ISO/IEC 19501:2005(E)
Date: January 2005

Unified Modeling Language Specification

Version 1.4.2
formal/05-04-01

This specification is also available from 1SO as | SO/IEC 19501.

ISO/IEC 19501:2005(E)

S o]0] o1 PP PRPPR 1
2 NOIMALIVE FEIEIENCES ...uviiiiiiiiiiiiie i e e e e e e e e e e e e e e s e e e 1
2.1 ldentical Recommendations | International Standardscccoeeiiiiiiiiiiicnnnnns 1

3 General INFOrMALIONuuuiiiiiiiiie e e e e e e e e e e s 2
3.1 DESCHPLION .eeiiieiiieeeeee e 2

3.2 Outside the Scope Of the UMLcoooeiiiiiiiee e e e eaneees 3

3.2.1 Programming LAnQUAGESuuueierieeeieiiiiinriiiieeeeeeseesssssnssenaeeseaesessassnnssnssneneseeeessasanns 3

0 o Lo | L= PP RPOTPRP 3

Bi2.3 PrOCESS ..ottt ettt e e e e e e e e e e e 3

3.3 Primary Artifacts of the UML ... 4

3.3.1 UML-defining ArtifaCtSc..eeeiiiiiiiiiee e 4

3.3.2 Development ProjeCt ArtifactS ... 4

3.4 Motivation to Define the UML ... 5

B4 L WRY WE MOAE ..ottt e e e e e e 5

3.4.2 Industry Trends iN SOWEAIEoooiiiiiiiiie e 5

3.4.3 Prior to INAUSEIY CONVEIGENCEcceeiiiiiiiiiiiie it e e ettt e e e e e nbee e e e e e e e 6

3.5 G0alS Of the UML ... e 6

3.5.1 Comparing UML to Other Modeling Languagescoccuuuiiiieiieeeeen e 8

3.5.2 FEatures Of the UMLcuiiiiiiiiie e a e 8

3.6 UML - Past, Present, and FULUIEoooviiiiiie e e e e 10
B.8.LUML 0.8 - 0.91 .oiiiiiiiiie ittt 10

3.6.2 UML PAITNEIS ...ceiiiiiieei ettt e e e s e e e e e e e e s e eaeeeeeeas 11

3.6.3 UML - Present and FULUIEcoiiiiiiiiiie ettt e sinaeee e 11

4 UML SEMANTICS ..oiiiiiiiiiieiiiie ettt ettt e e e e e e e s e e s bbb e e e et e e e e eeeaaeaeeesessaaaaans 13

Part 1 - Background

A1 INTFOAUCTION i 13
O R VT 0T LTSI U o IS o 1= PR 13
2054 22 2N o o] o Y- Lo IS 13

4.2 Language AIChItECIUIEvvuiiiii i e e e e e e e e e e e e e e eeennaes 14
4.2.1 Four-Layer Metamodel ArChitECIUIecooviiiiiiiiie e 14
4.2.2 PACKAQGE SIIUCTUIE....eeiiieei e e i ittt ee et e e e s e st e et e e e e e e e s as s e e e e e eee e s e e nnntanreeeeees 15

4.3 Language FOrmaliSMoooiiiiiiiii et e e e e e e e e e e e e e eeeens 17
4.3.1 Levels Of FOrMAlISMcoiiiiiiiiie e 17
4.3.2 Package SpecCification SITUCIUIEcivieeeiiiiiiiiiiieiee e 18
4.3.3 Use of @ CoNStraint LANQUAGEcevveeieeeeeiiiiiiiieieereeeaeesesssnnsneeneeeeeesseesnnsnnsnsenees 19
4.3.4 Use of Natural LanQUAaQEcccuvviieiiiiieee e icciieete e e e e e e e s es s sneebeene e e e e e s e e s snnnnnnnneeees 19
4.3.5 Naming Conventions and TYPOgraphy........cccuvuuirieiieereiiiiisiieieer e eee e s e s senieneeeee e 20

