6 String ... 179

 5.6.1 Semantics ... 179
 5.6.2 Notation ... 179
 5.6.3 Presentation Options ... 180
 5.6.4 Examples .. 180
 5.6.5 Mapping .. 180

5.7 Name ... 180
 5.7.1 Semantics ... 180
 5.7.2 Notation ... 180
 5.7.3 Example .. 180
 5.7.4 Mapping .. 181

5.8 Label ... 181
 5.8.1 Semantics ... 181
 5.8.2 Notation ... 181
 5.8.3 Presentation Options... 181
 5.8.4 Example ... 181

5.9 Keywords .. 181
5.10 Expression .. 182

 5.10.1 Semantics ... 182
 5.10.2 Notation ... 182
 5.10.3 Examples .. 182
 5.10.4 Mapping .. 182
 5.10.5 OCL Expressions .. 182
 5.10.6 Selected OCL Notation ... 183
 5.10.7 Examples .. 183

5.11 Note ... 183
 5.11.1 Semantics ... 183
 5.11.2 Notation ... 183
 5.11.3 Presentation Options ... 183
 5.11.4 Example .. 184
 5.11.5 Mapping .. 184

5.12 Type-Instance Correspondence .. 184

Part 3 - Model Management

5.13 Package .. 186
 5.13.1 Semantics ... 186
 5.13.2 Notation ... 186
© ISO/IEC 2005 - All rights reserved v

ISO/IEC 19501:2005(E)
 5.13.3 Presentation Options... 186
 5.13.4 Style Guidelines .. 187
 5.13.5 Example ... 187
 5.13.6 Mapping .. 188

5.14 Subsystem ... 188
 5.14.1 Semantics .. 188
 5.14.2 Notation ... 188
 5.14.3 Presentation Options ... 189
 5.14.4 Example .. 190
 5.14.5 Mapping .. 193

5.15 Model ... 193
 5.15.1 Semantics ... 193
 5.15.2 Notation ... 193
 5.15.3 Presentation Options ... 193
 5.15.4 Example .. 194
 5.15.5 Mapping .. 194

Part 4 - General Extension Mechanisms

5.16 Constraint and Comment .. 195
 5.16.1 Semantics ... 195
 5.16.2 Notation ... 195
 5.16.3 Example .. 196
 5.16.4 Mapping .. 196

5.17 Element Properties .. 197
 5.17.1 Semantics ... 197
 5.17.2 Notation ... 197
 5.17.3 Presentation Options ... 198
 5.17.4 Style Guidelines ... 198
 5.17.5 Example .. 198
 5.17.6 Mapping .. 198

5.18 Stereotypes ... 199
 5.18.1 Semantics ... 199
 5.18.2 Notation ... 199
 5.18.3 Examples ... 200
 5.18.4 Mapping .. 200

Part 5 - Static Structure Diagrams

5.19 Class Diagram ... 201
 5.19.1 Semantics ... 201
 5.19.2 Notation... 201
 5.19.3 Mapping .. 201

5.20 Object Diagram ... 201
5.21 Classifier .. 201
5.22 Class ... 202

 5.22.1 Semantics ... 202
 5.22.2 Basic Notation .. 202
 5.22.3 Presentation Options ... 202
 5.22.4 Style Guidelines .. 203
 5.22.5 Example .. 203
vi © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
 5.22.6 Mapping .. 203
5.23 Name Compartment .. 204

 5.23.1 Notation ... 204
 5.23.2 Mapping .. 204

5.24 List Compartment .. 204
 5.24.1 Notation ... 204
 5.24.2 Presentation Options... 205
 5.24.3 Example .. 206
 5.24.4 Mapping .. 206

5.25 Attribute ... 207
 5.25.1 Semantics ... 207
 5.25.2 Notation ... 207
 5.25.3 Presentation Options ... 208
 5.25.4 Style Guidelines .. 209
 5.25.5 Example .. 209
 5.25.6 Mapping .. 209

5.26 Operation .. 209
 5.26.1 Semantics ... 209
 5.26.2 Notation ... 209
 5.26.3 Presentation Options ... 210
 5.26.4 Style Guidelines .. 211
 5.26.5 Example .. 211
 5.26.6 Mapping .. 211

5.27 Nested Class Declarations.. 212
 5.27.1 Semantics .. 212
 5.27.2 Notation ... 212
 5.27.3 Mapping .. 212

5.28 Type and Implementation Class.. 212
 5.28.1 Semantics ... 212
 5.28.2 Notation ... 213
 5.28.3 Example .. 213
 5.28.4 Mapping .. 213

5.29 Interfaces .. 214
 5.29.1 Semantics ... 214
 5.29.2 Notation ... 214
 5.29.3 Example .. 214
 5.29.4 Mapping .. 215

5.30 Parameterized Class (Template... 215
 5.30.1 Semantics ... 215
 5.30.2 Notation ... 215
 5.30.3 Presentation Options.. 216
 5.30.4 Example .. 216
 5.30.5 Mapping .. 216

5.31 Bound Element .. 217
 5.31.1 Semantics ... 217
 5.31.2 Notation ... 217
 5.31.3 Style Guidelines .. 217
 5.31.4 Example .. 217
 5.31.5 Mapping .. 217

5.32 Utility ... 218
© ISO/IEC 2005 - All rights reserved vii

ISO/IEC 19501:2005(E)
 5.32.1 Semantics .. 218
 5.32.2 Notation ... 218
 5.32.3 Example .. 218
 5.32.4 Mapping .. 218

5.33 Metaclass .. 218
 5.33.1 Semantics ... 218
 5.33.2 Notation... 218
 5.33.3 Mapping .. 219

5.34 Enumeration .. 219
 5.34.1 Semantics .. 219
 5.34.2 Notation ... 219
 5.34.3 Mapping .. 219

5.35 Stereotype Declaration .. 219
 5.35.1 Semantics .. 219
 5.35.2 Notation ... 219
 5.35.3 Mapping ... 222

5.36 Powertype ... 222
 5.36.1 Semantics ... 222
 5.36.2 Notation... 222
 5.36.3 Mapping .. 222

5.37 Class Pathnames .. 223
 5.37.1 Notation.. 223
 5.37.2 Example .. 223
 5.37.3 Mapping ... 223

5.38 Accessing or Importing a Package... 223
 5.38.1 Semantics ... 223
 5.38.2 Notation... 224
 5.38.3 Example .. 224
 5.38.4 Mapping .. 224

5.39 Object .. 225
 5.39.1 Semantics .. 225
 5.39.2 Notation ... 225
 5.39.3 Presentation Options... 225
 5.39.4 Style Guidelines .. 226
 5.39.5 Variations .. 226
 5.39.6 Example .. 226
 5.39.7 Mapping .. 226

5.40 Composite Object .. 226
 5.40.1 Semantics ... 226
 5.40.2 Notation... 227
 5.40.3 Example .. 227
 5.40.4 Mapping .. 227

5.41 Association .. 227
5.42 Binary Association.. 228

 5.42.1 Semantics ... 228
 5.42.2 Notation.. 228
 5.42.3 Presentation Options... 229
 5.42.4 Style Guidelines .. 229
 5.42.5 Options.. 229
 5.42.6 Example .. 229
viii © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
 5.42.7 Mapping ... 230
5.43 Association End .. 230

 5.43.1 Semantics ... 230
 5.43.2 Notation.. 230
 5.43.3 Presentation Options... 232
 5.43.4 Style Guidelines .. 232
 5.43.5 Example .. 232
 5.43.6 Mapping .. 233

5.44 Multiplicity .. 233
 5.44.1 Semantics ... 233
 5.44.2 Notation... 233
 5.44.3 Style Guidelines .. 233
 5.44.4 Example .. 233
 5.44.5 Mapping .. 234

5.45 Qualifier.. 234
 5.45.1 Semantics ... 234
 5.45.2 Notation ... 234
 5.45.3 Presentation Options... 234
 5.45.4 Style Guidelines .. 234
 5.45.5 Example .. 235
 5.45.6 Mapping .. 235

5.46 Association Class.. 235
 5.46.1 Semantics ... 235
 5.46.2 Notation ... 235
 5.46.3 Presentation Options.. 235
 5.46.4 Style Guidelines .. 235
 5.46.5 Example .. 236
 5.46.6 Mapping .. 236

5.47 N-ary Association .. 236
 5.47.1 Semantics .. 236
 5.47.2 Notation ... 236
 5.47.3 Style Guidelines .. 237
 5.47.4 Example .. 237
 5.47.5 Mapping .. 237

5.48 Composition .. 237
 5.48.1 Semantics ... 237
 5.48.2 Notation.. 238
 5.48.3 Design Guidelines ... 238
 5.48.4 Example .. 239
 5.48.5 Mapping .. 240

5.49 Link .. 240
 5.49.1 Semantics ... 240
 5.49.2 Notation ... 240
 5.49.3 Example .. 241
 5.49.4 Mapping .. 241

5.50 Generalization ... 241
 5.50.1 Semantics ... 241
 5.50.2 Notation ... 241
 5.50.3 Presentation Options ... 242
 5.50.4 Mapping .. 244
© ISO/IEC 2005 - All rights reserved ix

ISO/IEC 19501:2005(E)
5.51 Dependency .. 245
 5.51.1 Semantics ... 245
 5.51.2 Notation.. 245
 5.51.3 Presentation Options... 246
 5.51.4 Example .. 246
 5.51.5 Mapping .. 247

5.52 Derived Element .. 247
 5.52.1 Semantics ... 247
 5.52.2 Notation ... 247
 5.52.3 Style Guidelines .. 247

5.53 InstanceOf ... 247
 5.53.1 Semantics ... 247
 5.53.2 Notation... 248
 5.53.3 Mapping .. 248

Part 6 - Use Case Diagrams

5.54 Use Case Diagram .. 248
 5.54.1 Semantics ... 248
 5.54.2 Notation... 248
 5.54.3 Example .. 249
 5.54.4 Mapping ... 249

5.55 Use Case ... 249
 5.55.1 Semantics ... 249
 5.55.2 Notation ... 250
 5.55.3 Presentation Options... 250
 5.55.4 Style Guidelines .. 250
 5.55.5 Mapping .. 250

5.56 Actor .. 250
 5.56.1 Semantics ... 250
 5.56.2 Notation ... 250
 5.56.3 Presentation Options... 250
 5.56.4 Style Guidelines .. 251
 5.56.5 Mapping .. 251

5.57 Use Case Relationships .. 251
 5.57.1 Semantics ... 251
 5.57.2 Notation... 251
 5.57.3 Example .. 252
 5.57.4 Mapping .. 252

5.58 Actor Relationships ... 252
 5.58.1 Semantics ... 252
 5.58.2 Notation ... 252
 5.58.3 Example .. 253
 5.58.4 Mapping .. 253

Part 7 - Interaction Diagrams

5.59 Collaboration ... 253
 5.59.1 Semantics ... 253

5.60 Sequence Diagram .. 254
 5.60.1 Semantics ... 254
x © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
 5.60.2 Notation ... 254
 5.60.3 Presentation Options ... 255
 5.60.4 Example .. 256
 5.60.5 Mapping .. 258

5.61 Object Lifeline ... 260
 5.61.1 Semantics ... 260
 5.61.2 Notation ... 260
 5.61.3 Presentation Options ... 260
 5.61.4 Example .. 261
 5.61.5 Mapping .. 261

5.62 Activation... 261
 5.62.1 Semantics ... 261
 5.62.2 Notation ... 261
 5.62.3 Example .. 262
 5.62.4 Mapping .. 262

5.63 Message and Stimulus.. 262
 5.63.1 Semantics ... 262
 5.63.2 Notation ... 262
 5.63.3 Presentation options ... 262
 5.63.4 Example .. 264
 5.63.5 Mapping ... 264

5.64 Transition Times.. 264
 5.64.1 Semantics ... 264
 5.64.2 Notation ... 264
 5.64.3 Presentation Options... 264
 5.64.4 Example .. 264
 5.64.5 Mapping ... 264

Part 8 - Collaboration Diagrams

5.65 Collaboration Diagram .. 264
 5.65.1 Semantics ... 264
 5.65.2 Notation ... 265
 5.65.3 Example .. 266
 5.65.4 Mapping .. 267

5.66 Pattern Structure ... 267
 5.66.1 Semantics .. 267
 5.66.2 Notation ... 268
 5.66.3 Mapping .. 270

5.67 Collaboration Contents.. 270
 5.67.1 Semantics ... 271
 5.67.2 Notation.. 271
 5.67.3 Mapping .. 272

5.68 Interactions... 272
 5.68.1 Semantics ... 272
 5.68.2 Notation ... 273
 5.68.3 Mapping .. 273
 5.68.4 Example .. 273

5.69 Collaboration Roles ... 273
 5.69.1 Semantics ... 273
 5.69.2 Notation ... 273
© ISO/IEC 2005 - All rights reserved xi

ISO/IEC 19501:2005(E)
 5.69.3 Presentation options ... 274
 5.69.4 Example .. 275
 5.69.5 Mapping .. 275

5.70 Multiobject ... 275
 5.70.1 Semantics ... 275
 5.70.2 Notation ... 275
 5.70.3 Example .. 276
 5.70.4 Mapping .. 276

5.71 Active object .. 276
 5.71.1 Semantics ... 276
 5.71.2 Notation ... 276
 5.71.3 Example .. 277
 5.71.4 Mapping .. 277

5.72 Message and Stimulus .. 277
 5.72.1 Semantics ... 277
 5.72.2 Notation ... 278
 5.72.3 Presentation Options ... 280
 5.72.4 Example .. 280
 5.72.5 Mapping .. 280

5.73 Creation/Destruction Markers .. 281
 5.73.1 Semantics ... 281
 5.73.2 Notation ... 281
 5.73.3 Presentation options ... 281
 5.73.4 Example .. 281
 5.73.5 Mapping .. 282

Part 9 - Statechart Diagrams

5.74 Statechart Diagram ... 282
 5.74.1 Semantics ... 282
 5.74.2 Notation... 282
 5.74.3 Mapping .. 283

5.75 State .. 283
 5.75.1 Semantics ... 283
 5.75.2 Notation... 283
 5.75.3 Mapping .. 285

5.76 Composite States .. 285
 5.76.1 Semantics ... 285
 5.76.2 Notation... 285
 5.76.3 Examples .. 286
 5.76.4 Mapping .. 287

5.77 Events .. 287
 5.77.1 Semantics ... 287
 5.77.2 Notation ... 288
 5.77.3 Example .. 289
 5.77.4 Mapping .. 289

5.78 Simple Transitions ... 289
 5.78.1 Semantics ... 289
 5.78.2 Notation.. 290
 5.78.3 Example .. 290
 5.78.4 Mapping .. 290
xii © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.79 Transitions to and from Concurrent States .. 291
 5.79.1 Semantics ... 291
 5.79.2 Notation ... 291
 5.79.3 Example .. 291
 5.79.4 Mapping .. 291

5.80 Transitions to and from Composite States .. 291
 5.80.1 Semantics ... 291
 5.80.2 Notation ... 292
 5.80.3 Presentation Options ... 292
 5.80.4 Example .. 292
 5.80.5 Mapping .. 293

5.81 Factored Transition Paths ... 294
 5.81.1 Semantics ... 294
 5.81.2 Notation ... 294
 5.81.3 Examples .. 294

5.82 Submachine States ... 295
 5.82.1 Semantics ... 295
 5.82.2 Notation ... 296
 5.82.3 Example .. 296
 5.82.4 Mapping .. 297

5.83 Synch States ... 297
 5.83.1 Semantics ... 297
 5.83.2 Notation... 297
 5.83.3 Example .. 297
 5.83.4 Mapping .. 297

Part 10 - Activity Diagrams

5.84 Activity Diagram .. 298
 5.84.1 Semantics ... 298
 5.84.2 Notation ... 298
 5.84.3 Example .. 299
 5.84.4 Mapping .. 300

5.85 Action State ... 300
 5.85.1 Semantics ... 300
 5.85.2 Notation ... 300
 5.85.3 Presentation options ... 300
 5.85.4 Example .. 300
 5.85.5 Mapping .. 300

5.86 Subactivity state .. 300
 5.86.1 Semantics ... 300
 5.86.2 Notation... 301
 5.86.3 Example .. 301
 5.86.4 Mapping .. 301

5.87 Decisions.. 301
 5.87.1 Semantics ... 301
 5.87.2 Notation ... 301
 5.87.3 Example .. 302
 5.87.4 Mapping .. 302

5.88 Call States.. 302
© ISO/IEC 2005 - All rights reserved xiii

ISO/IEC 19501:2005(E)
 5.88.1 Semantics ... 302
 5.88.2 Notation ... 302
 5.88.3 Example .. 302
 5.88.4 Mapping .. 303

5.89 Swimlanes ... 303
 5.89.1 Semantics ... 303
 5.89.2 Notation... 303
 5.89.3 Example .. 304
 5.89.4 Mapping .. 304

5.90 Action-Object Flow Relationships .. 304
 5.90.1 Semantics ... 304
 5.90.2 Notation... 305
 5.90.3 Example .. 306
 5.90.4 Mapping .. 306

5.91 Control Icons ... 306
 5.91.1 Notation ... 307
 5.91.2 Mapping .. 308

5.92 Synch States ... 308
5.93 Dynamic Invocation ... 309

 5.93.1 Semantics ... 309
 5.93.2 Notation ... 309
 5.93.3 Mapping ... 309

5.94 Conditional Forks .. 309

Part 11 - Implementation Diagrams

5.95 Component Diagram ... 310
 5.95.1 Semantics ... 310
 5.95.2 Notation... 310
 5.95.3 Example .. 311
 5.95.4 Mapping .. 312

5.96 Deployment Diagram ... 312
 5.96.1 Semantics ... 312
 5.96.2 Notation... 312
 5.96.3 Example .. 313
 5.96.4 Mapping .. 313

5.97 Node .. 313
 5.97.1 Semantics ... 313
 5.97.2 Notation... 314
 5.97.3 Example .. 314
 5.97.4 Mapping .. 315

5.98 Component.. 315
 5.98.1 Semantics ... 315
 5.98.2 Notation... 316
 5.98.3 Example .. 316
 5.98.4 Mapping .. 317

6 UML Example Profiles ..319

Example 1 - UML Profile for Software Development Processes
xiv © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6.1 Introduction ... 319
6.2 Summary of Profile.. 319
6.3 Stereotypes and Notation .. 320

 6.3.1 Use Case Stereotypes .. 320
 6.3.2 Analysis Stereotypes ... 321
 6.3.3 Design Stereotypes... 322
 6.3.4 Implementation Stereotypes ... 323
 6.3.5 Class Stereotypes ... 324
 6.3.6 Association Stereotypes .. 325

6.4 Well-Formedness Rules .. 325
 6.4.1 Generalization ... 326
 6.4.2 Containment.. 326

Example 2 - UML Profile for Business Modeling

6.5 Introduction ... 326
6.6 Summary of Profile.. 326
6.7 Stereotypes and Notation .. 327

 6.7.1 Use Case Stereotypes .. 327
 6.7.2 Organization Stereotypes .. 328
 6.7.3 Class Stereotypes ... 329
 6.7.4 Association Stereotypes.. 331

6.8 Well-Formedness Rules .. 332
 6.8.1 Generalization ... 332

7 UML Model Interchange ...333
7.1 Overview ... 333
7.2 Model Interchange Using XMI.. 353
7.3 Model Interchange Using CORBA IDL .. 355

8 Object Constraint Language Specification ...357
8.1 Overview ... 357

 8.1.1 Why OCL?.. 357
 8.1.2 Where to Use OCL.. 357

8.2 Introduction ... 358
 8.2.1 Legend .. 358
 8.2.2 Example Class Diagram.. 358

8.3 Relation to the UML Metamodel.. 359
 8.3.1 Self .. 359
 8.3.2 Specifying the UML context .. 359
 8.3.3 Invariants .. 360
 8.3.4 Pre- and Postconditions .. 360
 8.3.5 Package context ... 361
 8.3.6 General Expressions ... 361

8.4 Basic Values and Types .. 361
 8.4.1 Types from the UML Model... 362
 8.4.2 Enumeration Types .. 362
 8.4.3 Let Expressions and «definition» Constraints ... 362
 8.4.4 Type Conformance... 363
 8.4.5 Re-typing or Casting .. 364
© ISO/IEC 2005 - All rights reserved xv

ISO/IEC 19501:2005(E)
 8.4.6 Precedence Rules... 364
 8.4.7 Use of Infix Operators ... 364
 8.4.8 Keywords .. 365
 8.4.9 Comment ... 365
 8.4.10 Undefined Values.. 365

8.5 Objects and Properties.. 366
 8.5.1 Properties .. 366
 8.5.2 Properties: Attributes.. 366
 8.5.3 Properties: Operations .. 366
 8.5.4 Properties: Association Ends and Navigation .. 367
 8.5.5 Navigation to Association Classes .. 368
 8.5.6 Navigation from Association Classes .. 369
 8.5.7 Navigation through Qualified Associations .. 370
 8.5.8 Using Pathnames for Packages... 370
 8.5.9 Accessing overridden properties of supertypes .. 370
 8.5.10 Predefined properties on All Objects ... 371
 8.5.11 Features on Classes Themselves ... 372
 8.5.12 Collections... 373
 8.5.13 Collections of Collections .. 374
 8.5.14 Collection Type Hierarchy and Type Conformance Rules 374
 8.5.15 Previous Values in Postconditions .. 374

8.6 Collection Operations .. 375
 8.6.1 Select and Reject Operations .. 375
 8.6.2 Collect Operation .. 377
 8.6.3 ForAll Operation .. 378
 8.6.4 Exists Operation .. 378
 8.6.5 Iterate Operation .. 379
 8.6.6 Iterators in Collection Operations .. 380
 8.6.7 Resolving Properties ... 380

8.7 The Standard OCL Package ... 380
8.8 Predefined OCL Types .. 381

 8.8.1 Basic Types ... 381
 8.8.2 Collection-Related Types .. 388

8.9 Grammar ... 397

A UML Standard Elements ..403

B Legal Information ...407

Glossary... 411

Index ...423
xvi © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Preface

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system. The UML offers a standard way to write a system's blueprints,
including conceptual things such as business processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable software components.

The UML represents the culmination of best practices in practical object-oriented modeling. The UML is the product of
several years of hard work, in which we focused on bringing about a unification of the methods most used around the
world, the adoption of good ideas from many quarters of the industry, and, above all, a concentrated effort to make things
simple.

We mean "we" in the most general sense. The three of us started the UML effort at Rational and were its original chief
methodologists, but the final product was a team effort among many UML partners under the sponsorship of OMG. All
partners came with their own perspectives, areas of concern, and areas of interest; this diversity of experience and
viewpoints has enriched and strengthened the final result. We extend our personal thanks to everyone who was a part of
making the UML a reality. We would like to thank Rational for giving us the opportunity to work freely so that we might
focus on unification, and we want to recognize all the other companies representing the UML partners for seeing the
importance of the UML to the industry as a whole and giving their representatives time to work on this project. We must
also thank the OMG for providing the framework under which we could bring together many diverse opinions to develop
a consensus result. We expect that OMG’s ownership of the UML standard and the public’s free access to it will ensure
the widespread use and advancement of UML technology over the coming years.

In an effort that involved so many companies and individuals with so many agendas, one would think that the resulting
product would be the software equivalent of a camel: a most dysfunctional-looking animal that appears to have been the
work product of an ill-formed committee of misfits. The UML most decidedly is not a random collection of political
compromises. If anything, because of the focus we placed upon creating a complete and formal model, the UML is
coherent and has harmony of design.

In this context it is also exciting to point out that the UML was developed alongside, and with the full collaboration, of
the OMG's Meta-Object Facility (MOF) team. The MOF, which represents the state of the art in distributed object
repository architectures, is OMG's adopted technology for modeling and representing metadata (including the UML
metamodel) as CORBA objects. The UML and MOF standards are key building blocks of OMG's development
environment for building and deploying distributed object systems.

It is a very real sign of maturity of the industry that the UML exists as a standard. At a time when software is increasingly
more complex and more central to the mission of companies and countries, the UML comes at the right time to help
organizations deal with this complexity. Already, without a lot of the fanfare or hype sometimes associated with
programming languages, the UML is in use in hundreds (if not thousands) of projects around the world, a sign that it is
part of the mainstream of engineering software.

Grady Booch
Ivar Jacobson
Jim Rumbaugh
Rational Software Corporation
© ISO/IEC 2005 - All rights reserved xvii

ISO/IEC 19501:2005(E)
xviii © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO
shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19501 was prepared by Technical Committee ISO/IEC/TC JTC1, Information technology, Subcommittee SC 7,
Software and System Engineering in collaboration with the Object Management Group (OMG), following the submission
and processing as a Publicly Available Specification (PAS) of the OMG Unified Modeling Language (UML) specification
Version 1.4.2.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP), the coordinating framework for which is provided by ITU-T Recommendations X.901-904 | ISO/IEC
10746, the Reference Model of Open Distributed Processing (RM-ODP).

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for UML
1.4.2 (OMG reference formal/04-07-02).
© ISO/IEC 2005 - All rights reserved xix

ISO/IEC 19501:2005(E)
Introduction

The Unified Modeling Language (UML) is a general-purpose modeling language with a semantic specification, a
graphical notation, an interchange format, and a repository query interface. It is designed for use in object-oriented
software applications, including those based on technologies recommended by the Object Management Group (OMG). As
such, it serves a variety of purposes including, but not limited to, the following:

• a means for communicating requirements and design intent,

• a basis for implementation (including automated code generation),

• a reverse engineering and documentation facility.

As an international standard, the various components of UML provide a common foundation for model and metadata
interchange:

• between software development tools,

• between software developers, and

• between repositories and other object management facilities.

The existence of such a standard facilitates the communication between standardized UML environments and other
environments.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP).

The rapid growth of distributed processing has lead to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability and portability
can be integrated.

RM-ODP Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which are related but not
identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML
with appropriate extensions (using stereotypes, tags and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
2 of the RM ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

Structure of this standard

Chapters 1-3: Scope, Normative References, and General Information.

Chapter 4: UML Semantics - Specifies semantics for structural and behavioral object models. Structural models (also
known as static models) emphasize the structure of objects in a system, including their classes, interfaces, attributes and
relations.
xx © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Chapter 5: UML Notation Guide - Describes the notation for the visual representation of the Unified Modeling Language
(UML). This notation document contains brief summaries of the semantics of UML constructs, but the UML Semantics
chapter must be consulted for full details.

Chapter 6: UML Example Profiles - Contains these examples: Example 1: UML Profile for Software Development
Processes and Example 2 - UML Profile for Business Modeling.

Chapter 7: UML Model Interchange - UML model interchange is based on the Metaobject Facility (MOF) 1.3
Specification. The UML Semantics abstract syntax is mapped to a set of MOF packages called the UML Interchange
Metamodel.

Chapter 8: Object Constraint Language Specification - Introduces and defines the Object Constraint Language (OCL),
a formal language used to express constraints.

Annex A: UML Standard Elements

Annex B: Standard Legal Information
© ISO/IEC 2005 - All rights reserved xxi

ISO/IEC 19501:2005(E)
xxii © ISO/IEC 2005 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19501:2005(E)
Information Technology - Open Distributed Processing -
Unified Modeling Language (UML) Version 1.4.2

1 Scope
This standard specifies the Unified Modeling Language (UML) with the objective of providing system architects working
on object analysis and design with one consistent language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling.

This standard represents the convergence of best practices in the object-technology industry. UML is the proper successor
to the object modeling languages of three previously leading object-oriented methods (Booch, OMT, and OOSE). The
UML is the union of these modeling languages and more, since it includes additional expressiveness to handle modeling
problems that these methods did not fully address.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, in order to enable meaningful exchange of model information between tools, agreement on
semantics and notation is required. UML meets the following requirements:

• Formal definition of a common object analysis and design (OA&D) metamodel to represent the semantics of OA&D
models, which include static models, behavioral models, usage models, and architectural models.

• IDL specifications for mechanisms for model interchange between OA&D tools. This document includes a set of IDL
interfaces that support dynamic construction and traversal of a user model.

• A human-readable notation for representing OA&D models. This document defines the UML notation, an elegant
graphic syntax for consistently expressing the UML’s rich semantics. Notation is an essential part of OA&D modeling
and the UML.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this International Standard. At the time of publication, the editions indicated were valid.

All Recommendations and Standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and
Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The
Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, OpenDistributed Processing - Reference Model:
Foundations

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, OpenDistributed Processing - Reference Model:
Architecture

• ISO/IEC 15474-1:2002(E): Information technology - CDIF framework - Part 1: Overview
© ISO/IEC 2005 - All rights reserved 1

ISO/IEC 19501::2005(E)
• ISO/IEC 15474-2:2002(E): Information technology - CDIF framework - Part 2: Modelling and extensibility

• ISO/IEC 15475-1:2002(E): Information technology - CDIF transfer format - Part 1: General rules for syntaxes and
encodings

• ISO/IEC 15475-2:2002(E): Information technology - CDIF transfer format - Part 2: Syntax SYNTAX.1

• ISO/IEC 15475-3:2002(E): Information technology - CDIF transfer format - Part 3: Encoding ENCODING.1

• ISO/IEC 15476-1:2002(E): Information technology - CDIF semantic metamodel - Part 1: Foundation

• ISO/IEC 15476-2:2002(E): Information technology - CDIF semantic metamodel - Part 2: Common

• ISO/IEC 15476-3 (under development): Information technology - CDIF semantic metamodel - Part 3: Data Definition

• ISO/IEC 15476-4 (under development): Information technology - CDIF semantic metamodel - Part 4: Data Models

• ISO/IEC 15476-5 (under development): Information technology - CDIF semantic metamodel - Part 5: Data Flow
Models

• ISO/IEC 15476-6 (under development): Information technology - CDIF semantic metamodel - Part 5: State/Event
Models

3 General Information

3.1 Description

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software systems. The UML represents a
collection of the best engineering practices that have proven successful in the modeling of large and complex systems.

The Unified Modeling Language (UML) is a language for specifying, constructing, visualizing, and documenting the
artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch, OMT, and OOSE. The result is a single,
common, and widely usable modeling language for users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with existing methods. As an example,
the UML authors targeted the modeling of concurrent, distributed systems to assure the UML adequately addresses these
domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a standard process. Although the
UML must be applied in the context of a process, it is our experience that different organizations and problem domains
require different processes. (For example, the development process for shrink-wrapped software is an interesting one, but
building shrink-wrapped software is vastly different from building hard-real-time avionics systems upon which lives
depend.) Therefore, the efforts concentrated first on a common metamodel (which unifies semantics) and second on a
common notation (which provides a human rendering of these semantics). The UML authors promote a development
process that is use-case driven, architecture centric, and iterative and incremental.

The UML specifies a modeling language that incorporates the object-oriented community’s consensus on core modeling
concepts. It allows deviations to be expressed in terms of its extension mechanisms. The Unified Modeling Language
provides the following:
2 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• Semantics and notation to address a wide variety of contemporary modeling issues in a direct and economical fashion.

• Semantics to address certain expected future modeling issues, specifically related to component technology, distrib-
uted computing, frameworks, and executability.

• Extensibility mechanisms so individual projects can extend the metamodel for their application at low cost. We don’t
want users to directly change the UML metamodel.

• Extensibility mechanisms so that future modeling approaches could be grown on top of the UML.

• Semantics to facilitate model interchange among a variety of tools.

• Semantics to specify the interface to repositories for the sharing and storage of model artifacts.

3.2 Outside the Scope of the UML

3.2.1 Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming language, in the sense of having all
the necessary visual and semantic support to replace programming languages. The UML is a language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system, but it does draw the line as you
move toward code. For example, complex branches and joins are better expressed in a textual programming language.
The UML does have a tight mapping to a family of object languages so that you can get the best of both worlds.

3.2.2 Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and their interoperability are very
dependent on a solid semantic and notation definition, such as the UML provides. The UML defines a semantic
metamodel, not a tool interface, storage, or run-time model, although these should be fairly close to one another.

The UML documents do include some tips to tool vendors on implementation choices, but do not address everything
needed. For example, they don’t address topics like diagram coloring, user navigation, animation, storage/implementation
models, or other features.

3.2.3 Process

Many organizations will use the UML as a common language for its project artifacts, but will use the same UML diagram
types in the context of different processes. The UML is intentionally process independent, and defining a standard
process was not a goal of the UML or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well defined and well managed process is
often a key discriminator between hyper productive projects and unsuccessful ones. The reliance upon heroic
programming is not a sustainable business practice. A process

• provides guidance as to the order of a team’s activities,

• specifies what artifacts should be developed,

• directs the tasks of individual developers and the team as a whole, and

• offers criteria for monitoring and measuring a project’s products and activities.
© ISO/IEC 2005 - All rights reserved 3

ISO/IEC 19501::2005(E)
Processes by their very nature must be tailored to the organization, culture, and problem domain at hand. What works in
one context (shrink-wrapped software development, for example) would be a disaster in another (hard-real-time, human-
rated systems, for example). The selection of a particular process will vary greatly, depending on such things as problem
domain, implementation technology, and skills of the team.

Booch, OMT, OOSE, and many other methods have well defined processes, and the UML can support most methods.
There has been some convergence on development process practices, but there is not yet consensus for standardization.
What will likely result is general agreement on best practices and potentially the embracing of a process framework,
within which individual processes can be instantiated. Although the UML does not mandate a process, its developers have
recognized the value of a use-case driven, architecture-centric, iterative, and incremental process, so were careful to
enable (but not require) this with the UML.

3.3 Primary Artifacts of the UML

What are the primary artifacts of the UML? This can be answered from two different perspectives: the UML definition
itself and how it is used to produce project artifacts.

3.3.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling Language itself, this document consists of
chapters describing UML Semantics, UML Notation Guide, and UML Standard Profiles.

3.3.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon how a problem is attacked and how
a corresponding solution is shaped. Abstraction, the focus on relevant details while ignoring others, is a key to learning
and communicating. Because of this:

• Every complex system is best approached through a small set of nearly independent views of a model. No single view
is sufficient.

• Every model may be expressed at different levels of fidelity.

• The best models are connected to reality.

 In terms of the views of a model, the UML defines the following graphical diagrams:

• use case diagram

• class diagram

• behavior diagrams:

• statechart diagram

• activity diagram

• interaction diagrams:

• sequence diagram

• collaboration diagram

• implementation diagrams:

• component diagram
4 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or development. The underlying model
integrates these perspectives so that a self-consistent system can be analyzed and built. These diagrams, along with
supporting documentation, are the primary artifacts that a modeler sees, although the UML and supporting tools will
provide for a number of derivative views. These diagrams are further described in the UML Notation Guide (Chapter 5
of this specification).

A frequently asked question has been: Why doesn’t UML support data-flow diagrams? Simply put, data-flow and other
diagram types that were not included in the UML do not fit as cleanly into a consistent object-oriented paradigm. Activity
diagrams and collaboration diagrams accomplish much of what people want from DFDs, and then some. Activity
diagrams are also useful for modeling workflow.

3.4 Motivation to Define the UML

This section describes several factors motivating the UML and includes why modeling is essential. It highlights a few key
trends in the software industry and describes the issues caused by divergence of modeling approaches.

3.4.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction or renovation is as essential as
having a blueprint for large building. Good models are essential for communication among project teams and to assure
architectural soundness. We build models of complex systems because we cannot comprehend any such system in its
entirety. As the complexity of systems increase, so does the importance of good modeling techniques. There are many
additional factors of a project’s success, but having a rigorous modeling language standard is one essential factor. A
modeling language must include:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become essential. The UML is a well defined and
widely accepted response to that need. It is the visual modeling language of choice for building object-oriented and
component-based systems.

3.4.2 Industry Trends in Software

As the strategic value of software increases for many companies, the industry looks for techniques to automate the
production of software. We look for techniques to improve quality and reduce cost and time-to-market. These techniques
include component technology, visual programming, patterns, and frameworks. We also seek techniques to manage the
complexity of systems as they increase in scope and scale. In particular, we recognize the need to solve recurring
architectural problems, such as physical distribution, concurrency, replication, security, load balancing, and fault
tolerance. Development for the worldwide web makes some things simpler, but exacerbates these architectural problems.

Complexity will vary by application domain and process phase. One of the key motivations in the minds of the UML
developers was to create a set of semantics and notation that adequately addresses all scales of architectural complexity,
across all domains.
© ISO/IEC 2005 - All rights reserved 5

ISO/IEC 19501::2005(E)
3.4.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose from among many similar
modeling languages with minor differences in overall expressive power. Most of the modeling languages shared a set of
commonly accepted concepts that are expressed slightly differently in various languages. This lack of agreement
discouraged new users from entering the object technology market and from doing object modeling, without greatly
expanding the power of modeling. Users longed for the industry to adopt one, or a very few, broadly supported modeling
languages suitable for general-purpose usage.

Some vendors were discouraged from entering the object modeling area because of the need to support many similar, but
slightly different, modeling languages. In particular, the supply of add-on tools has been depressed because small vendors
cannot afford to support many different formats from many different front-end modeling tools. It is important to the entire
object industry to encourage broadly based tools and vendors, as well as niche products that cater to the needs of
specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many companies producing or using
object technology to endorse and support the development of the UML.

While the UML does not guarantee project success, it does improve many things. For example, it significantly lowers the
perpetual cost of training and retooling when changing between projects or organizations. It provides the opportunity for
new integration between tools, processes, and domains. But most importantly, it enables developers to focus on
delivering business value and gives them a paradigm to accomplish this.

3.5 Goals of the UML

The primary design goals of the UML are as follows:

• Provide users with a ready-to-use, expressive visual modeling language to develop and exchange meaningful models.

• Furnish extensibility and specialization mechanisms to extend the core concepts.

• Support specifications that are independent of particular programming languages and development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the object tools market.

• Support higher-level development concepts such as components, collaborations, frameworks and patterns.

• Integrate best practices.

These goals are discussed in detail below.

Provide users with a ready-to-use, expressive visual modeling language to develop and exchange
meaningful models

It is important that the Object Analysis and Design (OA&D) standard supports a modeling language that can be used “out
of the box” to do normal general-purpose modeling tasks. If the standard merely provides a meta-meta-description that
requires tailoring to a particular set of modeling concepts, then it will not achieve the purpose of allowing users to
exchange models without losing information or without imposing excessive work to map their models to a very abstract
form. The UML consolidates a set of core modeling concepts that are generally accepted across many current methods
and modeling tools. These concepts are needed in many or most large applications, although not every concept is needed
in every part of every application. Specifying a meta-meta-level format for the concepts is not sufficient for model users,
6 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
because the concepts must be made concrete for real modeling to occur. If the concepts in different application areas were
substantially different, then such an approach might work, but the core concepts needed by most application areas are
similar and should be supported directly by the standard without the need for another layer.

Furnish extensibility and specialization mechanisms to extend the core concepts

OMG expects that the UML will be tailored as new needs are discovered and for specific domains. At the same time, we
do not want to force the common core concepts to be redefined or re-implemented for each tailored area. Therefore, we
believe that the extension mechanisms should support deviations from the common case, rather than being required to
implement the core modeling concepts themselves. The core concepts should not be changed more than necessary. Users
need to be able to

• build models using core concepts without using extension mechanisms for most normal applications,

• add new concepts and notations for issues not covered by the core,

• choose among variant interpretations of existing concepts, when there is no clear consensus, and

• specialize the concepts, notations, and constraints for particular application domains.

Support specifications that are independent of particular programming languages and development
processes

The UML must and can support all reasonable programming languages. It also must and can support various methods and
processes of building models. The UML can support multiple programming languages and development methods without
excessive difficulty.

Provide a formal basis for understanding the modeling language

Because users will use formality to help understand the language, it must be both precise and approachable; a lack of
either dimension damages its usefulness. The formalisms must not require excessive levels of indirection or layering, use
of low-level mathematical notations distant from the modeling domain, such as set-theoretic notation, or operational
definitions that are equivalent to programming an implementation. The UML provides a formal definition of the static
format of the model using a metamodel expressed in UML class diagrams. This is a popular and widely accepted formal
approach for specifying the format of a model and directly leads to the implementation of interchange formats. UML
expresses well-formedness constraints in precise natural language plus Object Constraint Language expressions. UML
expresses the operational meaning of most constructs in precise natural language. The fully formal approach taken to
specify languages such as Algol-68 was not approachable enough for most practical usage.

Encourage the growth of the object tools market

By enabling vendors to support a standard modeling language used by most users and tools, the industry benefits. While
vendors still can add value in their tool implementations, enabling interoperability is essential. Interoperability requires
that models can be exchanged among users and tools without loss of information. This can only occur if the tools agree
on the format and meaning of all of the relevant concepts. Using a higher meta-level is no solution unless the mapping to
the user-level concepts is included in the standard.

Support higher-level development concepts such as components, collaborations, frameworks, and
patterns

Clearly defined semantics of these concepts is essential to reap the full benefit of object-orientation and reuse. Defining
these within the holistic context of a modeling language is a unique contribution of the UML.
© ISO/IEC 2005 - All rights reserved 7

ISO/IEC 19501::2005(E)
Integrate best practices

A key motivation behind the development of the UML has been to integrate the best practices in the industry,
encompassing widely varying views based on levels of abstraction, domains, architectures, life cycle stages,
implementation technologies, etc. The UML is indeed such an integration of best practices.

3.5.1 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure from Booch, OMT, or OOSE, but
rather the legitimate successor to all three. This means that if you are a Booch, OMT, or OOSE user today, your training,
experience, and tools will be preserved, because the Unified Modeling Language is a natural evolutionary step. The UML
will be equally easy to adopt for users of many other methods, but their authors must decide for themselves whether to
embrace the UML concepts and notation underneath their methods.

The Unified Modeling Language is more expressive yet cleaner and more uniform than Booch, OMT, OOSE, and other
methods. This means that there is value in moving to the Unified Modeling Language, because it will allow projects to
model things they could not have done before. Users of most other methods and modeling languages will gain value by
moving to the UML, since it removes the unnecessary differences in notation and terminology that obscure the underlying
similarities of most of these approaches.

With respect to other visual modeling languages, including entity-relationship modeling, BPR flow charts, and state-
driven languages, the UML should provide improved expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should not take much relearning and will
bring a clarification of the underlying semantics. If the unification goals have been achieved, UML will be an obvious
choice when beginning new projects, especially as the availability of tools, books, and training becomes widespread.
Many visual modeling tools support existing notations, such as Booch, OMT, OOSE, or others, as views of an underlying
model; when these tools add support for UML (as some already have) users will enjoy the benefit of switching their
current models to the UML notation without loss of information.

Existing users of any object method can expect a fairly quick learning curve to achieve the same expressiveness as they
previously knew. One can quickly learn and use the basics productively. More advanced techniques, such as the use of
stereotypes and properties, will require some study since they enable very expressive and precise models needed only
when the problem at hand requires them.

3.5.2 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of existing Booch, OMT, and OOSE that
didn’t work in practice, to add elements from other methods that were more effective, and to invent new only when an
existing solution was not available. Because the UML authors were in effect designing a language (albeit a graphical one),
they had to strike a proper balance between minimalism (everything is text and boxes) and over-engineering (having an
icon for every conceivable modeling element). To that end, they were very careful about adding new things, because they
didn’t want to make the UML unnecessarily complex. Along the way, however, some things were found that were
advantageous to add because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including

• extensibility mechanisms (stereotypes, tagged values, and constraints),

• threads and processes,

• distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),
8 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• patterns/collaborations,

• activity diagrams (for business process modeling),

• refinement (to handle relationships between levels of abstraction),

• interfaces and components, and

• a constraint language.

Many of these ideas were present in various individual methods and theories but UML brings them together into a
coherent whole. In addition to these major changes, there are many other localized improvements over the Booch, OMT,
and OOSE semantics and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods, and many other sources. These
various sources incorporated many different elements from many authors, including non-OO influences. The UML
notation is a melding of graphical syntax from various sources, with a number of symbols removed (because they were
confusing, superfluous, or little used) and with a few new symbols added. The ideas in the UML come from the
community of ideas developed by many different people in the object-oriented field. The UML developers did not invent
most of these ideas; rather, their role was to select and integrate the best ideas from object modeling and computer-science
practices. The actual genealogy of the notation and underlying detailed semantics is complicated, so it is discussed here
only to provide context, not to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other object methods. Stereotypes and their
corresponding icons can be defined for various diagrams to support other modeling styles. Stereotypes, constraints, and
taggedValues are concepts added in UML that did not previously exist in the major modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with minor modifications. Activity graph
diagrams, which share much of the same underlying semantics, are similar to the work flow diagrams developed by many
sources including many pre-object sources.

Sequence diagrams were found in a variety of object methods under a variety of names (interaction, message trace, and
event trace) and date to pre-object days. Collaboration diagrams were adapted from Booch (object diagram), Fusion
(object interaction graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (component and deployment diagrams) are derived from Booch’s module and process
diagrams, but they are now component-centered, rather than module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the metamodel. User-defined icons can be
associated with given stereotypes for tailoring the UML to specific processes.

Object Constraint Language is used by UML to specify the semantics and is provided as a language for expressions
during modeling. OCL is an expression language having its root in the Syntropy method and has been influenced by
expression languages in other methods like Catalysis. The informal navigation from OMT has the same intent, where
OCL is formalized and more extensive.

Each of these concepts has further predecessors and many other influences. We realize that any brief list of influences is
incomplete and we recognize that the UML is the product of a long history of ideas in the computer science and software
engineering area.
© ISO/IEC 2005 - All rights reserved 9

ISO/IEC 19501::2005(E)
3.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are incorporating the UML as a
standard into their development process and products, which cover disciplines such as business modeling, requirements
management, analysis & design, programming, and testing.

3.6.1 UML 0.8 - 0.91

Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970 and the late 1980s as various
methodologists experimented with different approaches to object-oriented analysis and design. Several other techniques
influenced these languages, including Entity-Relationship modeling, the Specification & Description Language (SDL,
circa 1976, CCITT), and other techniques. The number of identified modeling languages increased from less than 10 to
more than 50 during the period between 1989-1994. Many users of object methods had trouble finding complete
satisfaction in any one modeling language, fueling the “method wars.” By the mid-1990s, new iterations of these methods
began to appear, most notably Booch’93, the continued evolution of OMT, and Fusion. These methods began to
incorporate each other’s techniques, and a few clearly prominent methods emerged, including the OOSE, OMT-2, and
Booch’93 methods. Each of these was a complete method, and was recognized as having certain strengths. In simple
terms, OOSE was a use-case oriented approach that provided excellent support business engineering and requirements
analysis. OMT-2 was especially expressive for analysis and data-intensive information systems. Booch’93 was
particularly expressive during design and construction phases of projects and popular for engineering-intensive
applications.

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim Rumbaugh of Rational Software
Corporation began their work on unifying the Booch and OMT (Object Modeling Technique) methods. Given that the
Booch and OMT methods were already independently growing together and were collectively recognized as leading
object-oriented methods worldwide, Booch and Rumbaugh joined forces to forge a complete unification of their work. A
draft version 0.8 of the Unified Method, as it was then called, was released in October of 1995. In the Fall of 1995, Ivar
Jacobson and his Objectory company joined Rational and this unification effort, merging in the OOSE (Object-Oriented
Software Engineering) method. The Objectory name is now used within Rational primarily to describe its UML-compliant
process, the Rational Unified Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim Rumbaugh, and Ivar Jacobson were
motivated to create a unified modeling language for three reasons. First, these methods were already evolving toward
each other independently. It made sense to continue that evolution together rather than apart, eliminating the potential for
any unnecessary and gratuitous differences that would further confuse users. Second, by unifying the semantics and
notation, they could bring some stability to the object-oriented marketplace, allowing projects to settle on one mature
modeling language and letting tool builders focus on delivering more useful features. Third, they expected that their
collaboration would yield improvements in all three earlier methods, helping them to capture lessons learned and to
address problems that none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

1. Enable the modeling of systems (and not just software) using object-oriented concepts

2. Establish an explicit coupling to conceptual as well as executable artifacts

3. Address the issues of scale inherent in complex, mission-critical systems
10 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4. Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike designing a programming language. There
are tradeoffs. First, one must bound the problem: Should the notation encompass requirement specification? (Yes,
partially.) Should the notation extend to the level of a visual programming language? (No.) Second, one must strike a
balance between expressiveness and simplicity: Too simple a notation will limit the breadth of problems that can be
solved; too complex a notation will overwhelm the mortal developer. In the case of unifying existing methods, one must
also be sensitive to the installed base: Make too many changes, and you will confuse existing users. Resist advancing the
notation, and you will miss the opportunity of engaging a much broader set of users. The UML definition strives to make
the best trade-offs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9 and 0.91 documents in June and
October of 1996. During 1996, the UML authors invited and received feedback from the general community. They
incorporated this feedback, but it was clear that additional focused attention was still required.

3.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their business. A Request for Proposal
(RFP) issued by the Object Management Group (OMG) provided the catalyst for these organizations to join forces around
producing a joint RFP response. Rational established the UML Partners consortium with several organizations willing to
dedicate resources to work toward a strong UML definition. Those contributing most to the UML definition included:
Digital Equipment Corp., HP, i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle,
Rational Software, TI, and Unisys. This collaboration produced UML, a modeling language that was well defined,
expressive, powerful, and generally applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich Technologies; and Softeam also
submitted separate RFP responses to the OMG. These companies joined the UML partners to contribute their ideas, and
together the partners produced the revised UML 1.1 response. The focus of the UML 1.1 release was to improve the
clarity of the UML 1.0 semantics and to incorporate contributions from the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative team effort. The UML Partners have
worked hard as a team to define UML. While each partner came in with their own perspective and areas of interest, the
result has benefited from each of them and from the diversity of their experiences. The UML Partners contributed a
variety of expert perspectives, including, but not limited to, the following: OMG and RM-ODP technology perspectives,
business modeling, constraint language, state machine semantics, types, interfaces, components, collaborations,
refinement, frameworks, distribution, and metamodel.

3.6.3 UML - Present and Future

The UML is non-proprietary and open to all. It addresses the needs of user and scientific communities, as established by
experience with the underlying methods on which it is based.

Many methodologists, organizations, and tool vendors have committed to use it. Since the UML builds upon similar
semantics and notation from Booch, OMT, OOSE, and other leading methods and has incorporated input from the UML
partners and feedback from the general public, widespread adoption of the UML should be straightforward.

There are two aspects of "unified" that the UML achieves: First, it effectively ends many of the differences, often
inconsequential, between the modeling languages of previous methods. Secondly, and perhaps more importantly, it
unifies the perspectives among many different kinds of systems (business versus software), development phases
(requirements analysis, design, and implementation), and internal concepts.
© ISO/IEC 2005 - All rights reserved 11

ISO/IEC 19501::2005(E)
Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard, since it is based on the modeling
languages of leading object methods. The UML is ready for widespread use. This document is suitable as the primary
source for authors writing books and training materials, as well as developers implementing visual modeling tools.
Additional collateral, such as articles, training courses, examples, and books, will soon make the UML very approachable
for a wide audience.

The Unified Modeling Language v. 1.1 specification which was added to the list of OMG Adopted Technologies in
November 1997. Since then the OMG has assumed responsibility for the further development of the UML standard.

Revision of the UML

After adoption of the UML 1.1 specification by the OMG membership in November 1997, the OMG chartered a revision
task force (RTF) to accept comments from the general public and to make revisions to the specifications to handle bugs,
inconsistencies, ambiguities, and minor omissions that could be handled without a major change in scope from the
original specification. The members of the RTF were drawn from the original proposers with a few additional persons.
The RTF issued several preliminary reports with the final report containing UML 1.3 scheduled for the second quarter of
1999. It contained a number of changes to the UML metamodel, semantics, and notation, but in the big picture this
version should be considered a minor upgrade to the original specification. More substantive changes and expansion in
scope requires the full OMG specification and adoption process.

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The number of endorsing organizations is
expected to grow significantly over time. These organizations will continue to encourage the use of the Unified Modeling
Language by making the definition readily available and by encouraging other methodologists, tool vendors, training
organizations, and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the increasing demand for supporting tools,
books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future improvements in modeling concepts. We have
addressed many leading-edge techniques, but expect additional techniques to influence future versions of the UML. Many
advanced techniques can be defined using UML as a base. The UML can be extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including those for visual modeling, simulation,
and development environments. As interesting tool integrations are developed, implementation standards based on the
UML will become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the use of object-orientation.
Component-based development is an approach worth mentioning. It is synergistic with traditional object-oriented
techniques. While reuse based on components is becoming increasingly widespread, this does not mean that component-
based techniques will replace object-oriented techniques. There are only subtle differences between the semantics of
components and classes.
12 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4 UML Semantics

Part 1 - Background

4.1 Introduction

4.1.1 Purpose and Scope

The primary audience for this detailed description consists of the OMG, other standards organizations, tool builders,
metamodelers, methodologists, and expert modelers. The authors assume familiarity with metamodeling and advanced object
modeling. Readers looking for an introduction to the UML or object modeling should consider another source.

Although the document is meant for advanced readers, it is also meant to be easily understood by its intended audience.
Consequently, it is structured and written to increase readability. The structure of the document, like the language, builds on
previous concepts to refine and extend the semantics. In addition, the document is written in a ‘semi-formal’ style that
combines natural and formal languages in a complementary manner.

This section specifies semantics for structural and behavioral object models. Structural models (also known as static models)
emphasize the structure of objects in a system, including their classes, interfaces, attributes and relations. Behavioral models
(also known as dynamic models) emphasize the behavior of objects in a system, including their methods, interactions,
collaborations, and state histories.

This section provides complete semantics for all modeling notations described in the UML Notation Guide (Chapter 5). This
includes support for a wide range of diagram techniques: class diagram, object diagram, use case diagram, sequence diagram,
collaboration diagram, state diagram, activity diagram, and deployment diagram. The UML Notation Guide includes a
summary of the semantics sections that are relevant to each diagram technique.

4.1.2 Approach

This section emphasizes language architecture and formal rigor. The architecture of the UML is based on a four-layer
metamodel structure, which consists of the following layers: user objects, model, metamodel, and meta-metamodel. This
document is primarily concerned with the metamodel layer, which is an instance of the meta-metamodel layer. For example,
Class in the metamodel is an instance of MetaClass in the meta-metamodel. The metamodel architecture of UML is discussed
further in Section 4.2, “Language Architecture,” on page 14.

The UML metamodel is a logical model and not a physical (or implementation) model. The advantage of a logical metamodel
is that it emphasizes declarative semantics, and suppresses implementation details. Implementations that use the logical
metamodel must conform to its semantics, and must be able to import and export full as well as partial models. However, tool
vendors may construct the logical metamodel in various ways, so they can tune their implementations for reliability and
performance. The disadvantage of a logical model is that it lacks the imperative semantics required for accurate and efficient
implementation. Consequently, the metamodel is accompanied with implementation notes for tool builders.

UML is also structured within the metamodel layer. The language is decomposed into several logical packages: Foundation,
Behavioral Elements, and Model Management. These packages in turn are decomposed into subpackages. For example, the
Foundation package consists of the Core, Extension Mechanisms, and Data Types subpackages. The structure of the language
is fully described in Section 4.2, “Language Architecture,” on page 14.

The metamodel is described in a semi-formal manner using these views:
© ISO/IEC 2005 - All rights reserved 13

ISO/IEC 19501:2005(E)
• Abstract syntax

• Well-formedness rules

• Semantics

The abstract syntax is provided as a model described in a subset of UML, consisting of a UML class diagram and a supporting
natural language description. (In this way the UML bootstraps itself in a manner similar to how a compiler is used to compile
itself.) The well-formedness rules are provided using a formal language (Object Constraint Language) and natural language
(English). Finally, the semantics are described primarily in natural language, but may include some additional notation,
depending on the part of the model being described. The adaptation of formal techniques to specify the language is fully
described in Section 4.3, “Language Formalism,” on page 17.

In summary, the UML metamodel is described in a combination of graphic notation, natural language, and formal language.
We recognize that there are theoretical limits to what one can express about a metamodel using the metamodel itself. However,
our experience suggests that this combination strikes a reasonable balance between expressiveness and readability.

4.2 Language Architecture

4.2.1 Four-Layer Metamodel Architecture

The UML metamodel is defined as one of the layers of a four-layer metamodeling architecture. This architecture is a proven
infrastructure for defining the precise semantics required by complex models. There are several other advantages associated
with this approach:

• It refines semantic constructs by recursively applying them to successive metalayers.

• It provides an architectural basis for defining future UML metamodel extensions.

• It furnishes an architectural basis for aligning the UML metamodel with other standards based on a four-layer
metamodeling architecture, in particular the OMG Meta-Object Facility (MOF).

The generally accepted framework for metamodeling is based on an architecture with four layers:

• meta-metamodel

• metamodel

• model

• user objects

The functions of these layers are summarized in the following table.

Table 1 - Four Layer Metamodeling Architecture

Layer Description Example

meta-metamodel The infrastructure for a metamodeling
architecture. Defines the language for
specifying metamodels.

MetaClass, MetaAttribute, MetaOperation
14 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The meta-metamodeling layer forms the foundation for the metamodeling architecture. The primary responsibility of this layer
is to define the language for specifying a metamodel. A meta-metamodel defines a model at a higher level of abstraction than
a metamodel, and is typically more compact than the metamodel that it describes. A meta-metamodel can define multiple
metamodels, and there can be multiple meta-metamodels associated with each metamodel.

While it is generally desirable that related metamodels and meta-metamodels share common design philosophies and
constructs, this is not a strict rule. Each layer needs to maintain its own design integrity. Examples of meta-metaobjects in the
meta-metamodeling layer are: MetaClass, MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. The primary responsibility of the metamodel layer is to define a language
for specifying models. Metamodels are typically more elaborate than the meta-metamodels that describe them, especially
when they define dynamic semantics. Examples of metaobjects in the metamodeling layer are: Class, Attribute, Operation, and
Component.

A model is an instance of a metamodel. The primary responsibility of the model layer is to define a language that describes an
information domain. Examples of objects in the modeling layer are: StockShare, askPrice, sellLimitOrder, and
StockQuoteServer.

User objects (a.k.a. user data) are an instance of a model. The primary responsibility of the user objects layer is to describe a
specific information domain. Examples of objects in the user objects layer are: <Acme_Software_Share_98789>, 654.56,
sell_limit_order, and <Stock_Quote_Svr_32123>.

4.2.1.1 Architectural Alignment with the MO F Meta-Metamodel

Both the UML and the MOF are based on a four-layer metamodel architecture, where the MOF meta-metamodel is the meta-
metamodel for the UML metamodel. Since the MOF and UML have different scopes and differ in their abstraction levels (the
UML metamodel tends to be more of a logical model than the MOF meta-metamodel), they are related by loose metamodeling

rather than strict metamodeling.1 As a result, the UML metamodel is an instance of the MOF meta-metamodel.

Consequently, there is not a strict isomorphic instance-of mapping between all the MOF meta-metamodel elements and the
UML metamodel elements. In spite of this, since the two models were designed to be interoperable, the UML Core package
metamodel and the MOF meta-metamodel are structurally quite similar.

4.2.2 Package Structure

The complexity of the UML metamodel is managed by organizing it into logical packages. These packages group metaclasses

metamodel An instance of a meta-metamodel. Defines the
language for specifying a model.

Class, Attribute, Operation, Component

model An instance of a metamodel. Defines a
language to describe an information domain.

StockShare, askPrice, sellLimitOrder,
StockQuoteServer

user objects (user data) An instance of a model. Defines a specific
information domain.

<Acme_SW_Share_98789>, 654.56,
sell_limit_order, <Stock_Quote_Svr_32123>

1. In loose (or “non-strict”) metamodeling a Mn level model is an instance of a Mn+1 level model. In strict metamodeling, every

element of a Mn level model is an instance of exactly one element of Mn+1 level model.

Table 1 - Four Layer Metamodeling Architecture

Layer Description Example
© ISO/IEC 2005 - All rights reserved 15

ISO/IEC 19501:2005(E)
that show strong cohesion with each other and loose coupling with metaclasses in other packages. The metamodel is
decomposed into the top-level packages shown in Figure 1.

Figure 1 - Top-Level Packages

The Foundation and Behavioral Elements packages are further decomposed as shown in Figure 2 and Figure 3.

Figure 2 - Foundation Packages

Core

Data Types

Extens ion
Mechanism s
16 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 3 - Behavioral Elements Packages

The functions and contents of these packages are described in Section 4.8, “Behavioral Elements Package,” on page 85.

4.3 Language Formalism

This section contains a description of the techniques used to describe UML. The specification adapts formal techniques to
improve precision while maintaining readability. The technique describes the UML metamodel in three views using both text
and graphic presentations. The benefits of adapting formal techniques include:

• the correctness of the description is improved,

• ambiguities and inconsistencies are reduced,

• the architecture of the metamodel is validated by a complementary technique, and

• the readability of the description is increased.

It is important to note that the current description is not a completely formal specification of the language because to do so
would have added significant complexity without clear benefit. In addition, the state of the practice in formal specifications
does not yet address some of the more difficult language issues that UML introduces.

The structure of the language is nevertheless given a precise specification, which is required for tool interoperability. The
dynamic semantics are described using natural language, although in a precise way so they can easily be understood.
Currently, the dynamic semantics are not considered essential for the development of tools; however, this will probably change
in the future.

4.3.1 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the language and then to describe its static
and dynamic semantics. The syntax defines what constructs exist in the language and how the constructs are built up in terms

Use Cases State MachinesCollaborations

Common
Behavior

Ac tivity Graphs
© ISO/IEC 2005 - All rights reserved 17

ISO/IEC 19501:2005(E)
of other constructs. Sometimes, especially if the language has a graphic syntax, it is important to define the syntax in a notation
independent way, that is, to define the abstract syntax of the language. The concrete syntax is then defined by mapping the
notation onto the abstract syntax. The syntax is described in the Abstract Syntax sections.

The static semantics of a language define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of a well formed construct. The meaning of a description written
in the language is defined only if the description is well formed, that is, if it fulfills the rules defined in the static semantics.
The static semantics are found in sections headed Well-Formedness Rules. The dynamic semantics are described under the
heading Semantics. In some cases, parts of the static semantics are also explained in the Semantics section for completeness.

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other sources of

information are needed to read the document2. Although this is a metacircular description3, understanding this document is
practical since only a small subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of the
capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in essence
being variants of other ones, are defined as stereotypes of metaclasses in the metamodel. This mechanism allows the semantics
of the variant construct to be significantly different from the base metaclass. Another more “lightweight” way of defining
variants is to use metaattributes. As an example, the aggregation construct is specified by an attribute of the metaclass
AssociationEnd, which is used to indicate if an association is an ordinary aggregate, a composite aggregate, or a common
association.

4.3.2 Package Specification Structure

This section provides information for each package in the UML metamodel. Each package has one or more of the following
subsections.

4.3.2.1 Abstract Syntax

The abstract syntax is presented in a UML class diagram showing the metaclasses defining the constructs and their
relationships. The diagram also presents some of the well-formedness rules, mainly the multiplicity requirements of the
relationships, and whether or not the instances of a particular sub-construct must be ordered. Finally, a short informal
description in natural language describing each construct is supplied. The first paragraph of each of these descriptions is a
general presentation of the construct that sets the context, while the following paragraphs give the informal definition of the
metaclass specifying the construct in UML. For each metaclass, its attributes are enumerated together with a short explanation.
Furthermore, the opposite role names of associations connected to the metaclass are also listed in the same way.

4.3.2.2 Well-Formedness Rules

The static semantics of UML metaclasses, except for multiplicity and ordering constraints, are defined as a set of invariants of
an instance of the metaclass. (Note that a metaclass is not required to have any invariants.) These invariants have to be
satisfied for the construct to be meaningful. The rules thus specify constraints over attributes and associations defined in the
metamodel. Each invariant is defined by an OCL expression together with an informal explanation of the expression. In many
cases, additional operations on the metaclasses are needed for the OCL expressions. These are then defined in a separate
subsection after the well-formedness rules for the construct, using the same approach as the abstract syntax: an informal
explanation followed by the OCL expression defining the operation.

2. Although a comprehension of the UML’s four-layer metamodel architecture and its underlying meta-metamodel is helpful, it is
not essential to understand the UML semantics.

3. In order to understand the description of the UML semantics, you must understand some UML semantics.
18 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The statement ‘No extra well-formedness rules’ means that all current static semantics are expressed in the superclasses
together with the multiplicity and type information expressed in the diagrams.

4.3.2.3 Semantics

The meanings of the constructs are defined using natural language. The constructs are grouped into logical chunks that are
defined together. Since only concrete metaclasses have a true meaning in the language, only these are described in this section.

4.3.2.4 Standard Elements

Stereotypes of the metaclasses defined previously in the section are listed, with an informal definition in natural language.
Well-formedness rules, if any, for the stereotypes are also defined in the same manner as in the Well-Formedness Rules
subsection.

Other kinds of standard elements (constraints and tagged-values) are listed, and are defined in the Standard Elements
appendix.

4.3.2.5 Notes

This subsection may contain rationales for metamodeling decisions, pragmatics for the use of the constructs, and examples all
written in natural language.

4.3.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Chapter 6, “Object Constraint Language
Specification” for expressing well-formedness rules.

The following conventions are used to promote readability:

• Self - which can be omitted as a reference to the metaclass defining the context of the invariant, has been kept for
clarity.

• In expressions where a collection is iterated, an iterator is used for clarity, even when formally unnecessary. The type
of the iterator is usually omitted, but included when it adds to understanding.

• The ‘collect’ operation is left implicit where this is practical.

4.3.4 Use of Natural Language

We strove to be precise in our use of natural language, in this case English. For example, the description of UML semantics
includes phrases such as “X provides the ability to…” and “X is a Y.” In each of these cases, the usual English meaning is
assumed, although a deeply formal description would demand a specification of the semantics of even these simple phrases.

The following general rules apply:

• When referring to an instance of some metaclass, we often omit the word “instance.” For example, instead of saying “a
Class instance” or “an Association instance,” we just say “a Class” or “an Association.” By prefixing it with an “a” or
“an,” assume that we mean “an instance of.” In the same way, by saying something like “Elements” we mean “a set (or
the set) of instances of the metaclass Element.”

• Every time a word coinciding with the name of some construct in UML is used, that construct is referenced.

• Terms including one of the prefixes sub, super, or meta are written as one word (for example, metamodel, subclass).
© ISO/IEC 2005 - All rights reserved 19

ISO/IEC 19501:2005(E)
4.3.5 Naming Conventions and Typography

In the description of UML, the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel, normal text is used.

• Metaclass names that consist of appended nouns/adjectives, initial embedded capitals are used (for example,
‘ModelElement,’ ‘StructuralFeature’).

• Names of metaassociations/association classes are written in the same manner as metaclasses (for example,
‘ElementReference’).

• Initial embedded capital is used for names that consist of appended nouns/adjectives (for example, ‘ownedElement,’
‘allContents’).

• Boolean metaattribute names always start with ‘is’ (for example, ‘isAbstract’).

• Enumeration types always end with “Kind” (for example, ‘AggregationKind’).

• While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they appear in the
model are always used.

• Names of stereotypes are delimited by guillemets and begin with lowercase for those languages that distinguish
between uppercase and lowercase characters (for example, «type»).

Part 2 - Foundation

4.4 Foundation Package

The Foundation package is the language infrastructure that specifies the static structure of models. The Foundation package is
decomposed into the following subpackages: Core, Extension Mechanisms, and Data Types. Figure 4 illustrates the
Foundation Packages. The Core package specifies the basic concepts required for an elementary metamodel and defines an
architectural backbone for attaching additional language constructs, such as metaclasses, metaassociations, and metaattributes.
The Extension Mechanisms package specifies how model elements are customized and extended with new semantics. The
Data Types package defines basic data structures for the language.

Figure 4 - Foundation Packages

Core

Data Types

Extension
Mechanisms
20 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5 Core

4.5.1 Overview

The Core package is the most fundamental of the subpackages that compose the UML Foundation package. It defines the basic
abstract and concrete metamodel constructs needed for the development of object models. Abstract constructs are not
instantiable and are commonly used to reify key constructs, share structure, and organize the UML metamodel. Concrete
metamodel constructs are instantiable and reflect the modeling constructs used by object modelers (cf. metamodelers).
Abstract constructs defined in the Core include ModelElement, GeneralizableElement, and Classifier. Concrete constructs
specified in the Core include Class, Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and defines an architectural backbone
(“skeleton”) for attaching additional language constructs such as metaclasses, metaassociations, and metaattributes. Although
the Core package contains sufficient semantics to define the remainder of UML, it is not the UML meta-metamodel. It is the
underlying base for the Foundation package, which in turn serves as the infrastructure for the rest of language. In other
packages, the Core is extended by adding metaclasses to the backbone using generalizations and associations.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Core package.

4.5.2 Abstract Syntax

The abstract syntax for the Core package is expressed in graphic notation in the following figures. Figure 5 on page 22 shows
the model elements that form the structural backbone of the metamodel. Figure 6 on page 23 shows the model elements that
define relationships. Figure 7 on page 24 shows the model elements that define dependencies. Figure 8 on page 25 shows the
various kinds of classifiers. Figure 9 on page 26 shows auxiliary elements for template parameters, presentation elements, and
comments.
© ISO/IEC 2005 - All rights reserved 21

ISO/IEC 19501:2005(E)
Figure 5 - Core Package - Backbone

1
*Attribute

initialValue : Expression

+ specification

Operation

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

Method

body : ProcedureExpression

* + typedFeature
BehavioralFeature

IsQuery : Boolean

0..1

1 +type

StructuralFeature

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

*

{ordered}

+typedParameter + parameter

1 +type

{ordered}

Element

ModelElement

name : Name {ordered} *

+ constrainedElement

+ownedElement

+ constraint

*

ElementOwnership

visibility : VisibilityKind
isSpecification : Boolean

*

+namespace
 0..1

 +feature
 +owner
 0..1

NameSpace

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Parameter

defaultValue : Expression
kind : ParameterDirectionKind

Constraint

body : BooleanExpression

*

Feature

ownerScope : ScopeKind
visibility : VisibilityKind

Classifier

22 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 6 - Core Package - Relationships

{ordered}

2. *

1

+qualifier

+associationEnd

0..1
{ordered}

+specifiedEnd

+ association

+ correction

+ specification

*

+participant

Association

Classifier

1

* *

Class

IsActive : Boolean

Attribute

InitialValue : Expression

AssociationClass

*

1

+ generalization +child

 +parent

1

+ specialization

*

*

GeneralizableElement

IsRoot: Boolean
IsLeaf : Boolean
IsAbstract : Boolean

*

+targetFlow

*

*

+ source

target *

ModelElement

name : Name

+sourceFlow

Relationship

+powertypeRange

0..1
*

+ powertype

Generalization

discriminator: Name

Flow

AssociationEnd

isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope: ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
visibility : VisibilityKind

© ISO/IEC 2005 - All rights reserved 23

ISO/IEC 19501:2005(E)
Figure 7 - Core Package - Dependencies

Usage

Permi ssion
Abstraction

mapping : MappingExpression

Dependency

Binding

ModelElement

name : Name 1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+clientDependency

*

Relationship
24 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 8 - Core Package - Classifiers

 +deploymentLocation

{ordered}

1

 +container

 +implementation *

+ literal + enumeration

*

*

1..*

*

*

 +implementationtLocation

 +deployedComponent

 +resident

 ElementResidence

visibility : VisibilityKind

Enumeration

 EnumerationLiteral

Interface

Artifact

Component

ModelElement

Name : Name

 ProgrammingLanguageDataType

Expression : TypeExpression

DataType

Class

IsActive : Boolean

Classifier

Primitive

 Node

© ISO/IEC 2005 - All rights reserved 25

ISO/IEC 19501:2005(E)
Figure 9 - Core Package - Auxiliary Elements

4.5.2.1 Abstraction

An abstraction is a Dependency relationship that relates two elements or sets of elements that represent the same concept at
different levels of abstraction or from different viewpoints.

In the metamodel, an Abstraction is a Dependency in which there is a mapping between the supplier and the client. Depending
on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional or bidirectional.

If an Abstraction element has more than one client element, the supplier element maps into the set of client elements as a
group. For example, an analysis-level class might be split into several design-level classes. The situation is similar if there is
more than one supplier element.

The UML standard stereotyped classes of Abstraction are Derivation, Realization, Refinement, and Trace. (These are the
names for the Abstraction class with the stereotypes «derive», «realize», «refine», and «trace», respectively.)

Attributes

mapping A MappingExpression that states the abstraction relationship between the supplier and the client. In some
cases, such as Derivation, it is usually formal and unidirectional; in other cases, such as Trace, it is usually
informal and bidirectional. The mapping attribute is optional and may be omitted if the precise relationship
between the elements is not specified.

+modelElement

+template

+ defaultElement 0..1 *

{ordered}

+ templateParameter

*

0..1 ModelElement

 name: Name +presentation + subject

*

Element

PresentationElement

 *

*

*

 +annotatedElement

Comment

body : String

 +binding

{ordered}
1..*

 +argument

1

Binding

1
*

TemplateArgument

TemplateParameter
26 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Stereotypes

4.5.2.2 Artifact

An Artifact represents a physical piece of information that is used or produced by a software development process. Examples
of Artifacts include models, source files, scripts, and binary executable files. An Artifact may constitute the implementation of
a deployable component.

In the metamodel, an Artifact is a Classifier with an optional aggregation association to one or more Components. As a
Classifier, Artifacts may have Features that represent properties of the Artifact (for example, a “read-only” attribute or a
“check in” operation).

It should be noted that sometimes Artifacts may need to be linked to Classifiers directly, without introducing a ‘Component.’
For instance, in the context of code generation, the resulting Artifacts (source code files) are never deployed as Components.
In that case, a «derive» Dependency can be used between the Classifier(s) and the generated Artifact.

The standard stereotypes of Artifact are «file», the subclasses of «file» («executable», «source», «library», and «document»),
and «table». These stereotypes can be further subclassed into implementation and platform specific stereotypes (for example,
«jarFile» for Java archives).

Associations

Stereotypes

«derive» (Name for the stereotyped class is Derivation.) Specifies a derivation relationship among model elements that
are usually, but not necessarily, of the same type. A derived dependency specifies that the client may be
computed from the supplier. The mapping specifies the computation. The client may be implemented for
design reasons, such as efficiency, even though it is logically redundant.

«realize» (Name for the stereotyped class is Realization.) Specifies a realization relationship between a specification
model element or elements (the supplier) and a model element or elements that implement it (the client). The
implementation model element is required to support all of the operations or received signals that the
specification model element declares. The implementation model element must make or inherit its own
declarations of the operations and signal receptions. The mapping specifies the relationship between the two.
The mapping may or may not be computable. Realization can be used to model stepwise refinement,
optimizations, transformations, templates, model synthesis, framework composition, etc.

«refine» (Name for the stereotyped class is Refinement.) Specifies refinement relationship between model elements at
different semantic levels, such as analysis and design. The mapping specifies the relationship between the two
elements or sets of elements. The mapping may or may not be computable, and it may be unidirectional or
bidirectional. Refinement can be used to model transformations from analysis to design and other such
changes.

«trace» (Name for the stereotyped class is Trace.) Specifies a trace relationship between model elements or sets of
model elements that represent the same concept in different models. Traces are mainly used for tracking
requirements and changes across models. Since model changes can occur in both directions, the directionality
of the dependency can often be ignored. The mapping specifies the relationship between the two, but it is
rarely computable and is usually informal.

implementationLocation The deployable Component(s) that are implemented by this Artifact.

«document» Denotes a generic file that is not a «source» file or «executable». Subclass of «file».

«executable» Denotes a program file that can be executed on a computer system. Subclass of «file».
© ISO/IEC 2005 - All rights reserved 27

ISO/IEC 19501:2005(E)
4.5.2.3 Association

An association defines a semantic relationship between classifiers. The instances of an association are a set of tuples relating
instances of the classifiers. Each tuple value may appear at most once.

In the metamodel, an Association is a declaration of a semantic relationship between Classifiers, such as Classes. An
Association has at least two AssociationEnds. Each end is connected to a Classifier - the same Classifier may be connected to
more than one AssociationEnd in the same Association. The Association represents a set of connections among instances of
the Classifiers. An instance of an Association is a Link, which is a tuple of Instances drawn from the corresponding Classifiers.

Attributes

Associations

Stereotypes

Standard Constraints

Tagged Values

«file» Denotes a physical file in the context of the system developed.

«library» Denotes a static or dynamic library file. Subclass of «file».

«source» Denotes a source file that can be compiled into an executable file. Subclass of «file».

«table» Denotes a database table.

name The name of the Association that in combination with its associated Classifiers must be unique within the
enclosing namespace (usually a Package).

connection An Association consists of at least two AssociationEnds, each of which represents a connection of the
association to a Classifier. Each AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is defined by its AssociationEnds. The
classifiers belonging to the association are related to the AssociationEnds by the participant rolename
association.

«implicit» The «implicit» stereotype is applied to an association, specifying that the association is not manifest, but rather
is only conceptual.

xor The {xor} constraint is applied to a set of associations, specifying that over that set, exactly one is manifest for
each associated instance. Xor is an exclusive or (not inclusive or) constraint.

persistence Persistence denotes the permanence of the state of the association, marking it as transitory (its state is
destroyed when the instance is destroyed) or persistent (its state is not destroyed when the instance is
destroyed).
28 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Inherited Features

Association is a GeneralizableElement. The following elements are inherited by a child Association.

Non-Inherited Features

4.5.2.4 AssociationClass

An association class is an association that is also a class. It not only connects a set of classifiers but also defines a set of
features that belong to the relationship itself and not any of the classifiers.

Inherited Features

AssociationClass inherits features as specified in both Class and Association.

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClass is a subclass of both Association and Class (that is, each AssociationClass is both an
Association and a Class); therefore, an AssociationClass has both AssociationEnds and Features.

4.5.2.5 AssociationEnd

An association end is an endpoint of an association, which connects the association to a classifier. Each association end is part
of one association. The association-ends of each association are ordered.

In the metamodel, an AssociationEnd is part of an Association and specifies the connection of an Association to a Classifier. It
has a name and defines a set of properties of the connection (for example, which Classifier the Instances must conform to, their
multiplicity, and if they may be reached from another Instance via this connection).

In the following descriptions when referring to an association end for a binary association, the source end is the other end. The
target end is the one whose properties are being discussed.

Attributes

connection The child must have the same number of ends as the parent. Each participant class must be a descendant of
the participant class in the same position in the parent. If the Association is an AssociationClass, its class
properties (attributes, operations, etc.) are inherited. Various other properties are subject to change in the
child. This specification is likely to be further clarified in UML 2.0.

isRoot
isLeaf
isAbstract

Not inheritable by their very nature, but they define the generalization structure.

name Each model element has a unique name.

aggregation When placed on one end (the “target” end), specifies whether the class on the target end is an aggregation with
respect to the class on the other end (the “source”end). Only one end can be an aggregation.

Possibilities are:
• none - The target class is not an aggregate.
• aggregate - The target class is an aggregate; therefore, the source class is a part and must have the

aggregation value of none. The part may be contained in other aggregates.
• composite - The target class is a composite; therefore, the source class is a part and must have the

aggregation value of none. The part is strongly owned by the composite and may not be part of any other
composite.
© ISO/IEC 2005 - All rights reserved 29

ISO/IEC 19501:2005(E)
changeability When placed on one end (the “target” end), specifies whether an instance of the Association may be modified
by an instance of the class on the other end (the “source” end). In other words, the attribute controls the access
by operations on the class on the opposite end.

Possibilities are:
• changeable - No restrictions on modification.
• frozen - No links may be added by operations on the source class after the creation of the source object.

Operations on the target class may add links (provided they are not similarly restricted).
• addOnly - Links may be added at any time by operations on the source object, but once created a link

may not be removed by operations on the source class. Operations on the target class may add or remove
links (provided they are not similarly restricted).

ordering When placed on a target end, specifies whether the set of links from the source instance to the target instance
is ordered. The ordering must be determined and maintained by Operations that add links. It represents
additional information not inherent in the objects or links themselves.

Possibilities are:
• unordered - The links form a set with no inherent ordering.
• ordered - A set of ordered links can be scanned in order.
• Other possibilities (such as sorted) may be defined later by declaring additional keywords. As with user-

defined stereotypes, this would be a private extension supported by particular editing tools.

isNavigable When placed on a target end, specifies whether traversal from a source instance to its associated target
instances is possible. Specification of each direction across the Association is independent. A value of true
means that the association can be navigated by the source class and the target rolename can be used in
navigation expressions.

multiplicity When placed on a target end, specifies the number of target instances that may be associated with a single
source instance across the given Association.

name (Inherited from ModelElement) The rolename of the end. When placed on a target end, provides a name for
traversing from a source instance across the association to the target instance or set of target instances. It
represents a pseudo-attribute of the source classifier; that is, it may be used in the same way as an Attribute and
must be unique with respect to Attributes and other pseudo-attributes of the source Classifier.

targetScope Specifies whether the target value is an instance or a classifier.

Possibilities are:
• instance. An instance value is part of each link. This is the default.
• classifier. A classifier itself is part of each link. Normally this would be fixed at modeling time and need

not be stored separately at run time.

visibility Specifies the visibility of the association end from the viewpoint of the classifier on the other end.

Possibilities are:
• public - Other classifiers may navigate the association and use the rolename in expressions, similar to the

use of a public attribute.
• protected - Descendants of the source classifier may navigate the association and use the rolename in

expressions, similar to the use of a protected attribute.
• private - Only the source classifier may navigate the association and use the rolename in expressions,

similar to the use of a private attribute.
• package - Classifiers in the same package (or a nested subpackage, to any level) as the association

declaration may navigate the association and use the rolename in expressions.
30 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Associations

Stereotypes

4.5.2.6 Attribute

An attribute is a named slot within a classifier that describes a range of values that instances of the classifier may hold.

In the metamodel, an Attribute is a named piece of the declared state of a Classifier, particularly the range of values that
Instances of the Classifier may hold.

Attributes

Associations

4.5.2.7 BehavioralFeature

A behavioral feature refers to a dynamic feature of a model element, such as an operation or method.

In the metamodel, a BehavioralFeature specifies a behavioral aspect of a Classifier. All different kinds of behavioral aspects of
a Classifier, such as Operation and Method, are subclasses of BehavioralFeature. BehavioralFeature is an abstract metaclass.

qualifier An optional list of qualifier Attributes for the end. If the list is empty, then the Association is not qualified.

specification Designates zero or more Classifiers that specify the Operations that may be applied to an Instance accessed by
the AssociationEnd across the Association. These determine the minimum interface that must be realized by
the actual Classifier attached to the end to support the intent of the Association. May be an Interface or another
Classifier. These classifiers do not indicate the classes of the participants in a link, merely the operations that
may be applied when traversing a link.

participant Designates the Classifier participating in the Association at the given end. A link of the Association contains a
reference to an instance of the class (including a descendant of the given class or a class that realizes a given
interface) in the given position in the link.

(unnamed composite
end)

Designates the Association that owns the AssociationEnd.

«association» Specifies a real association (default and redundant, but may be included for emphasis).

«global» Specifies that the target is a global value that is known to all elements rather than an actual association.

«local» Specifies that the relationship represents a local variable within a procedure rather than an actual association.

«parameter» Specifies that the relationship represents a procedure parameter rather than an actual association.

«self» Specifies that the relationship represents a reference to the object that owns an operation or action rather than
an actual association.

initialValue An Expression specifying the value of the attribute upon initialization. It is meant to be evaluated at the time
the object is initialized. (Note that an explicit constructor may supersede an initial value.)

associationEnd Designates the optional AssociationEnd that owns a qualifier attribute. Note that an attribute may be part of an
AssociationEnd (in which case it is a qualifier) or part of a Classifier (by inheritance from Feature, in which
case it is a feature) but not both. If the value is empty, the attribute is not a qualifier attribute.
© ISO/IEC 2005 - All rights reserved 31

ISO/IEC 19501:2005(E)
Attributes

Associations

Stereotypes

4.5.2.8 Binding

A binding is a relationship between a template (as supplier) and a model element generated from the template (as client). It
includes a list of arguments that match the template parameters. The template is a form that is cloned and modified by
substitution to yield an implicit model fragment that behaves as if it were a direct part of the model. A Binding must have one
supplier and one client; unlike a general Dependency, the supplier and client may not be sets.

In the metamodel, a Binding is a Dependency where the supplier is the template and the client is the instantiation of the
template that performs the substitution of parameters of a template. A Binding has a list of arguments that replace the
parameters of the supplier to yield the client. The client is fully specified by the binding of the supplier’s parameters and does
not add any information of its own. An element may participate as a supplier in multiple Binding relationships to different
clients. An element may participate in only one Binding relationship as a client.

Associations

4.5.2.9 Class

A class is a description of a set of objects that share the same attributes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of operations it provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a collection of Features, including Operations, Attributes and
Methods, that are common to the set of Objects. Furthermore, a Class may realize zero or more Interfaces; this means that its
full descriptor (see Section 4.5.4.4, “Inheritance,” on page 67 for the definition) must contain every Operation from every
realized Interface (it may contain additional operations as well).

A Class defines the data structure of Objects, although some Classes may be abstract; that is, no Objects can be created
directly from them. Each Object instantiated from a Class contains its own set of values corresponding to the

isQuery Specifies whether an execution of the Feature leaves the state of the system unchanged. True indicates that the
state is unchanged; false indicates that side-effects may occur.

name (Inherited from ModelElement) The name of the Feature. The entire signature of the Feature (name and
parameter list) must be unique within its containing Classifier.

parameter An ordered list of Parameters for the Operation. To call the Operation, the caller must supply a list of values
compatible with the types of the Parameters.

«create» Specifies that the designated feature creates an instance of the classifier to which the feature is attached. May
be promoted to the Classifier containing the feature.

«destroy» Specifies that the designated feature destroys an instance of the classifier to which the feature is attached. May
be promoted to the classifier containing the feature.

argument An ordered list of arguments. Each argument is a TemplateArgument element. The model element attached to
the TemplateArgument by the modelElement association replaces the corresponding supplier parameter in the
supplier definition, and the result represents the definition of the client as if it had been defined directly.
32 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
StructuralFeatures declared in the full descriptor. Objects do not contain values corresponding to BehavioralFeatures or class-
scope Attributes; all Objects of a Class share the definitions of the BehavioralFeatures from the Class, and they all have access
to the single value stored for each class-scope attribute.

Attributes

Stereotypes

Inherited Features

Class is a GeneralizableElement. The following elements are inherited by a child classifier, in addition to those specified under
its parent, Classifier.

isActive Specifies whether an Object of the Class maintains its own thread of control. If true, then an Object has its own
thread of control and runs concurrently with other active Objects. Such a class is informally called an active
class. If false, then Operations run in the address space and under the control of the active Object that controls
the caller. Such a class is informally called a passive class.

«auxiliary» Specifies a class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. The class that the auxiliary supports may be defined explicitly using a Focus class or
implicitly by a dependency relationship. Auxiliary classes are typically used together with Focus classes, and
are particularly useful for specifying the secondary business logic or control flow of components during
design. See also: «focus».

«focus» Specifies a class that defines the core logic or control flow for one or more auxiliary classes that support it.
Support classes may be defined explicitly using Auxiliary classes or implicitly by dependency relationships.
Focus classes are typically used together with one or more Auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: «auxiliary».

«implementation» Specifies the implementation of a class in some programming language (for example, C++, Smalltalk, Java) in
which an instance may not have more than one class. This is in contrast to Class, for which an instance may
have multiple classes at one time and may gain or lose classes over time, and an object (a child of instance)
may dynamically have multiple classes.

An Implementation class is said to realize a Type if it provides all of the operations defined for the Type with
the same behavior as specified for the Type’s operations. An Implementation Class may realize a number of
different Types. Note that the physical attributes and associations of the Implementation class do not have to be
the same as those of any Type it realizes and that the Implementation Class may provide methods for its
operations in terms of its physical attributes and associations. See also: «type».

«type» Specifies a domain of objects together with the operations applicable to the objects, without defining the
physical implementation of those objects. A type may not contain any methods, maintain its own thread of
control, or be nested. However, it may have attributes and associations. The associations of a Type are defined
solely for the purpose of specifying the behavior of the type's operations and do not represent the
implementation of state data.

Although an object may have at most one Implementation Class, it may conform to multiple different Types.
See also: «implementation».

isActive The child may be active when the parent is passive, but not vice versa. In most cases, they are the same.
© ISO/IEC 2005 - All rights reserved 33

ISO/IEC 19501:2005(E)
4.5.2.10 Classifier

A classifier is an element that describes behavioral and structural features; it comes in several specific forms, including class,
data type, interface, component, artifact, and others that are defined in other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such as Attributes, Methods, and Operations. It has a name,
which is unique in the Namespace enclosing the Classifier. Classifier is an abstract metaclass.

Classifier is a child of GeneralizableElement and Namespace. As a GeneralizableElement, it may inherit Features and
participation in Associations (in addition to things inherited as a ModelElement). It also inherits ownership of StateMachines,
Collaborations, etc.

As a Namespace, a Classifier may declare other Classifiers nested in its scope. Nested Classifiers may be accessed by other
Classifiers only if the nested Classifiers have adequate visibility. There are no data value or state consequences of nested
Classifiers (i.e., it is not an aggregation or composition).

Associations

Stereotypes

Tagged Values

feature An ordered list of Features, like Attribute, Operation, Method, owned by the Classifier.

association Denotes the AssociationEnd of an Association in which the Classifier participates at the given end. This is the
inverse of the participant association from AssociationEnd. A link of the association contains a reference to an
instance of the class in the given position.

powertypeRange Designates zero or more Generalizations for which the Classifier is a powertype. If the cardinality is zero, then
the Classifier is not a powertype. If the cardinality is greater than zero, then the Classifier is a powertype over
the set of Generalizations designated by the association, and the child elements of the Generalizations are the
instances of the Classifier as a powertype. A Classifier that is a powertype can be marked with the «powertype»
stereotype.

specifiedEnd Indicates an AssociationEnd for which the given Classifier specifies operations that may be applied to instances
obtained by traversing the association from the other end. (This relationship does not define the structure of the
association, merely operations that may be applied on traversing it.)

«metaclass» Specifies that the instances of the classifier are classes.

«powertype» Specifies that the classifier is a metaclass whose instances are siblings marked by the same discriminator. For
example, the metaclass TreeSpecies might be a power type for the subclasses of Tree that represent different
species, such as AppleTree, BananaTree, and CherryTree.

«process» Specifies a classifier that represents a heavy-weight flow of control.

«thread» Specifies a classifier that represents a flow of control.

«utility» Specifies a classifier that has no instances, but rather denotes a named collection of non-member attributes and
operations, all of which are class-scoped.

persistence Persistence denotes the permanence of the state of the classifier, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is not destroyed when the instance is destroyed).

semantics Semantics is the specification of the meaning of the classifier.
34 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Inherited Features

Classifier is a GeneralizableElement. The following elements are inherited by a child classifier.

Note that inheritance makes the inherited elements part of the (virtual) full descriptor of the classifier, but it does not change its
actual data structure. See the explanation for the meaning of each kind of inheritance.

Non-Inherited Features

The following elements are not inherited by a child classifier:

4.5.2.11 Comment

A comment is an annotation attached to a model element or a set of model elements. It has no semantic force but may contain
information useful to the modeler.

Attributes

associationEnd The child class inherits participation in all associations of its parent, subject to all the same properties.

constraint Constraints on the parent apply to the child.

feature Attributes of the parent are part of the full descriptor of the child and may not be declared again or
overridden.

Operations of the parent are part of the full descriptor of the child but may be overridden; a redeclaration
may change its hierarchy location (isRoot, isLeaf, isAbstract) but may not change its specification or
parameter structure. The concurrency level may be loosened (e.g., from guarded to concurrent). An
overriding operation may link to a different Method. An overriding operation can have isQuery=true when
the parent had a false value, but not vice versa (in other words, once a side-effect, always a side-effect).