Part 2 - Foundation

4.4 Foundation Packagecoovviiiiiiiii e, 20
S O o] € T 21
4.5, 1 OVEIVIEW .uunneeeieetee ettt e e e e ettt e e e e et e e e e e ettt e e e e e eet e eeeeessbtaseeesestatnaaeeeesrbannnnns 21
4.5.2 ADSEFACE SYNTAX ...uteiiiiiiiiieeiie ettt e e e e e e e et e e e e e e e e e e e s annanbeeeeees 21
4.5.3 WEII-FOrmednesS RUIESouvuiiieiiiiiie ettt enb s 51
4.5.4 Detailed SEMANLICScouviiiiiiiiiiii et e et e e e e e et e e e e e s erbaa s 63

© ISO/IEC 2005 - All rights reserved iii

ISO/IEC 19501:2005(E)

4.6 EXtENSION MECHANISIMS ...vvviiiiii e e e e e 69
.6.1 OVEIVIEWeeeiiitieeeee ettt e e e e e et e e e e e e ee e e e e e eet b s e e e e e e sa bt e e e s eebaba e eeesesbaaaeeeeeeesannsnnss 69
4.6.2 ADSITACE SYNTAX .eiiiiiiieiiei ettt e ettt e e e e e e e e e s e bbb e e e e eeaaeaeeeaaann 71
4.6.3 WEII-FOrmedness RUIESciiiiiiiiiiiee ettt eeaab e e e e 74
4.6.4 Detailed SEMANTICS ..uuuuiiiiiiiiiiie e e et e e e e e e et e e e e e e aabba e e eaaens 76
4.B.5 NOTES ..ot eaa s 77

A D T - T 1Y/ 011 TSP 78
A.7. 1 OVEIVIEWeeeiiiiieeeee ettt e e e ettt e e e e e e et ee e e e e e eett et e e e eeese bt e eeeeesaaaeseessesanneeesessrtansaeaeens 78
A.7.2 ADSETACE SYNTAX et e ettt ettt et e e e e e e e e e s bbb b e e e e eeaaeeeeeaannas 78

Part 3 - Behavioral Elements

4.8 Behavioral EIements PACKAgEuvvviiiiiiiiiiiiieiieeeeeeieee et 85

4.9 COMMON BENAVIOTiiiiiiii e 85
4,9.1 OVEIVIEW ...coiiiiiieieeeetteeeee et et e e et e e e e e e e e e e e e et e e e e e aeaeeee s e e b e et b e bbb eaaeeaeaeaeeaaaseeeens 85
e T AN o 11 - Tt A0SV] - PSSP 85
4,9.3 Well-FOrmedness RUIESuuuiiiiiiiii et e e 96
4,9.4 Detailed SEMANTICS ...vvvviriiiiiiiiiii it e e e e ettt ee et e e e e e e e e e aaaaaaeeens 101

4.10 Collaborationsoiiiiiii i e 103
4,10.1 OVEIVIEW ...ooiiiieeeeeeeeieeeetiett e e e s e e e e e e e e e e e e e e e e ee e e e e aeeeae st as e e s bbb bbb e e aeeeeaeaaaaaeaeens 103
O T Y o 1 £ = T SV] - PSR 104
4,10.3 Well-FOrmedness RUIESuuui i s 111
4,10.4 Detailed SEMANTICScovvvririiiiiiiiiii i e e e ee e e e e e et e e e e e e e e bbb e aaeaeeeas 115
0 IR 0 N o] (= 118

411 USE CASES ..oiuiiiiii ettt ettt e et e e aanas 119
I A @ 1YY 4V T PP 119
I A Y o 1 £ = 1o SV] - PSP 119
4,11.3 Well-FOormedness RUIESuuuiiiiiii e s 122
4,11.4 Detailed SEMANTICSccovviiiriiiiiiiiiie e e e e e e e e e e ee e e e e e e e e e e e e e e eaeas 124
e 5t I N o (= 128