Methods of the parent are part of the full descriptor of the child but may be overridden. An overriding
method can set the isQuery status, change its hierarchy structure, but may not change its parameter structure.
It may link to a different operation that overrides the operation of the parent method.

generalization
specialization

These are implicitly inherited, in the sense that they define ancestors and descendants, but not explicitly
inherited, as they are the arcs in the generalization graph. They establish the generalization structure itself as
a directed graph, into which the child classifier fits.

ownedElement The namespace of the parent is available to the child, except for private access.

isRoot
isLeaf
isAbstract

By their very nature, these are not inherited.

name Each classifier has its own unique name.

parameter Template structure is not inherited. Each classifier must declare its own template structure, if any. A non-
template can be child of a template and vice versa.

powertypeRange A powertype corresponds to a particular node in the generalization hierarchy, so it is not inherited.

body A string that is the comment.
© ISO/IEC 2005 - All rights reserved 35

ISO/IEC 19501:2005(E)
Associations

Stereotypes

4.5.2.12 Component

A component represents a modular, deployable, and replaceable part of a system that encapsulates implementation and
exposes a set of interfaces.

A component is typically specified by one or more classifiers that reside on the component. A subset of these classifiers
explicitly defines the component’s external interfaces. A component conforms to the interfaces that it exposes, where the
interfaces represent services provided by elements that reside on the component. A component may be implemented by one or
more artifacts, such as binary, executable, or script files. A component may be deployed on a node.

Components may be specified in both design models (for example, using static structure diagrams) and in implementation
models (for example, using implementation diagrams). When they are specified as part of a design model components need
not be allocated to nodes, nor do they need to have any associated implementation artifacts.

In the metamodel, a Component is a child of Classifier. It does not have its own Features, but instead acts as a container for
other Classifiers that have Features. A Component is specified by the Interfaces it exposes and the Classifiers that reside on it.
The visibility attribute of the ElementResidence association defines whether a resident element is visible outside the
Component: an external Interface of a Component has visibility value ‘public.’ A Component may be implemented by one or
more Artifacts, and may be deployed on a Node.

Associations

Inherited Features

The following elements are inherited by a child Component, in addition to those specified under Classifier.

(none)

Non-Inherited Features

annotatedElem A ModelElement or set of ModelElements described by the Comment.

«requirement» Specifies a desired feature, property, or behavior of an element as part of a system.

«responsibility» Specifies a contract or an obligation of an element in its relationship to other elements.

deploymentLocation The set of Nodes the Component is residing on.

resident Association class ElementResidence - The set of model elements that specify the component. The visibility
attribute shows the external visibility of the element outside the component: an external Interface of a
Component has visibility = ‘public’ for its ElementResidence association.

implementation The set of Artifacts that implement the Component. For a Component, these Artifacts are generally
«executable».

deploymentLocation The set of locations may differ. Often it is more restrictive on the child.

resident The set of resident elements may differ. Often it is more restrictive on the child and contains additional
elements.
36 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.2.13 Constraint

A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an associated ModelElement(s), which must be true for the model to
be well formed. This restriction can be stated in natural language, or in different kinds of languages with a well defined
semantics. Certain Constraints are predefined in the UML, others may be user defined. Note that a Constraint is an assertion,
not an executable mechanism. It indicates a restriction that must be enforced by correct design of a system.

Attributes

Associations

Stereotypes

4.5.2.14 DataType

A data type is a type whose values have no identity; that is, they are pure values. Data types include primitive built-in types
(such as integer and string) as well as definable enumeration types (such as the predefined enumeration type boolean whose
literals are false and true).

In the metamodel, a DataType defines a special kind of Classifier in which Operations are all pure functions; that is, they can
return DataValues but they cannot change DataValues, because they have no identity. For example, an “add” operation on a
number with another number as an argument yields a third number as a result; the target and argument are unchanged.

Inherited Features

DataType inherits features as specified in Classifier.

implementation The set of Artifacts that implement the child Component will usually differ.

body A BooleanExpression that must be true when evaluated for an instance of a system to be well formed.

constrainedElement A ModelElement or list of ModelElements affected by the Constraint. If the constrained element is a
Stereotype, then the constraint applies to all ModelElements that use the stereotype.

«invariant» Specifies a constraint that must be attached to a set of classifiers or relationships. It indicates that the
conditions of the constraint must hold over time (for the time period of concern in the particular containing
element) for the classifiers or relationships and their instances.

«postcondition» Specifies a constraint that must be attached to an operation, and denotes that the conditions of the constraint
must hold after the invocation of the operation.

«precondition» Specifies a constraint that must be attached to an operation, and denotes that the conditions of the constraint
must hold for the invocation of the operation.

«stateInvariant» Specifies a constraint that must be attached to a state vertex in a state machine that has a classifier for a
context. The stereotype indicates that the constraint holds for instances of the classifier when an instance is in
that state.
© ISO/IEC 2005 - All rights reserved 37

ISO/IEC 19501:2005(E)
4.5.2.15 Dependency

A term of convenience for a Relationship other than Association, Generalization, Flow, or metarelationship (such as the
relationship between a Classifier and one of its Instances).

A dependency states that the implementation or functioning of one or more elements requires the presence of one or more
other elements.

In the metamodel, a Dependency is a directed relationship from a client (or clients) to a supplier (or suppliers) stating that the
client is dependent on the supplier; that is, the client element requires the presence and knowledge of the supplier element.

The kinds of Dependency are Abstraction, Binding, Permission, and Usage. Various stereotypes of those elements are
predefined.

Associations

4.5.2.16 Element

An element is an atomic constituent of a model.

In the metamodel, an Element is the top metaclass in the metaclass hierarchy. It has two subclasses: ModelElement and
PresentationElement. Element is an abstract metaclass.

Tagged Values

4.5.2.17 ElementOwnership

Element ownership defines the visibility of a ModelElement contained in a Namespace.

In the metamodel, ElementOwnership reifies the relationship between ModelElement and Namespace denoting the ownership
of a ModelElement by a Namespace and its visibility outside the Namespace. See Section 4.5.2.27, “ModelElement,” on
page 44.

Attributes

client The element that is affected by the supplier element. In some cases (such as a Trace Abstraction) the direction
is unimportant and serves only to distinguish the two elements.

supplier Inverse of client. Designates the element that is unaffected by a change. In a two-way relationship (such as some
Refinement Abstractions) this would be the more general element. In an undirected situation, such as a Trace
Abstraction, the choice of client and supplier may be irrelevant.

documentation Documentation is a comment, description, or explanation of the element to which it is attached.

isSpecification Specifies whether the ownedElement is part of the specification for the containing namespace (in cases where
specification is distinguished from the realization). Otherwise the ownedElement is part of the realization. In
cases in which the distinction is not made, the value is false by default.
38 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.2.18 ElementResidence

Association class between Component and ModelElement that defines the set of ModelElements that specify a Component.
See Component::resident in Section 4.5.2.12, “Component,” on page 36. Shows that the component supports the element. The
visibility attribute of ElementResidence defines the visibility of a resident element outside the component: an external
Interface of a Component has visibility = ‘public’ for its ElementResidence association.

Attributes

4.5.2.19 Enumeration

In the metamodel, Enumeration defines a kind of DataType whose range is a list of predefined values, called enumeration
literals.

Enumeration literals can be copied, stored as values, and passed as arguments. They are ordered within their enumeration
datatype. An enumeration literal can be compared for an exact match or to a range within its enumeration datatype. There is no
other algebra defined on them (e.g., they cannot be added or subtracted).

The run-time instances of a Primitive datatype are Values. Each such value corresponds to exactly one EnumerationLiteral
defined as part of the Enumeration type itself.

An Enumeration may have operations, but they must be pure functions (this is the rule for all DataType elements).

Associations

visibility Specifies whether the ModelElement can be seen and referenced by other ModelElements.

Possibilities include:
• public - Any outside ModelElement can see the ModelElement.
• protected - Any descendant of the ModelElement can see the ModelElement.
• private - Only the ModelElement itself, or elements nested within it can see the ModelElement.
• package - ModelElements declared in the same package (or a nested subpackage, to any level) as the

given ModelElement can see the ModelElement.

Note that use of an element in another Package may also be subject to access or import of its Package as
described in Model Management; see Permission.

visibility Specifies whether a ModelElement that resides in a Component is visible externally. Possible values for
ElementResidence visibility are:

• public - Any resident ModelElement with public visibility is part of the Component’s external Interface
and can be used by other elements, if they have permission to access or import the Component.

• private - The ModelElement is internal to the Component and cannot be used by external elements.
• protected - The ModelElement is only visible to Descendant Components.

Note: the visibility values ‘package’ does not apply to Element Residence visibility. The Component and its
residents have ElementOwnership associations with visibility values to the Package that contains them.

literal An ordered set of EnumerationLiteral elements, each specifying a possible value of an instance of the
enumeration element.
© ISO/IEC 2005 - All rights reserved 39

ISO/IEC 19501:2005(E)
4.5.2.20 EnumerationLiteral

An EnumerationLiteral defines an element of the run-time extension of an Enumeration data type. It has no relevant
substructure, that is, it is atomic. The enumeration literals of a particular Enumeration datatype are ordered.

It has a name (inherited from ModelElement) that can be used to identify it within its enumeration datatype.

Note that an EnumerationLiteral is a ModelElement and may appear in (M1) models to define the structure of an Enumeration.
In a run-time (M0) system, enumeration literals are DataValues in many-to-one correspondence to EnumerationLiterals that
they represent. (This is a subtle but necessary distinction between M1 and M0 entities.)

The run-time values corresponding to enumeration literals can be compared for equality and for relative ordering or inclusion
in a range of enumeration literals.

Associations

4.5.2.21 Feature

A feature is a property, like operation or attribute, which is encapsulated within a Classifier.

In the metamodel, a Feature declares a behavioral or structural characteristic of an Instance of a Classifier or of the Classifier
itself. Feature is an abstract metaclass.

Attributes

enumeration The enumeration classifier of which this enumeration literal is an instance.

name (Inherited from ModelElement) The name used to identify the Feature within the Classifier or Instance. It must
be unique across inheritance of names from ancestors including names of outgoing AssociationEnd. See more
specific rules for the exact details.

Attributes, discriminators, and opposite association ends must have unique names in the set of inherited names.
There may be multiple declarations of the same operation. Multiple operations may have the same name but
different signatures; see the rules for precise details.

ownerScope Specifies whether Feature appears in each Instance of the Classifier or whether there is just a single instance of
the Feature for the entire Classifier.

Possibilities are:
• instance - Each Instance of the Classifier holds its own value for the Feature.
• classifier - There is just one value of the Feature for the entire Classifier.

visibility Specifies whether the Feature can be used by other Classifiers. Visibilities of nested Classifiers combine so that
the most restrictive visibility is the result.

Possibilities include:
• public - Any outside Classifier with visibility to the Classifier can use the Feature.
• protected - Any descendent of the Classifier can use the Feature.
• private - Only the Classifier itself can use the Feature.
• package - Any Classifier declared in the same package (or a nested subpackage, to any level) as the

owner of the Feature can use the Feature.
40 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Associations

4.5.2.22 Flow

A flow is a relationship between two versions of an object or between an object and a copy of it.

In the metamodel, a Flow is a child of Relationship. A Flow is a directed relationship from a source or sources to a target or
targets.

Predefined stereotypes of Flow are «become» and «copy». Become relates one version of an object to another with a different
value, state, or location. Copy relates an object to another object that starts as a copy of it.

Stereotypes

4.5.2.23 GeneralizableElement

A generalizable element is a model element that may participate in a generalization relationship.

In the metamodel, a GeneralizableElement can be a generalization of other GeneralizableElements; that is, all Features defined
in and all ModelElements contained in the ancestors are also present in the GeneralizableElement. GeneralizableElement is an
abstract metaclass.

Attributes

owner The Classifier declaring the Feature. Note that an Attribute may be owned by a Classifier (in which case it is a
feature) or an AssociationEnd (in which case it is a qualifier) but not both.

«become» Specifies a Flow relationship, source and target of which represent the same instance at different points in time,
but each with potentially different values, state instance, and roles. A Become flow relationship from A to B
means that instance A becomes B with possibly new values, state instance, and roles at a different moment in
time/space.

«copy» Specifies a Flow relationship, the source and target of which are different instances, but each with the same
values, state instance, and roles (but a distinct identity). A Copy flow relationship from A to B means that B is
an exact copy of A. Future changes in A are not necessarily reflected in B.

isAbstract Specifies whether the GeneralizableElement may not have a direct instance. True indicates that an instance of
the GeneralizableElement must be an instance of a child of the GeneralizableElement. False indicates that there
may be an instance of the GeneralizableElement that is not an instance of a child. An abstract
GeneralizableElement is not instantiable since it does not contain all necessary information. That is, it may not
have a direct instance. It may have an indirect instance, and a model at a higher level of abstraction may
include instances of an abstract type, with the understanding that in a fully expanded concrete snapshot, such
instances would have concrete types that are descendants of the abstract types.

isLeaf Specifies whether the GeneralizableElement is a GeneralizableElement with no descendants. True indicates
that it may not have descendants, false indicates that it may have descendants (whether or not it actually has
any descendents at the moment).

isRoot Specifies whether the GeneralizableElement is a root GeneralizableElement with no ancestors. True indicates
that it may not have ancestors, false indicates that it may have ancestors (whether or not it actually has any
ancestors at the moment).
© ISO/IEC 2005 - All rights reserved 41

ISO/IEC 19501:2005(E)
Associations

Inherited Features

The following elements are inherited by a child GenerizableElement.

Non-Inherited Features

4.5.2.24 Generalization

A generalization is a taxonomic relationship between a more general element and a more specific element. The more specific
element is fully consistent with the more general element (it has all of its properties, members, and relationships) and may
contain additional information.

In the metamodel, a Generalization is a directed inheritance relationship, uniting a GeneralizableElement with a more general
GeneralizableElement in a hierarchy. Generalization is a subtyping relationship; that is, an Instance of the more general
GeneralizableElement may be substituted by an Instance of the more specific GeneralizableElement. See Inheritance for the
consequences of Generalization relationships.

Attributes

Associations

generalization Designates a Generalization whose parent GeneralizableElement is the immediate ancestor of the current
GeneralizableElement.

specialization Designates a Generalization whose child GeneralizableElement is the immediate descendant of the current
GeneralizableElement.

constraint All constraints on the parent apply to the child.

isRoot
isLeaf
isAbstract

Not inheritable by their very nature, but they define the generalization structure. IsRoot may be true only if
there are no parents. IsLeaf may be true only if there are no children.

name Each model element has a unique name.

discriminator Designates the partition to which the Generalization link belongs. All of the Generalization links that share a
given parent GeneralizableElement are divided into disjoint sets (that is, partitions) by their discriminator
names. Each partition (a set of links sharing a discriminator name) represents an orthogonal dimension of
specialization of the parent GeneralizableElement. The discriminator need not be unique. The empty string is
also considered as a partition name; therefore all Generalization links have a discriminator. If the set of
Generalization links that have the same parent all have the same name, then the children in the Generalization
links are GeneralizableElements that specialize the parent, and an instance of any of them is a legal instance of
the parent. Otherwise an indirect instance of the parent must be a (direct or indirect) instance of at least one
element from each of the partitions.

child Designates a GeneralizableElement that is the specialized version of the parent GeneralizableElement.

parent Designates a GeneralizableElement that is the generalized version of the child GeneralizableElement.
42 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Stereotypes

Standard Constraints

4.5.2.25 Interface

An interface is a named set of operations that characterize the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the
Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers
may realize the same Interface.

Interfaces are GeneralizableElements.

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the
Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that
is navigable from the Classifier but not from the Interface.

Inherited Features

Interface inherits features as specified in Classifier.

powertype Designates a Classifier that serves as a powertype for the child element along the dimension of generalization
expressed by the Generalization. The child element is therefore an instance of the powertype element.

«implementation» Specifies that the child inherits the implementation of the parent (its attributes, operations, and methods) but
does not make public the supplier’s interfaces nor guarantee to support them, thereby violating substitutability.
This is private inheritance and is usually used only for programming implementation purposes.

complete Specifies a constraint applied to a set of generalizations with the same discriminator and the same parent,
indicating that any instance of the parent must be an instance of at least one child within the set of
generalizations. If a parent has a single discriminator, the set of its child generalizations being complete
implies that the parent is abstract. The connotation of declaring a set of generalizations complete is that all of
the children with the given discriminator have been declared and that additional ones are not expected (in
other words, the set of generalizations is closed), and designs may assume with some confidence that the set
of children is fixed. If a new child is nevertheless added in the future, existing models may be adversely
affected and may require modification.

disjoint Specifies a constraint applied to a set of generalizations, indicating that instance of the parent may be an
instance of no more than one of the given children within the set of generalizations. This is the default
semantics of generalization.

incomplete Specifies a constraint applied to a set of generalizations with the same discriminator, indicating that an
instance of the parent need not be an instance of a child within the set (but there is no guarantee that such an
instance will actually exist). Being incomplete implies that the parent is concrete. The connotation of
declaring a set of generalizations incomplete is that all of the children with the given discriminator have not
necessarily been declared and that additional ones might be added; therefore, users should not count on the set
of children being fixed.

overlapping Specifies a constraint applied to a set of generalizations, indicating that an instance of one child may be
simultaneously an instance of another child in the set (but there is no guarantee that such an instance will
actually exist).
© ISO/IEC 2005 - All rights reserved 43

ISO/IEC 19501:2005(E)
4.5.2.26 Method

A method is the implementation of an operation. It specifies the algorithm or procedure that effects the results of an operation.

In the metamodel, a Method is a declaration of a named piece of behavior in a Classifier and realizes one (directly) or a set
(indirectly) of Operations of the Classifier.

There may be at most one method for a particular classifier (as owner of the method) and operation (as specification of the
method) pairing.

Attributes

Associations

4.5.2.27 ModelElement

A model element is an element that is an abstraction drawn from the system being modeled. Contrast with view element,
which is an element whose purpose is to provide a presentation of information for human comprehension.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all modeling metaclasses in the UML (even
though it is not displayed explicitly as such on diagrams for ElementOwnership, ElementResidence, ElementImport,
TemplateParameter, TemplateArgument, and Argument). All other modeling metaclasses are either direct or indirect
subclasses of ModelElement.

Each ModelElement can be regarded as a template. A template has a set of templateParameters that denotes which of the parts
of a ModelElement are the template parameters. A ModelElement is a template when there is at least one template parameter.
If it is not a template, a ModelElement cannot have template parameters. However, such embedded parameters are not usually
complete and need not satisfy well-formedness rules. It is the arguments supplied when the template is instantiated that must
be well formed.

Partially instantiated templates are allowed. This is the case when there are arguments provided for some, but not all
templateParameters. A partially instantiated template is still a template, since it still has parameters.

Attributes

Associations

body The implementation of the Method as a ProcedureExpression.

specification Designates an Operation that the Method implements. The Operation must be owned by the Classifier that
owns the Method or be inherited by it. The signatures of the Operation and Method must match.

name An identifier for the ModelElement within its containing Namespace.

asArgument Indicates zero or more TemplateArgument for which the model element is an argument in a template
binding.

clientDependency Inverse of client. Designates a set of Dependency in which the ModelElement is a client.

constraint A set of Constraints affecting the element.

implementationLocation The component that an implemented model element resides in.
44 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Note that if a ModelElement has at least one templateParameter, then it is a template; otherwise, it is an ordinary element.

Tagged Values

Inherited Features

ModelElement is not a GeneralizableElement but some of its descendants are. The following elements are inherited by
children of elements that are GeneralizableElements.

Non-Inherited Features

namespace Designates the Namespace that contains the ModelElement. Every ModelElement except a root
element must belong to exactly one Namespace or else be a composite part of another ModelElement
(which is a kind of virtual namespace). The pathname of Namespace or ModelElement names
starting from the root package provides a unique designation for every ModelElement. The
association attribute visibility specifies the visibility of the element outside its namespace (see
Section 4.5.2.17, “ElementOwnership,” on page 38).

presentation A set of PresentationElements that present a view of the ModelElement.

supplierDependency Inverse of supplier. Designates a set of Dependency in which the ModelElement is a supplier.

templateParameter (association class TemplateParameter) A composite aggregation ordered list of parameters. Each
parameter is a dummy ModelElement designated as a placeholder for a real ModelElement to be
substituted during a binding of the template (see Section 4.5.2.8, “Binding,” on page 32). The real
model element must be of the same kind (or a descendant kind) as the dummy ModelElement. The
properties of the dummy ModelElement are ignored, except the name of the dummy element is used
as the name of the template parameter. The association class TemplateParameter may be associated
with a default ModelElement of the same kind as the dummy ModelElement. In the case of a
Binding that does not supply an argument corresponding to the parameter, the value of the default
ModelElement is used. If a Binding lacks an argument and there is no default ModelElement, the
construct is invalid.
Note that the template parameter element lacks structure. For example, a parameter that is a Class
lacks Features; they are found in the actual argument.

derived A true value indicates that the model element can be completely derived from other model
elements and is therefore logically redundant. In an analysis model, the element may be included
to define a useful name or concept. In a design model, the usual intent is that the element should
exist in the implementation to avoid the need for recomputation.

constraint The child is subject to all constraints of the parent.

presentation The child is, by default, presented the same as the parent, but the presentation may be overridden.

stereotype If a model element is classified by a stereotype, then its children are also classified by the stereotype.
They may use the tags defined on the stereotype and they are subject to constraints imposed by the
stereotype.

taggedValue If a tag is defined to apply to a model element (for example, because it is classified by a stereotype
defining the tag), then the tag applies to children of the model element.

clientDependency
supplierDependency

A general inheritance rule is not possible
© ISO/IEC 2005 - All rights reserved 45

ISO/IEC 19501:2005(E)
4.5.2.28 Namespace

A namespace is a part of a model that contains a set of ModelElements each of whose names designates a unique element
within the namespace.

In the metamodel, a Namespace is a ModelElement that can own other ModelElements, like Associations and Classifiers. The
name of each owned ModelElement must be unique within the Namespace. Moreover, each contained ModelElement is
owned by at most one Namespace. The concrete subclasses of Namespace have additional constraints on which kind of
elements may be contained. Namespace is an abstract metaclass.

Note that explicit parts of a model element, such as the features of a Classifier, are not modeled as owned elements in a
namespace. A namespace is used for unstructured contents such as the contents of a package or a class declared inside the
scope of another class.

Associations

4.5.2.29 Node

A node is a run-time physical object that represents a computational resource, generally having at least a memory and often
processing capability as well, and upon which components may be deployed.

In the metamodel, a Node is a subclass of Classifier. It is associated with a set of Components that are deployed on the Node.

Associations

Inherited Features

The following elements are inherited by a child Node, in addition to those specified under Classifier.

(none)

Non-Inherited Features

4.5.2.30 Operation

An operation is a service that can be requested from an object to effect behavior. An operation has a signature, which describes
the actual parameters that are possible (including possible return values).

deploymentLocation The set of locations may differ. Often it is more restrictive on the child.

implementationLocation The child may be implemented differently from the parent.

name Each model element has its own name. Names are not inherited.

namespace The child and the parent may be in different namespaces.

templateParameter A parent and child may have different template structure.

ownedElement association class ElementOwnership - A set of ModelElements owned by the Namespace. Its visibility
attribute states whether the element is visible outside the namespace.

deployedComponent The set of Components deployed on the Node.

resident The set of resident elements may differ. Often it is more restrictive on the child.
46 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In the metamodel, an Operation is a BehavioralFeature that can be applied to the Instances of the Classifier that contains the
Operation.

Attributes

Tagged Values

4.5.2.31 Parameter

A parameter is an unbound variable that can be changed, passed, or returned. A parameter may include a name, type, and
direction of communication. Parameters are used in the specification of operations, messages and events, templates, etc.

In the metamodel, a Parameter is a declaration of an argument to be passed to, or returned from, an Operation, a Signal, etc.

Attributes

concurrency Specifies the semantics of concurrent calls to the same passive instance; that is, an Instance originating from a
Classifier with isActive=false. Active instances control access to their own Operations so this property is
usually (although not required in UML) set to sequential. Possibilities include:

• sequential - Callers must coordinate so that only one call to an Instance (on any sequential Operation)
may be outstanding at once. If simultaneous calls occur, then the semantics and integrity of the system
cannot be guaranteed.

• guarded - Multiple calls from concurrent threads may occur simultaneously to one Instance (on any
guarded Operation), but only one is allowed to commence. The others are blocked until the performance
of the first Operation is complete. It is the responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocks. Guarded Operations must perform correctly (or block
themselves) in the case of a simultaneous sequential Operation or guarded semantics cannot be claimed.

• concurrent - Multiple calls from concurrent threads may occur simultaneously to one Instance (on any
concurrent Operation). All of them may proceed concurrently with correct semantics. Concurrent
Operations must perform correctly in the case of a simultaneous sequential or guarded Operation or
concurrent semantics cannot be claimed.

isAbstract If true, then the operation does not have an implementation, and one must be supplied by a descendant. If
false, the operation must have an implementation in the class or inherited from an ancestor.

isLeaf If true, then the implementation of the operation may not be overriden by a descendant class. If false, then the
implementation of the operation may be overridden by a descendant class (but it need not be overridden).

isRoot If true, then the class must not inherit a declaration of the same operation. If false, then the class may (but
need not) inherit a declaration of the same operation. (But the declaration must match in any case; a class may
not modify an inherited operation declaration.)

semantics Semantics is the specification of the meaning of the operation.

defaultValue An Expression whose evaluation yields a value to be used when no argument is supplied for the Parameter.
© ISO/IEC 2005 - All rights reserved 47

ISO/IEC 19501:2005(E)
Associations

4.5.2.32 Permission

Permission is a kind of dependency. It grants a model element permission to access elements in another namespace.

In the metamodel, Permission in a Dependency between a client ModelElement and a supplier ModelElement. The client
receives permission to reference the supplier’s contents. The supplier must be a Namespace.

The predefined stereotypes of Permission are access, import, and friend.

In the case of the access and import stereotypes, the client is granted permission to reference elements in the supplier
namespace with public visibility. In the case of the import stereotype, the public names in the supplier namespace are added to
the client namespace. An element may also access any protected contents of an ancestor namespace. An element may also
access any contents (public, protected, private, or package) of its own namespace or a containing namespace.

In the case of the friend stereotype, the client is granted permission to reference elements in the supplier namespace, regardless
of visibility.

Stereotypes

4.5.2.33 PresentationElement

A presentation element is a textual or graphical presentation of one or more model elements.

In the metamodel, a PresentationElement is an Element that presents a set of ModelElements to a reader. It is the base for all
metaclasses used for presentation. All other metaclasses with this purpose are either direct or indirect subclasses of
PresentationElement. PresentationElement is an abstract metaclass. The subclasses of this class are proper to a graphic editor
tool and are not specified here. It is a stub for their future definition.

kind Specifies what kind of a Parameter is required. Possibilities are:

• in - An input Parameter (may not be modified).
• out - An output Parameter (may be modified to communicate information to the caller).
• inout - An input Parameter that may be modified.
• return -A return value of a call.

name (Inherited from ModelElement) The name of the Parameter, which must be unique within its containing
Parameter list.

type Designates a Classifier to which an argument value must conform.

«access» Access is a stereotyped permission dependency between two namespaces, denoting that the public contents of
the target namespace are accessible to the namespace of the source package.

«friend» Friend is a stereotyped permission dependency whose source is a model element, such as an operation, class,
or package, and whose target is a model element in a different package, such as an operation, class or package.
A friend relationship grants the source access to the target regardless of the declared visibility. It extends the
visibility of the supplier so that the client can see into the supplier.

«import» Import is a stereotyped permission dependency between two namespaces, denoting that the public contents of
the target package are added to the namespace of the source package.
48 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.2.34 Primitive

A Primitive defines a predefined DataType, without any relevant UML substructure; that is, it has no UML parts. A primitive
datatype may have an algebra and operations defined outside of UML (for example, mathematically). Primitive datatypes used
in UML itself include Integer, UnlimitedInteger, and String.

The run-time instances of a Primitive datatype are DataValues. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

4.5.2.35 ProgrammingLanguageDataType

A data type is a type whose values have no identity (i.e., they are pure values). A programming language data type is a data
type specified according to the semantics of a particular programming language, using constructs available in that language.
There are a wide variety of programming languages and many of them include type constructs not included as UML
classifiers. In some cases, it is important to represent those constructs such that their exact form in the programming language
is available. The ProgrammingLanguageData type captures such programming language types in a language-dependent
fashion. They are represented by the name of the language and a string characterizing them, subject to interpretation by the
particular language. Because they are dependent on particular languages, they are not portable among languages (except by
agreement among the languages) and they do not map into other UML classifiers. Their semantics is therefore opaque within
UML except by special interpretation by a profile intended for the particular language.

Note that many or most programming language types can be directly represented using other UML classifiers, and such
representation makes available deeper semantic analysis.

A ProgrammingLanguageDataType may omit its name. Two ProgrammingLanguageDataType elements without names are not
considered equivalent.

Attributes

Inherited Features

ProgrammingLanguageDataType is meant to define language-dependent constructs for which inheritance properties are
undefined in UML.

4.5.2.36 Relationship

A relationship is a connection among model elements.

In the metamodel, Relationship is a term of convenience without any specific semantics. It is abstract.

Children of Relationship are Association, Dependency, Flow, and Generalization.

4.5.2.37 StructuralFeature

A structural feature refers to a static feature of a model element, such as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of an Instance of a Classifier, such as an Attribute. For
example, it specifies the multiplicity and changeability of the StructuralFeature. StructuralFeature is an abstract metaclass.

expression An expression for the ProgrammingLanguageDataType expressed in its particular programming language.
© ISO/IEC 2005 - All rights reserved 49

ISO/IEC 19501:2005(E)
Attributes

Associations

Tagged Values

4.5.2.38 TemplateArgument

Reifies the relationship between a Binding and one of its arguments (a ModelElement).

Associations

changeability Whether the value may be modified after the object is created.

Possibilities are:
• changeable - No restrictions on modification.
• frozen - The value may not be altered after the object is instantiated and its values initialized. No

additional values may be added to a set.
• addOnly - Meaningful only if the multiplicity is not fixed to a single value. Additional values may be

added to the set of values, but once created a value may not be removed or altered.

multiplicity The possible number of data values for the feature that may be held by an instance. The cardinality of the set
of values is an implicit part of the feature. In the common case in which the multiplicity is 1..1, then the
feature is a scalar; that is, it holds exactly one value.

ordering Specifies whether the set of instances is ordered. The ordering must be determined and maintained by
Operations that add values to the feature. This property is only relevant if the multiplicity is greater than one.

Possibilities are:
• unordered - The instances form a set with no inherent ordering.
• ordered - A set of ordered instances can be scanned in order.
• Other possibilities (such as sorted) may be defined later by declaring additional keywords. As with user-

defined stereotypes, this would be a private extension supported by particular editing tools.

targetScope Specifies whether the targets are ordinary Instances or are Classifiers.

Possibilities are:
• instance - Each value contains a reference to an Instance of the target Classifier. This is the setting for a

normal Attribute.
• classifier - Each value contains a reference to the target Classifier itself. This represents a way to store

meta-information.

type Designates the classifier whose instances are values of the feature. Must be a Class, Interface, or DataType.
The actual type may be a descendant of the declared type or (for an Interface) a Class that realizes the declared
type.

persistence Persistence denotes the permanence of the state of the feature, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is not destroyed when the instance is destroyed).

binding The Binding that owns the template argument.

modelElement The actual argument for the subject Binding.
50 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.2.39 TemplateParameter

Defines the relationship between a template (a ModelElement) and its parameter (a ModelElement). A ModelElement with at
least one templateParameter association is a template (by definition).

In the metamodel, TemplateParameter reifies the relationship between a ModelElement that is a template and a ModelElement
that is a dummy placeholder for a template argument. See association templateParameter in Section 4.5.2.27,
“ModelElement,” on page 44 for details.

Associations

4.5.2.40 Usage

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. The relationship is not a mere historical artifact, but an ongoing need; therefore, two elements related by usage must
be in the same model.

In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier. How the client uses the
supplier, such as a class calling an operation of another class, a method having an argument of another class, and a method
from a class instantiating another class, is defined in the description of the particular Usage stereotype.

Various stereotypes of Usage are predefined, but the set is open-ended and may be added to.

Stereotypes

4.5.3 Well-Formedness Rules

The following well-formedness rules apply to the Core package.

4.5.3.1 Association

[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)

defaultElement An optional default value ModelElement. In case of a Binding of the template ModelElement in the reified
TemplateParameter class association, the defaultElement is used as the argument of the bound element if no
argument is supplied for the corresponding template parameter. If no argument is supplied and there is no
default value, the model is ill formed.

«call» Call is a stereotyped usage dependency whose source is an operation and whose target is an operation. The
relationship may also be subsumed to the class containing an operation, with the meaning that there exists an
operation in the class to which the dependency applies. A call dependency specifies that the source operation
or an operation in the source class invokes the target operation or an operation in the target class. A call
dependency may connect a source operation to any target operation that is within scope including, but not
limited to, operations of the enclosing classifier and operations of other visible classifiers.

«create» Create is a stereotyped usage dependency denoting that the client classifier creates instances of the supplier
classifier.

«instantiate» A stereotyped usage dependency among classifiers indicating that operations on the client create instances of
the supplier.

«send» Send is a stereotyped usage dependency whose source is an operation and whose target is a signal, specifying
that the source sends the target signal.
© ISO/IEC 2005 - All rights reserved 51

ISO/IEC 19501:2005(E)
[2] At most one AssociationEnd may be an aggregation or composition.

self.allConnections->select(aggregation <#none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd
may be an aggregation or composition.

self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #none)

[4] The connected Classifiers of the AssociationEnds should be included in the Namespace of the Association, or be
Classifiers with public visibility in other Namespaces to which the Namespace of the Association has “access”
Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes (r.participant)) or

self.allConnections->forAll(r | self.namespace.allContents->excludes (r.participant)
implies

self.namespace.clientDependency->exists (d |

d.oclIsTypeOf(Permission) and

d.stereotype.name = 'access' and

d.supplier.oclAsType(Namespace).ownedElement->select (e |

e.elementOwnership.visibility =
#public)->includes (r.participant) or

d.supplier.oclAsType(GeneralizableElement).

allParents.oclAsType(Namespace).ownedElement->select (e |

e. elementOwnership.visibility =

#public)->includes (r.participant) or

d.supplier.oclAsType(Package).allImportedElements->select (e |

e. elementImport.visibility =

#public) ->includes (r.participant)))

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

allConnections : Set(AssociationEnd);

allConnections = self.connection

4.5.3.2 AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |

self.allFeatures->forAll(f |

f.oclIsKindOf(StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll(ar | ar.participant <> self)
52 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the AssociationClass, including all
connections defined by its parent (transitive closure).

allConnections : Set(AssociationEnd);

allConnections = self.connection->union(self.parent->select

(s | s.oclIsKindOf(Association))->collect (a : Association |

a.allConnections))->asSet

4.5.3.3 AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the association is navigable away from
that end.

(self.participant.oclIsKindOf (Interface) or
self.participant.oclIsKingOf (DataType)) implies

self.association.connection->select
(ae | ae <> self)->forAll(ae | ae.isNavigable = #false)

 [2] An Instance may not belong by composition to more than one composite Instance.

self.aggregation = #composite implies self.multiplicity.upperbound = 1

Additional operations

[1] The operation upperbound returns the maximum upperbound value across all potential ranges of a multiplicity.

upperbound() : UnlimitedInteger;

upperbound =
self.range->exists(r : MultiplicityRange | r.upper = result) and
self.range->forall(r : MultiplicityRange | r.upper <= result)

4.5.3.4 Attribute

No extra well-formedness rules.

4.5.3.5 BehavioralFeature

[1] All Parameters should have a unique name.

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |

self.owner.namespace.allContents->includes (p.type))

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;

hasSameSignature (b) =

(self.name = b.name) and
© ISO/IEC 2005 - All rights reserved 53

ISO/IEC 19501:2005(E)
(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type and

b.parameter->at(index).kind =

self.parameter->at(index).kind

)

[2] The operation matchesSignature checks if the argument has a signature that would clash with the signature of the
instance itself (and therefore must be unique). Mismatches in kind or any differences in return parameters do not
cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;

matchesSignature (b) =

(self.name = b.name) and

(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type or

(b.parameter->at(index).kind = return and

self.parameter->at(index).kind = return)

)

4.5.3.6 Binding

[1] The client ModelElement must conform to the type of the supplier ModelElement in a Binding.

self.client.oclIsKindOf(self.supplier)

[2] Each argument ModelElement of the supplier must have the same type (or a descendant of the type) of the
corresponding supplier parameter ModelElement in a Binding.

let range : Set(Integer) = [1..self.arguments->size()] in
range->forAll(index |
arguments->at(index).oclIsKindOf(

supplier.templateParameter->at(index).oclType

[3] The number of arguments must equal the number of parameters.

self.arguments->size() = self.supplier.templateParameter->size()

[4] A Binding has one client and one supplier.

(self.client->size = 1) and (self.supplier->size = 1)

[5] A ModelElement may participate in at most one Binding as a client.

Binding.allInstances->forAll

 [b1, b2 | (b1 <> b2) implies (b1.client <> b2.client)]
54 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.3.7 Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |

self.allMethods->exists (m | m.specification->includes(op)))

[2] A Class can only contain Classes, Associations, Generalizations, UseCases, Constraints, Dependencies,
Collaborations, DataTypes, and Interfaces as a Namespace.

self.allContents->forAll->(c |

c.oclIsKindOf(Class) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface)

4.5.3.8 Classifier

[1] No BehavioralFeature of the same kind may match the same signature in a Classifier.

self.feature->forAll(f, g |

(

(

(f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or

(f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or

(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))

) and

f.oclAsType(BehavioralFeature).matchesSignature(g)

)

implies f = g)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p, q |

p.name = q.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.allOppositeAssociationEnds->forAll (p, q | p.name = q.name implies p = q)

[4] The name of an Attribute may not be the same as the name of an opposite AssociationEnd or a ModelElement
contained in the Classifier.
© ISO/IEC 2005 - All rights reserved 55

ISO/IEC 19501:2005(E)
self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |

not self.allOppositeAssociationEnds->union (self.allContents)->collect (q |

q.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an Attribute or a ModelElement
contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |

not self.allAttributes->union (self.allContents)->collect (q |

q.name)->includes (o.name))

[6] For each Operation in an specification realized by the Classifier, the Classifier must have a matching Operation.

self.specification.allOperations->forAll (interOp |

self.allOperations->exists(op | op.hasMatchingSignature (interOp)))

[7] All of the generalizations in the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | g1.discriminator = g2.discriminator)

[8] Discriminator names must be distinct from attribute names and opposite AssociationEnd names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name))->isEmpty

Additional operations

[1] The operation allFeatures results in a Set containing all Features of the Classifier itself and all its inherited Features.

allFeatures : Set(Feature);

allFeatures = self.feature->union(

self.parent.oclAsType(Classifier).allFeatures)

[2] The operation allOperations results in a Set containing all Operations of the Classifier itself and all its inherited
Operations.

allOperations : Set(Operation);

allOperations = self.allFeatures->select(f | f.oclIsKindOf(Operation))

[3] The operation allMethods results in a Set containing all Methods of the Classifier itself and all its inherited Methods.

allMethods : set(Method);

allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

[4] The operation allAttributes results in a Set containing all Attributes of the Classifier itself and all its inherited
Attributes.

allAttributes : set(Attribute);

allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

[5] The operation associations results in a Set containing all Associations of the Classifier itself.

associations : set(Association);

associations = self.association.association->asSet
56 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
[6] The operation allAssociations results in a Set containing all Associations of the Classifier itself and all its inherited
Associations.

allAssociations : set(Association);

allAssociations = self.associations->union (

self.parent.oclAsType(Classifier).allAssociations)

[7] The operation oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

oppositeAssociationEnds =

self.associations->select (a | a.connection->select (ae |

ae.participant = self).size = 1)->collect (a |

a.connection->

select (ae | ae.participant <> self))->union (

self.associations->select (a | a.connection->select (ae |

ae.participant = self).size > 1)->collect (a |

a.connection))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds, including the inherited ones, that
are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd);

allOppositeAssociationEnds = self.oppositeAssociationEnds->union (

 self.parent.allOppositeAssociationEnds)

[9] The operation specification yields the set of Classifiers that the current Classifier realizes.

specification: Set(Classifier)

specification = self.clientDependency->
select(d |

d.oclIsKindOf(Abstraction)
and d.stereotype.name = "realization"
and d.supplier.oclIsKindOf(Classifier))

.supplier.oclAsType(Classifier)

[10] The operation allContents returns a Set containing all ModelElements contained in the Classifier together with the
contents inherited from its parents.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators results in a Set containing all Discriminators of the Generalizations from which the
Classifier is descended itself and all its inherited Features.

allDiscriminators : Set(Name);
© ISO/IEC 2005 - All rights reserved 57

ISO/IEC 19501:2005(E)
allDiscriminators = self.generalization.discriminator->union(

 self.parent.oclAsType(Classifier).allDiscriminators)

4.5.3.9 Comment

No extra well-formedness rules.

4.5.3.10 Component

[1] A Component may only contain other Components in its namespace.

self.allContents-forAll(c | c.oclIsKindOf(Component))

[2] A Component does not have any Features.

self.feature->isEmpty

[3] A Component may only have as residents DataTypes, Interfaces, Classes, Associations, Dependencies, Constraints,
Signals, DataValues, and Objects.

self.allResidentElements->forAll(re |

re.oclIsKindOf(DataType) or

re.oclIsKindOf(Interface) or

re.oclIsKindOf(Class) or

re.oclIsKindOf(Association) or

re.oclIsKindOf(Dependency) or

re.oclIsKindOf(Constraint) or

re.oclIsKindOf(Signal) or

re.oclIsKindOf(DataValue) or

re.oclIsKindOf(Object))

Additional operations

[1] The operation allResidentElements results in a Set containing all ModelElements resident in a Component or one of
its ancestors.

allResidentElements : set(ModelElement)

allResidentElements = self.resident->union(

self.parent.oclAsType(Component).allResidentElements->select(re |

re.elementResidence.visibility = #public or

re.elementResidence.visibility = #protected))

4.5.3.11 Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

4.5.3.12 DataType

[1] A DataType can only contain Operations, which all must be queries.
58 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) and f.oclAsType(Operation).isQuery)

[2] A DataType cannot contain any other ModelElements.

self.allContents->isEmpty

4.5.3.13 Dependency

No extra well-formedness rules.

4.5.3.14 Element

No extra well-formedness rules.

4.5.3.15 ElementOwnership

No additional well-formedness rules.

4.5.3.16 ElementResidence

No additional well-formedness rules.

4.5.3.17 Enumeration

No additional well-formedness rules.

4.5.3.18 EnumerationLiteral

No additional well-formedness rules.

4.5.3.19 Feature

No extra well-formedness rules.

4.5.3.20 GeneralizableElement

[1] A root cannot have any Generalizations.

self.isRoot implies self.generalization->isEmpty

[2] No GeneralizableElement can have a parent Generalization to an element that is a leaf.

self.parent->forAll(s | not s.isLeaf)

[3] Circular inheritance is not allowed.

not self.allParents->includes(self)

[4] The parent must be included in the Namespace of the GeneralizableElement.

self.generalization->forAll(g |

self.namespace.allContents->includes(g.parent))

[5] A GeneralizableElement may only be a child of GeneralizableElement of the same kind.

self.generalization.parent->forAll(p | self.oclIsKindOf(p))
© ISO/IEC 2005 - All rights reserved 59

ISO/IEC 19501:2005(E)
Additional Operations

[1] The operation parent returns a Set containing all direct parents.

parent : Set(GeneralizableElement);

parent = self.generalization.parent

[2] The operation allParents returns a Set containing all the Generalizable Elements inherited by this
GeneralizableElement (the transitive closure), excluding the GeneralizableElement itself.

allParents : Set(GeneralizableElement);

allParents = self.parent->union(self.parent.allParents)

4.5.3.21 Generalization

No extra well-formedness rules.

4.5.3.22 ImplementationClass (stereotype of Class)

[1] All direct instances of an implementation class must not have any other Classifiers that are implementation classes.

self.instance.forall(i | i.classifier.forall(c |

c.stereotype.name = "implementationClass" implies c = self))

[2] A parent of an implementation class must be an implementation class.

self.parent->forAll(stereotype.name="implementationClass")

4.5.3.23 Interface

[1] An Interface can only contain Operations.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) or f.oclIsKindOf(Reception))

[2] An Interface cannot contain any ModelElements.

self.allContents->isEmpty

[3] All Features defined in an Interface are public.

self.allFeatures->forAll (f | f.visibility = #public)

4.5.3.24 Method

[1] If the realized Operation is a query, then so is the Method.

self.specification->isQuery implies self.isQuery

[2] The signature of the Method should be the same as the signature of the realized Operation.

self.hasSameSignature (self. specification)

[3] The visibility of the Method should be the same as for the realized Operation.

self.visibility = self.specification.visibility

[4] The realized Operation must be a feature (possibly inherited) of the same Classifier as the Method.

self.owner.allOperations->includes(self.specification)
60 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
[5] If the realized Operation has been overridden one or more times in the ancestors of the owner of the Method, then the
Method must realize the latest overriding (that is, all other Operations with the same signature must be owned by
ancestors of the owner of the realized Operation).

self.specification.owner.allOperations->includesAll(
(self.owner.allOperations->select(op |
self.hasSameSignature(op)))

[6] There may be at most one method for a given classifier (as owner of the method) and operation (as specification of
the method) pair.

self.owner.allMethods->select(operation = self.operation)->size = 1

4.5.3.25 ModelElement

That part of the model owned by a template is not subject to all well-formedness rules. A template is not directly usable in a
well formed model. The results of binding a template are subject to well-formedness rules.

(not expressed in OCL)

Additional operations

[1] The operation supplier results in a Set containing all direct suppliers of the ModelElement.

supplier : Set(ModelElement);

supplier = self.clientDependency.supplier

[2] The operation allSuppliers results in a Set containing all the ModelElements that are suppliers of this ModelElement,
including the suppliers of these ModelElements. This is the transitive closure.

allSuppliers : Set(ModelElement);

allSuppliers = self.supplier->union(self.supplier.allSuppliers)

[3] The operation “model” results in the set of Models to which the ModelElement belongs.

model : Set(Model);

model = self.namespace->union(self.namespace.allSurroundingNamespaces)

->select(ns|

ns.oclIsKindOf (Model))

[4] A ModelElement is a template when it has parameters.

isTemplate : Boolean;

isTemplate = (self.templateParameter->notEmpty)

[5] A ModelElement is an instantiated template when it is related to a template by a Binding relationship.

isInstantiated : Boolean;

isInstantiated = self.clientDependency->select(
oclIsKindOf(Binding))->notEmpty

 [6] The templateArguments are the arguments of an instantiated template, which substitute for template parameters.

templateArguments : Set(ModelElement);
© ISO/IEC 2005 - All rights reserved 61

ISO/IEC 19501:2005(E)
templateArguments = self.clientDependency->

select(oclIsKindOf(Binding)).oclAsType(Binding).argument

4.5.3.26 Namespace

[1] If a contained element that is not an Association or Generalization has a name, then the name must be unique in the
Namespace.

self.allContents->forAll(me1, me2 : ModelElement |

(not me1.oclIsKindOf (Association) and not me2.oclIsKindOf (Association) and

me1.name <> ‘’ and me2.name <> ‘’ and me1.name = me2.name

) implies

me1 = me2)

[2] All Associations must have a unique combination of name and associated Classifiers in the Namespace.

self.allContents -> select(oclIsKindOf(Association))->
forAll(a1, a2 |

a1.name = a2.name and
a1.connection.participant = a2.connection.participant
implies a1 = a2)

Additional operations

[1] The operation contents results in a Set containing all ModelElements contained by the Namespace.

contents : Set(ModelElement)

contents = self.ownedElement -> union(self.namespace, contents)

[2] The operation allContents results in a Set containing all ModelElements contained by the Namespace.

allContents : Set(ModelElement);

allContents = self.contents

[3] The operation allVisibleElements results in a Set containing all ModelElements visible outside of the Namespace.

allVisibleElements : Set(ModelElement)

allVisibleElements = self.allContents -> select(e |

e.elementOwnership.visibility = #public)

[4] The operation allSurroundingNamespaces results in a Set containing all surrounding Namespaces.

allSurroundingNamespaces : Set(Namespace)

allSurroundingNamespaces =

self.namespace->union(self.namespace.allSurroundingNamespaces)

4.5.3.27 Node

No extra well-formedness rules.

4.5.3.28 Operation

No additional well-formedness rules.
62 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.5.3.29 Parameter

No additional well-formedness rules.

4.5.3.30 PresentationElement

No extra well-formedness rules.

4.5.3.31 Primitive

No additional well-formedness rules.

4.5.3.32 StructuralFeature

[1] The connected type should be included in the owner’s Namespace.

self.owner.namespace.allContents->includes(self.type)

[2] The type of a StructuralFeature must be a Class, DataType, or Interface.

self.type.oclIsKindOf(Class) or
self.type.oclIsKindOf(DataType) or
self.type.oclIsKindOf(Interface)

4.5.3.33 Trace

A trace is an Abstraction with the «trace» stereotype. These are the additional constraints due to the stereotype.

[1] The client ModelElements of a Trace must all be from the same Model.

self.client->forAll(e1, e2 | e1.model = e2.model)

[2] The supplier ModelElements of a Trace must all be from the same Model.

self.supplier->forAll(e1, e2 | e1.model = e2.model)

[3] The client and supplier ModelElements must be from two different Models.

self.client.model <> self.supplier.model

[4] The client and supplier ModelElements must all be from models of the same system.

self.client.model.intersection(self.supplier.model) <> Set{}

4.5.3.34 Type (stereotype of Class)

[1] A Type may not have any Methods.

not self.feature->exists(oclIsKindOf(Method))

[2] The parent of a type must be a type.

self.parent->forAll(stereotype.name = "type")

4.5.3.35 Usage

No extra well-formedness rules.

4.5.4 Detailed Semantics

This section provides a description of the dynamic semantics of the elements in the Core. It is structured based on the major
© ISO/IEC 2005 - All rights reserved 63

ISO/IEC 19501:2005(E)
constructs in the core, such as interface, class, and association.

4.5.4.1 Association

An association declares a connection (link) between instances of the associated classifiers (e.g., classes). It consists of at least
two association ends, each specifying a connected classifier and a set of properties that must be fulfilled for the relationship to
be valid. The multiplicity property of an association end specifies how many instances of the classifier at a given end (the one
bearing the multiplicity value) may be associated with a single instance of the classifier at the other end. A multiplicity is a
range of non-negative integers. The association end also states whether or not the connection may be traversed towards the
instance playing that role in the connection (isNavigable), for instance, if the instance is directly reachable via the association.
An association-end also specifies whether or not an instance playing that role in a connection may be replaced by another
instance.

It may state that

• no constraints exist (changeable),

• the link cannot be modified once it has been initialized (frozen), or

• new links of the association may be added but not removed or altered (addOnly).

These constraints do not affect the modifiability of the objects themselves that are attached to the links. Moreover, the
classifier, or (a child of) the classifier itself. The ordering attribute of association-end states that if the instances related to a
single instance at the other end have an ordering that must be preserved, the order of insertion of new links must be specified
by operations that add or modify links. Note that sorting is a performance optimization and is not an example of a logically
ordered association, because the ordering information in a sort does not add any information.

In UML, Associations can be of three different kinds: 1) ordinary association, 2) composite aggregate, and 3) shareable
aggregate. Since the aggregate construct can have several different meanings depending on the application area, UML gives a
more precise meaning to two of these constructs; that is, association and composite aggregate and leaves the shareable
aggregate more loosely defined in between.

An association may represent an aggregation; that is, a whole/part relationship. In this case, the association-end attached to the
whole element is designated, and the other association-end of the association represents the parts of the aggregation. Only
binary associations may be aggregations. Composite aggregation is a strong form of aggregation, which requires that a part
instance be included in at most one composite at a time and that the composite object has sole responsibility for the disposition
of its parts. This means that the composite object is responsible for the creation and destruction of the parts. In implementation
terms, it is responsible for their memory allocation. If a composite object is destroyed, it must destroy all of its parts. It may
remove a part and give it to another composite object, which then assumes responsibility for it. If the multiplicity from a part
to composite is zero-to-one, the composite may remove the part, and the part may assume responsibility for itself, otherwise it
may not live apart from a composite.

A consequence of these rules is that a composite implies propagation semantics; that is, some of the dynamic semantics of the
whole is propagated to its parts. For example, if the whole is copied or destroyed, then so are the parts as well (because a part
may belong to at most one composite).

A classifier on the composite end of an association may have parts that are classifiers and associations. At the instance level,
an instance of a part element is considered “part of” the instance of a composite element. If an association is part of a
composite and it connects two classes that are also part of the same composite, then a link of the association will connect
objects that are part of the same composite object of which the link is part.

A shareable aggregation denotes weak ownership; that is, the part may be included in several aggregates and its owner may
also change over time. However, the semantics of a shareable aggregation does not imply deletion of the parts when an
aggregate referencing it is deleted. Both kinds of aggregations define a transitive, antisymmetric relationship; that is, the
instances form a directed, non-cyclic graph. Composition instances form a strict tree (or rather a forest).
64 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A qualifier declares a partition of the set of associated instances with respect to an instance at the qualified end (the qualified
instance is at the end to which the qualifier is attached). A qualifier instance comprises one value for each qualifier attribute.
Given a qualified object and a qualifier instance, the number of objects at the other end of the association is constrained by the
declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier value is unique with respect to the
qualified object, and designates at most one associated object. In the general case of multiplicity 0..*, the set of associated
instances is partitioned into subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the
qualifier has both semantic and implementation consequences. In the case of multiplicity 0..*, it has no real semantic
consequences but suggests an implementation that facilitates easy access of sets of associated instances linked by a given
qualifier value.

Note that the multiplicity of a qualifier is given assuming that the qualifier value is supplied. The “raw” multiplicity without
the qualifier is assumed to be 0..*. This is not fully general but it is almost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

Note also that a qualified multiplicity whose lower bound is zero indicates that a given qualifier value may be absent, while a
lower bound of 1 indicates that any possible qualifier value must be present. The latter is reasonable only for qualifiers with a
finite number of values (such as enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

4.5.4.2 AssociationClass

An association may be refined to have its own set of features; that is, features that do not belong to any of the connected
classifiers but rather to the association itself. Such an association is called an association class. It will be both an association,
connecting a set of classifiers and a class, and as such have features and be included in other associations. The semantics of
such an association is a combination of the semantics of an ordinary association and of a class.

The AssociationClass construct can be expressed in a few different ways in the metamodel (for example, as a subclass of
Class, as a subclass of Association, or as a subclass of Classifier). Since an AssociationClass is a construct being both an
association (having a set of association-ends) and a class (declaring a set of features), the most accurate way of expressing it is
as a subclass of both Association and Class. In this way, AssociationClass will have all the properties of the other two
constructs. Moreover, if new kinds of associations containing features (e.g., AssociationDataType) are to be included in UML,
these are easily added as subclasses of Association and the other Classifier.

The terms child, subtype, and subclass are synonyms and mean that an instance of a classifier being a subtype of another
classifier can always be used where an instance of the latter classifier is expected. The neutral terms parent and child, with the
transitive closures ancestor and descendant, are the preferred terms in this document.

4.5.4.3 Class

The purpose of a class is to declare a collection of methods, operations, and attributes that fully describe the structure and
behavior of objects. All objects instantiated from a class will have attribute values matching the attributes of the full class
descriptor and support the operations found in the full class descriptor. Some classes may not be directly instantiated. These
classes are said to be abstract and exist only for other classes to inherit and reuse the features declared by them. No object may
be a direct instance of an abstract class, although an object may be an indirect instance of one through a subclass that is non-
abstract.

When a class is instantiated to create a new object, a new instance is created, which is initialized containing an attribute value
for each attribute found in the full class descriptor. The object is also initialized with a connection to the list of methods in the
full class descriptor.

NOTE: An actual implementation behaves as if there were a full class descriptor, but many clever optimizations are possible
in practice.
© ISO/IEC 2005 - All rights reserved 65

ISO/IEC 19501:2005(E)
Finally, the identity of the new object is returned to the creator. The identity of every instance in a well formed system is
unique and automatic.

A class can have generalizations to other classes. This means that the full class descriptor of a class is derived by inheritance
from its own segment declaration and those of its ancestors. Generalization between classes implies substitutability; that is, an
instance of a class may be used whenever an instance of a superclass is expected. If the class is specified as a root, it cannot be
a subclass of other classes. Similarly, if it is specified as a leaf, no other class can be a subclass of the class.

Each attribute declared in a class has a visibility and a type. The visibility defines if the attribute is publicly available to any
class, if it is only available inside the class and its subclasses (protected), if it can be used within the containing package
(package), or if it can only be used inside the class (private). The targetScope of the attribute declares whether its value should
be an instance (of a child) of that type or if it should be (a child of) the type itself.

There are two alternatives for the ownerScope of an attribute:

• it may state that each object created by the class (or by its subclasses) has its own value of the attribute, or

• that the value is owned by the class itself.

An attribute also declares how many attribute values should be connected to each owner (multiplicity), what the initial values
should be, and if these attribute values may be changed to:

• none - no constraint exists,

• frozen - the value cannot be replaced or added to once it has been initialized, or

• addOnly - new values may be added to a set but not removed or altered.

For each operation, the operation name, the types of the parameters, and the return type(s) are specified, as well as its visibility
(see above). An operation may also include a specification of the effects of its invocation. The specification can be done in
several different ways (for example, with pre- and post-conditions, pseudo-code, or just plain text). Each operation declares if
it is applicable to the instances, the class, or to the class itself (ownerScope). Furthermore, the operation states whether or not
its application will modify the state of the object (isQuery). The operation also states whether or not the operation may be
realized by a different method in a subclass (isPolymorphic). A method realizing an operation has the same signature as the
operation and a body implementing the specification of the operation. Methods in descendants override and replace methods
inherited from ancestors (see Section 4.5.4.4, “Inheritance,” on page 67). Each method implements an operation declared in
the class or inherited from an ancestor. The same operation may be declared more than once in a full class descriptor, but their
descriptions must all match, except that the generalization properties (isRoot, IsAbstract, isLeaf) may vary, and a child
operation may strengthen query properties (the child may be a query even though the parent is not). The specification of the
method must match the specification of its matching operation, as defined above for operations. Furthermore, if the isQuery
attribute of an operation is true, then it must also be true in any realizing method. However, if it is false in the operation, it may
still be true in the method if the method does not actually modify the state to carry out the behavior required by the operation
(this can only be true if the operation does not inherently modify state). The visibility of a method must match its operation.

Classes may have associations to each other. This implies that objects created by the associated classes are semantically
connected; that is, that links exist between the objects, according to the requirements of the associations. See Association on
the next page. Associations are inherited by subclasses.

A class may realize a set of interfaces. This means that each operation found in the full descriptor for any realized interface
must be present in the full class descriptor with the same specification (see Section 4.5.4.4, “Inheritance,” on page 67). The
relationship between interface and class is not necessarily one-to-one; a class may offer several interfaces and one interface
may be offered by more than one class. The same operation may be defined in multiple interfaces that a class supports; if their
specifications are identical then there is no conflict; otherwise, the model is ill formed. Moreover, a class may contain
additional operations besides those found in its interfaces.
66 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A class acts as the namespace for various kinds of contained elements defined within its scope including classes, interfaces,
and associations (note that this is purely a scoping construction and does not imply anything about aggregation), the contained
classifiers can be used as ordinary classifiers in the container class. If a class inherits another class, the contents of the ancestor
are available to its descendants if the visibility of an element is public or protected; however, if the visibility is private, then the
element is not visible and therefore not available in the descendant.

4.5.4.4 Inheritance

To understand inheritance it is first necessary to understand the concept of a full descriptor and a segment descriptor. A full
descriptor is the full description needed to describe an object or other instance (see Section 4.5.4.5, “Instantiation,” on
page 67). It contains a description of all of the attributes, associations, and operations that the object contains. In a pre-object-
oriented language, the full descriptor of a data structure was declared directly in its entirety. In an object-oriented language, the
description of an object is built out of incremental segments that are combined using inheritance to produce a full descriptor
for an object. The segments are the modeling elements that are actually declared in a model. They include elements such as
class and other generalizable elements. Each generalizable element contains a list of features and other relationships that it
adds to what it inherits from its ancestors. The mechanism of inheritance defines how full descriptors are produced from a set
of segments connected by generalization. The full descriptors are implicit, but they define the structure of actual instances.

Each kind of generalizable element has a set of inheritable features. For any model element, these include constraints. For
classifiers, these include features (attributes, operations, signal receptions, and methods) and participation in associations. The
ancestors of a generalizable element are its parents (if any) together with all of their ancestors (with duplicates removed). For
a Namespace (such as a Package or a Class with nested declarations), the public or protected contents of the Namespace are
available to descendants of the Namespace.

If a generalizable element has no parent, then its full descriptor is the same as its segment descriptor. If a generalizable element
has one or more parents, then its full descriptor contains the union of the features from its own segment descriptor and the
segment descriptors of all of its ancestors. For a classifier, no attribute, operation, or signal with the same signature may be
declared in more than one of the segments (in other words, they may not be redefined). A method may be declared in more
than one segment. A method declared in any segment supersedes and replaces a method with the same signature declared in
any ancestor. If two or more methods nevertheless remain, then they conflict and the model is ill formed. The constraints on
the full descriptor are the union of the constraints on the segment itself and all of its ancestors. If any of them are inconsistent,
then the model is ill formed.

In any full descriptor for a classifier, each method must have a corresponding operation. In a concrete classifier, each operation
in its full descriptor must have a corresponding method in the full descriptor. The purpose of the full descriptor is explained
under Section 4.5.4.5, “Instantiation,” on page 67.

4.5.4.5 Instantiation

The purpose of a model is to describe the possible states of a system and their behavior. The state of a system comprises
objects, values, and links. Each object is described by a full class descriptor. The class corresponding to this descriptor is the
direct class of the object. If an object is not completely described by a single class (multiple classification), then any class in
the minimal set of unrelated (by generalization) classes whose union completely describes the object is a direct class of the
object. Similarly each link has a direct association and each value has a direct data type. Each of these instances is said to be a
direct instance of the classifier from which its full descriptor was derived. An instance is an indirect instance of the classifier or
any of its ancestors.

The data content of an object comprises one value for each attribute in its full class descriptor (and nothing more). The value
must be consistent with the type of the attribute. The data content of a link comprises a tuple containing a list of instances, one
that is an indirect instance of each participant classifier in the full association descriptor. The instances and links must obey
any constraints on the full descriptors of which they are instances (including both explicit constraints and built-in constraints
such as multiplicity).
© ISO/IEC 2005 - All rights reserved 67

ISO/IEC 19501:2005(E)
The state of a system is a valid system instance if every instance in it is a direct instance of some element in the system model
and if all of the constraints imposed by the model are satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid system instances that may occur as a result of both external
and internal behavioral effects.

4.5.4.6 Interface

The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces
provide a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It
cannot be directly instantiated. Instantiable classifiers, such as class or use case, may use interfaces for specifying different
services offered by their instances. Several classifiers may realize the same interface. All of them must contain at least the
operations matching those contained in the interface. The specification of an operation contains the signature of the operation
(i.e., its name, the types of the parameters, and the return type). An interface does not imply any internal structure of the
realizing classifier. For example, it does not define which algorithm to use for realizing an operation. An operation may,
however, include a specification of the effects of its invocation. The specification can be done in several different ways (e.g.,
with pre and post-conditions, pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier declaring it or to the classifier itself (for example, a
constructor on a class (ownerScope)). Furthermore, the operation states whether or not its application will modify the state of
the instance (isQuery). The operation also states whether or not all the classes must have the same realization of the operation
(isPolymorphic).

An interface can be a child of other interfaces denoted by generalizations. This means that a classifier offering the interface
must provide not only the operations declared in the interface but also those declared in the ancestors of the interface. If the
interface is specified as a root, it cannot be a child of other interfaces. Similarly, if it is specified as a leaf, no other interface
can be a child of the interface.

4.5.4.7 Operation

Operation is a conceptual construct, while Method is the implementation construct. Their common features, such as having a
signature, are expressed in the BehavioralFeature metaclass, and the specific semantics of the Operation. The Method
constructs are defined in the corresponding subclasses of BehavioralFeature.

4.5.4.8 PresentationElement

The responsibility of presentation element is to provide a textual and graphical projection of a collection of model elements. In
this context, projection means that the presentation element represents a human readable notation for the corresponding model
elements. The notation for UML can be found in Chapter 3 of this document.

Presentation elements and model elements must be kept in agreement, but the mechanisms for doing this are design issues for
model editing tools.

4.5.4.9 Template

A template is a parameterized model element that cannot be used directly in a model. Instead, it may be used to generate other
model elements using the Binding relationship; those generated model elements can be used in normal relationships with other
elements.

A template represents the parameterization of a model element, such as a class or an operation, although conceptually any
model element may be used (but not all may be useful). The template element is attached by composite aggregation to an
ordered list of parameter elements. Each parameter element has a name that represents a parameter name within the template
element. Any use of the name within the scope of the template element represents an unbound parameter that is to be replaced
by an actual value in a Binding of the template. For example, a parameter may represent the type of an attribute of a class (for
a class template). The corresponding attribute would have an association to the template parameter as its type.
68 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Note that the scope of the template includes all of the elements recursively owned by it through composite aggregation. For
example, a parameterized class template owns its attributes, operations, and so on. Neither the parameterized elements nor its
contents may be used directly in a model without binding.

A template element has the templateParameter association to a list of ModelElements that serve as its parameters. To avoid
introducing metamodel (M2) elements in an ordinary (M1) model, the model contains a representative of each parameter
element, rather than the type of the parameter element. For example, a frequent kind of parameter is a class. Instead of
including the metaclass Class in the (M1) ordinary model, a dummy class must be declared whose name is the name of the
parameter. This dummy element is meaningful only within the template (it may not be used within the wider model) and it has
no features (such as attributes and operations), because the features are part of an actual element that is supplied when the
template is bound. Because a template parameter is only a dummy that lacks internal structure, it may violate well-formedness
constraints of elements of its kind; the actual elements supplied during binding must satisfy ordinary well-formedness
constraints.

Note also that when the template is bound, the bound element does not show the explicit structure of an element of its kind; it
is a stub. Its semantics and well-formedness rules must be evaluated as if the actual substitutions of actual elements for
parameters had been made; but the expansions are not explicitly shown in a canonical model as they are regarded as derived.

A template element is therefore effectively isolated from the directly-usable part of the model and is indirectly connected to its
ultimate instances through Binding associations to bound elements. The bound elements may be used in ordinary models in
places where the model element underlying the template could be used.

4.5.4.10 Miscellaneous

A constraint is a Boolean expression over one or several elements that must always be true. A constraint can be specified in
several different ways (e.g., using natural language or a constraint language).

A dependency specifies that the semantics of a set of model elements requires the presence of another set of model elements.
This implies that if the source is somehow modified, the dependents probably must be modified. The reason for the
dependency can be specified in several different ways (e.g., using natural language or an algorithm) but is often implicit.

A Usage or Binding dependency can be established only between elements in the same model, since the semantics of a model
cannot be dependent on the semantics of another model. If a connection is to be established between elements in different
models, a Trace or Refinement should be used. Refinement can connect elements in different or same models.

Whenever the supplier element of a dependency changes, the client element is potentially invalidated. After such invalidation,
a check should be performed followed by possible changes to the derived client element. Such a check should be performed
after which action can be taken to change the derived element to validate it again. The semantics of this validation and change
is outside the scope of UML.

A data type is a special kind of classifier, similar to a class, but whose instances are primitive values (not objects). For
example, the integers and strings are usually treated as primitive values. A primitive value does not have an identity, so two
occurrences of the same value cannot be differentiated. Usually, it is used for specification of the type of an attribute. An
enumeration type is a user-definable type comprising a finite number of values.

4.6 Extension Mechanisms

4.6.1 Overview

The Extension Mechanisms package is the subpackage that specifies how specific UML model elements are customized and
extended with new semantics by using stereotypes, constraints, tag definitions, and tagged values. A coherent set of such
extensions, defined for specific purposes, constitutes a UML profile (see Section 4.14, “Model Management,” on page 161).

The UML provides a rich set of modeling concepts and notations that have been carefully designed to meet the needs of
© ISO/IEC 2005 - All rights reserved 69

ISO/IEC 19501:2005(E)
typical software modeling projects. However, users may sometimes require additional features beyond those defined in the
UML standard. These needs are met in UML by its built-in extension mechanisms that enable new kinds of modeling elements
to be added to the modeler’s repertoire as well as to attach free-form information to modeling elements. The principal
extension mechanism is the concept of Stereotype. It provides a way of defining virtual subclasses of UML metaclasses with
new metaattributes and additional semantics.

A fundamental constraint on all extensions defined using the profile extension mechanism is that extensions must be strictly
additive to the standard UML semantics. This means that such extensions must not conflict with or contradict the standard
semantics. In effect, these extension mechanisms are a means for refining the standard semantics of UML and do not support
arbitrary semantic extension. They allow the modeler to add new modeling elements to UML for use in creating UML models
for process-specific or implementation language-specific domains (for example, supporting code generation for a certain
language and infrastructure). It should be noted that stereotypes and tags are used in the definition of UML itself. They are
used to define standard model elements that are not considered complex enough to be defined directly as UML metaclasses.

Stereotypes are themselves metaclasses in UML. Consequently, the user of a UML tool can define stereotypes; for example, a
new stereotype «persistent» could be defined that can be attached to classes. Many users will not define new stereotypes, but
will only apply them during modeling; for example, the stereotype “«persistent»” can be attached to the class “Invoice” by the
modeler. A tool could use this as an indicator that a database table definition needs to be generated.

A profile is a stereotyped package that contains model elements that have been customized for a specific domain or purpose by
extending the metamodel using stereotypes, tagged definitions, and constraints. A profile may specify model libraries on
which it depends and the metamodel subset that it extends.

A stereotype is a model element that defines additional values (based on tag definitions), additional constraints, and optionally
a new graphical representation. All model elements that are branded by one or more particular stereotypes receive these values
and constraints in addition to the attributes, associations, and superclasses that the element has in the standard UML.
Stereotypes augment the classification mechanism based on the built in UML metamodel class hierarchy; therefore, names of
new stereotypes must not clash with the names of predefined UML metamodel elements or standard elements.

Tag definitions specify new kinds of properties that may be attached to model elements. The actual properties of individual
model elements are specified using Tagged Values. These may either be simple datatype values or references to other model
elements. Tag definitions can be compared to metaattribute definitions while tagged values correspond to values attached to
model elements. They may be used to represent properties such as management information (author, due date, status), code
generation information (optimizationLevel, containerClass).

Constraints can also be attached to any model element to refine its semantics. Constraints attached to a stereotype must be
observed by all model elements branded by that stereotype. If the rules are specified formally in a profile (for example, by
using OCL for the expression of constraints), then a modeling tool may be able to interpret the rules and aid the modeler in
enforcing them when applying the profile.

Although it is outside the scope and intent of the UML specification, it is also possible to extend the UML metamodel by
explicitly adding new metaclasses and other meta constructs. This capability depends on the use of tools and repositories that
support the OMG Meta Object Facility (MOF). Profiles are sometimes referred to as the ‘lightweight’ built-in extension
mechanisms of UML, in contrast with the ‘heavyweight’ extensibility mechanism as defined by the MOF specification. This is
because there are restrictions on how UML profiles can extend the UML metamodel. These restrictions are intended to ensure
that any extensions defined by a UML profile are purely additive. Such restrictions do not apply in the MOF context where, in
principle, any metamodel can be defined. (Consequently, every profile definition could also be expressed as an MOF
metamodel, but not all MOF metamodels based on UML can be expressed as proper UML profiles.)

From a pragmatic viewpoint, when modeling tools are used to specify lightweight extensions, they should fully support UML
extension mechanisms (including a default graphical notation for extended elements) and the XMI that they produce must be
compatible with the predefined XMI for UML DTDs. (Note that this is expected to be less readable than a dedicated XMI
format based on an MOF metamodel.)
70 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
When defining profiles modelers should be careful to base their extensions on the most semantically similar constructs in the
UML metamodel. Failure to observe this can easily result in semantically incorrect or semantically redundant language
extensions. When capturing the extended semantics of a domain in the definition of a profile (with the purpose of enabling tool
support for the domain), modelers should also be careful not to focus exclusively on defining stereotypes. In most cases a
combination of stereotypes and predefined standard model elements will be most effective. Examples of standard or common
model elements in a profile definition are standard classes that the user is intended to reuse or subclass, or a set of standard
Templates that the user may apply.

Several profile-related standard stereotypes and tags are defined in the Model Management package and chapter, including
«profile», «modelLibrary», «appliedProfile», and {applicableSubset}.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Extension Mechanisms
package.

4.6.2 Abstract Syntax

The abstract syntax for the Extension Mechanisms package is expressed in graphic notation in Figure 10.

Figure 10 - Extension Mechanisms

4.6.2.1 Constraint (as extended)

The constraint concept allows new semantics to be specified linguistically for a model element. The specification is written as
an expression in a designated constraint language.

The language can be specially designed for writing constraints (such as OCL), a programming language, mathematical
notation, or natural language. If constraints are to be enforced by a model editor tool, then the tool must understand the syntax
and semantics of the constraint language. Because the choice of language is arbitrary, constraints are an extension mechanism.

GeneralizableElement
(from Core)

{xor}

Stereotype
icon : Geometry
baseClass : Name

Constraint
(from Core)

0..1

*

+constrainedStereotype

0..1

+stereotypeConstraint
*

TagDefinition
tagType : Name
multiplicity : Multiplicity

*0..1

+definedTag

*

+owner

0..1

ModelElement
(from Core)

*

*

+stereotype

*

+extendedElement

*

*

*

+constrainedElement

*{ordered}

+constraint

* TaggedValue
dataValue : String

1

*

+type1

+typedValue*

1

*

1

+taggedValue*

*

*

+referenceValue

*

+referenceTag*

[*]

[*]
© ISO/IEC 2005 - All rights reserved 71

ISO/IEC 19501:2005(E)
In the metamodel a constraint directly attached to a model element describes semantic restrictions that this model element
must obey. Constraints attached to a Stereotype apply to each model element that bears that stereotype. Note that, for the case
of constraints attached to stereotype definitions, the scope of the constraint is the UML metamodel and not the model in which
it is defined. This allows the definition of well-formedness rules for stereotypes in the same manner as the well-formedness
rules of other metamodel elements.

Attributes

Associations

Any one Constraint must have one or more constrainedElement links, or one constrainedStereotype link, but not both.

4.6.2.2 ModelElement (as extended)

Any model element may have arbitrary tagged values and constraints (subject to these making sense). A model element may
also have one or more stereotypes. In the latter case, the base class of the stereotype must match the metaclass of that model
element (such as Class, Association, Dependency) or one of its subclasses. The presence of a stereotype may impose implicit
constraints on the modeling element and may require the presence of specific tagged values.

Associations

4.6.2.3 Stereotype

The stereotype concept provides a way of branding (classifying) model elements so that they behave in some respects as if
they were instances of new virtual metamodel constructs. These model elements have the same structure (attributes,
associations, operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional

body A boolean expression defining the constraint. Expressions are written as strings in a designated language.
For the model to be well formed, the expression must always yield a true value when evaluated for instances
of the constrained elements at any time when the system is stable; that is, not during the execution of an
atomic operation.

When a constraint is attached to a stereotype, the lexical scope of that constraint is the UML metamodel
rather than the M1 model in which the constraint is defined. This means that there is no need to explicitly
import the UML metamodel.

constrainedElement An ordered list of elements subject to the constraint

constrainedStereotype A stereotype to which the constraint applies. This constraint will automatically apply to all model elements
branded by that stereotype.

constraint A constraint that must be satisfied by the model element. A model element may have a set of constraints. The
constraint is to be evaluated when the system is stable; that is, not in the middle of an atomic operation.

stereotype Designates the stereotypes that further qualify the UML metaclass (the base class or one of its subclasses) of
the modeling element. The stereotype does not conflict with or contradict the standard semantics of the
metaclass to which it applies, but may specify additional constraints and tag definitions. All constraints and
tag definitions on a stereotype apply to the model elements that are branded by the stereotype. The stereotype
acts as a virtual metaclass describing the model element.

taggedValue An arbitrary property attached to the model element based on an associated tag definition. The interpretation
of the tagged value is outside the scope of the UML metamodel.
72 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
constraints and tag definitions that apply to model elements. In addition, a stereotype may be used to indicate a difference in
meaning or usage between two model elements with identical structure.

In the metamodel the Stereotype metaclass is a subclass of GeneralizableElement. Tag definitions and constraints attached to a
stereotype apply to all model elements branded by that stereotype. A stereotype may also specify a geometrical icon to be used
for presenting elements with the stereotype.

If a stereotype is a subclass of another stereotype, then it inherits all of the constraints and tagged values from its stereotype
supertype and it must apply to the same kind of base class. A stereotype keeps track of the base class to which it may be
applied. Stereotypes are typically grouped in a Profile package.

Attributes

Associations

4.6.2.4 TagDefinition

A tag definition specifies the tagged values that can be attached to a kind of model element. Among other things, tag
definitions can be used to define the virtual meta attributes of the stereotype to which they are attached. Some of these meta
attributes may be references to other metamodel elements and, in effect, can be used to specify new one-way meta references.
However, this latter feature should be used with discretion since it can easily be misused to define new semantics that are more
than just refinement of the original UML metamodel.

Tag definitions should be defined in conjunction with a stereotype since that allows them to be used in a more disciplined
manner (stereotypes are constrained by the semantics of their base class). However, primarily for reasons of compatibility with
models defined on the basis of UML 1.3, it is still possible to have tag definitions that are not associated with any stereotype.

Attributes

baseClass Specifies the names of one or more UML modeling elements to which the stereotype applies, such as Class,
Association, Refinement, Constraint. This is the name of a metaclass; that is, a class from the UML
metamodel itself rather than a user model class.

icon The geometrical description for an icon to be used to present an image of a model element branded by the
stereotype.

extendedElement Designates the model elements affected by the stereotype. Each one must be a model element of the kind
specified by the baseClass attribute.

definedTag Specifies a set of tag definitions, each of which specifies tagged values that a model element branded by the
stereotype can have.

stereotypeConstraint Designates constraints that apply to all model elements branded by this stereotype. These constraints are
defined in the scope of the full UML metamodel.

multiplicity Specifies the number of data values that tagged values based on this tag must have, or, the number of
model elements that can be associated to the related tagged values.
© ISO/IEC 2005 - All rights reserved 73

ISO/IEC 19501:2005(E)
Associations

4.6.2.5 TaggedValue

A tagged value allows information to be attached to any model element in conformance with its tag definition. Although a
tagged value, being an instance of a kind of ModelElement, automatically inherits the name attribute, the name that is actually
used in the tagged value is the name of the associated tag definition. The interpretation of tagged values is intentionally beyond
the scope of UML semantics. It must be determined by user or tool conventions that may be specified in a profile in which the
tagged value is defined. It is expected that various model analysis tools will define tag definitions to supply information
needed for their operations beyond the basis semantics of UML. Such information could include code generation options,
model management information, or user-specified semantics.

Any tagged value must have one or more reference value links or one or more data values, but not both.

Attributes

Associations

4.6.3 Well-Formedness Rules

The following well-formedness rules apply to the Extension Mechanisms package.

4.6.3.1 Constraint

[1] A Constraint attached to a stereotype must not conflict with constraints on any inherited stereotype, or associated
with the base class.

-- cannot be specified with OCL, level M2 not accessible

[2] A constraint attached to a stereotyped model element (either directly or through another stereotype) must not conflict
with any constraints on the associated stereotype, nor with the class (the base class) of the model element.

-- cannot be specified with OCL, level M2 not accessible

tagType In the general case, where the tag type is a data type, this specifies the range of values of the tagged
values associated with the tag definition.

In the special case, where the tag type refers to a metaclass that is not a datatype, the tag value
references model elements that are instances of the metaclass.

typedValue The tagged values that conform to this tag definition.

owner The stereotype to which this tag definition belongs.

dataValue Specifies the set of values that are part of the tagged value. The type of this value must conform to the
type specified in the tagType attribute of the associated tag definition. The number of values that can be
specified is defined by the multiplicity attribute of the associated tag definition.

type Specifies the tag definition which defines the name, meaning, and type of the tagged value.

referenceValue Specifies the model elements that this tagged value references. These elements are model-level instances
of the metaclass or stereotype specified by the tagType attribute of the corresponding tag definition. The
number of references is defined by the multiplicity attribute of the associated tag definition.
74 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
[3] A constraint attached to a stereotype will apply to all model elements branded by that stereotype and must not conflict
with any constraints on the attached branding stereotype, nor with the class (the base class) of the model element.

-- cannot be specified with OCL, level M2 not accessible

4.6.3.2 ModelElement

[1] Tags associated with a model element (directly via a property list or indirectly via a stereotype) must not clash with
any meta attributes associated with the model element.

-- cannot be specified with OCL, level M2 not accessible

[2] A model element must have at most one tagged value with a given tag name.

self.taggedValue->forAll(t1, t2 : TaggedValue |

t1.type.name = t2.type.name implies t1 = t2)

[3] A stereotype cannot extend itself.

self.stereotype->excludes(self)

4.6.3.3 Stereotype

[1] Stereotype names must not clash with any base class names.

Stereotype.allInstances->forAll(st | st.baseClass <> self.name)

[2] The base class name must be provided.

Set {self.baseClass}->notEmpty

[3] Tag names attached to a stereotype must not clash with M2 meta-attribute namespace of the appropriate base class
element, nor with tag definition names of any inherited stereotype.

-- cannot be specified with OCL, level M2 not accessible

[4] The base class of a stereotype must be the same or a subclass of the base class of parent stereotypes.

-- cannot be specified with OCL, level M2 not accessible

[5] All stereotype definitions must be contained either directly or transitively in a profile package.

findProfile(self)->notEmpty

Additional Operations

[1] The find profile operation returns either the single-element set containing profile package in which the model element
is defined or an empty set if the element is not contained in any profile.

findProfile (me : ModelElement) : Set (Package)

if (me.namespace->notEmpty) then

if (me.namespace.oclIsKindOf(Package) and

me.namespace.stereotype->notEmpty) and

me.namespace.stereotype->exists(s|s.name = profile) then

result = me.namespace

else -- go up to the next level of namespace
© ISO/IEC 2005 - All rights reserved 75

ISO/IEC 19501:2005(E)
result = findProfile (me.namespace)

else

result = me.namespace -- return empty set

4.6.3.4 TagDefinition

[1] The type associated with a tag definition is either the name of a UML metaclass, including elements of the DataType
package, or an instance of the DataType metaclass or one of its descendants.

-- cannot be specified with OCL, level M2 not accessible

[2] All tag definitions must be contained either directly or transitively in a profile package.

findProfile(self)->notEmpty

4.6.3.5 TaggedValue

[1] The data value of a tagged value is exclusive to the “referenceValue” association.

if (self.referenceValue->size > 0)
then (self.dataValue->size = 0)
else (self.dataValue->size > 0)

endif

[2] The data value of a tagged value must conform to the data type specified by the “tagType” attribute of the tag
definition.

-- cannot be specified with OCL (requires an OCL function that converts a string name into
a corresponding metatype)

[3] The model elements associated with a tagged value by the “referenceValue” association must be instances of the
metaclass specified by the “tagType” attribute of the tag definition.

-- cannot be specified with OCL (requires an OCL function that converts a string name into
a corresponding metatype)

4.6.4 Detailed Semantics

The various extension mechanisms defined in this chapter represent extensions to the modeling language UML that affect the
structure and semantics of models produced by the user.

Within a model, any user-level model element may have a set of links to stereotypes, and a set of tagged values conformant to
existing tag definitions. The constraints defined for the stereotype specify restrictions on the instantiation of the model. An
instance of a user-level model element must satisfy all of the constraints on its model element for the model to be well formed.
Evaluation of constraints is to be performed when the relevant portion of the system is “stable,” that is, after the completion of
any internal operations when it is waiting for external events. In general, constraints are written in any language that can
adequately specify the desired constraints, such as OCL, C++, or natural language. The interpretation of the constraints must
be specified by the constraint language.

A stereotype refers to a base class, which is a class in the UML metamodel (not a user-level modeling element) such as Class,
Association, Refinement, etc. A stereotype may be a subclass of one or more existing stereotypes. In that case, it inherits their
constraints and tag definitions and may add additional ones of its own. In principle, a stereotype inherits the base class value of
its parent, if one exists (this is expressed as a constraint on these values). The modeler may refine this to any subclass of that
base class. For instance, if a stereotype s with a base class b is defined, then a stereotype t that has s as its superclass has either
b or any subclass of b as its base class value. If a stereotype has multiple superclasses, then all of these superclasses must be
derived from a single common superclass. In that case, the base class of the subclass is equivalent to the most specific parent
76 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
stereotype, or a subclass of that. For instance, if a stereotype s has supertypes t and u with base classes “Classifier” and “Class”
respectively, then the base class of s is “Class” or any subclass of “Class” in UML.

If a model element is branded by an attached stereotype, then the UML base class of the model element must be the base class
specified by the stereotype or one of the subclasses of that base class. Any constraints on the stereotype are implicitly attached
to the model element. Any tag definitions belonging to the stereotype will serve as specifications for tagged values associated
to the model element. If the stereotype is a subclass of one or more stereotypes, then any constraints or tag definitions from
those stereotypes also apply to the model element (because they are inherited by this stereotype). If there are any conflicts
among the multiple constraints and tag definitions (inherited or directly specified), then the model is ill formed, as is the case
with general specialization hierarchies.

4.6.5 Notes

Backward compatibility of profiles with UML 1.3 has been addressed by maintaining the basic UML 1.3 extension features
while adding new features that can be optionally exploited. There are two areas where backward compatibility has been
carefully considered. First, although it is generally recommended that tags should be defined in the context of a stereotype,
they may still be defined independently as was the case with UML 1.3. Second, although it is generally recommended that tag
definitions should be typed, they may still be defined with type declared String; that is, they are effectively not typed.

UML 1.4 compliant tools are expected to make use of the ability to type tags, and to provide conversion utilities for models
based on earlier versions of UML. It is important to note, however, that older models that contain tags declared to be of type
String should still work correctly, since String continues to be a standard UML datatype.

The following are some typical examples of stereotypes and tag definitions:

A stereotype of Class with an associated tag definition

A stereotype of Class with an associated tag definition

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A storageMode none Classes of this stereotype are persistent
and may be stored in a variety of different
modes.

Tag Stereotype Type Multiplicity Description

storageMode persistent StorageProfile::StorageEnum
(an enumeration:
{table, file, object})

* identifies the storage mode

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A isPersistent none Classes of this stereotype may be
persistent, depending on the value of the
“isPersistent” tag.

Tag Stereotype Type Multiplicity Description

isPersistent persistent UML::Datatypes::Boolean 1 Indicates whether the class is persistent or not.
© ISO/IEC 2005 - All rights reserved 77

ISO/IEC 19501:2005(E)
A stereotype of Class with an associated tag definition

A stereotype of Class with an associated tag definition

A tag defined independently of a stereotype

A tag defined independently of a stereotype

4.7 Data Types

4.7.1 Overview

The Data Types package is the subpackage that specifies the different data types that are used to define UML. This section has
a simpler structure than the other packages, since it is assumed that the semantics of these basic concepts are well known.

4.7.2 Abstract Syntax

The abstract syntax for the Data Types package is expressed in graphic notation in Figure 11 on page 79 and Figure 12 on
page 79.

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A primaryKeyClass none Classes of this stereotype have a
reference to indicate the primary
key specification.

Tag Stereotype Type Multiplicity Description

primaryKeyClass persistent reference to
UML::Foundation::Class

1 Identifies the M1 class that serves as
the primary key.

Stereotype Base Class Stereotype Parent Tags Constraints Description

workflow ActionState N/A resources none action states of this stereotype
represent workflow actions

Tag Stereotype Type Multiplicity Description

debugMode N/A DebugProfile::DebugDomain
(an enumeration with three possible
choices: {on, off, trace})

1 Used to set the desired debug mode
for a model post-processor.

Tag Stereotype Type Multiplicity Description

aliasNames N/A UML::Datatypes::String * Reuses the standard String datatype at the M1
level.
78 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 11 - Data Types Package - Main

Figure 12 - Data Types Package - Expressions

In the metamodel, the data types are used for declaring the types of the class attributes. They appear as strings in the diagrams
and not with a separate ‘data type’ icon. In this way, the sizes of the diagrams are reduced. However, each occurrence of a
particular name of a data type denotes the same data type.

Note that these data types are the data types used for defining UML and not the data types to be used by a user of UML. The
latter data types will be instances of the DataType metaclass defined in the metamodel.

AggregationKind
<<enumeration>>

Boolean
<<enumeration>>

ChangeableKind
<<enumeration>>

Expression

language : Name
body : String

Name

Integer

ParameterDirectionKind
<<enumeration>>

ScopeKind
<<enumeration>>

String

VisibilityKind
<<enumeration>>

PseudostateKind
<<enumeration>>

CallConcurrencyKind
<<enumeration>>

MultiplicityRange

lower : Integer
upper : UnlimitedInteger

Multiplicity

1..*1

+range

1..*1

Mapping

body : String

Unlimi tedInteger

LocationReference

OrderingKind
<<enumeration>>

Geometry

IterationExpression

BooleanExpression

Expression
language : Name
body : String

ObjectSetExpression TimeExpression

ActionExpression TypeExpression

ArgListsExpression

MappingExpression ProcedureExpression
© ISO/IEC 2005 - All rights reserved 79

ISO/IEC 19501:2005(E)
4.7.2.1 ActionExpression

An expression whose evaluation results in the performance of an action.

4.7.2.2 AggregationKind

An enumeration that denotes what kind of aggregation an Association is. When placed on a target end, specifies the
relationship of the target end to the source end. AggregationKind defines an enumeration whose values are:

4.7.2.3 ArgListsExpression

In the metamodel, ArgListsExpression defines a statement that will result in a set of object lists when it is evaluated.

4.7.2.4 Boolean

In the metamodel, Boolean defines an enumeration that denotes a logicial condition. Its enumeration literals are:

4.7.2.5 BooleanExpression

In the metamodel, BooleanExpression defines a statement that will evaluate to an instance of Boolean when it is evaluated.

4.7.2.6 CallConcurrencyKind

An enumeration that denotes the semantics of multiple concurrent calls to the same passive instance; that is, an Instance
originating from a Classifier with isActive=false. It is an enumeration with the values:

none The end is not an aggregate.

aggregate The end is an aggregate; therefore, the other end is a part and must have the aggregation value of none. The
part may be contained in other aggregates.

composite The end is a composite; therefore, the other end is a part and must have the aggregation value of none. The
part is strongly owned by the composite and may not be part of any other composite.

true The Boolean condition is satisfied.

false The Boolean condition is not satisfied.

sequential Callers must coordinate so that only one call to an Instance (on any sequential Operation) may be outstanding
at once. If simultaneous calls occur, then the semantics and integrity of the system cannot be guaranteed.

guarded Multiple calls from concurrent threads may occur simultaneously to one Instance (on any guarded Operation),
but only one is allowed to commence. The others are blocked until the performance of the first Operation is
complete. It is the responsibility of the system designer to ensure that deadlocks do not occur due to
simultaneous blocks. Guarded Operations must perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot be claimed.

concurrent Multiple calls from concurrent threads may occur simultaneously to one Instance (on any concurrent
Operation). All of them may proceed concurrently with correct semantics. Concurrent Operations must
perform correctly in the case of a simultaneous sequential or guarded Operation or concurrent semantics
cannot be claimed.
80 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.7.2.7 ChangeableKind

In the metamodel, ChangeableKind defines an enumeration that denotes how an AttributeLink or LinkEnd may be modified.
Its values are:

4.7.2.8 Expression

In the metamodel, an Expression defines a statement that will evaluate to a (possibly empty) set of instances when executed in
a context. An Expression does not modify the environment in which it is evaluated. An expression contains an expression
string and the name of an interpretation language with which to evaluate the string.