4,12 State MACKINEScoeeeiiieeeee et e e e e e e e e e e e e e eeaaaaa 128
4. 12.0 OVEIVIEW ...eeviiteieee ettt e e e ettt e e e e et e e e e e e e et e e e e e e aat b e e e e e esbab e eeeee sttt eeeeesrannnnns 128
4.12.2 ADSIFACT SYNTAX .uueiiiiiieiiiiie ettt e e et e e e e e e e e s e s anbb e aeeeaaeaaeaesaannnnes 128
4.12.3 Well-FOrmednesSRUIESciiiiiiiiiee e 136
4.12.4 Detailed SEMANTICS ..uvvu it e e e e e e et e e e e e e s 140
O S Y N\ o (1 148

TG R A Noa 1171 Y €] =1] 1SRRI 152
4. 13,1 OVEIVIEW ...eeviiieeeee ettt e e e e ettt e e et e e e e e e e et e e e e e e eabta e e e e e easbb e eeeeesbaaeeeseesrannnnns 152
4.13.2 ADSIFACT SYNTAX ..utiiiiiiiiiiiiee ettt e st et a e e e e e e e sanbb e eeeeaaeaaeaesaannnnes 152
4.13.3 Well-FOrmedness RUIEScooiiiiieiiiiie e 156
4.13.4 Detailed SEMANLICS ...uuuiiii ittt e e e e e e e et e e e e e aranaans 159
o R R ST N\ o] (1 160

Part 4 - General Mechanisms

I Y oo L= Y = Ta T= Vo T=T o 4 1= o | PP 161
4. 14,1 OVEIVIEW ...ceviiieieee ettt e e e e e ettt e e e et a e e e e e et eeeeeeeat b e e e e e eabbb e eeeeesbaaneeeseesrannnnns 161
4.14.2 ADSIFACT SYNTAX .ueuiiitiieiiiiie ettt e e e e et e e e e e e e e e e snnbbbeaeeeaaeaaeeesaannnees 161
4.14.3 Well-FOrmedness RUIEScooiiiiiiiiiiie e 165
4. 14.4 SEMANTICS eevvvteieeeieitii et e e ettt e e e ettt ee e e e e eeeta e e s eesees bt aeeeeesattaaeeeesrtatanaeesesrrannnns 170
O R SR N\ o (1 174