Attributes

Predefined language names include the following:

In general, a language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use COBOL, not Cobol; use Ada, not ADA; use PostScript, not Postscript. In other words, spell it correctly.

4.7.2.9 Geometry

An uninterpreted type used to describe the geometrical shape of icons, such as those that may be attached to stereotypes. The
details of this specification are not currently part of UML and must therefore be supplied by the implementation of a model
editing tool, with the understanding that they will likely be tool-specific. This type is therefore not actually defined in the
metamodel but is used only as the type of attributes.

4.7.2.10 Integer

In the metamodel, Integer is a classifier element that is an instance of Primitive, representing the predefined type of integers.
An instance of Integer an element in the (infinite) set of integers (…-2, -1, 0, 1, 2…).

changeable No restrictions on modification.

frozen The value may not be changed from the source end after the creation and initialization of the source object.
Operations on the other end may change a value.

addOnly If the multiplicity is not fixed, values may be added at any time from the source object, but once created a
value may not be removed from the source end. Operations on the other end may change a value.

language Names the language in which the expression body is represented. The interpretation of the expression
depends on the language. If the language name is omitted, no interpretation for the expression can be
assumed by UML.

body The text of the expression expressed in the given language.

OCL The Object Constraint Language (see the chapter “Object Constraint Language Specification” in this
document).

(The empty string) This represents a natural-language statement. As such, it is obviously intended for human
information rather than formal specification.
© ISO/IEC 2005 - All rights reserved 81

ISO/IEC 19501:2005(E)
4.7.2.11 IterationExpression

In the metamodel, IterationExpression defines a string that will evaluate to an iteration control construct in the interpretation
language.

4.7.2.12 LocationReference

Designates a position within a behavior sequence for the insertion of an extension use case. May be a line or range of lines in
code, or a state or set of states in a state machine, or some other means in a different kind of specification.

4.7.2.13 Mapping

In the metamodel, a Mapping is an expression that is used for mapping ModelElements. For exchange purposes, it should be
represented as a String.

Attributes

4.7.2.14 MappingExpression

An expression that evaluates to a mapping.

4.7.2.15 Multiplicity

In the metamodel, a Multiplicity defines a non-empty set of non-negative integers. A set that only contains zero ({0}) is not
considered a valid Multiplicity. Every Multiplicity has at least one corresponding String representation.

4.7.2.16 MultiplicityRange

In the metamodel, a MultiplicityRange defines a range of integers. The upper bound of the range cannot be below the lower
bound. The lower bound must be a non-negative integer. The upper bound must be a non-negative integer or the special value
unlimited, which indicates there is no upper bound on the range.

4.7.2.17 Name

In the metamodel, a Name defines a token that is used for naming ModelElements. A name is represented as a String.

4.7.2.18 ObjectSetExpression

In the metamodel, ObjectSetExpression defines a statement that will evaluate to a set of instances when it is evaluated.
ObjectSetExpressions are commonly used to designate the target instances in an Action. The expression may be the reserved
word “all” when used as the target of a SendAction. It evaluates to all the instances that can receive the signal, as determined
by the underlying runtime system.

4.7.2.19 OrderingKind

Defines an enumeration that specifies how the elements of a set are arranged. Used in conjunction with elements that have a
multiplicity in cases when the multiplicity value is greater than one. The ordering must be determined and maintained by
operations that modify the set. The intent is that the set of enumeration literals be open for new values to be added by tools for
purposes of design, code generation, etc. For example, a value of sorted might be used for a design specification.

body A string describing the mapping. The format of the mapping is currently unspecified in UML.
82 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Values are:

4.7.2.20 ParameterDirectionKind

In the metamodel, ParameterDirectionKind defines an enumeration that denotes if a Parameter is used for supplying an
argument and/or for returning a value. The enumeration values are:

4.7.2.21 ProcedureExpression

In the metamodel, ProcedureExpression defines a statement that will result in a change to the values of its environment when
it is evaluated.

4.7.2.22 PseudostateKind

In the metamodel, PseudostateKind defines an enumeration that discriminates the kind of Pseudostate. See Section 4.12.2.7,
“PseudoState,” on page 132 for details. The enumeration values are:

unordered The elements of the set have no inherent ordering.

ordered The elements of the set have a sequential ordering.

Other possibilities (such as sorted) may be defined later by declaring additional keywords. As with user-
defined stereotypes, this would be a private extension supported by particular editing tools.

in An input Parameter (may not be modified).

out An output Parameter (may be modified to communicate information to the caller).

inout An input Parameter that may be modified.

return A return value of a call.

choice Splits an incoming transition into several disjoint outgoing transitions. Each outgoing transition has a guard
condition that is evaluated after prior actions on the incoming path have been completed. At least one outgoing
transition must be enabled or the model is ill formed.

deepHistory When reached as the target of a transition, restores the full state configuration that was active just before the
enclosing composite state was last exited.

fork Splits an incoming transition into several concurrent outgoing transitions. All of the transitions fire together.

initial The default target of a transition to the enclosing composite state.

join Merges transitions from concurrent regions into a single outgoing transition. All the transitions fire together.

junction Chains together transitions into a single run-to-completion path. May have multiple input and/or output
transitions. Each complete path involving a junction is logically independent and only one such path fires at
one time. May be used to construct branches and merges.

shallowHistory When reached as the target of a transition, restores the state within the enclosing composite state that was
active just before the enclosing state was last exited. Does not restore any substates of the last active state.
© ISO/IEC 2005 - All rights reserved 83

ISO/IEC 19501:2005(E)
4.7.2.23 ScopeKind

In the metamodel, ScopeKind defines an enumeration that denotes whether a feature belongs to individual instances or an
entire classifier. Its values are:

4.7.2.24 String

In the metamodel, String is a classifier element that is an instance of Primitive. An instance of String defines a piece of text.

4.7.2.25 TimeExpression

In the metamodel, TimeExpression defines a statement that will define the time of occurrence of an event. The specific format
of time expressions is not specified here and is subject to implementation considerations.

4.7.2.26 TypeExpression

In the metamodel, TypeExpression is the encoding of a programming language type in the interpretation language. It is used
within a ProgrammingLanguageDataType.

4.7.2.27 UnlimitedInteger

In the metamodel, UnlimitedInteger is a classifier element that is an instance of Primitive. It defines a data type whose range is
the non-negative integers augmented by the special value “unlimited.” It is used for the upper bound of multiplicities.

4.7.2.28 Uninterpreted

In the metamodel, an Uninterpreted is a blob, the meaning of which is domain-specific and therefore not defined in UML.

4.7.2.29 VisibilityKind

In the metamodel, VisibilityKind defines an enumeration that denotes how the element to which it refers is seen outside the
enclosing name space. Its values are:

This Behavioral Elements package is the language superstructure that specifies the dynamic behavior or models. The
Behavioral Elements package is decomposed into the following subpackages: Common Behavior, Collaborations, Use Cases,
State Machines, and Activity Graphs.

instance The feature pertains to Instances of a Classifier. For example, it is a distinct Attribute in each Instance or an
Operation that works on an Instance.

classifier The feature pertains to an entire Classifier. For example, it is an Attribute shared by the entire Classifier or an
Operation that works on the Classifier, such as a creation operation.

public Other elements may see and use the target element.

protected Descendants of the source element may see and use the target element.

private Only the source element may see and use the target element.

package Elements declared in the same package as the target element may see and use the target element.
84 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Part 3 - Behavioral Elements

4.8 Behavioral Elements Package

This Behavioral Elements package is the language superstructure that specifies the dynamic behavior or models. The
Behavioral Elements package is decomposed into the following subpackages: Common Behavior, Collaborations, Use Cases,
State Machines, and Activity Graphs.

Common Behavior specifies the core concepts required for behavioral elements. The Collaborations package specifies a
behavioral context for using model elements to accomplish a particular task. The Use Case package specifies behavior using
actors and use cases. The State Machines package defines behavior using finite-state transition systems. The Activity Graphs
package defines a special case of a state machine that is used to model processes.

Figure 13 - Behavioral Elements Package

4.9 Common Behavior

4.9.1 Overview

The Common Behavior package is the most fundamental of the subpackages that compose the Behavioral Elements package.
It specifies the core concepts required for dynamic elements and provides the infrastructure to support Collaborations, State
Machines, and Use Cases.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Common Behavior package.

4.9.2 Abstract Syntax

The abstract syntax for the Common Behavior package is expressed in graphic notation in the following figures. Figure 14
shows the model elements that define Signals and Receptions.

Use Cases State MachinesCollaborations

Common
Behavior

Ac tivity Graphs
© ISO/IEC 2005 - All rights reserved 85

ISO/IEC 19501:2005(E)
Figure 14 - Common Behavior - Signals

Figure 15 on page 87 illustrates the model elements that specify various actions, such as CreateAction, CallAction, and
SendAction.

Exception

Reception
specification : S tring
isRoot : Boolean
isLeaf : B oolean
isA bstract : Boolean

Behaviora lFeature
(fro m C ore)

S ignal
1

0..*

+ signal

1

+reception

0..*

**

+context

*

+ra isedS ignal

*

C la ssifier
(from Core)
86 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 15 - Common Behavior - Actions

Figure 16 on page 88 shows the model elements that define Instances and Links.

DestroyAction

UninterpretedAction

ModelElement
(from Core)

CreateAction

Classifier
(from Core)

0..*

1

0..*

+instantiation1

ReturnAction TerminateAction

CallAction

Operation
(from Core)

*

1

*

+operation1

SendAction

Signal

*

1

*

+signal1

Argument
value : Expression

ActionSequence Action
recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression

*

0..1

+actualArgument*

{ordered}

0..1

0..1 0..*0..1

+action

0..*

{ordered}
© ISO/IEC 2005 - All rights reserved 87

ISO/IEC 19501:2005(E)
Figure 16 - Common Behavior - Instances

+argument

{ordered}

 +value

 +ownedInstance + owner

0..*

1 +sender 1

0..1

 +dispatchAction

 +classifier

1..*

1
 +attribute

*

+ resident
0..1

+ resident

*

*

1 *

0..1

*

1

* * *

* +receiver 1

Attribute
(from Core)

ModelElement
(from Core)

DataValue

SubsystemInstance

 Object

AttributeLink

 +slot

Action

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression

Classifier
(from Core)

 NodeInstance

ComponentInstance

 Instance

 0..*

 Stimulus

88 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 17 - Common Behavior - Links

The following metaclasses are contained in the Common Behavior package.

4.9.2.1 Action

An action is a specification of an executable statement that forms an abstraction of a computational procedure that results in a
change in the state of the model, and can be realized by sending a message to an object or modifying a link or a value of an
attribute.

In the metamodel, an Action may be part of an ActionSequence and may contain a specification of a target as well as a
specification of the actual arguments; that is, a list of Arguments containing expressions for determining the actual Instances to
be used when the Action is performed (or executed).

The target metaattribute is of type ObjectSetExpression which, when executed, resolves into zero or more specific Instances
that are the intended target of the Action, like a receiver of a dispatched Signal. The recurrence metaattribute specifies how the
target set is iterated when the action is executed. It is not defined within UML if the action is applied sequentially or in parallel
to the target instances.

Action is an abstract metaclass.

LinkObject

Object

ModelElement
(from Core)

AssociationEnd
(from Core)

AttributeLink

Association
(from Core)

Stimulus LinkEndLink

Instance

+associationEnd 1

+qualifierValue*{ordered}

2..*1

+connection

2..*1 {ordered}

+association1

*

*

1

*

0..10..1

*

+linkEnd

*

*

1

*

+communicationLink

0..1* 0..1

1 2 .. *1

+connection

2 .. *{ordered}

+ownedLink

*

+instance

11

*

+owner

0..1

*

0..1
© ISO/IEC 2005 - All rights reserved 89

ISO/IEC 19501:2005(E)
Attributes

Associations

4.9.2.2 ActionSequence

An action sequence is a collection of actions.

In the metamodel, an ActionSequence is an Action that is an aggregation of other Actions. It describes the behavior of the
owning State or Transition.

Associations

4.9.2.3 Argument

An argument is an expression describing how to determine the actual values passed in a dispatched request.

In the metamodel, an Argument is a composite part of an Action and contains a metaattribute value of type Expression. It
states how the actual argument is determined when the owning Action is executed.

Attributes

4.9.2.4 AttributeLink

An attribute link is a named slot in an instance, which holds the value of an attribute.

In the metamodel, AttributeLink is a piece of the state of an Instance and holds the value of an Attribute.

Associations

4.9.2.5 CallAction

A call action is an action resulting in an invocation of an operation on an instance. A call action can be synchronous or
asynchronous, indicating whether the operation is invoked synchronously or asynchronously.

isAsynchronous Indicates if a dispatched Stimulus is asynchronous or not.

recurrence An Expression stating how many times the Action should be performed.

script An ActionExpression describing the effects of the Action.

target An ObjectSetExpression that determines the target of the Action.

actualArgument A sequence of Expressions that determines the actual arguments needed when evaluating the Action.

action A sequence of Actions performed sequentially as an atomic unit.

value An Expression determining the actual Instance when evaluated.

value The Instance that is the value of the AttributeLink.

attribute The Attribute from which the AttributeLink originates.
90 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In the metamodel, the CallAction is an Action. The designated Instance or set of Instances is specified via the target
expression, and the actual arguments are designated via the argument association inherited from Action. The Operation to be
invoked is specified by the associated Operation.

Attributes

Associations

4.9.2.6 ComponentInstance

A component instance is an instance of a component that resides on a node instance. A component instance may have a state.

In the metamodel, a ComponentInstance is an Instance that originates from a Component. It may be associated with a set of
Instances, and may reside on a NodeInstance.

Associations

4.9.2.7 CreateAction

A create action is an action resulting in the creation of an instance of some classifier.

In the metamodel, the CreateAction is an Action. The Classifier to be instantiated is designated by the instantiation association
of the CreateAction. A CreateAction has no target instance.

Associations

4.9.2.8 DataValue

A data value is an instance with no identity.

In the metamodel, DataValue is a child of Instance that cannot change its state; that is, all Operations that are applicable to it
are pure functions or queries. DataValues are typically used as attribute values.

4.9.2.9 DestroyAction

A destroy action is an action that results in the destruction of an object specified in the action.

In the metamodel, a DestroyAction is an Action. The designated object is specified by the target association of the Action.

isAsynchronous (inherited from Action) Indicates if a dispatched operation is asynchronous or not.

• False - indicates that the caller waits for the completion of the execution of the operation.
• True - Indicates that the caller does not wait for the completion of the execution of the operation

but continues immediately.

operation The operation that will be invoked when the Action is executed.

resident A collection of Instances that exist inside the ComponentInstance.

instantiation The Classifier of which an Instance will be created of when the CreateAction is performed.
© ISO/IEC 2005 - All rights reserved 91

ISO/IEC 19501:2005(E)
4.9.2.10 Exception

An exception is a signal raised by behavioral features typically in case of execution faults. In the metamodel, Exception is
derived from Signal. An Exception is associated with the BehavioralFeatures that raise it.

Associations

4.9.2.11 Instance

The instance construct defines an entity to which a set of operations can be applied and which has a state that stores the effects
of the operations.

In the metamodel, Instance is connected to at least one Classifier that declares its structure and behavior. It has a set of attribute
values and is connected to a set of Links, both sets matching the definitions of its Classifiers. The two sets implement the
current state of the Instance. An Instance may also own other Instances or Links. Instance is an abstract metaclass.

Associations

Standard Constraints

Tagged Values

4.9.2.12 Link

The link construct is a connection between instances.

In the metamodel, Link is an instance of an Association. It has a set of LinkEnds that matches the set of AssociationEnds of the
Association. A Link defines a connection between Instances.

context (Inherited from Signal) The set of BehavioralFeatures that raise the exception.

slot The set of AttributeLinks that holds the attribute values of the Instance.

linkEnd The set of LinkEnds of the connected Links that are attached to the Instance.

classifier The set of Classifiers that declare the structure of the Instance.

ownedInstance The set of Instances that are owned by the Instance.

ownedLink The set of Links that are owned by the Instance.

owner Specifies the Instance that owns the Instance.

destroyed Destroyed is a constraint applied to an instance, specifying that the instance is destroyed during the execution.

new New is a constraint applied to an instance, specifying that the instance is created during the execution.

transient Transient is a constraint applied to an instance, specifying that the instance is created and destroyed during the
execution.

persistent Persistence denotes the permanence of the state of the instance, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is not destroyed when the instance is destroyed).
92 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Associations

Standard Constraints

4.9.2.13 LinkEnd

A link end is an end point of a link. In the metamodel LinkEnd is the part of a Link that connects to an Instance. It corresponds
to an AssociationEnd of the Link’s Association.

Associations

Standard Constraints

4.9.2.14 LinkObject

A link object is a link with its own set of attribute values and to which a set of operations may be applied.

In the metamodel, LinkObject is a connection between a set of Instances, where the connection itself may have a set of
attribute values and to which a set of Operations may be applied. It is a child of both Object and Link.

association The Association that is the declaration of the link.

connection The tuple of LinkEnds that constitute the Link.

owner Specifies the Instance that owns the Link.

destroyed Destroyed is a constraint applied to a link, specifying that the link is destroyed during the execution.

new New is a constraint applied to a link, specifying that the link is created during the execution.

transient Transient is a constraint applied to a link, specifying that the link is created and destroyed during the execution.

associationEnd The AssociationEnd that is the declaration of the LinkEnd.

instance The Instance connected to the LinkEnd.

qualifierValue The AttributeLinks that hold the values of the Qualifier associated with the corresponding AssociationEnd.

association Association is a constraint applied to a link-end, specifying that the corresponding instance is visible via
association.

global Global is a constraint applied to a link-end, specifying that the corresponding instance is visible because it is
in a global scope relative to the link.

local Local is a constraint applied to link-end, specifying that the corresponding instance is visible because it is in a
local scope relative to the link.

parameter Parameter is a constraint applied to a link-end, specifying that the corresponding instance is visible because it
is a parameter relative to the link.

self Self is a constraint applied to a link-end, specifying that the corresponding instance is visible because it is the
dispatcher of a request.
© ISO/IEC 2005 - All rights reserved 93

ISO/IEC 19501:2005(E)
4.9.2.15 NodeInstance

A node instance is an instance of a node. A collection of component instances may reside on the node instance.

In the metamodel, NodeInstance is an Instance that originates from a Node. Each ComponentInstance that resides on a
NodeInstance must be an instance of a Component that resides on the corresponding Node.

Associations

4.9.2.16 Object

An object is an instance that originates from a class.

In the metamodel, Object is a subclass of Instance and it originates from at least one Class. The set of Classes may be modified
dynamically, which means that the set of features of the Object may change during its lifetime.

4.9.2.17 Reception

A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal. The reception designates a
signal and specifies the expected behavioral response. A reception is a summary of expected behavior. The details of handling
a signal are specified by a state machine.

In the metamodel, Reception is a child of BehavioralFeature and declares that the Classifier containing the feature reacts to the
signal designated by the reception feature. The isPolymorphic attribute specifies whether the behavior is polymorphic or not; a
true value indicates that the behavior is not always the same and may be affected by state or subclassing. The specification
indicates the expected response to the Signal.

Attributes

Associations

4.9.2.18 ReturnAction

A return action is an action that results in returning a value to a caller.

In the metamodel, ReturnAction is an Action that causes values to be passed back to the activator. The values are represented
by the arguments inherited from Action. A ReturnAction has no explicit target.

resident A collection of ComponentInstances that reside on the NodeInstances.

isAbstract If true, then the reception does not have an implementation, and one must be supplied by a descendant. If false,
the reception must have an implementation in the classifier or inherited from an ancestor.

isLeaf If true, then the implementation of the reception may not be overridden by a descendant classifier. If false, then
the implementation of the reception may be overridden by a descendant classifier (but it need not be
overridden).

isRoot If true, then the classifier must not inherit a declaration of the same reception. If false, then the classifier may
(but need not) inherit a declaration of the same reception. (But the declaration must match in any case; a
classifier may not modify an inherited declaration of a reception.)

specification A description of the effects of the classifier receiving a Signal, stated by a String.

signal The Signal that the Classifier is prepared to handle.
94 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.9.2.19 SendAction

A send action is an action that results in the (asynchronous) sending of a signal. The signal can be directed to a set of receivers
via an objectSetExpression, or sent implicitly to an unspecified set of receivers, defined by some external mechanism. For
example, if the signal is an exception, the receiver is determined by the underlying runtime system mechanisms.

In the metamodel, SendAction is an Action. It is associated with the Signal to be raised, and its actual arguments are specified
by the argument association, inherited from Action.

Associations

4.9.2.20 Signal

A signal is a specification of an asynchronous stimulus communicated between instances. The receiving instance handles the
signal by a state machine. Signal is a generalizable element and is defined independently of the classes handling the signal. A
reception is a declaration that a class handles a signal, but the actual handling is specified by a state machine.

In the metamodel, Signal is a child to Classifier, with the parameters expressed as Attributes. A Signal is always asynchronous.
A Signal is associated with the BehavioralFeatures that raise it.

Associations

4.9.2.21 Stimulus

A stimulus reifies a communication between two instances.

In the metamodel, Stimulus is a communication; that is, a Signal sent to an Instance, or an invocation of an Operation. It can
also be a request to create an Instance, or to destroy an Instance. It has a sender, a receiver, and may have a set of actual
arguments, all being Instances.

Associations

4.9.2.22 SubsystemInstance

A subsystem instance is an instance of a subsystem. It is the runtime representation of a subsystem, hence it can be connected
to links corresponding to associations of the subsystem. Its task is to handle incoming communication by re-directing stimuli
to the appropriate receiver inside the subsystem. In the metamodel SubsystemInstance is a subclass of Instance.

signal The signal that will be invoked when the Action is executed.

context The set of BehavioralFeatures that raise the signal.

reception A set of Receptions that indicates Classes prepared to handle the signal.

argument The sequence of Instances being the arguments of the Stimulus.

communicationLink The Link that is used for communication.

dispatchAction The Action that caused the Stimulus to be dispatched when it was executed.

receiver The Instance that receives the Stimulus.

sender The Instance that sends the Stimulus.
© ISO/IEC 2005 - All rights reserved 95

ISO/IEC 19501:2005(E)
4.9.2.23 TerminateAction

A terminate action results in self-destruction of an object.

In the metamodel, TerminateAction is a child of Action. The target of a TerminateAction is implicitly the Instance executing
the action, so there is no explicit target.

4.9.2.24 UninterpretedAction

An uninterpreted action represents an action that is not explicitly reified in the UML.

Taken to the extreme, any action is a call or raise on some instance, like in Smalltalk. However, in more practical terms,
uninterpreted actions can be used to model language-specific actions that are neither call actions nor send actions, and are not
easily categorized under the other types of actions.

4.9.3 Well-Formedness Rules

The following well-formedness rules apply to the Common Behavior package.

4.9.3.1 Action

No extra well-formedness rules.

4.9.3.2 ActionSequence

No extra well-formedness rules.

4.9.3.3 Argument

No extra well-formedness rules.

4.9.3.4 AttributeLink

[1] The type of the Instance must match the type of the Attribute.

self.value.classifier->union (
self.value.classifier.allParents)->includes (

self.attribute.type)

4.9.3.5 CallAction

[1] The number of arguments must be the same as the number of parameters in the Operation.

self.actualArgument->size = self.operation.parameter->size

4.9.3.6 ComponentInstance

[1] A ComponentInstance originates from exactly one Component.

self.classifier->size = 1

and

self.classifier.oclIsKindOf (Component)

[2] A ComponentInstance may only own ComponentInstances.

self.contents->forAll (c | c.oclIsKindOf(ComponentInstance))
96 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.9.3.7 CreateAction

[1] A CreateAction does not have a target expression.

self.target->isEmpty

4.9.3.8 DestroyAction

[1] A DestroyAction should not have arguments.

 self.actualArgument->size = 0

4.9.3.9 DataValue

[1] A DataValue originates from exactly one Classifier, which is a DataType.

(self.classifier->size = 1)

and

self.classifier.oclIsKindOf(DataType)

[2] A DataValue has no AttributeLinks.

self.slot->isEmpty

[3] A DataValue may not contain any Instances.

self.contents->isEmpty

4.9.3.10 Exception

No extra well-formedness rules.

4.9.3.11 Instance

[1] The AttributeLinks match the declarations in the Classifiers.

self.slot->forAll (al |

self.classifier->exists (c |

c.allAttributes->includes (al.attribute)))

[2] The Links match the declarations in the Classifiers.

self.allLinks->forAll (l |

self.classifier->exists (c |

c.allAssociations->includes (l.association)))

[3] If two Operations have the same signature they must be the same.

self.classifier->forAll (c1, c2 |

c1.allOperations->forAll (op1 |

c2.allOperations->forAll (op2 |

op1.hasSameSignature (op2) implies op1 = op2)))

[3] There are no name conflicts between the AttributeLinks and opposite LinkEnds.

self.slot->forAll(al |
© ISO/IEC 2005 - All rights reserved 97

ISO/IEC 19501:2005(E)
not self.allOppositeLinkEnds->exists(le | le.name = al.name))

and

self.allOppositeLinkEnds->forAll(le |

not self.slot->exists(al | le.name = al.name))

[4] For each Association in which an Instance is involved, the number of opposite LinkEnds must match the multiplicity
of the AssociationEnd.

self.classifier.allOppositeAssociationEnds->forAll (ae |

ae.multiplicity.multiplicityRange->exists (mr |

self.selectedLinkEnds (ae)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (ae)->size <=

mr.upper.oclAsType (Integer)))))

[5] The number of associated AttributeLinks must match the multiplicity of the Attribute.

self.classifier.allAttributes->forAll (a |

a.multiplicity.multiplicityRange->exists (mr |

self.selectedAttributeLinks (a)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (a)->size <=

mr.upper.oclAsType (Integer)))))

Additional operations

[1] The operation allLinks results in a set containing all Links of the Instance itself.

allLinks : set(Link);

allLinks = self.linkEnd.link

[2] The operation allOppositeLinkEnds results in a set containing all LinkEnds of Links connected to the Instance with
another LinkEnd.

allOppositeLinkEnds : set(LinkEnd);

allOppositeLinkEnds = self.allLinks.connection->select (le |
le.instance <> self)

[3] The operation selectedLinkEnds results in a set containing all opposite LinkEnds corresponding to a given
AssociationEnd.

selectedLinkEnds (ae : AssociationEnd) : set(LinkEnd);

selectedLinkEnds (ae) = self.allOppositeLinkEnds->select (le |
le.associationEnd = ae)

[4] The operation selectedAttributeLinks results in a set containing all AttributeLinks corresponding to a given Attribute.
98 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
selectedAttributeLinks (ae : Attribute) : set(AttributeLink);

selectedAttributeLinks (a) = self.slot->select (s |
s.attribute = a)

[5] The operation contents results in a Set containing all ModelElements contained by the Instance.

contents: Set(ModelElement);

contents = self.ownedInstance->union(self.ownedLink)

4.9.3.12 Link

[1] The set of LinkEnds must match the set of AssociationEnds of the Association.

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).associationEnd =

self.association.connection->at (i))

[2] There are not two Links of the same Association that connects the same set of Instances in the same way.

self.association.link->forAll (l |

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).instance =

l.connection->at (i).instance)

implies self = l)

4.9.3.13 LinkEnd

[1] The type of the Instance must match the type of the AssociationEnd.

self.instance.classifier->union (
self.instance.classifier.allParents)->includes (

self.associationEnd.type)

4.9.3.14 LinkObject

[1] One of the Classifiers must be the same as the Association.

self.classifier->includes(self.association)

[2] The Association must be a kind of AssociationClass.

self.association.oclIsKindOf(AssociationClass)

4.9.3.15 NodeInstance

[1] A NodeInstance must have only one Classifier as its origin, and it must be a Node.

self.classifier->forAll (c | c.oclIsKindOf(Node))

and

self.classifier->size = 1

[2] Each ComponentInstance that resides on a NodeInstance must be an instance of a Component that resides on the
corresponding Node.

self.resident->forAll(n |
© ISO/IEC 2005 - All rights reserved 99

ISO/IEC 19501:2005(E)
self.classifier.resident->includes(n.classifier))

[3] A NodeInstance may not contain any Instances.

self.contents->isEmpty

4.9.3.16 Object

[1] Each of the Classifiers must be a kind of Class or ClassifierInState.

self.classifier->forAll (c | c.oclIsKindOf(Class) or

(c.oclIsKindOf(ClassifierInState) and

 c.oclAsType(ClassifierInState).type.oclIsKindOf(Class)))

[2] An Object may only own Objects, DataValues, Links, UseCaseInstances, CollaborationInstances, and Stimuli.

self.contents->forAll(c |

c.oclIsKindOf(Object) or

c.oclIsKindOf(DataValue) or

c.oclIsKindOf(Link) or

c.oclIsKindOf(UseCaseInstance) or

c.oclIsKindOf(CollaborationInstance) or

c.oclIsKindOf(Stimuli))

4.9.3.17 Reception

[1] A Reception cannot be a query.

not self.isQuery

4.9.3.18 ReturnAction

[1] A ReturnAction is always asynchronous.

self.isAsynchronous

4.9.3.19 SendAction

[1] The number of arguments is the same as the number of parameters of the Signal.

self.actualArgument->size = self.signal.allAttributes->size

[2] A Signal is always asynchronous.

self.isAsynchronous

4.9.3.20 Signal

[1] A Signal may not contain any ModelElements.

self.contents->isEmpty

4.9.3.21 Stimulus

[1] The number of arguments must match the number of Arguments of the Action.
100 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
self.dispatchAction.actualArgument->size = self.argument->size

[2] The Action must be a SendAction, a CallAction, a CreateAction, or a DestroyAction.

self.dispatchAction.oclIsKindOf (SendAction) or

self.dispatchAction.oclIsKindOf (CallAction) or

self.dispatchAction.oclIsKindOf (CreateAction) or

self.dispatchAction.oclIsKindOf (DestroyAction)

4.9.3.22 SubsystemInstance

[1] A SubsystemInstance may only own Objects, DataValues, Links, UseCaseInstances, CollaborationInstances,
SubsystemInstances, and Stimuli.

self.contents->forAll (c |

c.oclIsKindOf(Object) or

c.oclIsKindOf(DataValue) or

c.oclIsKindOf(Link) or

c.oclIsKindOf(UseCaseInstance) or

c.oclIsKindOf(CollaborationInstance) or

c.oclIsKindOf(SubsystemInstance) or

c.oclIsKindOf(Stimulus))

[2] A SubsystemInstance originates from a Subsystem.

self.classifier.oclIsKindOf(Subsystem)

4.9.3.23 TerminateAction

[1] A TerminateAction has no arguments.

self.actualArguments->size = 0

4.9.3.24 UninterpretedAction

No extra well-formedness rules.

4.9.4 Detailed Semantics

This section provides a description of the semantics of the elements in the Common Behavior package.

4.9.4.1 Object and DataValue

An object is an instance that originates from a class, it is structured and behaves according to its class. All objects originating
from the same class are structured in the same way, although each of them has its own set of attribute links. Each attribute link
references an instance, usually a data value. The number of attribute links with the same name fulfills the multiplicity of the
corresponding attribute in the class. The set may be modified according to the specification in the corresponding attribute; for
example, each referenced instance must originate from (a specialization of) the type of the attribute, and attribute links may be
added or removed according to the changeable property of the attribute.

An object may have multiple classes; that is, it may originate from several classes. In this case, the object will have all the
features declared in all of these classes, both the structural and the behavioral ones. Moreover, the set of classes; that is, the set
© ISO/IEC 2005 - All rights reserved 101

ISO/IEC 19501:2005(E)
of features that the object conforms to may vary over time. New classes may be added to the object and old ones may be
detached. This means that the features of the new classes are dynamically added to the object, and the features declared in a
class that is removed from the object are dynamically removed from the object. No name clashes between attributes links and
opposite link ends are allowed, and each operation that is applicable to the object should have a unique signature.

Another kind of instance is data value, which is an instance with no identity. Moreover, a data value cannot change its state; all
operations that are applicable to a data value are queries and do not cause any side effects. Since it is not possible to
differentiate between two data values that appear to be the same, it becomes more of a philosophical issue whether there are
several data values representing the same value or just one for each value-it is not possible to tell. In addition, a data value
cannot change its data type.

An instance may contain other instances as a result of a (namespace) containment between their classifiers. Namespace rules
imply that an instance contained in another instance has access to all names that are accessible to its container instance.

Subsystem instances are further discussed in Section 4.14, “Model Management,” on page 161.

4.9.4.2 Link

A link is a connection between instances. Each link is an instance of an association; that is, a link connects instances of
(specializations of) the associated classifiers. In the context of an instance, an opposite end defines the set of instances
connected to the instance via links of the same association and each instance is attached to its link via a link-end originating
from the same association-end. However, to be able to use a particular opposite end, the corresponding link end attached to the
instance must be navigable. An instance may use its opposite ends to access the associated instances. An instance can
communicate with the instances of its opposite ends and use references to them as arguments or reply values in
communications.

A link object is a special kind of link, which at the same time is also an object. Since an object may change its classes this is
also true for a link object. However, one of the classes must always be an association class.

4.9.4.3 Signal, Exception and Stimulus

Several kinds of requests exist between instances; for example, sending a signal and invoking an operation. The former is used
to trigger a reaction in the receiver in an asynchronous way and without a reply, while the latter applies an operation to an
instance, which can be either done synchronously or asynchronously and may require a reply from the receiver to the sender.
Other kinds of requests are used for example to create a new instance or to delete an already existing instance. When an
instance communicates with another instance a stimulus is passed between the two instances. Each stimulus has a sender
instance and a receiver instance, and possibly a sequence of arguments according to the specifying signal or operation. The
stimulus uses a link between the sender and the receiver for communication. This link may be missing if the receiver is an
argument inside the current activation, a local or global variable, or if the stimulus is sent to the sender instance itself.
Moreover, a stimulus is dispatched by an action (e.g., a call action or a send action). The action specifies the request made by
the stimulus, like the operation to be invoked or the signal event to be raised, as well as how the actual arguments of the
stimulus are determined.

A signal may be attached to a classifier, which means that instances of the classifier will be able to receive that signal. This is
facilitated by declaring a reception by the classifier. An exception is a special kind of signal, typically used to signal fault
situations. The sender of the exception aborts execution and execution resumes with the receiver of the exception, which may
be the sender itself. Unlike other signals, the receiver of an exception is determined implicitly by the interaction sequence
during execution; it is not explicitly specified as the target of the send action.

The reception of a stimulus originating from a call action by an instance causes the invocation of an operation on the receiver.
The receiver executes the method that is found in the full descriptor of the class that corresponds to the operation. The
reception of a stimulus originating from a signal by an instance may cause a transition and subsequent effects as specified by
the state machine for the classifier of the recipient. This form of behavior is described in the State Machines package. Note that
102 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
the invoked behavior is described by methods and state machine transitions. Operations and receptions merely declare that a
classifier accepts a given operation invocation or signal but they do not specify the implementation.

4.9.4.4 Action

An action is a specification of a computable statement. Each kind of action is defined as a subclass of action. The following
kinds of actions are defined:

• send action is an action in which a stimulus is created that causes a signal event for the receiver(s).

• call action is an action in which a stimulus is created that causes an operation to be invoked on the receiver.

• create action is an action in which an instance is created based on the definitions of the specified set of classifiers.

• terminate action is an action in which an instance causes itself to cease to exist.

• destroy action is an action in which an instance causes another instance to cease to exist.

• return action is an action that returns a value to a caller.

• uninterpreted action is an action that has no interpretation in UML.

Each action specifies the target of the action and the arguments of the action. The target of an action is an object set expression,
which resolves into zero or more instances when the action is executed; for example, the receiver of a stimulus or the instance
to be destroyed. The action also specifies if it should iterate over the set of target instances (recurrence). Note, however, that
UML does not define if the action is applied to the target instances sequentially or in parallel. The recurrence can also (in the
degenerated case) be used for specification of a condition, which must be fulfilled if the action is to be applied to the target;
otherwise, the request is neglected.

The arguments of the action resolve into a sequence of instances when the action is executed. These instances are the actual
arguments of (for example, the stimulus being dispatched by the action); that is, the instances passed with a signal or the
instances used in an operation invocation. The argument sequence may be dependent on the recurrence; that is, the arguments
may vary dependent on the actual target.

An action is always executed within the context of an instance, so the target set expression and the argument expressions are
evaluated within an instance.

4.10 Collaborations

4.10.1 Overview

The Collaborations package is a subpackage of the Behavioral Elements package. The package uses constructs defined in the
Foundation package and the Common Behavior packages.

The Collaborations package provides the means to define Collaborations and CollaborationInstanceSets. The main constructs
used in a Collaboration include ClassifierRole, AssociationRole, Interaction, and Message while Instance, Stimulus, and Link
are used in a CollaborationInstanceSet.

The description of cooperating Instances involves two aspects: 1) the structural description of the participants, and 2) the
description of their communication patterns. The structure of the participants that play the roles in the performance of a
specific task and their relationships is called a Collaboration. The communication pattern performed by Instances playing the
roles to accomplish the task is called an Interaction. The behavior is implemented by ensembles of Instances that exchange
Stimuli within an overall Interaction. To understand the mechanisms used in a design, it is important to see only those
Instances and their Interactions that are involved in accomplishing a purpose or a related set of purposes, projected from the
larger system of which they are part of.
© ISO/IEC 2005 - All rights reserved 103

ISO/IEC 19501:2005(E)
A Collaboration includes a set of ClassifierRoles and AssociationRoles that define the participants needed for a given set of
purposes. Instances conforming to the ClassifierRoles play the roles defined by the ClassifierRoles, while Links between the
Instances conform to AssociationRoles of the Collaboration. ClassifierRoles and AssociationRoles define a usage of Instances
and Links, and the Classifiers and Associations declare all required properties of these Instances and Links.

An Interaction is defined in the context of a Collaboration. It specifies the communication patterns between the roles in the
Collaboration. More precisely, it contains a set of partially ordered Messages, each specifying one communication; for
example, what Signal to be sent or what Operation to be invoked, as well as the roles to be played by the sender and the
receiver, respectively.

A CollaborationInstanceSet references a collection of Instances that jointly perform the task specified by the
CollaborationInstanceSet’s Collaboration. These Instances play the roles defined by the ClassifierRoles of the Collaboration;
that is, the Instances have all the properties stated by (the Instances conform to) the ClassifierRoles. The Stimuli sent between
the Instances when performing the task are participating in the InteractionInstanceSet of the CollaborationInstanceSet. These
Stimuli conform to the Messages in one of the Interactions of the Collaboration. Since an Instance can participate in several
CollaborationInstanceSets at the same time, all its communications are not necessarily referenced by only one
InteractionInstanceSet. They can be interleaved.

A parameterized Collaboration represents a design construct that can be used repeatedly in different designs. The participants
in the Collaboration, including the Classifiers and Relationships, can be parameters of the generic Collaboration. The
parameters are bound to particular ModelElements in each instantiation of generic Collaboration. Such a parameterized
Collaboration can capture the structure of a design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a named ModelElement, Collaboration patterns
are free standing design constructs that must have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained Collaboration may be refined to produce
another Collaboration that has a finer granularity.

Collaborations can be used for expressing several different things, like how use cases are realized, actor structures of ROOM,
OOram role models, and collaborations as defined in Catalysis. They are also used for setting up the context of Interactions
and for defining the mapping between the specification part and the realization part of a Subsystem.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to describe the realization of the Operation or
of the Classifier; that is, what roles Instances play to perform the behavior specified by the Operation or the UseCase. A
Collaboration that describes a Classifier, like a UseCase, references Classifiers and Associations in general, while a
Collaboration describing an Operation includes the arguments and the local variables of the Operation, as well as ordinary
Associations attached to the Classifier owning the Operation. The Interactions defined within the Collaboration specify the
communication pattern between the Instances when they perform the behavior specified in the Operation or the UseCase. A
Collaboration may also be attached to a Classifier to define the static structure of it; that is, the roles played by the Attributes,
the Parameters, etc.

A ClassifierRole or an AssociationRole has one or a collection of Classifiers or Associations as its base. The same Classifier or
Association can appear as the base of roles in several Collaborations and several times in the same Collaboration, each time in
a different role. In each appearance it is specified which of the properties of the Classifier or the Association are needed in the
particular usage. These properties constitute a subset of all the properties of that Classifier or Association.

A Collaboration is a GeneralizableElement. This implies that a Collaboration may specify a task that is a specialization of
another Collaboration’s task.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Collaborations package.

4.10.2 Abstract Syntax

The abstract syntax for the Collaborations package is expressed in graphic notation in Figure 18 through Figure 20.
104 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 18 - Collaborations - Roles

*

0..1

 +receiver

*

1 1

+ successor
+ activator

+predecessor

 +action

 +communicationConnection

0..1

0..1

 +constrainingElement

 +/ownedElement

2..*

1

 +availableContents

*

+ base

*

1

*

0..1

1

*

*

*

1

Action
(from CommonBehavior)
 ModelElement

(from Core)

Association
(from Core)

Classifier
(from Core)

 Collaboration

*1

*1

 Message

*

AssociationRole

Multiplicity : Multiplicity

 Attribute
(from core)

*
+ type

 ClassifierRole

multiplicity : Multiplicity

*

+ /connection

1

 +availableQualifier *

*+ /connection

{ordered}

2..*

+ base

*

AssociationEndRole

CollaborationMultiplicity : Multiplicity

AssociationEnd
(from Core)

*

 +availableFeature

 Feature
(from Core)

*

1..*

+ base

*

+ ownedElement

1..*

1

 +sender

*

© ISO/IEC 2005 - All rights reserved 105

ISO/IEC 19501:2005(E)
Figure 19 - Collaborations - Interactions

{xor}

GeneralizableElement
(from Core)

Namespace
(from Core)

Message

Operation
(from Core)

Interaction

1 1..*1

+message

1..*

Classifier
(from Core)

Collaboration

* 0..1*

+representedOperation

0..1

1

*

+context
1

+interaction

*

* 0..1*

+representedClassifier

0..1*

*

+usedCollaboration

*

*

ModelElement
(from Core)
106 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 20 - Collaborations - Instances

4.10.2.1 AssociationEndRole

An association-end role specifies an endpoint of an association as used in a collaboration.

In the metamodel, an AssociationEndRole is part of an AssociationRole and specifies the connection of an AssociationRole to
a ClassifierRole. It is related to the AssociationEnd, declaring the corresponding part in an Association.

Attributes

Associations

4.10.2.2 AssociationRole

An association role is a specific usage of an association needed in a collaboration.

In the metamodel, an AssociationRole specifies a restricted view of an Association used in a Collaboration. An

collaborationMultiplicity The number of LinkEnds playing this role in a Collaboration.

availableQualifier The subset of Qualifiers that are used in the Collaboration.

base The AssociationEnd which the AssociationEndRole is a projection of.

*

*

*

*

* +conformingStimulus

+ playedRole 0..1 + interaction *

*

 +constraining
Element

+Interaction
Instance +participating

Stimulus
+participating
Instance

 +context

1..*

 +conforming
Link

0..1

*

*

1

Stimulus
(from

CommonBehavior)

Link
 (from Common Behavior)

 +participatingLink

Interaction
InstanceSet

Collaboration
InstanceSet

ModelElement
(from Core)

* *

*

 +collaboration

+ message

1..* 1

+ interaction

1

*

1

Collaboration

 +context +ownedElement ClassifierRole

multiplicity : Multiplicity

+ playedRole

+ playedRole

+ownedElement

 AssociationRole

 Multiplicity : Multiplicity

1..*

 +conformingInstance

1..*

*

Instance
(from Common

Behavior)

*

*1

 Message

Interaction

*

© ISO/IEC 2005 - All rights reserved 107

ISO/IEC 19501:2005(E)
AssociationRole is a composition of a set of AssociationEndRoles corresponding to the AssociationEnds of its base
Association.

Attributes

Associations

4.10.2.3 ClassifierRole

A classifier role is a specific role played by a participant in a collaboration. It specifies a restricted view of a classifier, defined
by what is required in the collaboration.

In the metamodel, a ClassifierRole specifies one participant of a Collaboration; that is, a role Instances conform to. A
ClassifierRole defines a set of Features, which is a subset of those available in the base Classifiers, as well as a subset of
ModelElements contained in the base Classifiers, that are used in the role. The ClassifierRole may be connected to a set of
AssociationRoles via AssociationEndRoles. As ClassifierRole is a kind of Classifier, a Generalization relationship may be
defined between two ClassifierRoles. The child role is a specialization of the parent; that is, the Features and the contents of
the child includes the Features and contents of the parent.

Attributes

Associations

4.10.2.4 Collaboration

A collaboration describes how an operation or a classifier, like a use case, is realized by a set of classifiers and associations
used in a specific way. The collaboration defines a set of roles to be played by instances and links, as well as a set of
interactions that define the communication between the instances when they play the roles.

In the metamodel, a Collaboration contains a set of ClassifierRoles and AssociationRoles, which represent the Classifiers and
Associations that take part in the realization of the associated Classifier or Operation. The Collaboration may also contain a set
of Interactions that are used for describing the behavior performed by Instances conforming to the participating
ClassifierRoles.

A Collaboration specifies a view (restriction, slice, projection) of a model of Classifiers. The projection describes the required
relationships between Instances that conform to the participating ClassifierRoles, as well as the required subsets of the

multiplicity The number of Links playing this role in a Collaboration.

base The Association which the AssociationRole is a view of.

conformingLink The collection of Links that conforms to the AssociationRole.

multiplicity The number of Instances playing this role in a Collaboration.

availableContents The subset of ModelElements contained in the base Classifier, which is used in the Collaboration.

availableFeature The subset of Features of the base Classifier, which is used in the Collaboration.

base The Classifiers, which the ClassifierRole is a view of.

conformingInstance The collection of Instances that conforms to the ClassifierRole.
108 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Features and contained ModelElements of these Classifiers. Several Collaborations may describe different projections of the
same set of Classifiers. Hence, a Classifier can be a base for several ClassifierRoles.

A Collaboration may also reference a set of ModelElements, usually Classifiers and Generalizations, needed for expressing
structural requirements, such as Generalizations required between the Classifiers themselves to fulfill the intent of the
Collaboration.

A Collaboration is a GeneralizableElement, which implies that one Collaboration may specify a task that is a specialization of
the task of another Collaboration.

Associations

4.10.2.5 CollaborationInstanceSet

A collaboration instance set references a set of instances that jointly collaborate in performing the particular task specified by
the collaboration of the collaboration instance. The instances in the collaboration instance set play the roles defined in the
collaboration.

In the metamodel, a CollaborationInstanceSet references a set of Instances and Links that play the roles defined by the
ClassifierRoles and AssociationRoles of the CollaborationInstanceSet’s Collaboration.

A CollaborationInstanceSet contains an InteractionInstanceSet, which references the set of Stimuli that are interchanged
between the Instances of the CollaborationInstanceSet and corresponds to the Messages of an Interaction in the
CollaborationInstanceSet’s Collaboration.

Associations

constrainingElement The ModelElements that add extra constraints, like Generalization and Constraint, on the
ModelElements participating in the Collaboration.

interaction The set of Interactions that are defined within the Collaboration.

ownedElement (Inherited from Namespace) The set of roles defined by the Collaboration. These are ClassifierRoles
and AssociationRoles.

representedClassifier The Classifier the Collaboration is a realization of. (Used if the Collaboration represents a Classifier.)

representedOperation The Operation the Collaboration is a realization of. (Used if the Collaboration represents an Operation.)

usedCollaboration Collaborations that are used when defining the source Collaboration.

constrainingElement The ModelElements that add extra constraints, like Generalization and Constraint, on the
ModelElements participating in the Collaboration.

collaboration The Collaboration, which declares the roles that the Instances that participate in the
CollaborationInstanceSet play.

interactionInstanceSet The InteractionInstanceSet that references the Stimuli passed between the Instances when performing
the task of the CollaborationInstanceSet’s Collaboration.

participatingInstance The set of Instances that participate in the CollaborationInstanceSet.

participatingLink The set of Links that participate in the CollaborationInstanceSet.
© ISO/IEC 2005 - All rights reserved 109

ISO/IEC 19501:2005(E)
4.10.2.6 Interaction

An interaction specifies the communication between instances performing a specific task. Each interaction is defined in the
context of a collaboration. In the metamodel, an Interaction contains a set of Messages specifying the communication between
a set of Instances conforming to the ClassifierRoles of the owning Collaboration.

Associations

4.10.2.7 InteractionInstanceSet

An interaction instance set is the set of stimuli that participate in a collaboration instance set. In the metamodel, an
InteractionInstanceSet references a collection of Stimuli that conform to the Messages of the InteractionInstanceSet’s
Interaction.

Associations

4.10.2.8 Message

A message defines a particular communication between instances that is specified in an interaction.

In the metamodel, a Message defines one specific kind of communication in an Interaction. A communication can be raising a
Signal, invoking an Operation, creating or destroying an Instance. The Message specifies not only the kind of communication,
but also the roles of the sender and the receiver, the dispatching Action, and the role played by the communication Link.
Furthermore, the Message defines the relative sequencing of Messages within the Interaction.

Associations

context The Collaboration that defines the context of the Interaction.

message The Messages that specify the communication in the Interaction.

context The CollaborationInstanceSet that defines the context of the InteractionInstanceSet.

participating-Stimulus The Stimuli that participate in the performance of the CollaborationInstanceSet.

interaction The Interaction that defines the interaction pattern that the stimuli conforms to.

action The Action that causes a Stimulus to be sent according to the Message.

activator The Message that invokes the behavior causing the dispatching of the current Message.

communicationConnection The AssociationRole played by the Links used in the communications specified by the Message.

conformingStimulus The collection of Stimuli that conforms to the Message.

interaction The Interaction of which the Message is a part.

receiver The role of the Instance that receives the communication and reacts to it.

predecessor The set of Messages whose completion enables the execution of the current Message. All of them must
be completed before execution begins.

 sender The role of the Instance that invokes the communication and possibly receives a response.
110 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.10.3 Well-Formedness Rules

The following well-formedness rules apply to the Collaborations package.

4.10.3.1 AssociationEndRole

[1] The type of the ClassifierRole must conform to the type of the base AssociationEnd.

self.type.base = self.base.type

or

self.type.base.allParents->includes (self.base.type)

[2] The type must be a kind of ClassifierRole.

self.type.oclIsKindOf (ClassifierRole)

[3] The qualifiers used in the AssociationEndRole must be a subset of those in the base AssociationEnd.

self.base.qualifier->includesAll (self.availableQualifier)

[4] In a Collaboration an Association may only be used for traversal if it is allowed by the base Association.

self.isNavigable implies self.base.isNavigable

[5] An AssociationEndRole is not a role of another AssociationEndRole.

not self.base.oclIsKindOf (AssociationEndRole)

4.10.3.2 AssociationRole

[1] The AssociationEndRoles must conform to the AssociationEnds of the base Association.

Sequence{ 1..(self.connection->size) }->forAll (index |

self.connection->at(index).base =

self.base.connection->at(index))

[2] The endpoints must be a kind of AssociationEndRoles.

self.connection->forAll(r | r.oclIsKindOf (AssociationEndRole))

[3] An AssociationEnd is not a role of another AssociationEnd.

not self.base.oclIsKindOf (AssociationEnd)

4.10.3.3 ClassifierRole

[1] The AssociationRoles connected to the ClassifierRole must match a subset of the Associations connected to the base
Classifiers.

self.allAssociations->forAll(ar |

self.base.allAssociations->exists (a | ar.base = a))

[2] The Features and contents of the ClassifierRole must be subsets of those of the base Classifiers.

self.base.allFeatures->includesAll (self.allAvailableFeatures)

and

self.base.allContents->includesAll (self.allAvailableContents)
© ISO/IEC 2005 - All rights reserved 111

ISO/IEC 19501:2005(E)
[3] A ClassifierRole does not have any Features of its own.

self.allFeatures->isEmpty

[4] A ClassifierRole is not a role of another ClassifierRole.

not self.base.oclIsKindOf (ClassifierRole)

Additional operations

[1] The operation allAvailableFeatures results in the set of all Features contained in the ClassifierRole together with
those contained in the parents.

allAvailableFeatures : Set(Feature);

allAvailableFeatures = self.availableFeature->union

(self.parent.allAvailableFeatures)

[2] The operation allAvailableContents results in the set of all ModelElements contained in the ClassifierRole together
with those contained in the parents.

allAvailableContents : Set(ModelElement);

allAvailableContents = self.availableContents->union

(self.parent.allAvailableContents)

4.10.3.4 Collaboration

[1] All Classifiers and Associations of the ClassifierRoles and AssociationRoles in the Collaboration must be included in
the namespace owning the Collaboration.

self.allContents->forAll (e |

(e.oclIsKindOf (ClassifierRole) implies

self.namespace.allContents->includes (

e.oclAsType(ClassifierRole).base))

and

(e.oclIsKindOf (AssociationRole) implies

self.namespace.allContents->includes (

e.oclAsType(AssociationRole).base)))

[2] All the constraining ModelElements must be included in the namespace owning the Collaboration.

self.constrainingElement->forAll (ce |

self.namespace.allContents->includes (ce))

[3] If a ClassifierRole or an AssociationRole does not have a name, then it should be the only one with a particular base.

self.allContents->forAll (p |

(p.oclIsKindOf (ClassifierRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(ClassifierRole) implies
112 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies

p = q)))

and

(p.oclIsKindOf (AssociationRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =

q.oclAsType(AssociationRole).base implies

p = q)))

)

[4] A Collaboration may only contain ClassifierRoles and AssociationRoles, the Generalizations and the Constraints
between them, and Actions used in the Collaboration’s Interactions.

self.allContents->forAll (p |

p.oclIsKindOf (ClassifierRole) or

p.oclIsKindOf (AssociationRole) or

p.oclIsKindOf (Generalization) or

p.oclIsKindOf (Action) or

p.oclIsKindOf (Constraint))

[5] An Action contained in a Collaboration must be connected to a Message; that is, be the dispatching Action of the
Message, in an Interaction of the Collaboration.

self.allContents->forAll (p |

p.oclIsKindOf (Action) implies

self.interaction->exists (i : Interaction |

i.messages->exists (m : Message | m.action = p)))

[6] A role with the same name as one of the roles in a parent of the Collaboration must be a child (a specialization) of that
role.

self.contents->forAll (c |

self.parent.allContents->forall (p |

c.name = p.name implies c.allParents->include (p)))

Additional operations

[1] The operation allContents results in the set of all ModelElements contained in the Collaboration together with those
contained in the parents except those that have been specialized.

allContents : Set(ModelElement);

allContents = self.contents->union (
© ISO/IEC 2005 - All rights reserved 113

ISO/IEC 19501:2005(E)
self.parent.allContents->reject (e |

self.contents.name->include (e.name)))

4.10.3.5 CollaborationInstanceSet

[1] The Interaction of the CollaborationInstanceSet’s InteractionInstanceSet must be defined within the
CollaborationInstanceSet’s Collaboration.

self.collaboration.interaction->includes (

self.interactionInstanceSet.interaction)

4.10.3.6 Interaction

[1] All Signals being sent must be included in the namespace owning the Collaboration in which the Interaction is
defined.

self.message->forAll (m |

m.action.oclIsKindOf(SendAction) implies

self.context.namespace.allContents->includes (

m.action->oclAsType (SendAction).signal))

4.10.3.7 InteractionInstanceSet

No extra well-formedness rules.

4.10.3.8 Message

[1] The sender and the receiver must participate in the Collaboration, which defines the context of the Interaction.

self.interaction.context.ownedElement->includes (self.sender)

and

self.interaction.context.ownedElement->includes (self.receiver)

[2] The predecessors and the activator must be contained in the same Interaction.

self.predecessor->forAll (p | p.interaction = self.interaction)

and

self.activator->forAll (a | a.interaction = self.interaction)

[3] The predecessors must have the same activator as the Message.

self.allPredecessors->forAll (p | p.activator = self.activator)

[4] A Message cannot be the predecessor of itself.

not self.allPredecessors->includes (self)

[5] The communicationLink of the Message must be an AssociationRole in the context of the Message’s Interaction.

self.interaction.context.ownedElement->includes (

self.communicationConnection)

[6] The sender and the receiver roles must be connected by the AssociationRole, which acts as the communication
connection.
114 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
self.communicationConnection->size > 0 implies

self.communicationConnection.connection->exists (ar |

ar.type = self.sender)

and

self.communicationConnection.connection->exists (ar |

ar.type = self.receiver)

Additional operations

[1] The operation allPredecessors results in the set of all Messages that precede the current one.

allPredecessors : Set(Message);

allPredecessors = self.predecessor->union

(self.predecessor.allPredecessors)

4.10.4 Detailed Semantics

This section provides a description of the semantics of the elements in the Collaborations package. It is divided into two parts:
Collaboration and Interaction. The description of behavior involves two aspects: 1) the structural description of the
participants, and 2) the description of their communication patterns. The structure of Instances playing roles in a behavior and
their relationships is described by a collaboration. The communication pattern performed by Instances playing the roles to
accomplish a specific purpose is specified by an interaction.

4.10.4.1 Collaboration

Behavior is implemented by ensembles of instances that exchange stimuli to accomplish a task. To understand the mechanisms
used in a design, it is important to see only those instances and their interactions that are involved in accomplishing the task or
a related set of tasks, projected from the larger system of which they are parts of, and might be used for other purposes as well.
Such a static construct is called a collaboration.

A collaboration defines an ensemble of participants that are needed for a given set of purposes. The participants define roles
that instances and links play when interacting with each other. The roles to be played by the instances are modeled as classifier
roles, and by the links as association roles. Classifier roles and association roles define a usage of instances and links, while the
classifiers and associations specify all required properties of these instances and links. This means that the structure of an
ensemble of interlinked instances conforms to the roles in a collaboration as they collaborate to achieve a given task.
Reasoning about the behavior of an ensemble of instances can therefore be done in the context of the collaboration as well as
in the context of the instances.

A collaboration can be used for specification of how an operation or a classifier, like a use case, is realized by an ensemble of
classifiers and associations. Together, the classifiers and their associations participating in the collaboration meet the
requirements of the realized operation or classifier. The collaboration defines a context in which the behavior of the realized
element can be specified.

A collaboration specifies what properties instances must have to be able to take part in the collaboration; that is, a role in the
collaboration specifies the required set of features a conforming instance must have. Furthermore, the collaboration also states
what associations must exist between the participants, as well as what classifiers a participant, like a subsystem, must contain.
Neither all features nor all contents of the participating classifiers and not all associations between these classifiers are always
required in a particular collaboration. Because of this, a collaboration is defined in terms of classifier roles. A classifier role is
a description of the features required in a particular collaboration; that is, a classifier role can be seen as a projection of a
classifier, which is called the base of the classifier role. (In fact, since an instance can originate from multiple classifiers at the
same time (multiple classification), a classifier role can have several base classifiers.) However, instances of different
© ISO/IEC 2005 - All rights reserved 115

ISO/IEC 19501:2005(E)
classifiers can play the role defined by the classifier role, as long as they have all the required properties. Several classifier
roles may have the same base classifier, even in the same collaboration, but their features and contained elements may be
different subsets of the features and contained elements of the classifier. These classifier roles specify different roles played by
(possibly different) instances of the same classifier.

A collaboration may be attached to an operation or a classifier, like a use case, to describe the context in which their behavior
occurs; that is, what roles instances play to perform the behavior specified by the operation or the use case. A collaboration
used in this way describes the realization of the operation or the classifier. A collaboration that describes for example a use
case, references classifiers and associations in general, while a collaboration describing an operation includes only the
parameters and the local variables of the operation, as well as ordinary associations attached to the classifier owning the
operation. The interactions defined within the collaboration (see below) specify the communication pattern between the
instances when they perform the behavior specified in the operation or the use case. A collaboration may also be attached to a
class to define its static structure; that is, how its attributes, parameters etc. cooperate with each other.

In a collaboration, the association roles define what associations are needed between the classifiers in this context. Each
association role represents the usage of an association in the collaboration, and it is defined between the classifier roles that
represent the associated classifiers. The represented association is called the base association of the association role. As the
association roles specify a particular usage of an association in a specific collaboration, all constraints expressed by the
association ends are not necessarily required to be fulfilled in the specified usage. The multiplicity of the association end may
be reduced in the collaboration; that is, the upper and the lower bounds of the association end roles may be inside the bounds
of the corresponding end of the base association, as it might be that only a subset of the associated instances participate in the
collaboration instance set. Similarly, an association may be traversed in some, but perhaps not all, of the allowed directions in
the specific collaboration; that is, the value of the isNavigable property of an association end role may be false even if the
value of that property of the base association end is true. (However, the opposite is not true; that is, an association may not be
used for traversal in a direction that is not allowed according to the isNavigable properties of the association ends.) The
changeability and ordering of an association end may be strengthened in an association end role; that is, in a particular usage
the end is used in a more restricted way than is defined by the association. Furthermore, if an association has a collection of
qualifiers (see the Core), some of them may be used in a specific collaboration. An association end role may therefore include
a subset of the qualifiers defined by the corresponding association end of the base association.

A collaboration instance set references a collection of instances that play the roles defined in the collaboration instance set’s
collaboration. An instance participating in a collaboration instance set plays a specific role; that is, conforms to a classifier
role, in the collaboration. The number of instances that should play one specific role in a collaboration is specified by the
classifier role’s multiplicity. Different instances may play the same role but in different collaboration instance sets. Since all
these instances play the same role, they must all conform to the classifier role specifying the role. Thus, they are normally
instances of one of the base classifier of the classifier role, or one of their descendants. The only requirement on conforming
instances is that they must offer operations according to the classifier role, as well as support attribute links corresponding to
the attributes specified by the classifier role, and links corresponding to the association roles connected to the classifier role.
They may, therefore, be instances of any classifier meeting this requirement. The instances may, of course, have more attribute
links than required by the classifier role, which for example would be the case if they originate from a classifier being a child
of a base classifier. Moreover, a conforming instance may also support more attribute links than required if it originates from
multiple classifiers (multiple classification). Finally, one instance may play different roles in different collaboration instance
sets of the same collaboration. In fact, the instance may play multiple roles in the same collaboration instance set.

Collaborations (but not collaboration instance sets) may have generalization relationships to other collaborations. This means
that one collaboration can specify a specialization of another collaboration’s task. This implies that all the roles of the parent
collaboration are also available in the child collaboration; the child collaboration may, of course, also contain new roles. The
former roles may possibly be specialized with new features; that is, the role defined in the parent is replaced in the child by a
role with the same name as the parent role. The role in the child must reference the same collection of features and the same
collection of contained elements as the role in the parent, and may also reference some additional features and additional
contained elements. In this way it is possible to specialize a collaboration both by adding new roles and by replacing existing
roles with specializations of them. The specialized role, that is, a role with a generalization relationship to the replaced role,
116 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
may both reference new features and replace (override) features of its parent. Note that the base classifiers of the specialized
roles are not necessarily specializations of the base classifiers of the parent’s roles; it is enough that they contain all the
required features.

How the instances referenced by a collaboration instance set should interact to jointly perform the behavior of the classifier
realized by the collaboration is specified with a set of interactions (see below). The collaboration thus specifies the context in
which these interactions are performed. If the collaboration represents an operation, the context includes things like
parameters, attributes, and classifiers contained in the classifier owning the operation. The interactions then specify how the
arguments, the attribute values, the instances etc. will cooperate to perform the behavior specified by the operation. If the
collaboration is a specialization of another collaboration, all communications specified by the parent collaboration are also
included in the child, as the child collaboration includes all the roles of the parent. However, new messages may be inserted
into these sequences of communication, since the child may include specializations of the parent’s roles as well as new roles.
The child may of course also include completely new interactions that do not exist in the parent.

Two or more collaborations may be composed to form a new collaboration. For example, when refining a superordinate use
case into a set of subordinate use cases, the collaborations specifying each of the subordinate use cases may be composed into
one collaboration, which will be a (simple) refinement of the superordinate collaboration. The composition is done by
observing that at least one instance must participate in both sets of collaborating instances. This instance has to conform to one
classifier role in each collaboration. In the composite collaboration these two classifier roles are merged into a new one, which
will contain all features included in either of the two original classifier roles. The new classifier role will, of course, be able to
fulfill the requirements of both of the previous collaborations, so the instance participating in both of the two sets of
collaborating instances will conform to the new classifier role.

A parameterized collaboration represents a design construct that can be used repeatedly in different designs. The participants
in the collaboration, including the classifiers and relationships, can be parameters of the generic collaboration. The parameters
are bound to particular model elements in each instantiation of generic collaboration. Such a parameterized collaboration can
capture the structure of a design pattern (note that a design pattern involves more than structural aspects). Whereas most
collaborations can be anonymous because they are attached to a named model element, collaboration patterns are free standing
design constructs that must have names.

A collaboration may be a specification of a template. There will not be any instances of such a collaboration template, but it
can be used for generating ordinary collaborations, which may be instantiated. Collaboration templates may have parameters
that act like placeholders in the template. Usually, these parameters would be used as base classifiers and associations, but
other kinds of model elements can also be defined as parameters in the collaboration, like operation or signal. In a
collaboration generated from the template these parameters are refined by other model elements that make the collaboration
instantiable.

Moreover, a collaboration may also contain a set of constraining model elements, like constraints and generalizations perhaps
together with some extra classifiers. These constraining model elements do not participate in the collaboration themselves, but
are used for expressing the extra constraints on the participating elements in the collaboration that cannot be covered by the
participating roles themselves. For example, in a collaboration template it might be required that the base classifiers of two
roles must have a common ancestor, or one role must be a subclass of another one. These kinds of requirements cannot be
expressed with association roles, as the association roles express the required links between participating instances. An extra
set of model elements may therefore be included in the collaboration.

4.10.4.2 Interaction

An interaction is defined in the context of a collaboration. It specifies the communication patterns between its roles. More
precisely, it contains a set of partially ordered messages, each specifying one communication, such as what signal to be sent or
what operation to be invoked, as well as the roles to be played by the sender and the receiver, respectively.
© ISO/IEC 2005 - All rights reserved 117

ISO/IEC 19501:2005(E)
The purpose of an interaction is to specify the communication between an ensemble of interacting instances performing a
specific task. An interaction is defined within a collaboration; that is, the collaboration defines the context in which the
interaction takes place. The instances performing the communication specified by the interaction are included in a
collaboration instance set; that is, they conform to the classifier roles of the collaboration instance set’s collaboration.

An interaction specifies the sending of a set of stimuli. These are partially ordered based on which execution thread they
belong to. Within each thread the stimuli are sent in a sequential order while stimuli of different threads may be sent in parallel
or in an arbitrary order.

An interaction instance set references the collection of stimuli that constitute the actual communication between the collection
of instances. These instances are the collection of instances that participate in the collaboration instance set owning the
interaction instance set. Hence, the interaction instance set includes those stimuli that the instances communicate when
performing the task of the collaboration instance set. The stimuli of an interaction instance set match the messages of the
interaction instance set’s interaction.

A message is a specification of a communication. It specifies the roles of the sender and the receiver instances, as well as
which association role specifies the communication link. The message is connected to an action, which specifies the statement
that, when executed, causes the communication specified by the message to take place. If the action is a call action or a send
action, the signal to be sent or the operation to be invoked in the communication is stated by the action. The action also
contains the argument expressions that, when executed, will determine the actual arguments being transmitted in the
communication. Moreover, any conditions or iterations of the communication are also specified by the action. Apart from send
action and call action, the action connected to a message can also be of other kinds, like create action and destroy action. In
these cases, the communication will not raise a signal or invoke an operation, but cause a new instance to be created or an
already existing instance to be destroyed. In the case of a create action, the receiver specified by the message is the role to be
played by the instance, which is created when the action is performed.

The stimuli being sent when an action is executed conforms to a message, implying that the sender and receiver instances of
the stimuli are in conformance with the sender and the receiver roles specified by the message. Furthermore, the action
dispatching the stimulus is the same as the action attached to the message. If the action connected to the message is a create
action or destroy action, the receiver role of the message specifies the role to be played by the instance, or was played by the
instance, respectively.

The interaction specifies the activator and predecessors of each message. The activator is the message that invoked the
procedure that in turn invokes the current message. Every message except the initial messages of an interaction thus has an
activator. The predecessors are the set of messages that must be completed before the current message may be executed. The
first message in a procedure of course has no predecessors. If a message has more than one predecessor, it represents the
joining of two threads of control. If a message has more than one successor (the inverse of predecessor), it indicates a fork of
control into multiple threads. Thus, the predecessor’s relationship imposes a partial ordering on the messages within a
procedure, whereas the activator relationship imposes a tree on the activation of operations. Messages may be executed
concurrently subject to the sequential constraints imposed by the predecessors and activator relationship.

4.10.5 Notes

In UML, the term Pattern is a synonym for a collaboration template that describes the structure of a design pattern. This
definition is not as powerful as the term is used in other contexts. In general, design patterns involve many non-structural
aspects, such as heuristics for their use and lists of advantages and disadvantages. Such aspects are not modeled by UML and
may be represented as text or tables.
118 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.11 Use Cases

4.11.1 Overview

The Use Cases package is a subpackage of the Behavioral Elements package. It specifies the concepts used for definition of
the functionality of an entity like a system. The package uses constructs defined in the Foundation package of UML as well as
in the Common Behavior package.

The elements in the Use Cases package are primarily used to define the behavior of an entity, like a system or a subsystem,
without specifying its internal structure. The key elements in this package are UseCase and Actor. Instances of use cases and
instances of actors interact when the services of the entity are used. How a use case is realized in terms of cooperating objects,
defined by classes inside the entity, can be specified with a Collaboration. A use case of an entity may be refined to a set of use
cases of the elements contained in the entity. How these subordinate use cases interact can also be expressed in a
Collaboration. The specification of the functionality of the system itself is usually expressed in a separate use-case model; that
is, a Model stereotyped «useCaseModel» (see Section 6.7, “Stereotypes and Notation,” on page 327). The use cases and actors
in the use-case model are equivalent to those of the top-level package.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Use Cases package.

4.11.2 Abstract Syntax

The abstract syntax for the Use Cases package is expressed in graphic notation in Figure 21.
© ISO/IEC 2005 - All rights reserved 119

ISO/IEC 19501:2005(E)
Figure 21 - Use Cases

The following metaclasses are contained in the Use Cases package.

4.11.2.1 Actor

An actor defines a coherent set of roles that users of an entity can play when interacting with the entity. An actor may be
considered to play a separate role with regard to each use case with which it communicates.

In the metamodel, Actor is a subclass of Classifier. An Actor has a Name and may communicate with a set of UseCases, and,
at realization level, with Classifiers taking part in the realization of these UseCases. An Actor may also have a set of
Interfaces, each describing how other elements may communicate with the Actor.

An Actor may have generalization relationships to other Actors. This means that the child Actor will be able to play the same
roles as the parent Actor, that is, communicate with the same set of UseCases, as the parent Actor.

4.11.2.2 Extend

An extend relationship defines that instances of a use case may be augmented with some additional behavior defined in an
extending use case.

UseCaseInstance

Actor

Classifier
(from Core)

Instance
(from Common Behavior)

1..* *

+classifier

1..* *

ModelElement
(from Core)

Include

UseCase

*

1

+include*

+addition 1

*

1

*

+base1

ExtensionPoint
location : LocationReference

*1

+extensionPoint

*1

Extend
condition : BooleanExpression

1

*

+base1

*

1

*

+extension 1

+extend *

1..*

*

+extensionPoint
1..*

{ordered}

*

Relationship
(from Core)
120 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In the metamodel, an Extend relationship is a directed relationship implying that a UseCaseInstance of the base UseCase may
be augmented with the structure and behavior defined in the extending UseCase. The relationship consists of a condition,
which must be fulfilled if the extension is to take place, and a sequence of references to extension points in the base UseCase
where the additional behavior fragments are to be inserted.

Attributes

Associations

4.11.2.3 ExtensionPoint

An extension point references one or a collection of locations in a use case where the use case may be extended.

In the metamodel, an ExtensionPoint has a name and one or a collection of descriptions of locations in the behavior of the
owning use case, where a piece of behavior may be inserted into the owning use case.

Attributes

4.11.2.4 Include

An include relationship defines that a use case contains the behavior defined in another use case. In the metamodel, an Include
relationship is a directed relationship between two UseCases implying that the behavior in the addition UseCase is inserted
into the behavior of the base UseCase. The base UseCase may only depend on the result of performing the behavior defined in
the addition UseCase, but not on the structure; that is, on the existence of specific attributes and operations, of the addition
UseCase.

4.11.2.5 Associations

4.11.2.6 UseCase

The use case construct is used to define the behavior of a system or other semantic entity without revealing the entity’s internal
structure. Each use case specifies a sequence of actions, including variants, that the entity can perform, interacting with actors
of the entity.

condition An expression specifying the condition that must be fulfilled if the extension is to take place.

base The UseCase to be extended.

extension The UseCase specifying the extending behavior.

extensionPoint A sequence of extension-points in the base UseCase specifying where the additions are to be
inserted.

location A reference to one location or a collection of locations where an extension to the behavior of the
use case may be inserted.

addition The UseCase specifying the additional behavior.

base The UseCase that is to include the addition.
© ISO/IEC 2005 - All rights reserved 121

ISO/IEC 19501:2005(E)
In the metamodel, UseCase is a subclass of Classifier, specifying the sequences of actions performed by an instance of the
UseCase. The actions include changes of the state and communications with the environment of the UseCase. The sequences
can be described using many different techniques, like Operation and Methods, ActivityGraphs, and StateMachines.

There may be Associations between UseCases and the Actors of the UseCases. Such an Association states that an instance of
the UseCase and a user playing one of the roles of the Actor communicate. UseCases may be related to other UseCases by
Extend, Include, and Generalization relationships. An Include relationship means that a UseCase includes the behavior
described in another UseCase, while an Extend relationship implies that a UseCase may extend the behavior described in
another UseCase, ruled by a condition. Generalization between UseCases means that the child is a more specific form of the
parent. The child inherits all Features and Associations of the parent, and may add new Features and Associations.

The realization of a UseCase may be specified by a set of Collaborations; that is, the Collaborations define how Instances in
the system interact to perform the sequences of the UseCase.

Associations

4.11.2.7 UseCaseInstance

A use case instance is the performance of a sequence of actions specified in a use case.

In the metamodel, UseCaseInstance is a subclass of Instance. Each method performed by a UseCaseInstance is performed as
an atomic transaction; that is, it is not interrupted by any other UseCaseInstance.

An explicitly described UseCaseInstance is called a scenario.

4.11.3 Well-Formedness Rules

The following well-formedness rules apply to the Use Cases package.

4.11.3.1 Actor

[1] Actors can only have Associations to UseCases, Subsystems, and Classes and these Associations are binary.

self.associations->forAll(a |

a.connection->size = 2 and

a.allConnections->exists(r | r.type.oclIsKindOf(Actor)) and

a.allConnections->exists(r |

r.type.oclIsKindOf(UseCase) or

r.type.oclIsKindOf(Subsystem) or

r.type.oclIsKindOf(Class)))

[2] Actors cannot contain any Classifiers.

self.contents->isEmpty

extend A collection of Extend relationships to UseCases that the UseCase extends.

extensionPoint Defines a collection of ExtensionPoints where the UseCase may be extended.

include A collection of Include relationships to UseCases that the UseCase includes.
122 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.11.3.2 Extend

[1] The referenced ExtensionPoints must be included in set of ExtensionPoint in the target UseCase.

self.base.allExtensionPoints -> includesAll (self.extensionPoint)

4.11.3.3 ExtensionPoint

[1] The name must not be the empty string.

not self.name = ‘’

4.11.3.4 Include

No extra well-formedness rules.

4.11.3.5 UseCase

[1] UseCases can only have binary Associations.

self.associations->forAll(a | a.connection->size = 2)

[2] UseCases cannot have Associations to UseCases specifying the same entity.

self.associations->forAll(a |

a.allConnections->forAll(s, o|

(s.type.specificationPath->isEmpty and

o.type.specificationPath->isEmpty)

or

(not s.type.specificationPath->includesAll(

o.type.specificationPath) and

not o.type.specificationPath->includesAll(

s.type.specificationPath))

))

[3] A UseCase cannot contain any Classifiers.

self.contents->isEmpty

[4] The names of the ExtensionPoints must be unique within the UseCase.

self.allExtensionPoints -> forAll (x, y |

x.name = y.name implies x = y)

Additional operations

[1] The operation specificationPath results in a set containing all surrounding Namespaces that are not instances of
Package.

specificationPath : Set(Namespace)

specificationPath = self.allSurroundingNamespaces->select(n |

n.oclIsKindOf(Subsystem) or n.oclIsKindOf(Class))
© ISO/IEC 2005 - All rights reserved 123

ISO/IEC 19501:2005(E)
[2] The operation allExtensionPoints results in a set containing all ExtensionPoints of the UseCase.

allExtensionPoints : Set(ExtensionPoint)

allExtensionPoints = self.allSupertypes.extensionPoint -> union (

self.extensionPoint)

4.11.3.6 UseCaseInstance

[1] The Classifier of a UseCaseInstance must be a UseCase.

self.classifier->forAll (c | c.oclIsKindOf (UseCase))

[2] A UseCaseInstance may not contain any Instances.

self.contents->isEmpty

4.11.4 Detailed Semantics

This section provides a description of the semantics of the elements in the Use Cases package, and its relationship to other
elements in the Behavioral Elements package.

4.11.4.1 Actor

Figure 22 - Actor Illustration

Actors model parties outside an entity, such as a system, a subsystem, or a class that interact with the entity. Each actor defines
a coherent set of roles users of the entity can play when interacting with the entity. Every time a specific user interacts with the
entity, it is playing one such role. An instance of an actor is a specific user interacting with the entity. Any instance that
conforms to an actor can act as an instance of the actor. If the entity is a system, the actors represent both human users and
other systems. Some of the actors of a lower level subsystem or a class may coincide with actors of the system, while others
appear inside the system. The roles defined by the latter kind of actors are played by instances of classifiers in other packages
or subsystems; in the latter case the classifier may belong to either the specification part or the realization part of the
subsystem.

Since an actor is outside the entity, its internal structure is not defined but only its external view as seen from the entity. Actor
instances communicate with the entity by sending and receiving message instances to and from use case instances and, at
realization level, to and from objects. This is expressed by associations between the actor and the use case or the class.
Furthermore, interfaces can be connected to an actor, defining how other elements may interact with the actor.

Two or more actors may have commonalities; that is, communicate with the same set of use cases in the same way. The
commonality is expressed with generalizations to another (possibly abstract) actor, which models the common role(s). An
instance of a child can always be used where an instance of the parent is expected.

Interface

Generalization

Association

AssociationEnd

Namespace

Actor
* 1

*

*

*

*

124 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.11.4.2 UseCase

Figure 23 - UseCase Illustration

In the following text, the term entity is used when referring to a system, a subsystem, or a class and the terms model element
and element denote a subsystem or a class.

The purpose of a use case is to define a piece of behavior of an entity without revealing the internal structure of the entity. The
entity specified in this way may be a system or any model element that contains behavior, like a subsystem or a class, in a
model of a system. Each use case specifies a service the entity provides to its users; that is, a specific way of using the entity.
The service, which is initiated by a user, is a complete sequence. This implies that after its performance the entity will in
general be in a state in which the sequence can be initiated again. A use case describes the interactions between the users and
the entity as well as the responses performed by the entity, as these responses are perceived from the outside of the entity. A
use case also includes possible variants of this sequence (for example, alternative sequences, exceptional behavior, error
handling, etc.). The complete set of use cases specifies all different ways to use the entity; that is, all behavior of the entity is
expressed by its use cases. These use cases can be grouped into packages for convenience.

From a pragmatic point of view, use cases can be used both for specification of the (external) requirements on an entity and for
specification of the functionality offered by an (already realized) entity. Moreover, the use cases also indirectly state the
requirements the specified entity poses on its users; that is, how they should interact so the entity will be able to perform its
services.

Since users of use cases always are external to the specified entity, they are represented by actors of the entity. Thus, if the
specified entity is a system or a subsystem at the topmost level, the users of its use cases are modeled by the actors of the
system. Those actors of a lower level subsystem or a class that are internal to the system are often not explicitly defined.
Instead, the use cases relate directly to model elements conforming to these implicit actors; that is, whose instances play the
roles of these actors in interaction with the use cases. These model elements are contained in other packages or subsystems,
where in the subsystem case they may be contained in the specification part or the realization part. The distinction between
actor and conforming element like this is often neglected; thus, they are both referred to by the term actor.

There may be associations between use cases and actors, meaning that the instances of the use case and the actor communicate
with each other. One actor may communicate with several use cases of an entity; that is, the actor may request several services
of the entity, and one use case communicates with one or several actors when providing its service. Note that two use cases
specifying the same entity cannot communicate with each other since each of them individually describes a complete usage of
the entity. Moreover, use cases always use signals when communicating with actors outside the system, while they may use
other communication semantics when communicating with elements inside the system.

UseCase

Attribute

Operation

UseCaseInstance

AssociationEndAssociation

Namespace Interface

Include

Extend

ExtensionPoint

*

*

*
*

*

*

*
*

*

*

© ISO/IEC 2005 - All rights reserved 125

ISO/IEC 19501:2005(E)
The interaction between actors and use cases can be defined with interfaces. An interface of a use case defines a subset of the
entire interaction defined in the use case. Different interfaces offered by the same use case need not be disjoint.

A use case can be described in plain text, using operations and methods together with attributes, in activity graphs, by a state
machine, or by other behavior description techniques, such as preconditions and postconditions. The interaction between a use
case and its actors can also be presented in collaboration diagrams for specification of the interactions between the entity
containing the use case and the entity’s environment.

A use-case instance is a performance of a use case, initiated by a message instance from an instance of an actor. As a response
the use-case instance performs a sequence of actions as specified by the use case, like communicating with actor instances, not
necessarily only the initiating one. The actor instances may send new message instances to the use-case instance and the
interaction continues until the instance has responded to all input and does not expect any more input, when it ends. Each
method performed by a use-case instance is performed as an atomic transaction; that is, it is not interrupted by any other use-
case instance.

In the case where subsystems are used to model the system’s containment hierarchy, the system can be specified with use cases
at all levels, as use cases can be used to specify subsystems and classes. A use case specifying one model element is then
refined into a set of smaller use cases, each specifying a service of a model element contained in the first one. The use case of
the whole may be referred to as superordinate to its refining use cases, which, correspondingly, may be called subordinate in
relation to the first one. The functionality specified by each superordinate use case is completely traceable to its subordinate
use cases. Note, though, that the structure of the container element is not revealed by the use cases, since they only specify the
functionality offered by the element. The subordinate use cases of a specific superordinate use case cooperate to perform the
superordinate one. Their cooperation is specified by collaborations and may be presented in collaboration diagrams. A specific
subordinate use case may appear in several collaborations; that is play a role in the performances of several superordinate use
cases. In each such collaboration, other roles specify the cooperation with this specific subordinate use case. These roles are
the roles played by the actors of that subordinate use case. Some of these actors may be the actors of the superordinate use
case, as each actor of a superordinate use case appears as an actor of at least one of the subordinate use cases. Furthermore, the
interfaces of a superordinate use case are traceable to the interfaces of those subordinate use cases that communicate with
actors that are also actors of the superordinate use case.

The environment of subordinate use cases is the model element containing the model elements specified by these use cases.
Thus, from a bottom-up perspective, an interaction between subordinate use cases results in a superordinate use case, that is, a
use case of the container element.

Use cases of classes are mapped onto operations of the classes, since a service of a class in essence is the invocation of the
operations of the class. Some use cases may consist of the application of only one operation, while others may involve a set of
operations, usually in a well-defined sequence. One operation may be needed in several of the services of the class, and will
therefore appear in several use cases of the class.

The realization of a use case depends on the kind of model element it specifies. For example, since the use cases of a class are
specified by means of operations of the class, they are realized by the corresponding methods, while the use cases of a
subsystem are realized by the elements contained in the subsystem. Since a subsystem does not have any behavior of its own,
all services offered by a subsystem must be a composition of services offered by elements contained in the subsystem (i.e.,
eventually by classes). These elements will collaborate and jointly perform the behavior of the specified use case. One or a set
of collaborations describes how the realization of a use case is made. Hence, collaborations are used for specification of both
the refinement and the realization of a use case in terms of subordinate use cases.

The usage of use cases at all levels imply not only a uniform way of specification of functionality at all levels, but also a
powerful technique for tracing requirements at the system package level down to operations of the classes. The propagation of
the effect of modifying a single operation at the class level all the way up to the behavior of the system package is managed in
the same way.

Commonalities between use cases can be expressed in three different ways: with generalization, include, and extend
relationships. A generalization relationship between use cases implies that the child use case contains all the attributes,
126 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
sequences of behavior, and extension points defined in the parent use case, and participates in all relationships of the parent
use case. The child use case may also define new behavior sequences, as well as add additional behavior into and specialize
existing behavior of the inherited ones. One use case may have several parent use cases and one use case may be a parent to
several other use cases.

An include relationship between two use cases means that the behavior defined in the target use case is included at one
location in the sequence of behavior performed by an instance of the base use case. When a use-case instance reaches the
location where the behavior of an another use case is to be included, it performs all the behavior described by the included use
case and then continues according to its original use case. This means that although there may be several paths through the
included use case due to (e.g., conditional statements), all of them must end in such a way that the use-case instance can
continue according to the original use case. One use case may be included in several other use cases and one use case may
include several other use cases. The included use case may not be dependent on the base use case. In that sense the included
use case represents encapsulated behavior, which may easily be reused in several use cases. Moreover, the base use case may
only be dependent on the results of performing the included behavior and not on structure, like Attributes and Associations, of
the included use case.

An extend relationship defines that a use case may be augmented with some additional behavior defined in another use case.
One use case may extend several use cases and one use case may be extended by several use cases. The base use case may not
be dependent of the addition of the extending use case. The extend relationship contains a condition and references a sequence
of extension points in the target use case. The condition must be satisfied if the extension is to take place, and the references to
the extension points define the locations in the base use case where the additions are to be made. Once an instance of a use case
is to perform some behavior referenced by an extension point of its use case, and the extension point is the first one in an
extends relationship’s sequence of references to extension points, the condition of the relationship is evaluated. If the condition
is fulfilled, the sequence obeyed by the use-case instance is extended to include the sequence of the extending use case. The
different parts of the extending use case are inserted at the locations defined by the sequence of extension points in the
relationship -- one part at each referenced extension point. Note that the condition is only evaluated once: at the first
referenced extension point, and if it is fulfilled all of the extending use case is inserted in the original sequence. An extension
point may define one location or a set of locations in the behavior defined by the use case. However, if an extend relationship
references a sequence of extension points, only the first one may define a set of locations. All other ones must define exactly
one location each. Which of the locations of the first extension point to use is determined by where the extension is triggered.
This is not possible for the other ones. In other words, once the extension has been triggered, all locations where to add the
different part of the extending use case must be uniquely defined. Hence, all extension points, except for the first one,
referenced by an extend relationship must define single locations. The description of the location references by an extension
point can be made in several different ways, like textual description of where in the behavior the addition should be made, pre-
or post conditions, or using the name of a state in a state machine.

Note that the three kinds of relationships described above can only exist between use cases specifying the same entity. The
reason for this is that the use cases of one entity specify the behavior of that entity alone; that is, all use-case instances are
performed entirely within that entity. If a use case would have a generalization, include, or extend relationship to a use case of
another entity, the resulting use-case instances would involve both entities, resulting in a contradiction. However,
generalization, include, and extend relationships can be defined from use cases specifying one entity to use cases of another
one if the first entity has a generalization to the second one, since the contents of both entities are available in the first entity.
However, the contents of the second entity must be at least protected, so they become available inside the child entity.

As a first step when developing a system, the dynamic requirements of the system as a whole can be expressed with use cases.
The entity being specified is then the whole system, and the result is a separate model called a use-case model, that is, a model
with the stereotype «useCaseModel». Next, the realization of the requirements is expressed with a model containing a system
package, probably a package hierarchy, and at the bottom a set of classes. If the system package, that is, a package with the
stereotype «topLevelPackage» is a subsystem, its abstract behavior is naturally the same as that of the system. Thus, if use
cases are used for the specification part of the system package, these use cases are equivalent to those in the use-case model of
the system; that is, they express the same behavior but possibly slightly differently structured. In other words, all services
specified by the use cases of a system package, and only those, define the services offered by the system. Furthermore, if
© ISO/IEC 2005 - All rights reserved 127

ISO/IEC 19501:2005(E)
several models are used for modeling the realization of a system (for example, an analysis model and a design model), the set
of use cases of all system packages and the use cases of the use-case model must be equivalent.

4.11.5 Notes

A pragmatic rule of use when defining use cases is that each use case should yield some kind of observable result of value to
(at least) one of its actors. This ensures that the use cases are complete specifications and not just fragments.

4.12 State Machines

4.12.1 Overview

The State Machine package is a subpackage of the Behavioral Elements package. It specifies a set of concepts that can be used
for modeling discrete behavior through finite state-transition systems. These concepts are based on concepts defined in the
Foundation package as well as concepts defined in the Common Behavior package. This enables integration with the other
subpackages in Behavioral Elements.

The state machine formalism described in this section is an object-based variant of Harel statecharts. It incorporates several
concepts similar to those defined in ROOMcharts, a variant of statechart defined in the ROOM modeling language. The major
differences relative to classical Harel statecharts are described on Section 4.12.5.4, “Comparison to classical statecharts,” on
page 151.

State machines can be used to specify behavior of various elements that are being modeled. For example, they can be used to
model the behavior of individual entities (such as, class instances) or to define the interactions (such as, collaborations)
between entities.

In addition, the state machine formalism provides the semantic foundation for activity graphs. This means that activity graphs
are simply a special form of state machines.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the State Machines package.
Activity graphs are described in Section 4.13, “Activity Graphs,” on page 152.

4.12.2 Abstract Syntax

The abstract syntax for state machines is expressed graphically in Figure 24 on page 129, which covers all the basic concepts
of state machine graphs such as states and transitions. Figure 25 on page 130 describes the abstract syntax of events that can
trigger state machine behavior.

The specifications of the concepts defined in these two diagrams are listed in alphabetical order following the figures.
128 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 24 - State Machines - Main

*

0..1 0..1

*

+submachine

*

+ context

+ behavior

*

*

 + transitions

+ entry

0..*

+source

*

 +guard

+target

+ outgoing +subvertex

*
StateVertex

0..1

0..1

1
StateMachine

+ incoming

+ exit

++ doActivity

+ deferrableEvent

+ trigger

+ container

ModelElement
(from CORE)

1

1

0..1

1

0..1

0..1

0..1

0..*

0..1

+ internalTransition

+ effect

0..1

1 + top 0..1

Event

Transition

0..1

0..*

0..1

0..1

0..1

Action
(from Common

Behavior)

Guard

expression : BooleanExpression

State

Pseudostate

kind : PseudostateKind

SubState

referenceState : Name

CompositeState

SimpleState

FinalState

SubmachineState

SynchState

bound : UnlimitedInteger
© ISO/IEC 2005 - All rights reserved 129

ISO/IEC 19501:2005(E)
Figure 25 - State Machines - Events

4.12.2.1 CallEvent

A call event represents the reception of a request to synchronously invoke a specific operation. (Note that a call event instance
is distinct from the call action that caused it.) The expected result is the execution of a sequence of actions, which characterize
the operation behavior at a particular state.

Two special cases of CallEvent are the object creation event and the object destruction event.

Associations

operation Designates the operation whose invocation raised the call event.

TimeEvent

when : TimeExpression

ChangeEvent
changeExpression : BooleanExpression

Operation
(from Core)

CallEvent

1

*

+operation 1

+occurrence *

SignalEvent

Signal
(from Common Behavior)

*

1

+occurrence *

+signal 1

Parameter
(from Core)

Event

* 0..1

+parameter

*

{ordered}

0..1

ModelElement
(from Core)
130 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Stereotypes

4.12.2.2 ChangeEvent

A change event models an event that occurs when an explicit boolean expression becomes true as a result of a change in value
of one or more attributes or associations. A change event is raised implicitly and is not the result of some explicit change event
action.

The change event should not be confused with a guard. A guard is only evaluated at the time an event is dispatched whereas,
conceptually, the boolean expression associated with a change event is evaluated continuously until it becomes true. The event
that is generated remains until it is consumed even if the boolean expression changes to false after that.

Attributes

4.12.2.3 CompositeState

A composite state is a state that contains other state vertices (states, pseudostates, etc.). The association between the composite
and the contained vertices is a composition association. Hence, a state vertex can be a part of at most one composite state.

Any state enclosed within a composite state is called a substate of that composite state. It is called a direct substate when it is
not contained by any other state; otherwise, it is referred to as a transitively nested substate.

CompositeState is a child of State.

Associations

Attributes

4.12.2.4 Event

An event is a specification of a type of observable occurrence. The occurrence that generates an event instance is assumed to
take place at an instant in time with no duration.

«create» Create is a stereotyped call event denoting that the instance receiving that event has just been created. For
state machines, it triggers the initial transition at the topmost level of the state machine (and is the only
kind of trigger that may be applied to an initial transition).

«destroy» Destroy is a stereotyped call event denoting that the instance receiving the event is being destroyed.

changeExpression The boolean expression that specifies the change event.

subvertex The set of state vertices that are owned by this composite state.

isConcurrent A boolean value that specifies the decomposition semantics. If this attribute is true, then the composite
state is decomposed directly into two or more orthogonal conjunctive components called regions (usually
associated with concurrent execution). If this attribute is false, then there are no direct orthogonal
components in the composite.

isRegion A derived boolean value that indicates whether a CompositeState is a substate of a concurrent state. If it
is true, then this composite state is a direct substate of a concurrent state.
© ISO/IEC 2005 - All rights reserved 131

ISO/IEC 19501:2005(E)
Strictly speaking, the term “event” is used to refer to the type and not to an instance of the type. However, on occasion, where
the meaning is clear from the context, the term is also used to refer to an event instance.

Event is a child of ModelElement.

Associations

4.12.2.5 FinalState

A special kind of state signifying that the enclosing composite state is completed. If the enclosing state is the top state, then it
means that the entire state machine has completed.

A final state cannot have any outgoing transitions.

FinalState is a child of State.

4.12.2.6 Guard

A guard is a boolean expression that is attached to a transition as a fine-grained control over its firing. The guard is evaluated
when an event instance is dispatched by the state machine. If the guard is true at that time, the transition is enabled, otherwise,
it is disabled.

Guards should be pure expressions without side effects. Guard expressions with side effects are ill formed.

Guard is a child of ModelElement.

Attributes

4.12.2.7 PseudoState

A pseudostate is an abstraction that encompasses different types of transient vertices in the state machine graph. They are used,
typically, to connect multiple transitions into more complex state transitions paths. For example, by combining a transition
entering a fork pseudostate with a set of transitions exiting the fork pseudostate, we get a compound transition that leads to a
set of concurrent target states.

The following pseudostate kinds are defined:

• An initial pseudostate represents a default vertex that is the source for a single transition to the default state of a
composite state. There can be at most one initial vertex in a composite state.

• deepHistory is used as a shorthand notation that represents the most recent active configuration of the composite state
that directly contains this pseudostate; that is, the state configuration that was active when the composite state was last
exited. A composite state can have at most one deep history vertex. A transition may originate from the history
connector to the default deep history state. This transition is taken in case the composite state had never been active
before.

parameter The list of parameters defined by the event.

expression The boolean expression that specifies the guard.
132 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• shallowHistory is a shorthand notation that represents the most recent active substate of its containing state (but not the
substates of that substate). A composite state can have at most one shallow history vertex. A transition coming into the
shallow history vertex is equivalent to a transition coming into the most recent active substate of a state. A transition
may originate from the history connector to the initial shallow history state. This transition is taken in case the
composite state had never been active before.

• join vertices serve to merge several transitions emanating from source vertices in different orthogonal regions. The
transitions entering a join vertex cannot have guards.

• fork vertices serve to split an incoming transition into two or more transitions terminating on orthogonal target vertices.
The segments outgoing from a fork vertex must not have guards.

• junction vertices are semantic-free vertices that are used to chain together multiple transitions. They are used to
construct compound transition paths between states. For example, a junction can be used to converge multiple
incoming transitions into a single outgoing transition representing a shared transition path (this is known as a merge).
Conversely, they can be used to split an incoming transition into multiple outgoing transition segments with different
guard conditions. This realizes a static conditional branch. (In the latter case, outgoing transitions whose guard
conditions evaluate to false are disabled. A predefined guard denoted “else” may be defined for at most one outgoing
transition. This transition is enabled if all the guards labeling the other transitions are false.) Static conditional branches
are distinct from dynamic conditional branches that are realized by choice vertices (described below).

• choice vertices which, when reached, result in the dynamic evaluation of the guards of its outgoing transitions. This
realizes a dynamic conditional branch. It allows splitting of transitions into multiple outgoing paths such that the
decision on which path to take may be a function of the results of prior actions performed in the same run-to-
completion step. If more than one of the guards evaluates to true, an arbitrary one is selected. If none of the guards
evaluates to true, then the model is considered ill formed. (To avoid this, it is recommended to define one outgoing
transition with the predefined “else” guard for every choice vertex.) Choice vertices should be distinguished from static
branch points that are based on junction points (described above).

PseudoState is a child of StateVertex.

Attributes

4.12.2.8 SignalEvent

A signal event represents the reception of a particular (asynchronous) signal. A signal event instance should not be confused
with the action, such as send action, that generated it.

SignalEvent is a child of Event.

Associations

4.12.2.9 SimpleState

A SimpleState is a state that does not have substates. It is a child of State.

kind Determines the precise type of the PseudoState and can be one of initial, deepHistory, shallowHistory,
join, fork, junction, or choice.

signal The specific signal that is associated with this event.
© ISO/IEC 2005 - All rights reserved 133

ISO/IEC 19501:2005(E)
4.12.2.10 State

A state is an abstract metaclass that models a situation during which some (usually implicit) invariant condition holds. The
invariant may represent a static situation such as an object waiting for some external event to occur. However, it can also
model dynamic conditions such as the process of performing some activity; that is, the model element under consideration
enters the state when the activity commences and leaves it as soon as the activity is completed.

State is a child of StateVertex.

Associations

4.12.2.11 StateMachine

A state machine is a specification that describes all possible behaviors of some dynamic model element. Behavior is modeled
as a traversal of a graph of state nodes interconnected by one or more joined transition arcs that are triggered by the
dispatching of series of event instances. During this traversal, the state machine executes a series of actions associated with
various elements of the state machine.

StateMachine has a composition relationship to State, which represents the top-level state, and a set of transitions. This means
that a state machine owns its transitions and its top state. All remaining states are transitively owned through the state
containment hierarchy rooted in the top state. The association to ModelElement provides the context of the state machine. A
common case of the context relation is where a state machine is used to specify the lifecycle of a classifier.

Associations

deferrableEvent A list of events that are candidates to be retained by the state machine if they trigger no transitions out of the
state (not consumed).

entry An optional action that is executed whenever this state is entered regardless of the transition taken to reach
the state. If defined, entry actions are always executed to completion prior to any internal activity or
transitions performed within the state.

exit An optional action that is executed whenever this state is exited regardless of which transition was taken out
of the state. If defined, exit actions are always executed to completion only after all internal activities and
transition actions have completed execution.

doActivity An optional activity that is executed while being in the state. The execution starts when this state is entered,
and stops either by itself, or when the state is exited, whichever comes first.

internalTransition A set of transitions that, if triggered, occur without exiting or entering this state. Thus, they do not cause a
state change. This means that the entry or exit condition of the State will not be invoked. These transitions
can be taken even if the state machine is in one or more regions nested within this state.

context An association to the model element whose behavior is specified by this state machine. A model element
may have more than one state machine (although one is sufficient for most purposes). Each state machine is
optionally owned by one model element.

top Designates the top-level state that is the root of the state containment hierarchy. There is exactly one state in
every state machine that is the top state.

transition The set of transitions owned by the state machine. Note that internal transitions are owned by their
containing states and not by the state machine.
134 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.12.2.12 StateVertex

A StateVertex is an abstraction of a node in a statechart graph. In general, it can be the source or destination of any number of
transitions. StateVertex is a child of ModelElement.

Associations

4.12.2.13 StubState

A stub state can appear within a submachine state and represents an actual subvertex contained within the referenced state
machine. It can serve as a source or destination of transitions that connect a state vertex in the containing state machine with a
subvertex in the referenced state machine.

StubState is a child of State.

Associations

4.12.2.14 SubmachineState

A submachine state is a syntactical convenience that facilitates reuse and modularity. It is a shorthand that implies a macro-like
expansion by another state machine and is semantically equivalent to a composite state. The state machine that is inserted is
called the referenced state machine while the state machine that contains the submachine state is called the containing state
machine. The same state machine may be referenced more than once in the context of a single containing state machine. In
effect, a submachine state represents a “call” to a state machine “subroutine” with one or more entry and exit points.

The entry and exit points are specified by stub states.

SubmachineState is a child of State.

Associations

4.12.2.15 SynchState

A synch state is a vertex used for synchronizing the concurrent regions of a state machine. It is different from a state in the
sense that it is not mapped to a boolean value (active, not active), but an integer. A synch state is used in conjunction with forks
and joins to insure that one region leaves a particular state or states before another region can enter a particular state or states.

SynchState is a child of StateVertex.

outgoing Specifies the transitions departing from the vertex.

incoming Specifies the transitions entering the vertex.

container The composite state that contains this state vertex.

referenceState Designates the referenced state as a pathname (a name formed by the concatenation of the name of a state
and the successive names of all states that contain it, up to the top state).

submachine The state machine that is to be substituted in place of the submachine state.
© ISO/IEC 2005 - All rights reserved 135

ISO/IEC 19501:2005(E)
Attributes

4.12.2.16 TimeEvent

A TimeEvent models the expiration of a specific deadline. Note that the time of occurrence of a time event instance; that is, the
expiration of the deadline is the same as the time of its reception. However, it is important to note that there may be a variable
delay between the time of reception and the time of dispatching (for example, due to queueing delays).

The expression specifying the deadline may be relative or absolute. If the time expression is relative and no explicit starting
time is defined, then it is relative to the time of entry into the source state of the transition triggered by the event. In the latter
case, the time event instance is generated only if the state machine is still in that state when the deadline expires.

Attributes

4.12.2.17 Transition

A transition is a directed relationship between a source state vertex and a target state vertex. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the complete response of the
state machine to a particular event instance.

Transition is a child of ModelElement.

Associations

4.12.3 Well-FormednessRules

The following well-formedness rules apply to the State Machines package.

4.12.3.1 CompositeState

[1] A composite state can have at most one initial vertex.

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #initial)->size <= 1

[2] A composite state can have at most one deep history vertex.

bound A positive integer or the value “unlimited” specifying the maximal count of the SynchState. The count is the
difference between the number of times the incoming and outgoing transitions of the synch state are fired.

when Specifies the corresponding time deadline.

trigger Specifies the event that fires the transition. There can be at most one trigger per transition.

guard A boolean predicate that provides a fine-grained control over the firing of the transition. It must be true for
the transition to be fired. It is evaluated at the time the event is dispatched. There can be at most one guard
per transition.

effect Specifies an optional action to be performed when the transition fires.

source Designates the originating state vertex (state or pseudostate) of the transition.

target Designates the target state vertex that is reached when the transition is taken.
136 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #deepHistory)->size <= 1

[3] A composite state can have at most one shallow history vertex.

self.subvertex->select(v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #shallowHistory)->size <= 1

[4] There have to be at least two composite substates in a concurrent composite state.

(self.isConcurrent) implies

(self.subvertex->select
(v | v.oclIsKindOf(CompositeState))->size >= 2)

[5] A concurrent state can only have composite states as substates.

(self.isConcurrent) implies
self.subvertex->forAll(s | (s.oclIsKindOf(CompositeState))

[6] The substates of a composite state are part of only that composite state.

self.subvertex->forAll(s | (s.container->size = 1) and (s.container = self))

4.12.3.2 FinalState

[1] A final state cannot have any outgoing transitions.

self.outgoing->size = 0

4.12.3.3 Guard

[1] A guard should not have side effects.

self.transition->stateMachine->notEmpty implies
post: (self.transition.stateMachine->context =
self.transition.stateMachine->context@pre)

4.12.3.4 PseudoState

[1] An initial vertex can have at most one outgoing transition and no incoming transitions.

(self.kind = #initial) implies

((self.outgoing->size <= 1) and (self.incoming->isEmpty))

[2] History vertices can have at most one outgoing transition.

((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies

(self.outgoing->size <= 1)

[3] A join vertex must have at least two incoming transitions and exactly one outgoing transition.

(self.kind = #join) implies

((self.outgoing->size = 1) and (self.incoming->size >= 2))
© ISO/IEC 2005 - All rights reserved 137

ISO/IEC 19501:2005(E)
[4] All transitions incoming a join vertex must originate in different regions of a concurrent state.

(self.kind = #join
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies
self.incoming->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.source, t2.source).
container.isConcurrent)

[5] A fork vertex must have at least two outgoing transitions and exactly one incoming transition.

(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))

[6] All transitions outgoing a fork vertex must target states in different regions of a concurrent state.

(self.kind = #fork
and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies
self.outgoing->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.target, t2.target).
container.isConcurrent)

[7] A junction vertex must have at least one incoming and one outgoing transition.

(self.kind = #junction) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

[8] A choice vertex must have at least one incoming and one outgoing transition.

(self.kind = #choice) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

4.12.3.5 StateMachine

[1] A StateMachine is aggregated within either a classifier or a behavioral feature.

self.context.notEmpty implies

(self.context.oclIsKindOf(BehavioralFeature) or

self.context.oclIsKindOf(Classifier))

[2] A top state is always a composite.

self.top.oclIsTypeOf(CompositeState)

[3] A top state cannot be directly contained in any other state.

self.top.container->isEmpty

[4] The top state cannot be the source of a transition.

(self.top.outgoing->isEmpty)

[5] If a StateMachine describes a behavioral feature, it contains no triggers of type CallEvent, apart from the trigger on
the initial transition (see OCL for Transition [8]).

self.context.oclIsKindOf(BehavioralFeature) implies

self.transitions->reject(
138 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
source.oclIsKindOf(Pseudostate) and

source.oclAsType(Pseudostate).kind= #initial).trigger->isEmpty

Additional Operations

[1] The operation LCA(s1,s2) returns the state that is the least common ancestor of states s1 and s2.

context StateMachine::LCA (s1 : State, s2 : State) :
CompositeState

result = if ancestor (s1, s2) then
s1

else if ancestor (s2, s1) then
s2

else (LCA (s1.container, s2.container))

[2] The query ancestor(s1, s2) checks whether s2 is an ancestor state of state s1.

context StateMachine::ancestor (s1 : State, s2 : State) : Boolean

result = if (s2 = s1) then
true

else if (s1.container->isEmpty) then
true

else if (s2.container->isEmpty) then
false

else (ancestor (s1, s2.container)

4.12.3.6 SynchState

[1] The value of the bound attribute must be a positive integer, or unlimited.

(self.bound > 0) or (self.bound = unlimited)

[2] All incoming transitions to a SynchState must come from the same region and all outgoing transitions from a
SynchState must go to the same region.

4.12.3.7 SubmachineState

[1] Only stub states allowed as substates of a submachine state.

self.subvertex->forAll (s | s.oclIsTypeOf(StubState))

[2] Submachine states are never concurrent.

self.isConcurrent = false

4.12.3.8 Transition

[1] A fork segment should not have guards or triggers.

(self.source.oclIsKindOf(Pseudostate)
and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[2] A join segment should not have guards or triggers.

self.target.oclIsKindOf(Pseudostate) implies
© ISO/IEC 2005 - All rights reserved 139

ISO/IEC 19501:2005(E)
((self.target.oclAsType(Pseudostate).kind = #join) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment should always target a state.

(self.stateMachine->notEmpty
and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.oclIsKindOf(State)))

[4] A join segment should always originate from a state.

(self.stateMachine->notEmpty
and not oclIsKindOf(self.stateMachine, ActivityGraph)) implies

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.oclIsKindOf(State)))

[5] Transitions outgoing pseudostates may not have a trigger.

self.source.oclIsKindOf(Pseudostate)
implies (self.trigger->isEmpty))

[6] An initial transition at the topmost level either has no trigger or it has a trigger with the stereotype "create.”

self.source.oclIsKindOf(Pseudostate) implies
(self.source.oclAsType(Pseudostate).kind = #initial) implies

(self.source.container = self.stateMachine.top) implies
((self.trigger->isEmpty) or
 (self.trigger.stereotype.name = 'create'))

4.12.4 Detailed Semantics

This section describes the execution semantics of state machines. For convenience, the semantics are described in terms of the
operations of a hypothetical machine that implements a state machine specification. This is for reference purposes only.
Individual realizations are free to choose any form that achieves the same semantics.

In the general case, the key components of this hypothetical machine are:

• an event queue that holds incoming event instances until they are dispatched.

• an event dispatcher mechanism that selects and de-queues event instances from the event queue for processing.

• an event processor that processes dispatched event instances according to the general semantics of UML state machines
and the specific form of the state machine in question. Because of that, this component is simply referred to as the
“state machine” in the following text.

Although the intent is to define the semantics of state machines very precisely, there are a number of semantic variation points
to allow for different semantic interpretations that might be required in different domains of application. These are clearly
identified in the text.

The basic semantics of events, states, transitions are discussed first in separate subsections under the appropriate headings. The
operation of the state machine as a whole are then described in the state machine subsection.
140 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.12.4.1 Event

Event instances are generated as a result of some action either within the system or in the environment surrounding the system.
An event is then conveyed to one or more targets. The means by which event instances are transported to their destination
depend on the type of action, the target, the properties of the communication medium, and numerous other factors. In some
cases, this is practically instantaneous and completely reliable while in others it may involve variable transmission delays, loss
of events, reordering, or duplication. No specific assumptions are made in this regard. This provides full flexibility for
modeling different types of communication facilities.

An event is received when it is placed on the event queue of its target. An event is dispatched when it is dequeued from the
event queue and delivered to the state machine for processing. At this point, it is referred to as the current event. Finally, it is
consumed when event processing is completed. A consumed event is no longer available for processing. No assumptions are
made about the time intervals between event reception, event dispatching, and consumption. This leaves open the possibility
of different semantic models such as zero-time semantics.

Any parameter values associated with the current event are available to all actions directly caused by that event (transition
actions, entry actions, etc.).

Event generalization may be defined explicitly by a signal taxonomy in the case of signal events, or implicitly defined by event
expressions, as in time events.

4.12.4.2 State

Active states

A state can be active or inactive during execution. A state becomes active when it is entered as a result of some transition, and
becomes inactive if it is exited as a result of a transition. A state can be exited and entered as a result of the same transition
(e.g., self transition).

State entry and exit

Whenever a state is entered, it executes its entry action before any other action is executed. Conversely, whenever a state is
exited, it executes its exit action as the final step prior to leaving the state.

If defined, the activity associated with a state is forked as a concurrent activity at the instant when the entry action of the state
is completed. Upon exit, the activity is terminated before the exit action is executed.

Activity in state (do-activity)

The activity represents the execution of a sequence of actions, that occurs while the state machine is in the corresponding state.
The activity starts executing upon entering the state, following the entry action. If the activity completes while the state is still
active, it raises a completion event. In cases where there is an outgoing completion transition (see below) the state will be
exited. If the state is exited as a result of the firing of an outgoing transition before the completion of the activity, the activity is
aborted prior to its completion.

Deferred events

A state may specify a set of event types that may be deferred in that state. An event instance that does not trigger any
transitions in the current state, will not be dispatched if its type matches one of the types in the deferred event set of that state.
Instead, it remains in the event queue while another non-deferred message is dispatched instead. This situation persists until a
state is reached where either the event is no longer deferred or where the event triggers a transition.
© ISO/IEC 2005 - All rights reserved 141

ISO/IEC 19501:2005(E)
4.12.4.3 CompositeState

Active state configurations

When dealing with composite and concurrent states, the simple term “current state” can be quite confusing. In a hierarchical
state machine more than one state can be active at once. If the state machine is in a simple state that is contained in a composite
state, then all the composite states that either directly or transitively contain the simple state are also active. Furthermore, since
some of the composite states in this hierarchy may be concurrent, the current active “state” is actually represented by a tree of
states starting with the single top state at the root down to individual simple states at the leaves. We refer to such a state tree as
a state configuration.

Except during transition execution, the following invariants always apply to state configurations:

• If a composite state is active and not concurrent, exactly one of its substates is active.

• If the composite state is active and concurrent, all of its substates (regions) are active.

Entering a non-concurrent composite state

Upon entering a composite state, the following cases are differentiated:

• Default entry: Graphically, this is indicated by an incoming transition that terminates on the outside edge of the
composite state. In this case, the default transition is taken. If there is a guard on the transition it must be enabled (true).
(A disabled initial transition is an ill-defined execution state and its handling is not defined.) The entry action of the
state is executed before the action associated with the initial transition.

• Explicit entry: If the transition goes to a substate of the composite state, then that substate becomes active and its entry
code is executed after the execution of the entry code of the composite state. This rule applies recursively if the
transition terminates on a transitively nested substate.

• Shallow history entry: If the transition terminates on a shallow history pseudostate, the active substate becomes the
most recently active substate prior to this entry, unless the most recently active substate is the final state or if this is the
first entry into this state. In the latter two cases, the default history state is entered. This is the substate that is target of
the transition originating from the history pseudostate. (If no such transition is specified, the situation is illegal and its
handling is not defined.) If the active substate determined by history is a composite state, then it proceeds with its
default entry.

• Deep history entry: The rule here is the same as for shallow history except that the rule is applied recursively to all
levels in the active state configuration below this one.

Entering a concurrent composite state

Whenever a concurrent composite state is entered, each one of its concurrent substates (regions) is also entered, either by
default or explicitly. If the transition terminates on the edge of the composite state, then all the regions are entered using
default entry. If the transition explicitly enters one or more regions (in case of a fork), these regions are entered explicitly and
the others by default.

Exiting non-concurrent state

When exiting from a composite state, the active substate is exited recursively. This means that the exit actions are executed in
sequence starting with the innermost active state in the current state configuration.

Exiting a concurrent state

When exiting from a concurrent state, each of its regions is exited. After that, the exit actions of the regions are executed.
142 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Deferred events

An event that is deferred in a composite state is automatically deferred in all directly or transitively nested substates.

4.12.4.4 FinalState

When the final state is active, its containing composite state is completed, which means that it satisfies the completion
condition. If the containing state is the top state, the entire state machine terminates, implying the termination of the entity
associated with the state machine. If the state machine specifies the behavior of a classifier, it implies the “termination” of that
instance.

4.12.4.5 SubmachineState

A submachine state is a convenience that does not introduce any additional dynamic semantics. It is semantically equivalent to
a composite state and may have entry and exit actions, internal transitions, and activities.

4.12.4.6 Transitions

High-level transitions

Transitions originating from the boundary of composite states are called high-level or group transitions. If triggered, they
result in exiting of all the substates of the composite state executing their exit actions starting with the innermost states in the
active state configuration. Note that in terms of execution semantics, a high-level transition does not add specialized
semantics, but rather reflects the semantics of exiting a composite state.

Compound transitions

A compound transition is a derived semantic concept, represents a “semantically complete” path made of one or more
transitions originating from a set of states (as opposed to pseudo-state) and targeting a set of states. The transition execution
semantics described below refer to compound transitions.

In general, a compound transition is an acyclical unbroken chain of transitions joined via join, junction, choice, or fork
pseudostates that define path from a set of source states (possibly a singleton) to a set of destination states, (possibly a
singleton). For self-transitions, the same state acts as both the source and the destination set. A (simple) transition connecting
two states is therefore a special common case of a compound transition.

The tail of a compound transition may have multiple transitions originating from a set of mutually orthogonal concurrent
regions that are joined by a join point.

The head of a compound transition may have multiple transitions originating from a fork pseudostate targeted to a set of
mutually orthogonal concurrent regions.

In a compound transition, multiple outgoing transitions may emanate from a common junction point. In that case, only one of
the outgoing transitions whose guard is true is taken. If multiple transitions have guards that are true, a transition from this set
is chosen. The algorithm for selecting such a transition is not specified. Note that in this case, the guards are evaluated before
the compound transition is taken.

In a compound transition where multiple outgoing transitions emanate from a common choice point, the outgoing transition
whose guard is true at the time the choice point is reached, will be taken. If multiple transitions have guards that are true, one
transition from this set is chosen. The algorithm for selecting this transition is not specified. If no guards are true after the
choice point has been reached, the model is ill formed.

Internal transitions

An internal transition executes without exiting or re-entering the state in which it is defined. This is true even if the state
machine is in a nested state within this state.
© ISO/IEC 2005 - All rights reserved 143

ISO/IEC 19501:2005(E)
Completion transitions and completion events

A completion transition is a transition without an explicit trigger, although it may have a guard defined. When all transition
and entry actions and activities in the currently active state are completed, a completion event instance is generated. This event
is the implicit trigger for a completion transition. The completion event is dispatched before any other queued events and has
no associated parameters. For instance, a completion transition emanating from a concurrent composite state will be taken
automatically as soon as all the concurrent regions have reached their final state.

If multiple completion transitions are defined for a state, then they should have mutually exclusive guard conditions.

Enabled (compound) transitions

A transition is enabled if and only if:

• All of its source states are in the active state configuration.

• The trigger of the transition is satisfied by the current event. An event instance satisfies a trigger if it matches the event
specified by the trigger. In case of signal events, since signals are generalized concepts, a signal event satisfies a signal
event associated with the same signal or a generalization of thereof.

• If there exists at least one full path from the source state configuration to either the target state configuration or to a
dynamic choice point in which all guard conditions are true (transitions without guards are treated as if their guards are
always true).

Since more than one transition may be enabled by the same event instance, being enabled is a necessary but not sufficient
condition for the firing of a transition.

Guards

In a simple transition with a guard, the guard is evaluated before the transition is triggered.

In compound transitions involving multiple guards, all guards are evaluated before a transition is triggered, unless there are
choice points along one or more of the paths. The order in which the guards are evaluated is not defined.

If there are choice points in a compound transition, only guards that precede the choice point are evaluated according to the
above rule. Guards downstream of a choice point are evaluated if and when the choice point is reached (using the same rule as
above). In other words, for guard evaluation, a choice point has the same effect as a state.

Guards should not include expressions causing side effects. Models that violate this are considered ill formed.

Transition execution sequence

Every transition, except for internal transitions, causes exiting of a source state, and entering of the target state. These two
states, which may be composite, are designated as the main source and the main target of a transition.

The least common ancestor (LCA) state of a transition is the lowest composite state that contains all the explicit source states
and explicit target states of the compound transition. In case of junction segments, only the states related to the dynamically
selected path are considered explicit targets (bypassed branches are not considered).

If the LCA is not a concurrent state, the main source is a direct substate of the least common ancestor that contains the explicit
source states, and the main target is a substate of the least common ancestor that contains the explicit target states. In cases
where the LCA is a concurrent state, the main source and main target are the concurrent state itself. The reason is that if a
concurrent region is exited, it forces exit of the entire concurrent state.

Examples:

1. The common simple case: A transition t between two simple states s1 and s2, in a composite state s.
144 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Here the least common ancestor of t is s, the main source is s1, and the main target is s2.

2. A more esoteric case: An unstructured transition from one region to another.

Figure 26 - Unstructured transition among regions

Here the least common ancestor of t is s, the main source is s, and the main target is s, since s is a concurrent
state as specified above.

Once a transition is enabled and is selected to fire, the following steps are carried out in order:

• The main source state is properly exited.

• Actions are executed in sequence following their linear order along the segments of the transition: The closer the action
to the source state, the earlier it is executed.

• If a choice point is encountered, the guards following that choice point are evaluated dynamically and a path whose
guards are true is selected. Entry and exit actions are executed for states entered and exited by the transition into the
choice point.

• The main target state is properly entered.

4.12.4.7 StateMachine

Event processing - run-to-completion step

Events are dispatched and processed by the state machine, one at a time. The order of dequeuing is not defined, leaving open
the possibility of modeling different priority-based schemes.

The semantics of event processing is based on the run-to-completion assumption, interpreted as run-to-completion processing.
Run-to-completion processing means that an event can only be dequeued and dispatched if the processing of the previous
current event is fully completed.

Run-to-completion may be implemented in various ways. For active classes it may be realized by an event-loop running in its
own concurrent thread, and that reads events from a queue. For passive classes it may be implemented as a monitor.

The processing of a single event by a state machine is known as a run-to-completion step. Before commencing on a run-to-
completion step, a state machine is in a stable state configuration with all actions (but not necessarily activities) completed.
The same conditions apply after the run-to-completion step is completed. Thus, an event will never be processed while the
state machine is in some intermediate and inconsistent situation. The run-to-completion step is the passage between two state
configurations of the state machine.

s

s1 s2
t

© ISO/IEC 2005 - All rights reserved 145

ISO/IEC 19501:2005(E)
The run-to-completion assumption simplifies the transition function of the state machine, since concurrency conflicts are
avoided during the processing of event, allowing the state machine to safely complete its run-to-completion step.

When an event instance is dispatched, it may result in one or more transitions being enabled for firing. If no transition is
enabled and the event is not in the deferred event list of the current state configuration, the event is discarded and the run-to-
completion step is completed.

In the presence of concurrent states it is possible to fire multiple transitions as a result of the same event — as many as one
transition in each concurrent state in the current state configuration. In cases where one or more transitions are enabled, the
state machine selects a subset and fires them. Which of the enabled transitions actually fire is determined by the transition
selection algorithm described below. The order in which selected transitions fire is not defined.

Each orthogonal region in the active state configuration that is not decomposed into concurrent regions; that is, “bottom-level”
region can fire at most one transition as a result of the current event. When all orthogonal regions have finished executing the
transition, the current event instance is fully consumed, and the run-to-completion step is completed.

During a transition, a number of actions may be executed. If these actions are synchronous, then the transition step is not
completed until the invoked objects complete their own run-to-completion steps.

An event instance can arrive at a state machine that is blocked in the middle of a run-to-completion step from some other
object within the same thread, in a circular fashion. This event instance can be treated by orthogonal components of the state
machine that are not frozen along transitions at that time.

Run-to-completion and concurrency

It is possible to define state machine semantics by allowing the run-to-completion steps to be applied concurrently to the
orthogonal regions of a composite state, rather than to the whole state machine. This would allow the event serialization
constraint to be relaxed. However, such semantics are quite subtle and difficult to implement. Therefore, the dynamic
semantics defined in this document are based on the premise that a single run-to-completion step applies to the entire state
machine and includes the concurrent steps taken by concurrent regions in the active state configuration.

In case of active objects, where each object has its own thread of execution, it is very important to clearly distinguish the
notion of run to completion from the concept of thread pre-emption. Namely, run-to-completion event handling is performed
by a thread that, in principle, can be pre-empted and its execution suspended in favor of another thread executing on the same
processing node. (This is determined by the scheduling policy of the underlying thread environment — no assumptions are
made about this policy.) When the suspended thread is assigned processor time again, it resumes its event processing from the
point of pre-emption, and eventually completes its event processing.

Conflicting transitions

It was already noted that it is possible for more than one transition to be enabled within a state machine. If that happens, then
such transitions may be in conflict with each other. For example, consider the case of two transitions originating from the same
state, triggered by the same event, but with different guards. If that event occurs and both guard conditions are true, then only
one transition will fire. In other words, in case of conflicting transitions, only one of them will fire in a single run-to-
completion step.

Two transitions are said to conflict if they both exit the same state, or, more precisely, that the intersection of the set of states
they exit is non-empty. Only transitions that occur in mutually orthogonal regions may be fired simultaneously. This constraint
guarantees that the new active state configuration resulting from executing the set of transitions is well formed.

An internal transition in a state conflicts only with transitions that cause an exit from that state.

Firing priorities

In situations where there are conflicting transitions, the selection of which transitions will fire is based in part on an implicit
priority. These priorities resolve some transition conflicts, but not all of them. The priorities of conflicting transitions are based
146 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
on their relative position in the state hierarchy. By definition, a transition originating from a substate has higher priority than a
conflicting transition originating from any of its containing states.

The priority of a transition is defined based on its source state. The priority of joined transitions is based on the priority of the
transition with the most transitively nested source state.

In general, if t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a direct or transitively nested substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not in the same state configuration, then there is no priority difference between t1 and t2.

Transition selection algorithm

The set of transitions that will fire is a maximal set of transitions that satisfies the following conditions:

• All transitions in the set are enabled.

• There are no conflicting transitions within the set.

• There is no transition outside the set that has higher priority than a transition in the set (that is, enabled transitions with
highest priorities are in the set while conflicting transitions with lower priorities are left out).

This can be easily implemented by a greedy selection algorithm, with a straightforward traversal of the active state
configuration. States in the active state configuration are traversed starting with the innermost nested simple states and
working outwards toward the top state. For each state at a given level, all originating transitions are evaluated to determine if
they are enabled. This traversal guarantees that the priority principle is not violated. The only non-trivial issue is resolving
transition conflicts across orthogonal states on all levels. This is resolved by terminating the search in each orthogonal state
once a transition inside any one of its components is fired.

4.12.4.8 Synch States

Synch states provide a means of synchronizing the execution of two concurrent regions. Specifically, a synch state has
incoming transitions from a fork (or forks) in one region, the source region, and outgoing transitions to a join (or joins) in
another, the target region. These forks and joins are called synchronization forks and joins. The synch state itself is contained
by the least common ancestor of the two regions being synchronized. The synchronized regions do not need to be siblings in
state decomposition, but they must have a common ancestor state.

When the source region reaches a synchronization fork, the target states of that fork become active, including the synch state.
Activation of the synch state is an indication that the source region has completed some activity. This region can continue
performing its remaining activities in parallel. When the target region reaches the corresponding synchronization join, it is
prevented from continuing unless all the states leading into the synchronization join are active, including the synch states.

A synch state may have multiple incoming and outgoing transitions, used for multiple synchronization points in each region.
Alternatively, it may have single incoming and outgoing transitions where the incoming transition is fired multiple times
before the outgoing one is fired. To support these applications, synch states keep count of the difference between the number
of times their incoming and outgoing transitions are fired. When an incoming transition is fired, the count is incremented by
one, unless its value is equal to the value defined in the bound attribute. In that case, the count is not incremented. When an
outgoing transition is fired, the count is decremented by one. An outgoing transition may fire only if the count is greater than
zero, which prevents the count from becoming negative. The count is automatically set to zero when its container state is
exited.

The bound attribute is for limiting the number of times outgoing transitions fire from a synch state. For a state to realize the
equivalent of a binary semaphore, the bound should be set to one. In this case multiple incoming transitions may fire before the
outgoing transition does, whereupon the outgoing transition can only fire once.
© ISO/IEC 2005 - All rights reserved 147

ISO/IEC 19501:2005(E)
4.12.4.9 StubStates

Stub states are pseudostates signifying either entry points to or exit points from a submachine. Since a submachine is
encapsulated and represented as a submachine state, multi-level (“deep”) transitions may logically connect states in separate
state machines. This is facilitated by stub state, representing real states in a referenced machine to or form transitions in the
referencing machine are incoming/outgoing. Stub states are therefore only defined within a submachine state, and are the only
potential subvertices of a submachine state.

4.12.5 Notes

4.12.5.1 Protocol State Machines

One application area of state machines is in specifying object protocols, also known as object life cycles. A ‘protocol state
machine’ for a class defines the order; that is, sequence in which the operations of that Class can be invoked. The behavior of
each of these operations is defined by an associated method, rather than through action expressions on transitions.

A transition in a protocol state machine has as its trigger a call event that references an operation of the class, and an empty
action sequence. Such a transition indicates that if the call event occurs when an object of the class is in the source state of the
transition and the guard on the transition is true, then the method associated with the operation of the call event will be
executed (if one exists), and the object will enter the target state. Semantically, the invocation of the method does not lead to a
new call event being raised.

If a call event arrives when the state machine is not in an appropriate state to handle the event, the event is discarded, conform
the general RTC semantics. Strictly speaking, from the caller’s point of view this means that the call is completed. If instead
the semantics are required that the caller should ‘hang’ (potentially infinitely) if the receiver’s state machine is not able to
process the call event immediately, then the event must be deferred explicitly. This can be done for all call events in a protocol
state machine by deferring them at a superstate level.

In any practical application, a protocol state machine is made up exclusively of ‘protocol’ transitions, and the entry and exit
actions of its states are empty; that is, no action specifications exist other than for the methods. However, formally it is not
prohibited to mix this kind of transition with transitions with explicit actions (as it does not seem worth the effort to prohibit
this, and there may be some applications that might benefit from ‘mixing’).

Figure 27 - Example of a Protocol State Machine for a Class ‘Account’.

4.12.5.2 Example: Modeling Class Behavior

In the software that is implemented as a result of a state modeling design, the state machine may or may not be actually visible

Open Closed
close()

withdraw(amount)
[amount <= balance+overdraft]

deposit (amount)
148 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
in the (generated or hand-crafted) code. The state machine will not be visible if there is some kind of run-time system that
supports state machine behavior. In the more general case, however, the software code will contain specific statements that
implement the state machine behavior.

A C++ example is shown below:

class bankAccount {
private:

int balance;
public:

void deposit (amount) {
if (balance > 0)

balance = balance + amount; // no change
else

balance = balance + amount - 1; // transaction fee
}

void withdrawal (amount) {
if (balance>0)

balance = balance - amount;
}

}

In the above example, the class has an abstract state manifested by the balance attribute, controlling the behavior of the class.
This is modeled by the state machine in Figure 28.

Figure 28 - State Machine for Modeling Class Behavior

4.12.5.3 Example: State machine refinement

NOTE: The following discussion provides some potentially useful heuristics on how state machines can be refined. These
techniques are all based on practical experience. However, readers are reminded that this topic is still the subject of research,
and that it is likely that other approaches may be defined either now or in the future.

Since state machines describe behaviors of generalizable elements, primarily classes, state machine refinement is used to
capture the relationships between the corresponding state machines. State machines use refinement in three different
mappings, specified by the mapping attribute of the refinement meta-class. The mappings are refinement, substitution, and
deletion.

credit

debit

withdrawal

deposit/balance
+=amount

deposit

[amount>-balance]/

balance+=amount-1

else/balance -= amount

else/balance
+=amount-1

[amount>balance]/
balance -= amount
© ISO/IEC 2005 - All rights reserved 149

ISO/IEC 19501:2005(E)
To illustrate state machine refinement, consider the following example where one state machine attached to a class denoted
‘Supplier,’ is refined by another state machine attached to a class denoted as ‘Client.’

Figure 29 - State Machine Refinement Example

In the example above, the client state (Sa(new)) in the subclass substitutes the simple substate (Sa1) by a composite substate
(Sa1(new)). This new composite substate has a component substate (Sa11). Furthermore, the new version of Sa1 deletes the
substate Sa2 and also adds a new substate Sa4. Substate Sa3 is inherited and is therefore common to both versions of Sa. For
clarity, we have used a gray shading to identify components that have been inherited from the original. (This is for illustration
purposes and is not intended as a notational recommendation.)

It is important to note that state machine refinement as defined here does not specify or favor any specific policy of state
machine refinement. Instead, it simply provides a flexible mechanism that allows subtyping, (behavioral compatibility),
inheritance (implementation reuse), or general refinement policies.

We provide a brief discussion of potentially useful policies that can be implemented with the state machine refinement
mechanism.

Subtyping

The refinement policy for subtyping is based on the rationale that the subtype preserves the pre/post condition relationships of
applying events/operations on the type, as specified by the state machine. The pre/post conditions are realized by the states,
and the relationships are realized by the transitions. Preserving pre/post conditions guarantee the substitutability principle.

States and transitions are only added, not deleted. Refinement is interpreted as follows:

• A refined state has the same outgoing transitions, but may add others, and a different set of incoming transitions. It may
have a bigger set of substates, and it may change its concurrency property from false to true.

• A refined transition may go to a new target state which is a substate of the state specified in the base class. This comes
to guarantee the post condition specified by the base class.

• A refined guard has the same guard condition, but may add disjunctions. This guarantees that pre-conditions are
weakened rather than strengthened.

Supplier (refined) Client (refined)

Sa Sa (new)

Sa1

Sa2

Sa3

- Sa1 refined

- Sa2 deleted

- Sa4 added

into composite

Sa1 (new)

Sa11

Sa4

Sa3
150 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• A refined action sequence contains the same actions (in the same sequence), but may have additional actions. The
added actions should not hinder the invariant represented by the target state of the transition.

Strict Inheritance

The rationale behind this policy is to encourage reuse of implementation rather than preserving behavior. Since most
implementation environments utilize strict inheritance; that is, features can be replaced or added, but not deleted, the
inheritance policy follows this line by disabling refinements that may lead to non-strict inheritance once the state machine is
implemented.

States and transitions can be added. Refinement is interpreted as follows:

• A refined state has some of the same incoming transitions (i.e., drop some, add some) but a greater or bigger set of
outgoing transitions. It may have more substates, and may change its concurrency attribute.

• A refined transition may go to a new target state but should have the same source.

• A refined guard may have a different guard condition.

• A refined action sequence contains some of the same actions (in the same sequence), and may have additional actions.

General Refinement

In this most general case, states and transitions can be added and deleted (i.e., ‘null’ refinements). Refinement is interpreted
without constraints; that is, there are no formal requirements on the properties and relationships of the refined state machine
element and the refining element:

• A refined state may have different outgoing and incoming transitions (i.e., drop all, add some).

• A refined transition may leave from a different source and go to a new target state.

• A refined guard may have a different guard condition.

• A refined action sequence need not contain the same actions (or it may change their sequence), and may have
additional actions.

The refinement of the composite state in the example above is an illustration of general refinement.

It should be noted that if a type has multiple supertype relationships in the structural model, then the default state machine for
the type consists of all the state machines of its supertypes as orthogonal state machine regions. This may be explicitly
overridden through refinement if required.

4.12.5.4 Comparison to classical statecharts

The major difference between classical (Harel) statecharts and object state machines results from the external context of the
state machine. Object state machines, such as ROOMcharts, primarily come to represent behavior of a type. Classical
statechart specify behaviors of processes. The following list of differences result from the above rationale:

• Events carry parameters, rather than being primitive signals.

• Call events (operation triggers) are supported to model behaviors of types.

• Event conjunction is not supported, and the semantics is given in respect to a single event dispatch, to better match the
type context as opposed to a general system context.

• Classical statecharts have an elaborated set of predefined actions, conditions, and events that are not mandated by
object state machines, such as entered(s), exited(s), true(condition), tr!(c) (make true), fs!(c).
© ISO/IEC 2005 - All rights reserved 151

ISO/IEC 19501:2005(E)
• Operations are not broadcast but can be directed to an object-set.

• The notion of activities (processes) does not exist in object state machines. Therefore all predefined actions and events
that deal with activities are not supported, as well as the relationships between states and activities.

• Transition compositions are constrained for practical reasons. In classical statecharts any composition of pseudostates,
simple transitions, guards, and labels is allowed.

• Object state machine supports the notion of synchronous communication between state machines.

• Actions on transitions are executed in their given order.

• Classical statecharts do not support dynamic choice points.

• Classical statecharts are based on the zero-time assumption, meaning transitions take zero time to execute. The whole
system execution is based on synchronous steps where each step produces new events that will be processed at the next
step. In object-oriented state machines, these assumptions are relaxed and replaced with these of software execution
model, based on threads of execution and that execution of actions may take time.

4.13 Activity Graphs

4.13.1 Overview

The Activity Graphs package defines an extended view of the State Machine package. State machines and activity graphs are
both essentially state transition systems, and share many metamodel elements. This section describes the concepts in the State
Machine package that are specific to activity graphs. It should be noted that the activity graphs extension has few semantics of
its own. It should be understood in the context of the State Machine package, including its dependencies on the Foundation
package and the Common Behavior package.

An activity graph is a special case of a state machine that is used to model processes involving one or more classifiers. Its
primary focus is on the sequence and conditions for the actions that are taken, rather than on which classifiers perform those
actions. Most of the states in such a graph are action states that represent atomic actions; that is, states that invoke actions and
then wait for their completion. Transitions into action states are triggered by events, which can be the

• completion of a previous action state (completion events),

• availability of an object in a certain state,

• occurrence of a signal, or

• satisfaction of some condition.

By defining a small set of additional subtypes to the basic state machine concepts, the well-formedness of activity graphs can
be defined formally, and subsequently mapped to the dynamic semantics of state machines. In addition, the activity specific
subtypes eliminate ambiguities that might otherwise arise in the interchange of activity graphs between tools.

4.13.2 Abstract Syntax

The abstract syntax for activity graphs is expressed in graphic notation in Figure 30 on page 153.
152 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 30 - Activity Graphs

4.13.2.1 ActionState

An action state represents the execution of an atomic action, typically the invocation of an operation.

An action state is a simple state with an entry action whose only exit transition is triggered by the implicit event of completing
the execution of the entry action. The state therefore corresponds to the execution of the entry action itself and the outgoing
transition is activated as soon as the action has completed its execution.

An ActionState may perform more than one action as part of its entry action. An action state may not have an exit action, do
activity, or internal transitions.

0..*

*

 + behavior

+ top

*

+context

*

*

+ partition

+ contents

+ parameter

1

1

0..*

1

+ state

*

0..1

0..1

1..*

+ inState

+ type

+ type

*

*

ActivityGraph

ModelElement
(from Core)

Parameter
(from Core)

SubactivityState

IsDynamic : Boolean
DynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

 ClassifierInState

CallState

 CompositeState

IsConcurrent : Boolean

SubmachineState
(from State Machines)

 ActionState

IsDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

 ObjectFlowState

IsSynch : Boolean

 SimpleState
(from State Machines)

State
(from State Machines)

Partition

StateMachine
(from State Machines)

Classifier
(from Core)

1

© ISO/IEC 2005 - All rights reserved 153

ISO/IEC 19501:2005(E)
Attributes

Associations

4.13.2.2 ActivityGraph

An activity graph is a special case of a state machine that defines a computational process in terms of the control-flow and
object-flow among its constituent actions. It does not extend the semantics of state machines in a major way but it does define
shorthand forms that are convenient for modeling control-flow and object-flow in computational and organizational processes.

The primary purpose of activity graphs is to describe the states of an activity or process involving one or more classifiers.
Activity graphs can be attached to packages, classifiers (including use cases), and behavioral features. As in any state machine,
if an outgoing transition is not explicitly triggered by an event, then it is implicitly triggered by the completion of the contained
actions. A subactivity state represents a nested activity that has some duration and internally consists of a set of actions or
more subactivities. That is, a subactivity state is a “hierarchical action” with an embedded activity subgraph that ultimately
resolves to individual actions.

Junctions, forks, joins, and synchs may be included to model decisions and concurrent activity.

Activity graphs include the concept of Partitions to organize states according to various criteria, such as the real-world
organization responsible for their performance.

Activity graphing can be applied to organizational modeling for business process engineering and workflow modeling. In this
context, events often originate from inside the system, such as the finishing of a task, but also from outside the system, such as
a customer call. Activity graphs can also be applied to system modeling to specify the dynamics of operations and system level
processes when a full interaction model is not needed.

Associations

4.13.2.3 CallState

A call state is an action state that has exactly one call action as its entry action. It is useful in object flow modeling to reduce
notational ambiguity over which action is taking input or providing output.

4.13.2.4 ClassifierInState

A classifier-in-state characterizes instances of a given classifier that are in a particular state or states. In an activity graph, it
may be used to specify input and/or output to an action through an object flow state.

dynamicArguments An ArgListsExpression that determines at runtime the number of parallel executions of the actions
of the state. The value must be a set of lists of objects, each list serving as arguments for one
execution. This attribute is ignored if the isDynamic attribute is false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the actions of state. This attribute is
ignored if the isDynamic attribute is false.

isDynamic A boolean value specifying whether the state's actions might be executed concurrently. It is used in
conjunction with the dynamicArguments attribute.

entry (Inherited from State) Specifies the invoked actions.

partition A set of Partitions each of which contains some of the model elements of the model.
154 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
ClassifierInState is a child of Classifier and may be used in static structural models and collaborations. For example, it can be
used to show associations that are only relevant when objects of a class are in a given state.

Associations

4.13.2.5 ObjectFlowState

An object flow state defines an object flow between actions in an activity graph. An instance of a particular classifier, possibly
in a particular state, is available when an object flow state is occupied.

The generation of an object by an action in an action state may be modeled by an object flow state that is triggered by the
completion of the action state. The use of the object in a subsequent action state may be modeled by connecting the output
transition of the object flow state as an input transition to the action state. Generally each action places the object in a different
state that is modeled as a distinct object flow state.

Attributes

Associations

Stereotypes

4.13.2.6 Partition

A partition is a mechanism for dividing the states of an activity graph into groups. Partitions often correspond to organizational
units in a business model. They may be used to allocate characteristics or resources among the states of an activity graph. It
should be noted that Partitions do not impact the dynamic semantics of the model but they help to allocate properties and
actions for various purposes.

Associations

type Designates a classifier for the ClassifierInState to characterize the instances of.

inState Designates a state that characterizes instances of the classifier of the ClassifierInState. The state must be
a valid state of the corresponding classifier. This may have multiple states when referring to an object in
orthogonal states.

isSynch A boolean value indicating whether an object flow state is used as a synch state.

type Designates a classifier that specifies the classifier of the object. It may be a classifier-in-state to specify
the state and classifier of the object.

parameter Designates parameters that provide the object as output or take it as input.

«signalflow» Signalflow is a stereotype of ObjectFlowState with a Signal as its type.

contents Specifies the states that belong to the partition. They need not constitute a nested region.
© ISO/IEC 2005 - All rights reserved 155

ISO/IEC 19501:2005(E)
4.13.2.7 SubactivityState

A subactivity state represents the execution of a non-atomic sequence of steps that has some duration; that is, internally it
consists of a set of actions and possibly waiting for events. That is, a subactivity state is a “hierarchical action,” where an
associated subactivity graph is executed.

A subactivity state is a submachine state that executes a nested activity graph. When an input transition to the subactivity state
is triggered, execution begins with the nested activity graph. The outgoing transitions of a subactivity state are enabled when
the final state of the nested activity graph is reached; that is, when it completes its execution, or when the trigger events occur
on the transitions.

The semantics of a subactivity state are equivalent to the model obtained by statically substituting the contents of the nested
graph as a composite state replacing the subactivity state.

Attributes

Associations

4.13.2.8 Transition

Transition is inherited from state machines.

Tagged Values

4.13.3 Well-Formedness Rules

4.13.3.1 ActivityGraph

[1] An ActivityGraph specifies the dynamics of

(i) a Package, or

(ii) a Classifier (including UseCase), or

dynamicArguments An ArgListsExpression that determines the number of parallel executions of the submachines of the state.
The value must be a set of lists of objects, each list serving as arguments for one execution. This attribute
is ignored if the isDynamic attribute is false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the actions of state. This attribute is ignored
if the isDynamic attribute is false.

isDynamic A boolean value specifying whether the state's subactivity might be executed concurrently. It is used in
conjunction with the dynamicArguments attribute.

submachine (Inherited from SubmachineState) This designates an activity graph that is conceptually nested within the
subactivity state. The subactivity state is conceptually equivalent to a composite state whose contents are
the states of the nested activity graph. The nested activity graph must have an initial state and a final state.

usage Usage applies only to transitions leading into or out of an object flow state. It has a value of uses or
modifies. A value of uses indicates that the action of the state at the other end of the transition from the
object flow state uses but does not modify the object represented by the object flow state. A value of
modifies indicates that the action of the state at the other end of the transition from the object flow state
modifies and may use the object represented by the object flow state.
156 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
(iii) a BehavioralFeature.

(self.context.oclIsTypeOf(Package) xor

 self.context.oclIsKindOf(Classifier) xor

 self.context.oclIsKindOf(BehavioralFeature))

4.13.3.2 ActionState

[1] An action state has a non-empty entry action.

self.entry->size > 0

[2] An action state does not have an internal transition, exit action, or a do activity.

self.internalTransition->size = 0 and self.exit->size = 0 and self.doActivity->size = 0

[3] Transitions originating from an action state have no trigger event.

self.outgoing->forAll(t | t.trigger->size = 0)

4.13.3.3 CallState

[1] The entry action of a call state is a single call action.

self.entry->size = 1 and self.entry.oclIsKindOf(CallAction)

4.13.3.4 ClassifierInState

[1] Classifiers-in-state have no namespace contents.

self.allContents->size = 0

4.13.3.5 ObjectFlowState

[1] Parameters of an object flow state must have a type and direction compatible with classifier or classifier-in-state of
the object flow state.

let ofstype : Classifier =

(if self.type.IsKindOf(ClassifierInState)

then self.type.type else self.type);

self.parameter->forAll(parameter |

parameter.type = ofstype

 or (parameter.kind = #in

 and ofstype.allSupertypes->includes(type))

 or ((parameter.kind = #out or parameter.kind = #return)

 and type.allSupertypes->includes(ofstype))

 or (parameter.kind = #inout

 and (ofstype.allSupertypes->includes(type)

 or type.allSupertypes->includes(ofstype))))

[2] Downstream states have entry actions that accept input conforming to the type of the classifier or classifier-in-state.
The entry actions use the input parameters of the object flow state. Valid downstream states are calculated by
© ISO/IEC 2005 - All rights reserved 157

ISO/IEC 19501:2005(E)
traversing outgoing transitions transitively, skipping pseudo states, and entering and exiting subactivity states,
looking for regular states. If the object flow state has no parameters, then the target of downstream actions must
conform to the type of the classifier or classifier-in-state.

self.allNextLeafStates.size > 0 and

self.allNextLeafStates->forAll(s | self.isInputAction(s.entry))

[3] Upstream states have entry actions that provide output or return values conforming to the type of the classifier or
classifier-in-state. The entry actions use the output or return parameters of the object flow state. Valid upstream states
are calculated by traversing incoming transitions transitively, skipping pseudo states, entering and exiting subactivity
states, looking for regular states.

self.allPreviousLeafStates.size > 0 and

self.allPreviousLeafStates->forAll(s |

self.isOutputAction(s.entry))

Additional operations

[1] The operation allNextLeafStates results in the set of states immediately downstream of the object flow state that
have the next actions that will be executed.

[2] The operation allPreviousLeafStates results in the set of states immediately upstream of the object flow state
that have the next actions that were last executed.

[3] The operation isInputAction takes an action as input and results in a boolean telling whether the action has an
input parameter compatible with the object flow state.

[4] The operation isOutputAction takes an action as input and results in a boolean telling whether the action has an
output parameter compatible with the object flow state.

4.13.3.6 PseudoState

[1] In activity graphs, transitions incoming to (and outgoing from) join and fork pseudostates have as sources (targets)
any state vertex. That is, joins and forks are syntactically not restricted to be used in combination with composite
states, as is the case in state machines.

self.stateMachine.oclIsTypeOf(ActivityGraph) implies

((self.kind = #join or self.kind = #fork) implies

(self.incoming->forAll(t | t.source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)) and

(self.outgoing->forAll(t | t.source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)))))

[2] All of the paths leaving a fork must eventually merge in a subsequent join in the model. Furthermore, multiple layers
of forks and joins must be well nested, with the exception of forks and joins leading to or from synch state. Therefore
the concurrency structure of an activity graph is in fact equally restrictive as that of an ordinary state machine, even
though the composite states need not be explicit.

4.13.3.7 SubactivityState

[1] A subactivity state is a submachine state that is linked to an activity graph.

self.submachine.oclIsKindOf(ActivityGraph)
158 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.13.4 Detailed Semantics

4.13.4.1 ActivityGraph

The dynamic semantics of activity graphs can be expressed in terms of state machines. This means that the process structure of
activities formally must be equivalent to orthogonal regions (in composite states). That is, transitions crossing between parallel
paths (or threads) are not allowed, except for transitions used with synch states. As such, an activity specification that contains
‘unconstrained parallelism’ as is used in general activity graphs is considered ‘incomplete’ in terms of UML.

All events that are not relevant in a state must be deferred so they are consumed when they become relevant. This is facilitated
by the general deferral mechanism of state machines.

4.13.4.2 ActionState

As soon as the incoming transition of an ActionState is triggered, its entry action starts executing. Once the entry action has
finished executing, the action is considered complete. When the action is complete, then the outgoing transition is enabled.

The isDynamic attribute of an action state determines whether multiple invocations of state might be executed concurrently,
depending on runtime information. This means that the normal activities of an action state, namely its actions, may execute
multiple times in parallel. If isDynamic is true, then the dynamicArguments attribute is evaluated at the time the state is
entered. The size of the resulting set determines the number of parallel executions of the state. Each element of the set is a list,
which is used as arguments for an execution. These arguments can be referred to within actions (for example, by “object[i]”
denoting the ith object in a list). If the isDynamic attribute is false, dynamicArguments is ignored. If the dynamicArguments
expression evaluates to the empty set, then the state behaves as if it had no actions. It is an error if the dynamicArguments
expression evaluates to a set with fewer or more elements than the number allowed by the dynamicMultiplicity attribute. The
behavior is not defined in this case.

Dynamic states may be nested. In this case, you can’t access the outer set of arguments in the inner nesting. If this should be
necessary, arguments can be passed explicitly from the outer to the inner dynamic state.

4.13.4.3 ObjectFlowState

The activation of an object flow state signifies that an instance of the associated classifier is available, perhaps in a specified
state; that is, a state change has occurred as a result of a previous operation. This may enable a subsequent action state that
requires the instance as input. As with all states in activity graphs, if the object flow state leads into a join pseudostate, then the
object flow state remains activated until the other predecessors of the join have completed.

Unless there is an explicit ‘fork’ that creates orthogonal object states, only one of an object flow state’s outgoing transitions
will fire as determined by the guards of the transitions. The invocation of the action state may result in a state change of the
object, resulting in a new object flow state.

An object flow state may specify the parameter of an operation that provides the flowing object as output, and the parameter of
an operation that takes the flowing object as input. The operations must be called in actions of states immediately preceding
and succeeding the object flow state, respectively, although pseudostates, final states, synch states, and stub states may be
interposed between the object flow state and the acting state. For example, an object flow state may transition to a subactivity
state, which means at runtime the object is passed as input to the first state after the initial state of the subactivity graph. If no
parameter is specified to take the flowing object as input, then it is used as an action target instead. Call actions are particularly
suited to be used in conjunction with this technique because they invoke exactly one operation.

Object flow states may be used as synch states, indicated by the isSynch attribute being set to true. In this case, outgoing
transitions can fire only if an object has arrived on the incoming transitions. Instead of a count, the state keeps a list of objects
that arrive on the incoming transitions. These objects are pulled from the list as outgoing transitions are fired. No outgoing
transitions can fire if the list is empty. All objects in the list conform to the classifier and state specified by the object flow
state. The list is not bounded as the count may be in synch states.
© ISO/IEC 2005 - All rights reserved 159

ISO/IEC 19501:2005(E)
For applications requiring that actions or activities bring about an event as their result, use an object flow state with a signal as
a classifier. This means the action or activity must return an instance of a signal. For multiple resulting events, transition the
action or activity to a fork, and target the fork transitions at multiple object flow states.

4.13.4.4 SubactivityState

The isDynamic, dynamicArguments, and dynamicMultiplicity attributes of a subactivity state have a similar meaning to the
same attributes of action states. They provide for executing the submachine of the subactivity state multiple times in parallel.
See semantics of ActionState.

4.13.4.5 Transition

In activity graphs, transitions outgoing from forks may have guards. This means the region initiated by a fork transition might
not start, and therefore not be required to complete at the corresponding join. Forks and joins must be well-nested in the model
to use this feature (see rule #2 for PseudoState in Activity Graphs). The following mapping shows the state machine meaning
for such an activity graph.

Figure 31 - State machine meaning for an activity graph

If a conditional region synchronizes with another region using a synch state,and the condition fails, then these synch states
have their counts set to infinity to prevent other regions from deadlocking.

4.13.5 Notes

Object flow states in activity graphs are a specialization of the general dataflow aspect of process models. Object-flow activity
graphs extend the semantics of standard dataflow relationships in three areas:

1. The operations in action states in activity graphs are operations of classifiers or types (e.g., ‘Trade’ or ‘OrderEntry-
Clerk’). They are not hierarchical ‘functions’ operating on a dataflow.

2. The ‘contents’ of object flow states are typed. They are not unstructured data definitions as in data stores.

3. The state of the object flowing as input and output between operations may be defined explicitly. The event of the
availability of an object in a specific state may form a trigger for the operation that requires the object as input. Object
flow states are not necessarily stateless as are data stores.

[g ua rd]

C o nd itio na l
A ctiv ity
M o d e l
T hre ad

A c tiv ity
M o d e l

T h re a d 1

[gu ard][~ gu ard]

C o nd itio na l
S ta te

M a c h in e
F rag m e n t

A c tiv ity d iag ra m
n o ta tio n

E q u iv a le n t s ta te
m a c h in e n o ta tio n

T h re a d 1
160 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Part 4 - General Mechanisms

This section defines the mechanisms of general applicability to models. This version of UML contains one general
mechanisms package, Model Management. The Model Management package specifies how model elements are organized into
models, packages, subsystems, and UML profiles.

4.14 Model Management

4.14.1 Overview

The Model Management package is dependent on the Foundation package. It defines Model, Package, and Subsystem, which
all serve as grouping units for other ModelElements.

Models are used to capture different views of a physical system. Packages are used within a Model to group ModelElements.
A Subsystem represents a behavioral unit in the physical system. UML Profiles are packages dedicated to group UML
extensions.

In this section it is necessary to clearly distinguish between the physical system being modeled; that is, the subject of the model
and the model element that represent the physical system in the model. For this reason, we consistently use the term physical
system when we want to indicate the former, and the term (top-level) subsystem when we want to indicate the latter. An
example of a physical system is a credit card service, which includes software, hardware, and wetware (people). The UML
model for this physical system might consist of a top-level subsystem called CreditCardService, which is decomposed into
subsystems for Authorization, Credit, and Billing. An analogy with the construction of houses would be that the house would
correspond to the physical system, while a blueprint would correspond to a model, and an element used in a blueprint would
correspond to a model element.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Model Management package.

4.14.2 Abstract Syntax

The abstract syntax for the Model Management package is expressed in graphic notation in Figure 32.
© ISO/IEC 2005 - All rights reserved 161

ISO/IEC 19501:2005(E)
Figure 32 - Model Management

4.14.2.1 Dependency (as extended)

Dependencies have specific extensions for modeling UML profiles.

Stereotypes

4.14.2.2 ElementImport

An element import defines the visibility and alias of a model element included in the namespace within a package, as a result
of the package importing another package.

In the metamodel, an ElementImport reifies the relationship between a Package and an imported ModelElement. It allows

«modelLibrary» This dependency means that the supplier package is being used as a model library associated with a profile.
The client is a package that is stereotyped as a profile and the supplier is a non-profile package that contains
shared model elements, such as classes and data types.

«appliedProfile» This dependency is used to indicate which profiles are applicable to a package. Typically, the client is an
ordinary package or a model (but could be any other kind of package), while the supplier is a profile
package. This means that the profile applies transitively to the model elements contained in the client
package, including the client package itself.

ElementImport
visibility : VisibilityKind
alias : Name
isSpecification : Boolean

GeneralizableElement
(from Core)

Subsystem
isInstantiable : Boolean

Model

ElementOwnership
(from Core)

Namespace
(from Core)

Package

ModelElement
(from Core)

*

0..1

+ownedElement

*

+namespace

0..1

*

*

*

+importedElement

*

Classifier
(from Core)
162 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
redefinition of the name and the visibility for the imported ModelElement; that is, the ModelElement may be given another
name (an alias) and/or a new visibility to be used within the importing Package. The default is no alias (the original name will
be used) and private visibility relative to the importing Package.

Attributes

4.14.2.3 Model

A model captures a view of a physical system. It is an abstraction of the physical system, with a certain purpose. This purpose
determines what is to be included in the model and what is irrelevant. Thus the model completely describes those aspects of
the physical system that are relevant to the purpose of the model, at the appropriate level of detail.

In the metamodel, Model is a subclass of Package. It contains a containment hierarchy of ModelElements that together
describe the physical system. A Model also contains a set of ModelElements that represents the environment of the system,
typically Actors, together with their interrelationships, such as Dependencies, Generalizations, and Constraints.

Different Models can be defined for the same physical system, where each model represents a view of the physical system
defined by its purpose and abstraction level (for example, an analysis model, a design model, an implementation model).
Typically different models are complementary and defined from the perspectives (viewpoints) of different system
stakeholders. For example, a use-case model may be defined from the viewpoint of a business analyst stakeholder. Each Model
is a complete description of the physical system. When Models are nested, the container Model represents the comprehensive
view of the physical system given by the different views defined by the contained Models.

Stereotypes

4.14.2.4 Package

A package is a grouping of model elements.

In the metamodel Package is a subclass of Namespace and GeneralizableElement. A Package contains ModelElements like
Packages, Classifiers, and Associations. A Package may also contain Constraints and Dependencies between ModelElements
of the Package.

Each ModelElement of a Package has a visibility relative to the Package stating if the ModelElement is available to
ModelElements in other Packages with a Permission («access» or «import») or Generalization relationship to the Package. An
«access» or «import» Permission from one Package to another allows public ModelElements in the target Package to be
referenced by ModelElements in the source Package. They differ in that all public ModelElements in imported Packages are

alias The alias defines a local name of the imported ModelElement, to be used within the Package.

isSpecification Specifies whether the ownedElement is part of the specification for the containing namespace (in cases
where specification is distinguished from the realization). Otherwise the ownedElement is part of the
realization. In cases in which the distinction is not made, the value is false by default.

visibility An imported ModelElement is either public, protected, or private relative to the importing Package.

«systemModel» A systemModel is a stereotyped model that contains a collection of models of the same physical system. A
systemModel also contains all relationships and constraints between model elements contained in different
models.

«metamodel» A metamodel is a stereotyped model denoting that the model is an abstraction of another model; that is, it is
a model of a model. Hence, if M2 is a model of the model M1, then M2 is a metamodel of M1. It follows
then that classes in M1 are instances of metaclasses in M2. The stereotype can be recursively applied, as in
the case of a 4-layer metamodel architecture.
© ISO/IEC 2005 - All rights reserved 163

ISO/IEC 19501:2005(E)
added to the Namespace within the importing Package, whereas the Namespace within an accessing Package is not affected at
all. The ModelElements available in a Package are those in the contents of the Namespace within the Package, which consists
of owned and imported ModelElements, together with public ModelElements in accessed Packages.

Associations

Stereotypes

Tag Definitions

4.14.2.5 Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in a physical system. A subsystem offers
interfaces and has operations. In addition, the model elements of a subsystem are partitioned into specification and realization
elements, where the former, together with the operations of the subsystem, are realized by the latter.

importedElement The namespace defined by a package is extended by model elements in other, imported packages.

«facade» A facade is a stereotyped package that contains references to model elements owned by another package. It
is used to provide a ‘public view’ of some of the contents of a package. A facade does not contain any
model elements of its own.

«framework» A framework is a stereotyped package that contains model elements that specify a reusable architecture for
all or part of a system. Frameworks typically include classes, patterns, or templates. When frameworks are
specialized for an application domain, they are sometimes referred to as application frameworks.

«modelLibrary» A model library is a stereotyped package that contains model elements that are intended to be reused by
other packages. A model library differs from a profile in that a model library does not extend the metamodel
using stereotypes and tagged definitions. A model library is analogous to a class library in some
programming languages.

«profile» A profile is a stereotyped package that contains model elements that have been customized for a specific
domain or purpose using extension mechanisms, such as stereotypes, tagged definitions, and constraints. A
profile may also specify model libraries on which it depends and the metamodel subset that it extends. (The
latter is specified via an applicableSubset tag definition.)

«stub» A stub is a stereotyped package that represents only the public parts of another package.

«topLevel» TopLevel is a stereotyped package that denotes the highest level package in a containment hierarchy. The
topLevel stereotype defines the outer limit for looking up names, as namespaces “see” outwards. A topLevel
subsystem is the top of a subsystem containment hierarchy; that is, it is the model element that represents
the boundary of the entire physical system being modeled.

{applicableSubset} This tag definition, which only applies to profile packages, lists the metaelements that are used by the
associated profile. The value associated with this tag definition is a set of strings, where each string
represents the name of an applicable metaelement.

Note that the use of applicable subset does not necessarily exclude the use of any metaelements, but clearly
identifies which ones are referenced from the associated profile. Further note that the tag definition applies
only to the immediately associated profile. If a profile combines several other profiles using import or
generalizations, the applicable subset only applies to the immediately associated profile. The absence of an
applicable subset tag definition means that the whole UML metamodel is applicable.
164 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In the metamodel, Subsystem is a subclass of both Package and Classifier. As such it may have a set of Features, which are
constrained to be Operations and Receptions, and Associations.

The contents of a Subsystem are divided into two subsets: specification elements and realization elements. The former subset
provides, together with the Operations of the Subsystem, a specification of the behavior contained in the Subsystem, while the
ModelElements in the latter subset jointly provide a realization of the specification. Any kind of ModelElement can be a
specification element or a realization element. The relationships between the specification elements and the realization
elements can be defined in different ways (for example, with Collaborations or «realize» dependencies).

Attributes

4.14.3 Well-Formedness Rules

The following well-formedness rules apply to the Model Management package.

4.14.3.1 ElementImport

No extra well-formedness rules.

4.14.3.2 Model

No extra well-formedness rules.

4.14.3.3 Package

[1] No imported element (excluding Association) may have the same name or alias as any element owned by the Package
or one of its supertypes.

self.allImportedElements->reject(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

reject(ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.elementImport.alias))

and

(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

reject (ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.name)))

[2] Imported elements (excluding Association) may not have the same name or alias.

self.allImportedElements->reject(re |

isInstantiable States whether a Subsystem is instantiable or not. If false, the Subsystem represents a unique part of the
physical system; otherwise, there may be several system parts with the same definition.
© ISO/IEC 2005 - All rights reserved 165

ISO/IEC 19501:2005(E)
not re.oclIsKindOf (Association))->forAll(r1, r2 |

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2)

and

(r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name implies r1 = r2)

and

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’ implies

r1.elementImport.alias <> r2.name))

[3] No imported element (Association) may have the same name or alias combined with the same set of associated
Classifiers as any Association owned by the Package or one of its supertypes.

self.allImportedElements->select(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |

ve.oclIsKindOf(Association))->exists(

ve : Association |

ve.name = re.elementImport.alias

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).participant =

ve.connection->at(i).participant)))

and

(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |

not ve.oclIsKindOf(Association))->exists(ve :

Association |

ve.name = re.name

and
166 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).participant =

ve.connection->at(i).participant))))

[4] Imported elements (Association) may not have the same name or alias combined with the same set of associated
Classifiers.

self.allImportedElements->select (re |

re.oclIsKindOf (Association))->forAll (r1, r2 : Association |

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

 Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’

implies r1.elementImport.alias <> r2.name)))

[5] A Package may only own or reference Packages, Classifiers, Associations, Generalizations, Dependencies,
Comments, Constraints, Collaborations, StateMachines, Stereotypes, and TaggedValues.
© ISO/IEC 2005 - All rights reserved 167

ISO/IEC 19501:2005(E)
self.contents->forAll (c |
c.oclIsKindOf(Package) or
c.oclIsKindOf(Classifier) or
c.oclIsKindOf(Association or
c.oclIsKindOf(Generalization) or
c.oclIsKindOf(Dependency) or
c.oclIsKindOf(Comment) or
c.oclIsKindOf(Constraint) or
c.oclIsKindOf(Collaboration or
c.oclIsKindOf(StateMachine) or
c.oclIsKindOf(TaggedValue) or
c.oclIsKindOf(Stereotype))

 Additional Operations

[1] The operation contents results in a Set containing the ModelElements owned by or imported by the Package.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)

[2] The operation allImportedElements results in a Set containing the ModelElements imported by the Package or one of
its parents.

allImportedElements : Set(ModelElement)

allImportedElements = self.importedElement->union(

self.parent.oclAsType(Package).allImportedElements->select(re |

re.elementImport.visibility = #public or

re.elementImport.visibility = #protected))

[3] The operation allContents results in a Set containing the ModelElements owned by or
imported by the Package or one of its ancestors.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

4.14.3.4 Profile

[1] The base classes of all stereotypes in a profile must be part of the applicable subset of this profile.

self.applicableSubset->
includesAll(self.stereotypes->collect(baseClass))

[2] A profile package can only contain tag definitions, stereotypes, constraints and data types.

self.contents->forAll(e |
e.oclIsKindOf(Stereotype) or
e.oclIsKindOf(Constraint) or
e.oclIsKindOf(TagDefinition) or
e.oclIsKindOf (DataType))
168 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
4.14.3.5 Subsystem

[1] For each Operation in an Interface offered by a Subsystem, the Subsystem itself or at least one contained
specification element must have a matching Operation.

self.specification.allOperations->forAll(interOp |

self.allOperations->union

(self.allSpecificationElements->select(specEl|

specEl.oclIsKindOf(Classifier))->forAll(c|

c.allOperations))->exists

(op | op.hasSameSignature(interOp)))

[2] For each Reception in an Interface offered by a Subsystem, the Subsystem itself or at least one contained
specification element must have a matching Reception.

let allReceptions : set(Reception) = self.allFeatures->select(f |

f.oclIsKindOf(Reception)) in

self.specification.allReceptions->forAll(interRec |

self.allReceptions->union

(self.allSpecificationElements->select(specEl|

specEl.oclIsKindOf(Classifier))->forAll(c|

c.allReceptions))->exists

(rec | rec.hasSameSignature(interRec)))

[3] The Features of a Subsystem may only be Operations or Receptions.

self.feature->forAll(f | f.oclIsKindOf(Operation) or

f.oclIsKindOf(Reception))

[4] A Subsystem may only own or reference Packages, Classes, DataTypes, Interfaces, UseCases, Actors, Subsystems,
Signals, Associations, Generalizations, Dependencies, Constraints, Collaborations, StateMachines, and Stereotypes.

self.contents->forAll (c |

c.oclIsKindOf(Package) or

c.oclIsKindOf(Class) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Actor) or

c.oclIsKindOf(Subsystem) or

c.oclIsKindOf(Signal) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(Dependency) or
© ISO/IEC 2005 - All rights reserved 169

ISO/IEC 19501:2005(E)
c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(StateMachine) or

c.oclIsKindOf(Stereotype))

Additional Operations

[1] The operation allSpecificationElements results in a Set containing the Model Elements specifying the behavior of the
Subsystem.

allSpecificationElements : Set(ModelElement)

allSpecificationElements = self.allContents->select(c | c.elementOwnership.isSpecification
)

[2] The operation contents results in a Set containing the ModelElements owned by or imported by the Subsystem.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)

4.14.4 Semantics

4.14.4.1 Package

Figure 33 - Package illustration - shows Package and its environment in the
metamodel by flattening the inheritance hierarchy.

The purpose of the package construct is to provide a general grouping mechanism. A package cannot be instantiated, thus it
has no runtime semantics. In fact, its only semantics is to define a namespace for its contents. The package construct can be
used for organizing elements for any purpose; the criteria to use for grouping elements together into one package are not
defined within UML.

A package owns a set of model elements, with the implication that if the package is removed from the model, so are the
elements owned by the package. Elements with names, such as classifiers, that are owned by the same package must have
unique names within the package, although elements in different packages may have the same name.

There may be relationships between elements contained in the same package, and between an element in one package and an
element in a surrounding package at any level. In other words, elements “see” all the way out through nested levels of
packages. (Note that a package with the stereotype «topLevel» defines the outer limit of this outward visibility.) Elements in
peer packages, however, are encapsulated and are not a priori visible to each other. The same goes for elements in contained
packages; that is, packages do not see “inwards.” There are two ways of making elements in other packages available: by
importing/accessing these other packages, and by defining generalizations to them.

An import dependency (a Permission dependency with the stereotype «import») from one package to another means that the
first package imports all the elements with sufficient visibility in the second package. Imported elements are not owned by the
package; however, they may be used in associations, generalizations, attribute types, and other relationships owned by the
package. A package defines the visibility of its contained elements to be private, protected, or public. Private elements are not

*

*
ModelElement

*
Package

*

*

*

Generalization
*

*

170 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
available at all outside the containing package. Protected elements are available only to packages with generalizations to the
package owning the elements, and public elements are available also to importing and accessing packages. Note that the
visibility mechanism does not restrict the availability of an element to peer elements in the same package.

When an element is imported by a package it extends the namespace of that package. It is possible to give an imported element
an alias to avoid name conflicts with the names of the other elements in the namespace, including other imported elements.
The alias will then be the name of that element in the namespace; the element will not appear under both the alias and its
original name. An imported element is by default private to the importing package. It may, however, be given a more
permissive visibility relative to the importing package; that is, the local visibility may be defined as protected or public.

A package with an import dependency to another package imports all the public contents of the namespace defined by the
supplier package, including elements of packages imported by the supplier package that are given public visibility in the
supplier.

The access dependency (a Permission dependency with the stereotype «access») is similar to the import dependency in that it
makes elements in the supplier package available to the client package. However, in this case no elements in the supplier
package are included in the namespace of the client. They are simply referred to by their full pathname when referenced in the
accessing package. Clearly, they are not visible to packages in turn accessing or importing this package.

A package can have generalizations to other packages. This means that the public and protected elements owned or imported
by a package are also available to its children, and can be used in the same way as any element owned or imported by the
children themselves. Elements made available to another package by the use of a generalization are referred to by the same
name in the child as they are in the parent. Moreover, they have the same visibility in the child as they have in the parent
package. Relationships between the ancestor package and other model elements are also inherited by the child package.

A package can be used to define a framework, specifying a reusable architecture for all or part of a system. Frameworks may
include reusable classes, patterns or templates. When frameworks are specialized for an application domain, they are
sometimes referred to as application frameworks.

4.14.4.2 Profile

A profile stereotype of Package contains one or more related extensions of standard UML semantics (refer to Section 4.6,
“Extension Mechanisms,” on page 69). These are normally intended to customize UML for a particular domain or purpose.
Profiles can contain stereotypes, tag definitions, and constraints. They can also contain data types that are used by tag
definitions for informally declaring the types of the values that can be associated with tag definitions.

In addition, a profile package can specify a related model library and identify a subset of the UML metamodel that is
applicable for the profile. In principle, profiles merely refine the standard semantics of UML by adding further constraints and
interpretations that capture domain-specific semantics and modeling patterns. They do not add any new fundamental concepts.

Relationships between profiles

A profile package can have the usual relationships with other packages such as generalization, import, and access. These have
the usual semantics. They are useful to profile designers who may want to import elements from one profile into another, or to
combine two or more profiles. However, care should be taken to combine these in a consistent way. For example, extensions
from different profiles may be incompatible and their respective constraints may contradict each other. In this revision of
UML, no formal mechanisms are defined to verify that a combination of two or more profiles is mutually consistent.

Profile generalization

Generalization of profiles is a relationship between a profile and a more general profile. The more specific profile must be
fully consistent with the more general profile; that is, it has all the same tag definitions, stereotypes, and constraints, and may
add further refinements, which must not contradict its parent. Note that the subset of UML defined as applicable by a profile is
not inherited by specializing profiles, whereas relationships to model libraries are.
© ISO/IEC 2005 - All rights reserved 171

ISO/IEC 19501:2005(E)
Access and import dependencies between profiles

Profiles can have access and import dependencies with the usual semantics. This allows elements in one profile to access or
use elements in the related profiles. An applied profiles dependency will allow a client package to use all stereotypes and tag
definitions accessible by the supplier package. As in all other types of packages, a profile can own other profiles with standard
semantics of ownership and accessibility.

Applying a profile to a package

A UML model can be based on a number of different UML profiles. The applicable profiles are identified by specially
stereotyped «appliedProfile» dependencies from the UML model package to the appropriate profile packages. This declaration
enables the UML model to access the stereotypes and tag definitions of these profiles.

4.14.4.3 Subsystem

Figure 34 - Subsystem illustration - shows Subsystem and its environment in the
metamodel by flattening the inheritance hierarchy.

The purpose of the subsystem construct is to provide a grouping mechanism for specifying a behavioral unit of a physical
system. Apart from defining a namespace for its contents, a subsystem serves as a specification unit for the behavior of its
contained model elements.

The contents of a subsystem are defined in the same way as for a package, thus it consists of owned elements and imported
elements, with unique names or aliases within the subsystem. The contents of a subsystem are divided into two subsets: 1)
specification elements and 2) realization elements. The specification elements, together with the operations and receptions of
the subsystem, are used for giving an abstract specification of the behavior offered by the realization elements. The collection
of realization elements model the interior of the behavioral unit of the physical system. Consequently, subsystems contained in
the realization part represent subordinate subsystems; that is, subsystems at the level below in the containment hierarchy,
hence owned by the current subsystem.

The specification of a subsystem thus consists of the specification elements together with the subsystem’s features (operations
and receptions). It specifies the behavior performed jointly by instances of classifiers in the realization subset, without
revealing anything about the contents of this subset. The specification is typically made in terms of model elements such as use
cases and/or operations, although other kinds of model elements like classes, interfaces, constraints, relationships between
model elements, state machines may also be used. Use cases are used to specify complete sequences performed by the
subsystem; that is, by instances of its contained classifiers interacting with its surroundings. Operations are suitable to
represent simpler subsystem services that are used independently of each other; that is, not in any particular order.

A subsystem has no behavior of its own. All behavior defined in the specification of the subsystem is jointly offered by the
elements in the realization subset of the contents. In general, since subsystems are classifiers, they can appear anywhere a
classifier is expected. It follows that, since the subsystem itself has no behavior of its own, the requirements posed on the
subsystem in the context where it occurs are fulfilled by the realization of the subsystem.

The correspondence between the specification and the realization of a subsystem can be specified in several ways, including
collaborations and «realize» dependencies. A collaboration specifies how instances of the realization elements cooperate to

InterfaceBehavioralFeature

*

*

Generalization
*

Subsystem

**

*

ModelElement

*
*

SubsystemInstance
172 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
jointly perform the behavior specified by a use case, an operation, etc. in the subsystem specification; that is, how the higher
level of abstraction is transformed into the lower level of abstraction. A stimulus received by an instance of a use case (higher
level of abstraction) corresponds to an instance conforming to one of the classifier roles in the collaboration receiving that
stimulus (lower level of abstraction). This instance communicates with other instances conforming to other classifier roles in
the collaboration, and together they perform the behavior specified by the use case. All stimuli that can be received and sent by
instances of the use cases are also received and sent by the conforming instances, although at a lower level of abstraction.
Similarly, application of an operation of the subsystem actually means that a stimulus is sent to a contained instance that
performs a method.

There are two ways of communicating with a subsystem, either by sending stimuli to the subsystem itself to be re-directed to
the proper recipient inside the subsystem, or by sending stimuli directly to the recipient inside the subsystem. In the first case,
an association is defined with the subsystem itself to enable stimuli sending. (In the abstract syntax, this is handled by a single
subsystem instance being connected by links corresponding to this association, receiving stimuli sent to the subsystem, and re-
directing them to instances within the subsystem instance. Hence the subsystem instance is the “runtime representative” of the
subsystem. Note that this subsystem instance still does not perform any of the behavior specified in the subsystem
specification.) How stimuli sent to the subsystem are re-directed to internal instances is not defined but left as a semantic
variation point.

Communicating with a subsystem by sending stimuli directly to instances within the subsystem requires that the classifiers of
these instances are available within the sender’s namespace so that they can be connected by associations. This can be
achieved by import or access permissions. Importing and accessing subsystems is done in the same way as with packages,
using the visibility property to define whether elements are public, protected, or private to the subsystem. Both the
specification part and the realization part of a subsystem may include imported elements.

A subsystem can have generalizations to other subsystems. This means that the public and protected elements in the contents
of a subsystem as well as operations and receptions are also available to its heirs. Furthermore, relationships between an
ancestor subsystem and other model elements are inherited by specializing subsystems. In a concrete (non-abstract) subsystem
all elements in the specification, including elements from ancestors, are completely realized by cooperating realization
elements, as specified with, for example, a set of collaborations. This may not be true for abstract subsystems.

A subsystem may offer a set of interfaces. This implies that for each operation defined in an interface, the subsystem offering
the interface must have a matching operation, either as a feature of the subsystem itself or of a specification element. The
relationship between interface and subsystem is not necessarily one-to-one. Interfaces of a subsystem are usually contained in
the same namespace as the subsystem itself, but may also be contained in the specification of the subsystem. In the latter case,
elements using these interfaces must have an import or access relationship with the subsystem to gain access to the interfaces.

In cases when the physical system has several parts with the same definition, the subsystem is specified to be instantiable. The
parts are then instances of this subsystem. Note, however, that all behavior specified for the subsystem is still performed by
instances contained in the subsystem instances, not by the subsystem instances themselves.

4.14.4.4 Model

Figure 35 - Model illustration - shows Model and its environment in the
 metamodel by flattening the inheritance hierarchy.

PackageModelElement Model

**
© ISO/IEC 2005 - All rights reserved 173

ISO/IEC 19501:2005(E)
A model is a description of a physical system with a certain purpose, such as to describe logical or behavioral aspects of the
physical system to a certain category of readers. Examples of different kinds of models are ‘use case,’ ‘analysis,’ ‘design,’ and
‘implementation,’ or ‘computational,’ ‘engineering,’ and ‘organizational’ each representing one view of a physical system.

Thus, a model is an abstraction of a physical system. It specifies the physical system from a certain vantage point (or
viewpoint); that is, for a certain category of stakeholders (for example, designers, users, or orderers of the system), and at a
certain level of abstraction, both given by the purpose of the model. A model is complete in the sense that it covers the whole
physical system, although only those aspects relevant to its purpose; that is, within the given level of abstraction and vantage
point, are represented in the model. Furthermore, it describes the physical system only once; that is, there is no overlapping; no
part of the physical system is captured more than once in a model.

A model consists of a containment hierarchy where the top-most package or subsystem represents the boundary of the physical
system. This package/subsystem may be given the stereotype «topLevel» to emphasize its role within the model. It is possible
to have more than one containment hierarchy within a model; that is, the model contains a set of top-most packages/
subsystems each being the root of a containment hierarchy. In this case there is no single package/subsystem that represents
the physical system boundary.

The model may also contain model elements describing relevant parts of the system’s environment. The environment is
typically modeled by actors and their interfaces. As these are external to the physical system, they reside outside the package/
subsystem hierarchy. They may be collected in a separate package, or owned directly by the model. These model elements and
the model elements representing the physical system may be associated with each other.

A model may be a specialization of another model via a generalization relationship. This implies that all public and protected
elements in the ancestor are also available in the specialized model under the same name and interrelated as in the ancestor.

A model may import or access another model. The semantics is the same as for packages. However, some of the actors of the
supplier model may be internal to the client. This is the case, for example, when the imported model represents a lower layer of
the physical system than the client model represents. Then some of the actors of the lower layer model represent the upper
layer. The conformance requirement is that there must be classifiers in the client whose instances may play the roles of such
actors.

The contents of a model is the transitive closure of its owned model elements, like packages, classifiers, and relationships,
together with inherited and imported elements.

There may be relationships between model elements in different models, such as refinement and trace. A trace; that is, an
abstraction dependency with the stereotype «trace» indicates that the connected (sets of) model elements represent the same
concept. Trace is used for tracing requirements between models, or tracing the impact on other models of a change to a model
element in one model. Thus traces are usually non-directional dependencies. Relationships between model elements in
different models have no impact on the model elements’ meaning in their containing models because of the self-containment
of models. Note, though, that even if inter-model relationships do not express any semantics in relation to the models, they
may have semantics in relation to the reader or in deriving model elements as part of the overall development process.

Models may be nested (for example, several models of the same physical system may be collected in a model with the
stereotype «systemModel»). The models contained in the «systemModel» all describe the physical system from different
viewpoints, the viewpoints not necessarily disjoint. The «systemModel» also contains all inter-model relationships. A
«systemModel» constitutes a comprehensive specification of the physical system.

A large physical system may be composed by a set of subordinate physical systems together making up the large physical
system. In this case each subordinate physical system is described by its own set of models collected in a separate
«systemModel». This is an alternative to having each part of the physical system defined as a subsystem.

4.14.5 Notes

In UML, there are three different ways to model a group of elements contained in another element; by using a package, a
subsystem, or a class. Some pragmatics on their use include:
174 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• Packages are used when nothing but a plain grouping of elements is required.

• Subsystems provide grouping suitable for top-down development, since the requirements on the behavior of their
contents can be expressed before the realization of this behavior is defined. Furthermore, from a bottom-up
perspective, the specification of a subsystem may also be seen as a provider of “high level APIs” of the subsystem.

• Classes are used when the container itself should have instances, so that it is possible to define composite objects.

As Subsystem and Model both are Packages in the metamodel, all three constructs can be combined arbitrarily to organize a
containment hierarchy. For example, a Subsystem may be defined using a set of Models, in which case these Models are
contained in the Subsystem. Another example is a set of components defined by Subsystems, collected in a Package defining a
reuse library.

It is a tool issue to decide how many of the imported elements must be explicitly referenced by the importing package; that is,
how many ElementImport links to actually implement. For example, if all elements have the default visibility (private) and
their original names in the importing package, the information can be retrieved directly from the imported package.

If a tool does not support the separation of specification and realization elements for Subsystem, then the value of the
isSpecification attribute for ElementOwnership should be false by default. See the Core package, where ElementOwnership is
defined, for details.

The issue of how to represent the runtime presence of a Subsystem has been solved by introducing SubsystemInstance, even
for a non-instantiable Subsystem. An alternative, less intuitive, solution would be to have the metaclass Subsystem inherit the
metaclass Instance, thus getting the desired characteristics.

Because this is a logical model of the UML, distribution or sharing of models between tools is not described.

It is expected that tools will manage presentation elements, in particular diagrams, that are attached to model elements.
© ISO/IEC 2005 - All rights reserved 175

ISO/IEC 19501:2005(E)
176 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5 UML Notation Guide

Part 1 - Background

This guide describes the notation for the visual representation of the Unified Modeling Language (UML). This notation
document contains brief summaries of the semantics of UML constructs, but the UML Semantics chapter must be consulted
for full details.

5.1 Introduction

This chapter is arranged in parts according to semantic concepts subdivided by diagram types. Within each diagram type,
model elements that are found on that diagram and their representation are listed. Note that many model elements are usable in
more than one diagram. An attempt has been made to place each description where it is used the most, but be aware that the
document involves implicit cross-references and that elements may be useful in places other than the section in which they are
described. Be aware also that the document is nonlinear: there are forward references in it. It is not intended to be a teaching
document that can be read linearly, but a reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important model elements and notational
constructs. Note that some of these constructs are used within other constructs; do not be misled by the flattened structure of
the chapter. Within each section the following subsections may be found:

• Semantics: Brief summary of semantics. For a fuller explanation and discussion of fine points, see the UML Semantics
chapter in this specification.

• Notation: Explains the notational representation of the semantic concept (“forward mapping to notation”).

• Presentation options: Describes various options in presenting the model information, such as the ability to suppress or
filter information, alternate ways of showing things, and suggestions for alternate ways of presenting information
within a tool.

Dynamic tools need the freedom to present information in various ways and the authors do not want to restrict this
excessively. In some sense, we are defining the “canonical notation” that printed documents show, rather than the
“screen notation.” The ability to extend the notation can lead to unintelligible dialects, so we hope this freedom will be
used in intuitive ways. The authors have not sought to eliminate all the ambiguity that some of these presentation
options may introduce, because the presence of the underlying model in a dynamic tool serves to easily disambiguate
things. Note that a tool is not supposed to pick just one of the presentation options and implement it. Tools should offer
users the options of selecting among various presentation options, including some that are not described in this
document.

• Style guidelines: Include suggestions for the use of stylistic markers, such as fonts, naming conventions, arrangement
of symbols that are not explicitly part of the notation, but that help to make diagrams more readable. These are similar
to text indentation rules in C++ or Smalltalk. Not everyone will choose to follow these suggestions, but the use of some
consistent guidelines of your own choosing is recommended in any case.

• Example: Shows samples of the notation. String and code examples are given in the following font: This is a string
sample.