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

5 UML NOtAtION GUIAE ...eeeeee e e 177

Part 1 - Background
5.1 INtrodUCHION .o 177

Part 2 - Diagram Elements

5.2 Graphs and Their CONtENLSccoooiiiiiii i 178
5.3 Drawing Pathscooiuiiiii i 178
5.4 Invisible Hyperlinks and the Role of TOOIScoooiiiiiiiiiii e 179
5.5 Background Informationccooiiiiiiiiiiic e 179
5.5.1 Presentation OPLiONSccccuviviiiiiiiieee e icsiiie e e e e e e e e s s saerreeer e e e e e e s e s s s annnrnrneeereaees 179
5.6 SHING coiieiiiiiie e —— 179
B.6.1 SEMEANTICS ..ttt ettt et e e e e e e e e e bbb et e e e e e e e e e e nne b e aeeas 179
N I o] = 1o PP U RPN 179
5.6.3 Presentation OPLIONSc.uvuiiiiiiiiiaaii ettt e e e e eeaa e 180
B5.6.4 EXAMPIES ...t a e e e e e e e e e 180
N ST V=T o] o1 oo PP U PP TP TP 180
5.7 INBIMIE e e ettt 180
B.7. 01 SEMEANTICS ...ttt et e e e e e e st be e e e e e e e e e e raaabenbeeaaaaae s 180
N A o] = 1o o PR U RPN 180
BT .3 EXAMPIE ... e e e e e e e 180
N V= T o] o[T PP PTT P TP 181
5.8 LADEI e 181
5.8.1 SEMANTICS ...ttt ettt ettt e e e e e e e et r et e e e e e e e e e na e e ae e 181
NS T2 o] = 1o o PP TR PR 181
5.8.3 Presentation OPLiONS.cc.uuuiiiiiiiiieai ettt a e ee s 181
B.8.4 EXAMPIE ...t a e e e e 181
R I Y20 (o L= 181
N KO T o] (=517 [0 o 182
B5.10.1 SEMANTICS ..eeiiiiiiiiiiieeitiiiee ettt e ettt e e e st e e e e sttt e e e s anba e e e e s snbebeeeessnbeeeeeesnbeeeeeaaes 182
LT 0 238 o] = i To 1 o R RSP RTPI 182
LN 0 R T = Vg] o] 1= SO 182
LN 0 8 3 V= o o 1T SO 182
5.10.5 OCL EXPrESSIONS ..eeieeiiiiiciiiitieieeieee e e e e s ss s ettt e e e e e e e s s e s ssannraaeeeeraaeeeeseansnnsnnnnneeees 182
5.10.6 Selected OCL NOLALIONcceiiiuiiiiieriiiiiie ettt eeeeas 183
LN 0 B A = Vg] o] 1= SO 183
S0 R (o] (< TSSO 183
B.11.1 SEMANTICS ..veiieiiiiiiiieeiitiiiee ettt e sttt e e e st e e e e sttt e e e s saba e e e e e snbebeeeessnbeeeeeesnbeneee e e 183
LT 28 o] = i To 1 o USRI 183
5.11.3 Presentation OPLiONSccuuiiiiiiiiieeeeeiisieiieiieer e e e e e s e e s s e eeraaeee e s s s nnsnnnnneeees 183
LNt = Vg g o] = SO 184
LNt I IS V= o 1T SO 184
5.12 Type-Instance CorreSPONAENCEcccoeeiiieeiiei e 184

Part 3 - Model Management

5.13 PACKAGE ..oiieiiieiiieee e 186
LT B T Y=Y 0 1 F= 1 0 [0 186
LT R T2 Lo v 1 0] o [P 186

© ISO/IEC 2005 - All rights reserved Y

ISO/IEC 19501:2005(E)

Vi

5.13.3 Presentation OPtioNS.........ooiicciiiiiiiiieee e e e e e s aee e e e e e e e e s ennnanaeees 186
5.13.4 Style GUIAEIINESeveeeieeie it e e e e e e e e e anae s 187
LN TR T =T 1o o] 187
LN I X G T 1Y =T o o 188
B5.14 SUDSYSIEIM oo ————— 188
LN O ST 1 4 F= g [T O S UURT TR 188
LT 2 o) =i [0 [P PRTP TP 188
5.14.3 Presentation OPLIONSoooiiiiiiiiiiiiiieie ettt e e e e e e e e eaeebaeee s 189
5144 EXAMPIE ...ttt e e e e e e e eas 190
T R 1Y =T o] o] o [P UUT TSP 193
B5.15 MOEI e 193
5.15.1 SEMANTICS ...ttt ettt e e e e e e e e s bbb e e e e e e e e e e e e anneaeaeeas 193
T o2 N[0 =i [0 TP PTTP TP 193
5.15.3 Presentation OPLIONSoooiiiiiiiiiiiiiee ettt e e e e e e 193
B.15.4 EXAMPIE ...t e e e e e e aaeaaeas 194
LT R RV F=To] o] o T RO UPUT TR 194