• Mapping: Shows the mapping of notation elements to metamodel elements (“reverse mapping from notation”). This
indicates how the notation would be represented as semantic information. Note that, in general, diagrams are
interpreted in a particular context in which semantic and graphic information is gathered simultaneously. The
assumption is that diagrams are constructed by an editing tool that internalizes the model as the diagram is constructed.
Some semantic constructs have no graphic notation and would be shown to a user within a tool using a form or table.
© ISO/IEC 2005 - All rights reserved 177

ISO/IEC 19501:2005(E)
Part 2 - Diagram Elements

5.2 Graphs and Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes connected by paths. The information is mostly
in the topology, not in the size or placement of the symbols (there are some exceptions, such as a sequence diagram with a
metric time axis). There are three kinds of visual relationships that are important:

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries), and

3. visual attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-dimensional projections of 3-d shapes
(such as cubes), but they are still rendered as icons on a 2-dimensional surface. In the near future, true 3-dimensional layout
and navigation may be possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons - An icon is a graphical figure of a fixed size and shape. It does not expand to hold contents. Icons may appear
within area symbols, as terminators on paths or as standalone symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they can expand to hold other things,
such as lists of strings or other symbols. Many of them are divided into compartments of similar or different kinds.
Paths are connected to two-dimensional symbols by terminating the path on the boundary of the symbol. Dragging or
deleting a 2-d symbol affects its contents and any paths connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a path is a single topological entity,
although its segments may be manipulated graphically. A segment may not exist apart from its path. Paths are always
attached to other graphic symbols at both ends (no dangling lines). Paths may have terminators; that is, icons that
appear in some sequence on the end of the path and that qualify the meaning of the path symbol.

4. Strings - Present various kinds of information in an “unparsed” form. UML assumes that each usage of a string in the
notation has a syntax by which it can be parsed into underlying model information. For example, syntaxes are given
for attributes, operations, and transitions. These syntaxes are subject to extension by tools as a presentation option.
Strings may exist as singular elements of symbols or compartments of symbols, as elements in lists (in which case the
position in the list conveys information), as labels attached to symbols or paths, or as stand-alone elements on a dia-
gram.

5.3 Drawing Paths

A path consists of a series of line segments whose endpoints coincide. The entire path is a single topological unit. Line
segments may be orthogonal lines, oblique lines, or curved lines. Certain common styles of drawing lines exist: all orthogonal
lines, or all straight lines, or curves only for bevels. The line style can be regarded as a tool restriction on default line input.
When line segments cross, it may be difficult to know which visual piece goes with which other piece; therefore, a crossing
may optionally be shown with a small semicircular jog by one of the segments to indicate that the paths do not intersect or
connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the same kind may connect to a single symbol.
In some circumstances (described for the particular relationship) the line segments connected to the symbol can be combined
into a single line segment, so that the path from that symbol branches into several paths in a kind of tree. This is purely a
178 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
graphical presentation option; conceptually the individual paths are distinct. This presentation option may not be used when
the modeling information on the segments to be combined is not identical.

5.4 Invisible Hyperlinks and the Role of Tools

A notation on a piece of paper contains no hidden information. A notation on a computer screen may contain additional
invisible hyperlinks that are not apparent in a static view, but that can be invoked dynamically to access some other piece of
information, either in a graphical view or in a textual table. Such dynamic links are as much a part of a dynamic notation as the
visible information, but this guide does not prescribe their form. We regard them as a tool responsibility. This document
attempts to define a static notation for the UML, with the understanding that some useful and interesting information may
show up poorly or not at all in such a view. On the other hand, we do not know enough to specify the behavior of all dynamic
tools, nor do we want to stifle innovation in new forms of dynamic presentation. Eventually some of the dynamic notations
may become well enough established to standardize them, but we do not feel that we should do so now.

5.5 Background Information

5.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may have its own presentation choices. For
example, one symbol for a class may show the attributes and operations and another symbol for the same class may suppress
them. Tools may provide style sheets attached either to individual symbols or to entire diagrams. The style sheets would
specify the presentation choices. (Style sheets would be applicable to most kinds of symbols, not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some information is best presented in a
textual or tabular format. For example, much detailed programming information is best presented as text lists. The UML does
not assume that all of the information in a model will be expressed as diagrams; some of it may only be available as tables.
This document does not attempt to prescribe the format of such tables or of the forms that are used to access them, because the
underlying information is adequately described in the UML metamodel and the responsibility for presenting tabular
information is a tool responsibility. It is assumed that hidden links may exist from graphical items to tabular items.

5.6 String

A string is a sequence of characters in some suitable character set used to display information about the model. Character sets
may include non-Roman alphabets and characters.

5.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode information about the model, although some
strings may exist purely on the diagrams. UML assumes that the underlying character set is sufficient for representing
multibyte characters in various human languages; in particular, the traditional 8-bit ASCII character set is insufficient. It is
assumed that the tool and the computer manipulate and store strings correctly, including escape conventions for special
characters, and this document will assume that arbitrary strings can be used without further fuss.

5.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be displayed directly. The display of non-
printable characters is unspecified and platform-dependent. Depending on purpose, a string might be shown as a single-line
entity or as a paragraph with automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string itself. They may code for various model
properties, some of which are suggested in this document and some of which are left open for the tool or the user.
© ISO/IEC 2005 - All rights reserved 179

ISO/IEC 19501:2005(E)
5.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size, automatic wrapping, or insertion of scroll
bars. It is assumed that there is a way to obtain the full string dynamically.

5.6.4 Examples

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random configuration.
However, to more closely capture the behavior of physical decks, in which blocks of cards may stick
together during several riffles, the operation is actually simulated by cutting the deck and merging the
cards with an imperfect merge.

5.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on context. In some circumstances, the
visual string is parsed into multiple model elements. For example, an operation signature is parsed into its various fields.
Further details are given with each kind of symbol.

5.7 Name

5.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some scope. A pathname is used to find a model
element starting from the root of the system (or from some other point). A name is a selector (qualifier) within some scope—
the scope is made clear in this document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are various kinds of pathnames described in
this document, each in its proper place and with its particular delimiter.

5.7.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single line and will not contain nonprintable
characters. Tools and languages may impose reasonable limits on the length of strings and the character set they use for names,
possibly more restrictive than those for arbitrary strings, such as comments.

5.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores
180 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Pathname:

MathPak::Matrices::BandedMatrix

5.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with String. Further details are given with the
particular element.

5.8 Label

A label is a string that is attached to a graphic symbol.

5.8.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational term.

5.8.2 Notation

A label is a string that is attached graphically to another symbol on a diagram. Visually the attachment normally is by
containment of the string (in a closed region) or by placing the string near the symbol. Sometimes the string is placed in a
definite position (such as below a symbol) but most of the time the statement is that the string must be “near” the symbol. A
tool maintains an explicit internal graphic linking between a label and a graphic symbol, so that the label drags with the
symbol, but the final appearance of the diagram is a matter of aesthetic judgment and should be made so that there is no
confusion about which symbol a label is attached to. Although the attachment may not be obvious from a visual inspection of
a diagram, the attachment is clear and unambiguous at the graphic level (and poses no ambiguity in the semantic mapping).

5.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various aids (such as a line in a given color,
flashing of matched elements, etc.) as a convenience.

5.8.4 Example

Figure 36 - Attachment by Containment and Attachment by Adjacency

5.9 Keywords

The number of easily-distinguishable visual symbols is limited. The UML notation makes use of text keywords in places to
distinguish variations on a common theme, including metamodel subclasses of a base class, stereotypes of a metamodel base

BankAccount

account
© ISO/IEC 2005 - All rights reserved 181

ISO/IEC 19501:2005(E)
class, and groups of list elements. From the user’s perspective, the metamodel distinction between metamodel subclasses and
stereotypes is often unimportant, although it is important to tool builders and others who implement the metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be treated as reserved words in the
notation. Others are available for users to employ as stereotype names. The use of a stereotype name that matches a predefined
keyword is ill formed.

5.10 Expression

5.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield values when evaluated at run-time.
These include expressions for types, boolean values, and numbers. UML does not include an explicit linguistic analyzer for
expressions. Rather, expressions are expressed as strings in a particular language. The OCL constraint language is used within
the UML semantic definition and may also be used at the user level; other languages (such as programming languages) may
also be used.

UML avoids specifying the syntax for constructing type expressions because they are so language-dependent. It is assumed
that the name of a class or simple data type will map into a simple Classifier reference, but the syntax of complicated
language-dependent type expressions, such as C++ function pointers, is the responsibility of the specification language.

5.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of the string is the responsibility of a tool
and a linguistic analyzer for the language. The assumption is that the analyzer can evaluate strings at run-time to yield values
of the appropriate type, or can yield semantic structures to capture the meaning of the expression. For example, a type
expression evaluates to a Classifier reference, and a boolean expression evaluates to a true or false value. The language itself is
known to a modeling tool but is generally implicit on the diagram, under the assumption that the form of the expression makes
its purpose clear.

5.10.3 Examples

BankAccount

BankAccount * (*) (Person*, int)

array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

5.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of Expression, such as
ObjectSetExpression or TimeExpression).

5.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints within the UML metamodel itself. The
OCL language may be supported by tools for user-written expressions as well. Other possible languages include various
182 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
computer languages as well as plain text (which cannot be parsed by a tool, of course, and is therefore only for human
information). The OCL language is defined in the “Object Constraint Language Specification” chapter.

5.10.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can be chained together. The leftmost
element must be an expression for an object or a set of objects. The expressions are meant to work on sets of values when
applicable.

5.10.7 Examples

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

5.11 Note

A note is a graphical symbol containing textual information (possibly including embedded images). It is a notation for
rendering various kinds of textual information from the metamodel, such as constraints, comments, method bodies, and tagged
values.

5.11.1 Semantics

A note is a notational item. It shows textual information within some semantic element.

5.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It contains arbitrary text. It appears on a
particular diagram and may be attached to zero or more modeling elements by dashed lines.

5.11.3 Presentation Options

A note may have a stereotype.

A note with the keyword “constraint” or a more specific stereotype of constraint (such as the code body for a method)
designates a constraint that is part of the model and not just part of a diagram view. Such a note is the view of a model element
(the constraint).

item ‘.’ selector The selector is the name of an attribute in the item or the name of the target end
of a link attached to the item. The result is the value of the attribute or the related
object(s). The result is a value or a set of values depending on the multiplicities of
the item and the association.

item ‘.’ selector ‘[‘ qualifier-value ‘]’ The selector designates a qualified association that qualifies the item. The
qualifier-value is a value for the qualifier attribute. The result is the related object
selected by the qualifier. Note that this syntax is applicable to array indexing as a
form of qualification.

set ‘->’ ‘select’ ‘(‘ boolean-expression ‘)’ The boolean-expression is written in terms of objects within the set. The result is
the subset of objects in the set for which the boolean expression is true.
© ISO/IEC 2005 - All rights reserved 183

ISO/IEC 19501:2005(E)
5.11.4 Example

Also see Figure 59 on page 211 for a note symbol containing a constraint.

Figure 37 - Note

5.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs; it must be created in context that is
known to a tool, and the tool must maintain the mapping. The string in the note maps to the body of the corresponding
modeling element. A note may represent:

• a constraint,

• a tagged value,

• the body of a method, or

• other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

5.12 Type-Instance Correspondence

A major purpose of modeling is to prepare generic descriptions that describe many specific items. This is often known as the
type-instance dichotomy. Many or most of the modeling concepts in UML have this dual character, usually modeled by two
paired modeling elements, one represents the generic descriptor and the other the individual items that it describes. Examples
of such pairs in UML include: Class-Object, Association-Link, UseCase-UseCaseInstance, Message-Stimulus, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly the same, they share many similarities.
Therefore, it is convenient to choose notation for each type-instance pair of elements such that the correspondence is visually
apparent immediately. There are a limited number of ways to do this, each with advantages and disadvantages. In UML, the
type-instance distinction is shown by employing the same geometrical symbol for each pair of elements and by underlining the
name string (including type name, if present) of an instance element. This visual distinction is generally easily apparent
without being overpowering even when an entire diagram contains instance elements.

This model was built
by Alan Wright after
meeting with the
mission planning team.
184 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 38 - Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s option, such as color, fill patterns, or so
on.

Roles (in collaborations) are somewhat between types and instances. Like instances, they identify distinct occurrences of a
single classifier. Like types, they describe a reusable element that can have many distinct instances. A role is a distinguishable
use of a classifier, but one that is still part of a general description (a collaboration) that can be used to create many instances.
A run-time object may correspond to zero or more classes and to zero or more roles. The notation for a role permits indication
of its base classifiers. The notation for an instance permits specification of its classifiers, its roles, or both.

A role is indicated by a name, colon, and type, not underlined and part of a collaboration. An instance is indicated by an
optional name, optional slash followed by list of roles, colon, and list of types.

Figure 39 - Roles and objects

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414

p1/lead: Point

x = 3.14
y = 2.718

p2/lead,tail:Point

x = 1
y = 1.414

lead: Point

tail: Point

roles objects
© ISO/IEC 2005 - All rights reserved 185

ISO/IEC 19501:2005(E)
Part 3 - Model Management

5.13 Package

5.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested within other packages. A package may
contain subordinate packages as well as other kinds of model elements. All kinds of UML model elements can be organized
into packages.

Note that packages own model elements and are the basis for configuration control, storage, and access control. Each element
can be directly owned by a single package, so the package hierarchy is a strict tree. However, packages can reference other
packages, modeled by using one of the stereotypes «import» and «access» of Permission dependency, so the usage network is
a graph. Other kinds of dependencies between packages usually imply that one or more dependencies among the elements
exists.

5.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. It is the common folder icon.

The contents of the package may be shown within the large rectangle. Contents may also be shown by branching lines to
contained elements, drawn outside of the package (see Figure 40 on page 187). A plus sign (+) within a circle is drawn at the
end attached to the container.

• If the contents of the package are not shown within the large rectangle, then the name of the package may be placed
within the large rectangle.

• If the contents of the package are shown within the large rectangle, then the name of the package may be placed within
the tab.

A keyword string may be placed above the package name. The predefined stereotypes facade, framework, stub, and topLevel
are notated within guillemets.

A list of properties may be placed in braces after or below the package name. Example: {abstract}. See Section 5.17, “Element
Properties,” on page 197 for details of property syntax.

The visibility of a package element outside the package may be indicated by preceding the name of the element by a visibility
symbol (‘+’ for public, ‘-’ for private, ‘#’ for protected, ‘~’ for package).

Relationships may be drawn between package symbols to show relationships between some of the elements in the packages.
An import or access relationship between two packages is drawn as a dashed arrow with open arrowhead, labeled with the
string «import» or «access», respectively.

Elements from imported or accessed packages may be shown outside the package symbol. As (public) elements in imported
packages are added to the client namespace, they may alternatively be drawn inside the package symbol.

5.13.3 Presentation Options

A tool may show visibility by a graphic marker, such as color or font.

A tool may also show visibility by selectively displaying those elements that meet a given visibility level; for example, all of
the public elements only.
186 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A diagram showing a package with contents must not necessarily show all its contents; it may show a subset of the contained
elements according to some criterion.

The contents of a package may also be shown using tree notation. The namespace ownership relationships between the
package and its elements are marked with a circle with a cross in it at the owning end.

5.13.4 Style Guidelines

It is expected that packages with large contents will be shown as simple icons with names, in which the contents may be
dynamically accessed by “zooming” to a detailed view.

5.13.5 Example

Figure 40 - Packages and their access and import relationships.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Microsoft
Windows

Motif

WindowsCore

MotifCore

Editor

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«access»
© ISO/IEC 2005 - All rights reserved 187

ISO/IEC 19501:2005(E)
Figure 41 - Some of the contents of the Editor package shown in a tree structure.

5.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is the name of the Package element. If
there is a string above the package name other than «model» or «subsystem», then it maps into a Package element with the
corresponding stereotype. If there is a string «model» or «subsystem», then it maps into a Model or Subsystem element,
respectively.

A relationship icon drawn from the package symbol boundary to another package symbol maps into a corresponding
relationship to the other package element.

A symbol directly contained within the package symbol; that is, not contained within another symbol maps into a model
element either owned or referenced by the package element. The alias used for a referenced element is often its pathname, in
which case it is directly visible from the diagram that the element is not owned by the package. Only the reference is owned by
the current package. Alternatively, a symbol shown outside the package symbol, attached to one of the symbols within the
package symbol, denotes a referenced model element.

Symbols connected to the package symbol by branching lines with a plus sign at the end attached to the package symbol, map
to elements in the package.

5.14 Subsystem

5.14.1 Semantics

Whereas a package is a generic mechanism for organizing model elements, a subsystem represents a behavioral unit in the
physical system, and hence in the model. A subsystem offers interfaces and has operations, and its contents are partitioned into
specification and realization elements. The specification of the subsystem consists of operations on the subsystem, together
with specification elements such as use cases, state machines.

Apart from defining a namespace, a subsystem serves as a specification unit for the behavior of its contained model elements.
A subsystem may or may not be instantiable.

5.14.2 Notation

A subsystem is notated basically in the same way as a package, with the addition of a fork symbol placed in the upper right
corner of the large rectangle. The name of the subsystem (together with optional keyword, stereotype) is placed within the

Editor

Controller
Diagram
Elements

Domain
Elements
188 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
large rectangle. Optionally, especially if contents of the subsystem are shown within the large rectangle, the subsystem name
and the fork are placed within the tab (the small rectangle).

An instantiable subsystem has the string «instantiable» above its name.

The large rectangle has three compartments, one for operations and one for each of the subsets specification elements and
realization elements. These are usually shown by dividing the rectangle by a vertical line, and then dividing the area to the left
of this line into two compartments by a horizontal line. The operations are shown in the upper left compartment, the
specification elements in the compartment below, and the realization elements in the right compartment. The latter two
compartments are labeled ‘Specification Elements’ and ‘Realization Elements,’ respectively, to avoid potential ambiguity. The
operations compartment is unlabeled. This is the general pattern for subsystem notation, although there are many different
ways to customize it in a particular diagram, see Section 5.14.3, “Presentation Options,” on page 189 and Section 5.14.4,
“Example,” on page 190.

Figure 42 - The general pattern for subsystem notation, with three compartments.

The mapping from the realization part to the specification part; that is, to operations and specification elements, is drawn using
dashed arrows with closed, hollow arrowheads. For collaborations, the mapping may also be expressed textually.

When a subsystem is shown together with other, peer elements in a diagram, it is often shown without contents, in which case
there are no compartments in the large rectangle. See Section 5.14.4, “Example,” on page 190.

5.14.3 Presentation Options

The fork symbol may be replaced by the keyword «subsystem» placed above the name of the subsystem.

The compartments may be rearranged within the subsystem symbol.

One or more of the compartments may be collapsed or suppressed. In cases where more than one diagram is used to show all
information about a particular subsystem, each diagram shows a subset of the subsystem’s features and/or contents. Hence,
compartments not relevant in a particular diagram are suppressed.

All contained elements in a subsystem may be shown together in one, non-labeled compartment; that is, no visual
differentiating between specification elements and realization elements is done.

Tools may provide alternative ways to differentiate specification elements from realization elements, such as different colors,
using the keyword «specification» for specification elements, etc.

Specification Elements

Realization Elements
© ISO/IEC 2005 - All rights reserved 189

ISO/IEC 19501:2005(E)
As with packages, the contents of a subsystem may be shown using tree notation. Distinction between specification and
realization elements may then be done; for example, by having two separate, labeled branches, or by showing the category
separately for each element in the tree as suggested above.

5.14.4 Example

Figure 43 - An overview diagram showing subsystems with interfaces and their dependencies.

Figure 44 - All contained elements of a subsystem shown together without division into
compartments. Here, the subsystem offers operation1(...) although this is not
explicitly shown.

In Figure 44 no visual separation between specification and realization elements is made. The following three figures are
schematic examples where the specification/realization distinction is explicit. Together these figures constitute an example of
how the basic notation for subsystem can be used to show different “views” of a subsystem in different diagrams, together
giving the whole picture of the subsystem.

SS1

SS2 SS3

operation1(...) : Type1

«Interface»
190 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 45 - The specification part of a subsystem; compartment for realization part is
suppressed. Implicit from the diagram is that the operation4(...) is either an
operation of a specification element (UseCase1 or UseCase2) or of the subsystem
itself. Furthermore, in cases where operations are used for the specification
but only contained specification elements, there is no operations compartment, and
vice versa.

Figure 46 - The realization part of a subsystem; compartments for specification part;
that is, operations and specification elements are suppressed. Alternatively,
collaborations could be shown in a separate diagram.

operation2(...) : Type2

operation3(...) : Type3

UseCase1

UseCase2

Specification Elements

operation1(...) : Type1

«Interface»

operation4(...) : Type4

«Interface»

operation1(...) : Type1

Realization Elements
© ISO/IEC 2005 - All rights reserved 191

ISO/IEC 19501:2005(E)
Figure 47 - The mapping between specification part and realization part shown using
all three compartments, but only those realization elements with relevance to the
mapping are shown. The figure also shows examples of different ways to express
the mapping.

Figure 48 - A component modeled using a subsystem and classes stereotype
«focalClass» or «auxiliaryClass», respectively.

Realization Elements

operation1(...) : Type1

operation2(...) : Type2

representedOperation:
operation2

Specification Elements

operation3(...) : Type3

operation4(...) : Type4

«Interface»

UseCase1

UseCase2

Realization ElementsSpecification Elements

create(...)

«Interface»

ShoppingCartHome

findByPrimaryKey(...)
...

getItemCount(...)

«Interface»

ShoppingCart

setItemCount(...)
...getTotal(...)
setTotal(...)
...

«focalClass»

ShoppingCartImpl

«auxiliaryClass»

ContextObject
«auxiliaryClass»

RemoteObject

«auxiliaryClass»

HomeObject

Context

ShoppingCartHome

Shoppingcart
«call»

«call»

«call»

ShoppingCart

«auxiliaryClass»
ShoppingCart

ArtStoreClient

«call»

«call»

DBbroker
192 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.14.5 Mapping

A subsystem symbol maps into a Subsystem with the given name. The mapping is analogous to that of package symbols, with
the following addition:

A symbol within a compartment of the large rectangle labeled ‘Specification Elements’ or ‘Realization Elements’ is mapped to
a specification or realization element of the subsystem, respectively. An operation signature string within a non-labeled
compartment maps to an operation of the subsystem. Note that a compartment may coincide with the whole rectangle.

A symbol, that is not an operation signature string, within a non-labeled compartment maps to an element contained in the
subsystem.

A dashed arrow with closed, hollow arrowhead from a symbol denoting a realization element to a symbol denoting a
specification element or an operation maps to a «realize» relationship between the corresponding elements.

5.15 Model

5.15.1 Semantics

A model captures a view of a physical system. Hence, it is an abstraction of the physical system with a certain purpose; for
example, to describe behavioral aspects of the physical system to a certain category of stakeholders. A model contains all the
model elements needed to represent a physical system completely according to the purpose of this particular model. The model
elements in a model are organized into a package/subsystem hierarchy, where the top-most package/subsystem represents the
boundary of the physical system.

Different models of the same physical system show different aspects of the system. The pre-defined stereotype
«systemModel» can be applied to a model containing the entire set of models for a physical system.

Relationships between elements in different models have no semantic impact on the contents of the models because of the self-
containment of models. However, they are useful for tracing refinements and for keeping track of requirements between
models.

Relationships between models express refinement, import, etc.

5.15.2 Notation

A model is notated using the ordinary package symbol with a small triangle in the upper right corner of the large rectangle.
Optionally, especially if contents of the model is shown within the large rectangle, the triangle may be drawn to the right of the
model name in the tab.

Relationships between models as well as relationships between elements in different models are shown using the notation for
the given kind of relationship. In particular, trace dependencies are notated with a dashed line, with an optional open
arrowhead, and the keyword «trace».

5.15.3 Presentation Options

A model may be notated as a package, using the ordinary package symbol with the keyword «model» placed above the name
of the model.
© ISO/IEC 2005 - All rights reserved 193

ISO/IEC 19501:2005(E)
5.15.4 Example

Figure 49 - Three views of a physical system, each represented by a model.

Figure 50 - A «systemModel» containing an analysis model and a design model.

Figure 51 - Two examples of containment hierarchies with models and subsystems shown
using branching lines. The left hierarchy is based on Model, whereas the right
one is based on Subsystem.

5.15.5 Mapping

A model symbol maps to a Model with the given name. The mapping is analogous to that of package symbols.

AnalysisUse Case Design

 Model Model Model

 «systemModel»

 Analysis Design

 Model Model
194 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Part 4 - General Extension Mechanisms

The elements in this section are general purpose mechanisms that may be applied to any modeling element. The semantics of a
particular use depends on a convention of the user or an interpretation by a particular constraint language or programming
language; therefore, they constitute an extensibility device for UML.

5.16 Constraint and Comment

5.16.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions and propositions that must be
maintained as true; otherwise, the system described by the model is invalid (with consequences that are outside the scope of
UML). Certain kinds of constraints (such as an association “xor” constraint) are predefined in UML, others may be user-
defined. A user-defined constraint is described in words in a given language, whose syntax and interpretation is a tool
responsibility. A constraint represents semantic information attached to a model element, not just to a view of it.

A comment is a text string (including references to human-readable documents) attached directly to a model element. A
comment can attach arbitrary textual information to any model element of presumed general importance but it has no semantic
force. Comments may be used for explaining the reasons for decisions, among other things.

5.16.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that individual tools may provide one or more
languages in which formal constraints may be written. One predefined language for writing constraints is OCL (see the Object
Constraint Language Specification chapter); otherwise, the constraint may be written in natural language. Each constraint is
written in a specific language, although the language is not generally displayed on the diagram (the tool must keep track of it,
however).

For an element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the element text
string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes within a class), a constraint string may
appear as an element in the list. The constraint applies to all succeeding elements of the list until another constraint string list
element or the end of the list. A constraint attached to an individual list element does not supersede the general constraint, but
may augment or modify individual constraints within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint string may be placed near the symbol,
preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations), the constraint is shown as a dashed arrow from one
element to the other element labeled by the constraint string (in braces). The direction of the arrow is relevant information
within the constraint. The client (tail of the arrow) is mapped to the first position and the supplier (head of the arrow) is
mapped to the second position in the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol and attached to each of the symbols by a
dashed line. This notation may also be used for the other cases. For three or more paths of the same kind (such as
generalization paths or association paths), the constraint may be attached to a dashed line crossing all of the paths.

A comment is shown as a text string (not enclosed in braces) within a note icon. Syntax for including comments within other
elements (such as expressions or constraints) are not specified by UML but may be provided by a tool as part of the expression
syntax for a particular language.
© ISO/IEC 2005 - All rights reserved 195

ISO/IEC 19501:2005(E)
5.16.3 Example

Figure 52 - Constraints and comment

5.16.4 Mapping

A constraint string is a string enclosed in braces ({ }).

The constraint string maps into the body expression in a Constraint element. The mapping depends on the language of the
expression, which is known to a tool but generally not displayed on a diagram.

A constraint string following a list entry maps into a Constraint attached to the element corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate Constraint attached to each succeeding model
element corresponding to subsequent list entries (until superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a hidden link by a tool operating in
context. The tool must maintain the graphical linkage implicitly. The constraint string maps into a Constraint attached to the
element corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the two elements corresponding to the
symbols connected by the arrow.

A string enclosed in braces in a note symbol maps into a Constraint attached to the elements corresponding to the symbols
connected to the note symbol by dashed lines.

A string (not enclosed in braces) in a note attached to the symbol for an element maps into a Comment attached to the
corresponding element.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.
196 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.17 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In addition, users can define new element
properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes properties represented by attributes in
the metamodel as well as both predefined and user-defined tagged values.

5.17.1 Semantics

Note that we use property in a general sense to mean any value attached to a model element, including attributes, associations,
and tagged values. In this sense it can include indirectly reachable values that can be found starting at a given element. Some
kinds of properties would have syntax within expressions (not specified by UML) but no explicit UML notation.

A tagged value is a keyword-value pair that may be attached to any kind of model element (including diagram elements as
well as semantic model elements). The keyword is called a tag. Each tag represents a particular kind of property applicable to
one or many kinds of model elements. Both the tag and the value are encoded as strings. Tagged values are an extensibility
mechanism of UML permitting arbitrary information to be attached to models. It is expected that most model editors will
provide basic facilities for defining, displaying, and searching tagged values as strings but will not otherwise use them to
extend the UML semantics. It is expected, however, that back-end tools such as code generators, report writers, and the like
will read tagged values to guide their semantics in flexible ways.

5.17.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-delimited sequence of property
specifications all inside a pair of braces ({ }).

A property specification has the form

name = value

where name is the name of a property (metamodel attribute or arbitrary tag) and value is an arbitrary string that denotes its
value. If the type of the property is Boolean, then the default value is true if the value is omitted. That is, to specify a value of
true you may include just the keyword. To specify a value of false, you omit the name completely. Properties of other types
require explicit values. The syntax for displaying the value is a tool responsibility in cases where the underlying model value is
not a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged values.

Boolean properties frequently have the form isName, where name is the name of some condition that may be true or false. In
these cases, the form “name” may usually appear by itself, without a value, to mean “isName = true”. For example, {abstract}
is the same as {isAbstract = true}.

Tagged values can sometimes refer to other model elements (see Section 4.6.2.5, “TaggedValue,” on page 74). In that case, the
usual tagged value format is used except that the value is the name of the model element that is referenced. Alternatively, it
may be represented graphically using a «taggedValue» relationship, which uses the dependency notation. The direction of the
dependency arrow is towards the referenced element. These two cases are illustrated in Figure 53.
© ISO/IEC 2005 - All rights reserved 197

ISO/IEC 19501:2005(E)

Figure 53 - Alternative notations for tagged values as references

5.17.3 Presentation Options

A tool may present property specifications on separate lines with or without the enclosing braces, provided they are marked
appropriately to distinguish them from other information. For example, properties for a class might be listed under the class
name in a distinctive typeface, such as italics or a different font family.

5.17.4 Style Guidelines

It is legal to use strings to specify properties that have graphical notations; however, such usage may be confusing and should
be used with care.

5.17.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

5.17.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a tagged value (predefined or user-defined).

«stereotype»

Scheduler
«stereotype»

M anager

{ «taggedValue» jobScheduler

: Scheduler [1] }

«m etaClass»

Class

«stereotype»

Scheduler
«stereotype»

M anager

«m etaClass»

Class

jobSchedu ler
[1]

«stereotype»«stereotype»

«taggedValue»

«stereotype»«stereotype»
198 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A tool must enforce the correspondence to built-in attributes.

5.18 Stereotypes

5.18.1 Semantics

A stereotype is, in effect, a new class of metamodel element that is introduced at modeling time. It represents a subclass of an
existing metamodel element with the same form (attributes and relationships) but with a different intent. Generally a
stereotype represents a usage distinction. A stereotyped element may have additional constraints on it from the base
metamodel class. It may also have required tagged values that add information needed by elements with the stereotype. It is
expected that code generators and other tools will treat stereotyped elements specially. Stereotypes represent one of the built-in
extensibility mechanisms of UML.

5.18.2 Notation

The general presentation of a stereotype is to use the symbol for the metamodel base element but to place a keyword string
above the name of the element (if any). The keyword string (Section 5.9, “Keywords,” on page 181) is the name of the
stereotype within matched guillemets, which are the quotation mark symbols used in French and certain other languages (for
example, «foo»).

NOTE: A guillemet looks like a double angle-bracket, but it is a single character in most extended fonts. Most computers
have a Character Map utility. Double angle-brackets may be used as a substitute by the typographically challenged.

The keyword string is generally placed above or in front of the name of the model element being described. If multiple
stereotypes are defined for the same model element, they are placed vertically one below the other. The keyword string may
also be used as an element in a list, in which case it applies to subsequent list elements until another stereotype string replaces
it, or an empty stereotype string («») nullifies it. Note that a stereotype name should not be identical to a predefined keyword
applicable to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a graphic marker (such as texture or
color) can be associated with a stereotype. The UML does not specify the form of the graphic specification, but many bitmap
and stroked formats exist (and their portability is a difficult problem). The icon can be used in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of the symbol for the base model ele-
ment that the stereotype is based on. For example, in a class rectangle it is placed in the upper right corner of the
name compartment. In this form, the normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing the element name or with the name
above or below the icon. Other information contained by the base model element symbol is suppressed. More general
forms of icon specification and substitution are conceivable, but we leave these to the ingenuity of tool builders, with
the warning that excessive use of extensibility capabilities may lead to loss of portability among tools.

If multiple stereotypes are defined, the graphical icons or markers are omitted.

UML avoids the use of graphic markers, such as color, that present challenges for certain persons (the color blind) and for
important kinds of equipment (such as printers, copiers, and fax machines). None of the UML symbols require the use of such
graphic markers. Users may use graphic markers freely in their personal work for their own purposes (such as for highlighting
within a tool) but should be aware of their limitations for interchange and be prepared to use the canonical forms when
necessary.

The classification hierarchy of the stereotypes themselves can be displayed on a class diagram, as described in Section 5.35,
“Stereotype Declaration,” on page 220. This capability is not required by many modelers who must use existing stereotypes
but not define new kinds of stereotypes.
© ISO/IEC 2005 - All rights reserved 199

ISO/IEC 19501:2005(E)
5.18.3 Examples

Figure 54 illustrates various notational forms of the stereotype notation. Note that the top four shapes are alternatives of each
other. The next one shows how a dependency can be stereotyped and the bottom example illustrates a model element with
multiple stereotypes.

Figure 54 - Varieties of Stereotype Notation

5.18.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the Element corresponding to the symbol
containing the name and the Stereotype of the given name. The use of a stereotype icon within a symbol maps into the
stereotype relationship between the Element corresponding to the symbol containing the icon and the Stereotype represented
by the symbol. A tool must establish the connection when the symbol is created and there is no requirement that an icon
represent uniquely one stereotype. The use of a stereotype icon, instead of a symbol, must be created in a context in which a
tool implies a corresponding model element and a Stereotype represented by the icon. The element and the stereotype have the
stereotype relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«call»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)

Lock

«control»

reqQueue: Queue

«semaphore»
200 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Part 5 - Static Structure Diagrams

Class diagrams show the static structure of the model, in particular, the things that exist (such as classes and types), their
internal structure, and their relationships to other things. Class diagrams do not show temporal information, although they may
contain reified occurrences of things that have or things that describe temporal behavior. An object diagram shows instances
compatible with a particular class diagram.

This section discusses classes and their variations, including templates and instantiated classes, and the relationships between
classes (association and generalization) and the contents of classes (attributes and operations).

5.19 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static relationships. Note that a “class” diagram
may also contain interfaces, packages, relationships, and even instances, such as objects and links. Perhaps a better name
would be “static structural diagram” but “class diagram” is shorter and well established.

5.19.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class diagrams do not represent divisions in the
underlying model.

5.19.2 Notation

A class diagram is a collection of static declarative model elements, such as classes, interfaces, and their relationships,
connected as a graph to each other and to their contents. Class diagrams may be organized into packages either with their
underlying models or as separate packages that build upon the underlying model packages.

5.19.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within the static structural model may be
represented by one or more class diagrams. The division of the presentation into separate diagrams is for graphical
convenience and does not imply a partitioning of the model itself. The contents of a diagram map into elements in the static
semantic model. If a diagram is part of a package, then its contents map into elements in the same package (including possible
references to elements accessed or imported from other packages).

5.20 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static object diagram is an instance of a class
diagram; it shows a snapshot of the detailed state of a system at a point in time. The use of object diagrams is fairly limited,
mainly to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can contain objects, so a class diagram with
objects and no classes is an “object diagram.” The phrase is useful, however, to characterize a particular usage achievable in
various ways.

5.21 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these have similar syntax and are therefore all
notated using the rectangle symbol with keywords used as necessary. Because classes are most common in diagrams, a
rectangle without a keyword represents a class, and the other subclasses of Classifier are indicated with keywords. In the
sections that follow, the discussion will focus on Class, but most of the notation applies to the other element kinds as
semantically appropriate and as described later under their own sections.
© ISO/IEC 2005 - All rights reserved 201

ISO/IEC 19501:2005(E)
5.22 Class

A class is the descriptor for a set of objects with similar structure, behavior, and relationships. The model is concerned with
describing the intension of the class, that is, the rules that define it. The run-time execution provides its extension, that is, its
instances. UML provides notation for declaring classes and specifying their properties, as well as using classes in various
ways. Some modeling elements that are similar in form to classes (such as interfaces, signals, or utilities) are notated using
keywords on class symbols; some of these are separate metamodel classes and some are stereotypes of Class. Classes are
declared in class diagrams and used in most other diagrams. UML provides a graphical notation for declaring and using
classes, as well as a textual notation for referencing classes within the descriptions of other model elements.

5.22.1 Semantics

A class represents a concept within the system being modeled. Classes have data structure and behavior and relationships to
other elements.

The name of a class has scope within the package in which it is declared and the name must be unique (among class names)
within its package.

5.22.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by horizontal lines. The top name
compartment holds the class name and other general properties of the class (including stereotype); the middle list compartment
holds a list of attributes; the bottom list compartment holds a list of operations.

See Section 5.23, “Name Compartment,” on page 204 and Section 5.24, “List Compartment,” on page 204 for more details.

5.22.2.1 References

By default a class shown within a package is assumed to be defined within that package. To show a reference to a class defined
in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by chaining together package names separated
by double colons (::).

5.22.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A separator line is not drawn for a missing
compartment. If a compartment is suppressed, no inference can be drawn about the presence or absence of elements in it.
Compartment names can be used to remove ambiguity, if necessary (Section 5.24, “List Compartment,” on page 204).

Additional compartments may be supplied as a tool extension to show other predefined or user-defined model properties (for
example, to show business rules, responsibilities, variations, events handled, exceptions raised, and so on). Most
compartments are simply lists of strings. More complicated formats are possible, but UML does not specify such formats; they
are a tool responsibility. Appearance of each compartment should preferably be implicit based on its contents. Compartment
names may be used, if needed.

Tools may provide other ways to show class references and to distinguish them from class declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the name of the class either
inside the class or below the icon. Other contents of the class are suppressed.
202 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.22.4 Style Guidelines

• Center class name in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above class name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize class names; that is, begin
class names with a capital letter.

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

As a tool extension, boldface may be used for marking special list elements; for example, to designate candidate keys in a
database design. This might encode some design property modeled as a tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts or references.

5.22.5 Example

Figure 55 - Class Notation: Details Suppressed, Analysis-level Details,
Implementation-level Details

5.22.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram. The name compartment contents map
into the class name and into properties of the class (built-in attributes or tagged values). The attribute compartment maps into
a list of Attributes of the Class. The operation compartment maps into a list of Operations of the Class.

The property string {location=name} maps into an implementationLocation association to a Component. The name is the
name of the containing Component.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}
© ISO/IEC 2005 - All rights reserved 203

ISO/IEC 19501:2005(E)
5.23 Name Compartment

5.23.1 Notation

The name compartment displays the name of the class and other properties in up to three sections:

An optional stereotype keyword may be placed above the class name within guillemets, and/or a stereotype icon may be
placed in the upper right corner of the compartment. The stereotype name must not match a predefined keyword.

The name of the class appears next. If the class is abstract, this can be indicated by italicizing its name (for those languages
that support italicization) or by placing the keyword abstract in a property list below or after the name; for example, Invoice
{abstract}. Note that any explicit specification of generalization status takes precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be placed in braces below the class name.
The list may show class-level attributes for which there is no UML notation and it may also show tagged values. The presence
of a keyword for a Boolean type without a value implies the value true. For example, a leaf class shows the property “{leaf}”.

The stereotype and property list are optional.

Figure 56 - Name Compartment

5.23.2 Mapping

The contents of the name compartment map into the name, stereotype, and various properties of the Class represented by the
class symbol.

5.24 List Compartment

5.24.1 Notation

A list compartment holds a list of strings, each of which is the encoded representation of a feature, such as an attribute or
operation. The strings are presented one to a line with overflow to be handled in a tool-dependent manner. In addition to lists
of attributes or operations, optional lists can show other kinds of predefined or user-defined values, such as responsibilities,
rules, or modification histories. UML does not define these optional lists. The manipulation of user-defined lists is tool-
dependent.

The items in the list are ordered and the order may be modified by the user. The order of the elements is meaningful
information and must be accessible within tools (for example, it may be used by a code generator in generating a list of
declarations). The list elements may be presented in a different order to achieve some other purpose (for example, they may be
sorted in some way). Even if the list is sorted, the items maintain their original order in the underlying model. The ordering
information is merely suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited section of a list indicates that additional
elements in the model exist that meet the selection condition, but that are not shown in that list. Such elements may appear in a

PenTracker

«controller»

{ leaf, author=”Mary Jones”}
204 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
different view of the list.

5.24.1.1 Group properties

A property string may be shown as an element of the list, in which case it applies to all of the succeeding list elements until
another property string appears as a list element. This is equivalent to attaching the property string to each of the list elements
individually. The property string does not designate a model element. Examples of this usage include indicating a stereotype
and specifying visibility. Keyword strings may also be used in a similar way to qualify subsequent list elements.

5.24.1.2 Compartment name

A compartment may display a name to indicate which kind of compartment it is. The name is displayed in a distinctive font
centered at the top of the compartment. This capability is useful if some compartments are omitted or if additional user-defined
compartments are added. For a Class, the predefined compartments are named attributes and operations. An example of a
user-defined compartment might be requirements. The name compartment in a class must always be present; therefore, it
does not require or permit a compartment name.

5.24.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent ordering of the elements is not visible. A sort
is based on some internal property and does not indicate additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then package, then protected, then private).

The elements in the list may be filtered according to some selection rule. The specification of selection rules is a tool
responsibility. The absence of items from a filtered list indicates that no elements meet the filter criterion, but no inference can
be drawn about the presence or absence of elements that do not meet the criterion. However, the ellipsis notation is available to
show that invisible elements exist. It is a tool responsibility whether and how to indicate the presence of either local or global
filtering, although a stand-alone diagram should have some indication of such filtering if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absence of its elements. An empty
compartment indicates that no elements meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 78 on page 240).
© ISO/IEC 2005 - All rights reserved 205

ISO/IEC 19501:2005(E)
5.24.3 Example

Figure 57 - Stereotype Keyword Applied to Groups of List Elements

Figure 58 - Compartments with Names

5.24.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list entry. The ordering of the ModelElements

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card
206 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
matches the list compartment entries (unless the list compartment is sorted in some way). In this case, no implication about the
ordering of the Elements can be made (the ordering can be seen by turning off sorting). However, a list entry string that is a
stereotype indication (within guillemets) or a property indication (within braces) does not map into a separate ModelElement.
Instead, the corresponding property applies to each subsequent ModelElement until the appearance of a different stand-alone
stereotype or property indicator. The property specifications are conceptually duplicated for each list Element, although a tool
might maintain an internal mechanism to store or modify them together. The presence of an ellipsis (“...”) as a list entry
implies that the semantic model contains at least one Element with corresponding properties that is not visible in the list
compartment.

5.25 Attribute

Strings in the attribute compartment are used to show attributes in classes. A similar syntax is used to specify qualifiers,
template parameters, operation parameters, and so on (some of these omit certain terms).

5.25.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however, the intent and usage is normally
different.

The type of an attribute is a Classifier.

5.25.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an attribute model element. The default
syntax is:

visibility name : type-expression [multiplicity ordering] = initial-value { property-string }

• Where visibility is one of:

• +public visibility

• # protected visibility

• - private visibility

• ~ .package visibility

• The visibility marker may be suppressed. The absence of a visibility marker indicates that the visibility is not shown
(not that it is undefined or public). A tool should assign visibilities to new attributes even if the visibility is not shown.
The visibility marker is a shorthand for a full visibility property specification string.

• Visibility may also be specified by keywords (public, protected, private, package). This form is used particularly when
it is used as an inline list element that applies to an entire block of attributes.

Additional kinds of visibility might be defined for certain programming languages, such as C++ implementation
visibility (actually all forms of non-public visibility are language-dependent). Such visibility must be specified by
property string or by a tool-specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where [multiplicity ordering] shows the multiplicity and the ordering of the attribute (Section 5.44, “Multiplicity,” on
page 234). The term may be omitted, in which case the multiplicity is 1..1 (exactly one).

• The ordering property is meaningful if the multiplicity upper bound is greater than one. It may be one of:

• (absent) — the values are unordered
© ISO/IEC 2005 - All rights reserved 207

ISO/IEC 19501:2005(E)
• unordered — the values are unordered

• ordered — the values are ordered

• Where type-expression is either

• if it is a simple word, the name of a classifier, or

• a language-dependent string that maps into a ProgrammingLanguageDataType.

• Where initial-value is a language-dependent expression for the initial value of a newly created object. The initial value
is optional (the equal sign is also omitted). An explicit constructor for a new object may augment or modify the default
initial value.

• Where property-string indicates property values that apply to the element. The property string is optional (the braces
are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string; otherwise, the attribute is instance-scope.

class-scope-attribute

The notation justification is that a class-scope attribute is an instance value in the executing system, just as an object is an
instance value, so both may be designated by underlining. An instance-scope attribute is not underlined; that is the default.

There is no symbol for whether an attribute is changeable (the default is changeable). A non-changeable attribute is specified
with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value. Multiplicity may be indicated by placing a
multiplicity indicator in brackets after the classifier name, for example:

colors : Color [3]
points : Point [2..* ordered]

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence of a value, as opposed to a particular
value from the range. For example, the following declaration permits a distinction between the null value and the empty string:

name : String [0..1]

A stereotype keyword in guillemets precedes the entire attribute string, including any visibility indicators. A property list in
braces follows the rest of the attribute string.

5.25.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool responsibility whether and how to show
this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon or by sorting the elements by
group.

A tool may show the individual fields of an attribute as columns rather than a continuous string.

If the type-expression string is not a word, then it is assumed to be expressed in the syntax of a particular programming
language, such as C++ or Smalltalk. This form is assumed if the string is not a word. Specific tagged properties may be
included in the string. The programming language must be known from the general context of the diagram or a tool supporting
it. In this case, the type-expression maps into a ProgrammingLanguageDataType whose expression attribute specifies the
language name and the string representation of the data type in that language.
208 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Particular attributes within a list may be suppressed (see Section 5.24, “List Compartment,” on page 204).

5.25.4 Style Guidelines

Attribute names typically begin with a lowercase letter for those languages that distinguish between uppercase and lowercase
characters. Attribute names are in plain face.

5.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

5.25.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class corresponding to the class symbol. The
properties of the attribute map in accord with the preceding descriptions. If the visibility is absent, then no conclusion can be
drawn about the Attribute visibilities unless a filter is in effect; for example, only public attributes shown. Likewise, if the type
or initial value are omitted. The omission of an underline always indicates an instance-scope attribute. The omission of
multiplicity denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on the Attribute. In addition, any
properties specified on a previous stand-alone property specification entry apply to the current Attribute (and to others).

5.26 Operation

Entries in the operation compartment are strings that show operations defined on classes and methods supplied by classes.

5.26.1 Semantics

An operation is a service that an instance of the class may be requested to perform. It has a name and a list of arguments.

5.26.2 Notation

An operation is shown as a text string that can be parsed into the various properties of an operation model element. The default
syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility
protected visibility
- private visibility
~ package visibility

The visibility marker may be suppressed. The absence of a visibility marker indicates that the visibility is not shown (not that
it is undefined or public). The visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package). This form is used particularly when it is
used as an inline list element that applies to an entire block of operations.
© ISO/IEC 2005 - All rights reserved 209

ISO/IEC 19501:2005(E)
Additional kinds of visibility might be defined for certain programming languages, such as C++ implementation visibility
(actually all forms of nonpublic visibility are language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the implementation type or types of the value
returned by the operation. The colon and the return-type are omitted if the operation does not return a value (as for C++
void). A list of expressions may be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each specified using the syntax:

kind name : type-expression = default-value

• where kind is in, out, or inout, with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an implementation type.

• where default-value is an optional value expression for the parameter, expressed in and subject to the limitations
of the eventual target language.

• Where property-string indicates property values that apply to the element. The property string is optional (the braces
are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string. An instance-scope operation is the
default and is not marked.

An operation that does not modify the system state (one that has no side effects) is specified by the property “{query}”;
otherwise, the operation may alter the system state, although there is no guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string of the form “{concurrency = name}, where name
is one of the names: sequential, guarded, concurrent. As a shorthand, one of the names may be used by itself in a property
string to indicate the corresponding concurrency value. In the absence of a specification, the concurrency semantics are
unspecified and must therefore be assumed to be sequential in the worst case.

The top-most appearance of an operation signature declares the operation on the class (and inherited by all of its descendents).
If this class does not implement the operation; that is, does not supply a method, then the operation may be marked as
“{abstract}” or the operation signature may be italicized to indicate that it is abstract. A subordinate appearance of the
operation signature without the {abstract} property indicates that the subordinate class implements a method on the operation.

The actual text or algorithm of a method may be indicated in a note attached to the operation entry.

If the objects of a class accept and respond to a given signal, an operation entry with the keyword «signal» indicates that the
class accepts the given signal. The syntax is identical to that of an operation. The response of the object to the reception of the
signal is shown with a state machine. Among other uses, this notation can show the response of objects of a class to error
conditions and exceptions, which should be modeled as signals.

The specification of operation behavior is given as a note attached to the operation. The text of the specification should be
enclosed in braces if it is a formal specification in some language (a semantic Constraint); otherwise, it should be plain text if
it is just a natural-language description of the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any visibility indicators. A property list in
braces follows the entire operation string.
210 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.26.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special icon or by sorting the elements by
group.

The syntax of the operation signature string can be that of a particular programming language, such as C++ or Smalltalk.
Specific tagged properties may be included in the string.

A method body may be shown in a note attached to the operation entry within the compartment (Figure 59). The line is drawn
to the string within the compartment. This approach is useful mainly for showing small method bodies.

.

Figure 59 - Note showing method body

5.26.4 Style Guidelines

Operation names typically begin with a lowercase letter for those languages that distinguish between uppercase and lowercase
characters. Operation names are in plain face. An abstract operation may be shown in italics.

5.26.5 Example

Figure 60 - Operation List with a Variety of Operations

5.26.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method within the Class corresponding to the

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)
© ISO/IEC 2005 - All rights reserved 211

ISO/IEC 19501:2005(E)
class symbol. The properties of the operation map in accordance with the preceding descriptions. See the description of
Section 5.25, “Attribute,” on page 207 for additional details. Parameters without keywords map into Parameters with kind=in,
otherwise according to the keyword. Return value names map into Parameters with kind=return.

If the entry has the keyword «signal», then it maps into a Reception on the Class instead.

The topmost appearance of an operation specification in a class hierarchy maps into an Operation definition in the
corresponding Class or Interface. Interfaces do not have methods. In a Class, each appearance of an operation entry maps into
the presence of a Method in the corresponding Class, unless the operation entry contains the {abstract} property (including use
of conventions such as italics for abstract operations). If an abstract operation entry appears within a hierarchy in which the
same operation has already been defined in an ancestor, it has no effect but is not an error unless the declarations are
inconsistent.

Note that the operation string entry does not specify the body of a method.

5.27 Nested Class Declarations

5.27.1 Semantics

A class declared within another class belongs to the namespace of the other class and may only be used within it. This
construct is primarily used for implementation reasons and for information hiding.

5.27.2 Notation

A declaring class and a class in its namespace may be connected by a line, with an “anchor” icon on the end connected to a
declaring class (Figure 61). An anchor icon is a cross inside a circle. The contents of the package are declared within the class
and belong to its namespace.

5.27.3 Mapping

If Class B is attached to Class A by an “anchor” line with the “anchor” symbol on Class A, then Class B is declared within the
Namespace of Class A. That is, the relationship between Class A and Class B is the namespace-ownedElement association.

Figure 61 - Nested class declaration

5.28 Type and Implementation Class

DeclaringClass

NestedClass
212 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.28.1 Semantics

Classes can be stereotyped as Types or Implementation Classes (although they can be left undifferentiated as well). A Type is
used to specify a domain of objects together with operations applicable to the objects without defining the physical
implementation of those objects. A Type may not include any methods, but it may provide behavioral specifications for its
operations. It may also have attributes and associations that are defined solely for the purpose of specifying the behavior of the
type's operations.

An Implementation Class defines the physical data structure (for attributes and associations) and methods of an object as
implemented in traditional languages (C++, Smalltalk, etc.). An Implementation Class is said to realize a Type if it provides all
of the operations defined for the Type with the same behavior as specified for the Type’s operations. An Implementation Class
may realize a number of different Types.

5.28.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the stereotype “«type».” An implementation class
is shown with the stereotype “«implementationClass».” A tool is also free to allow a default setting for an entire diagram, in
which case all of the class symbols without explicit stereotype indications map into Classes with the default stereotype. This
might be useful for a model that is close to the programming level.

The implementation of a type by a class is modeled as the Realization relationship, shown as a dashed line with a solid
triangular arrowhead (a dashed “generalization arrow”). This symbol implies the realizing class provides at least all the
operations of the Type, with conforming behavior, but it does not imply inheritance of structure (attributes or associations).
The generalization hierarchy of a set of classes frequently parallels the generalization hierarchy of a set of types that they
realize, but this is not mandatory, as long as each class provides the operations of the types that it realizes.

5.28.3 Example

Figure 62 - Notation for Types and Implementation Classes

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)
© ISO/IEC 2005 - All rights reserved 213

ISO/IEC 19501:2005(E)
5.28.4 Mapping

A class symbol with a stereotype (including “type” and “implementationClass”) maps into a Class with the corresponding
stereotype. A class symbol without a stereotype maps into a Class with the default stereotype for the diagram (if a default has
been defined by the modeler or tool); otherwise, it maps into a Class with no stereotype. The realization arrow between two
symbols maps into an Abstraction relationship, with the «realize» stereotype, between the Classifiers corresponding to the two

symbols. Realization is usually used between a class and an interface, but may also be used between any two classifiers to
show conformance of behavior.

5.29 Interfaces

5.29.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component, or other classifier (including subsystems)
without specification of internal structure. Each interface often specifies only a limited part of the behavior of an actual class.
Interfaces do not have implementation. They lack attributes, states, or associations; they only have operations. (An interface
may be the target of a one-way association, however, but it may not have an association that it can navigate.) Interfaces may
have generalization relationships. An interface is formally equivalent to an abstract class with no attributes and no methods
and only abstract operations, but Interface is a peer of Class within the UML metamodel (both are Classifiers).

5.29.2 Notation

An interface is a Classifier and may be shown using the full rectangle symbol with compartments and the keyword «interface».
A list of operations supported by the interface is placed in the operation compartment. The attribute compartment may be
omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface placed below the symbol. The circle may be
attached by a solid line to classifiers that support it. This indicates that the class provides all of the operations in the interface
type (and possibly more). The operations provided are not shown on the circle notation; use the full rectangle symbol to show
the list of operations. A class that uses or requires the operations supplied by the interface may be attached to the circle by a
dashed arrow pointing to the circle. The dashed arrow implies that the class requires no more than the operations specified in
the interface; the client class is not required to actually use all of the interface operations.

The Realization relationship from a classifier to an interface that it supports is shown by a dashed line with a solid triangular
arrowhead (a “dashed generalization symbol”). This is the same notation used to indicate realization of a type by an
implementation class. In fact, this symbol can be used between any two classifier symbols, with the meaning that the client
(the one at the tail of the arrow) supports at least all of the operations defined in the supplier (the one at the head of the arrow),
but with no necessity to support any of the data structure of the supplier (attributes and associations).
214 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.29.3 Example

Figure 63 - Shorthand Version of Interface Notation

Figure 64 - Longhand Version of Interface Notation

5.29.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram, maps into an Interface element with the
name given by the symbol. The operation list of a rectangle symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid line connecting a class symbol and an
interface circle, maps into an Abstraction dependency with the «realize» stereotype between the corresponding Classifier and
Interface elements. A dependency arrow from a class symbol to an interface symbol maps into a Usage dependency between
the corresponding Classifier and Interface.

5.30 Parameterized Class (Template)

5.30.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It defines a family of classes, each class
specified by binding the parameters to actual values. Typically, the parameters represent attribute types; however, they can also
represent integers, other types, or even operations. Attributes and operations within the template are defined in terms of the

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

Store

POSterminal

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

POSterminal

+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

<<interface>>
Store
© ISO/IEC 2005 - All rights reserved 215

ISO/IEC 19501:2005(E)
formal parameters so they too become bound when the template itself is bound to actual values.

A template is not a directly usable class because it has unbound parameters. Its parameters must be bound to actual values to
create a bound form that is a class. Only a class can be a superclass or the target of an association (a one-way association from
the template to another class is permissible, however). A template may be a subclass of an ordinary class. This implies that all
classes formed by binding it are subclasses of the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or even entire Packages. The description
given here for classes applies to other kinds of modeling elements in the obvious way.

5.30.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle for the class (or to the symbol for
another modeling element). The dashed rectangle contains a parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in the presentation. The name, attributes,
and operations of the parameterized class appear as normal in the class rectangle; however, they may also include occurrences
of the formal parameters. Occurrences of the formal parameters can also occur inside of a context for the class, for example, to
show a related class identified by one of the parameters.

5.30.3 Presentation Options

The parameter list may be comma-separated or it may be one per line. Parameters are restricted attributes, shown as strings
with the syntax:

name : type = default-value

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a Classifier for the parameter. If it is a simple word, it must be the name of a
Classifier. Otherwise it is a programming-language dependent string that maps into a ProgrammingLanguageDataType
according to the programming language (if any) for the diagram context or specified in a support tool.

• Where default-value is a string designating an Expression for a default value that is used when the corresponding
argument is omitted in a Binding. The equal sign and expression may be omitted, in which case there is no default
value and the argument must be supplied in a Binding.

If the type name is omitted, the parameter type is assumed to be Classifier. The value supplied for an argument in a Binding
must be the name of a Classifier (including a class or a data type). Other parameter types (such as Integer) must be explicitly
shown. The value supplied for an argument in a Binding must be an actual instance value of the given kind.
216 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.30.4 Example

Figure 65 - Template Notation with Use of Parameter as a Reference

5.30.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the parameter names in the list as ModelElements
within the Namespace of the ModelElement corresponding to the base symbol (or to the Namespace containing a
ModelElement that is not itself a Namespace). Each of the parameter ModelElements has the templateParameter association to
the base ModelElement.

5.31 Bound Element

5.31.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or association, because it has a free
parameter that is not meaningful outside of a scope that declares the parameter. To be used, a template’s parameters must be
bound to actual values. The actual value for each parameter is an expression defined within the scope of use. If the referencing
scope is itself a template, then the parameters of the referencing template can be used as actual values in binding the referenced
template. The parameter names in the two templates cannot be assumed to correspond because they have no scope outside of
their respective templates.

5.31.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follows:

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList
© ISO/IEC 2005 - All rights reserved 217

ISO/IEC 19501:2005(E)
For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the parameterized kind could be used. For example,
a bound class name could be used within a class symbol on a class diagram, as an attribute type, or as part of an operation
signature.

Note that a bound element is fully specified by its template; therefore, its content may not be extended. Declaration of new
attributes or operations for classes is not permitted, for example, but a bound class could be subclassed and the subclass
extended in the usual way.

The relationship between the bound element and its template alternatively may be shown by a Dependency relationship with
the keyword «bind». The arguments are shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the template.

5.31.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound class, because they must not be modified in
a bound template.

5.31.4 Example

See Figure 65 on page 217.

5.31.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding dependency between the dependent
ModelElement (such as Class) corresponding to the bound element symbol and the provider ModelElement (again, such as
Class) whose name matches the name part of the bound element without the arguments. If the name does not match a template
element or if the number of arguments in the bound element does not match the number of parameters in the template, then the
model is ill formed. Each argument position in the bound element maps into a TemplateArgument bearing a binding link to the

Binding dependency and a modelElement link to the ModelElement that is implicitly substituted for the template parameter in
the corresponding position in the template definition. An explicitly drawn «bind» dependency symbol mays to a Binding
dependency with arguments as described above.

5.32 Utility

A utility is a grouping of global variables and procedures in the form of a class declaration. This is not a fundamental
construct, but a programming convenience. The attributes and operations of the utility become global variables and
procedures. A utility is modeled as a stereotype of a classifier.

5.32.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attributes and operations. It is inappropriate
for a utility to declare class-scope attributes and operations because the instance-scope members are already interpreted as
being at class scope.

5.32.2 Notation

A utility is shown as the stereotype «utility» of Class. It may have both attributes and operations, all of which are treated as
218 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
global attributes and operations.

5.32.3 Example

Figure 66 - Notation for Utility

5.32.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility» stereotype.

5.33 Metaclass

5.33.1 Semantics

A metaclass is a class whose instances are classes.

5.33.2 Notation

A metaclass is shown as the stereotype «metaclass» of Class.

5.33.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass» stereotype.

5.34 Enumeration

5.34.1 Semantics

An Enumeration is a user-defined data type whose instances are a set of user-specified named enumeration literals. The literals
have a relative order but no algebra is defined on them.

5.34.2 Notation

An Enumeration is shown using the Classifier notation (a rectangle) with the keyword «enumeration». The name of the
Enumeration is placed in the upper compartment. An ordered list of enumeration literals may be placed, one to a line, in the
middle compartment. Operations defined on the literals may be placed in the lower compartment. The lower and middle
compartments may be suppressed.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real
© ISO/IEC 2005 - All rights reserved 219

ISO/IEC 19501:2005(E)
5.34.3 Mapping

Maps into an Enumeration with the given list of enumeration literals.

5.35 Stereotype Declaration

5.35.1 Semantics

A Stereotype is a user-defined metaelement whose structure matches an existing UML metaelement (its “base class”). Because
it is user defined, a stereotype declaration is an element that appears at the “model” layer of the UML four-layer metamodeling
hierarchy although it conceptually belongs in the layer above, the metamodel layer.

5.35.2 Notation

Because stereotypes span two different metamodeling layers, a special notation is required to clearly indicate the crossover
between the two layers. Specifically, it is necessary to show how a model-level element (the stereotype) relates to its
metaelement (its UML base class). This is denoted using a special stereotype of Dependency called «stereotype» as shown in
Figure 67 on page 221.

The Stereotype itself is shown using the Classifier notation (a rectangle) with the keyword «stereotype» (Figure 67). The name
of the Stereotype is placed in the upper compartment. Constraints on elements described by the stereotype may be placed in a
named compartment called Constraints. Required tags may be placed in a named compartment called Tags. Individual
items (tags) in the list of are defined according to the following format:

tagDefinitionName : String [multiplicity]

where string can be either a string matching the name of a data type representing the type of the values of the tag, or it is a
reference to a metaclass or a stereotype. In the latter case, the string has the form:

«metaclass» metaclassName

or

«stereotype» stereotypeName

where metaclassName is the name of the referenced metaclass and is the name of the references stereotype. The
multiplicity element is optional and conforms to standard rules for specifying multiplicities. In case of a range specification, a
lower bound of zero indicates an optional tag.
220 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 67 - Notational form for declaring a stereotype

In the example diagram in Figure 67, the stereotype Persistent is a stereotype of the UML metaelement Class. TableName is an
optional tag whose type is a model type called String while SQLFile is a reference to an instance of Component in the model.

An icon can be defined for the stereotype, but its graphical definition is outside the scope of UML and must be handled by an
editing tool.

An alternative and usually more compact way of specifying stereotypes and tags using tables as shown in Table 2 and Table 3,
respectively.

Table 2 - Tabular form for specifying stereotypes

Stereotype Base Class Parent Tags Constraints Description

Architectural
Element

Generalizable
Element

N/A N/A N/A A generic stereotype that is the parent
of all other stereotypes used for
architectural modeling .

Capsule Class Architectural
Element

isDynamic self.isActive = true Indicates a class that is used to model
the structural components of an
architecture specification.

Class
«metaclass»

«stereotype»

Constraints
{TableName should not be
longer than 8 characters}

«stereotype»
Persistent

Tags

SQLFile : «metaclass» Component
TableName : String [0..1]
© ISO/IEC 2005 - All rights reserved 221

ISO/IEC 19501:2005(E)

Each row of the stereotype specification table in Table 2 defines one stereotype and each row in the tag specification table in
Table 3 contains one tag definition.

The columns of the stereotype specification table are defined as follows:

• Stereotype - the name of the stereotype.

• Base Class - the UML metamodel element that serves as the base for the stereotype.

• Parent - the direct parent of the stereotype being defined (NB: if one exists, otherwise the symbol “N/A” is used).

• Tags - a list of all tags of the tagged values that may be associated with this stereotype (or N/A if none are
defined).

• Constraints - a list of constraints associated with the stereotype.

• Description - an informal description with possible explanatory comments.

The columns of the tag specification table are defined as follows:

• Tag - the name of the tag.

• Stereotype - the name of the stereotype which owns this tag, or “N/A” if it is a stand alone tag.

• Type - the name of the type of the values that can be associated with the tag.

• Multiplicity - the maximum number of values that may be associated with one tag instance.

• Description - an informal description with possible explanatory comments.

In the case of both the stereotype specification table and the tag specification table, columns that are not applicable may be
omitted.

In the example stereotype specification table of Figure , two related stereotypes are defined. The first row declares the
stereotype ArchitecturalElement, which is a stereotype of GeneralizableElement, while the second row declares the stereotype
Capsule, which is a specialization of the ArchitecturalElement stereotype, but which applies only to instances of Class, which
is a subclass of GeneralizableElement in the metamodel.

The equivalent declaration as the one table in Figure 67, less the constraints and the informal descriptions, is shown
graphically in Figure 68.

Table 3 - Tabular form for specifying tags

Tag Stereotype Type Multiplicity Description

isDynamic Capsule UML::Datatypes::Boolean 1 Used to identify if the associated capsule class may
be created and destroyed dynamically.
222 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 68 - Graphical equivalent of the stereotype declarations as shown in Figure 67.

5.35.3 Mapping

A classifier with a stereotype «metaclass» maps into a UML metaelement and a classifier with a stereotype «stereotype» maps
into a Stereotype. The «stereotype» dependency maps to the baseClass attribute definition of the stereotype. The constraints
listed in the Constraints compartment map to stereotype constraints and the items in the Tags compartment map to the
defined tags of the stereotype. Each item in the Tags list maps to a TagDefinition. The string before the colon separator maps
to the name of the tag definition while the string following the colon maps to an instance of Name. If a multiplicity
specification is included in the item, it maps to the multiplicity attribute of the tag definition.

5.36 Powertype

5.36.1 Semantics

A Powertype is a user-defined metaelement whose instances are classes in the model.

5.36.2 Notation

A Powertype is shown using the Classifier notation (a rectangle) with the stereotype keyword «powertype». The name of the
Powertype is placed in the upper compartment. Because the elements are ordinary classes, attributes and operations on the
powertype are usually not defined by the user.

The instances of the powertype may be indicated by placing a dashed line across the parent lines of the classes with the syntax

discriminatorName: powertypeName,

where the powertype name on the line implicitly defines a powertype if one is not explicitly defined.

5.36.3 Mapping

Maps into a Class with the «powertype» stereotype with the given classes as instances.

GeneralizeableElement
<<metaclass>>

Classifier
<<metaclass>>

Class
<<metac lass >>

Arc hitecturalElement
<<stereotype>>

Capsule
<<stereotype>>

<<stereotype>> <<stereotype>>
© ISO/IEC 2005 - All rights reserved 223

ISO/IEC 19501:2005(E)
5.37 Class Pathnames

5.37.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationships to other classes. A reference to a
class in a different package is notated by using a pathname for the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specifications for attributes and variables. In these
places a reference to a class is indicated by simply including the name of the class itself, including a possible package name,
subject to the syntax rules of the expression.

5.37.2 Example

Figure 69 - Pathnames for Classes in Other Packages

5.37.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class with the given name inside the package
with the given name. The name is assumed to be defined in the target package; otherwise, the model is ill formed. A
Relationship from a symbol in the current package; that is, the package containing the diagram and its mapped elements to a
symbol in another package is part of the current package.

5.38 Accessing or Importing a Package

5.38.1 Semantics

An element may reference an element contained in a different package. On the package level, the «access» dependency
indicates that the contents of the target package may be referenced by the client package or packages recursively embedded
within it. The target references must have visibility sufficient for the referents: public visibility for an unrelated package,
public or protected visibility for a descendant of the target package, or any visibility for a package nested inside the target
package (an access dependency is not required for the latter case). A package nested inside the package making the access gets
the same access.

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash
224 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Note that an access dependency does not modify the namespace of the client or in any other way automatically create
references; it merely grants permission to establish references. Note also that a tool could automatically create access
dependencies for users if desired when references are created.

An import dependency grants access and also loads the names with appropriate visibility in the target namespace into the
accessing package; that is, a pathname is not necessary to reference them. Such names are not automatically re-exported,
however; a name must be explicitly re-exported (and may be given a new name and visibility at the same time).

5.38.2 Notation

The access dependency is displayed as a dependency arrow from the referencing (client) package to the target (supplier)
package containing the target of the references. The arrow has the stereotype keyword «access». This dependency indicates
that elements within the client package may legally reference elements within the supplier. The references must also satisfy
visibility constraints specified by the supplier. Note that the dependency does not automatically create any references. It
merely grants permission for them to be established.

The import dependency has the same notation as the access dependency except it has the stereotype keyword «import».

5.38.3 Example

Figure 70 - Access Dependency Among Packages

5.38.4 Mapping

This is not a special symbol. It maps into a Permission dependency with the stereotype «access» or «import» between the two
packages.

Banking::CheckingAccount

CheckingAccount

Banking

«access»

Customers
© ISO/IEC 2005 - All rights reserved 225

ISO/IEC 19501:2005(E)
5.39 Object

5.39.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values. A similar notation also represents a
role within a collaboration because roles have instance-like characteristics.

5.39.2 Notation

The object notation is derived from the class notation by underlining instance-level elements, as explained in the general
comments in Section 5.12, “Type-Instance Correspondence,” on page 184.

An object shown as a rectangle with two compartments.

The top compartment shows the name of the object and its class, all underlined, using the syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The package names precede the classname and
are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name string) or as an icon in the upper right corner.
The stereotype for an object must match the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list of classnames. These classnames must be
legal for multiple classification; that is, only one implementation class permitted, but multiple types permitted.

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur concurrently.

The second compartment shows the attributes for the object and their values as a list. Each value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal value expressions; however, it is expected
that a tool will specify such a syntax using some programming language.

The flow relationship between two values of the same object over time can be shown by connecting two object symbols by a
dashed arrow with the keyword «become». If the flow arrow is on a collaboration diagram, the label may also include a
sequence number to show when the value changes. Similarly, the keyword «copy» can be used to show the creation of one
object from another object value.

5.39.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the class name. This represents an
anonymous object of the given class given identity by its relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.
226 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list of values held over time. In an interactive
tool, they might even change dynamically. An alternate notation is to show the same object more than once with a «becomes»
relationship between them.

5.39.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are not objects, because they describe many
possible objects. They are instead roles that may be held by object. Objects in class diagrams serve mainly to show examples
of data structures.

5.39.5 Variations

For a language such as Self in which operations can be attached to individual objects at run time, a third compartment
containing operations would be appropriate as a language-specific extension.

5.39.6 Example

Figure 71 - Objects

5.39.7 Mapping

In an object diagram, or within an ordinary class diagram, an object symbol maps into an Object of the Class (or Classes)
given by the classname part of the name string. The attribute list in the symbol maps into a set of AttributeLinks attached to the
Object, with values given by the value expressions in the attribute list in the symbol. If a list of states in brackets follows the
class name, then this maps into a ClassifierInState with the named Class as its type and the named States as the states. The
ClassfierInState classifies the Object.

5.40 Composite Object

5.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is an instance of a composite class, which

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler
© ISO/IEC 2005 - All rights reserved 227

ISO/IEC 19501:2005(E)
implies the composition aggregation between the class and its parts. A composite object is similar to (but simpler and more
restricted than) a collaboration; however, it is defined completely by composition in a static model. See Section 5.48,
“Composition,” on page 238.

5.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite object is placed in a compartment near the
top of the rectangle (as with any object). The lower compartment holds the parts of the composite object instead of a list of
attribute values. (However, even a list of attribute values may be regarded as the parts of a composite object, so there is not a
great difference.) It is possible for some of the parts to be composite objects with further nesting.

5.40.3 Example

Figure 72 - Composite Objects

5.40.4 Mapping

A composite object symbol maps into an Object of the given Class with composition links to each of the Objects and Links
corresponding to the class box symbols and to association path symbols directly contained within the boundary of the
composite object symbol (and not contained within another deeper boundary).

5.41 Association

Binary associations are shown as lines connecting two classifier symbols. The lines may have a variety of adornments to show
their properties. Ternary and higher-order associations are shown as diamonds connected to class symbols by lines.

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves
228 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.42 Binary Association

5.42.1 Semantics

A binary association is an association among exactly two classifiers (including the possibility of an association from a
classifier to itself).

5.42.2 Notation

A binary association is drawn as a solid path connecting two classifier symbols (both ends may be connected to the same
classifier, but the two ends are distinct). The path may consist of one or more connected segments. The individual segments
have no semantic significance, but may be graphically meaningful to a tool in dragging or resizing an association symbol. A
connected sequence of segments is called a path.

In a binary association, both ends may attach to the same classifier. The links of such an association may connect two different
instances from the same classifier or one instance to itself. The latter case may be forbidden by a constraint if necessary.

The end of an association where it connects to a classifier is called an association end. Most of the interesting information
about an association is attached to its ends.

The path may also have graphical adornments attached to the main part of the path itself. These adornments indicate properties
of the entire association. They may be dragged along a segment or across segments, but must remain attached to the path. It is
a tool responsibility to determine how close association adornments may approach an end so that confusion does not occur.
The following kinds of adornments may be attached to a path.

5.42.2.1 association name

Designates the (optional) name of the association.

It is shown as a name string near the path (but not near enough to an end to be confused with a rolename). The name string may
have an optional small black solid triangle in it. The point of the triangle indicates the direction in which to read the name. The
name-direction arrow has no semantics significance, it is purely descriptive. The classifiers in the association are ordered as
indicated by the name-direction arrow.

NOTE: There is no need for a name direction property on the association model; the ordering of the classifiers within the
association is the name direction. This convention works even with n-ary associations.

A stereotype keyword within guillemets may be placed above or in front of the association name. A property string may be
placed after or below the association name.

5.42.2.2 association class symbol

Designates an association that has class-like properties, such as attributes, operations, and other associations. This is present if,
and only if, the association is an association class. It is shown as a class symbol attached to the association path by a dashed
line.

The association path and the association class symbol represent the same underlying model element, which has a single name.
The name may be placed on the path, in the class symbol, or on both (but they must be the same name).

Logically, the association class and the association are the same semantic entity; however, they are graphically distinct. The
association class symbol can be dragged away from the line, but the dashed line must remain attached to both the path and the
class symbol.
© ISO/IEC 2005 - All rights reserved 229

ISO/IEC 19501:2005(E)
5.42.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular jog to indicate that the paths do not
intersect (as in electrical circuit diagrams).

5.42.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The choice
of a particular set of line styles is a user choice.

5.42.5 Options

5.42.5.1 Xor-association

An xor-constraint indicates a situation in which only one of several potential associations may be instantiated at one time for
any single instance. This is shown as a dashed line connecting two or more associations, all of which must have a classifier in
common, with the constraint string “{xor}” labeling the dashed line. Any instance of the classifier may only participate in one
of the associations at one time. Each rolename must be different. (This is simply a predefined use of the constraint notation.)

5.42.6 Example

Figure 73 - Association Notation

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary
230 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.42.7 Mapping

An association path connecting two class symbols maps to an Association between the corresponding Classifiers. If there is an
arrow on the association name, then the Class corresponding to the tail of the arrow is the first class and the Classifier
corresponding to the head of the arrow is the second Classifier in the ordering of ends of the Association; otherwise, the
ordering of ends in the association is undetermined. The adornments on the path map into properties of the Association as
described above. The Association is owned by the package containing the diagram.

5.43 Association End

5.43.1 Semantics

An association end is simply an end of an association where it connects to a classifier. It is part of the association, not part of
the classifier. Each association has two or more ends. Most of the interesting details about an association are attached to its
ends. An association end is not a separable element, it is just a mechanical part of an association.

5.43.2 Notation

The path may have graphical adornments at each end where the path connects to the classifier symbol. These adornments
indicate properties of the association related to the classifier. The adornments are part of the association symbol, not part of the
classifier symbol. The end adornments are either attached to the end of the line, or near the end of the line, and must drag with
it. The following kinds of adornments may be attached to an association end.

5.43.2.1 multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association or for an entire diagram. In an
incomplete model the multiplicity may be unspecified in the model itself. In this case, it must be suppressed in the notation.
See Section 5.44, “Multiplicity,” on page 234.

5.43.2.2 ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or unordered. If no indication is given,
then it is unordered (the elements form a set). Various kinds of ordering can be specified as a constraint on the association end.
The declaration does not specify how the ordering is established or maintained. Operations that insert new elements must
make provision for specifying their position either implicitly (such as at the end) or explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be shown explicitly.

• ordered - the elements of the set have an ordering, but duplicates are still prohibited. This generic specification includes
all kinds of ordering. This may be specified by the keyword syntax “{ordered}.”

An ordered relationship may be implemented in various ways; however, this is normally specified as a language-specified
code generation property to select a particular implementation. An implementation extension might substitute the data
structure to hold the elements for the generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic information, but it expresses a design
decision:

• sorted - the elements are sorted based on their internal values. The actual sorting rule is best specified as a separate
constraint.

5.43.2.3 qualifier

A qualifier is optional, but not suppressible. See Section 5.45, “Qualifier,” on page 235.
© ISO/IEC 2005 - All rights reserved 231

ISO/IEC 19501:2005(E)
5.43.2.4 navigability

An arrow may be attached to the end of the path to indicate that navigation is supported toward the classifier attached to the
arrow. Arrows may be attached to zero, one, or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation is supported in a given direction. In practice, it is often convenient to suppress some of the arrows and just show
exceptional situations. See Section 5.22.3, “Presentation Options,” on page 202 for details.

5.43.2.5 aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The diamond may not be attached to both ends of
a line, but it need not be present at all. The diamond is attached to the class that is the aggregate. The aggregation is optional,
but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as composition. See Section 5.48,
“Composition,” on page 238.

5.43.2.6 rolename

A name string near the end of the path. It indicates the role played by the class attached to the end of the path near the
rolename. The rolename is optional, but not suppressible.

5.43.2.7 interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername, . . .

It indicates the behavior expected of an associated object by the related instance. In other words, the interface specifier
specifies the behavior required to enable the association. In this case, the actual classifier usually provides more functionality
than required for the particular association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small collaboration that includes just an association
and two roles, whose structure is defined by the rolename and attached classifier on the original association. Therefore, the
original association and classifiers are a use of the collaboration. The original classifier must be compatible with the interface
specifier (which can be an interface or a type, among other kinds of classifiers).

If an interface specifier is omitted, then the association may be used to obtain full access to the associated class.

5.43.2.8 changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is needed. The property {frozen} indicates
that no links may be added, deleted, or moved from an object (toward the end with the adornment) after the object is created
and initialized. The property {addOnly} indicates that additional links may be added (presumably, the multiplicity is variable);
however, links may not be modified or deleted.

5.43.2.9 visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit property name such as {public}) in front of the rolename. Specifies
the visibility of the association traversing in the direction toward the given rolename. See Section 5.25, “Attribute,” on
page 207 for details of visibility specification.

Other properties can be specified for association ends, but there is no graphical syntax for them. To specify such properties,
use the constraint syntax near the end of the association path (a text string in braces). Examples of other properties include
mutability.
232 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.43.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation end into
a single segment. This requires that all of the adornments on the aggregation ends be consistent. This is purely a presentation
option, there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These can vary from time to time by user request
or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates navigation is not supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about navigation. This is similar to any situation
in which information is suppressed from a view.

• Presentation option 3: Suppress arrows for associations with navigability in both directions, show arrows only for
associations with one-way navigability. In this case, the two-way navigability cannot be distinguished from no-way
navigation; however, the latter case is normally rare or nonexistent in practice. This is yet another example of a
situation in which some information is suppressed from a view.

5.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the following order, reading from the end of
the path attached to the classifier toward the bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are not confused with a different association.
They may be placed on either side of the line. It is tempting to specify that they will always be placed on a given side of the
line (clockwise or counterclockwise), but this is sometimes overridden by the need for clarity in a crowded layout. A rolename
and a multiplicity may be placed on opposite sides of the same association end, or they may be placed together (for example,
“* employee”).

5.43.5 Example

Figure 74 - Various Adornments on Association Roles

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex
© ISO/IEC 2005 - All rights reserved 233

ISO/IEC 19501:2005(E)
5.43.6 Mapping

The adornments on the end of an association path map into properties of the corresponding role of the Association. In general,
implications cannot be drawn from the absence of an adornment (it may simply be suppressed) but see the preceding
descriptions for details. The interface specifier maps into the “specification” rolename in the AssociationEnd-Classifier
association.

5.44 Multiplicity

5.44.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for roles within associations, parts within composites, repetitions, and other purposes. Essentially a multiplicity
specification is a subset of the open set of nonnegative integers.

5.44.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated sequence of integer intervals, where an
interval represents a (possibly infinite) range of integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed (inclusive) range of integers from the
lower bound to the upper bound. In addition, the star character (*) may be used for the upper bound, denoting an unlimited
upper bound. In a parameterized context (such as a template), the bounds could be expressions but they must evaluate to literal
integer values for any actual use. Unbound expressions that do not evaluate to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer value.

If the multiplicity specification comprises a single star (*), then it denotes the unlimited nonnegative integer range, that is, it is
equivalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they must resolve to fixed integer ranges within
the model; that is, no dynamic evaluation of expressions, essentially the same rule on literal values as most programming
languages.

5.44.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10” is preferable to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example, “0..1” is preferable to “0,1”.

5.44.4 Example

0..1

1

0..*

*

1..*
234 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
1..6

1..3,7..10,15,19..*

5.44.5 Mapping

A multiplicity string maps into a Multiplicity value with one or more MultiplicityRanges. Duplications or other nonstandard
presentation of the string itself have no effect on the mapping. Note that Multiplicity is a value and not an object. It cannot
stand on its own, but is the value of some element property.

5.45 Qualifier

5.45.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of instances associated with an
instance across an association. The qualifiers are attributes of the association.

5.45.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the classifier that it connects to. The qualifier rectangle is part of the association path, not part of the classifier. The
qualifier rectangle drags with the path segments. The qualifier is attached to the source end of the association. An instance of
the source classifier, together with a value of the qualifier, uniquely select a partition in the set of target classifier instances on
the other end of the association; that is, every target falls into exactly one partition.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the pairing
of a source instance and a qualifier value. Common values include:

• “0..1” (a unique value may be selected, but every possible qualifier value does not necessarily select a value).

• “1” (every possible qualifier value selects a unique target instance; therefore, the domain of qualifier values must be
finite).

• “*” (the qualifier value is an index that partitions the target instances into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown one to a line. Qualifier
attributes have the same notation as classifier attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single association.

5.45.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would modify the inherent character of the
relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguish them clearly.

5.45.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always practical.
© ISO/IEC 2005 - All rights reserved 235

ISO/IEC 19501:2005(E)
5.45.5 Example

Figure 75 - Qualified Associations

5.45.6 Mapping

The presence of a qualifier box on an end of an association path maps into a list of qualifier attributes on the corresponding
Association Role. Each attribute entry string inside the qualifier box maps into an Attribute.

5.46 Association Class

5.46.1 Semantics

An association class is an association that also has class properties (or a class that has association properties). Even though it is
drawn as an association and a class, it is really just a single model element.

5.46.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to an association path. The name in the
class symbol and the name string attached to the association path are redundant and should be the same. The association path
may have the usual adornments on either end. The class symbol may have the usual contents. There are no adornments on the
dashed line.

5.46.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission does not change the overall relationship.
The association path may not be suppressed.

5.46.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it appears to be attached to, the end of the path,
or to any of the association end adornments.

Note that the association path and the association class are a single model element and have a single name. The name can be
shown on the path, the class symbol, or both. If an association class has only attributes, but no operations or other associations,
then the name may be displayed on the association path and omitted from the association class symbol to emphasize its
“association nature.” If it has operations and other associations, then the name may be omitted from the path and placed in the
class rectangle to emphasize its “class nature.” In neither case are the actual semantics different.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

236 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.46.5 Example

Figure 76 - Association Class

5.46.6 Mapping

An association path connecting two class boxes connected by a dashed line to another class box maps into a single
AssociationClass element. The name of the AssociationClass element is taken from the association path, the attached class
box, or both (they must be consistent if both are present). The Association properties map from the association path, as
specified previously. The Class properties map from the class box, as specified previously. Any constraints or properties
placed on either the association path or attached class box apply to the AssociationClass itself; they must not conflict.

5.47 N-ary Association

5.47.1 Semantics

An n-ary association is an association among three or more classifiers (a single classifier may appear more than once). Each
instance of the association is an n-tuple of values from the respective classifier. A binary association is a special case with its
own notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary multiplicity. The multiplicity on a role
represents the potential number of instance tuples in the association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

5.47.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminator on a path) with a path from the
diamond to each participant class. The name of the association (if any) is shown near the diamond. Role adornments may
appear on each path as with a binary association. Multiplicity may be indicated; however, qualifiers and aggregation are not
permitted.

An association class symbol may be attached to the diamond by a dashed line. This indicates an n-ary association that has
attributes, operations, and/or associations.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary
© ISO/IEC 2005 - All rights reserved 237

ISO/IEC 19501:2005(E)
5.47.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

5.47.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It is assumed that the goalkeeper might
be traded during the season and can appear with different teams.

Figure 77 - Ternary association that is also an association class.

5.47.5 Mapping

A diamond attached to some number of class symbols by solid lines maps into an N-ary Association whose AssociationEnds
are attached to the corresponding Classes. The ordering of the Classifiers in the Association is indeterminate from the diagram.
If a class box is attached to the diamond by a dashed line, then the corresponding Classifier supplies the classifier properties
for an N-ary AssociationClass.

5.48 Composition

5.48.1 Semantics

Composite aggregation is a strong form of aggregation, which requires that a part instance be included in at most one
composite at a time and that the composite object has sole responsibility for the disposition of its parts. The multiplicity of the
aggregate end may not exceed one (it is unshared). See Section 5.43, “Association End,” on page 231 for further details.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties
238 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The composite in a composition “projects” its identity onto the parts in the relationship. In other words, each part object in an
object model can be identified with a unique composite object. It keeps its own identity as its primary identity. The point is that
it can also be identified as being part of a unique composite. Composition is transitive. If object A is part of object B that is
part of object C, then object A is also part of object C. A part may be identified with several composite objects in this way,
each at a different level of detail.

The parts of a composition may include classes and associations (they may be formed into AssociationClasses if necessary).
The meaning of an association in a composite object is that any tuple of objects connected by a single link must all belong to
the same container object. In other words, the composite object projects its identity onto each link corresponding to the part
end of a composition aggregation. If an association and two classes it relates are all related as parts to the same class as
composite, a link that is an instance of the association is identified with an object that is an instance of the composite class; the
objects connected by the link are also identified with the composite object; and they must all be associated with the same
composite object.

5.48.2 Notation

Composition may be shown by a solid filled diamond as an association end adornment. Alternately, UML provides a
graphically-nested form that is more convenient for showing composition in many cases.

Instead of using binary association paths using the composition aggregation adornment, composition may be shown by
graphical nesting of the symbols of the elements for the parts within the symbol of the element for the whole. A nested class-
like element may have a multiplicity within its composite element. The multiplicity is shown in the upper right corner of the
symbol for the part. If the multiplicity mark is omitted, then the default multiplicity is many. This represents its multiplicity as
a part within the composite classifier. A nested element may have a rolename within the composition; the name is shown in
front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of an association path attached to the
element for the whole. The multiplicity may be shown in the normal way.

Note that attributes are, in effect, composition relationships between a classifier and the classifiers of its attributes.

An association drawn entirely within a border of the composite is considered to be part of the composition. Any instances on a
single link of it must be from the same composite. An association drawn such that its path breaks the border of the composite
is not considered to be part of the composition. Any instances on a single link of it may be from the same or different
composites.

Note that the notation for composition resembles the notation for collaboration. A composition may be thought of as a
collaboration in which all of the participants are parts of a single composite object.

Note that nested notation is not the correct way to show a class declared within another class. Such a declared class is not a
structural part of the enclosing class but merely has scope within the namespace of the enclosing class, which acts like a
package toward the inner class. Such a namescope containment may be shown by placing a package symbol in the upper right
corner of the class symbol. A tool can allow a user to click on the package symbol to open the set of elements declared within
it. The “anchor notation” (a cross in a circle on the end of a line) may also be used on a line between two class boxes to show
that the class with the anchor icon declares the class on the other end of the line.

5.48.3 Design Guidelines

Note that a class symbol is a composition of its attributes and operations. The class symbol may be thought of as an example of
the composition nesting notation (with some special layout properties). However, attribute notation subordinates the attributes
© ISO/IEC 2005 - All rights reserved 239

ISO/IEC 19501:2005(E)
strongly within the class; therefore, it should be used when the structure and identity of the attribute objects themselves is
unimportant outside the class.

5.48.4 Example

Figure 78 - Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11
240 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.48.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although attributes may be semantically
equivalent to composition on a deep level, the mapped model distinguishes the two forms.

A solid diamond on an association path maps into the aggregation-composition property on the corresponding Association
Role.

A class box with contained class boxes maps into a set of composition associations; that is, one composition association
between the Class corresponding to the outer class box and each of the Classes corresponding to the enclosed class boxes. The
multiplicity of the composite end of each association is 1. The multiplicity of each constituent end is 1 if not specified
explicitly; otherwise, it is the value specified in the corner of the class box or specified on an association path from the outer
class box boundary to an inner class box.

5.49 Link

5.49.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object references. It is an instance of an association.

5.49.2 Notation

A binary link is shown as a path between two instances. In the case of a link from an instance to itself, it may involve a loop
with a single instance. See Section 5.41, “Association,” on page 228 for details of paths.

A rolename may be shown at each end of the link. An association name may be shown near the path. If present, it is underlined
to indicate an instance. Links do not have instance names, they take their identity from the instances that they relate.
Multiplicity is not shown for links because they are instances. Other association adornments (aggregation, composition,
navigation) may be shown on the link ends.

A qualifier may be shown on a link. The value of the qualifier may be shown in its box.

5.49.2.1 Implementation stereotypes

A stereotype may be attached to the link end to indicate various kinds of implementation. The following stereotypes may be
used:

5.49.2.2 N-ary link

An n-ary link is shown as a diamond with a path to each participating instance. The other adornments on the association, and
the adornments on the association ends, have the same possibilities as the binary link.

«association» association (default, unnecessary to specify except for emphasis)

«parameter» method parameter

«local» local variable of a method

«global» global variable

«self» self link (the ability of an instance to send a message to itself)
© ISO/IEC 2005 - All rights reserved 241

ISO/IEC 19501:2005(E)
5.49.3 Example

Figure 79 - Links

5.49.4 Mapping

Within an object diagram, each link path maps to a Link between the Instances corresponding to the connected class boxes. If
a name is placed on the link path, then it is an instance of the given Association (and the rolenames must match or the diagram
is ill formed).

5.50 Generalization

5.50.1 Semantics

Generalization is the taxonomic relationship between a more general element (the parent) and a more specific element (the
child) that is fully consistent with the first element and that adds additional information. It is used for classes, packages, use
cases, and other elements.

5.50.2 Notation

Generalization is shown as a solid-line path from the child (the more specific element, such as a subclass) to the parent (the
more general element, such as a superclass), with a large hollow triangle at the end of the path where it meets the more general
element.

A generalization path may have a text label called a discriminator that is the name of a partition of the children of the parent.
The child is declared to be in the given partition. The absence of a discriminator label indicates the “empty string”
discriminator which is a valid value (the “default” discriminator).

Generalization may be applied to associations as well as to classes. To notate generalization between associations, a
generalization arrow may be drawn from a child association path to a parent association path. This notation may be confusing
because lines connect other lines. An alternative notation is to represent each association as an association class and to draw
the generalization arrow between the rectangles for the association classes, as with other classifiers. This approach can be used
even if an association does not have any additional attributes, because a degenerate association class is a legal association.

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
242 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The existence of additional children in the model that are not shown on a particular diagram may be shown using an ellipsis
(. . .) in place of a child.

NOTE: This does not indicate that additional children may be added in the future. It indicates that additional children exist
right now, but are not being seen. This is a notational convention that information has been suppressed, not a semantic state-
ment.

Predefined constraints may be used to indicate semantic constraints among the children. A comma-separated list of keywords
is placed in braces either near the shared triangle (if several paths share a single triangle) or near a dotted line that crosses all of
the generalization lines involved. The following keywords (among others) may be used (the following constraints are
predefined):

The discriminator must be unique among the attributes and association roles of the given parent. Multiple occurrences of the
same discriminator name are permitted and indicate that the children belong to the same partition.

The use of multiple classification or dynamic classification affects the dynamic execution semantics of the language, but is not
usually apparent from a static model.

5.50.3 Presentation Options

A group of generalization paths for a given parent may be shown as a tree with a shared segment (including the triangle) to the
child, branching into multiple paths to each child.

If a text label is placed on a generalization triangle shared by several generalization paths to children, the label applies to all of
the paths. In other words, all of the children share the given properties.

overlapping An element may have two or more children from the set as ancestors. An instance may be a direct or
indirect instance of two or more of the children.

disjoint No element may have two children in the set as ancestors. No instance may be a direct or indirect
instance of tow of the children.

complete All children have been specified (whether or not shown). No additional children are expected.

incomplete Some children have been specified, but the list is known to be incomplete. There are additional children
that are not yet in the model. This is a statement about the model itself. Note that this is not the same
as the ellipsis, which states that additional children exist in the model but are not shown on the current
diagram.
© ISO/IEC 2005 - All rights reserved 243

ISO/IEC 19501:2005(E)
5.50.3.1 Example

Figure 80 - Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
244 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 81 - Generalization with Discriminators and Constraints, Separate Target Style.

Figure 82 - Generalization with Shared Target Style.

5.50.4 Mapping

Each generalization path between two element symbols maps into a Generalization between the corresponding
GeneralizableElements. A generalization tree with one arrowhead and many tails maps into a set of Generalizations, one
between each element corresponding to a symbol on a tail and the single GeneralizableElement corresponding to the symbol
on the head. That is, a tree is semantically indistinguishable from a set of distinct arrows, it is purely a notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A property string attached to the head line
segment on a generalization tree represents a (duplicated) property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a child node of a given parent indicates that the semantic model contains at least one child

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species
© ISO/IEC 2005 - All rights reserved 245

ISO/IEC 19501:2005(E)
of the given parent that is not visible on the current diagram. Normally, this indicator will be maintained automatically by an
editing tool.

5.51 Dependency

5.51.1 Semantics

A dependency indicates a semantic relationship between two model elements (or two sets of model elements). It relates the
model elements themselves and does not require a set of instances for its meaning. It indicates a situation in which a change to
the target element may require a change to the source element in the dependency.

5.51.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the tail of the arrow (the client)
depends on the model element at the arrowhead (the supplier). The arrow may be labeled with an optional stereotype and an
optional individual name.

It is possible to have a set of elements for the client or supplier. In this case, one or more arrows with their tails on the clients
are connected to the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the junction if
desired. A note on the dependency should be attached at the junction point.

The following kinds of Dependency are predefined and may be indicated with keywords. Note that some of these correspond
to actual metamodel classes and others to stereotypes of metamodel classes. All of these are shown as dashed arrows with
keywords in guillemets. The name column shows the name of the metamodel class or the informal name of the class with the
given keyword stereotype.

Keyword Name Description

access Access The granting of permission for one package to reference the public elements owned by another
package (subject to appropriate visibility). Maps into a Permission with the stereotype access.

bind Binding A binding of template parameters to actual values to create a non-parameterized element. See
Section 5.31, “Bound Element,” on page 217 for more details. Maps into a Binding.

derive Derivation A computable relationship between one element and another (one more than one of each). Maps
into an Abstraction with the stereotype derivation.

import Import The granting of permission for one package to reference the public elements of another
package, together with adding the names of the public elements of the supplier package to the
client package. Maps into a Permission with the stereotype import.

refine Refinement A historical or derivation connection between two elements with a mapping (not necessarily
complete) between them. A description of the mapping may be attached to the dependency in a
note. Various kinds of refinement have been proposed and can be indicated by further
stereotyping. Maps into an Abstraction with the stereotype refinement.

trace Trace A historical connection between two elements that represents the same concept at different
levels of meaning. Maps into an Abstraction with the stereotype trace.

use Usage A situation in which one element requires the presence of another element for its correct
implementation or functioning. May be stereotyped further to indicate the exact nature of the
dependency, such as calling an operation of another class, granting permission for access,
instantiating an object of another class, etc. Maps into a Usage. If the keyword is one of the
stereotypes of Usage (call, create, instantiate, send), then it maps into a Usage with the given
stereotype.
246 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.51.3 Presentation Options

NOTE: The connection between a note or constraint and the element it applies to is shown by a dashed line without an
arrowhead. This is not a Dependency.

5.51.4 Example

Figure 83 - Various Dependencies Among Classes

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes
© ISO/IEC 2005 - All rights reserved 247

ISO/IEC 19501:2005(E)
Figure 84 - Dependencies Among Packages

5.51.5 Mapping

A dashed arrow maps into the appropriate kind of Dependency (based on keywords) between the Elements corresponding to
the symbols attached to the ends of the arrow. The stereotype and the name (if any) attached to the arrow are the stereotype and
name of the Dependency.

5.52 Derived Element

5.52.1 Semantics

A derived element is one that can be computed from another one, but that is shown for clarity or that is included for design
purposes even though it adds no semantic information.

5.52.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived element, such as an attribute or a
rolename.

5.52.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the stereotype «derive». Usually it is
convenient in the notation to suppress the dependency arrow and simply place a constraint string near the derived element,
although the arrow can be included when it is helpful.

5.53 InstanceOf

5.53.1 Semantics

Shows the connection between an instance and its classifier.

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»
248 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.53.2 Notation

Shown as a dashed arrow with its tail on the instance and its head on the classifier. The arrow has the keyword «instanceOf».

5.53.3 Mapping

Maps into an instance relationship from the instance to the classifier.

Part 6 - Use Case Diagrams

A use case diagram shows the relationship among use cases within a system or other semantic entity and their actors.

5.54 Use Case Diagram

5.54.1 Semantics

Use case diagrams show actors and use cases together with their relationships. The use cases represent functionality of a
system or a classifier, like a subsystem or a class, as manifested to external interactors with the system or the classifier.

5.54.2 Notation

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces, and the relationships between these
elements. The relationships are associations between the actors and the use cases, generalizations between the actors, and
generalizations, extends, and includes among the use cases. The use cases may optionally be enclosed by a rectangle that
represents the boundary of the containing system or classifier.
© ISO/IEC 2005 - All rights reserved 249

ISO/IEC 19501:2005(E)
5.54.3 Example

Figure 85 - Use Case Diagram

5.54.4 Mapping

A set of use case ellipses with connections to actor symbols maps to a set of UseCases and Actors corresponding to the use
case and actor symbols, respectively. The optional rectangle maps onto either a Model with the stereotype «useCaseModel»
containing the set of UseCases and Actors, or to a Classifier, like Subsystem or Class, containing the set of UseCases. An
interface in the diagram is mapped onto an Interface in the Model, and the connection between the interface and the actor or
use case icons is mapped onto a realization Dependency (an Abstraction dependency being stereotyped «realize») between the
Classifiers. Each generalization arrow maps onto a Generalization in the model, and each line between an actor symbol and a
use case ellipse maps to an Association between the corresponding Classifiers. A dashed arrow with the keyword «include» or
«extend» maps to an Include or Extend relationship between UseCases.

Part 6 - Use Case Diagrams

5.55 Use Case

5.55.1 Semantics

A use case is a kind of classifier representing a coherent unit of functionality provided by a system, a subsystem, or a class as

Customer

Supervisor

SalespersonPlace

Establish
credit

Check

Telephone Catalog

Fill orders

Shipping Clerk

status

order
250 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
manifested by sequences of messages exchanged among the system (subsystem, class) and one or more outside interactors
(called actors) together with actions performed by the system (subsystem, class).

An extension point is a reference to one location within a use case at which action sequences from other use cases may be
inserted. Each extension point has a unique name within a use case, and a description of the location within the behavior of the
use case.

5.55.2 Notation

A use case is shown as an ellipse containing the name of the use case. An optional stereotype keyword may be placed above
the name and a list of properties included below the name. As a classifier, a use case may also have compartments displaying
attributes and operations.

Extension points may be listed in a compartment of the use case with the heading extension points. The description of the
locations of the extension point is given in a suitable form, usually as ordinary text, but can also be given in other forms, like
the name of a state in a state machine, or a precondition or a postcondition.

The behavior of a use case can be described in several different ways, depending on what is convenient: often plain text is
used, but state machines, and operations and methods are examples of other ways of describing the behavior of the use case.
Sequence diagrams can be used for describing the interaction between use cases and their actors.

5.55.3 Presentation Options

The name of the use case may be placed below the ellipse. The name of an abstract use case may be shown in italics.

The ellipse may contain or suppress compartments presenting the attributes, the operations, and the extension points of the use
case.

5.55.4 Style Guidelines

Use case names should follow capitalization for those languages that distinguish between uppercase and lowercase characters
and punctuation guidelines used for Classifiers in the model.

5.55.5 Mapping

A use case symbol maps to a UseCase with the given name. An extension point maps into an ExtensionPoint within the
UseCase.

5.56 Actor

5.56.1 Semantics

An actor defines a coherent set of roles that users of an entity can play when interacting with the entity. An actor may be
considered to play a separate role with regard to each use case with which it communicates.

5.56.2 Notation

The standard stereotype icon for an actor is a “stick man” figure with the name of the actor below the figure.

5.56.3 Presentation Options

An actor may also be shown as a class rectangle with the keyword «actor», with the usual notation for all compartments. Other
icons which convey the kind of actor may also be used to denote an actor.
© ISO/IEC 2005 - All rights reserved 251

ISO/IEC 19501:2005(E)
5.56.4 Style Guidelines

Actor names should follow capitalization for those languages that distinguish between uppercase and lowercase characters and
punctuation guidelines used for types and classes in the model.

5.56.5 Mapping

An actor symbol maps to an Actor with the given name. The names of abstract actors may be shown in italics

5.57 Use Case Relationships

5.57.1 Semantics

There are several standard relationships among use cases or between actors and use cases.

• Association – The participation of an actor in a use case; that is, instances of the actor and instances of the use case
communicate with each other. This is the only relationship between actors and use cases.

• Extend – An extend relationship from use case A to use case B indicates that an instance of use case B may be
augmented (subject to specific conditions specified in the extension) by the behavior specified by A. The behavior is
inserted at the location defined by the extension point in B, which is referenced by the extend relationship.

• Generalization – A generalization from use case C to use case D indicates that C is a specialization of D.

• Include – An include relationship from use case E to use case F indicates that an instance of the use case E will also
contain the behavior as specified by F. The behavior is included at the location which defined in E.

5.57.2 Notation

An association between an actor and a use case is shown as a solid line between the actor and the use case. It may have end
adornments such as multiplicity.

An extend relationship between use cases is shown by a dashed arrow with an open arrow-head from the use case providing
the extension to the base use case. The arrow is labeled with the keyword «extend». The condition of the relationship is
optionally presented close to the key-word.

An include relationship between use cases is shown by a dashed arrow with an open arrow-head from the base use case to the
included use case. The arrow is labeled with the keyword «include».

A generalization between use cases is shown by a generalization arrow; that is, a solid line with a closed, hollow arrow head
pointing at the parent use case.

The relationship between a use case and its external interaction sequences is usually defined by an invisible hyperlink to
sequence diagrams. The relationship between a use case and its realization may be shown as dashed arrow with the keyword
«representedClassifier» to collaborations, but may also be defined as invisible hyperlinks.
252 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.57.3 Example

Figure 86 - Use Case Relationships

5.57.4 Mapping

A path between use case and/or actor symbols maps into the corresponding relationship between the corresponding Elements,
as described above.

5.58 Actor Relationships

5.58.1 Semantics

There is one standard relationship among actors and one between actors and use cases.

• Association – The participation of an actor in a use case; that is, instances of the actor and instances of the use case
communicate with each other. This is the only relationship between actors and use cases.

• Generalization – A generalization from an actor A to an actor B indicates that an instance of A can communicate with
the same kinds of use-case instances as an instance of B.

5.58.2 Notation

An association between an actor and a use case is shown as a solid line between the actor and the use case.

A generalization between actors is shown by a generalization arrow; that is, a solid line with a closed, hollow arrow head. The
arrow head points at the more general actor.

additional requests :

Order
Product

Supply
Arrange

«include»«include»«include»

Request
Catalog

«extend»Extension points

Payment
Customer Data

after creation of the order

Salesperson

Place Order

1 * the salesperson asks for
the catalog
© ISO/IEC 2005 - All rights reserved 253

ISO/IEC 19501:2005(E)
5.58.3 Example

Figure 87 - Actor Relationships

5.58.4 Mapping

A generalization between two actor symbols and an association between actor symbol and a use case symbol maps into the
corresponding relationship between the corresponding Elements, as described above.

Part 7 - Interaction Diagrams

The description of behavior involves two aspects: 1) the structural description of the participants, and 2) the description of the
communication patterns. The structure of Instances playing roles in a behavior and their relationships is called a
Collaboration. The communication pattern performed by Instances playing the roles to accomplish a specific purpose is called
an Interaction. The two aspects of behavior are often described together on a single diagram, but at times it is useful to
describe the structural aspects separately.

Interaction diagrams come in two forms based on the same underlying information, specified by a Collaboration and possibly
by an Interaction, but each form emphasizes a particular aspect of it. The two forms are sequence diagrams and collaboration
diagrams. A sequence diagram shows the explicit sequence of communications and is better for real-time specifications and
for complex scenarios. A collaboration diagram shows an Interaction organized around the roles in the Interaction and their
relationships. It does not show time as a separate dimension, so the sequence of communications and the concurrent threads
must be determined using sequence numbers.

5.59 Collaboration

5.59.1 Semantics

Behavior is implemented by ensembles of Instances that exchange Stimuli within an overall interaction to accomplish a task.
To understand the mechanisms used in a design, it is important to see only those Instances and their cooperation involved in
accomplishing a purpose or a related set of purposes, projected from the larger system of which they are part of. Such a static
construct is called a Collaboration.

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *
254 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A Collaboration includes an ensemble of ClassifierRoles and AssociationRoles that define the participants needed for a given
set of purposes. Instances conforming to the ClassifierRoles play the roles defined by the ClassifierRoles, while Links between
the Instances conform to AssociationRoles of the Collaboration. ClassifierRoles and AssociationRoles define a usage of
Instances and Links, and the Classifiers and Associations declare all required properties of these Instances and Links.

An Interaction is defined in the context of a Collaboration. It specifies the communication patterns between the roles in the
Collaboration. More precisely, it contains a set of partially ordered Messages, each specifying one communication; for
example, what Signal to be sent or what Operation to be invoked, as well as the roles to be played by the sender and the
receiver, respectively.

A CollaborationInstanceSet references an ensemble of Instances that jointly perform the task specified by the
CollaborationInstanceSet’s Collaboration. These Instances play the roles defined by the ClassifierRoles of the Collaboration;
that is, the Instances have all the properties declared by the ClassifierRoles (the Instances are said to conform to the
ClassifierRoles). The Stimuli sent between the Instances when performing the task are participating in the
InteractionInstanceSet of the CollaborationInstanceSet. These Stimuli conform to the Messages in one of the Interactions of
the Collaboration. Since an Instance can participate in several CollaborationInstanceSets at the same time, all its
communications are not necessarily referenced by only one InteractionInstanceSet. They can be interleaved.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to describe the context in which their
behavior occurs; that is, what roles Instances play to perform the behavior specified by the Operation or the UseCase. A
Collaboration is used for describing the realization of an Operation or a Classifier. A Collaboration which describes a
Classifier, like a UseCase, references Classifiers and Associations in general, while a Collaboration describing an Operation
includes the arguments and local variables of the Operation, as well as ordinary Associations attached to the Classifier owning
the Operation. The Interactions defined within the Collaboration specify the communication pattern between the Instances
when they perform the behavior specified in the Operation or the UseCase. These patterns are presented in sequence diagrams
or collaboration diagrams. A Collaboration may also be attached to a Class to define the static structure of the Class; that is,
how attributes, parameters, etc. cooperate with each other.

A parameterized Collaboration represents a design construct that can be used repeatedly in different designs. The participants
in the Collaboration, including the Classifiers and Relationships, can be parameters of the generic Collaboration. The
parameters are bound to particular ModelElements in each instantiation of the generic Collaboration. Such a parameterized
Collaboration can capture the structure of a design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a named ModelElement, Collaboration patterns
are free standing design constructs that must have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained Collaboration may be refined to produce
another Collaboration that has a finer granularity.

5.60 Sequence Diagram

5.60.1 Semantics

A sequence diagram presents an Interaction, which is a set of Messages between ClassifierRoles within a Collaboration, or an
InteractionInstanceSet, which is a set of Stimuli between Instances within a CollaborationInstanceSet to effect a desired
operation or result.

5.60.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and 2) the horizontal dimension represents
different instances. Normally time proceeds down the page. (The dimensions may be reversed, if desired.) Usually only time
sequences are important, but in real-time applications the time axis could be an actual metric. There is no significance to the
horizontal ordering of the instances.
© ISO/IEC 2005 - All rights reserved 255

ISO/IEC 19501:2005(E)
The different kinds of arrows used in sequence diagrams are described in Section 5.63, “Message and Stimulus,” on page 263,
below. These are the same kinds as in collaboration diagrams; see Section 5.65, “Collaboration Diagram,” on page 265.

Note that much of this notation is drawn directly from the Object Message Sequence Chart notation of Buschmann, Meunier,
Rohnert, Sommerlad, and Stal, which is itself derived with modifications from the Message Sequence Chart notation.

5.60.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to proceed in one direction across the page;
however, this is not always possible and the ordering does not convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and different objects are shown as horizontal
lines.

Various labels (such as timing constraints, descriptions of actions during an activation, and so on) can be shown either in the
margin or near the transitions or activations that they label.

Timing constraints may be expressed using time expressions on message or stimuli names. The functions sendTime (the time
at which a stimulus is sent by an instance) and receiveTime (the time at which a stimulus is received by an instance) may be
applied to stimuli names to yield a time. The set of time functions is open-ended, so that users can invent new ones as needed
for special situations or implementation distinctions (such as elapsedTime, executionStartTime, queuedTime, handledTime,
etc.)

Construction marks of the kind found in blueprints can be used to indicate a time interval to which a constraint may be
attached (see bottom right of Figure 88 on page 257). This notation is visually appealing but it is ambiguous if the arrow is
horizontal, because the send time and the receive time cannot be distinguished. In many cases the transmission time is
negligible, so the ambiguity is harmless, but a tool must nevertheless map such a notation unambiguously to an expression on
message or stimuli names (as shown in the examples in the left of the diagram) before the information is placed in the semantic
model. (A tool may adopt defaults for this mapping.) Similarly, a tool might permit the time function to be elided and use the
stimulus name to denote the time of stimulus sending or receipt within a timing expression (such as “b.receiveTime -
a.sendTime < 1 sec.” in Figure 88), but again this is only a surface notation that must be mapped to a proper time expression
in the semantic model).
256 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.60.4 Example

Simple sequence diagram with concurrent objects.

Figure 88 - Simple Sequence Diagram with Concurrent Objects (denoted by boxes
with thick borders).

caller exchange

a: lift receiver

b: dial tone

c: dial digit

{b.receiveTime

{c.receiveTime

. . .

d: route

{d.receiveTime

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

- a.sendTime < 1 sec.}

- b.sendTime < 10 sec.}

- d.sendTime < 5 sec.}

 < 1 sec.
© ISO/IEC 2005 - All rights reserved 257

ISO/IEC 19501:2005(E)
Figure 89 - Sequence Diagram with Focus of Control, Conditional, Recursion,
Creation, and Destruction.

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()
258 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.60.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements within it, some of which are described in
subsequent sections.

Figure 90 - A summary of the UML constructs used in the section below.

5.60.5.1 Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration or an InteractionInstanceSet and an underlying
CollaborationInstanceSet depending on whether the diagram shows Instances or ClassifierRoles. An Interaction specifies a
sequence of communications; it contains a collection of partially ordered Messages, each specifying a communication between
a sender role and a receiver role. A CollaborationInstanceSet references a collection of Instances that conform to the
ClassifierRoles in the Collaboration owning the Interaction. These Instances communicate by dispatching Stimuli that
conform to the Messages in the Interaction. The CollaborationInstanceSet has an InteractionInstanceSet that references these
Stimuli. A sequence diagram presents either a collection of object symbols and arrows mapping to Instances and Stimuli, or a
collection of classifier-role symbols and arrows mapping to ClassifierRoles and Messages. The Instances and Stimuli conform
to the ClassifierRoles and Messages.

The sequence diagram presents either a Collaboration or a CollaborationInstanceSet. In the former case, the classifier box with
its lifeline maps onto a ClassifierRole in the Collaboration, and the arrows map onto the Messages in one of the

Collaboration

ClassifierRole AssociationRole Interaction

AssociationEndRole Message

1..*
*

*

1

*

2..*

0..1

*

1..*

Instance Link

StimulusLinkEnd

2..*

1

*

* 1 1

*

*

0..1

Action
0..1

*

Action
0..1

*

CollaborationInstanceSet

InteractionInstanceSet

*

© ISO/IEC 2005 - All rights reserved 259

ISO/IEC 19501:2005(E)
Collaboration’s Interactions. The name strings in the boxes map onto the names of the ClassifierRoles, while the classifier
names map onto the ClassifierRole’s base Classifiers. The AssociationRoles among the ClassifierRoles are not shown on the
sequence diagram. They must be obtained in the model from a complementary collaboration diagram or other means.

If the sequence diagram presents a CollaborationInstanceSet, each object box with its lifeline maps into an Instance, which
conforms to a ClassifierRole in the CollaborationInstanceSet’s Collaboration. The name field maps into the name of the
Instance, the role name into the ClassifierRole’s name, and the class field maps into the names of the Classifiers being the base
Classifiers of the ClassifierRole. An arrow maps into a Stimulus connected to two Instances: the sender and the receiver. The
Link used for the communication of the Stimulus plays the role specified by the AssociationRole connected to the Message.
Unless the correct Link can be determined from a complementary collaboration diagram or other means, the Stimulus is either
not attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a dummy Link between the Instances
conforming to the AssociationRole implied by the two ClassifierRoles due to the lack of complete information.

The name of the Operation to be invoked or Signal to be sent is mapped onto the name of the Operation or Signal associated by
the Action connected to the Message. Different alternatives exist for showing the arguments of the Stimulus. If references to
the actual Instances being passed as arguments are shown, these are mapped onto the arguments of the Stimulus. If the
argument expressions are shown instead, these are mapped onto the Arguments of the Action connected to the dispatching
Action. Finally, if the types of the arguments are shown together with the name of the Operation or the Signal, these are
mapped onto the parameter types of the Operation or the Attribute types of the Signal, respectively. A timing label placed on
the level of an arrow endpoint maps into the name of the corresponding Message or Stimulus. A constraint placed on the
diagram maps into a Constraint on the entire Interaction.

An arrow with the arrowhead pointing to an object symbol or role symbol within the frame of the diagram maps into a
Stimulus (Message) dispatched by a CreateAction. The interpretation is that an Instance is created by dispatching the Stimulus.
If the target of the arrow is a classifier-role symbol, the Instance will conform to the ClassifierRole. (Note, that the diagram
does not necessarily show from which Classifier the Instance originates; only that the newly created Instance conforms to the
ClassifierRole.) After the creation of the Instance, it may immediately start interacting with other Instances. This implies that
the creation method (constructor, initializer) of the Instance dispatches these Stimuli. If an object termination symbol (“X”) is
the target of an arrow, the arrow maps into a Stimulus, which will cause the receiving Instance to be removed. If the object
termination symbol appears in the diagram without an incoming arrow, it maps into a TerminateAction.

The order of the arrows in the diagram maps onto pairs of associations between the Stimuli (Messages). A predecessor
relationship is established between Stimuli (Messages) corresponding to successive arrows in the vertical sequence. In case of
concurrent arrows preceding an arrow, the corresponding Stimulus (Message) has a collection of predecessors. Moreover, each
Stimulus (Message) has an activator association to the Stimulus (Message) corresponding to the incoming arrow of the
activation.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent arrows on the same lifeline map into
Stimuli (Messages) obeying the predecessor association. An arrow to the head of a focus of control region establishes a nested
activation. The arrow maps into a Stimulus (Message) with the dispatching Action being a CallAction. The Stimulus holds the
sender and receiver Instance, as well as the argument Instances, to be supplied in the invocation and references the target
Operation to be invoked. The expressions that evaluate to the arguments of the Operation are the argument Expressions on the
CallAction connected to the Stimulus. In the case where the arrow maps onto a Message the sender and the receiver are
specified by the sender and receiver ClassifierRoles of the Message. The sender and receiver Instances of a Stimulus conform
to these ClassifierRoles. Any condition or iteration expression attached to the arrow becomes recurrence values of the
dispatching Action. All arrows departing the nested activation map into Stimuli (Messages) with an activation Association to
the Stimulus (Message) corresponding to the arrow at the head of the activation. A return arrow departing the end of the
activation maps into a Stimulus (Message) with:

• an activation Association to the Stimulus (Message) corresponding to the arrow at the head of the activation, and

• a predecessor association to the previous Stimulus (Message) within the same activation; that is, the last Stimulus
260 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
(Message) being sent in the activation.

A return must be the final Stimulus (Message) within a predecessor chain. It is not the predecessor of any Stimulus (Message).

5.61 Object Lifeline

5.61.1 Semantics

In a sequence diagram an object lifeline denotes an Instance playing a specific role. Arrows between the lifelines denote
communication between the Instances playing those roles. Within a sequence diagram the existence and duration of the
Instance in a role is shown, but the relationships among the Instances are not shown. The role is specified by a ClassifierRole;
it describes the properties of an Instance playing the role and describes the relationships an Instance in that role has to other
Instances.

5.61.2 Notation

An Instance is shown as a vertical dashed line called the “lifeline.” The lifeline represents the existence of the Instance at a
particular time. If the Instance is created or destroyed during the period of time shown on the diagram, then its lifeline starts or
stops at the appropriate point; otherwise, it goes from the top to the bottom of the diagram. An object symbol is drawn at the
head of the lifeline. If the Instance is created during the diagram, then the arrow, which maps onto the Stimulus that creates the
Instance, is drawn with its arrowhead on the object symbol. If the Instance is destroyed during the diagram, then its destruction
is marked by a large “X,” either at the arrow mapping to the Stimulus that causes the destruction or (in the case of self-
destruction) at the final return arrow from the destroyed Instance. An Instance that exists when the transaction starts is shown
at the top of the diagram (above the first arrow), while an Instance that exists when the transaction finishes has its lifeline
continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. Each separate track corresponds to a
conditional branch in the communication. The lifelines may merge together at some subsequent point.

5.61.3 Presentation Options

In some cases, it is necessary to link sequence diagrams to each other; for example, it might not be possible to put all lifelines
in one diagram, or a sub-sequence is included in several diagrams; hence, it is convenient to put the common sub-sequence in
a separate diagram, which is referenced from the other diagrams. In these cases, the cut between the diagrams can be expressed
in one of the diagrams with a dangling arrow leaving a lifeline but not arriving at another lifeline, and in the other diagram it is
expressed with a dangling arrow arriving at a lifeline from nowhere. In both cases, it is recommended to attach a note stating
which diagram the sequence originates from or continues in. This is purely notational. The different diagrams show different
parts of the underlying Interaction.
© ISO/IEC 2005 - All rights reserved 261

ISO/IEC 19501:2005(E)
5.61.4 Example

See also Figure 89 on page 258.

Figure 91 - The flow shown in the sequence diagram to the left continues in
the diagram to the right.

5.61.5 Mapping

See Section 5.60.5, “Mapping,” on page 259.

5.62 Activation

5.62.1 Semantics

An activation (focus of control) shows the period during which an Instance is performing an Action either directly or through
a subordinate procedure. It represents both the duration of the performance of the Action in time and the control relationship
between the activation and its callers (stack frame).

5.62.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation time and whose bottom is aligned with its
completion time. The Action being performed may be labeled in text next to the activation symbol or in the left margin,
depending on style. Alternately, the incoming arrow may indicate the Action, in which case it may be omitted on the activation
itself. In procedural flow of control, the top of the activation symbol is at the tip of an incoming arrow (the one that initiates the
action) and the base of the symbol is at the tail of a return arrow.

In the case of concurrent Instances each with their own threads of control, an activation shows the duration when each Instance
is performing an Operation or transition in a state machine. Operations by other Instances are not relevant. If the distinction
between direct computation and indirect computation (by a nested procedure) is unimportant, the entire lifeline may be shown
as an activation.

bar(x)

doit(w)

ob3:C3 ob4:C4

[x<0] bar(x)

ob1:C1

Diagram 1
Diagram 2

The flow
continues in
Diagram 2.

The flow
originates in
Diagram 1.
262 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In the case of procedural code, an activation shows the duration during which a procedure is active in the Instance or a
subordinate procedure is active, possibly in some other Instances. In other words, all of the active nested procedure activations
may be seen at a given time. In the case of a recursive call to an Instance with an existing activation, the second activation
symbol is drawn slightly to the right of the first one, so that they appear to “stack up” visually. (Recursive calls may be nested
to an arbitrary depth.)

5.62.3 Example

See Figure 88 on page 257 and Figure 89 on page 258.

5.62.4 Mapping

See Section 5.60.5, “Mapping,” on page 259.

5.63 Message and Stimulus

5.63.1 Semantics

A Stimulus is a communication between two Instances that conveys information with the expectation that action will ensue. A
Stimulus will cause an Operation to be invoked, raise a Signal, or cause an Instance to be created or destroyed.

A Message is a specification of Stimulus; that is, it specifies the roles that the sender and the receiver Instances must conform
to, as well as the Action which will, when executed, dispatch a Stimulus that conforms to the Message.

5.63.2 Notation

In a sequence diagram a Stimulus as well as a Message is shown as a horizontal solid arrow from the lifeline of one Instance or
ClassifierRole to the lifeline of another Instance or ClassifierRole. In case of a Stimulus from an Instance to itself, the arrow
may start and finish on the same lifeline. The arrow is labeled with the name of the Operation to be invoked or the name of the
Signal. Its argument values or argument expressions may be presented, as well.

The arrow may also be labeled with a sequence number to show the sequence of the Stimulus (Message) in the overall
interaction. However, sequence numbers are often omitted in sequence diagrams, as the physical location of the arrow shows
the relative sequences, but they are necessary in collaboration diagrams. Sequence numbers are useful on both kinds of
diagrams for identifying concurrent threads of control. An arrow may also be labeled with a condition and/or iteration
expression.

5.63.3 Presentation options

The following arrowhead variations may be used to show different kinds of communications.

Procedure call or other nested flow of control. The entire nested sequence is completed before the outer level sequence
resumes. The arrowhead may be used to denote ordinary procedure calls, but it may also be used to denote concurrently active
instances when one of them sends a Signal and waits for a nested sequence of behavior to complete before it continues.

filled solid arrowhead

stick arrowhead
© ISO/IEC 2005 - All rights reserved 263

ISO/IEC 19501:2005(E)
Asynchronous communication; that is, no nesting of control. The sender dispatches the Stimulus and immediately continues

with the next step in the execution.1

Return from procedure call.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the end of an activation). It is assumed that
every call has a paired return after any subordinate stimuli. The return value can be shown on the initial arrow. For
nonprocedural flow of control (including parallel processing and asynchronous messages) returns should be shown explicitly.

Variation:

Normally message arrows are drawn horizontally. This indicates the duration required to send the stimulus is “atomic;” that is,
it is brief compared to the granularity of the interaction and that nothing else can “happen” during the transmission of the
stimulus. This is the correct assumption within many computers. If the stimulus requires some time to arrive, during which
something else can occur (such as a stimulus in the opposite direction), then the arrow may be slanted downward so that the
arrowhead is below the arrow tail.

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each possibly labeled by a condition. Depending on whether the
conditions are mutually exclusive, the construct may represent conditionality or concurrency.

Variation: Iteration

A connected set of arrows may be enclosed and marked as an iteration. For a generic sequence diagram, the iteration indicates
that the dispatch of a set of stimuli can occur multiple times. For a procedure, the continuation condition for the iteration may
be specified at the bottom of the iteration. If there is concurrency, then some arrows in the diagram may be part of the iteration
and others may be single execution. It is desirable to arrange a diagram so that the arrows in the iteration can be enclosed
together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-level view.

Variation:

A distinction may be made between a period during which an Instance has a live activation and a period in which the
activation is actually computing. The former (during which it has control information on a stack but during which control
resides in something that it called) is shown with the ordinary double line. The latter (during which it is the top item on the
stack) may be distinguished by shading the region.

dashed arrow with
stick arrowhead

1. UML 1.3 and previous versions included a half-stick arrowhead notation in addition to the stick arrowhead notation. This
notation has been removed because the semantic distinction between the two was subtle and confusing.
264 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.63.4 Example

See Figure 89 on page 258.

5.63.5 Mapping

See Section 5.60.5, “Mapping,” on page 259.

5.64 Transition Times

5.64.1 Semantics

A Message may specify several different times; for example, a sending time and a receiving time. These are formal names that
may be used within Constraint expressions. The set of different kinds of times is open-ended so that users can invent new ones
as needed for special situations, such as elapsedTime and startExecutionTime. These expressions may be used in Constraints to
designate specific time constraints valid for the Message.

5.64.2 Notation

A transition instance (such as a Stimulus or Message in a sequence diagram, a collaboration diagram, or a Transition in a state
machine) may be given a name. A timing constraint is formed as an expression based on the name of the transition. For
example, if the name of a Stimulus is stim, its send-time is expressed by stim.sendTime (), and its receive-time by
stim.receiveTime (). The timing constraint may be shown in the left margin aligned with the arrow (on a sequence diagram) or
near the tail of the arrow (on a collaboration diagram). Constraints may be specified by placing Boolean expressions, possibly
including time expressions, in braces on the sequence diagram.

5.64.3 Presentation Options

When it is clear from the context, the name of a Message or the name of a Stimulus may itself be used to denote the time at
which the transition started. In cases where the performance of the transition is not instantaneous, the time at which the
transition is ended may be indicated by the same name with a prime sign appended to the name.

5.64.4 Example

See Figure 88 on page 257.

5.64.5 Mapping

See Section 5.60.5, “Mapping,” on page 259.

Part 8 - Collaboration Diagrams

5.65 Collaboration Diagram

5.65.1 Semantics

A collaboration diagram presents either a Collaboration, which contains a set of roles to be played by Instances, as well as
their required relationships given in a particular context, or it presents a CollaborationInstanceSet with a collection of
Instances and their relationships. The diagram may also present an Interaction (InteractionInstanceSet), which defines a set of
Messages (Stimuli) specifying the interaction between the Instances playing the roles within a Collaboration to achieve the
desired result.
© ISO/IEC 2005 - All rights reserved 265

ISO/IEC 19501:2005(E)
A Collaboration is used for describing the realization of an Operation or a Classifier. A Collaboration that describes a
Classifier, like a UseCase, references Classifiers and Associations in general, while a Collaboration describing an Operation
includes the arguments and local variables of the Operation, as well as ordinary Associations attached to the Classifier owning
the Operation.

5.65.2 Notation

A collaboration diagram shows a graph of either Instances linked to each other, or ClassifierRoles and AssociationRoles; it
may also include the communication stated by an Interaction or InteractionInstanceSet.

Because collaboration diagrams often are used to help design procedures, they typically show navigability using arrowheads
on the lines representing Links or AssociationRoles. (An arrowhead on a line between boxes indicates a Link or
AssociationRole with one-way navigability. An arrow next to a line indicates Stimuli or Message flowing in the given
direction. Obviously such an arrow cannot point backwards over a one-way line.)

The order of the interaction is described with a sequence of numbers, usually starting with number 1. For a procedural flow of
control, the subsequent communication numbers are nested in accordance with call nesting. For a nonprocedural sequence of
interactions among concurrent instances, all the sequence numbers are at the same level (that is, they are not nested).

A collaboration diagram without any interaction shows the context in which interactions can occur. It might be used to show
the context for a single Operation or even for all of the Operations of a Class or group of Classes.

A collection of standard constraints may be used to show whether an Instance or a Link is created or destroyed during the
execution:

• Instances and Links created during the execution may be designated as {new}.

• Instances and Links destroyed during the execution may be designated as {destroyed}.

• Instances and Links created during the execution and then destroyed may be designated as {transient}.

These changes in life state are derivable from the detailed interaction among the Instances, they are provided as notational
conveniences.

5.65.2.1 Collaboration Instance

A collaboration diagram given at instance level shows a CollaborationInstanceSet; that is, a collection of object boxes and
lines mapping to Instances and Links, respectively. These instances conform to the ClassifierRoles and AssociationRoles of
the CollaborationInstanceSet’s Collaboration. The diagram may also include arrows attached to the lines that correspond to
Stimuli communicated over the Links. The diagram shows the Instances relevant to the realization of an Operation or
Classifier, including Instances indirectly affected or accessed during the performance. The diagram also shows the Links
among the Instances, including transient ones representing procedure arguments, local variables, and self links. Individual
attribute values are usually not shown explicitly. If Stimuli must be sent to attribute values, the Attributes should be modeled
using Associations instead.

5.65.2.2 Collaboration

A collaboration diagram given at specification level shows a Collaboration; that is, the roles defined within a Collaboration.
Together, these roles form a realization of the attached Operation or Classifier of the Collaboration. The diagram contains a
collection of class boxes and lines corresponding to ClassifierRoles and AssociationRoles in the Collaboration. In this case the
arrows attached to the lines map onto Messages.
266 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.65.3 Example

Figure 92 - Collaboration Diagram at instance level, presenting Objects, Links,
and Stimuli referenced by a CollaborationInstanceSet and its
InteractionInstanceSet.

Figure 93 - Collaboration Diagram at specification level, presenting the ClassifierRoles and the
AssociationRoles that belong to the Collaboration.

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local» line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

«self»

/ Teacher : Person

: Faculty
given course *

/ Student : Person

student *

: Course

tutor 1

taken course *

participant *lecturer 1faculty member *

faculty 1
© ISO/IEC 2005 - All rights reserved 267

ISO/IEC 19501:2005(E)
Figure 94 - Collaboration Diagram presenting a CollaborationInstanceSet in which
some of the Objects play the same role. The instances conform to the
Collaboration shown in Figure 93.

5.65.4 Mapping

A collaboration diagram maps either to a Collaboration, possibly together with an Interaction, or to a CollaborationInstanceSet
possibly together with its InteractionInstanceSet. The mapping of each kind of icon is described in Section 5.69,
“Collaboration Roles,” on page 274. The mapping of the stereotypes is explained in Section 5.49, “Link,” on page 241.

5.66 Pattern Structure

5.66.1 Semantics

A Collaboration can be used to specify the implementation of design constructs. For this purpose, it is necessary to specify its
context and interactions. It is also possible to view a Collaboration as a single entity from the “outside.” For example, this
could be used to identify the presence of design patterns within a system design. A pattern is a parameterized Collaboration;
that is, a Collaboration template. In each use of the pattern, actual Classifiers are substituted for the parameters in the pattern
definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and Vlissides include much more than structural
descriptions. UML describes the structural aspects and some behavioral aspects of design patterns; however, UML notation
does not include other important aspects of patterns, such as usage trade-offs or examples. These must be expressed by other
means, such as in text or tables.

A Collaboration can be defined in terms of other, so-called subordinate, Collaborations. Each role in the former Collaboration,
the so-called superordinate Collaboration, is either a new role that is defined in the superordinate Collaboration or it is a role
defined in one or several of the subordinate Collaborations and reused in the definition of the superordinate Collaboration. In
the latter case, the role is often renamed so it better suits the purpose of the superordinate Collaboration. If so, the original
names of the roles are shown within curly brackets after the name used within the superordinate Collaboration (see Figure 95
on page 269).

tutor / Teacher : Person

/ Student : Person

1: namesOfTeachers()

studentTeachers ()

1.1*[i:=1..n]: lecturer()

: Course

1.i.1: name ()

lecturer / Teacher : Person
268 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.66.2 Notation

A use of a Collaboration is shown as a dashed ellipse containing the name of the Collaboration. A dashed line is drawn from
the collaboration symbol to each of the symbols denoting Classifiers that participate in the Collaboration. Each line is labeled
by the role of the participant. The roles correspond to the names of elements within the context for the Collaboration; such
names in the Collaboration are treated as parameters that are bound to specify elements on each occurrence of the pattern
within a model. Therefore, a collaboration symbol can show the use of a design pattern together with the actual Classifiers and
Associations that occur in that particular use of the pattern.

Figure 95 - Use of a Collaboration

As a Collaboration is a GeneralizableElement, it may have Generalization relationships to other Collaborations. In this way it
is possible to define one Collaboration to be a specialization of another Collaboration. It is depicted by the ordinary
Generalization arrow from the dashed ellipse representing the child Collaboration to the icon of the parent Collaboration. The
roles of the child Collaborations may be specializations of roles in the parent Collaboration. This is shown by redefining the
role name of the parent collaboration in the child collaboration.

Figure 96 - Specialization of a Collaboration. As the Subject role of the Supervisor
collaboration is a specialization (an extension) of the Subject role defined in
the Observer collaboration, the ManagedQueue class is used instead of the
CallQueue class as the base of the Subject role.

A dashed arrow with a stick arrowhead is used to show that a Collaboration is a realization of an Operation or a Classifier. This
relationship can also be presented in textual form within the Collaboration symbol.

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)

Observer SlidingBarIcon

Observer

CallQueue

Subject

Supervisor Controller

Manager

ManagedQueue

Subject
© ISO/IEC 2005 - All rights reserved 269

ISO/IEC 19501:2005(E)
Figure 97 - The relationship between a Collaboration and the element it is realizing
can be shown as a dashed arrow with a stick arrowhead from the
Collaboration to the realized element, or in text.

The usual convention is used to show a CollaborationInstanceSet; that is, it is shown as a dashed ellipse with the name
underlined. The Instances and the Links that participate in the CollaborationInstanceSet are connected to the ellipse with
dashed lines. The name of the role an instance is playing is shown close to the line and the instance.

In some cases it is convenient to show the static structure of a Collaboration within the collaboration icon (the dashed ellipse).

Figure 98 - The static structure of a Collaboration shown within the collaboration icon.

It is possible to denote that a Collaboration is defined in terms of other Collaborations in two different ways, either using
dashed ellipses showing the Collaborations and their relationships, or using ordinary collaboration diagrams. The former way
has the advantage that it explicitly shows the relationship between the Collaborations, while the latter shows the structure of
the new Collaboration.

Window

display (...)

representedOperation:
alternative notation Window:: display

RealizeDisplayOperation

RealizeDisplayOperation

Observer

/Observer : SlidingBarIcon/Subject : CallQueue
270 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 99 - The ComponentFramework Collaboration uses two occurrences of
the Proxy Collaboration and two occurrences of the Container Collaboration.
Note that each role in the Component Frameworkcorresponds to a role in two
of the used Collaborations.

5.66.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol and lines attached by a dashed line to the
pattern occurrence symbol, the corresponding Classifier or Association is bound to the template parameter that is the base
association target of the ClassifierRole or AssociationRole in the Collaboration template with the name equal to the name on
the dashed line.

A dashed arrow with a closed hollow arrowhead from a Collaboration symbol to a Classifier or to an Operation is mapped onto
the representedClassifier and onto the representedOperation association of the Collaboration, respectively.

A collaboration usage symbol with its name underlined is mapped onto a CollaborationInstanceSet. The object box symbols
and the lines attached to the ellipse by dashed lines are mapped onto Instances and Links, respectively.

5.67 Collaboration Contents

The contents of a Collaboration is a collection of roles specifying how Instances and Links cooperate within a given context
for a particular purpose, such as performing an Operation or a Use case. A Collaboration is a fragment of a larger complete
model that is intended for a particular purpose.

Proxy

Component Framework

Proxy OriginalClient

«usedCollaboration»

Proxy

Proxy OriginalClient

Factory

Component

Component

Container

ElementContainer

Container

ElementContainer

Client Object

Remote
Object

Service
Container

«usedCollaboration»«usedCollaboration»

«usedCollaboration»
© ISO/IEC 2005 - All rights reserved 271

ISO/IEC 19501:2005(E)
5.67.1 Semantics

A Collaboration diagram shows either a Collaboration or a CollaborationInstanceSet. In the former case, the diagram shows
one or more roles together with their contents, relationships, and neighbor roles, plus additional relationships and Classes as
needed. When the diagram shows a CollaborationInstanceSet, it shows instances participating in the CollaborationInstanceSet,
playing the roles defined in the Collaboration. To use a Collaboration, each role must be bound to an actual Classifier (or
collection of Classifiers, if multiple classification is used) that (jointly) support the Features required by the role. The
additional elements express additional requirements that cannot be modeled with roles, such as Generalizations between roles.

5.67.2 Notation

A collaboration diagram presents a graph of class boxes or object boxes together with connecting lines. These icons map onto
ClassifierRoles and AssociationRoles, or Instance, and Links, respectively (see Section 5.69, “Collaboration Roles,” on
page 274).

However, a collaboration diagram may also contain other elements, like different kinds of Classifiers, Generalizations, and
Constraints, to express additional information. These elements are shown using their ordinary icons.

Figure 100 - A collaboration diagram showing a Collaboration with a Constraint as a
constraining element of the Collaboration.

/Observer:SlidingBarIcon

/Subject:CallQueue

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

capacity: Integer

:Window

color: Color
location: Area

{Observer.reading = length (Subject.queue)
and
Observer.range = (0..Subject.capacity)}
272 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 101 - A collaboration diagram showing different roles, together with two
 additional Generalization relationships as constraining elements.

5.67.3 Mapping

The mapping of roles and instances are described in Section 5.69, “Collaboration Roles,” on page 274. Any constraining
element, like a generalization arrow, is mapped onto its usual model element, such as Generalization. These elements a
referenced by the Collaboration as its constraining elements.

5.68 Interactions

A collaboration of Instances interacts to accomplish a purpose (such as performing an Operation) by exchanging Stimuli.
These may include both sending Signals and invocations of Operations, as well as more implicit interaction through conditions
and time events. A specific pattern of communication exchanges to accomplish a specific purpose is called an Interaction. The
collection of Stimuli sent between the Instances that participate in a CollaborationInstanceSet when they perform the task of
the Collaboration is called an InteractionInstanceSet.

5.68.1 Semantics

An Interaction is a behavioral specification that comprises a sequence of communications exchanged among a set of Instances
within a Collaboration to accomplish a specific purpose, such as the implementation of an Operation. To specify an
Interaction, it is first necessary to specify a Collaboration; that is, to establish the roles that interact and their relationships.
Then, the possible interaction sequences are specified. These can be specified in a single description containing conditionals
(branches or conditional signals), or they can be specified by supplying multiple descriptions, each describing a particular path
through the possible execution paths.

One communication is specified with a Message; it specifies the sender and the receiver roles, as well as the Action that will
cause the communication to take place. The Action specifies what kind of communication that should take place, such as
sending a Signal or invoking an Operation, together with a sequence of expressions that determine the arguments to be
supplied. The Action may also contain a recurrence expression stating a condition or an iteration of the performance of the
Action.

When the Action is performed, a Stimulus is dispatched conforming to the Message. The Stimulus contains references to the
sender and the receiver Instances playing the sender role and the receiver role of the Message, as well as a sequence of
references to Instances being the result of evaluating the argument expressions of the dispatching Action. An
InteractionInstanceSet is a collection of Stimuli that conform to the Messages of an Interaction; that is, the Stimuli are sent
between the Instances participating in a CollaborationInstanceSet when they perform the task defined by the Collaboration.

/ Generator : PrintDevice

1: print (info)

: LaserPrinter : LinePrinter

printer 1
© ISO/IEC 2005 - All rights reserved 273

ISO/IEC 19501:2005(E)
5.68.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both diagram formats show the execution of
collaborations. However, sequence diagrams do not show the relationships between the Instances or the Attribute values of the
Instances; therefore, they do not fully show the context aspect of a Collaboration. Sequence diagrams do show the behavioral
aspect of Collaborations explicitly, including the time sequence of Stimuli and explicit representation of method activations.
Sequence diagrams are described in “Part 7 - Interaction Diagrams” on page 254. Collaboration diagrams show the full context
of an interaction, including the Instances and their relationships relevant to a particular interaction. The sequencing of the
Stimuli is done using sequence numbers, since distributing them along a time axis, like in Sequence diagrams, is not possible
in this kind of diagram. (In fact, in some cases it is convenient to use sequence numbers in combination with a time axis.) The
contents of collaboration diagrams are described in the following section.

5.68.3 Mapping

The mapping of roles and instances are described below, while the mapping of messages and stimuli are described in
Section 5.72, “Message and Stimulus,” on page 278.

5.68.4 Example

See Section 5.65, “Collaboration Diagram,” on page 265 for examples of Interactions and InteractionInstanceSets and their
Collaborations and CollaborationInstanceSets, respectively.

5.69 Collaboration Roles

5.69.1 Semantics

A ClassifierRole defines a role to be played by an Instance within a Collaboration. The role describes the kind of Instance that
may play the role, such as required Operations and Attributes, and describes its relationships to Instances playing other roles.
The relationships to other roles are defined by AssociationRoles. These describe the required Links between the Instances; that
is, a subset of the existing Links.

5.69.2 Notation

A ClassifierRole is shown using a class rectangle symbol. Normally, only the name compartment is shown, but the attribute
and operation compartments may also be shown when needed. The name compartment contains the string:

‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

The name of the Classifier (or Classifiers if multiple classification is used) can include a full pathname of enclosing Packages,
if necessary. A tool will normally permit shortened pathnames to be used when they are unambiguous. The Package names
precede the Classifier name and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype may be shown textually (in guillemets above the name string) or as an icon in the upper right corner. A
ClassifierRole representing a set of Instances can include a multiplicity indicator (such as “*”) in the upper right corner of the
class box.

An AssociationRole is shown with the usual association line. The name string of the AssociationRole follows the same syntax
as for the ClassifierRole. If the name is omitted, a line connected to ClassifierRole symbols denotes an AssociationRole. The
information attached to the ends of the AssociationRole; that is, to the AssociationEndRoles, are shown using the same
notation as for AssociationEnds.
274 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
An Instance playing the role defined by a ClassifierRole is depicted by an object box, normally without an attribute
compartment. The name of the Instance is shown as a string:

ObjectName ‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

That is it starts with the name of the Instance, followed by the complete name of the ClassifierRole, all underlined. If the
attribute compartment is shown, it contains the names of the Attributes required by an Instance playing the role. If some
Attributes are required to have certain values, this is shown in the same way as in object diagrams; that is, the name of the
attribute followed by an equal sign and the relevant values.

A Link is shown by a line between object boxes. Its name string follows the syntax of an Object playing a specific role.

5.69.3 Presentation options

The name of a ClassifierRole may be omitted. In this case, the colon is kept together with the Classifier name. The role name
may be omitted only if there is only one role to be played by Instances of the base Classifier in the Collaboration.

The name of the Classifier may be omitted together with the colon.

At least one of the Classifier name (together with the colon) or the ClassifierRole name (together with the slash) must be
present to denote a ClassifierRole. Otherwise, the rectangle denotes an ordinary Classifier or Instance depending on whether
the name is underlined or not.

If the role is to be played by an Instance originating from multiple Classifiers, the names of the Classifiers are shown in a
comma separated list after the colon.

In an object box the Instance name, the role name and / or the classifier name may be omitted. However, the colon should be
kept in front of the classifier name, and the slash should be kept in front of the role name. The notation used is the same for
Instances in general, with the possible addition of the name of the ClassifierRole that the Instance conforms to.

Note, the name of an Instance is always underlined, whereas the name of a Classifier (including ClassifierRole) is never
underlined. Furthermore, an un-named line between icons representing Instances is always a Link, and between icons
representing Classifiers (except ClassifierRoles) it is always an Association.

These tables summarize the different combinations of names:

Syntax Explanation

: C un-named Instance originating from the Classifier C

/ R un-named Instance playing the role R

/ R : C un-named Instance originating from the Classifier C playing the role R

O / R an Instance named O playing the role R

O : C an Instance named O originating from the Classifier C

O / R : C an Instance named O originating from the Classifier C playing the role R

O an Instance named O

/ R a role named R

: C an un-named role with the base Classifier C

/ R : C a role named R with the base Classifier C
© ISO/IEC 2005 - All rights reserved 275

ISO/IEC 19501:2005(E)
5.69.4 Example

See figures in Section 5.65, “Collaboration Diagram,” on page 265.

5.69.5 Mapping

A classifier role rectangle maps onto one ClassifierRole. The role name is the name of the ClassifierRole and the sequence of
classifier names are the names of the base Classifiers. An association role line maps onto an AssociationRole attached to the
ClassifierRoles corresponding to the rectangles at the end points of the line.

An object symbol maps onto an Instance whose name is the object part of the name string. The Classifiers of the Instance are
those named according to the sequence of names in the class part of the string (or children of these Classifiers). The Instance
conforms to the ClassifierRole, whose name is the role part of the string.

A Collaboration can also be used for describing the internal structure of a Classifier. In such case, the names of the roles are
the same as the names of the attributes of the Classifier. In this way, the connection between the roles and the Attributes they
represent are established. (The base of the roles are not enough for uniquely identifying this mapping, since several Attributes
may have the same type.)

5.70 Multiobject

5.70.1 Semantics

A multiobject represents a set of Instances on the “many” end of an Association. This is used to show Operations and Signals
that address the entire set, rather than a single Instance in it. The underlying static model is unaffected by this grouping. This
corresponds to an Association with multiplicity “many” used to access a set of associated Instances.

5.70.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slightly vertically and horizontally to suggest a
stack of rectangles. A message arrow to the multiobject symbol indicates a Stimulus to the set of Instances (for example, a
selection Operation to find an individual Object).

To perform an Operation on each Instance in a set of associated Instances requires two Stimuli: 1) an iteration to the
multiobject to extract Links to the individual Instances and then 2) a Stimulus sent to each individual Instance using the
(temporary) Link. This may be elided on a diagram by combining the arrows into a single arrow that includes an iteration and
an application to each individual Instance. The target rolename takes a “many” indicator (*) to show that many individual
Links are implied. Although this may be written as a single Stimulus, in the underlying model (and in any actual code) it
requires the two layers of structure (iteration to find Links, communication using each Link) mentioned previously.

An Instance from the set is shown as a normal object symbol, but it may be attached to the multiobject symbol using a
composition Link to indicate that it is part of the set. A communication arrow to the simple object symbol indicates a Stimulus
to an individual Instance.

Typically a selection Stimulus to a multiobject returns a reference to an individual Instance, to which the original sender then
sends a Stimulus.
276 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.70.3 Example

Figure 102 - Multiobject

5.70.4 Mapping

A multi-object symbol maps to a collection of Instances in which each Instance conforms to the ClassifierRole and this role
has the multiplicity “many” (or whatever is explicitly specified). In other respects, it maps the same as an object symbol. (The
stereotype is explained in Section 5.49, “Link,” on page 241.)

5.71 Active object

An active object is one that owns a thread of control and may initiate control activity. A passive object is one that holds data,
but does not initiate control. However, a passive object may send Stimuli in the process of processing a request that it has
received. In a collaboration diagram, a ClassifierRole that is an active class represents the active objects that occur during
execution.

5.71.1 Semantics

An active object is an Instance that owns a thread of control. Processes and tasks are traditional kinds of active objects.

5.71.2 Notation

A role for an active object is shown as a rectangle with a heavy border. Frequently, active object roles are shown as composites
with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer «local»

client

1: aServer:=find(specs)

2: process(request)
© ISO/IEC 2005 - All rights reserved 277

ISO/IEC 19501:2005(E)
5.71.3 Example

Figure 103 - Composite Active Object

5.71.4 Mapping

An active object symbol maps as an object symbol does, with the addition that the class of the object has the active property
set.

5.72 Message and Stimulus

5.72.1 Semantics

In a collaboration diagram a Stimulus is a communication between two Instances that conveys information with the
expectation that action will ensue. A Stimulus will cause an Operation to be invoked, raise a Signal, or an Instance to be
created or destroyed.

A Message is a specification of Stimulus. That is it specifies the roles that the sender and the receiver Instances should
conform to, as well as the Action that will, when executed, dispatch a Stimulus that conforms to the Message.

job

:FactoryJobMgr

:FactoryScheduler

currentJob : TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

«local» job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed
278 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.72.2 Notation

Messages and Stimuli are shown as labeled arrows placed near an AssociationRole or a Link, respectively. The meaning is that
the Link is used for transportation of the Stimulus to the target Instance. The arrow points along the line in the direction of the
receiving Instance.

5.72.2.1 Control flow type

The following arrowhead variations may be used to show different kinds of communications.

Procedure call or other nested flow of control. The entire nested sequence is completed before the outer level sequence
resumes. The arrowhead may be used to denote ordinary procedure calls, but it may also be used to denote concurrently active
instances when one of them sends a Signal and waits for a nested sequence of behavior to complete before it continues.

Asynchronous communication; that is, no nesting of control. The sender dispatches the Stimulus and immediately continues
with the next step in the execution.

Return from a procedure call. The return arrow may be suppressed as it is implicit at the end of an activation.

other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however, these are treated as extensions to the UML
core.

A half stick arrowhead can be used to show asynchronous communication. This alternative is included for backwards
compatibility. UML 1.3 and previous versions, included both half stick arrowhead and stick arrowhead with a very small (and
not well understood) distinction.

5.72.2.2 Arrow label

In the following the term Message is used, but the text applies to Stimulus, as well.

The label has the following syntax:

predecessor sequence-expression return-value := message-name argument-list

The label indicates the Message being sent, its arguments and return values, and the sequencing of the Message within the
larger interaction, including call nesting, iteration, branching, concurrency, and synchronization.

5.72.2.3 Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a slash (‘/’):

sequence-number ‘,’ . . . ‘/’

filled solid arrowhead

stick arrowhead

dashed arrow with
stick arrowhead
© ISO/IEC 2005 - All rights reserved 279

ISO/IEC 19501:2005(E)
The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must match the sequence number of another
Message.

The meaning is that the Message is not enabled until all of the communications whose sequence numbers appear in the list
have occurred. Therefore, the list of predecessors represents a synchronization of threads.

Note that the Message corresponding to the numerically preceding sequence number is an implicit predecessor and need not be
explicitly listed. All of the sequence numbers with the same prefix form a sequence. The numerical predecessor is the one in
which the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

5.72.2.4 Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon (‘:’).

sequence-term ‘.’ . . . ‘:’

Each term represents a level of procedural nesting within the overall interaction. If all the control is concurrent, then nesting
does not occur. Each sequence-term has the following syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the Message within the next higher level of procedural calling. Messages that
differ in one integer term are sequentially related at that level of nesting. Example: Message 3.1.4 follows Message 3.1.3
within activation 3.1. The name represents a concurrent thread of control. Messages that differ in the final name are concurrent
at that level of nesting. Example: Message 3.1a and Message 3.1b are concurrent within activation 3.1. All threads of control
are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more Messages that are executed
depending on the conditions involved. The choices are:

‘*’ ‘[’ iteration-clause ‘]’an iteration

‘[’ condition-clause ‘]’a branch

An iteration represents a sequence of Messages at the given nesting depth. The iteration clause may be omitted (in which case
the iteration conditions are unspecified). The iteration-clause is meant to be expressed in pseudocode or an actual
programming language, UML does not prescribe its format. An example would be: *[i := 1..n].

A condition represents a Message whose execution is contingent on the truth of the condition clause. The condition-clause is
meant to be expressed in pseudocode or an actual programming language; UML does not prescribe its format. An example
would be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might think of it as an iteration restricted to a single
occurrence.

The iteration notation assumes that the Messages in the iteration will be executed sequentially. There is also the possibility of
executing them concurrently. The notation for this is to follow the star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels. Each level of structure specifies its own
iteration within the enclosing context.

5.72.2.5 Signature

A signature is a string that indicates the name, the arguments, and the return value of an Operation or a Reception. The
signature of a Message is derived from (is the same as) the signature of the Operation attached to the Message's dispatching
280 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Action, or the Reception for the Signal attached to the action. These have the following properties.

Return-value

This is a list of names that designates the values returned at the end of the communication within the subsequent execution of
the overall interaction. These identifiers can be used as arguments to subsequent Messages. If the Message does not return a
value, then the return value and the assignment operator are omitted.

Message-name

This is the name of the Operation to be applied on the receiver, or the Signal that is sent to the receiver.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in parentheses. The parentheses can be used even if
the list is empty. Each argument is either a reference to an Instance, or an expression in pseudocode or an appropriate
programming language (UML does not prescribe). The expressions may use return values of previous messages (in the same
scope) and navigation expressions starting from the source Instance; that is, Attributes of it and Links from it and paths
reachable from them.

5.72.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be shown near a message label. A token is a small
circle labeled with the argument expression or return value name. It has a small arrow on it that points along the Message (for
an argument) or opposite the Message (for a return value). Tokens represent arguments and return values. The choice of text
syntax or tokens is a presentation option.

The syntax of Messages may instead be expressed in the syntax of a programming language, such as C++ or Smalltalk. All of
the expressions on a single diagram should use the same syntax, however.

A return flow may be explicitly shown with a dashed arrow.

5.72.4 Example

See Figure 92 on page 267 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple Message

1.3.1: p:= find(specs) nested call with return value

4 [x < 0] : invert (x, color) conditional Message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

5.72.5 Mapping

An arrow symbol maps either onto a Message or a Stimulus. If the arrow is attached to a line corresponding to an
AssociationRole, it maps onto a Message, with the ClassifierRoles corresponding to the end-points of the line as the sender
and the receiver roles. If the line corresponds to a Link, the arrow maps onto a Stimulus, with the Instances corresponding to
the end-points of the line as the sender and the receiver Instances. The line is the communication connection or the
communication link of the Message or the Stimulus, respectively.
© ISO/IEC 2005 - All rights reserved 281

ISO/IEC 19501:2005(E)
The control flow type sets the corresponding properties:

• solid arrowhead: a synchronous operation invocation

• stick arrowhead: an asynchronous operation invocation

• dashed arrow with stick arrowhead: return from an synchronous operation invocation

The predecessor expression, together with the sequence expression, determines the predecessor and activation (caller)
relationships of a Message or a Stimulus. The predecessors of a Message (Stimulus) are those Messages (Stimuli)
corresponding to the sequence numbers in the predecessor list as well as the Message (Stimulus) corresponding to the
immediate preceding sequence number as the Message (Stimulus); that is, 1.2.2 is the one preceding 1.2.3. The caller is the
ClassifierRole (Instance) receiving the Message (Stimulus) whose sequence number is truncated by one position; that is, 1.2 is
the caller of 1.2.3. The thread-of-control name maps onto a Classifier stereotyped thread; that is, an active class.

The return of a value maps into a Message from the called Instance to the caller with the dispatching Action being a
ReturnAction. Its predecessor is the final Message within the procedure. Its activation is the Message that called the
procedure.

The recurrence expression, the iteration clause, and the condition clause determine the recurrence value in the Action attached
to the Message.

The operation name and the form of the signature determine the Operation attached to the CallAction associated with the
Message. Similarly for a Signal and SendAction. The arguments of the signature determine the arguments associated with the
CallAction and SendAction, respectively.

In a procedural interaction, each arrow symbol also maps into a second Message representing the return flow, unless the return
flow is explicitly shown. This Message has an activation Association to the original call Message. Its associated Action is a
ReturnAction bearing the return values as arguments (if any).

5.73 Creation/Destruction Markers

5.73.1 Semantics

During the execution of an interaction some Instances and Links are created and some are destroyed. The creation and
destruction of elements can be marked.

5.73.2 Notation

An Instance or a Link that is created during an interaction has the standard constraint new attached to it. An Instance or a Link
that is destroyed during an interaction has the standard constraint destroyed attached. These constraints may be used even if the
element has no name. Both constraints may be used together, but the standard constraint transient may be used in place of new
destroyed.

5.73.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For example, each kind of lifetime might be
shown in a different color. A tool may also use animation to show the creation and destruction of elements and the state of the
system at various times.

5.73.4 Example

See Figure 92 on page 267.
282 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.73.5 Mapping

Creation or destruction indicators map either into CreateActions, DestroyActions, or TerminateActions in the corresponding
ClassifierRoles. The former two Actions dispatch the Stimuli that cause the changes. These status indicators are merely
summaries of the total actions.

Part 9 - Statechart Diagrams

5.74 Statechart Diagram

A statechart diagram can be used to describe the behavior of instances of a model element such as an object or an interaction.
Specifically, it describes possible sequences of states and actions through which the element instances can proceed during its
lifetime as a result of reacting to discrete events (for example, signals, operation invocations).

The semantics and notation described in this chapter are substantially those of David Harel’s statecharts with modifications to
make them object-oriented. His work was a major advance on the traditional flat state machines. Statechart notation also
implements aspects of both Moore machines and Mealy machines, traditional state machine models.

5.74.1 Semantics

Statechart diagrams represent the behavior of entities capable of dynamic behavior by specifying its response to the receipt of
event instances. Typically, it is used for describing the behavior of class instances, but statecharts may also describe the
behavior of other entities such as use-cases, actors, subsystems, operations, or methods.

5.74.2 Notation

A statechart diagram is a graph that represents a state machine. States and various other types of vertices (pseudostates) in the
state machine graph are rendered by appropriate state and pseudostate symbols, while transitions are generally rendered by
directed arcs that inter-connect them. States may also contain subdiagrams by physical containment or tiling. Note that every
state machine has a top state that contains all the other elements of the entire state machine. The graphical rendering of this top
state is optional.

The association between a state machine and its context does not have a special notation.

An example statechart diagram for a simple telephone object is depicted in Figure 104.
© ISO/IEC 2005 - All rights reserved 283

ISO/IEC 19501:2005(E)
Figure 104 - State Diagram

5.74.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be owned by an instance of a model element capable
of dynamic behavior, such as classifier or a behavioral feature, which provides the context for that state machine. Different
contexts may apply different semantic constraints on the state machine.

5.75 State

5.75.1 Semantics

A state is a condition during the life of an object or an interaction during which it satisfies some condition, performs some
action, or waits for some event. A composite state is a state that, in contrast to a simple state, has a graphical decomposition.
(Composite states and their notation are described in more detail in Section 5.76, “Composite States,” on page 286.)
Conceptually, an object remains in a state for an interval of time. However, the semantics allow for modeling “flow-through”
states that are instantaneous, as well as transitions that are not instantaneous.

A state may be used to model an ongoing activity. Such an activity is specified either by a nested state machine or by a
computational expression.

5.75.2 Notation

A state is shown as a rectangle with rounded corners (Figure 105 on page 286). Optionally, it may have an attached name tab.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)
284 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The name tab is a rectangle, usually resting on the outside of the top side of a state and it contains the name of that state. It is
normally used to keep the name of a composite state that has concurrent regions, but may be used in other cases as well (the
Process state in Figure 110 on page 292 illustrates the use of the name tab).

A state may be optionally subdivided into multiple compartments separated from each other by a horizontal line. They are as
follows:

• Name compartment - This compartment holds the (optional) name of the state as a string. States without names are
anonymous and are all distinct. It is undesirable to show the same named state twice in the same diagram, as confusion
may ensue. Name compartments should not be used if a name tab is used and vice versa.

• Internal transitions compartment - This compartment holds a list of internal actions or activities that are performed
while the element is in the state.

The action label identifies the circumstances under which the action specified by the action expression will be invoked. The
action expression may use any attributes and links that are in the scope of the owning entity. For list items where the action
expression is empty, the backslash separator is optional.

A number of action labels are reserved for various special purposes and, therefore, cannot be used as event names. The
following are the reserved action labels and their meaning:

• entry - This label identifies an action, specified by the corresponding action expression, which is performed upon entry
to the state (entry action).

• exit - This label identifies an action, specified by the corresponding action expression, that is performed upon exit from
the state (exit action).

• do - This label identifies an ongoing activity (“do activity”) that is performed as long as the modeled element is in the
state or until the computation specified by the action expression is completed (the latter may result in a completion
event being generated).

• include - This label is used to identify a submachine invocation. The action expression contains the name of the
submachine that is to be invoked. Submachine states and the corresponding notation are described in Section 5.82,
“Submachine States,” on page 296.

In all other cases, the action label identifies the event that triggers the corresponding action expression. These events are called
internal transitions and are semantically equivalent to self transitions except that the state is not exited or re-entered. This
means that the corresponding exit and entry actions are not performed. The general format for the list item of an internal
transition is:

event-name ‘(’ comma-separated-parameter-list ‘)’ ‘[’ guard-condition‘]’ ‘/’ action-expression

Each event name may appear more than once per state if the guard conditions are different. The event parameters and the
guard conditions are optional. If the event has parameters, they can be used in the action expression through the current event
variable.
© ISO/IEC 2005 - All rights reserved 285

ISO/IEC 19501:2005(E)
5.75.2.1 Example

Figure 105 - State

5.75.3 Mapping

A state symbol maps into a State. See Section 5.76, “Composite States,” on page 286 for further details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the same name map into the same state.
However, each state symbol with no name (or an empty name string) maps into a distinct anonymous State.

A list item in the internal transition compartment maps into a corresponding Action associated with a state. An “entry” list
item; that is, an item with the “entry” label maps to the “entry” role, an “exit” list item maps to the “exit” role, and a “do” item
maps to the “doActivity” role. (The mapping of “include” items is discussed in Section 5.82, “Submachine States,” on
page 296.)

A list item with an event name maps to a Transition associated with the “internal” role relative to the state. The action
expression maps into the ActionSequence and Guard for the Transition. The event name and arguments map into an Event
corresponding to the event name and arguments. The Event plays the role of a trigger to the Transition.

5.76 Composite States

5.76.1 Semantics

A composite state is decomposed into two or more concurrent substates (called regions) or into mutually exclusive disjoint
substates. A given state may only be refined in one of these two ways. Naturally, any substate of a composite state can also be
a composite state of either type.

A newly-created object takes its topmost default transition, originating from the topmost initial pseudostate. An object that
transitions to its outermost final state is terminated.

Each region of a state may have initial pseudostates and final states. A transition to the enclosing state represents a transition to
the initial pseudostate. A transition to a final state represents the completion of activity in the enclosing region. Completion of
activity in all concurrent regions represents completion of activity by the enclosing state and triggers a completion event on the
enclosing state. Completion of the top state of an object corresponds to its termination.

5.76.2 Notation

An expansion of a state shows its internal state machine structure. In addition to the (optional) name and internal transition
compartments, the state may have an additional compartment that contains a region holding a nested diagram. For
convenience and appearance, the text compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region of the state using dashed lines to divide
it into regions. Each region is a concurrent substate. Each region may have an optional name and must contain a nested state

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character
286 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
diagram with disjoint states. The text compartments of the entire state are separated from the concurrent substates by a solid
line. It is also possible to use a tab notation to place the name of a concurrent state. The tab notation is more space efficient.

An expansion of a state into disjoint substates is shown by showing a nested state diagram within the graphic region.

An initial pseudostate is shown as a small solid filled circle. In a top-level state machine, the transition from an initial
pseudostate may be labeled with the event that creates the object; otherwise, it must be unlabeled. If it is unlabeled, it
represents any transition to the enclosing state. The initial transition may have an action.

A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It represents the completion of activity in
the enclosing state and it triggers a transition on the enclosing state labeled by the implicit activity completion event (usually
displayed as an unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For example, the state machine inside a
composite state may be very large and may simply not fit in the graphical space available for the diagram. In that case, the
composite state may be represented by a simple state graphic with a special “composite” icon, usually in the lower right-hand
corner. This icon, consisting of two horizontally placed and connected states, is an optional visual cue that the state has a
decomposition that is not shown in this particular statechart diagram (Figure 107). Instead, the contents of the composite state
are shown in a separate diagram. Note that the “hiding” here is purely a matter of graphical convenience and has no semantic
significance in terms of access restrictions.

5.76.3 Examples

Figure 106 - Sequential Substates

Figure 107 - Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone
© ISO/IEC 2005 - All rights reserved 287

ISO/IEC 19501:2005(E)
Figure 108 - Concurrent Substates

5.76.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into a SimpleState. If it is tiled by dashed
lines into regions, then it maps into a CompositeState with the isConcurrent value true; otherwise, it maps into a
CompositeState with the isConcurrent value false. A region maps into a CompositeState with the isRegion value true and the
isConcurrent value false.

An initial pseudostate symbol maps into a Pseudostate of kind initial. A final state symbol maps to a final state.

5.77 Events

5.77.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an occurrence that may trigger a state
transition. Events may be of several kinds (not necessarily mutually exclusive).

• A designated condition becoming true (described by a Boolean expression) results in a change event instance. The
event occurs whenever the value of the expression changes from false to true. Note that this is different from a guard
condition. A guard condition is evaluated once whenever its event fires. If it is false, then the transition does not occur
and the event is lost.

• The receipt of an explicit signal from one object to another results in a signal event instance. It is denoted by the
signature of the event as a trigger on a transition.

• The receipt of a call for an operation implemented as a transition by an object represents a call event instance.

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
288 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
• The passage of a designated period of time after a designated event (often the entry of the current state) or the
occurrence of a given date/time is a TimeEvent.

The event declaration has scope within the package it appears in and may be used in state diagrams for classes that have
visibility inside the package. An event is not local to a single class.

5.77.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class diagram. The parameters are specified as
attributes. A signal can be specified as a subclass of another signal. This indicates that an occurrence of the subevent triggers
any transition that depends on the event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an expression that evaluates (at modeling time) to
an amount of time, such as “after (5 seconds)” or after (10 seconds since exit from state A).” If no starting point is indicated,
then it is the time since the entry to the current state. Other time events can be specified as conditions, such as when (date =
Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a Boolean expression. This may be regarded as a
continuous test for the condition until it is true, although in practice it would only be checked on a change of values.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle symbol. These define signal names that
may be used to trigger transitions. Their parameters are shown in the attribute compartment. They have no operations. They
may appear in a generalization hierarchy.
© ISO/IEC 2005 - All rights reserved 289

ISO/IEC 19501:2005(E)
5.77.3 Example

Figure 109 - Signal Declaration

5.77.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are given by the name string and the
attribute list of the box. Generalization arrows between signal class boxes map into Generalization relationships between the
Signal.

The usage of an event string expression in a context requiring an event maps into an implicit reference of the Event with the
given name. It is an error if various uses of the same name (including any explicit declarations) do not match.

5.78 Simple Transitions

5.78.1 Semantics

A simple transition is a relationship between two states indicating that an instance in the first state will enter the second state
and perform specific actions when a specified event occurs provided that certain specified conditions are satisfied. On such a
change of state, the transition is said to “fire.” The trigger for a transition is the occurrence of the event labeling the transition.
The event may have parameters, which are accessible by the actions specified on the transition as well as in the corresponding

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character
290 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
exit and entry actions associated with the source and target states respectively. Events are processed one at a time. If an event
does not trigger any transition, it is discarded. If it can trigger more than one transition within the same sequential region; that
is, not in different concurrent regions, only one will fire. If these conflicting transitions are of the same priority, an arbitrary
one is selected and triggered.

5.78.2 Notation

A transition is shown as a solid line originating from the source state and terminated by an arrow on the target state. It may be
labeled by a transition string that has the following general format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression

The event-signature describes an event with its arguments:

event-name ‘(’ comma-separated-parameter-list ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the triggering event and attributes and links of
the object that owns the state machine. The guard condition may also involve tests of concurrent states of the current machine,
or explicitly designated states of some reachable object (for example, “in State1” or “not in State2”). State names may be fully
qualified by the nested states that contain them, yielding pathnames of the form “State1::State2::State3.” This may be used in
case same state name occurs in different composite state regions of the overall machine.

The action-expression is executed if and when the transition fires. It may be written in terms of operations, attributes, and links
of the owning object and the parameters of the triggering event, or any other features visible in its scope. The corresponding
action must be executed entirely before any other actions are considered. This model of execution is referred to as run-to-
completion semantics. The action expression may be an action sequence comprising a number of distinct actions including
actions that explicitly generate events, such as sending signals or invoking operations. The details of this expression are
dependent on the action language chosen for the model.

5.78.2.1 Transition times

Names may be placed on transitions to designate the times at which they fire. See Section 5.64, “Transition Times,” on
page 265.

5.78.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location);
object.highlight ()

The event may be any of the standard event types. Selecting the type depends on the syntax of the name (for time events, for
example); however, SignalEvents and CallEvents are not distinguishable by syntax and must be discriminated by their
declaration elsewhere.

5.78.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition and its attachments. The arrow connects
two state symbols. The Transition has the corresponding States as its source (the state at the tail) and destination (the state at
the head) States in associations to the Transition.

The event name and parameters map into an Event element, which may be a SignalEvent, a CallEvent, a TimeExpression (if it
has the proper syntax), or a ChangeEvent (if it is expressed as a Boolean expression). The event is attached as a “trigger” role
in the association to the transition.

The guard condition maps into a Guard element attached to the Transition. Note that a guard condition is distinguished
© ISO/IEC 2005 - All rights reserved 291

ISO/IEC 19501:2005(E)
graphically from a change event specification by being enclosed in brackets. An action expression maps into an Action
attached as an “effect” role relative to the Transition.

5.79 Transitions to and from Concurrent States

A concurrent transition may have multiple source states and target states. It represents a synchronization and/or a splitting of
control into concurrent threads without concurrent substates.

5.79.1 Semantics

A concurrent transition is enabled when all the source states are occupied. After a compound transition fires, all its destination
states are occupied.

5.79.2 Notation

A concurrent transition includes a short heavy bar (a synchronization bar, which can represent synchronization, forking, or
both). The bar may have one or more arrows from states to the bar (these are the source states). The bar may have one or more
arrows from the bar to states (these are the destination states). A transition string may be shown near the bar. Individual arrows
do not have their own transition strings.

5.79.3 Example

Figure 110 - Concurrent Transitions

5.79.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork pseudostate. A bar with multiple transition arrows entering it
maps into a join pseudostate. The transitions corresponding to the incoming and outgoing arrows attach to the pseudostate as if
it were a regular state. If a bar has multiple incoming and multiple outgoing arrows, then it maps into a join connected to a fork
pseudostate by a single transition with no attachments.

5.80 Transitions to and from Composite States

5.80.1 Semantics

A transition drawn to the boundary of a composite state is equivalent to a transition to its initial point (or to a complex
transition to the initial point of each of its concurrent regions, if it is concurrent). The entry action is always performed when a
state is entered from outside.

Process

Setup Cleanup

A1 A2

B2B1
292 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A transition from a composite state indicates a transition that applies to each of the states within the state region (at any depth).
It is “inherited” by the nested states. Inherited transitions can be masked by the presence of nested transitions with the same
trigger.

5.80.2 Notation

A transition drawn to a composite state boundary indicates a transition to the composite state. This is equivalent to a transition
to the initial pseudostate within the composite state region. The initial pseudostate must be present. If the state is a concurrent
composite state, then the transition indicates a transition to the initial pseudostate of each of its concurrent substates.

Transitions may be drawn directly to states within a composite state region at any nesting depth. All entry actions are
performed for any states that are entered on any transition. On a transition within a concurrent composite state, transition
arrows from the synchronization bar may be drawn to one or more concurrent states. Any other concurrent regions start with
their default initial pseudostate.

A transition drawn from a composite state boundary indicates a transition of the composite state. If such a transition fires, any
nested states are forcibly terminated and perform their exit actions, then the transition actions occur and the new state is
established.

Transitions may be drawn directly from states within a composite state region at any nesting depth to outside states. All exit
actions are performed for any states that are exited on any transition. On a transition from within a concurrent composite state,
transition arrows may be specified from one or more concurrent states to a synchronization bar; therefore, specific states in the
other regions are irrelevant to triggering the transition.

A state region may contain a history state indicator shown as a small circle containing an ‘H.’ The history indicator applies to
the state region that directly contains it. A history indicator may have any number of incoming transitions from outside states.
It may have at most one outgoing unlabeled transition. This identifies the default “previous state” if the region has never been
entered. If a transition to the history indicator fires, it indicates that the object resumes the state it last had within the composite
region. Any necessary entry actions are performed. The history indicator may also be ‘H*’ for deep history. This indicates that
the object resumes the state it last had at any depth within the composite region, rather than being restricted to the state at the
same level as the history indicator. A region may have both shallow and deep history indicators.

5.80.3 Presentation Options

5.80.3.1 Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the most specific visible enclosing state of the
suppressed state. Subsumed transitions that do not come from an unlabeled final state or go to an unlabeled initial pseudostate
may (but need not) be shown as coming from or going to stubs. A stub is shown as a small vertical line (bar) drawn inside the
boundary of the enclosing state. It indicates a transition connected to a suppressed internal state. Stubs are not used for
transitions to initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state boundary or to an internal substate,
including a transition to a stubbed state. Normally events should not be shown on transitions leading from a stubbed state to an
external state. Think of a transition as belonging to its source state. If the source state is suppressed, then so are the details of
the transition. Note also that a transition from a final state is summarized by an unlabeled transition from the composite state
contour (denoting the implicit event “action complete” for the corresponding state).

5.80.4 Example

See Figure 109 on page 290 and Figure 110 on page 292 for examples of composite transitions. The following are examples of
stubbed transitions and the history indicator.
© ISO/IEC 2005 - All rights reserved 293

ISO/IEC 19501:2005(E)
Figure 111 - Stubbed Transitions

Figure 112 - History Indicator

5.80.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the corresponding States and similarly for
transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume
294 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A stubbed transition does not map into anything in the model. It is a notational elision that indicates the presence of transitions
to additional states in the model that are not visible in the diagram.

5.81 Factored Transition Paths

5.81.1 Semantics

By definition, a transition connects exactly two vertices in the state machine graph. However, since some of these vertices may
be pseudostates—which are transient in nature—there is a need for describing chains of transitions that may be executed in the
context of a single run-to-completion step. Such a transition is known as a compound transition.

As a practical measure, it is often useful to share segments of a compound transition. For example, two or more distinct
compound transitions may come together and continue via a common path, sharing its action, and possibly terminating on the
same target state. In other cases, it may be useful to split a transition into separate mutually exclusive; that is, non-concurrent
paths.

Both of these examples of graphical factoring in which some transitions are shared result in simplified diagrams. However,
factoring is also useful for modeling dynamically adaptive behavior. An example of this occurs when a single event may lead
to any of a set of possible target states, but where the final target state is only determined as the result of an action (calculation)
performed after the triggering of the compound transition.

Note that the splitting and joining of paths due to factoring is different from the splitting and joining of concurrent transitions
described in Section 5.79, “Transitions to and from Concurrent States,” on page 292. The sources and targets of these factored
transitions are not concurrent.

5.81.2 Notation

Two or more transitions emanating from different non-concurrent states or pseudostates can terminate on a common junction
point. This allows their respective compound transitions to share the path that emanates from that junction point. A junction
point is represented by a small black circle. Alternatively, it may be represented by a diamond shape (see Section 5.87,
“Decisions,” on page 302).

Two or more guarded transitions emanating from the same junction point represent a static branch point. Normally, the guards
are mutually exclusive. This is equivalent to a set of individual transitions, one for each path through the tree, whose guard
condition is the “and” of all of the conditions along the path. Note that the semantics of static branches is that all the outgoing
guards are evaluated before any transition is taken.

Two or more guarded transitions emanating from a common dynamic choice point are used to model dynamic choices. In this
case, the guards of the outgoing transitions are evaluated at the time the choice point has been reached. The value of these
guards may be a function of some calculations performed in the actions of the incoming transition (s). A dynamic choice point
is represented by a small white circle (reminiscent of a small state icon).

5.81.3 Examples

In Figure 113 a single junction point is used to merge and split transitions. Regardless of whether the junction point was
reached from state State0 or from state State1, the outgoing paths are the same for both cases.

If the state machine in this example is in state State1 and b is less than 0 when event e1 occurs, the outgoing transition will be
taken only if one of the three downstream guards is true. Thus, if a is equal to 6 at that point, no transition will be triggered.
© ISO/IEC 2005 - All rights reserved 295

ISO/IEC 19501:2005(E)
Figure 113 - Junction points

In the dynamic choice point example in Figure 114, the decision on which branch to take is only made after the transition from
State1 is taken and the choice point is reached. Note that the action associated with that incoming transition computes a new
value for a. This new value can then be used to determine the outgoing transition to be taken. The use of the predefined
condition[else] is recommended to avoid run-time errors.

Figure 114 - Dynamic choice points

5.82 Submachine States

5.82.1 Semantics

A submachine state represents the invocation of a state machine defined elsewhere. It is similar to a macro call in the sense that
it represents a (graphical) shorthand that implies embedding of a complex specification within another specification. The
submachine must be contained in the same context as the invoking state machine.

In the general case, an invoked state machine can be entered at any of its substates or through its default (initial) pseudostate.
Similarly, it can be exited from any substate or as a result of the invoked state machine reaching its final state or by an

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]

[a < 0]

State1

State2 State3 State4

e1[b < 0]/a := f(m)

[a = 5]

[else]
296 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
“inherited” or “group” transition that applies to all substates in the submachine. The non-default entry and exits are specified
through special stub states.

5.82.2 Notation

The submachine state is depicted as a normal state with the appropriate “include” declaration within its internal transitions
compartment (see Section 5.75, “State,” on page 284). The expression following the include reserved word is the name of the
invoked submachine.

Optionally, the submachine state may contain one or more entry stub states and one or more exit stub states. The notation for
these is similar to that used for stub ends of stubbed transitions, except that the ends are labeled. The labels represent the
names of the corresponding substates within the invoked submachine. A pathname may be used if the substate is not defined at
the top level of the invoked submachine. Naturally, this name must be a valid name of a state in the invoked state machine.

If the submachine is entered through its default pseudostate or if it is exited as a result of the completion of the submachine, it
is not necessary to use the stub state notation for these cases. Similarly, a stub state is not required if the exit occurs through an
explicit “group” transition that emanates from the boundary of the submachine state (implying that it applies to all the
substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the same state diagram with different entry and
exit configurations and with different internal transitions and exit and entry action specifications in each case.

5.82.3 Example

The following diagram shows a fragment from a statechart diagram in which a submachine (the FailureSubmachine) is
invoked in a particular way. The actual submachine is presumably defined elsewhere and is not shown in this diagram. Note
that the same submachine could be invoked elsewhere in the same statechart diagram with different entry and exit
configurations.

Figure 115 - Submachine State

In the above example, the transition triggered by event “error1” will terminate on state “sub1” of the FailureSubmachine state
machine. Since the entry point does not contain a path name, this means that “sub1” is defined at the top level of that
submachine. In contrast, the transition triggered by “error2” will terminate on the “sub12” substate of the “sub1”substate (as
indicated by the path name), while the “error3” transition implies taking of the default transition of the FailureSubmachine.

The transition triggered by the event “fixed1” emanates from the “subEnd” substate of the submachine. Finally, the transition

Handle Failure

include / FailureSubmachine

sub1 sub1::sub12

subEnd

error2/error1/

error3/

fixed1/
© ISO/IEC 2005 - All rights reserved 297

ISO/IEC 19501:2005(E)
emanating from the edge of the submachine state is taken as a result of the completion event generated when the
FailureSubmachine reaches its final state.

5.82.4 Mapping

A submachine state in a statechart diagram maps directly to a SubmachineState in the metamodel. The name following the
“include” reserved action label represents the state machine indicated by the “submachine” attribute. Stub states map to the
Stub State concept in the metamodel. The label on the diagram corresponds to the pathname represented by the
“referenceState” attribute of the stub state.

5.83 Synch States

5.83.1 Semantics

A synch state is for synchronizing concurrent regions of a state machine. It is used in conjunction with forks and joins to insure
that one region leaves a particular state or states before another region can enter a particular state or states. The firing of
outgoing transitions from a synch state can be limited by specifying a bound on the difference between the number of times
outgoing and incoming transitions have fired.

5.83.2 Notation

A synch state is shown as a small circle with the upper bound inside it. The bound is either a positive integer or an asterisk ('*')
for unlimited. Synch states are drawn on the boundary between two regions when possible.

5.83.3 Example

Figure 116 - Synch states

5.83.4 Mapping

A synch state circle maps into a SynchState, contained by the least common containing state of the regions it is synchronizing.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity
Outside

Install
Walls

**
298 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The number inside it maps onto the bound attribute of the synch state. A star ('*') inside the synch state circle maps to a value
of Unlimited for the bound attribute.

Part 10 - Activity Diagrams

5.84 Activity Diagram

5.84.1 Semantics

An activity graph is a variation of a state machine in which the states represent the performance of actions or subactivities and
the transitions are triggered by the completion of the actions or subactivities. It represents a state machine of a procedure itself.

5.84.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of the states are action or subactivity
states and in which all (or at least most) of the transitions are triggered by completion of the actions or subactivities in the
source states. The entire activity diagram is attached (through the model) to a classifier, such as a use case, or to a package, or
to the implementation of an operation. The purpose of this diagram is to focus on flows driven by internal processing (as
opposed to external events). Use activity diagrams in situations where all or most of the events represent the completion of
internally-generated actions (that is, procedural flow of control). Use ordinary state diagrams in situations where asynchronous
events occur.
© ISO/IEC 2005 - All rights reserved 299

ISO/IEC 19501:2005(E)
5.84.3 Example

Figure 117 - Activity Diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

/coffeePot.turnOn

light goes out
300 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.84.4 Mapping

An activity diagram maps into an ActivityGraph.

5.85 Action State

5.85.1 Semantics

An action state is a shorthand for a state with an entry action and at least one outgoing transition involving the implicit event
of completing the entry action (there may be several such transitions if they have guard conditions). Action states should not
have internal transitions, outgoing transitions based on explicit events, or exit actions, use normal states for this situation.
Transitions leaving an action state should not include an event signature. Such transitions are implicitly triggered by the
completion of the action in the state. The transitions may include guard conditions and actions. The normal use of an action
state is to model a step in the execution of an algorithm (a procedure) or a workflow process.

5.85.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs on the two sides. The action-expression
is placed in the symbol. The action expression need not be unique within the diagram.

5.85.3 Presentation options

The action may be described by natural language, pseudocode, or programming language code. It may use only attributes and
links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however, they are more commonly used with
activity diagrams, which are special cases of state diagrams.

5.85.4 Example

Figure 118 - Action States

5.85.5 Mapping

An action state symbol maps into an ActionState with the action-expression mapped to the entry action of the State. The State
is normally anonymous.

5.86 Subactivity state

5.86.1 Semantics

A subactivity state invokes an activity graph. When a subactivity state is entered, the activity graph “nested” in it is executed
as any activity graph would be. The subactivity state is not exited until the final state of the nested graph is reached, or when
trigger events occur on transitions coming out of the subactivity state. Since states in activity graphs do not normally have
trigger events, subactivity states are normally exited when their nested graph is finished. A single activity graph may be
invoked by many subactivity states.

matrix.invert (tolerance:Real) drive to work
© ISO/IEC 2005 - All rights reserved 301

ISO/IEC 19501:2005(E)
5.86.2 Notation

A subactivity state is shown in the same way as an action state with the addition of an icon in the lower right corner depicting
a nested activity diagram. The name of the subactivity is placed in the symbol. The subactivity need not be unique within the
diagram.

This notation is applicable to any UML construct that supports “nested” structure. The icon must suggest the type of nested
structure.

5.86.3 Example

Figure 119 - Subactivity States

5.86.4 Mapping

A subactivity state symbol maps into a SubactivityState. The name of the subactivity maps to a submachine link between the
SubactivityState and an ActivityGraph of that name. The SubactivityState is normally anonymous.