Part 4 - General Extension Mechanisms

5.16 Constraint and COMMENTccooiviiiiiiiiiieee e 195
B.16.1 SEMANTICS ..ooiiieiiiiiiiiiec e e e e e e e et et e e e ————————————————————— 195
LT ST Lo = 11 o 195
B.16.3 EXAMPIE ..o e e e e e e 196
T G 1Y =T o] o] o PP UT TP 196
5.17 EIement PrOPeItIES ...cooeii i 197
L RS 1= 4 = T o PSSP 197
LN 7 o) -1 oo U PP PPP 197
5.17.3 Presentation OPLiONSccooeiiuiiiiiiiiieee e e e e e e e e s s e e e e e e e e e s nnnanneee e 198
5.17.4 Style GUIAEIINES ...eeveeiieei et e e e e e e e e e raeee e 198
LN A T - T 1o oS 198
LN A G T8 1Y =T o o 198
5.18 SEBIEOLYPES ..ttt ettt e ettt e e e e e e ettt b e e e e e et e e be e eaaeeeaae 199
B.18.1 SEMANTICS ooiuveeiieeiiiiiee ettt e ettt e e s sttt e e s et e e s s nb b e e e e anbbbe e e e e nnnes 199
LN 2 o) - 1o o U UPPPPP 199
LN S T B =T g o] =SSP 200
LN S 1V =T o o SRR 200

Part 5 - Static Structure Diagrams

T R I O - T 1 = To [= 1 o S 201
5.19.1 SEMANLICS ..eceveiiiieieiiie ettt ettt 201
5.19.2 NOTALIONceeieeeieeee ettt n e 201
LN e T B 1Y =T o o S 201

5.20 ODJECE DIAQIaM ..ocviiiiiiiiiiiiee e —— 201

5,21 CIASSITIBE ...tiiiiiiiie ittt e e 201

B.22 CIASS oottt ittt e et a e e e nre e 202
5.22.1 SEMANTICS ...ttt ettt e e e e e e e e e e e e e e e e e e e annrae e eas 202
5.22.2 BASIC NOLALIONeeeeeiiiiee ettt e et e e e e e e e e eeaeeaaeas 202
5.22.3 Presentation OPLIONSoooiiiiiiiiiiiii ettt e e e e e e 202
5.22.4 Style GUIAEIINESeeiiiiiieii et e 203
B5.22.5 EXAMPIE ... a e e e a s 203