5.87 Decisions

5.87.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard conditions are used to indicate
different possible transitions that depend on Boolean conditions of the owning object. UML provides a shorthand for showing
decisions and merging their separate paths back together. Each possible outcome should appear on one of the outgoing
transitions. A predefined guard denoted “else” may be defined for at most one outgoing transition. This transition is enabled if
all the guards labeling the other transitions are false.

5.87.2 Notation

A decision may be shown by labeling multiple output transitions of an action with different guard conditions.

The icon provided for a decision is the traditional diamond shape, with one incoming arrow and with two or more outgoing
arrows, each labeled by a distinct guard condition with no event trigger.

The same icon can be used to merge decision branches back together, in which case it is called a merge. A merge has two or
more incoming arrows and one outgoing arrow.

Note that a chain of decisions may be part of a complex transition, but only the first segment in such a chain may contain an
event trigger label. All segments may have guard expressions. The transition coming from a merge may not have a trigger
label or guard expressions.

Build Product Fill Order
302 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.87.3 Example

Figure 120 - Decision and merge

5.87.4 Mapping

A decision symbol maps into a Pseudostate of kind junction. Each label on an outgoing arrow maps into a Guard on the
corresponding Transition leaving the Pseudostate. A merge symbol also maps into a Pseudostate of kind junction.

5.88 Call States

5.88.1 Semantics

A call state is an action state that has exactly one call action as its entry action. It is useful in object flow modeling to reduce
notational ambiguity over which action is taking input or providing output.

5.88.2 Notation

A call state is shown in the same way as an action state, except that the name of the operation of the call action is put in the
symbol, along with the name of the classifier that hosts the operation in parentheses under it.

5.88.3 Example

Figure 121 - Call states and the operations they invoke

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]

Invert

(Matrix)

Drive

(Person)

Matrix

Invert()

Person

Drive(to : Place)
© ISO/IEC 2005 - All rights reserved 303

ISO/IEC 19501:2005(E)
5.88.4 Mapping

The top name maps into the operation of the call action contained in the entry action of the call state. The name in parentheses
maps into the classifier hosting the operation.

5.89 Swimlanes

5.89.1 Semantics

Actions and subactivities may be organized into swimlanes. Swimlanes are used to organize responsibility for actions and
subactivities. They often correspond to organizational units in a business model.

5.89.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from neighboring swimlanes by vertical solid
lines on both sides. The relative ordering of the swimlanes has no semantic significance. Each action is assigned to one
swimlane. Transitions may cross lanes. There is no significance to the routing of a transition path.
304 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.89.3 Example

Figure 122 - Swimlanes in Activity Diagram

5.89.4 Mapping

A swimlane maps into a Partition of the States in the ActivityGraph. A state symbol in a swimlane causes the corresponding
State to belong to the corresponding Partition.

5.90 Action-Object Flow Relationships

5.90.1 Semantics

Actions operate by and on objects. These objects either have primary responsibility for initiating an action, or are used or

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order
© ISO/IEC 2005 - All rights reserved 305

ISO/IEC 19501:2005(E)
determined by the action. Actions usually specify calls sent between the object owning the activity graph, which initiates
actions, and the objects that are the targets of the actions.

5.90.2 Notation

5.90.2.1 Object responsible for an action

In sequence diagrams, the object responsible for performing an action is shown by drawing a lifeline and placing actions on
lifelines (see Section 5.60, “Sequence Diagram,” on page 255). Activity diagrams do not show the lifeline, but each action
specifies which object performs its operation. These objects may also be related to the swimlane in some way. The actions
within a swimlane can all be handled by the same object or by multiple objects.

5.90.2.2 Object flow

Objects that are input to or output from an action may be shown as object symbols. A dashed arrow is drawn from an action
state to an output object, and a dashed arrow is drawn from an input object to an action state. The same object may be (and
usually is) the output of one action and the input of one or more subsequent actions.

The control flow (solid) arrows must be omitted when the object flow (dashed) arrows supply a redundant constraint. In other
words, when a state produces an output that is input to a subsequent state, that object flow relationship implies a control
constraint.

5.90.2.3 Object in state

Frequently the same object is manipulated by a number of successive actions or subactivities. It is possible to show one object
with arrows to and from all of the relevant actions and subactivities, but for greater clarity, the object may be displayed
multiple times on a diagram. Each appearance denotes a different point during the object’s life. To distinguish the various
appearances of the same object, the state of the object at each point may be placed in brackets and appended to the name of the
object (for example, PurchaseOrder[approved]). This notation may also be used in collaboration and sequence diagrams.
306 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.90.3 Example

Figure 123 - Actions and Object Flow

5.90.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing Transitions correspond to the incoming
and outgoing arrows. The Transitions have no attachments. The classifier name and (optional) state name of the object flow
symbol map into a Class or a ClassifierInState corresponding to the name(s). Solid and dashed arrows both map to transitions.

5.91 Control Icons

The following icons provide explicit symbols for certain kinds of information that can be specified on transitions. These icons
are not necessary for constructing activity diagrams, but many users prefer the added impact that they provide.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]
© ISO/IEC 2005 - All rights reserved 307

ISO/IEC 19501:2005(E)
5.91.1 Notation

5.91.1.1 Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle with a triangular notch in its side (either
side). The signature of the signal is shown inside the symbol. An unlabeled transition arrow is drawn from the previous action
state to the pentagon and another unlabeled transition arrow is drawn from the pentagon to the next action state. A dashed
arrow may be drawn from an object symbol to the notch on the pentagon to show the sender of the signal; this is optional.

5.91.1.2 Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle with a triangular point on one side
(either side). The signature of the signal is shown inside the symbol. An unlabeled transition arrow is drawn from the previous
action state to the pentagon and another unlabeled transition arrow is drawn from the pentagon to the next action state. A
dashed arrow may be drawn from the point on the pentagon to an object symbol to show the receiver of the signal, this is
optional.

Figure 124 - Symbols for Signal Receipt and Sending

5.91.1.3 Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while some other action or subactivity is
underway. (Normally an event that is not handled immediately is lost.) This may be thought of as having an internal transition
that handles the event and places it on an internal queue until it is needed or until it is discarded. Each state specifies a set of
events that are deferred if they occur during the state and are not used to trigger a transition. If an event is not included in the
set of deferrable events for a state, and it does not trigger a transition, then it is discarded from the queue even if it has already
occurred. If a transition depends on an event, the transition fires immediately if the event is already on the internal queue. If
several transitions are possible, the leading event in the queue takes precedence.

A deferrable event is shown by listing it within the state followed by a slash and the special operation defer. If the event
occurs, it is saved and it recurs when the object transitions to another state, where it may be deferred again. When the object
reaches a state in which the event is not deferred, it must be accepted or lost. The indication may be placed on a composite
state or its equivalents, submachine and subactivity states, in which case it remains deferrable throughout the composite state.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot
308 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A contained transition may still be triggered by a deferrable event, whereupon it is removed from the queue.

It is not necessary to defer events on action states, because these states are not interruptible for event processing. In this case,
both deferred and undeferred events that occur during the state are deferred until the state is completed. This means that the
timing of the transition will be the same regardless of the relative order of the event and the state completion, and regardless of
whether events are deferred.

Figure 125 - Deferred Event

5.91.2 Mapping

A signal receipt symbol maps into a state with no actions or internal transitions. Its specified event maps to a trigger event on
the outgoing transition between it and the following state.

A signal send symbol maps into a SendAction on the incoming transition between it and the previous state.

A deferred event attached to a state maps into a deferrableEvent association from the State to the Event.

5.92 Synch States

The SynchState notation may be omitted in Activity Diagrams when a SynchState has one incoming and one outgoing
transition, and an unlimited bound. The semantics and mapping are the same as if the synch state circles were included, as
defined for state machine notation.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer
© ISO/IEC 2005 - All rights reserved 309

ISO/IEC 19501:2005(E)
Figure 126 - Synchronizing parallel activities

5.93 Dynamic Invocation

5.93.1 Semantics

The actions of an action state or the activity graph of a subactivity state may be executed more than once concurrently. The
number of concurrent invocations is determined at runtime by a concurrency expression, which evaluates to a set of argument
lists, one argument list for each invocation.

5.93.2 Notation

If the dynamic concurrency of an action or subactivity state is not always exactly one, its multiplicity is shown in the upper
right corner of the state; otherwise, nothing is shown.

5.93.3 Mapping

A multiplicity string in the upper right corner of an action or subactivity state maps to the same value in the
dynamicMultiplicity attribute of the state. The presence of a multiplicity string also maps to a value of true for the isDynamic
attribute of the state. If no multiplicity is present, the value of the isDynamic attribute is false.

5.94 Conditional Forks

In Activity Diagrams, transitions outgoing from forks may have guards. This means the region initiated by a fork transition
might not start, and therefore is not required to complete at the corresponding join. The usual notation and mapping for guards
may be used on the transition outgoing from a fork.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity

Outside

Install
Walls
310 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Part 11 - Implementation Diagrams

5.95 Component Diagram

Implementation diagrams show aspects of physical implementation, including the structure of components and the run-time
deployment system. They come in two forms: 1) component diagrams show the structure of components, including the
classifiers that specify them and the artifacts that implement them; and 2) deployment diagrams show the structure of the
nodes on which the components are deployed. These diagrams can also be applied in a broader way to business modeling
where the components represent business procedures and artifacts, and the deployment nodes represent the organization units
and resources (human and otherwise) of the business.

5.95.1 Semantics

A component diagram shows the dependencies among software components, including the classifiers that specify them (for
example, implementation classes) and the artifacts that implement them; such as, source code files, binary code files,
executable files, scripts.

A component diagram has only a type form, not an instance form. To show component instances, use a deployment diagram
(possibly a degenerate one without nodes).

5.95.2 Notation

A component diagram is a graph of components connected by dependency relationships. Components may also be connected
to components by physical containment representing composition relationships.

Classifiers that specify components can be connected to them by physical containment or by a «reside» relationship, which is
an instance of the metaassociation between Component and ModelElement. Likewise, artifacts that specify components can be
connected to them by physical containment or by an «implement» relationship, which is an instance of the metaassociation
between Component and Artifact.

A diagram containing component types may be used to show static dependencies, such as compiler dependencies between
programs, which are shown as dashed arrows (dependencies) from a client component to a supplier component that it depends
on in some way. The kinds of dependencies are implementation-specific and may be shown as stereotypes of the dependencies.

Although a component does not have its own features (for example, attributes, operations), it acts as a container for other
classifiers that are defined with features. Components typically expose a set of interfaces, which represent the services
provided by the elements that reside on the component. The diagram may show these interfaces and calling dependencies
among components, using dashed arrows from components to interfaces on other components.
© ISO/IEC 2005 - All rights reserved 311

ISO/IEC 19501:2005(E)
5.95.3 Example

Figure 127 - Component Diagram

<<EJBEntity>>
Catalog

CatalogHome

Catalog

CatalogPK

<<EJBSession>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

CatalogInfo

<<file>>
CatalogJAR

<<focus>>
Catalog

<<auxiliary>>
CatalogPK

<<auxiliary>>
CatalogInfo

CatalogHome

Catalog

<<EJBEntity>>
ShoppingCart

ShoppingCartHome

ShoppingCart
312 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 128 - Component Diagram Showing Relationships with Classifiers and Artifacts

5.95.4 Mapping

A component diagram maps to a static model whose elements include Components. The physical containment of a Classifier
by a Component represents a «reside» relationship, which is an instance of the metaassociation between Component and
ModelElement. The physical containment of an Artifact by a Component represents an «implement» relationship, which is an
instance of the metaassociation between Component and Artifact.

5.96 Deployment Diagram

5.96.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the software components, processes, and
objects that execute on them. Software component instances represent run-time manifestations of software code units.
Components that do not exist as run-time entities (because they have been compiled away) do not appear on these diagrams,
they should be shown on component diagrams.

For business modeling, the run-time processing elements include workers and organizational units, and the software
components include procedures and documents used by the workers and organizational units.

5.96.2 Notation

A deployment diagram is a graph of nodes connected by communication associations. Nodes may contain component
instances. This indicates that the component runs or executes on the node. Components may contain instances of classifiers,
which indicates that the instance resides on the component. Components are connected to other components by dashed-arrow
dependencies (possibly through interfaces). This indicates that one component uses the services of another component. A
stereotype may be used to indicate the precise dependency, if needed.

<<ejbEntity>>
Catalog

<<auxiliary>>
CatalogInfo

<<focus>>
Catalog

<<reside>> <<reside>>

<<auxiliary>>
CatalogPK

<<reside>>

<<file>>
CatalogJAR

<<implement>>
© ISO/IEC 2005 - All rights reserved 313

ISO/IEC 19501:2005(E)
The deployment type diagram may also be used to show which components may reside on which nodes, by using dashed
arrows with the stereotype «deploy» from the component symbol to the node symbol or by graphically nesting the component
symbol within the node symbol.

Migration of component instances from node instance to node instance or objects from component instance to component
instance may be shown using the «become» stereotype of the dependency relationship. In this case the component instance or
object is resident on its node instance or component instance only part of the entire time.

Note that a process is just a special kind of object (see Section 5.71, “Active object,” on page 277).

5.96.3 Example

Figure 129 - Deployment Diagram

5.96.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not particularly distinguished in the model.

5.97 Node

5.97.1 Semantics

A node is a physical object that represents a processing resource, generally, having at least a memory and often processing
capability as well. Nodes include computing devices but also human resources or mechanical processing resources. Nodes

:DBServer

videoStoreServer:AppServer

<<Container>>
 VideoStoreApplication

:Client

<<browser>>
:OpenSourceBrowser

<<Session>>
ShoppingSession

<<Focus>>
ShoppingSession

<<Entity>>
Catalog

<<Focus>>
Catalog

<<Entity>>
ShoppingCart

<<Focus>>
ShoppingCart

<<database>>
:VideoStoreDB
314 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
may be represented as types and as instances. Run time computational instances, both objects and component instances, may
reside on node instances.

5.97.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined name string in it or below it. The name string
has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of a node it is. Either or both elements are
optional; if the node-type is omitted, then so is the colon.

Dashed arrows with the keyword «deploy» show the capability of a node type to support a component type. Alternatively, this
may be shown by nesting component symbols inside the node symbol.

Component instances and objects may be contained within node instance symbols. This indicates that the items reside on the
node instances.

Nodes may be connected by associations to other nodes. An association between nodes indicates a communication path
between the nodes. The association may have a stereotype to indicate the nature of the communication path (for example, the
kind of channel or network).

5.97.3 Example

This example shows two nodes containing components, where a «become» flow shows the backupBroker migrating from the
backupServer to the primaryServer while the other components remain in place.
© ISO/IEC 2005 - All rights reserved 315

ISO/IEC 19501:2005(E)
Figure 130 - Node and Component Instances

5.97.4 Mapping

A node maps to a Node.

A «deploy» arrow or the nesting of a component symbol within a node symbol maps into a residence metassociation between
Component and Node. The nesting of a component-instance symbol within a node-instance symbol maps to a residence
metaassociation between the ComponentInstance and the NodeInstance.

5.98 Component

5.98.1 Semantics

A component represents a modular, deployable, and replaceable part of a system that encapsulates implementation and
exposes a set of interfaces.

A component is typically specified by one or more classifiers that reside on the component. A subset of these classifiers
explicitly define the component’s external interfaces. A component conforms to the interfaces that it exposes, where the
interfaces represent services provided by elements that reside on the component. A component may be implemented by one or
more artifacts, such as binary, executable, or script files. A component may be deployed on a node.

backupServer:AppServer

backupBroker
:BondBroker

:QuoteService
<<database>>
:AccountsDB

primaryServer:AppServer

primaryBroker
:BondBroker

:QuoteService

<<database>>
:AccountsDB

<<become>>
316 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
5.98.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its side. A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type may be shown as an underlined string
either within the component symbol or above or below it, with the syntax:

component-name ‘:’ component-type

Either or both elements are optional. If the component-type is omitted, then so is the colon.

Objects that reside on a component instance are shown as nested inside the component instance symbol. By analogy, classes
that are implemented by a component may be shown as nested within it; this indicates residence and not ownership.

Elements that reside on a component are shown nested inside the component symbol. The visibility of a resident element to
other components may be shown using the same notation as for the visibility of the contents of a package (prepending a
visibility symbol to the name of the package). The meaning of the visibility depends on the nature of the component. For a
source-language component (such as program text), it would control the accessibility of source-language constructs. For a run-
time code component (such as executable code), it would control the ability of code in other components to call or otherwise
access code in the component.

5.98.3 Example

The example shows a component with interfaces and also a component that contains objects at run time.
© ISO/IEC 2005 - All rights reserved 317

ISO/IEC 19501:2005(E)
Figure 131 - Components

5.98.4 Mapping

A component symbol maps to a Component.

The graphical nesting of an element (other than a component symbol) in a component symbol maps to an ElementResidence
metaassociation class between ModelElement and the Component. Graphical nesting of a component symbol in another
component symbol maps to a composition association. The graphical nesting of an instance symbol in a component instance
symbol maps to a residence metaassociation between Instance and ComponentInstance.

<<Entity>>
030303zak:Order

OrderHome

Order

OrderPK

<<Session>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

OrderInfo

<<focus>>
:Order

<<auxiliary>>
:OrderPK

<<auxiliary>>
:OrderInfo

OrderHome

Order
318 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6 UML Example Profiles

Example 1: UML Profile for Software Development Processes

6.1 Introduction

The UML Profile for Software Development Processes is an example profile that is based on the Unified Process for software
engineering. The profile is defined using the extensibility mechanisms of UML, which allow modelers to customize UML for
specific domains, such as software development processes.

Note that this profile is not a complete definition of the Unified Process or how to apply it, but rather an example that shows
how some of the profile terminology and notation is used. This example is defined only through stereotypes and constraints;
profiles also commonly include tagged values.

6.2 Summary of Profile

The stereotypes that are defined by this profile are summarized in Table 4.

Table 4 - Stereotype Summary

Name Base Class

UseCaseModel Model

AnalysisModel Model

DesignModel Model

ImplementationModel Model

UseCaseSystem Package

AnalysisSystem Package

DesignSystem Subsystem

ImplementationSystem Subsystem

AnalysisPackage Package

DesignSubsystem Subsystem

ImplementationSubsystem Subsystem

UseCasePackage Package

AnalysisServicePackage Package

DesignServiceSubsystem Subsystem

Boundary Class

Entity Class

Control Class

Communicate Association

Subscribe Association
© ISO/IEC 2005 - All rights reserved 319

ISO/IEC 19501:2005(E)
6.3 Stereotypes and Notation

A system modeled by the Unified Process consists of several different, but related models. These models are characterized by
the lifecycle stage that they represent, and each model makes use of one specific stereotype. Many of the stereotypes are used
particularly to give the ability to structure and categorize models and systems during different stages of the development
process.

In addition, there are stereotypes describing different kinds of commonly occurring analysis classes (such as boundary, entity,
and control) and their relationships, whereas design classes are by default not stereotyped in the Unified Process.

6.3.1 Use Case Stereotypes

6.3.1.1 UseCaseModel

The notation used for a UseCaseModel is a package stereotyped as «useCaseModel». Though superfluous, it is optionally
possible to in addition use the model icon in the upper right corner of the package symbol.

The explicit modeling of the stereotype is shown in Figure 132.

Figure 132 - Explicit Modeling of a Stereotype

Stereotype Base Class Parent Description Constraints

UseCaseModel

«useCaseModel»

Model NA A use case model specifies the services a system
provides to its users; that is, the different ways of using
the system, and whose top-level package is a use case
system.

None

 < < m e ta c la ss> >
M o d e l

< < s te re o typ e >>
U se C a se M o d e l

< < s te reo typ e >>
320 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6.3.1.2 UseCaseSystem

The notation used for a UseCaseSystem is a package stereotyped as «useCaseSystem».

6.3.1.3 UseCasePackage

The notation used for a UseCasePackage is a package stereotyped as «useCasePackage».

6.3.2 Analysis Stereotypes

6.3.2.1 AnalysisModel

The notation used for an AnalysisModel is a package stereotyped as «analysisModel».

6.3.2.2 AnalysisSystem

The notation used for an AnalysisSystem is a package stereotyped as «analysisSystem».

6.3.2.3 AnalysisPackage

The notation used for an AnalysisPackage is a package stereotyped as «analysisPackage».

Stereotype Base Class Parent Description Constraints

UseCaseSystem

«useCaseSystem»

Package NA A use case system is a top-level package that may contain use
case packages, use cases, and relationships.

None

Stereotype Base Class Parent Description Constraints

UseCasePackage

«useCasePackage»

Package NA A use case package contains use cases and
relationships.

A use case is not partitioned
over several use case packages.

Stereotype Base Class Parent Description Constraints

AnalysisModel

«analysisModel»

Model NA An analysis model is a model whose top-level package is an
analysis system.

None

Stereotype Base Class Parent Description Constraints

AnalysisSystem

«analysisSystem»

Package NA An analysis system is a top-level package that may contain
analysis packages, analysis service packages, analysis
classes, and relationships.

None

Stereotype Base Class Parent Description Constraints

AnalysisPackage

«analysisPackage»

Package NA An analysis package is a package that may contain other
analysis packages, analysis service packages, analysis
classes, and relationships.

None
© ISO/IEC 2005 - All rights reserved 321

ISO/IEC 19501:2005(E)
6.3.2.4 AnalysisServicePackage

The notation used for an AnalysisServicePackage is a package stereotyped as «analysisServicePackage».

6.3.3 Design Stereotypes

6.3.3.1 DesignModel

The notation used for a DesignModel is a package stereotyped as «designModel».

6.3.3.2 DesignSystem

The notation used for a DesignSystem is a package stereotyped as «designSystem». Though superfluous, it is optionally
possible to in addition use the subsystem icon in the upper right corner of the package symbol.

6.3.3.3 DesignSubsystem

The notation used for a DesignSubsystem is a package stereotyped as «designSubsystem».

Stereotype Base Class Parent Description Constraints

AnalysisServicePackage

«analysisServicePackage»

Package NA An analysis service package is a package that
may contain analysis classes and relationships.

None

Stereotype Base Class Parent Description Constraints

DesignModel

«designsModel»

Model NA A design model is a model whose top-level package is a
design system.

None

Stereotype Base Class Parent Description Constraints

DesignSystem

«designSystem»

Subsystem NA A design system is a top-level subsystem that may
contain design subsystems, design service subsystems,
design classes, and relationships.

None

Stereotype Base Class Parent Description Constraints

DesignSubsystem

«designSubsystem»

Subsystem NA A design subsystem is a subsystem that may contain
other design subsystems, design classes, and
relationships.

None
322 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6.3.3.4 DesignServiceSubsystem

The notation used for a DesignServiceSubsystem is a package stereotyped as «designServiceSubsystem».

6.3.4 Implementation Stereotypes

6.3.4.1 ImplementationModel

The notation used for an ImplementationModel is a package stereotyped as «implementationModel».

6.3.4.2 ImplementationSystem

The notation used for an ImplementationSystem is a package stereotyped as «implementationSystem».

6.3.4.3 ImplementationSubsystem

The notation used for an ImplementationModel is a package stereotyped as «implementationModel».

Stereotype Base Class Parent Description Constraints

DesignServiceSubsystem

«designServiceSubsystem»

Subsystem NA A design service subsystem is a subsystem
that may contain design classes and
relationships.

None

Stereotype Base Class Parent Description Constraints

ImplementationModel

«implementationModel»

Model NA An implementation model is a model whose top-
level package is an implementation system.

None

Stereotype Base Class Parent Description Constraints

ImplementationSystem

«implementationSystem»

Subsystem NA An implementation model is a subsystem that
may contain implementation subsystems,
components, and relationships.

None

Stereotype Base Class Parent Description Constraints

ImplementationModel

«implementationModel»

Model NA An implementation model is a model whose top-
level package is an implementation system.

None
© ISO/IEC 2005 - All rights reserved 323

ISO/IEC 19501:2005(E)
6.3.5 Class Stereotypes

6.3.5.1 Entity

The notation for Entity is shown below.

6.3.5.2 Control

The notation for Control is shown below.

6.3.5.3 Boundary

The notation for Boundary is shown below.

6.3.5.4 Notation

The notation given as part of the UML specification for stereotyped classes can be used for entity, control, and boundary, but it
is also possible to substitute that notation with the icons shown below.

Stereotype Base Class Parent Description Constraints

Entity

«entity»

Class NA An entity is a passive class; that is, its objects do not initiate
interactions on their own. An entity object may participate in
many different use case realizations and usually outlives any
single interaction.

None

Stereotype Base Class Parent Description Constraints

Control

«control»

Class NA A control is a class whose objects manage interactions
between collections of objects. A control class usually has
behavior that is specific for one use case, and a control object
usually does not outlive the use case realizations in which it
participates.

None

Stereotype Base Class Parent Description Constraints

Boundary

«boundary»

Class NA A boundary is a class that lies on the periphery of a system,
but within it. It interacts with actors outside the system as well
as with entity, control, and other boundary classes within the
system.

None
324 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 133 - Class Stereotypes

6.3.6 Association Stereotypes

6.3.6.1 Communicate

The notation used for Communicate is an association that is marked with the stereotype «communicate».

6.3.6.2 Subscribe

The notation used for Subscribe is an association that is marked with the stereotype «subscribe».

6.4 Well-Formedness Rules

The UML Specification relies on the use of well-formedness rules to express constraints on model elements, and this profile
uses the same approach. The constraints applicable to the profile are added to the ones of the stereotyped base model elements,
which cannot be changed.

Stereotype Base Class Parent Description Constraints

Communicate

«communicate»

Association NA Communicate is an association between actors and use
cases that is used to denote messages that may be sent
between them. It may also be used between boundary,
control, and entity, and between actor and boundary.

None

Stereotype Base Class Parent Description Constraints

Subscribe

«subscribe»

Association NA A subscribe association between two classes states that
objects of the source class (called the subscriber) will be
notified when a particular event has occurred in objects of the
target class (called the publisher). The association includes a
specification of a set of events defining the events that causes
the subscriber to be notified.

None

PenTracker
PenTracker
«control»

OrderEntry
OrderEntry
«boundary»

BankAccount
BankAccount

«entity»
© ISO/IEC 2005 - All rights reserved 325

ISO/IEC 19501:2005(E)
6.4.1 Generalization

All the modeling elements in a generalization must be of the same stereotype; for example, a boundary class may only inherit
from other boundary classes.

context Generalization inv:

(self.parent.stereotype->size>0) implies
(if (self.parent.stereotype->name->includes(“boundary”)then

((self.child.stereotype->name->includes(“boundary”) and
(self.child.stereotype->name->excludes(“control”) and
(self.child.stereotype->name->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“control”)then

((self.child.stereotype->name->includes(“control”) and
(self.child.stereotype->name->excludes(“boundary”) and
(self.child.stereotype->name->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“entity”)then

((self.child.stereotype->name->includes(“entity”) and
(self.child.stereotype->name->excludes(“boundary”) and
(self.child.stereotype->name->excludes(“control”))))

6.4.2 Containment

Something that has been stereotyped using a stereotype of kind use case, analysis, design, or implementation may not contain
elements that are stereotyped with one of the other kinds. For example, a use case model may not contain analysis systems.

Example 2 - UML Profile for Business Modeling

6.5 Introduction

The UML Profile for Business Modeling is an example profile that describes how UML can be customized for business
modeling. Although all UML concepts can be brought to bear on this domain, but example emphasizes common stereotypes
and some useful terminology. Note that UML can be used to model different kinds of systems (such as software systems,
hardware systems, and real-world organizations).

This example is defined only through stereotypes and constraints; profiles also commonly include tagged values.

6.6 Summary of Profile

The stereotypes that are defined by this profile are summarized in Table 7.

Table 7 - Stereotypes

Stereotype Base Class

UseCaseModel Model

UseCaseSystem Package

UseCasePackage Package

ObjectModel Model

ObjectSystem Subsystem
326 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6.7 Stereotypes and Notation

A business system comprises several different, but related, models. The models are characterized by being exterior or interior
to the business system they represent. Exterior models are use case models and interior models are object models. A large
business system may be partitioned into subordinate business systems.

6.7.1 Use Case Stereotypes

6.7.1.1 Use Case Model

The notation used for a UseCaseModel is a package stereotyped as «useCaseModel».

6.7.1.2 UseCaseSystem

The notation used for a UseCaseSystem is a package stereotyped as «useCaseSystem».

OrganizationUnit Subsystem

WorkUnit Subsystem

Worker Class

CaseWorker Class

InternalWorker Class

Entity Class

Communicate Association

Subscribe Association

Stereotype Base Class Parent Description Constraints

UseCaseModel

«useCaseModel»

Model NA A use case model is a model that describes the
business processes of a business and their
interactions with external parties such as
customers and partners. A use case model
describes:
• The business modeled as use cases.
• Parties exterior to the business modeled as

actors.
• The relationships between the external parties

and the business process.

None

Stereotype Base Class Parent Description Constraints

UseCaseSystem

«useCaseSystem»

Package NA A use case system is the top-level package in a use
case model, and may contain use case packages, use
cases, and relationships.

None

Table 7 - Stereotypes
© ISO/IEC 2005 - All rights reserved 327

ISO/IEC 19501:2005(E)
6.7.1.3 UseCasePackage

The notation used for a UseCasePackage is a package stereotyped as «useCasePackage».

6.7.2 Organization Stereotypes

6.7.2.1 ObjectModel

The notation used for an ObjectModel is a package stereotyped as «objectModel».

6.7.2.2 ObjectSystem

The notation used for an ObjectSystem is a package stereotyped as «objectSystem».

6.7.2.3 OrganizationUnit

The notation used for an OrganizationUnit is a package stereotyped as «organizationUnit».

Stereotype Base Class Parent Description Constraints

UseCasePackage

«useCasePackage»

Package NA A use case package is a package that may
contain use cases and relationships.

A use case is not partitioned
over several use case
packages.

Stereotype Base Class Parent Description Constraints

ObjectModel

«objectModel»

Model NA An object model is a model whose top-level package is an
object system that describe the things interior to the
business system itself.

None

Stereotype Base Class Parent Description Constraints

ObjectSystem

«objectSystem»

Subsystem NA An object system is the top-level subsystem in an object
model, and may contain organization units, work units,
classes, and relationships.

None

Stereotype Base Class Parent Description Constraints

OrganizationUnit

«organizationUnit»

Subsystem NA An organization unit is a subsystem that may contain
other organization units, work units, classes, and
relationships.

None
328 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
6.7.2.4 WorkUnit

The notation used for a WorkUnit is a package stereotyped as «workUnit».

6.7.3 Class Stereotypes

6.7.3.1 Worker

The notation for Worker is shown below.

6.7.3.2 CaseWorker

The notation for CaseWorker is shown below. Note that CaseWorker is not stereotyped of a UML metaclass, but rather inherits
its properties from the stereotype Worker that was previously defined.

The explicit subtyping of a stereotype is shown in Figure 134.

Stereotype Base Class Parent Description Constraints

WorkUnit

«workUnit»

Subsystem NA A work unit is a subsystem that may contain one or more
entities. It is a task-oriented set of objects that forms a
recognizable whole to the end user, and may have a facade
defining the view of the work unit’s entities relevant to the
task.

None

Stereotype Base Class Parent Description Constraints

Worker

«worker»

Class NA A worker is a class that represents an abstraction of a
human that acts within the system. A worker interacts
with other workers and manipulates entities while
participating in use case realizations.

None

Stereotype Base Class Parent Description Constraints

CaseWorker

«caseWorker»

Class Worker A case worker is a special case of worker that
interacts directly with actors outside the system.

None
© ISO/IEC 2005 - All rights reserved 329

ISO/IEC 19501:2005(E)
Figure 134 - Subtyping a Stereotype

6.7.3.3 InternalWorker

The notation for InternalWorker is shown below. Note that InternalWorker, like CaseWorker above, is subtyped from the
previously defined stereotype Worker.

6.7.3.4 Entity

The notation for Entity is shown below.

6.7.3.5 Notation

The notation given as part of the UML specification for stereotyped classes can be used for entity, control, and boundary, but it

Stereotype Base Class Parent Description Constraints

InternalWorker

«internalWorker»

Class Worker An internal worker is a special case of worker that
interacts with other workers and entities inside the
system.

None

Stereotype Base Class Parent Description Constraints

Entity

«entity»

Class NA An entity is a passive class; that is, its objects do not initiate
interactions on their own. An entity object may participate in
many different use case realizations and usually outlives any
single interaction.

None

 <<stereotype>>
Worker

<<stereotype>>
CaseWorker
330 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
is also possible to substitute that notation with the icons shown below.

Figure 135 - Class Stereotypes

6.7.4 Association Stereotypes

6.7.4.1 Communicate

The notation used for Communicate is an association that is marked with the stereotype «communicate».

6.7.4.2 Subscribe

The notation used for Subscribe is an association that is marked with the stereotype «subscribe».

Stereotype Base Class Parent Description Constraints

Communicate

«communicate»

Association NA Communicate is an association used for defining that
instances of the associated classifiers interact.

None

Stereotype Base Class Parent Description Constraints

Subscribe

«subscribe»

Association NA A subscribe association between two classes states that
objects of the source class (called the subscriber) will be
notified when a particular event has occurred in objects of
the target class (called the publisher). The association
includes a specification of a set of events defining the event
that causes the subscriber to be notified.

None

OrderEntry
«case worker»

Trade
«entity»

Trade

Salesperson

Administrator
Administrator

«worker»

Designer
Designer

«internal worker»«internalWorker»

«caseWorker»
© ISO/IEC 2005 - All rights reserved 331

ISO/IEC 19501:2005(E)
6.8 Well-Formedness Rules

The UML Specification relies on the use of well-formedness rules to express constraints on model elements, and this profile
uses the same approach. The constraints applicable to the profile are added to the ones of the stereotyped base model elements,
which cannot be changed.

6.8.1 Generalization

All the modeling elements in a generalization must be of the same stereotype; for example, a worker class may only inherit
from other worker classes.

context Generalization inv:

let stNames : Set(Name) = self.child.stereotype->name

self.parent.stereotype->size>0) implies
(if (self.parent.stereotype->name->includes(“worker”) then

((stNames->includes(“worker”) and
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“internal worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“case worker”) then

((stNames->includes(“case worker”) and
(selfstNames->excludes(“worker”) and
(stNames->excludes(“internal worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“internal worker”) then

((stNames->includes(“internal worker”) and
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“entity”) then

((stNames->includes(“entity”) and
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“internal worker”) and
(self.child.stereotype->name->excludes(“worker”))))))
332 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
7 UML Model Interchange

7.1 Overview

UML model interchange is based on the Metaobject Facility (MOF) 1.3 Specification. The UML Semantics abstract syntax is
mapped to a set of MOF packages called the UML Interchange Metamodel. The packages are available as an XML document
called UML_1.4_Interchange_Metamodel.xml (OMG document ad/01-02-15) whose document type is based on the MOF 1.3
Model and the XML Metadata Interchange (XMI) 1.1 Specification.

Except for the Data_Types package, each package of the UML Interchange Metamodel defines a separate unit of compliance.
The Core package defines the most basic level of compliance. The UML package, which is a cluster of all of the others,
defines complete compliance.

Dependencies between the packages are shown in Figure 136. Each package imports whatever other packages it requires such
that it can be directly deployed within a MOF facility. The packages can also be incorporated into other clusters in order to
create other package groupings or to define extensions.

The UML Interchange Metamodel closely follows the UML Semantics Metamodel as expressed in its abstract syntax.
Changes are introduced as needed to conform to MOF requirements. Details are added to support XML and IDL generation.
The following changes are made.

• Spaces in package names are changed to "_".

• Each unnamed association end is given its type's name with the first letter downcased.

• Associations in the UML Semantics Metamodel are unnamed, so names are generated by this pattern: "A_" followed
by the first end's name followed by "_" and the second end’s name.

• MOF references are added for most association ends in order to facilitate easy navigation. References are not added
where they would create new package dependencies or where they would prevent linking to external models.

• MOF does not support association classes, so the ElementOwnership association class is removed and its attributes
moved to ModelElement. Each other association class is changed into a class with each connection made into a
separate association.

• Prefixes are added to enumeration literals to make them unique for IDL generation.

The Interchange Metamodel addresses semantic content of UML models and does not address diagram layout details. The
metamodel can be extended to handle diagrams by subclassing the abstract class PresentationElement of the Core package.
There is currently no standard extension for diagram interchange.

The Interchange Metamodel is shown using UML notation below. Figure 136 shows the separate packages and their
dependencies. Figure 137 through Figure 156 show the classes, features, and associations of the metamodel.
© ISO/IEC 2005 - All rights reserved 333

ISO/IEC 19501:2005(E)
Figure 136 - UML Package Dependencies

Data_Types
<<metamodel>>

(from Foundation)

Core
<<metamodel>>

(from Foundation)

Common_Behavior
<<metamodel>>

(from Behavioral_Elements)

Use_Cases
<<metamodel>>

(from Behavioral_Elements)

State_Machines
<<metamodel>>

(from Behavioral_Elements)
Collaborations

<<metamodel>>

(from Behaviora l_Elements)

Activity_Graphs
<<metamodel>>

(from Behavioral_Elements)

Model_Management
<<metamodel>>
334 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 137 - Core Package - Backbone

Element

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ generalization : Generalization

Attribute
initialValue : Expression
/ associationEnd : AssociationEnd

Method
body : ProcedureExpression
/ specification : Operation

Operation

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

*1

+method

*

+specification

1

Namespace
/ ownedElement : ModelElement

Constraint
body : BooleanExpression
/ constrainedElement : ModelElement

ModelElement
name : Name
visibility : VisibilityKind
isSpecification : Boolean
/ namespace : Namespace
/ clientDependency : Dependency
/ constraint : Constraint
/ targetFlow : Flow
/ sourceFlow : Flow
/ comment : Comment
/ templateParameter : TemplateParameter
/ stereotype : Stereotype
/ taggedValue : TaggedValue

0..1

*

+namespace
0..1

+ownedElement *

*

*

+constraint*

+constrainedElement

* {ordered}

BehavioralFeature
isQuery : Boolean
/ parameter : Parameter

Feature
ownerScope : ScopeKind
/ owner : Classi fier

StructuralFeature
multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind
/ type : Classifier

Parameter

defaultValue : Expression
kind : ParameterDirectionKind
/ behavioralFeature : BehavioralFeature
/ type : Classifier

0..1

*

+behavioralFeature

0..1

+parameter
*

{ordered}

Classifier

/ feature : Feature
/ powertypeRange : Generalization

*

0..1+feature

* {ordered} +owner

0..1

*

1

+typedFeature

*

+type 1

*

1

+typedParameter*

+type

1

© ISO/IEC 2005 - All rights reserved 335

ISO/IEC 19501:2005(E)
Figure 138 - Core Package - Relationships

AssociationClass

Class

isActive : Boolean

Relationship

Association
/ connection : AssociationEnd

Attribute

initialValue : Expression
/ associationEnd : AssociationEnd

AssociationEnd

isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
/ association : Association
/ qualifier : Attribute
/ participant : Classifier
/ specification : Classifier

2..*

1+connection

2..*

{ordered}

+association

1

*

0..1+qualifier

*
{ordered}

+associationEnd

0..1

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ generalization : Generalization

Classifier
/ feature : Feature
/ powertypeRange : Generalization

1 *

+participant

1

+association

*
**

+specifiedEnd
*

+specification
*

Generalization

discriminator : Name
/ child : GeneralizableElement
/ parent : GeneralizableElement
/ powertype : Classifier

* 1

+generalization

*

+child

1

1*

+parent

1

+specialization

*

0..1

*

+powertype
0..1

+powertypeRange
*

Flow
/ target : ModelElement
/ source : ModelElement

ModelElement

*

*

+sourceFlow

*

+source *

*

*

+targetFlow

*

+target *
336 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 139 - Core Package - Dependencies

Usage PermissionAbstraction

mapping : MappingExpression

Binding

/ argument : TemplateArgument

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean
/ namespace : Namespace
/ clientDependency : Dependency
/ constraint : Constraint
/ targetFlow : Flow
/ sourceFlow : Flow
/ comment : Comment
/ templateParameter : TemplateParameter
/ stereotype : Stereotype
/ taggedValue : TaggedValue

Dependency

/ client : ModelElement
/ supplier : ModelElement

1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+clientDependency

*

Relationship
© ISO/IEC 2005 - All rights reserved 337

ISO/IEC 19501:2005(E)
Figure 140 - Core Package - Classifiers

Classifier
/ feature : Feature
/ powertypeRange : Generalization

Class
isActive : Boolean

DataType

Interface

Primitive

Enumeration

/ literal : EnumerationLiteral

EnumerationLiteral

/ enum eration : Enum eration
1 1..*

+enumerat ion

1

+literal

1..*
{ordered}

ProgrammingLanguageDataType

expression : TypeExpression
ModelElement

Node

/ deployedComponent : Component

ElementResidence

vis ibility : VisibilityKind
/ resident : ModelElement
/ container : Component

1

*

+resident1

+elementResidence*

Artifact
Component

/ deploymentLocation : Node
/ residentElement : ElementResidence
/ im plementation : Artifact

*

*

+deploymentLocation*

+deployedComponent*
1

*

+container
1

+residentElement*

** +implementation *

+implementationLocation

*

338 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 141 - Core Package - Auxiliary Elements

Element

PresentationElement

/ subject : ModelElement

Binding
/ argument : TemplateArgument

Comment

body : String
/ annotatedElement : ModelElement

TemplateParameter

/ template : ModelElement
/ parameter : ModelElement
/ defaultElement : ModelElement

TemplateArgument

/ modelElement : ModelElement
/ binding : Binding

1

1..*

+binding1

+argument1..*
{ordered}

ModelElement

**

+presentation

*

+subject

*

*

*

+comment*

+annotatedElement*

0..1

*

+defaultElement
0..1

+defaultedParameter*

1

*

+template

1

+templateParameter

*{ordered}

1

0..1

+parameter 1

+parameterTemplate 0..1

1

*

+modelElement

+templateArgument

1

*

© ISO/IEC 2005 - All rights reserved 339

ISO/IEC 19501:2005(E)
Figure 142 - Extension Mechanisms

GeneralizableElement

Stereotype

icon : Geometry
baseClass : Name [1..*]
/ definedTag : TagDefinition
/ stereotypeConstraint : Constraint

Constraint

0..1

*

+constrainedStereotype

0..1

+stereotypeConstraint *

TagDefinition
tagType : Name
mul tiplicity : Multiplicity
/ owner : Stereotype

*0..1

+definedTag

*

+owner

0..1

ModelElement

*

*

+stereotype*

+extendedElement

*

*

*

+constrainedElement *

{ordered}

+constraint * TaggedValue
dataValue : String [*]
/ modelElement : ModelElement
/ type : TagDefinition
/ referenceValue : ModelElement

1

*

+type

1

+typedValue*

1

*

+modelElement

1

+taggedValue*

*

*

+referenceValue*

+referenceTag *
340 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 143 - Data Types

AggregationKind

ak_none
ak_aggregate
ak_composite

<<enumeration>>

Boolean

false
true

<<datatype>>

ChangeableKind

ck_changeable
ck_frozen
ck_addOnly

<<enumeration>>

Name
<<datatype>>

Integer
<<datatype>>

ParameterDirectionKind

pdk_in
pdk_inout
pdk_out
pdk_return

<<enumeration>>

ScopeKind

sk_instance
sk_class ifier

<<enumeration>>

String
<<datatype>>

VisibilityKind

vk_public
vk_protected
vk_private
vk_package

<<enumeration>>

PseudostateKind
pk_choice
pk_deepHistory
pk_fork
pk_initial
pk_join
pk_junction
pk_shallowHistory

<<enumeration>>

CallConcurrencyKind

cck_sequential
cck_guarded
cck_concurrent

<<enumeration>>

MultiplicityRange
lower : Integer
upper : UnlimitedInteger
/ multiplicity : Multiplicity

Multiplicity

1..*

1

+range1..*

+multiplicity1

UnlimitedInteger
<<datatype>>

LocationReference
<<datatype>>

OrderingKind

ok_unordered
ok_ordered

<<enumeration>>

Geometry
<<datatype>>
© ISO/IEC 2005 - All rights reserved 341

ISO/IEC 19501:2005(E)
Figure 144 - Expressions

Figure 145 - Common Behavior - Signals

BooleanExpression

Expression
language : Name
body : String

ObjectSetExpression TimeExpression

ActionExpression

IterationExpression

TypeExpression

ArgListsExpression

MappingExpression ProcedureExpression

Exception

Reception
specification : String
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ signal : Signal

BehavioralFeature
(from Core)

Signal

1

0..*

+signal

1

+reception

0..*

**

+context

*

raisedSignal

*

Classifier
(from Core)
342 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 146 - Common Behavior - Actions

DestroyAction

UninterpretedAction

ModelElement
(f rom Core)

CreateAction

/ instantiation : Classifier

Classifier
(from Core)

*

1

+createAction *

+instantiation1

ReturnAction

TerminateActionCallAction

/ operation : Operation

Operation
(f rom Core)

*

1

+callAction *

+operation 1

SendAction

/ signal : Signal

Signal

*

1

+sendAction*

+signal1

Argument
value : Expression
/ action : Action

ActionSequence

/ action : Action

Act ion

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression
/ actualArgument : Argument
/ actionSequence : ActionSequence

*

0..1

+actualArgum ent*{ordered}

+action0..1

0..1 *

+actionSequence

0..1

+action

*{ordered}
© ISO/IEC 2005 - All rights reserved 343

ISO/IEC 19501:2005(E)
Figure 147 - Common Behavior - Instances

DataValue Object

ModelElement
(from Core)

NodeInstance
/ resident : ComponentInstance

Attribute
(f rom Core)

ComponentInstance
/ nodeInstance : NodeInstance
/ resident : Instance

Classifier
(from Core)

AttributeLink

/ attribute : Attribute
/ value : Instance
/ ins tance : Ins tance
/ linkEnd : LinkEnd

Instance

/ classifier : Classifier
/ linkEnd : LinkEnd
/ slot : AttributeLink
/ componentInstance : ComponentInstance
/ ownedInstance : Instance
/ ownedLink : Link

Stimulus
/ argument : Instance
/ sender : Instance
/ receiver : Instance
/ communicationLink : Link
/ dispatchAction : Action

Action

SubsystemInstance

+nodeInstance

0..1

+attribute

1

+resident
**

0..1

+classifier

1..*

+attributeLink

**

1

+slot**

*

0..1

+resident

*

+componentInstance 0..1

+instance
*

1..*
*

+instance

0..10..1

*

+value 1

*

1

+ownedInstance

**

0..1

+owner

0..1

+argument *

{ordered}
+sender1 +receiver1

**

*

**

1

*

1

*

+stimulus

*
+dispatchAction

1

*

1

344 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 148 - Common Behavior - Links

LinkObject

Object

ModelElement
(from Core)

AssociationEnd
(f rom Core)

AttributeLink

Association
(from Core)

LinkEnd
/ instance : Instance
/ link : Link
/ associationEnd : AssociationEnd
/ qualifiedValue : AttributeLink

Link
/ as sociation : Ass ociation
/ connection : LinkEnd

Instance

Stimulus

+connection

2..*
{ordered}

+associationEnd 1

+qualifiedValue *{ordered}

+association

1

2..*

1

+association1

+linkEnd *

1

*

+linkEnd
0..10..1

*

+linkEnd *
+link*

1

*

1

2 .. *+link

1 +connection

2 .. *
{ordered}

+ownedLink *

+communicationLink

0..1

+instance

11

*

+owner 0..1

*

0..1

+stimulus
**

0..1
© ISO/IEC 2005 - All rights reserved 345

ISO/IEC 19501:2005(E)
Figure 149 - Collaborations - Roles

Attribute
(from Core)

AssociationEndRole

collaborationMultiplicity : Multiplicity
/ base : AssociationEnd
/ availableQualifier : Attribute

*

*

*

+availableQualifier*

AssociationEnd
(from Core) 0..1 *

+base

0..1 *

Association
(from Core)

2..*

1

+connection
2..*

{ordered}

1

Action
(from Common_Behavior)

AssociationRole
multiplicity : Multiplicity
/ base : Association
/ message : Message
/ conformingLink : Link

0..1

*+base

0..1

*

Collaboration
/ interaction : Interaction
/ representedClassifier : Classifier
/ representedOperation : Operation
/ constrainingElement : ModelElement
/ usedCollaboration : Collaboration

Feature
(from Core)

Message

/ interaction : Interaction
/ activator : Message
/ sender : ClassifierRole
/ receiver : ClassifierRole
/ predecessor : Message
/ communicationConnection : AssociationRole
/ action : Action
/ conformingStimulus : Stimulus *

0..1

*

+activator

0..1

*

*

+successor
*

+predecessor

*

1

*

+action 1

*

*

0..1 +message
*

+communicationConnection

0..1

ModelElement
(from Core)* **

+constrainingElement

*

Classifier
(f rom Core)

ClassifierRole
multiplicity : Multiplicity
/ base : Classifier
/ availableFeature : Feature
/ availableContents : ModelElement
/ conformingInstance : Instance

** *

+availableFeature

*

1

*

+sender 1

**

1

*

+receiver
1*

*

*

+availableContents *

1..* *+base1..* *
346 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 150 - Collaborations - Interactions

GeneralizableElement
(from Core)

Namespace
(from Core)

Message
Interaction

/ message : Message
/ context : Collaboration 1 1..*

+interaction

1

+message

1..*

Operation
(f rom Core)

Collaboration
/ interaction : Interaction
/ representedClassi fi er : Classi fier
/ representedOperation : Operation
/ constrainingElement : ModelElemen t
/ usedCol laboration : Collaboration

1

*

+context1

+interaction *

0..1*

+representedOperation

0..1*

*

*

+usedCollaboration

*

*

Classifier
(from Core)

* 0..1*

+representedClassifier

0..1

ModelElement
(from Core)
© ISO/IEC 2005 - All rights reserved 347

ISO/IEC 19501:2005(E)
Figure 151 - Collaborations - Instances

Message

Stimulus
(f rom Common_Behavior)

*

*

+playedRole*

+conformingStimulus*

Interaction

/ mess age : Message
/ context : Collaboration1..*

1+message

1..* +interaction

1

ClassifierRole

multipl icity : Mul tiplicity
/ base : Classifier
/ avai lableFeature : Feature
/ avai lableContents : ModelElem ent
/ conform ingIns tance : Instance

AssociationRole
multiplicity : Multiplicity
/ base : Association
/ message : Message
/ conformingLink : Link

InteractionInstanceSet
/ context : CollaborationInstanceSet
/ interaction : Interaction
/ participatingStim ulus : Stimulus

0..1

*

+interaction
0..1

*

1.. *

+participatingStimulus

1..*

Collaboration

/ interaction : Interaction
/ representedClassifier : Classifier
/ representedOperation : Operation
/ constrainingElement : ModelElement
/ usedCollaboration : Collaboration

*

1+interact ion

* +context

1

Instance
* *

+playedRole

*

+conformingInstance

*

Link
* *

+playedRole

*

+conformingLink

*

CollaborationInstanceSet

/ interactionInstanceSet : InteractionInstanceSet
/ collaboration : Collaboration
/ participatingInstance : Instance
/ participatingLink : Link
/ constrainingElement : ModelElement

1

* +context

1+interactionInstanceSet

*

0..1

*

+collaboration 0..1

+collaborationInstanceSet *

*

1..*

*

+participatingInstance 1..*

*

*

+participatingLink *

*

ModelElement
(from Core)

*

*

*

+constrainingElement

*

+interactionInstanceSet
348 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 152 - Use Cases

UseCaseInstance

Actor

Classifier
(from Core)

Instance
(from Common_Behavior)

1..* *

+classifier

1..*

+instance

*

ModelElement
(from Core)

Include

/ addit ion : UseCase
/ base : UseCase

UseCase
/ extend : Extend
/ include : Include
/ extensionPoint : ExtensionPoint

*

1

+includer

*

+addition
1

*

1

+include*

+base1

ExtensionPoint

location : LocationRefe rence
/ useCase : UseCase

*

1 +extensionPoint

*+useCase

1

Extend

condition : BooleanExpression
/ base : UseCase
/ extension : UseCase
/ extensionPoint : ExtensionPoint

1

*

+base1

+extender*

1

*

+extension

1

+extend*

1..*

*

+extensionPoint 1..*
{ordered}

*

Relat ionship
(from Core)
© ISO/IEC 2005 - All rights reserved 349

ISO/IEC 19501:2005(E)
Figure 153 - State Machines

Pseudostate

kind : PseudostateKind

SimpleState

SynchState

bound : UnlimitedInteger

StubState

referenceState : Name

FinalState

SubmachineState

/ submachine : StateMachine

ModelElement
(from Core)

Guard
expression : BooleanExpression
/ transition : Transition

Event

/ parameter : Parameter

Action
(from Common_Behavior)

State

/ entry : Action
/ exit : Action
/ deferrableEvent : Event
/ internalTransition : Transition
/ doActivity : Action
/ stateMachine : StateMachine

0..*

0..*

0..*

+deferrableEvent

0..*

0..1

0..1

0..1 +entry

0..1
0..1

0..1

0..1 +exit

0..1

0..1

0..1

0..1 +doActivity
0..1

StateMachine

/ context : ModelElement
/ top : State
/ transitions : Transi tion
/ submachineState : SubmachineState

1

0..1

+top1

+s tateMachine 0..1

*

1

+submachineState
*

+submachine

1

*

0..1

+behavior *

+context
0..1

CompositeState
isConcurrent : Boolean
/ subvertex : StateVertex

Transit ion

/ guard : Guard
/ effect : Action
/ trigger : Event
/ source : StateVertex
/ target : StateVertex
/ stateMachine : StateMachine

1

0..1

+transition
1

+guard0..1

0..1

*

+trigger 0..1

+transition

*

0..1

0..1

+effect0..1

+transition0..1*

0..1

+internalTransition *

0..1

*

0..1

+transitions *

0..1

StateVertex
/ container : CompositeState
/ outgoing : Transition
/ incoming : Transition0..*

0..1

+subvertex

0..*

+container

0..1

1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

350 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 154 - State Machines - Events

TimeEvent
when : TimeExpression

ChangeEvent
changeExpression : BooleanExpres sion

Operation
(f rom Core)

CallEvent
/ operation : Operation

1

*

+operation 1

+occurrence *

SignalEvent
/ signal : Signal

Signal
(f rom Common_Behav ior)

*

1

+occurrence*

+signal 1

Parameter
(from Core)

Event

/ parameter : Parameter* 0..1

+parameter

* {ordered}

+event

0..1

ModelElement
(from Core)
© ISO/IEC 2005 - All rights reserved 351

ISO/IEC 19501:2005(E)
Figure 155 - Activity Graphs

ActionState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SimpleState
(from State_Machines)

SubactivityState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SubmachineState
(from State_Machines)

CompositeState
isConcurrent : Boolean
/ subvertex : StateVertex

CallState

ActivityGraph
/ partition : Partition

Partition
/ contents : ModelElement
/ activityGraph : ActivityGraph

1

0..*+activityGraph

1 +partition

0..*

ModelElement
(from Core)

*

*

+contents*

partition*

StateMachine
(from State_Machines)

0..1*

+context

0..1

+behavior

*

State
(from State_Machines)

0..1

1

+stateMachine 0..1

+top 1

ClassifierInState

/ type : Classifier
/ inState : State

0..*

1..*

0..*

+inState

1..*

Parameter
(from Core)

Classifier
(from Core)

1

*

+type 1

+classifierInState *

ObjectFlowState

isSynch : Boolean
/ parameter : Parameter
/ type : Classifier

*

*

+parameter *

+state *

1

*

+type

1

*

352 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 156 - Model Management

7.2 Model Interchange Using XMI

UML models can be exchanged between software tools as streams or files with a standard XML format. An XML document
type file named UML_1.4_XMI_1.1.dtd (OMG document ad/01-02-16) is generated from the UML Interchange Metamodel
following the rules of the XML Metadata Interchange (XMI) 1.1 Specification. The single document type supports all
packages of the UML Interchange Metamodel, but a tool that exchanges models using XML might support some packages and
not others.

To illustrate use of XML to represent a UML model, Figure 157 shows an example model.

Figure 157 - Example: Employment Model

GeneralizableElement
(from Core)

Subsy stem
is Ins tantiable : Boolean

Model

Classifier
(f ro m Cor e)

Namespace
(from Core)

ModelE lement
(from Core)

*

0.. 1

+ownedElem ent

*

+namespace

0..1

Package

/ elem entIm port : Elem entIm port

Elem entImport

vis ibility : Vis ibilityKind
alias : Nam e
isSpecification : Boolean
/ package : Package
/ im portedElem ent : ModelElem ent

1

*

+importedElement

1

+elem entIm port*

1

*

+package

1

+elem entIm por t*

Person Business

**

Employment
+employer+employee

**
© ISO/IEC 2005 - All rights reserved 353

ISO/IEC 19501:2005(E)
The model shown above is expressed in XML below.

<?xml version='1.0' encoding='ISO-8859-1' ?>

<!DOCTYPE XMI SYSTEM 'UML_1.4_XMI_1.1.dtd'>

<XMI xmi.version='1.2' xmlns:UML='omg.org/UML/1.4'>

 <XMI.header>

 <XMI.metamodel xmi.name='UML' xmi.version='1.4'/>

 </XMI.header>

 <XMI.content>

 <UML:Model xmi.id='S.1' name='Employment Model' visibility='public'

 isSpecification='false' isRoot='false' isLeaf='false' isAbstract='false'>

 <UML:Namespace.ownedElement>

 <UML:Class xmi.id='S.2' name='Person' visibility='public' isSpecification='false'

 namespace='S.1' isRoot='true' isLeaf='true' isAbstract='false' isActive='false'/>

 <UML:Class xmi.id='S.3' name='Business' visibility='public' isSpecification='false'

 namespace='S.1' isRoot='true' isLeaf='true' isAbstract='false' isActive='false'/>

 <UML:Association xmi.id='G.1' name='Employment' visibility='public'

 isSpecification='false' isRoot='false' isLeaf='false' isAbstract='false'>

 <UML:Association.connection>

 <UML:AssociationEnd name='employer' visibility='public' isSpecification='false'

 isNavigable='true' ordering='unordered' aggregation='none'
targetScope='instance'

 changeability='changeable' participant='S.3' association='G.1'>

 <UML:AssociationEnd.multiplicity>

 <UML:Multiplicity>

 <UML:Multiplicity.range>

 <UML:MultiplicityRange lower='0' upper='-1'/>

 </UML:Multiplicity.range>

 </UML:Multiplicity>

 </UML:AssociationEnd.multiplicity>

 </UML:AssociationEnd>

 <UML:AssociationEnd name='employee' visibility='public' isSpecification='false'

 isNavigable='true' ordering='unordered' aggregation='none'
targetScope='instance'

 changeability='changeable' participant='S.2' association='G.1'>

 <UML:AssociationEnd.multiplicity>

 <UML:Multiplicity>
354 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
 <UML:Multiplicity.range>

 <UML:MultiplicityRange lower='0' upper='-1'/>

 </UML:Multiplicity.range>

 </UML:Multiplicity>

 </UML:AssociationEnd.multiplicity>

 </UML:AssociationEnd>

 </UML:Association.connection>

 </UML:Association>

 </UML:Namespace.ownedElement>

 </UML:Model>

 </XMI.content>

</XMI>

7.3 Model Interchange Using CORBA IDL

CORBA interfaces can be used for creating, accessing, and manipulating UML models. The MOF Specification's Reflective
module provides generic interfaces for accessing all objects of a model. Tailored interfaces extend the generic interfaces. One
tailored IDL module is generated from each UML Interchange Metamodel package following rules defined in the MOF
Specification. The tailored interfaces support fine-grained creation, access, and modification of model elements with type
safety in terms of the UML Interchange Metamodel. Support of tailored interfaces is optional. A facility might support some
packages and not others.

The module files are combined in a file named UML_1.4_CORBA_IDL.zip (OMG document ad/01-02-17).

The behavior of a CORBA Facility is defined by the MOF Specification for both reflective and tailored interfaces.
Additionally, a UML CORBA Facility must provide access to UML Standard Elements (stereotypes, constraints, and tags)
documented in Chapter 2, UML Semantics.
© ISO/IEC 2005 - All rights reserved 355

ISO/IEC 19501:2005(E)
356 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8 Object Constraint Language Specification

8.1 Overview

This chapter introduces and defines the Object Constraint Language (OCL), a formal language used to express constraints.
These typically specify invariant conditions that must hold for the system being modeled. Note that when the OCL expressions
are evaluated, they do not have side effects; that is, their evaluation cannot alter the state of the corresponding executing
system. In addition, to specifying invariants of the UML metamodel, UML modelers can use OCL to specify application-
specific constraints in their models.

OCL is used in the UML Semantics chapter to specify the well-formedness rules of the metaclasses comprising the UML
metamodel. A well-formedness rule in the static semantics chapters in the UML Semantics section normally contains an OCL
expression, specifying an invariant for the associated metaclass. The grammar for OCL is specified at the end of this chapter.
A parser generated from this grammar has correctly parsed all the constraints in the UML Semantics section, a process which
improved the correctness of the specifications for OCL and UML.

8.1.1 Why OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a specification.
There is, among other things, a need to describe additional constraints about the objects in the model. Such constraints are
often described in natural language. Practice has shown that this will always result in ambiguities. In order to write
unambiguous constraints, so-called formal languages have been developed. The disadvantage of traditional formal languages
is that they are usable to persons with a strong mathematical background, but difficult for the average business or system
modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and write. It has been developed as a
business modeling language within the IBM Insurance division, and has its roots in the Syntropy method.

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be without side effect. When an OCL
expression is evaluated, it simply returns a value. It cannot change anything in the model. This means that the state of the
system will never change because of the evaluation of an OCL expression, even though an OCL expression can be used to
specify a state change (for example, in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in OCL. You cannot
invoke processes or activate non-query operations within OCL. Because OCL is a modeling language in the first place, not
everything in it is promised to be directly executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL expression must conform to the
type conformance rules of the language. For example, you cannot compare an Integer with a String. Each Classifier defined
within a UML model represents a distinct OCL type. In addition, OCL includes a set of supplementary predefined types (these
are described in Section 8.8, “Predefined OCL Types,” on page 381).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot change during
evaluation.

8.1.2 Where to Use OCL

OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes
© ISO/IEC 2005 - All rights reserved 357

ISO/IEC 19501:2005(E)
• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• To specify constraints on operations

Within the UML Semantics chapter, OCL is used in the well-formedness rules as invariants on the metaclasses in the abstract
syntax. In several places, it is also used to define ‘additional’ operations which are used in the well-formedness rules. Starting
with UML 1.4, these additional operations can be formally defined using «definition» constraints and let-expressions.

8.2 Introduction

8.2.1 Legend

Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post denote the stereotypes,
respectively «invariant», «precondition», and «postcondition», of the constraint. The actual OCL expression comes after the
colon.

context TypeName inv:

'this is an OCL expression with stereotype <<invariant>> in the

context of TypeName' = 'another string'

In the example, the keyword of OCL is written in boldface in this document. The boldface has no formal meaning, but is used
to make the expressions more readable in this document. OCL expressions in this document are written using ASCII
characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

8.2.2 Example Class Diagram

Figure 158 on page 359 is used in the examples in this document.
358 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 158 - Class Diagram Example

8.3 Relation to the UML Metamodel

8.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the reserved word self
is used to refer to the contextual instance. For instance, if the context is Company, then self refers to an instance of Company.

8.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-called context declaration at the
beginning of an OCL expression. The context declaration of the constraints in the following sections is shown.

If the constraint is shown in a diagram with the proper stereotype and the dashed lines to connect it to its contextual element,
there is no need for an explicit context declaration in the test of the constraint. The context declaration is optional.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : Sex

income(Date) : Integer

accountNumber:Integer

Bank

0..1

customer

Company

name : String
numberOfEmployees : Integer

stockPrice() : Real

manager 0..*

managedCompanies

employee employer

wife

husband 0..1

0..1

0..*0..*

Job

title : String
startDate : Date
salary : Integer

Marriage

place : String
date : Date

male
female

«enumeration»
Sex
© ISO/IEC 2005 - All rights reserved 359

ISO/IEC 19501:2005(E)
8.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the invariant is
associated with a Classifier, the latter is referred to as a “type” in this chapter. An OCL expression is an invariant of the type
and must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are of the type
Boolean.)

For example, if in the context of the Company type in Figure 158 on page 359, the following expression would specify an
invariant that the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start the expression.) This invariant
holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the context keyword,
followed by the name of the type as follows. The label inv: declares the constraint to be an «invariant» constraint.

context Company inv:

self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an alternative for
self, a different name can be defined playing the part of self:

context c : Company inv:

c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be referenced by name.
In the following example the name of the constraint is enoughEmployees. In the UML metamodel, this name is an attribute of
the metaclass Constraint that is inherited from ModelElement.

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

8.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «postcondition»
stereotypes of Constraint associated with an Operation or Method. The contextual instance self then is an instance of the type
that owns the operation or method as a feature. The context declaration in OCL uses the context keyword, followed by the type
and operation declaration. The labels pre: and post: declare the constraints to be a «precondition» constraint and a
«postcondition» constraint respectively.

context Typename::operationName(param1 : Type1, ...): ReturnType

pre : param1 > ...

post: result = ...

The name self can be used in the expression referring to the object on which the operation was called. The reserved word result
denotes the result of the operation, if there is one. The names of the parameters (param1) can also be used in the OCL
expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer

post: result = 5000
360 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing the constraint
to be referenced by name. In the following example the name of the precondition is parameterOk and the name of the
postcondition is resultOk. In the UML metamodel, these names are attributes of the metaclass Constraint that is inherited from
ModelElement.

context Typename::operationName(param1 : Type1, ...): ReturnType

pre parameterOk: param1 > ...

post resultOk: result = ...

8.3.5 Package context

The above context declaration is precise enough when the package in which the Classifier belongs is clear from the
environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these constraints can
be enclosed between 'package' and 'endpackage' statements. The package statements have the syntax:

package Package::SubPackage

context X inv:

... some invariant ...

context X::operationName(..)

pre: ... some precondition ...

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, preconditions, and
postconditions to be written down and stored in one file. This file may co-exist with a UML model as a separate entity.

8.3.6 General Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its subtypes. In that
case, the semantics section describes the meaning of the expression.

8.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all times. These predefined value types are
independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types used in the examples in this document, with
corresponding examples of their values, are shown in Table 6.

Table 6 - Basic Types

type values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String 'To be or not to be...'
© ISO/IEC 2005 - All rights reserved 361

ISO/IEC 19501:2005(E)
OCL defines a number of operations on the predefined types. Table 7 gives some examples of the operations on the predefined
types. See Section 8.8, “Predefined OCL Types,” on page 381 for a complete list of all operations.

The complete list of operations provided for each type is described at the end of this chapter. Collection, Set, Bag, and
Sequence are basic types as well. Their specifics will be described in the upcoming sections.

8.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their features and
associations, and their generalizations. All classifiers from the UML model are types in the OCL expressions that are attached
to the model.

8.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a number of
enumeration literals, that are the possible values of the enumeration. Within OCL one can refer to the value of an enumeration.
When we have Datatype named Sex with values ‘female’ or ‘male’ they can be used as follows:

context Person inv:

sex = Sex::male

8.4.3 Let Expressions and «definition» Constraints

Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define an attribute or
operation that can be used in the constraint.

context Person inv:

let income : Integer = self.job.salary->sum()

let hasTitle(t : String) : Boolean

self.job->exists(title = t) in

if isUnemployed then

self.income < 100

else

self.income >= 100 and self.hasTitle(‘manager’)

endif

A let expression may be included in an invariant or pre- or postcondition. It is then only known within this specific constraint.
To enable reuse of let variables/operations one can use a Constraint with the stereotype «definition», in which let variables/
operations are defined. This «definition» Constraint must be attached to a Classifier and may only contain let definitions. All

Table 7 - Operations on predefined types

type operations

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

Boolean and, or, xor, not, implies, if-then-else

String toUpper(), concat()
362 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
variables and operations defined in the «definition» constraint are known in the same context as where any property of the
Classifier can be used. In essence, such variables and operations are psuedo-attributes and psuedo-operations of the classifier.
They are used in an OCL expression in exactly the same way as attributes or operations are used. The textual notation for a
«definition» Constraint uses the keyword ‘def’ as shown below:

context Person def:

let income : Integer = self.job.salary->sum()

let hasTitle(t : String) : Boolean =

self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the names of respective attributes/
associationEnds and operations of the Classifier. Also, the names of all let variables and operations connected with a Classifier
must be unique.

8.4.4 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy determines conformance
of the different types to each other. You cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the types don’t conform
is an invalid expression. It contains a type conformance error. A type type1 conforms to a type type2 when an instance of type1
can be substituted at each place where an instance of type2 is expected. The type conformance rules for types in the class
diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3, then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance rules for the
value types are listed in Table 8.

The conformance relation between the collection types only holds if they are collections of element types that conform to each
other. See Section 8.5.14, “Collection Type Hierarchy and Type Conformance Rules,” on page 374 for the complete
conformance rules for collections.

Table 9 provides examples of valid and invalid expressions.

Table 8 - Type conformance rules

Type Conforms to/Is a subtype of

Set(T) Collection(T)

Sequence(T) Collection(T)

Bag(T) Collection(T)

Integer Real

Table 9 - Valid expressions

OCL expression valid explanation

1 + 2 * 34 yes
© ISO/IEC 2005 - All rights reserved 363

ISO/IEC 19501:2005(E)
8.4.5 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current known type of
the object. Because the property is not defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed using the operation
oclAsType(OclType). This operation results in the same object, but the known type is the argument OclType. When there is an
object object of type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtypes; therefore, in the example, Type2 must be a subtype of Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expression is undefined (see
Section 8.4.10, “Undefined Values,” on page 365).

8.4.6 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

8.4.7 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’. ‘/’, ‘<‘, ‘>’, ‘<>’ ‘<=’ ‘>=’, ‘and’, ‘or’, and ‘xor’, are
used as infix operators. If a type defines one of those operators with the correct signature, they will be used as infix operators.
The expression:

1 + 'motorcycle' no type String does not conform to type Integer

23 * false no type Boolean does not conform to Integer

12 + 13.5 yes

Table 9 - Valid expressions

OCL expression valid explanation
364 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<‘, ‘>’, ‘<=’, ‘>=’, ‘<>’, ‘and’,
‘or’, and ‘xor’ the return type must be Boolean.

8.4.8 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL expression as the
name of a package, a type or a property. The list of keywords is shown below:

8.4.9 Comment

Comments in OCL are written following two successive dashes (minus signs). Everything immediately following the two
dashes up to and including the end of line is part of the comment. For example:

-- this is a comment

8.4.10 Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or more of the queries in the expression are
undefined. If this is the case, then the complete expression will be undefined.

There are two exceptions to this for the Boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above rules are valid whether or not the value
of the other sub-expression is known.

Table 10 - Keywords

if implies

then endpackage

else package

endif context

not def

let inv

or pre

and post

xor in
© ISO/IEC 2005 - All rights reserved 365

ISO/IEC 19501:2005(E)
8.5 Objects and Properties

OCL expressions can refer to Classifiers; for example, types, classes, interfaces, associations (acting as types), and datatypes.
Also all attributes, association-ends, methods, and operations without side-effects that are defined on these types, etc. can be
used. In a class model, an operation or method is defined to be side-effect-free if the isQuery attribute of the operations is true.
For the purpose of this document, we will refer to attributes, association-ends, and side-effect-free methods and operations as
being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

8.5.1 Properties

The value of a property on an object that is defined in a class diagram is specified by a dot followed by the name of the
property.

context AType inv:

self.property

If self is a reference to an object, then self.property is the value of the property property on self.

8.5.2 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv:

self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular instance of Person identified by self.
The type of this subexpression is the type of the attribute age, which is the basic type Integer.

Using attributes, and operations defined on the basic value types, we can express calculations etc. over the class model. For
example, a business rule might be “the age of a Person is always greater than zero.” This can be stated as shown in the
invariant above.

8.5.3 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a function of the
date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as «postcondition».
The object that is returned by the operation can be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer

post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined; that is, the definition may be recursive as long
as the recursion is not infinite. The type of result is the return type of the operation, which is Integer in the above example.
366 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are mandatory:

context Company inv:

self.stockPrice() > 0

8.5.4 Properties: Association Ends and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and their
properties. To do so, we navigate the association by using the opposite association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename association. If the multiplicity of the
association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an object. In the example class
diagram, when we start in the context of a Company; that is, self is an instance of Company, we can write:

context Company

inv: self.manager.isUnemployed = false

inv: self.employee->notEmpty()

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second invariant
self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the association on the Class
Diagram is adorned with {ordered}, the navigation results in a Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a large number of predefined operations
on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the name of the property. The
following example is in the context of a person:

context Person inv:

self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person self.

context Person inv:

self.employer->isEmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty and false
otherwise.

8.5.4.1 Missing Rolenames

When a rolename is missing at one of the ends of an association, the name of the type at the association end, starting with a
lowercase character for those languages that distinguish between uppercase and lowercase characters, is used as the rolename.
If this results in an ambiguity, the rolename is mandatory. This is the case with unnamed rolenames in reflexive associations. If
the rolename is ambiguous, then it cannot be used in OCL.

8.5.4.2 Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object can be used
as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done through the arrow
followed by a property of Set. This is shown in the following example:

context Company inv:

self.manager->size() = 1
© ISO/IEC 2005 - All rights reserved 367

ISO/IEC 19501:2005(E)
The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set. This expression
evaluates to true.

The following example shows how a property of a collection can be used.

context Company inv:

self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This
expression is incorrect, because foo is not a defined property of Set.

context Company inv:

self.manager.age> 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person.

In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an object or not
when navigating the association. In the example we can write:

context Person inv:

self.wife->notEmpty() implies self.wife.sex = Sex::female

8.5.4.3 Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an OCL expression always
evaluates to a specific object of a specific type. After obtaining a result, one can always apply another property to the result to
get a new result value. Therefore, each OCL expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18

context Person inv:

self.wife->notEmpty() implies self.wife.age >= 18 and

self.husband->notEmpty() implies self.husband.age >= 18

[2] a company has at most 50 employees

context Company inv:

self.employee->size() <= 50

8.5.5 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of the
association class starting with a lowercase character for those languages that distinguish between uppercase and lowercase
characters:

context Person inv:

self.job

The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies that are his/her employer. In the
case of an association class, there is no explicit rolename in the class diagram. The name job used in this navigation is the
name of the association class starting with a lowercase character for those languages that distinguish between uppercase and
lowercase characters, similar to the way described in the section “Missing Rolenames” above.
368 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
In case of a recursive association, that is an association of a class with itself, the name of the association class alone is not
enough. We need to distinguish the direction in which the association is navigated as well as the name of the association class.
Take the following model as an example.

Figure 159 - Navigating recursive association classes

When navigating to an association class such as employeeRanking there are two possibilities depending on the direction. For
instance, in the above example, we may navigate towards the employees end, or the bosses end. By using the name of the
association class alone, these two options cannot be distinguished. To make the distinction, the rolename of the direction in
which we want to navigate is added to the association class name, enclosed in square brackets.

In the expression

context Person inv:

self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bosses. And in the
expression

context Person inv:

self.employeeRanking[employees]->sum() > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings belonging to the collection of employees. The
unqualified use of the association class name is not allowed in such a recursive situation. Thus, the following example is
invalid:

context Person inv:

self.employeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qualified version is allowed as well.
Therefore, the examples at the start of this section could also be written as:

context Person inv:

self.job[employer]

8.5.6 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the association. This is done using the dot-
notation and the role-names at the association-ends.

context Job

inv: self.employer.numberOfEmployees >= 1

inv: self.employee.age > 21

EmployeeRanking

Person
age

bosses

employees * score

*

© ISO/IEC 2005 - All rights reserved 369

ISO/IEC 19501:2005(E)
Navigation from an association class to one of the objects on the association will always deliver exactly one object. This is a
result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one object, although it can be
used as a Set using the arrow (->).

8.5.7 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end of the association. To navigate
them, we can add the values for the qualifiers to the navigation. This is done using square brackets, following the role-name. It
is permissible to leave out the qualifier values, in which case the result will be all objects at the other end of the association.

context Bank inv:

self.customer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv:

self.customer[8764423]

This results in one Person, having accountnumber 8764423.

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in the UML
class model. It is not permissible to partially specify the qualifier attribute values.

8.5.8 Using Pathnames for Packages

Within UML, different types are organized in packages. OCL provides a way of explicitly referring to types in other packages
by using a package-pathname prefix. The syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::Typename

8.5.9 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the oclAsType()
operation. Whenever we have a class B as a subtype of class A, and a property p1 of both A and B, we can write:

context B inv:

self.oclAsType(A).p1 -- accesses the p1 property defined in A

self.p1 -- accesses the p1 property defined in B

Figure 160 shows an example where such a construct is needed.
370 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Figure 160 - Accessing Overridden Properties Example

In this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv:

self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might also mean navigation
through the dotted line as an association class. Both possible navigations use the same role-name, so this is always ambiguous.
Using oclAsType() we can distinguish between them with:

context Dependency

inv: self.oclAsType(Dependency).source

inv: self.oclAsType(ModelElement).source

8.5.10 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are:

oclIsTypeOf(t : OclType) : Boolean

oclIsKindOf(t : OclType) : Boolean

oclInState(s : OclState) : Boolean

oclIsNew() : Boolean

oclAsType(t : OclType) : instance of OclType

The operation is oclTypeOf results in true if the type of self and t are the same. For example:

context Person

inv: self.oclIsTypeOf(Person) -- is true

inv: self.oclIsTypeOf(Company) -- is false

The above property deals with the direct type of an object. The oclIsKindOf property determines whether t is either the direct
type or one of the supertypes of an object.

The operation oclInState(s) results in true if the object is in the state s. Values for s are the names of the states in the

....

Dependency

target

source
*

*

ModelElement

Note
value: Uninterpreted
© ISO/IEC 2005 - All rights reserved 371

ISO/IEC 19501:2005(E)
statemachine(s) attached to the Classifier of object. For nested states the statenames can be combined using the double colon
‘::’ .

Figure 161 - Statemachine Example

In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifier of object has the
above associated statemachine valid OCL expressions are:

object.oclInState(On)

object.oclInState(Off)

object.oclInstate(Off::Standby)

object.oclInState(Off:NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the name of the
statemachine containing the state and the double semicolon ::, as with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created during performing the operation; that
is, it didn’t exist at precondition time.

8.5.11 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are either predefined in OCL or
defined in the class model. In OCL, it is also possible to use features defined on the types/classes themselves. These are, for
example, the class-scoped features defined in the class model. Furthermore, several features are predefined on each type.

A predefined feature on each type is allInstances, which results in the Set of all instances of the type in existence at the specific
time when the expression is evaluated. If we want to make sure that all instances of Person have unique names, we can write:

context Person inv:

Person.allInstances->forAll(p1, p2 |

 p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person). It is the set of all persons that exist at the snapshot
in time that the expression is evaluated.

NOTE: The use of allInstances has some problems and its use is discouraged in most cases. The first problem is best
explained by looking at the types like Integer, Real and String. For these types the meaning of allInstances is undefined. What
does it mean for an Integer to exist? The evaluation of the expression Integer.allInstances results in an infinite set and is there-

On Off

Standby NoPower
372 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
fore undefined within OCL. The second problem with allInstances is that the existence of objects must be considered within
some overall context, like a system or a model. This overall context must be defined, which is not done within OCL. A recom-
mended style is to model the overall contextual system explicitly as an object within the system and navigate from that object
to its containing instances without using allInstances.

8.5.12 Collections

Single navigation results in a Set, combined navigations in a Bag, and navigation over associations adorned with {ordered}
results in a Sequence. Therefore, the collection types play an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations to enable the
OCL expression author (the modeler) to manipulate collections. Consistent with the definition of OCL as an expression
language, collection operations never change collections; isQuery is always true. They may result in a collection, but rather
than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three different collection
types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate elements. A Bag is like a set, which
may contain duplicates; that is, the same element may be in a bag twice or more. A Sequence is like a Bag in which the
elements are ordered. Both Bags and Sets have no order defined on them. Sets, Sequences, and Bags can be specified by a
literal in OCL. Curly brackets surround the elements of the collection, elements in the collection are written within, separated
by commas. The type of the collection is written before the curly brackets:

Set { 1 , 2 , 5 , 88 }

Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }

Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The elements inside
the curly brackets can be replaced by an interval specification, which consists of two expressions of type Integer, Int-expr1 and
Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-expr1 and Int-expr2, including the values of
Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.

Collections can be specified by a literal, as described above. The only other way to get a collection is by navigation. To be
more precise, the only way to get a Set, Sequence, or Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

 Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Bag {1, 2, 3, 2, 1}
© ISO/IEC 2005 - All rights reserved 373

ISO/IEC 19501:2005(E)
2. a navigation starting from a single object can result in a collection:

 context Company inv:

 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

8.5.13 Collections of Collections

Within OCL, all Collections of Collections are flattened automatically; therefore, the following two expressions have the same
value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

8.5.14 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in Section 8.4.4, “Type Conformance,” on page 363, the following rules hold for all
types, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3, then Type1 conforms to
Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are both subtypes of
Collection(Bicycle) at the same level in the hierarchy.

8.5.15 Previous Values in Postconditions

As stated in Section 8.3.4, “Pre- and Postconditions,” on page 360, OCL can be used to specify pre- and post-conditions on
operations and methods in UML. In a postcondition, the expression can refer to two sets of values for each property of an
object:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation. To refer to the value of a property at
the start of the operation, one has to postfix the property name with the keyword ‘@pre’:
374 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
context Person::birthdayHappens()

post: age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the operation. The property age@pre
refers to the value of the property age of the Person that executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the parameters.

context Company::hireEmployee(p : Person)

post: employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

The above operation can also be specified by a postcondition and a precondition together:

context Company::hireEmployee(p : Person)

pre : not employee->includes(p)

post: employees->includes(p) and

 stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are accessed of this object are the new
values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x

 -- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x

 -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. Asking for a current property of an
object that has been destroyed during execution of the operation results in Undefined. Also, referring to the previous value of
an object that has been created during execution of the operation results in Undefined.

8.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible and
powerful way of projecting new collections from existing ones. The different constructs are described in the following
sections.

8.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations delivers a collection, while we are interested only in a special
subset of the collection. OCL has special constructs to specify a selection from a specific collection. These are the select and
reject operations. The select specifies a subset of a collection. A select is an operation on a collection and is specified using the
arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements of the collection we want to select.
There are three different forms, of which the simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the boolean-expression evaluates to true. To
find the result of this expression, for each element in collection the expression boolean-expression is evaluated. If this
evaluates to true, the element is included in the result collection, otherwise not. As an example, the following OCL expression
© ISO/IEC 2005 - All rights reserved 375

ISO/IEC 19501:2005(E)
specifies that the collection of all the employees older than 50 years is not empty:

context Company inv:

self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50 for this
person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the collection on
which the select is invoked. Thus the age property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to properties of them. To
enable to refer to the persons themselves, there is a more general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-expression-
with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to refer to the objects
themselves from the collection. The two examples below are identical:

context Company inv:

self.employee->select(age > 50)->notEmpty()

context Company inv:

self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This amounts to a
subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The select now is written as:

collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next example is identical to the previous
examples:

context Company inv:

self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)

collection->select(v | boolean-expression-with-v)

collection->select(boolean-expression)

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the collection for
which the expression evaluates to False. The reject syntax is identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)

collection->reject(v | boolean-expression-with-v)

collection->reject(boolean-expression)

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv:

self.employee->reject(isMarried)->isEmpty()
376 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
The reject operation is available in OCL for convenience, because each reject can be restated as a select with the negated
expression. Therefore, the following two expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

8.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a sub-collection of the original collection.
When we want to specify a collection that is derived from some other collection, but which contains different objects from the
original collection; that is, it is not a sub-collection, we can use a collect operation. The collect operation uses the same syntax
as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a company. This can be written in the
context of a Company object as one of:

self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When more than one employee has the same
value for birthDate, this value will be an element of the resulting Bag more than once. The Bag resulting from the collect
operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression results in the Set of
different birthDates from all employees of a Company:

self.employee->collect(birthDate)->asSet()

8.6.2.1 Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation for the collect that makes the OCL
expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a collect over the
members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the following two expressions are identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:
© ISO/IEC 2005 - All rights reserved 377

ISO/IEC 19501:2005(E)
collection.propertyname(par1, par2, ...)

collection->collect(propertyname(par1, par2, ...)

8.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying a Boolean
expression, which must hold for all objects in a collection:

collection->forAll(v : Type | boolean-expression-with-v)

collection->forAll(v | boolean-expression-with-v)

collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all elements of
collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete expression evaluates to
false. For example, in the context of a company:

context Company

inv: self.employee->forAll(forename = 'Jack')

inv: self.employee->forAll(p | p.forename = 'Jack')

inv: self.employee->forAll(p : Person | p.forename = 'Jack')

These invariants evaluate to true if the forename feature of each employee is equal to ‘Jack.’

The forAll operation has an extended variant in which more then one iterator is used. Both iterators will iterate over the
complete collection. Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv:

self.employee->forAll(e1, e2 |

 e1 <> e2 implies e1.forename <> e2.forename)

context Company inv:

self.employee->forAll(e1, e2 : Person |

 e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv:

self.employee->forAll(e1 | self.employee->forAll (e2 |

 e1 <> e2 implies e1.forename <> e2.forename)))

8.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a constraint holds. The exists
operation in OCL allows you to specify a Boolean expression that must hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)

collection->exists(boolean-expression)

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least one element of
collection. If the boolean-expression-with-v is false for all v in collection, then the complete expression evaluates to false. For
378 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
example, in the context of a company:

context Company inv:

self.employee->exists(forename = 'Jack')

context Company inv:

self.employee->exists(p | p.forename = 'Jack')

context Company inv:

self.employee->exists(p : Person | p.forename = 'Jack')

These expressions evaluate to true if the forename feature of at least one employee is equal to ‘Jack.’

8.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists, collect can
all be described in terms of iterate.

An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |

expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The accumulator
gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-elem-and-acc is evaluated for each
elem. After each evaluation of expression-with-elem-and-acc, its value is assigned to acc. In this way, the value of acc is built
up during the iteration of the collection. The collect operation described in terms of iterate will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)

{

 acc = value;

 for(Enumeration e = collection.elements() ; e.hasMoreElements();){

 elem = e.nextElement();

 acc = <expression-with-elem-and-acc>

 }

}

Although the Java pseudo code uses a ‘next element,’ the iterate operation is defined for each collection type and the order of
the iteration through the elements in the collection is not defined for Set and Bag. For a Sequence the order is the order of the
elements in the sequence.
© ISO/IEC 2005 - All rights reserved 379

ISO/IEC 19501:2005(E)
8.6.6 Iterators in Collection Operations

The collection operations that take an OclExpression as parameter may all have an optional iterator declaration. For any
operation name op, the syntax options are:

collection->op(iter : Type | OclExpression)

collection->op(iter | OclExpression)

collection->op(OclExpression)

8.6.7 Resolving Properties

For any property (attribute, operation, or navigation), the full notation includes the object of which the property is taken. As
seen in Section 8.3.3, “Invariants,” on page 360, self can be left implicit, and so can the iterator variables in collection
operations. At any place in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example
in:

context Person inv:

employer->forAll(employee->exists(lastName = name))

three implicit variables are introduced. The first is self, which is always the instance from which the constraint starts. Secondly
an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator variables are unnamed. The
properties employer, employee, lastName and name all have the object on which they are applied left out. Resolving these goes
as follows:

• At the place of employer there is one implicit variable: self : Person. Therefore employer must be a property of self.

• At the place of employee there are two implicit variables: self : Person and iter1 : Company. Therefore employer must
be a property of either self or iter1. If employee is a property of both self and iter1, then this is unambiguous and the
instance on which employee is applied must be stated explicitly. In this case only iter1.employee is possible.

• At the place of lastName and name there are three implicit variables: self : Person , iter1 : Company and iter2 : Person.
Therefore lastName and name must both be a property of either self or iter1 or iter2. Property name is a property of
iter1. However, lastName is a property of both self and iter2. This is ambiguous and therefore the OCL expression is
incorrect. The expression must state either self.lastName or define the iter2 iterator variable explicit and state
iter2.lastName.

Both of the following invariant constraints are correct:

context Person

inv: employer->forAll(employee->exists(p | p.lastName = name))

inv: employer->forAll(employee->exists(self.lastName = name))

8.7 The Standard OCL Package

Each UML model that uses OCL constraints contains a predefined standard package called “UML_OCL.” This package is
used by default in all other packages in the model to evaluate OCL expressions. This package contains all predefined OCL
types and their features.

To extend the predefined OCL types, a modeler should define a separate package. The standard OCL package can be imported,
and each OCL type can be extended with new features.

To specify that a package used the predefined OCL types from a user defined package instead of the standard package, the
using package must define a Dependency with stereotype «OCL_Types» to the package that defines the extended OCL types.
380 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A constraint on the user defined OCL package is that as a minimum all predefined OCL types with all of their features must be
defined. The user defined package must be a proper extension to the standard OCL package.

8.8 Predefined OCL Types

This section contains all standard types defined within OCL, including all the properties defined on those types. Its signature
and a description of its semantics define each property. Within the description, the reserved word ‘result’ is used to refer to the
value that results from evaluating the property. In several places, post conditions are used to describe properties of the result.
When there is more than one postcondition, all postconditions must be true.

8.8.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented with OclExpression, OclType, and
OclAny.

8.8.1.1 OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type is an instance of the OCL type called
OclType. Access to this type allows the modeler limited access to the meta-level of the model. This can be useful for advanced
modelers.

Properties of OclType, where the instance of OclType is called type.

type.name() : String

The name of type.

type.attributes() : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds() : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the model.

type.operations() : Set(String)

The set of names of the operations of type, as they are defined in the model.

type.supertypes() : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes()->includesAll(result)

type.allSupertypes() : Set(OclType)

The transitive closure of the set of all supertypes of type.
© ISO/IEC 2005 - All rights reserved 381

ISO/IEC 19501:2005(E)
8.8.1.2 OclAny

Within the OCL context, the type OclAny is the supertype of all types in the model and the basic predefined OCL type. The
predefined OCL Collection types are not subtypes of OclAny. Properties of OclAny are available on each object in all OCL
expressions.

All classes in a UML model inherit all properties defined on OclAny. To avoid name conflicts between properties in the model
and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’ Although theoretically there
may still be name conflicts, they can be avoided. One can also use the oclAsType() operation to explicitly refer to the OclAny
properties.

Properties of OclAny, where the instance of OclAny is called object.

type.allInstances() : Set(type)

The set of all instances of type and all its subtypes in existence at the snapshot at the time that the expression is
evaluated.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object from object2.
post: result = not (object = object2)

object.oclIsKindOf(type : OclType) : Boolean

True if type is one of the types of object, or one of the supertypes (transitive) of the types of object.

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to one of the types of object.

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object
post: result.oclIsKindOf(type)
382 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8.8.1.3

8.8.1.4

8.8.1.5 OclState

The type OclState is used as a parameter for the operation oclInState. There are no properties defined on OclState. One can
only specify an OclState by using the name of the state, as it appears in a statemachine. These names can be fully qualified by
the nested states and statemachine that contain them.

8.8.1.6 OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the expression is OclExpression. This type and its
properties are used to define the semantics of properties that take an expression as one of their parameters: select, collect,
forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional accumulator variable and type.

Properties of OclExpression, where the instance of OclExpression is called expression.

8.8.1.7 Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for each parameter
of type Real, you can use an integer as the actual parameter.