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

L T 1Y/ = o o 1T SO 203
5.23 Name COMPAIrtMENTcoiiiiiiiiiii et e e s 204
LI T I o] = L1 o PR URRT RO 204
IS B V= o] o1 oo TP 204
5.24 List COMPArtMENtcooooiiiiiiiiii e 204
N2 I N o] = L1 [RO U PR 204
5.24.2 Presentation OPLiONS.uuuiiiiiiiiaiiiiiiiiee ettt e e e e e e e ebe e eeeaaa s 205
B.24.3 EXAMPIE ... 206
IV = T o1 T PP UPP TP 206
B5.25 ATDULE oo 207
5.25.1 SEMENTICS ...eteieiiiiieie ettt e e e e e e et be e e e e e e e e e e e e annbenbeeeeeaae s 207
VA Y48 o] = i To] o R RSP TPI 207
5.25.3 Presentation OPLiONScc.uuiiiiiiiiieeee i isiieiieer e e e e e s e e s st e eer e e e e e e s e s nnnnnnnneeees 208
5.25.4 Style GUIEINESccciieceeee e e e e e e ae s 209
LTI =12] o] = SO 209
L LT 1Y/ F= o 1T SO 209
5.26 OPEIAtION ..ooiiiiiiieieiee e 209
5.26.1 SEMANTICS ..veiiiiiiiiiiiee ittt ettt ettt et et e et e e e s st et e e e s snbe b e e e e s abe e e e e e nnbeeeae e 209
A S T4 o] = i To 1 o R SO 209
5.26.3 Presentation OPLiONSccuuiiiiiiiiieeeeeiie st ir e e e e e s e s s st e e e e ae e e e s e s snnnnnnneeees 210
5.26.4 Style GUIEINEScccoiiceee e e e e e e e e e 211
5.26.5 EXAMPIE ..ot e e e e e 211
L LT 1Y/ F= o] 1T SO 211
5.27 Nested Class DecClarations..........cocooeiiooiiiiiiiiiiiiiiieeiee e eeeeeeeeeees 212
I 0 RS =T 0= g | o= SRS 212
I 2 o] = i To 1 o H RSP 212
L T 1Y/ = o 1T SO 212
5.28 Type and Implementation Class............cooeviiiiiiei e 212
5.28.1 SEMEANTICS ..eeiiiiiiiiieeiiii ittt ettt e e e e e e e e e bbb et e e e e e e e e e s e e anbb b e e eeeaaaaens 212
I I o] = L1 o] o PO U PP 213
B5.28.3 EXAMPIE ... 213
I V= Vo] o1 Vo U UTT TP 213
5.29 INEITACES ..ooiiiiiiiii 214
5.29.1 SEMENTICS ...eteieiiiiieie ettt ettt et e e e e e e s b et e e e e e e e e e e e e e annbenbeeeeaaae s 214
N4 I o] = L1 o] o PO URT TR 214
B5.29.3 EXAMPIE ... 214
I A IV = Vo] o1 Vo PR TP TP 215
5.30 Parameterized Class (Template...........ocoooeiiiiii s 215
5.30.1 SEMEANTICS ...eteeeiiiiieiee ittt e ettt e et e e e e e e s e ab e e be e e e e e aeeeaa e annbeabeeeeeaaeaas 215
IS0 I o] = L1 o] o PO U PT T UTTOOP 215
5.30.3 Presentation OPLiONS.c..uuuiiiiiiiiaaaaaia ettt e e e e e e e e nbeeeeeee s 216
5.30.4 EXAMPIE ...t e e e e e 216
IS OB Y/ F= o] o1 Vo U UUPTT TR 216
5.31 BOUNA EIEMENT ..o 217
B5.3L.1 SEMANTICS ..eeiiiiiiiiiiiee ittt ettt ee et e e e sttt e ettt e e e st et e e e s snbe b e e e e s anbeeeeeeanbeeeee e e 217
LR N 228 o] = i To 1 o H USRI 217
5.31.3 Style GUIAEINESoeeeeiiiiceee e e e e e e 217
L 31 I B = Vg] o] = SO 217
L 31 ST V= o o 1T SO 217
TR 77 U 1 11 Y/ 218

© ISO/IEC 2005 - All rights reserved Vii

ISO/IEC 19501:2005(E)