Properties of Real, where the instance of Real is called r.

object.oclInState(state : OclState) : Boolean

Results in true if object is in the state state, otherwise results in false. The argument is a name of a state in the state
machine corresponding with the class of object.

object.oclIsNew() : Boolean

Can only be used in a postcondition.
Evaluates to true if the object is created during performing the operation. That is it didn’t exist at precondition time.

expression.evaluationType() : OclType

The type of the object that results from evaluating expression.

r = (r2 : Real) : Boolean

True if r is equal to r2.

r <> (r2 : Real) : Boolean

True if r is not equal to r2.
post: result = not (r = r2)
© ISO/IEC 2005 - All rights reserved 383

ISO/IEC 19501:2005(E)
r + (r2 : Real) : Real

The value of the addition of r and r2.

r - (r2 : Real) : Real

The value of the subtraction of r2 from r.

r * (r2 : Real) : Real

The value of the multiplication of r and r2.

- r : Real

The negative value of r.

r / (r2 : Real) : Real

The value of r divided by r2.

r.abs() : Real

The absolute value of r.
post: if r < 0 then result = - r else result = r endif

r.floor() : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.round() : Integer

The integer that is closest to r. When there are two such integers, the largest one.
post: ((r - result) < r).abs() < 0.5) or ((r - result).abs() = 0.5 and (result > r))

r.max(r2 : Real) : Real

The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.
384 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8.8.1.8 Integer

The OCL type Integer represents the mathematical concept of integer.

Properties of Integer, where the instance of Integer is called i.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i is equal to i2.

- i : Integer

The negative value of i.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i / (i2 : Integer) : Real

The value of i divided by i2.

i.abs() : Integer

The absolute value of i.
post: if i < 0 then result = - i else result = i endif
© ISO/IEC 2005 - All rights reserved 385

ISO/IEC 19501:2005(E)
8.8.1.9 String

The OCL type String represents strings consisting of ASCII characters or multi-byte characters.

Properties of String, where the instance of String is called string.

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
pre : i2 <> 0
post: if i / i2 >= 0 then result = (i / i2).floor() else result = -((-i/i2).floor()) endif

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size() : Integer

The number of characters in string.

string.concat(string2 : String) : String

The concatenation of string and string2.
post: result.size() = string.size() + string2.size()
post: result.substring(1, string.size()) = string
post: result.substring(string.size() + 1, result.size()) = string2

string.toUpper() : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size() = string.size()

string.toLower() : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size() = string.size()
386 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8.8.1.10 Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

8.8.1.11 Enumeration

The OCL type Enumeration represents the enumerations defined in a UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including character number upper.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif : expression1.evaluationType()

If b is true, the result is the value of evaluating expression1; otherwise, result is the value of evaluating expression2.
© ISO/IEC 2005 - All rights reserved 387

ISO/IEC 19501:2005(E)
8.8.2 Collection-Related Types

The following sections define the properties on collections; that is, these properties are available on Set, Bag, and Sequence.
As defined in this section, each collection type is actually a template with one parameter. ‘T’ denotes the parameter. A real
collection type is created by substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

All collection operations with an OclExpression as parameter can have an iterator declarator.

8.8.2.1 Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of an object in a collection is called an
element. If an object occurs twice in a collection, there are two elements. This section defines the properties on Collections
that have identical semantics for all collection subtypes. Some properties may be defined with the subtype as well, which
means that there is an additional postcondition or a more specialized return value.

The definition of several common properties is different for each subtype. These properties are not mentioned in this section.

Properties of Collection, where the instance of Collection is called collection.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)

collection->size() : Integer

The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->excludes(object : OclAny) : Boolean

True if object is not an element of collection, false otherwise.
post: result = (collection->count(object) = 0)

collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)
388 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean

Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty() : Boolean

Is collection the empty collection?
post: result = (collection->size() = 0)

collection->notEmpty() : Boolean

Is collection not the empty collection?
post: result = (collection->size() <> 0)

collection->sum() : T

The addition of all elements in collection. Elements must be of a type supporting the + operation. The + operation must
take one parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real
fulfill this condition.

post: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.

post: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection; otherwise, result is false.

post: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)

collection->isUnique(expr : OclExpression) : Boolean

Results in true if expr evaluates to a different value for each element in collection; otherwise, result is false.

post: let values = collection->collect(expr) in result = res->forAll(e | values->count(e) = 1)
© ISO/IEC 2005 - All rights reserved 389

ISO/IEC 19501:2005(E)
8.8.2.2 Set

The Set is the mathematical set. It contains elements without duplicates. Features of Set, the instance of Set is called set.

collection->sortedBy(expr : OclExpression) : Sequence(T)

Results in the Sequence containing all elements of collection. The element for which expr has the lowest value comes
first, and so on. The type of the expr expression must have the < operation defined. The < operation must return a Boolean
value and must be transitive (i.e., if a < b and b < c, then a < c).

pre: expr.evaluationType().operations()->includes(‘<‘)
post: result->includesAll(collection) and collection->includesAll(result)

collection->iterate(expr : OclExpression) : expr.evaluationType()

Iterates over the collection. See Section 8.6.5, “Iterate Operation,” on page 379 for a complete description. This is the
basic collection operation with which the other collection operations can be described.

collection->any(expr : OclExpression) : T

Returns any element in the collection for which expr evaluates to true. If there is more than one element for which expr is
true, one of them is returned. The precondition states that there must be at least one element fulfilling expr; otherwise, the
result of this operation is Undefined.

pre: collection->exists(expr)
post collection->select(expr)->includes(result)

collection->one(expr : OclExpression) : Boolean

Results in true if there is exactly one element in the collection for which expr is true.
post: collection->select(expr)->size() = 1

set->union(set2 : Set(T)) : Set(T)

The union of set and set2.

post: result->forAll(elem | set->includes(elem) or set2->includes(elem))
post: set->forAll(elem | result->includes(elem))
post: set2->forAll(elem | result->includes(elem))

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.

post: result->forAll(elem | result->count(elem) = set->count(elem) + bag->count(elem))
post: set->forAll(elem | result->includes(elem))
post: bag->forAll(elem | result->includes(elem))

set = (set2 : Set(T)) : Boolean

Evaluates to true if set and set2 contain the same elements.

post: result = (set->forAll(elem | set2->includes(elem)) and set2->forAll(elem | set->includes(elem)))
390 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2; that is, the set of all elements that are in both set and set2.

post: result->forAll(elem | set->includes(elem) and set2->includes(elem))
post: set->forAll(elem | set2->includes(elem) = result->includes(elem))
post: set2->forAll(elem | set->includes(elem) = result->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag.
post: result = set->intersection(bag->asSet)

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2.

post: result->forAll(elem | set->includes(elem) and set2->excludes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))

set->including(object : T) : Set(T)

The set containing all elements of set plus object.

post: result->forAll(elem | set->includes(elem) or (elem = object))
post: set->forAll(elem | result->includes(elem))
post: result->includes(object)

set->excluding(object : T) : Set(T)

The set containing all elements of set without object.

post: result->forAll(elem | set->includes(elem) and (elem <> object))
post: set->forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or set2, but not in both.

post: result->forAll(elem | set->includes(elem) xor set2->includes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))
post: set2->forAll(elem | result->includes(elem) = set->excludes(elem))

set->select(expr : OclExpression) : Set(T)

The subset of set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)
© ISO/IEC 2005 - All rights reserved 391

ISO/IEC 19501:2005(E)
8.8.2.3 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is no ordering
defined on the elements in a bag.

Properties of Bag, where the instance of Bag is called bag.

set->reject(expr : OclExpression) : Set(T)

The subset of set for which expr is false.
post: result = set->select(not expr)

set->collect(expr : OclExpression) : Bag(expr.evaluationType())

The Bag of elements that results from applying expr to every member of set.

post: result = set->iterate(elem; acc : Bag(expr.evaluationType()) = Bag{} |
 acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set.
post: result <= 1

set->asSequence() : Sequence(T)

A Sequence that contains all the elements from set, in undefined order.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

set->asBag() : Bag(T)

The Bag that contains all the elements from set.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

bag = (bag2 : Bag(T)) : Boolean

True if bag and bag2 contain the same elements, the same number of times.

post: result = (bag->forAll(elem | bag->count(elem) = bag2->count(elem)) and bag2->forAll(elem | bag2->count(elem) =
bag->count(elem)))

bag->union(bag2 : Bag(T)) : Bag(T)

The union of bag and bag2.

post: result->forAll(elem | result->count(elem) = bag->count(elem) + bag2->count(elem))
post: bag->forAll(elem | result->count(elem) = bag->count(elem) + bag2->count(elem))
post: bag2->forAll(elem | result->count(elem) = bag->count(elem) + bag2->count(elem))
392 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
bag->union(set : Set(T)) : Bag(T)

The union of bag and set.

post: result->forAll(elem | result->count(elem) = bag->count(elem) + set->count(elem))
post: bag->forAll(elem |result->count(elem) = bag->count(elem) + set->count(elem))
post: set->forAll(elem |result->count(elem) = bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag(T)) : Bag(T)

The intersection of bag and bag2.

post: result->forAll(elem | result->count(elem) = bag->count(elem).min(bag2->count(elem)))
post: bag->forAll(elem |result->count(elem) = bag->count(elem).min(bag2->count(elem)))
post: bag2->forAll(elem |result->count(elem) = bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set(T)) : Set(T)

The intersection of bag and set.

post: result->forAll(elem | result->count(elem) = bag->count(elem).min(set->count(elem)))
post: bag->forAll(elem |result->count(elem) = bag->count(elem).min(set->count(elem)))
post: set->forAll(elem |result->count(elem) = bag->count(elem).min(set->count(elem)))

bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object.

post: result->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object.
© ISO/IEC 2005 - All rights reserved 393

ISO/IEC 19501:2005(E)
post: result->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->select(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is true.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag->reject(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is false.
post: result = bag->select(not expr)

bag->collect(expr: OclExpression) : Bag(expr.evaluationType())

The Bag of elements that results from applying expr to every member of bag.

post: result = bag->iterate(elem; acc : Bag(expr.evaluationType()) = Bag{} |
 acc->including(expr))

bag->count(object : T) : Integer

The number of occurrences of object in bag.

bag->asSequence() : Sequence(T)

A Sequence that contains all the elements from bag, in undefined order.

post: result->forAll(elem | bag->count(elem) = result->count(elem))
post: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag->asSet() : Set(T)

The Set containing all the elements from bag, with duplicates removed.

post: result->forAll(elem | bag->includes(elem))
post: bag->forAll(elem | result->includes(elem))
394 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8.8.2.4 Sequence

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than once.

Properties of Sequence(T), where the instance of Sequence is called sequence.

sequence->count(object : T) : Integer

The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.

post: result = Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size() = sequence2->size()

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in sequence2.

post: result->size() = sequence->size() + sequence2->size()
post: Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size()}->forAll(index : Integer |
 sequence2->at(index) =
 result->at(index + sequence->size())))

sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.

post: result->size() = sequence->size() + 1
post: result->at(result->size()) = object
post: Sequence{1..sequence->size() }->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elements in sequence.

post: result->size = sequence->size() + 1
post: result->at(1) = object
post: Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element number upper.
© ISO/IEC 2005 - All rights reserved 395

ISO/IEC 19501:2005(E)
pre : 1 <= lower
pre : lower <= upper
pre : upper <= sequence->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll(index |
 result->at(index - lower + 1) =
 sequence->at(index))
endif

sequence->at(i : Integer) : T

The i-th element of sequence.
pre : i >= 1 and i <= sequence->size()

sequence->first() : T

The first element in sequence.
post: result = sequence->at(1)

sequence->last() : T

The last element in sequence.
post: result = sequence->at(sequence->size())

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last element.
post: result = sequence.append(object)

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size() = sequence->size() - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true.

post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |
 if expr then acc->including(elem) else acc endif)

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false.
post: result = sequence->select(not expr)
396 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
8.9 Grammar

This section describes the grammar for OCL expressions. An executable LL(1) version of this grammar is available on the
OCL web site. (See http://www.software.ibm.com/ad/ocl).

The grammar description uses the EBNF syntax, where “|” means a choice, “?” optionality, and “*” means zero or more times,
“+” means one or more times, and expressions delimited with “/*” and “*/” are definitions described with English words or
sentences. In the description of string, the syntax for lexical tokens from the JavaCC parser generator is used. The “~” symbol
denotes that none of the symbols following may be matched. It means “everything except the following.”

oclFile:= ("package" packageName

 oclExpressions

 "endpackage"

)+

packageName:= pathName

oclExpressions:= (constraint)*

constraint:= contextDeclaration

(("def" name? ":" letExpression*)

 |

 (stereotype name? ":" oclExpression)

)+

contextDeclaration:= "context"

(operationContext | classifierContext)

classifierContext:= (name ":" name)

sequence->collect(expression : OclExpression) : Sequence(expression.evaluationType())

The Sequence of elements that results from applying expression to every member of sequence.

sequence->iterate(expr : OclExpression) : expr.evaluationType()

Iterates over the sequence. Iteration will be done from element at position 1 up until the element at the last position
following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates.

post: result->forAll(elem | sequence->count(elem) = result->count(elem))
post: sequence->forAll(elem | sequence->count(elem) = result->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed.

post: result->forAll(elem | sequence->includes(elem))
post: sequence->forAll(elem | result->includes(elem))
© ISO/IEC 2005 - All rights reserved 397

ISO/IEC 19501:2005(E)
| name

operationContext:= name "::" operationName

"(" formalParameterList ")"

(":" returnType)?

stereotype:= ("pre" | "post" | "inv")

operationName:= name | "=" | "+" | "-" | "<" | "<=" |

">=" | ">" | "/" | "*" | "<>" |

"implies" | "not" | "or" | "xor" | "and"

formalParameterList:= (name ":" typeSpecifier

 ("," name ":" typeSpecifier)*

)?

typeSpecifier:= simpleTypeSpecifier

| collectionType

collectionType:= collectionKind

"(" simpleTypeSpecifier ")"

oclExpression:= (letExpression* "in")? expression

returnType:= typeSpecifier

expression:= logicalExpression

letExpression:= "let" name

("(" formalParameterList ")")?

(":" typeSpecifier)?

"=" expression

ifExpression:= "if" expression

"then" expression

"else" expression

"endif"

logicalExpression:= relationalExpression

(logicalOperator

relationalExpression

)*

relationalExpression:= additiveExpression

(relationalOperator

additiveExpression

)?

additiveExpression:= multiplicativeExpression

(addOperator
398 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
multiplicativeExpression

)*

multiplicativeExpression:= unaryExpression

(multiplyOperator

 unaryExpression

)*

unaryExpression:= (unaryOperator

 postfixExpression

)

| postfixExpression

postfixExpression:= primaryExpression

(("." | "->")propertyCall)*

primaryExpression:= literalCollection

| literal

| propertyCall

| "(" expression ")"

| ifExpression

propertyCallParameters:= "(" (declarator)?

(actualParameterList)? ")"

literal:= string

| number

| enumLiteral

enumLiteral:= name "::" name ("::" name)*

simpleTypeSpecifier:= pathName

literalCollection:= collectionKind "{"

(collectionItem

("," collectionItem)*

)?

"}"

collectionItem:= expression (".." expression)?

propertyCall:= pathName

(timeExpression)?

(qualifiers)?

(propertyCallParameters)?

qualifiers:= "[" actualParameterList "]"

declarator:= name ("," name)*
© ISO/IEC 2005 - All rights reserved 399

ISO/IEC 19501:2005(E)
(":" simpleTypeSpecifier)?

(";" name ":" typeSpecifier "="

 expression

)?

"|"

pathName:= name ("::" name)*

timeExpression:= "@" "pre"

actualParameterList:= expression ("," expression)*

logicalOperator:= "and" | "or" | "xor" | "implies"

collectionKind:= "Set" | "Bag" | "Sequence" | "Collection"

relationalOperator:= "=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator:= "+" | "-"

multiplyOperator:= "*" | "/"

unaryOperator:= "-" | "not"

typeName :=charForNameTop charForName*

name := charForNameTop charForName*

charForNameTop := /* Characters except inhibitedChar

 and ["0"-"9"]; the available

 characters shall be determined by

 the tool implementers ultimately.*/

charForName := /* Characters except inhibitedChar; the

 available characters shall be determined

 by the tool implementers ultimately.*/

inhibitedChar := " " | "\"" | "#" | "\'" | "(" | ")" |

 "*" | "+" | "," | "-" | "." | "/" |

 ":" | ";" | "<" | "=" | ">" | "@" |

 "[" | "\\" | "]" | "{" | "|" | "}"

number := ["0"-"9"] (["0"-"9"])*
("." ["0"-"9"] (["0"-"9"])*)?

(("e" | "E") ("+" | "-")? ["0"-"9"]

(["0"-"9"])*

)?

string:= "'"

((~["’","\\","\n","\r"])

 |("\\"

(["n","t","b","r","f","\\","’","\""]
400 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
 | ["0"-"7"]

 (["0"-"7"] (["0"-"7"])?)?

)

)

)*

"'"
© ISO/IEC 2005 - All rights reserved 401

ISO/IEC 19501:2005(E)
402 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Annex A
(normative)

UML Standard Elements

A.1 Overview

This appendix contains a list of the predefined standard elements for UML. The standard elements are stereotypes, constraints,
and tagged values. The names used for UML predefined standard elements are considered reserved words; modelers should
not overload these names with different definitions. Each standard element is described in the chapter containing its base
element.

Standard Element Name Applies to Base Element Kind

Package Stereotype

Package Stereotype

Package Stereotype

Package Stereotype

«access» Permission Stereotype

«appliedProfile» Package Stereotype

association Association Constraint

«association» AssociationEnd Stereotype

«auxiliary» Class Stereotype

«become» Flow Stereotype

«call» Usage Stereotype

complete Generalization Constraint

«copy» Flow Stereotype

«create» BehavioralFeature Stereotype

«create» CallEvent Stereotype

«create» Usage Stereotype

«derive» Abstraction Stereotype

derived ModelElement Tag

«destroy» BehavioralFeature Stereotype

«destroy» CallEvent Stereotype

disjoint Generalization Constraint
© ISO/IEC 2005 - All rights reserved 403

ISO/IEC 19501:2005(E)
«document» Abstraction Stereotype

documentation Element Tag

«executable» Abstraction Stereotype

«facade» Package Stereotype

«file» Abstraction Stereotype

«focus» Class Stereotype

«framework» Package Stereotype

«friend» Permission Stereotype

global Association Constraint

«global» AssociationEnd Stereotype

«implementation» Class Stereotype

«implementation» Generalization Stereotype

«implicit» Association Stereotype

«import» Permission Stereotype

incomplete Generalization Constraint

«instantiate» Usage Stereotype

«invariant» Constraint Stereotype

«library» Abstraction Stereotype

local Association Constraint

«local» AssociationEnd Stereotype

«metaclass» Class Stereotype

«metamodel» Package Stereotype

«modelLibrary» Package Stereotype

«modelLibrary» Package Stereotype

overlapping Generalization Constraint

parameter Association Constraint

«parameter» AssociationEnd Stereotype

persistence Association Tag

persistence Attribute Tag

persistence Classifier Tag

persistent Association Tag

«postcondition» Constraint Stereotype
404 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
«powertype» Class Stereotype

«precondition» Constraint Stereotype

«process» Classifier Stereotype

«profile» Package Stereotype

«realize» Abstraction Stereotype

«refine» Abstraction Stereotype

«requirement» Comment Stereotype

«responsibility» Comment Stereotype

self Association Constraint

«self» AssociationEnd Stereotype

semantics Classifier Tag

semantics Operation Tag

«send» Usage Stereotype

«signalflow» ObjectFlowState Stereotype

«source» Abstraction Stereotype

«stateInvariant» Constraint Stereotype

«stub» Package Stereotype

«systemModel» Package Stereotype

«table» Abstraction Stereotype

«thread» Classifier Stereotype

«topLevel» Package Stereotype

«trace» Abstraction Stereotype

transient Association Constraint

transient Association Constraint

«type» Class Stereotype

xor Association Constraint
© ISO/IEC 2005 - All rights reserved 405

ISO/IEC 19501:2005(E)
406 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Annex B
(normative)

Legal Information

B.1 Copyright Information

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation
Copyright © 1997-2001 ICON Computing
Copyright © 1997-2001 i-Logix
Copyright © 1997-2001 IntelliCorp
Copyright © 1997-2001 Microsoft Corporation
Copyright © 2003 Object Management Group
Copyright © 1997-2001 ObjecTime Limited
Copyright © 1997-2001 Oracle Corporation
Copyright © 1997-2001 Platinum Technology, Inc.
Copyright © 1997-2001 Ptech Inc.
Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-2001 Reich Technologies
Copyright © 1997-2001 Softeam
Copyright © 1997-2001 Sterling Software
Copyright © 1997-2001 Taskon A/S
Copyright © 1997-2001 Unisys Corporation

B.2 USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

B.3 LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
© ISO/IEC 2005 - All rights reserved 407

ISO/IEC 19501:2005(E)
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

B.4 PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

B.5 GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

B.6 DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

B.7 RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

B.8 TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
408 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

B.9 COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

B.10 ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.
© ISO/IEC 2005 - All rights reserved 409

ISO/IEC 19501:2005(E)
410 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
Glossary
This glossary defines the terms that are used to describe the Unified Modeling Language (UML) and the Meta Object Facility
(MOF). In addition to UML and MOF specific terminology, it includes related terms from OMG standards and object-oriented
analysis and design methods, as well as the domain of object repositories and meta data managers. Glossary entries are
organized alphabetically and MOF specific entries are identified as ‘[MOF]’.

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase letter is used when a word is usually
capitalized in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when referring
to the term. For example, use case [class] may be referred to as simply use case.

The following conventions are used in this glossary:

• Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

• See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>
Indicates that the term has the same meaning as another term, which is referenced.

• Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spelled-out term for the definition, unless the
spelled-out term is rarely used.

This glossary defines the terms that are used to describe the Unified Modeling Language (UML) and the Meta Object Facility
(MOF). In addition to UML and MOF specific terminology, it includes related terms from OMG standards and object-oriented
analysis and design methods, as well as the domain of object repositories and meta data managers. Glossary entries are
organized alphabetically and MOF specific entries are identified as ‘[MOF]’.

Glossary Terms

abstract class A class that cannot be directly instantiated. Contrast: concrete class.

abstraction The essential characteristics of an entity that distinguish it from all other kinds of entities. An
abstraction defines a boundary relative to the perspective of the viewer.

action The specification of an executable statement that forms an abstraction of a computational procedure.
An action typically results in a change in the state of the system, and can be realized by sending a
message to an object or modifying a link or a value of an attribute.

action sequence An expression that resolves to a sequence of actions.

action state A state that represents the execution of an atomic action, typically the invocation of an operation.

activation The execution of an action.

active class A class whose instances are active objects. See: active object.

active object An object that owns a thread and can initiate control activity. An instance of active class. See: active
class, thread.
© ISO/IEC 2005 - All rights reserved 411

ISO/IEC 19501:2005(E)
activity graph A special case of a state machine that is used to model processes involving one or more classifiers.
Contrast: statechart diagram.

actor [class] A coherent set of roles that users of use cases play when interacting with these use cases. An actor
has one role for each use case with which it communicates.

actual parameter Synonym: argument.

aggregate [class] A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.

aggregation A special form of association that specifies a whole-part relationship between the aggregate
(whole) and a component part. See: composition.

analysis The part of the software development process whose primary purpose is to formulate a model of the
problem domain. Analysis focuses what to do, design focuses on how to do it. Contrast: design.

analysis time Refers to something that occurs during an analysis phase of the software development process. See:
design time, modeling time.

architecture The organizational structure and associated behavior of a system. An architecture can be
recursively decomposed into parts that interact through interfaces, relationships that connect parts,
and constraints for assembling parts. Parts that interact through interfaces include classes,
components and subsystems.

argument A binding for a parameter that resolves to a run-time instance. Synonym: actual parameter.
Contrast: parameter.

artifact A physical piece of information that is used or produced by a software development process.
Examples of Artifacts include models, source files, scripts, and binary executable files. An artifact
may constitute the implementation of a deployable component. Synonym: product. Contrast:
component.

association The semantic relationship between two or more classifiers that specifies connections among their
instances.

association class A model element that has both association and class properties. An association class can be seen as
an association that also has class properties, or as a class that also has association properties.

association end The endpoint of an association, which connects the association to a classifier.

attribute A feature within a classifier that describes a range of values that instances of the classifier may
hold.

auxiliary class A stereotyped class that supports another more central or fundamental class, typically by
implementing secondary logic or control flow. Auxiliary classes are typically used together with
focus classes, and are particularly useful for specifying the secondary business logic or control flow
of components during design. See also: focus.

behavior The observable effects of an operation or event, including its results.

behavioral feature A dynamic feature of a model element, such as an operation or method.

behavioral model aspect A model aspect that emphasizes the behavior of the instances in a system, including their methods,
collaborations, and state histories.

binary association An association between two classes. A special case of an n-ary association.

binding The creation of a model element from a template by supplying arguments for the parameters of the
template.

boolean An enumeration whose values are true and false.

boolean expression An expression that evaluates to a boolean value.
412 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
cardinality The number of elements in a set. Contrast: multiplicity.

child In a generalization relationship, the specialization of another element, the parent. See: subclass,
subtype. Contrast: parent.

call An action state that invokes an operation on a classifier.

class A description of a set of objects that share the same attributes, operations, methods, relationships,
and semantics. A class may use a set of interfaces to specify collections of operations it provides to
its environment. See: interface.

classifier A mechanism that describes behavioral and structural features. Classifiers include interfaces,
classes, datatypes, and components.

classification The assignment of an object to a classifier. See dynamic classification, multiple classification and
static classification.

class diagram A diagram that shows a collection of declarative (static) model elements, such as classes, types, and
their contents and relationships.

client A classifier that requests a service from another classifier. Contrast: supplier.

collaboration The specification of how an operation or classifier, such as a use case, is realized by a set of
classifiers and associations playing specific roles used in a specific way. The collaboration defines
an interaction. See: interaction.

collaboration diagram A diagram that shows interactions organized around the structure of a model, using either
classifiers and associations or instances and links. Unlike a sequence diagram, a collaboration
diagram shows the relationships among the instances. Sequence diagrams and collaboration
diagrams express similar information, but show it in different ways. See: sequence diagram.

comment An annotation attached to an element or a collection of elements. A note has no semantics.
Contrast: constraint.

compile time Refers to something that occurs during the compilation of a software module. See: modeling time,
run time.

component A modular, deployable, and replaceable part of a system that encapsulates
implementation and exposes a set of interfaces. A component is typically specified by one or
more classifiers (e.g., implementation classes) that reside on it, and may be implemented by one or
more artifacts (e.g., binary, executable, or script files). Contrast: artifact.

component diagram A diagram that shows the organizations and dependencies among components.

composite [class] A class that is related to one or more classes by a composition relationship. See: composition.

composite aggregation Synonym: composition.

composite state A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates.
See: substate.

composition A form of aggregation which requires that a part instance be included in at most one composite at
a time, and that the composite object is responsible for the creation and destruction of the parts.
Composition may be recursive.
Synonym: composite aggregation.

concrete class A class that can be directly instantiated. Contrast: abstract class.

concurrency The occurrence of two or more activities during the same time interval. Concurrency can be
achieved by interleaving or simultaneously executing two or more threads. See: thread.

concurrent substate A substate that can be held simultaneously with other substates contained in the same composite
state. See: composite state. Contrast: disjoint substate.
© ISO/IEC 2005 - All rights reserved 413

ISO/IEC 19501:2005(E)
constraint A semantic condition or restriction. Certain constraints are predefined in the UML, others may be
user defined. Constraints are one of three extensibility mechanisms in UML. See: tagged value,
stereotype.

container 1. An instance that exists to contain other instances, and that provides operations to access or
iterate over its contents. (for example, arrays, lists, sets).
2. A component that exists to contain other components.

containment hierarchy A namespace hierarchy consisting of model elements, and the containment relationships that exist
between them. A containment hierarchy forms a graph.

context A view of a set of related modeling elements for a particular purpose, such as specifying an
operation.

datatype A descriptor of a set of values that lack identity and whose operations do not have side effects.
Datatypes include primitive pre-defined types and user-definable types. Pre-defined types include
numbers, string and time. User-definable types include enumerations.

defining model [MOF] The model on which a repository is based. Any number of repositories can have the same defining
model.

delegation The ability of an object to issue a message to another object in response to a message. Delegation
can be used as an alternative to inheritance. Contrast: inheritance.

dependency A relationship between two modeling elements, in which a change to one modeling element (the
independent element) will affect the other modeling element (the dependent element).

deployment diagram A diagram that shows the configuration of run-time processing nodes and the components,
processes, and objects that live on them. Components represent run-time manifestations of code
units. See: component diagrams.

derived element A model element that can be computed from another element, but that is shown for clarity or that
is included for design purposes even though it adds no semantic information.

design The part of the software development process whose primary purpose is to decide how the system
will be implemented. During design strategic and tactical decisions are made to meet the required
functional and quality requirements of a system.

design time Refers to something that occurs during a design phase of the software development process. See:
modeling time. Contrast: analysis time.

development process A set of partially ordered steps performed for a given purpose during software development, such
as constructing models or implementing models.

diagram A graphical presentation of a collection of model elements, most often rendered as a connected
graph of arcs (relationships) and vertices (other model elements). UML supports the following
diagrams: class diagram, object diagram, use case diagram, sequence diagram, collaboration
diagram, state diagram, activity diagram, component diagram, and deployment diagram.

disjoint substate A substate that cannot be held simultaneously with other substates contained in the same composite
state. See: composite state. Contrast: concurrent substate.

distribution unit A set of objects or components that are allocated to a process or a processor as a group. A
distribution unit can be represented by a run-time composite or an aggregate.

domain An area of knowledge or activity characterized by a set of concepts and terminology understood by
practitioners in that area.

dynamic classification A semantic variation of generalization in which an object may change its classifier. Contrast: static
classification.

element An atomic constituent of a model.
414 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
entry action An action executed upon entering a state in a state machine
regardless of the transition taken to reach that state.

enumeration A list of named values used as the range of a particular attribute type. For example, RGBColor =
{red, green, blue}. Boolean is a predefined enumeration with values from the set {false, true}.

event The specification of a significant occurrence that has a location in time and space. In the context of
state diagrams, an event is an occurrence that can trigger a transition.

exit action An action executed upon exiting a state in a state machine
regardless of the transition taken to exit that state.

export In the context of packages, to make an element visible outside its enclosing namespace. See:
visibility. Contrast: export [OMA], import.

expression A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)”
evaluates to a value of type number.

extend A relationship from an extension use case to a base use case, specifying how the behavior defined
for the extension use case augments (subject to conditions specified in the extension) the behavior
defined for the base use case. The behavior is inserted at the location defined by the extension point
in the base use case. The base use case does not depend on performing the behavior of the
extension use case. See extension point, include.

facade A stereotyped package containing only references to model elements owned by another package. It
is used to provide a ‘public view’ of some of the contents of a package.

feature A property, like operation or attribute, which is encapsulated within a classifier, such as an
interface, a class, or a datatype.

final state A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.

fire To execute a state transition. See: transition.

focus class A stereotyped class that defines the core logic or control flow for one or more auxiliary classes that
support it. Focus classes are typically used together with one or more auxiliary classes, and are
particularly useful for specifying the core business logic or control flow of components during
design. See also: auxiliary.

focus of control A symbol on a sequence diagram that shows the period of time during which an object is
performing an action, either directly or through a subordinate procedure.

formal parameter Synonym: parameter.

framework A stereotyped package that contains model elements which specify a reusable architecture for all or
part of a system. Frameworks typically include classes, patterns or templates. When frameworks are
specialized for an application domain, they are sometimes referred to as application frameworks.
See: pattern.

generalizable element A model element that may participate in a generalization relationship. See: generalization.

generalization A taxonomic relationship between a more general element and a more specific element. The more
specific element is fully consistent with the more general element and contains additional
information. An instance of the more specific element may be used where the more general element
is allowed. See: inheritance.

guard condition A condition that must be satisfied in order to enable an associated transition to fire.

implementation A definition of how something is constructed or computed. For example, a class is an
implementation of a type, a method is an implementation of an operation.
© ISO/IEC 2005 - All rights reserved 415

ISO/IEC 19501:2005(E)
implementation class A stereotyped class that specifies the implementation of a class in some programming language
(e.g., C++, Smalltalk, Java) in which an instance may not have more than one class. An
Implementation class is said to realize a type if it provides all of the operations defined for the type
with the same behavior as specified for the type's operations. See also: type.

implementation

inheritance

The inheritance of the implementation of a more general element. Includes inheritance of the
interface. Contrast: interface inheritance.

import In the context of packages, a dependency that shows the packages whose classes may be referenced
within a given package (including packages recursively embedded within it). Contrast: export.

include A relationship from a base use case to an inclusion use case, specifying how the behavior for the
base use case contains the behavior of the inclusion use case. The behavior is included at the
location which is defined in the base use case. The base use case depends on performing the
behavior of the inclusion use case, but not on its structure (i.e., attributes or operations). See extend.

inheritance The mechanism by which more specific elements incorporate structure and behavior of more
general elements related by behavior. See generalization.

initial state A special kind of state signifying the source for a single transition to the default state of the
composite state.

instance An entity that has unique identity, a set of operations that can be applied to it, and state that stores
the effects of the operations. See: object.

interaction A specification of how stimuli are sent between instances to perform a specific task. The interaction
is defined in the context of a collaboration. See collaboration.

interaction diagram A generic term that applies to several types of diagrams that emphasize object interactions. These
include collaboration diagrams and sequence diagrams.

interface A named set of operations that characterize the behavior of an element.

interface inheritance The inheritance of the interface of a more general element. Does not include inheritance of the
implementation. Contrast: implementation inheritance.

internal transition A transition signifying a response to an event without changing the state of an object.

layer The organization of classifiers or packages at the same level of abstraction. A layer represents a
horizontal slice through an architecture, whereas a partition represents a vertical slice. Contrast:
partition.

link A semantic connection among a tuple of objects. An instance of an association. See: association.

link end An instance of an association end. See: association end.

message A specification of the conveyance of information from one instance to another, with the expectation
that activity will ensue. A message may specify the raising of a signal or the call of an operation.

metaclass A class whose instances are classes. Metaclasses are typically used to construct metamodels.

meta-metamodel A model that defines the language for expressing a metamodel. The relationship between a meta-
metamodel and a metamodel is analogous to the relationship between a metamodel and a model.

metamodel A model that defines the language for expressing a model.

metaobject A generic term for all metaentities in a metamodeling language. For example, metatypes,
metaclasses, metaattributes, and metaassociations.

method The implementation of an operation. It specifies the algorithm or procedure associated with an
operation.
416 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
model

[MOF]

An abstraction of a physical system with a certain purpose. See: physical system.

Usage note: In the context of the MOF specification, which describes a meta-metamodel, for
brevity the meta-metamodel is frequently to as simply the model.

model aspect A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the
structural model aspect emphasizes the structural qualities of the metamodel.

model elaboration The process of generating a repository type from a published model. Includes the generation of
interfaces and implementations which allows repositories to be instantiated and populated based on,
and in compliance with, the model elaborated.

model element

[MOF]

An element that is an abstraction drawn from the system being modeled. Contrast: view element.

In the MOF specification model elements are considered to be metaobjects.

model library A stereotyped package that contains model elements which are intended to be reused by other
packages. A model library differs from a profile in that a model library does not extend the
metamodel using stereotypes and tagged definitions. A model library is analogous to a class library
in some programming languages.

modeling time Refers to something that occurs during a modeling phase of the software development process. It
includes analysis time and design time. Usage note: When discussing object systems, it is often
important to distinguish between modeling-time and run-time concerns. See: analysis time, design
time. Contrast: run time.

module A software unit of storage and manipulation. Modules include source code modules, binary code
modules, and executable code modules. See: component.

multiple classification A semantic variation of generalization in which an object may belong directly to more than one
classifier. See: static classification, dynamic classification.

multiple inheritance A semantic variation of generalization in which a type may have more than one supertype.
Contrast: single inheritance.

multiplicity A specification of the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for roles within associations, parts within composites, repetitions, and
other purposes. Essentially a multiplicity is a (possibly infinite) subset of the non-negative integers.
Contrast: cardinality.

multi-valued [MOF] A model element with multiplicity defined whose Multiplicity Type:: upper attribute is set to a
number greater than one. The term multi-valued does not pertain to the number of values held by an
attribute, parameter, etc. at any point in time. Contrast: single-valued.

n-ary association An association among three or more classes. Each instance of the association is an n-tuple of values
from the respective classes. Contrast: binary association.

name A string used to identify a model element.

namespace A part of the model in which the names may be defined and used. Within a namespace, each name
has a unique meaning. See: name.

node A node is classifier that represents a run-time computational resource, which generally has at least
a memory and often processing capability. Run-time objects and components may reside on nodes.

object An entity with a well defined boundary and identity that encapsulates state and behavior. State is
represented by attributes and relationships, behavior is represented by operations, methods, and
state machines. An object is an instance of a class. See: class, instance.
© ISO/IEC 2005 - All rights reserved 417

ISO/IEC 19501:2005(E)
object diagram A diagram that encompasses objects and their relationships at a point in time. An object diagram
may be considered a special case of a class diagram or a collaboration diagram. See: class diagram,
collaboration diagram.

object flow state A state in an activity graph that represents the passing of an object from the output of actions in
one state to the input of actions in another state.

object lifeline A line in a sequence diagram that represents the existence of an object over a period of time. See:
sequence diagram.

operation A service that can be requested from an object to effect behavior. An operation has a signature,
which may restrict the actual parameters that are possible.

package A general purpose mechanism for organizing elements into groups. Packages may be nested within
other packages.

parameter The specification of a variable that can be changed, passed, or returned. A parameter may include a
name, type, and direction. Parameters are used for operations, messages, and events. Synonyms:
formal parameter. Contrast: argument.

parameterized element The descriptor for a class with one or more unbound parameters. Synonym: template.

parent In a generalization relationship, the generalization of another element, the child. See: subclass,
subtype. Contrast: child.

participate The connection of a model element to a relationship or to a reified relationship. For example, a
class participates in an association, an actor participates in a use case.

partition 1. activity graphs: A portion of an activity graphs that organizes the responsibilities for actions.
See: swimlane.
2. architecture: A set of related classifiers or packages at the same level of abstraction or across
layers in a layered architecture. A partition represents a vertical slice through an architecture,
whereas a layer represents a horizontal slice. Contrast: layer.

pattern A template collaboration.

persistent object An object that exists after the process or thread that created it has ceased to exist.

postcondition A constraint that must be true at the completion of an operation.

precondition A constraint that must be true when an operation is invoked.

primitive type A pre-defined basic datatype without any substructure, such as an integer or a string.

process 1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread,
which includes heavyweight and lightweight processes. If necessary, an implementation distinction
can be made using stereotypes.
2. A software development process—the steps and guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle something dynamically.

profile A profile is a stereotyped package that contains model elements which have been customized for a
specific domain or purpose using extension mechanisms, such as stereotypes, tagged definitions
and constraints. A profile may also specify model libraries on which it depends and the metamodel
subset that it extends.

projection A mapping from a set to a subset of it.

property A named value denoting a characteristic of an element. A property has semantic impact. Certain
properties are predefined in the UML; others may be user defined. See: tagged value.

pseudo-state A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states
include initial and history vertices.
418 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
physical system 1. The subject of a model.
2. A collection of connected physical units, which can include software, hardware and people, that
are organized to accomplish a specific purpose. A physical system can be described by one or more
models, possibly from different viewpoints. Contrast: system.

published model [MOF] A model that has been frozen, and becomes available for instantiating repositories and for the
support in defining other models. A frozen model’s model elements cannot be changed.

qualifier An association attribute or tuple of attributes whose values partition the set of objects related to an
object across an association.

receive [a message] The handling of a stimulus passed from a sender instance. See: sender, receiver.

receiver [object] The object handling a stimulus passed from a sender object. Contrast: sender.

reception A declaration that a classifier is prepared to react to the receipt of a signal.

reference 1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.

refinement A relationship that represents a fuller specification of something that has already been specified at
a certain level of detail. For example, a design class is a refinement of an analysis class.

relationship A semantic connection among model elements. Examples of relationships include associations and
generalizations.

repository A facility for storing object models, interfaces, and implementations.

requirement A desired feature, property, or behavior of a system.

responsibility A contract or obligation of a classifier.

reuse The use of a pre-existing artifact.

role The named specific behavior of an entity participating in a particular context. A role may be static
(e.g., an association end) or dynamic (e.g., a collaboration role).

run time The period of time during which a computer program executes. Contrast: modeling time.

scenario A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an
interaction or the execution of a use case instance. See: interaction.

schema [MOF] In the context of the MOF, a schema is analogous to a package which is a container of model
elements. Schema corresponds to an MOF package. Contrast: metamodel, package.

semantic variation point A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom
for the interpretation of the metamodel semantics.

send [a message] The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.

sender [object] The object passing a stimulus to a receiver object. Contrast: receiver.

sequence diagram A diagram that shows object interactions arranged in time sequence. In particular, it shows the
objects participating in the interaction and the sequence of messages exchanged. Unlike a
collaboration diagram, a sequence diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and
in an instance form (describes one actual scenario). Sequence diagrams and collaboration diagrams
express similar information, but show it in different ways. See: collaboration diagram.

signal The specification of an asynchronous stimulus communicated between instances. Signals may have
parameters.

signature The name and parameters of a behavioral feature. A signature may include an optional returned
parameter.
© ISO/IEC 2005 - All rights reserved 419

ISO/IEC 19501:2005(E)
single inheritance A semantic variation of generalization in which a type may have only one supertype. Synonym:
multiple inheritance [OMA]. Contrast: multiple inheritance.

single valued [MOF] A model element with multiplicity defined is single valued when its Multiplicity Type:: upper
attribute is set to one. The term single-valued does not pertain to the number of values held by an
attribute, parameter, etc., at any point in time, since a single-valued attribute (for instance, with a
multiplicity lower bound of zero) may have no value. Contrast: multi-valued.

specification A declarative description of what something is or does. Contrast: implementation.

state A condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event. Contrast: state [OMA].

statechart diagram A diagram that shows a state machine. See: state machine.

state machine A behavior that specifies the sequences of states that an object or an interaction goes through
during its life in response to events, together with its responses and actions.

static classification A semantic variation of generalization in which an object may not change classifier. Contrast:
dynamic classification.

stereotype A new type of modeling element that extends the semantics of the metamodel. Stereotypes must be
based on certain existing types or classes in the metamodel. Stereotypes may extend the semantics,
but not the structure of pre-existing types and classes. Certain stereotypes are predefined in the
UML, others may be user defined. Stereotypes are one of three extensibility mechanisms in UML.
See: constraint, tagged value.

stimulus The passing of information from one instance to another, such as raising a signal or invoking an
operation. The receipt of a signal is normally considered an event. See: message.

string A sequence of text characters. The details of string representation depend on implementation, and
may include character sets that support international characters and graphics.

structural feature A static feature of a model element, such as an attribute.

structural model aspect A model aspect that emphasizes the structure of the objects in a system, including their types,
classes, relationships, attributes, and operations.

subactivity state A state in an activity graph that represents the execution of a non-atomic sequence of steps that has
some duration.

subclass In a generalization relationship, the specialization of another class; the superclass. See:
generalization. Contrast: superclass.

submachine state A state in a state machine which is equivalent to a
composite state but its contents is described by another state machine.

substate A state that is part of a composite state. See: concurrent state, disjoint state.

subpackage A package that is contained in another package.

subsystem A grouping of model elements that represents a behavioral unit in a physical system. A subsystem
offers interfaces and has operations. In addition, the model elements of a subsystem can be
partitioned into specification and realization elements. See package. See: physical system.

subtype In a generalization relationship, the specialization of another type; the supertype. See:
generalization. Contrast: supertype.

superclass In a generalization relationship, the generalization of another class; the subclass. See:
generalization. Contrast: subclass.

supertype In a generalization relationship, the generalization of another type; the subtype. See: generalization.
Contrast: subtype.
420 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
supplier A classifier that provides services that can be invoked by others. Contrast: client.

swimlane A partition on a activity diagram for organizing the responsibilities for actions. Swimlanes typically
correspond to organizational units in a business model. See: partition.

synch state A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.

system A top-level subsystem in a model. Contrast: physical system.

tagged value The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as
the tag. Certain tags are predefined in the UML; others may be user defined. Tagged values are one
of three extensibility mechanisms in UML. See: constraint, stereotype.

template Synonym: parameterized element.

thread [of control] A single path of execution through a program, a dynamic model, or some other representation of
control flow. Also, a stereotype for the implementation of an active object as lightweight process.
See process.

time event An event that denotes the time elapsed since the current state was entered. See: event.

time expression An expression that resolves to an absolute or relative value of time.

top level A stereotype of package denoting the top-most package in a containment hierarchy. The topLevel
stereotype defines the outer limit for looking up names, as namespaces “see” outwards. For
example, opLevel subsystem represents the top of the subsystem containment hierarchy.

trace A dependency that indicates a historical or process relationship between two elements that
represent the same concept without specific rules for deriving one from the other.

transient object An object that exists only during the execution of the process or thread that created it.

transition A relationship between two states indicating that an object in the first state will perform certain
specified actions and enter the second state when a specified event occurs and specified conditions
are satisfied. On such a change of state, the transition is said to fire.

type A stereotyped class that specifies a domain of objects together with the operations applicable to the
objects, without defining the physical implementation of those objects. A type may not contain any
methods, maintain its own thread of control, or be nested. However, it may have attributes and
associations. Although an object may have at most one implementation class, it may conform to
multiple different types. See also: implementation class Contrast: interface.

type expression An expression that evaluates to a reference to one or more types.

uninterpreted A placeholder for a type or types whose implementation is not specified by the UML. Every
uninterpreted value has a corresponding string representation. See: any [CORBA].

usage A dependency in which one element (the client) requires the presence of another element (the
supplier) for its correct functioning or implementation.

use case [class] The specification of a sequence of actions, including variants, that a system (or other entity) can
perform, interacting with actors of the system. See: use case instances.

use case diagram A diagram that shows the relationships among actors and use cases within a system.

use case instance The performance of a sequence of actions being specified in a use case. An instance of a use case.
See: use case class.

use case model A model that describes a system’s functional requirements in terms of use cases.
© ISO/IEC 2005 - All rights reserved 421

ISO/IEC 19501:2005(E)
utility A stereotype that groups global variables and procedures in the form of a class declaration. The
utility attributes and operations become global variables and global procedures, respectively. A
utility is not a fundamental modeling construct, but a programming convenience.

value An element of a type domain.

vertex A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-
state. See: state, pseudo-state.

view A projection of a model, which is seen from a given perspective or vantage point and omits entities
that are not relevant to this perspective.

view element A view element is a textual and/or graphical projection of a collection of model elements.

view projection A projection of model elements onto view elements. A view projection provides a location and a
style for each view element.

visibility An enumeration whose value (public, protected, or private) denotes how the model element to
which it refers may be seen outside its enclosing namespace.
422 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
A
abstract class 204
abstract operation 210
abstract syntax section 18
Abstraction 26, 27
access 223, 245
access (Permission) 48, 171, 174
accessing a package 223
accessing elements 48
Action 89, 96, 103
action (ActionSequence) 90
action (Message) 110
action expression 290
action state 300
ActionExpression 80
action-object flow relationships 304
ActionSequence 90, 96
ActionState 157, 159
activation 259, 261
activator (Message) 110
active class 33
active object 276
active state 141
active state configuration 142
activity diagram 298
activity graph 298
Activity Graphs Package 152
activity in a state 141
activity state 300
ActivityGraph 154, 156, 159
Actor 120, 122, 124
actor 250
actor relationship 252
actualArgument (Action) 90
addition (Include) 121
addOnly (ChangeableKind) 30, 50, 81
addOnly (keyword) 231
adornment

on association 228
order 232

after (keyword) 288
aggregate (AggregationKind) 29
aggregation 231
aggregation (AssociationEnd) 29, 64
AggregationKind 80
alias (ElementImport) 163
angle bracket

for binding argument 217
annotatedElement (Comment) 36
architecture of metamodel 14
ArgListsExpression 80
Argument 90, 96
argument (Binding) 32
argument (Stimulus) 95
argument list 280
arrow

dashed
for constraint 195
for dependency 245
for extend 251
for flow relationship 225

for include 251
for instance of 248
for object flow 305
for realization 213

solid
for call 262, 263
for generalization 241
for message 262
for navigation 232
for transition 290

Artifacts 4
development project 4
UML-defining Artifacts 4

Association 28, 51, 64, 227
association (AssociationEnd) 31
association (Classifier) 34
association (keyword) 240
association (Link) 93
association (LinkEnd) 93
association class 228, 235
association end 228, 230
association name 228
association role 273
AssociationClass 29, 52, 65
AssociationEnd 29, 53, 64
associationEnd (Attribute) 31
associationEnd (LinkEnd) 93
AssociationEndRole 107, 111
AssociationRole 107, 111
Attribute 31, 53
attribute 204, 207

in object 225
attribute (AttributeLink) 90
AttributeLink 90, 96
availableContents (ClassifierRole) 108
availableFeature (ClassifierRole) 108
availableQualifier (AssociationEndRole) 107

B
Bag 392
bar

for stub state 296
for stubbed transition 292
for synchronization, fork, join 291

base (AssociationEndRole) 107
base (AssociationRole) 108
base (ClassifierRole) 108
base (Extend) 121
base (Include) 121
baseClass (Stereotype) 73
Basic Values and Types 361
become (Flow) 41
become (keyword) 225
behavior

of operation as note 210
Behavioral Elements Package 85
BehavioralFeature 31, 53
binary association 228
bind (keyword) 245
Binding 32, 54, 69, 217
body (Comment) 35
© ISO/IEC 2005 - All rights reserved 423

ISO/IEC 19501:2005(E)
body (Constraint) 37, 72
body (Expression) 81
body (Mapping) 82
body (Method) 44
boldface

for class name 203
for compartment name 205
for special list element 203

Boolean 80, 387
Boolean property 197
BooleanExpression 80
bound (SynchState) 136, 147
bound element 217
braces

for constraint 195, 196
for property string 197, 204, 207

branch 301, 302
branch point 294
bull’s eye

for final state 286

C
call 259
call (Usage) 51
call event 287
CallAction 90, 96, 103
CallConcurrencyKind 80
CallEvent 130
CallState 154, 157
chain of transitions 294
changeability 231
changeability (AssociationEnd) 30
changeability (Attribute) 50
changeable (ChangeableKind) 30, 50, 81
ChangeableKind 81
ChangeEvent 131
changeExpression (ChangeEvent) 131
child (Generalization) 42
choice (PseudostateKind) 83, 133
circle

bull’s eye
for final state 286

filled
for initial state 286

for history state 292
for interface 214
for junction 294
for synch state 297

Class 32, 55, 65
class 202

declared in another class 238
class diagram 201
class in state 225
class scope

attribute 208
operation 210

Classifier 34, 55, 201
classifier (Instance) 92
classifier (ScopeKind) 40, 50, 84
classifier role 273
ClassifierInState 154

ClassifierRole 108, 111
client (Dependency) 38
clientDependency (ModelElement) 44
Collaboration 108, 109, 112, 114, 115, 264, 270
collaboration diagram 264, 266
collaboration role 273
collaborationMultiplicity (AssociationEndRole) 107
Collaborations Package 103
Collect Operation 377
Collection 388
Collection Operations 375
Collection Type Hierarchy and Type Conformance Rules 374
Collection-Related Typed 388
Collections 373
Collections of Collections 374
colon

for return type 209
for sequence expression 279
for type 207, 210, 216, 222, 225, 231, 238, 273, 314, 316

Combining Properties 368
Comment 35, 58, , 195, 196, 365
Common Behavior Package 85
communication association 251, 252
communication relationship 122, 125
communicationConnection (Message) 110
communicationLink (Stimulus) 95
compartment 204

name 205
special 202

complete (Generalization) 43
complete (keyword) 242
completion event 144
completion transition 144
complex transition 291
Component 36, 58
component 315

on node 315
component diagram 310
ComponentInstance 91, 96
composite (AggregationKind) 29, 64
composite object 226
composite state 285, 297
CompositeState 131, 136, 142
composition 226, 237
Compound transition 143
concurrency

in state machine 146
of operation 210
synchronizing 147

concurrency (Operation) 47
concurrent (CallConcurrencyKind) 47, 80
concurrent lifelines 260
concurrent substate 285
condition (Extend) 121
condition event 288
conditional fork 309
conflict 146
connection (Association) 28
connection (Link) 93
constant

enumeration 219
424 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
constrainedElement (Constraint) 37, 72
constrainedStereotype (Constraint) 72
Constraint 37, 58, 69, 74
constraint 195, 196

as list element 195
constraint (ModelElement) 44, 72
constraint language 19, 76, 195
container (StateVertex) 135
contents (Partition) 155
context 265
context (Exception) 92
context (Interaction) 110
context (Signal) 95
context (StateMachine) 134
control flow icon 278
control flow type 281
control icons 306
copy (Flow) 41
copy (keyword) 225
copying composite 64
create (BehavioralFeature) 32
create (CallEvent) 131
create (Usage) 51
CreateAction 91, 97, 103
creation 260, 265, 281
cross

for destruction 260
cube

for node 314

D
data flow relationship 159
Data Types Foundation Package 78
DataType 37, 58, 69, 78
DataValue 91, 97, 101
decision, See branch
deepHistory (PseudostateKind) 83, 132, 142
default entry 142
defaultElement (TemplateParameter) 50, 51
defaultValue (Parameter) 47
defer (keyword) 307
deferrableEvent (State) 134
deferred event 141, 143, 307
Dependency 38, 59, 69
dependency 245

subsystem 190
deployment diagram 312
deploymentLocation (Component) 36
Derivation 26
derivation 245
derive (Abstraction) 27
derive (keyword) 245
derived (ModelElement) 45
derived element 247
descriptor 67
design pattern 267
destination state 291
destroy (BehavioralFeature) 32
destroy (CallEvent) 131
destroy action 103
DestroyAction 91, 97

destroyed (Instance) 92
destroyed (keyword) 265
destroyed (Link) 93
destroying composite 64
destruction 260, 265, 281
development project 4
diamond

filled
for composition 237

for aggregation 231
for branch or merge 301
for merge 294
for n-ary association 236

discriminator 43, 241, 242
discriminator (Generalization) 42, 43
disjoint (Generalization) 43
disjoint (keyword) 242
disjoint substate 286
dispatchAction (Stimulus) 95
do activity 141, 284
doActivity (State) 134
document (Component) 27
documentation (Element) 38
dog-eared rectangle

for note 183
dot

for navigation 183
for sequence expression 279

double colon
for pathname 202, 223

double dot
for integer range 233

dynamic choice point 294
dynamic concurrency 309
dynamicArguments (ActionState) 154
dynamicArguments (SubactivityState) 156
dynamicMultiplicity (ActionState) 154
dynamicMultiplicity (SubactivityState) 156

E
effect (Transition) 136
elapsed-time event 288
Element 38, 59
element property 197
ElementImport 162, 165
ElementOwnership 38, 59
ElementResidence 39, 59
ellipse

dashed
for collaboration 268

for use case 250
ellipsis

for generalization 242
for missing element 204

else (keyword) 295
enabled transition 144
entering a concurrent composite state 142
entry (ActionState) 154
entry (State) 134
entry action 141, 284
entry stub state 296
© ISO/IEC 2005 - All rights reserved 425

ISO/IEC 19501:2005(E)
Enumeration 39, 59, 387
enumeration 219
enumeration (EnumerationLiteral) 40
enumeration literal 219
Enumeration Types 362
EnumerationLiteral 40, 59
equal sign

for attribute value 225
for default value 210, 216
for initial value 207
for tagged value 197

Event 131, 141, 287
event processing 145
event signature 290
examples section 177
Exception 92, 97, 102
executable (Component) 27, 36
Exists Operation 378
exit (State) 134
exit action 141, 284
exit stub state 296
exiting a concurrent state 142
exiting a non-concurrent state 142
Expression 81, 182
expression (Guard) 132
expression (ProgrammingLanguageDataType) 49
Extend 120, 123, 127
extend 251
extend (UseCase) 122
extendedElement (Stereotype) 73
extensibility mechanism 197, 199
extension (Extend) 121
Extension Mechanisms Foundation Package 69
extension point 250
extension points compartment 250
ExtensionPoint 121, 123
extensionPoint (Extend) 121
extensionPoint (UseCase) 122

F
facade (Package) 164
facade (stereotype) 186
Facility Implementation Requirements 355
factored transition path 294
false (Boolean) 80
Feature 40, 59, 204
feature (Classifier) 34
Features on Types Themselves 372
file (Component) 27, 28
final state 286
FinalState 132, 137, 143
fire a transition 146
Flow 41
flow relationship 225
focus of control 259, 261
font usage 179
ForAll Operation 378
fork (PseudostateKind) 83, 133
fork of control 291
formalism 17
Foundation package 20

four-layer metamodel architecture 14
framework (Package) 164, 171
framework (stereotype) 186
friend (Permission) 48
frozen (ChangeableKind) 30, 50, 81
frozen (keyword) 208, 231
full descriptor 67

G
GeneralizableElement 41, 59, 67
Generalization 42, 60, 67

of package 171
of subsystem 173
of use case 126

generalization 241
constraints on 242
use case 251

generalization (GeneralizableElement) 42
Geometry 81
global (AssociationEnd) 31
global (keyword) 240
global (LinkEnd) 93
Goals 6
Grammar for OCL 397
graphic constructs 178
graphic marker 199
group property 205
Guard 132, 137, 144
guard (Transition) 136
guard condition 290
guarded (CallConcurrencyKind) 47, 80
guillemets

for keyword 182
for stereotype 199, 204

H
Harel statechart 151
hidden element 204
high-level transition 143
history

deep 142
shallow 142

history state 292
hyperlink 179

I
icon

for stereotype 199, 204
icon (Stereotype) 73
icons 178
implementation (Generalization) 43
implementation class

and type 212
ImplementationClass 60
implementationClass (Class) 33, 421
implementationLocation (ModelElement) 44
import 223, 245
import (Permission) 48, 170, 174
imported element 186
importedElement (Package) 164
importing a package 223
426 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
importing elements 48
in (ParameterDirectionKind) 48, 83
Include 121, 123, 127
include 284

a use case 251
include (keyword) 296
include (UseCase) 122
incoming (StateVertex) 135
incomplete (Generalization) 43
incomplete (keyword) 242
Industry Trends 5
Inheritance 67
inheritance relationship 42
initial (PseudostateKind) 83, 132
initial state 286
initial value

of attribute 208
initialValue (Attribute) 31
inout (ParameterDirectionKind) 48, 83
input event icon 307
Instance 92, 97
instance 184, 247

of classifier 247
instance (LinkEnd) 93
instance (ScopeKind) 40, 50, 84
instance level collaboration 265
instantiable subsystem 189
instantiate (Usage) 51
Instantiation 67
instantiation (CreateAction) 91
inState (ClassifierInState) 155
Integer 81, 385
Interaction 110, 114, 117, 272
interaction (Collaboration) 109
interaction (Message) 110
Interface 43, 60, 68

use case 126
interface 214

on subsystem 190
interface specifier 231
internal transition 143
internal transition compartment 284
internalTransition (State) 134
invariant (Constraint) 37
Invariants 360
invisible hyperlink 179
isAbstract (GeneralizableElement) 41
isAbstract (Operation) 47
isAbstract (Reception) 94
isActive (Class) 33
isAsynchronous (Action) 90
isAsynchronous (CallAction) 91
isConcurrent (CompositeState) 131
isDynamic (ActionState) 154
isDynamic (SubactivityState) 156
isInstantiable (Subsystem) 165
isLeaf (GeneralizableElement) 41
isLeaf (Operation) 47
isLeaf (Reception) 94
isNavigable (AssociationEnd) 30
isQuery (BehavioralFeature) 32

isRegion (CompositeState) 131
isRoot (GeneralizableElement) 41
isRoot (Operation) 47
isRoot (Reception) 94
isSpecification (ElementOwnership) 38, 163
isSynch (ObjectFlowState) 155
italics

for abstract class 204
for abstract operation 210

Iterate Operation 379
iteration indicator 279
IterationExpression 82

J
join (PseudostateKind) 83, 133
join of control 291
junction 294
junction (PseudostateKind) 83, 133

K
keyword 181
kind (Parameter) 48
kind (PseudoState) 133

L
label 181
language (Expression) 81
layer, metamodel 14
library (Component) 28
lifeline 255, 260
line 228

dashed
for association class 235
for lifeline 260

solid
for actor-use case 251
for association 228
for association class 235
for communication association 252

Link 92, 99, 102, 240
LinkEnd 93, 99
linkEnd (Instance) 92
LinkObject 93, 99
list compartment 204
literal

of enumeration type 219
literal (Enumeration) 39
local (AssociationEnd) 31
local (keyword) 240
local (LinkEnd) 93
location (ExtensionPoint) 121
LocationReference 82

M
many 233
Mapping 82
mapping (Abstraction) 26
mapping section 177
MappingExpression 82
Message 110, 114, 262, 277
message (Interaction) 109, 110
© ISO/IEC 2005 - All rights reserved 427

ISO/IEC 19501:2005(E)
message label 278
message name 280
Message Sequence Chart notation 255
metaclass 218
metaclass (Classifier) 34
meta-metamodel layer 14
metamodel (Model) 162, 163
metamodel layer 15
Method 44, 60
method 211
minus sign

for private visibility 207
Missing Rolenames 367
Model 163, 165, 173
model 193
model layer 15
model management 186
Model Management Package 161
model organization 186
ModelElement 44, 61, 72, 75
multiobject 275
Multiplicity 82
multiplicity 233

of association end 230
of attribute 207
of qualified association 234
on dynamic concurrency 309

multiplicity (AssociationEnd) 30
multiplicity (AssociationRole) 108
multiplicity (Attribute) 50
multiplicity (ClassifierRole) 108
MultiplicityRange 82

N
Name 82
name 180
name (Association) 28
name (AssociationEnd) 30
name (BehavioralFeature) 32
name (Feature) 40
name (ModelElement) 44
name (Parameter) 48
name compartment 204, 284
named compartment 205
Namespace 46, 62
namespace (ModelElement) 45
n-ary association 236
natural language 19, 76
navigability 64, 231
navigation arrow 232
Navigation from Association Classes 369
Navigation over Associations with Multiplicity Zero or One 367
Navigation through Qualified Associations 370
Navigation to Association Types 368
nested state 285, 286
nesting

for composition 238
new (Instance) 92
new (keyword) 265
new (Link) 93
Node 46, 62

node 313, 315
NodeInstance 94, 99
none (AggregationKind) 29
notation section 177
note 183, 196
Notes section 19

O
Object 94, 100, 101
object 225, 273, 305

lifeline 260
playing role 274

Object Constraint Language xxii, 357
object diagram 201
object flow 304
object in state 305
Object Message Sequence Chart notation 255
ObjectFlowState 155, 157, 159
Objects and Properties 366
ObjectSetExpression 82
OCL 18, 76, 195
OCL - Legend 358
OCL (Language) 81
OCL expression 182
OCL Grammar 397
OCL Uses 357
OclAny 382, 383
OclExpression 383
OclType 381
Operation 46, 62, 68, 204, 209, 211
operation (CallAction) 91
operation (CallEvent) 130
ordered (keyword) 230
ordered (OrderingKind) 30, 50
ordering 207, 230
ordering (AssociationEnd) 30, 50
OrderingKind 82
out (ParameterDirectionKind) 48, 83
outgoing (StateVertex) 135
output event icon 307
overlapping (Generalization) 43
overlapping (keyword) 242
ownedElement (Collaboration) 109
ownedElement (Namespace) 46
ownedInstance (Instance) 92
ownedLink (Instance) 92
owner (Feature) 41
owner (Instance) 92
owner (Link) 93
ownerScope (Feature) 40
ownership of elements 170

P
Package 163, 165, 170, 186
package (VisibilityKind) 30, 39, 40, 84
package structure of UML 15
Parameter 47, 63
parameter (AssociationEnd) 31
parameter (BehavioralFeature) 32
parameter (Event) 132
parameter (keyword) 240
428 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
parameter (LinkEnd) 93
parameter (ObjectFlowState) 155
parameter list 210
ParameterDirectionKind 83
parameterized class 215
parent (Generalization) 42
parentheses

for argument list 183
for parameter list 209, 284, 290

participant (AssociationEnd) 31
participation (in a use case) 251, 252
Partition 155
partition (ActivityGraph) 154
passive class 33
path 178, 223

for association 228
path (symbol) 178
pathname 223
Pathnames for Packages and Properties 370
Pattern 118
pattern 267
pentagon

for signal receipt 307
for signal sending 307

Permission 48
persistence (Association) 28
persistence (Attribute) 50
persistence (Classifier) 34
persistent (Instance) 92
plus sign

for containment tree 186
for public visibility 207

postcondition (Constraint) 37
pound sign

for protected visibility 207
powertype 222
powertype (Classifier) 34
powertype (Generalization) 43
powertypeRange (Classifier) 34
Pre and Postconditions 360
Precedence Rules 364
precondition (Constraint) 37
predecessor 259, 278
predecessor (Message) 110
Predefined Features on All Objects 371
Predefined OCL Types 381
presentation (ModelElement) 45
presentation options 177, 179
PresentationElement 48, 63, 68
Previous Values in Postconditions 374
Primitive 49, 63
priority of transition 146
private (keyword) 207
private (VisibilityKind) 30, 39, 40, 84
procedural sequence diagram 259
ProcedureExpression 83
Process 3
process (Classifier) 34
Programming Languages 3
ProgrammingLanguageDataType 49
pronged rectangle

for component 316
propagation semantics 64
Properties 366

Association Ends and Navigation 367
Attributes 366
Operations 366

property 197
property string 197, 205
protected (keyword) 207
protected (VisibilityKind) 30, 39, 40, 84
protocol state machine 148
PseudoState 132, 137, 158
PseudostateKind 83
public (keyword) 207
public (VisibilityKind) 30, 39, 40, 84

Q
qualifier 65, 230, 234
qualifier (AssociationEnd) 31
qualifierValue (LinkEnd) 93
query 210

R
range 233
Real 383
Realization 26
realization

of interface by classifier 214
realization element 189
realization relationship 213
realize (Abstraction) 27
receiver (Message) 110
receiver (Stimulus) 95
Reception 94, 100
reception (Signal) 95
rectangle

dog-eared
for note 183

pronged
for component 316

rounded ends
for action state 300
for state 283
for subactivity state 301

solid
for active class 276
for association class 235
for class 202
for object 225
for qualifier 234

stacked
for multiobject 275

tabbed
for package 186

thin
for activation lifeline 261

recurrence 279
recurrence (Action) 90
reference to another package 202
referenceState (StubState) 135
referencing elements 48
© ISO/IEC 2005 - All rights reserved 429

ISO/IEC 19501:2005(E)
refine (Abstraction) 27
refine (keyword) 245
Refinement 26, 69, 245
refinement of state machine 149
Relationship 38, 49
representedClassifier (Collaboration) 109
representedOperation (Collaboration) 109
requiredTag (Stereotype) 73
resident (Component) 36
resident (ComponentInstance) 91
resident (NodeInstance) 94
responsibility (Comment) 36
return (ParameterDirectionKind) 48, 83
return action 103
return type expression 210
return value 280
ReturnAction 94, 100
Re-typing or Casing 364
right arrow

for special operation 183
role 185
rolename 231
run to completion 145

S
ScopeKind 84
script (Action) 90
segment descriptor 67
Select and Reject Operations 375
Self 359
self (AssociationEnd) 31
self (keyword) 240
self (LinkEnd) 93
Semantics 76, 170
semantics (Classifier) 34
semantics (Operation) 47
semantics of state machines 140
Semantics Package 170
semantics section 19, 177
semaphore 147
send (Usage) 51
SendAction 95, 100, 103
sender (Message) 110
sender (Stimulus) 95
Sequence 395
sequence diagram 254, 258
sequence expression 279
sequence number 265, 279
sequential (CallConcurrencyKind) 47, 80
sequential substate 286
Set 390
shallowHistory (PseudostateKind) 83, 133, 142
Shorthand for Collect 377
Signal 95, 100, 102
signal 287

declaration 288
signal (Reception) 94
signal (SendAction) 95
signal (SignalEvent) 133
signal receipt icon 307
signal sending icon 307

SignalEvent 133
signalflow (ObjectFlowState) 155
signature 279
simple transition 289
SimpleState 133
slash

for action expression 290
for derived element 247
for predecessor 278
for role 273

slot (Instance) 92
sorted (keyword) 230
sorted (OrderingKind) 30, 50, 83
source (Transition) 136
source state 291
specialization (GeneralizableElement) 42
specification (AssociationEnd) 31
specification (Method) 44
specification (Reception) 94
specification element 189
specification level collaboration 265, 266
specifiedEnd (Classifier) 34
square brackets

for attribute multiplicity 207, 208
for condition clause 279
for guard condition 284, 290
for selection 183
for state 225, 305

standard elements section 19
star

for iteration indicator 279
for multiplicity 233

State 134, 141
state 283

composite 297
of object 225

state machine refinement 149
State Machines Package 128
statechart 151
statechart diagram 282
StateMachine 134, 138, 145

semantics 140
StateVertex 135
Stereotype 72, 75
stereotype 199, 219

class 204
object 225

stereotype (ModelElement) 72
stereotypeConstraint (Stereotype) 73
stick man figure

for use case 250
Stimulus 95, 100, 102, 262, 277
String 84, , 178, 179, 181, 386
StructuralFeature 49, 63
stub (Package) 164
stub (stereotype) 186
stub state 296
stubbed transition 292
StubState 135, 148
style guidelines 177
subactivity state 300
430 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19501:2005(E)
SubactivityState 156, 158, 160
submachine (SubactivityState) 156
submachine (SubmachineState) 135
submachine invocation 284
submachine state 295
SubmachineState 135, 139, 143
subordinate use case 126
substate 285
Subsystem 95, 101, 164, 169, 172, 188, 190
subtyping and state machine 150
subvertex (CompositeState) 131
superordinate use case 126
supplier (Dependency) 38
supplierDependency (ModelElement) 45
suppressed element 204
swimlane 303
synch state 297, 308
synchronization 297
synchronization bar 291
synchronization fork and join 147
SynchState 135, 139, 147
system boundary 248
systemModel (Model) 163
systemModel (stereotype) 193

T
tabbed rectangle

for package 186
table (Component) 28
tagged value 197
TaggedValue 73, 76
taggedValue (ModelElement) 72
target (Action) 90
target (Transition) 136
targetScope (AssociationEnd) 30
targetScope (Attribute) 50
taxonomic relationship 42, 241
template 44, 45, 61, 68, 215

collaboration 118
TemplateParameter 51
templateParameter (ModelElement) 45
terminate action 103
TerminateAction 96, 101
thread (Classifier) 34
tiling (a state) 285
time dimension 254
time event 288
time expression 264, 290
time interval 255
TimeEvent 136
TimeExpression 84
timing constraint 255, 264
Tools 3
tools, interactive 179
top (StateMachine) 134
topLevel (Package) 164
topLevel (stereotype) 186
Trace 26, 63, 69
trace (Abstraction) 27, 174
trace (keyword) 245
transient (Instance) 92

transient (keyword) 265
transient (Link) 93
Transition 136, 139, 143, 160

execution 144
firing rules 147

transition 289
chain 294
complex 291
constraint 290
name 264
simple 289
string 290
stubbed 292
time 264
to composite state 291

transition (StateMachine) 134
triangle

for generalization 241
for realization 213

trigger (Transition) 136
true (Boolean) 80
two-dimensional symbols 178
Type 63
type

and implementation class 212
type (Attribute) 50
type (Class) 33, 314, 412, 415
type (ClassifierInState) 155
type (ObjectFlowState) 155
type (Parameter) 48
Type Conformance 362
TypeExpression 84
type-instance correspondence 184
Types 362

U
UML - defined 2
UML and other modeling languages 8
UML Extension for Objectory Process for Software

Engineering 319
UML features 8
Undefined Values 365
underlining

for class scope 208, 210
for instances 184
for object 225, 274

Uninterpreted 84
UninterpretedAction 96, 101, 103
unlimited multiplicity 233
UnlimitedInteger 84
unordered (keyword) 230
unordered (OrderingKind) 30, 50
Usage 51, 63, 69
usage dependency 245
use (keyword) 245
use case 249
use case diagram 248
use case relationship 251
Use Cases Package 119
UseCase 121, 123, 125

description 126
© ISO/IEC 2005 - All rights reserved 431

ISO/IEC 19501:2005(E)
instance 126
UseCaseInstance 122, 124
user object layer 15
Using Pathnames for Packages and Properties 370
utility (Classifier) 34
utility (keyword) 218

V
value (Argument) 90
value (AttributeLink) 90
visibility

of association 231
of attribute 207
of operation 209
of package element 186

visibility (AssociationEnd) 30
visibility (ElementImport) 163
visibility (ElementOwnership) 39
visibility (ElementResidence) 39
visibility (Feature) 40
VisibilityKind 84

W
well-formedness rules section 18
when (keyword) 288
when (TimeEvent) 136

X
X

for destruction 260
xor (Association) 28
xor association 229
432 © ISO/IEC 2005 - All rights reserved

	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 General Information
	3.1 Description
	3.2 Outside the Scope of the UML
	3.2.1 Programming Languages
	3.2.2 Tools
	3.2.3 Process

	3.3 Primary Artifacts of the UML
	3.3.1 UML-defining Artifacts
	3.3.2 Development Project Artifacts

	3.4 Motivation to Define the UML
	3.4.1 Why We Model
	3.4.2 Industry Trends in Software
	3.4.3 Prior to Industry Convergence

	3.5 Goals of the UML
	3.5.1 Comparing UML to Other Modeling Languages
	3.5.2 Features of the UML

	3.6 UML - Past, Present, and Future
	3.6.1 UML 0.8 - 0.91
	3.6.2 UML Partners
	3.6.3 UML - Present and Future

	4 UML Semantics
	4.1 Introduction
	4.1.1 Purpose and Scope
	4.1.2 Approach

	4.2 Language Architecture
	4.2.1 Four-Layer Metamodel Architecture
	4.2.2 Package Structure

	4.3 Language Formalism
	4.3.1 Levels of Formalism
	4.3.2 Package Specification Structure
	4.3.3 Use of a Constraint Language
	4.3.4 Use of Natural Language
	4.3.5 Naming Conventions and Typography

	4.4 Foundation Package
	4.5 Core
	4.5.1 Overview
	4.5.2 Abstract Syntax
	4.5.3 Well-Formedness Rules
	4.5.4 Detailed Semantics

	4.6 Extension Mechanisms
	4.6.1 Overview
	4.6.2 Abstract Syntax
	4.6.3 Well-Formedness Rules
	4.6.4 Detailed Semantics
	4.6.5 Notes

	4.7 Data Types
	4.7.1 Overview
	4.7.2 Abstract Syntax

	4.8 Behavioral Elements Package
	4.9 Common Behavior
	4.9.1 Overview
	4.9.2 Abstract Syntax
	4.9.3 Well-Formedness Rules
	4.9.4 Detailed Semantics

	4.10 Collaborations
	4.10.1 Overview
	4.10.2 Abstract Syntax
	4.10.3 Well-Formedness Rules
	4.10.4 Detailed Semantics
	4.10.5 Notes

	4.11 Use Cases
	4.11.1 Overview
	4.11.2 Abstract Syntax
	4.11.3 Well-Formedness Rules
	4.11.4 Detailed Semantics
	4.11.5 Notes

	4.12 State Machines
	4.12.1 Overview
	4.12.2 Abstract Syntax
	4.12.3 Well-FormednessRules
	4.12.4 Detailed Semantics
	4.12.5 Notes

	4.13 Activity Graphs
	4.13.1 Overview
	4.13.2 Abstract Syntax
	4.13.3 Well-Formedness Rules
	4.13.4 Detailed Semantics
	4.13.5 Notes

	4.14 Model Management
	4.14.1 Overview
	4.14.2 Abstract Syntax
	4.14.3 Well-Formedness Rules
	4.14.4 Semantics
	4.14.5 Notes

	5 UML Notation Guide
	5.1 Introduction
	5.2 Graphs and Their Contents
	5.3 Drawing Paths
	5.4 Invisible Hyperlinks and the Role of Tools
	5.5 Background Information
	5.5.1 Presentation Options

	5.6 String
	5.6.1 Semantics
	5.6.2 Notation
	5.6.3 Presentation Options
	5.6.4 Examples
	5.6.5 Mapping

	5.7 Name
	5.7.1 Semantics
	5.7.2 Notation
	5.7.3 Example
	5.7.4 Mapping

	5.8 Label
	5.8.1 Semantics
	5.8.2 Notation
	5.8.3 Presentation Options
	5.8.4 Example

	5.9 Keywords
	5.10 Expression
	5.10.1 Semantics
	5.10.2 Notation
	5.10.3 Examples
	5.10.4 Mapping
	5.10.5 OCL Expressions
	5.10.6 Selected OCL Notation
	5.10.7 Examples

	5.11 Note
	5.11.1 Semantics
	5.11.2 Notation
	5.11.3 Presentation Options
	5.11.4 Example
	5.11.5 Mapping

	5.12 Type-Instance Correspondence
	5.13 Package
	5.13.1 Semantics
	5.13.2 Notation
	5.13.3 Presentation Options
	5.13.4 Style Guidelines
	5.13.5 Example
	5.13.6 Mapping

	5.14 Subsystem
	5.14.1 Semantics
	5.14.2 Notation
	5.14.3 Presentation Options
	5.14.4 Example
	5.14.5 Mapping

	5.15 Model
	5.15.1 Semantics
	5.15.2 Notation
	5.15.3 Presentation Options
	5.15.4 Example
	5.15.5 Mapping

	5.16 Constraint and Comment
	5.16.1 Semantics
	5.16.2 Notation
	5.16.3 Example
	5.16.4 Mapping

	5.17 Element Properties
	5.17.1 Semantics
	5.17.2 Notation
	5.17.3 Presentation Options
	5.17.4 Style Guidelines
	5.17.5 Example
	5.17.6 Mapping

	5.18 Stereotypes
	5.18.1 Semantics
	5.18.2 Notation
	5.18.3 Examples
	5.18.4 Mapping

	5.19 Class Diagram
	5.19.1 Semantics
	5.19.2 Notation
	5.19.3 Mapping

	5.20 Object Diagram
	5.21 Classifier
	5.22 Class
	5.22.1 Semantics
	5.22.2 Basic Notation
	5.22.3 Presentation Options
	5.22.4 Style Guidelines
	5.22.5 Example
	5.22.6 Mapping

	5.23 Name Compartment
	5.23.1 Notation
	5.23.2 Mapping

	5.24 List Compartment
	5.24.1 Notation
	5.24.2 Presentation Options
	5.24.3 Example
	5.24.4 Mapping

	5.25 Attribute
	5.25.1 Semantics
	5.25.2 Notation
	5.25.3 Presentation Options
	5.25.4 Style Guidelines
	5.25.5 Example
	5.25.6 Mapping

	5.26 Operation
	5.26.1 Semantics
	5.26.2 Notation
	5.26.3 Presentation Options
	5.26.4 Style Guidelines
	5.26.5 Example
	5.26.6 Mapping

	5.27 Nested Class Declarations
	5.27.1 Semantics
	5.27.2 Notation
	5.27.3 Mapping

	5.28 Type and Implementation Class
	5.28.1 Semantics
	5.28.2 Notation
	5.28.3 Example
	5.28.4 Mapping

	5.29 Interfaces
	5.29.1 Semantics
	5.29.2 Notation
	5.29.3 Example
	5.29.4 Mapping

	5.30 Parameterized Class (Template)
	5.30.1 Semantics
	5.30.2 Notation
	5.30.3 Presentation Options
	5.30.4 Example
	5.30.5 Mapping

	5.31 Bound Element
	5.31.1 Semantics
	5.31.2 Notation
	5.31.3 Style Guidelines
	5.31.4 Example
	5.31.5 Mapping

	5.32 Utility
	5.32.1 Semantics
	5.32.2 Notation
	5.32.3 Example
	5.32.4 Mapping

	5.33 Metaclass
	5.33.1 Semantics
	5.33.2 Notation
	5.33.3 Mapping

	5.34 Enumeration
	5.34.1 Semantics
	5.34.2 Notation
	5.34.3 Mapping

	5.35 Stereotype Declaration
	5.35.1 Semantics
	5.35.2 Notation
	5.35.3 Mapping

	5.36 Powertype
	5.36.1 Semantics
	5.36.2 Notation
	5.36.3 Mapping

	5.37 Class Pathnames
	5.37.1 Notation
	5.37.2 Example
	5.37.3 Mapping

	5.38 Accessing or Importing a Package
	5.38.1 Semantics
	5.38.2 Notation
	5.38.3 Example
	5.38.4 Mapping

	5.39 Object
	5.39.1 Semantics
	5.39.2 Notation
	5.39.3 Presentation Options
	5.39.4 Style Guidelines
	5.39.5 Variations
	5.39.6 Example
	5.39.7 Mapping

	5.40 Composite Object
	5.40.1 Semantics
	5.40.2 Notation
	5.40.3 Example
	5.40.4 Mapping

	5.41 Association
	5.42 Binary Association
	5.42.1 Semantics
	5.42.2 Notation
	5.42.3 Presentation Options
	5.42.4 Style Guidelines
	5.42.5 Options
	5.42.6 Example
	5.42.7 Mapping

	5.43 Association End
	5.43.1 Semantics
	5.43.2 Notation
	5.43.3 Presentation Options
	5.43.4 Style Guidelines
	5.43.5 Example
	5.43.6 Mapping

	5.44 Multiplicity
	5.44.1 Semantics
	5.44.2 Notation
	5.44.3 Style Guidelines
	5.44.4 Example
	5.44.5 Mapping

	5.45 Qualifier
	5.45.1 Semantics
	5.45.2 Notation
	5.45.3 Presentation Options
	5.45.4 Style Guidelines
	5.45.5 Example
	5.45.6 Mapping

	5.46 Association Class
	5.46.1 Semantics
	5.46.2 Notation
	5.46.3 Presentation Options
	5.46.4 Style Guidelines
	5.46.5 Example
	5.46.6 Mapping

	5.47 N-ary Association
	5.47.1 Semantics
	5.47.2 Notation
	5.47.3 Style Guidelines
	5.47.4 Example
	5.47.5 Mapping

	5.48 Composition
	5.48.1 Semantics
	5.48.2 Notation
	5.48.3 Design Guidelines
	5.48.4 Example
	5.48.5 Mapping

	5.49 Link
	5.49.1 Semantics
	5.49.2 Notation
	5.49.3 Example
	5.49.4 Mapping

	5.50 Generalization
	5.50.1 Semantics
	5.50.2 Notation
	5.50.3 Presentation Options
	5.50.4 Mapping

	5.51 Dependency
	5.51.1 Semantics
	5.51.2 Notation
	5.51.3 Presentation Options
	5.51.4 Example
	5.51.5 Mapping

	5.52 Derived Element
	5.52.1 Semantics
	5.52.2 Notation
	5.52.3 Style Guidelines

	5.53 InstanceOf
	5.53.1 Semantics
	5.53.2 Notation
	5.53.3 Mapping

	5.54 Use Case Diagram
	5.54.1 Semantics
	5.54.2 Notation
	5.54.3 Example
	5.54.4 Mapping

	5.55 Use Case
	5.55.1 Semantics
	5.55.2 Notation
	5.55.3 Presentation Options
	5.55.4 Style Guidelines
	5.55.5 Mapping

	5.56 Actor
	5.56.1 Semantics
	5.56.2 Notation
	5.56.3 Presentation Options
	5.56.4 Style Guidelines
	5.56.5 Mapping

	5.57 Use Case Relationships
	5.57.1 Semantics
	5.57.2 Notation
	5.57.3 Example
	5.57.4 Mapping

	5.58 Actor Relationships
	5.58.1 Semantics
	5.58.2 Notation
	5.58.3 Example
	5.58.4 Mapping

	5.59 Collaboration
	5.59.1 Semantics

	5.60 Sequence Diagram
	5.60.1 Semantics
	5.60.2 Notation
	5.60.3 Presentation Options
	5.60.4 Example
	5.60.5 Mapping

	5.61 Object Lifeline
	5.61.1 Semantics
	5.61.2 Notation
	5.61.3 Presentation Options
	5.61.4 Example
	5.61.5 Mapping

	5.62 Activation
	5.62.1 Semantics
	5.62.2 Notation
	5.62.3 Example
	5.62.4 Mapping

	5.63 Message and Stimulus
	5.63.1 Semantics
	5.63.2 Notation
	5.63.3 Presentation options
	5.63.4 Example
	5.63.5 Mapping

	5.64 Transition Times
	5.64.1 Semantics
	5.64.2 Notation
	5.64.3 Presentation Options
	5.64.4 Example
	5.64.5 Mapping

	5.65 Collaboration Diagram
	5.65.1 Semantics
	5.65.2 Notation
	5.65.3 Example
	5.65.4 Mapping

	5.66 Pattern Structure
	5.66.1 Semantics
	5.66.2 Notation
	5.66.3 Mapping

	5.67 Collaboration Contents
	5.67.1 Semantics
	5.67.2 Notation
	5.67.3 Mapping

	5.68 Interactions
	5.68.1 Semantics
	5.68.2 Notation
	5.68.3 Mapping
	5.68.4 Example

	5.69 Collaboration Roles
	5.69.1 Semantics
	5.69.2 Notation
	5.69.3 Presentation options
	5.69.4 Example
	5.69.5 Mapping

	5.70 Multiobject
	5.70.1 Semantics
	5.70.2 Notation
	5.70.3 Example
	5.70.4 Mapping

	5.71 Active object
	5.71.1 Semantics
	5.71.2 Notation
	5.71.3 Example
	5.71.4 Mapping

	5.72 Message and Stimulus
	5.72.1 Semantics
	5.72.2 Notation
	5.72.3 Presentation Options
	5.72.4 Example
	5.72.5 Mapping

	5.73 Creation/Destruction Markers
	5.73.1 Semantics
	5.73.2 Notation
	5.73.3 Presentation options
	5.73.4 Example
	5.73.5 Mapping

	5.74 Statechart Diagram
	5.74.1 Semantics
	5.74.2 Notation
	5.74.3 Mapping

	5.75 State
	5.75.1 Semantics
	5.75.2 Notation
	5.75.3 Mapping

	5.76 Composite States
	5.76.1 Semantics
	5.76.2 Notation
	5.76.3 Examples
	5.76.4 Mapping

	5.77 Events
	5.77.1 Semantics
	5.77.2 Notation
	5.77.3 Example
	5.77.4 Mapping

	5.78 Simple Transitions
	5.78.1 Semantics
	5.78.2 Notation
	5.78.3 Example
	5.78.4 Mapping

	5.79 Transitions to and from Concurrent States
	5.79.1 Semantics
	5.79.2 Notation
	5.79.3 Example
	5.79.4 Mapping

	5.80 Transitions to and from Composite States
	5.80.1 Semantics
	5.80.2 Notation
	5.80.3 Presentation Options
	5.80.4 Example
	5.80.5 Mapping

	5.81 Factored Transition Paths
	5.81.1 Semantics
	5.81.2 Notation
	5.81.3 Examples

	5.82 Submachine States
	5.82.1 Semantics
	5.82.2 Notation
	5.82.3 Example
	5.82.4 Mapping

	5.83 Synch States
	5.83.1 Semantics
	5.83.2 Notation
	5.83.3 Example
	5.83.4 Mapping

	5.84 Activity Diagram
	5.84.1 Semantics
	5.84.2 Notation
	5.84.3 Example
	5.84.4 Mapping

	5.85 Action State
	5.85.1 Semantics
	5.85.2 Notation
	5.85.3 Presentation options
	5.85.4 Example
	5.85.5 Mapping

	5.86 Subactivity state
	5.86.1 Semantics
	5.86.2 Notation
	5.86.3 Example
	5.86.4 Mapping

	5.87 Decisions
	5.87.1 Semantics
	5.87.2 Notation
	5.87.3 Example
	5.87.4 Mapping

	5.88 Call States
	5.88.1 Semantics
	5.88.2 Notation
	5.88.3 Example
	5.88.4 Mapping

	5.89 Swimlanes
	5.89.1 Semantics
	5.89.2 Notation
	5.89.3 Example
	5.89.4 Mapping

	5.90 Action-Object Flow Relationships
	5.90.1 Semantics
	5.90.2 Notation
	5.90.3 Example
	5.90.4 Mapping

	5.91 Control Icons
	5.91.1 Notation
	5.91.2 Mapping

	5.92 Synch States
	5.93 Dynamic Invocation
	5.93.1 Semantics
	5.93.2 Notation
	5.93.3 Mapping

	5.94 Conditional Forks
	5.95 Component Diagram
	5.95.1 Semantics
	5.95.2 Notation
	5.95.3 Example
	5.95.4 Mapping

	5.96 Deployment Diagram
	5.96.1 Semantics
	5.96.2 Notation
	5.96.3 Example
	5.96.4 Mapping

	5.97 Node
	5.97.1 Semantics
	5.97.2 Notation
	5.97.3 Example
	5.97.4 Mapping

	5.98 Component
	5.98.1 Semantics
	5.98.2 Notation
	5.98.3 Example
	5.98.4 Mapping

	6 UML Example Profiles
	6.1 Introduction
	6.2 Summary of Profile
	6.3 Stereotypes and Notation
	6.3.1 Use Case Stereotypes
	6.3.2 Analysis Stereotypes
	6.3.3 Design Stereotypes
	6.3.4 Implementation Stereotypes
	6.3.5 Class Stereotypes
	6.3.6 Association Stereotypes

	6.4 Well-Formedness Rules
	6.4.1 Generalization
	6.4.2 Containment

	6.5 Introduction
	6.6 Summary of Profile
	6.7 Stereotypes and Notation
	6.7.1 Use Case Stereotypes
	6.7.2 Organization Stereotypes
	6.7.3 Class Stereotypes
	6.7.4 Association Stereotypes

	6.8 Well-Formedness Rules
	6.8.1 Generalization

	7 UML Model Interchange
	7.1 Overview
	7.2 Model Interchange Using XMI
	7.3 Model Interchange Using CORBA IDL

	8 Object Constraint Language Specification
	8.1 Overview
	8.1.1 Why OCL?
	8.1.2 Where to Use OCL

	8.2 Introduction
	8.2.1 Legend
	8.2.2 Example Class Diagram

	8.3 Relation to the UML Metamodel
	8.3.1 Self
	8.3.2 Specifying the UML context
	8.3.3 Invariants
	8.3.4 Pre- and Postconditions
	8.3.5 Package context
	8.3.6 General Expressions

	8.4 Basic Values and Types
	8.4.1 Types from the UML Model
	8.4.2 Enumeration Types
	8.4.3 Let Expressions and «definition» Constraints
	8.4.4 Type Conformance
	8.4.5 Re-typing or Casting
	8.4.6 Precedence Rules
	8.4.7 Use of Infix Operators
	8.4.8 Keywords
	8.4.9 Comment
	8.4.10 Undefined Values

	8.5 Objects and Properties
	8.5.1 Properties
	8.5.2 Properties: Attributes
	8.5.3 Properties: Operations
	8.5.4 Properties: Association Ends and Navigation
	8.5.5 Navigation to Association Classes
	8.5.6 Navigation from Association Classes
	8.5.7 Navigation through Qualified Associations
	8.5.8 Using Pathnames for Packages
	8.5.9 Accessing overridden properties of supertypes
	8.5.10 Predefined properties on All Objects
	8.5.11 Features on Classes Themselves
	8.5.12 Collections
	8.5.13 Collections of Collections
	8.5.14 Collection Type Hierarchy and Type Conformance Rules
	8.5.15 Previous Values in Postconditions

	8.6 Collection Operations
	8.6.1 Select and Reject Operations
	8.6.2 Collect Operation
	8.6.3 ForAll Operation
	8.6.4 Exists Operation
	8.6.5 Iterate Operation
	8.6.6 Iterators in Collection Operations
	8.6.7 Resolving Properties

	8.7 The Standard OCL Package
	8.8 Predefined OCL Types
	8.8.1 Basic Types
	8.8.2 Collection-Related Types

	8.9 Grammar

	Annex A - Standard Elements
	Annex B - Legal Information
	Glossary
	Notation Conventions
	Glossary Terms