Viii

LT o RS 1= 4= g o= S TS PPRP 218
L 2 N o) - (o o H SO RPPPP 218
B5.32.3 EXAMPIE .t e e e e 218
LR 7 1V =T o] o o S 218
5.33 MELACIASS ...uvviiiiieeiiiiiiii ettt 218
B5.33.1 SEMANTICS ..oieieiiiieiieeee e e e e e e et —————————— 218
LT 1C T2 Lo = 1 [o W 218
SRS T 1Y =T o] o] o U RTTP RO 219
5.34 ENUMETALION ..ooiiiiiiiiiiiiiiie ettt et e e e e s e et e e e e e e 219
LR M RS- o = o o 219
LT 7 B Lo - 1] o N 219
IR 7 1V =T o] o] o [P UTTP TP 219
5.35 Stereotype DecClarationoooiiiiiiiiiiiii e 219
5.35.1 SEMANTICS .eouveeeieei ittt e ettt e e s st e e s et e e e bbb e e s e anneeas 219
Lo 153024 N\ o) - 1o o U UPPPPP 219
LR ST T 1Y =T o] o o SO 222
5.36 PO I DB it et e e e et e aaeeaae 222
5.36.1 SEMANTICS ...uveiiiiiiiiiiiee ittt s ettt ettt e e sttt e et b et e e s b e e e sbb e e e nnaee s 222
5.36.2 NOLALION ...ceiiiiieeiie ittt e st e e st e e e s st b be e e s nnnbbeeeeeaneee 222
LR TG T 1Y =T] o o S 222
5.37 Class Pathnames ... 223
LR It R N\ T - oo U PPPPPR 223
B.37. 2 EXAMPIE ...t a e e a e 223
LRI T 1Y =T] o o S 223
5.38 Accessing or Importing a Package.........cccccoeeeeeie i 223
LI E S T AT o= T o o 223
LoIRCT S T2 Lo = 1[0 o 224
5.38.3 EXAMPIE ... a e e e 224
RS 1Y =T o] o] o PP PTT TP 224
5.39 ODJECL i ———— 225
LT T RS T=T o= o o 225
LIRS T2 Lo - 1] o 225
5.39.3 Presentation OPtiONS.......cooii ittt e 225
5.39.4 Style GUIAEIINESeeiiiieieiie e e e 226
B5.39.5 VaNAtiONS ... oo e e e e e ————— 226
5.39.6 EXAMPIE ... e e 226
SRS Te B A1V =T o]] o RO RT TP 226
5.40 Composite ODJECE ..ocviiieiiciieee e ———— 226
L T RS- o= o o 226
L0 A Lo = 1[0 o 227
B5.40.3 EXAMPIE ... e e e e e e 227
L L0 1Y F=T o] o] o PP ETT TP 227
B5.41 ASSOCIALION ..ceevieiiiee et 227
5.42 Binary ASSOCIALION........ccceiviiiiiii e e e ee e et e e e e e e s e e e e e e e e e et e e e e e aeeeanes 228
B5.42.1 SEMANTICS .oiiuveeiieeiiitiee ettt et e st e e s ettt e e s st e e s e enbb e e e e e anbbbe e e e e nnnes 228
LA N o) - o] o H U UPPPRPP 228
5.42.3 Presentation OPtioNS........cooiicuiiiiiiiiiei e e e e e e e s re e e e e e e e e s 229
L] Y 1 U] T [T 1] =S 229
L ST @ o 1o S 229
5.42.6 EXAMPIE ..ot a e e a e 229

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

L A V- o o 1T SO 230
5.43 ASSOCIAtION ENeiiiiiiiiiiiciii et 230
B.43.1 SEMEANTICS ...etteeiiiiieeee ettt ettt e e e e e e s e bbb e e be e e e e e e e e e aa e annbebbeeeeaaaeeas 230
S I o] = L1 [0 o F PP PTTP TP 230
5.43.3 Presentation OPLiONS.uuuiiiiiiiiaiiaiiiiiti ettt e e e e beeeeeeae s 232
5.43.4 Style GUIEINEScooiie et a e 232
5435 EXAMPIE ..o 232
S A Y/ F= o] o1 T TP 233
5.44 MURIPHCILY ovvvieeeeieeeee e 233
B.44. 1 SEMEANTICS ...etieiiiiiieie ettt ettt ettt e e e e e e e e bbb e be e e e e e aeeeaa e annbeabeeeeeaaeaas 233
LY o] ¢ 1[0] PP P TP 233
5.44.3 Style GUIAEINEScooiiiiie e 233
B5.44.4 EXAMPIE ...ttt a e a e e e e 233
L V= T o] o[T TP 234
T O U= 1111 o 234
L T AT =T 4 o= o o= PSPPI 234
Y LY o] = i To] o H USRI 234
Lol o =151 T a1 v= L1 [@ o] 1 o] o 1 P 234
5.45.4 Style GUIEINESccco oot e e e e reeee s 234
LT = 2 4] o] = PSSR 235
L TN 1Y/ F= o o 1T SO 235
5.46 ASSOCIAtION ClaSSccoiiieiiiiie e 235
LGP AT =T 4 o= o o= PSPPI 235
Y LSRN o] = i To 1 o H SOOI 235
5.46.3 Presentation OPLiONS........cc.uuuiiiiiiiieeeeeiiiisieiieer e e e e s s e e sssenrenereeraaeee e s e s snsnnnneeeees 235
5.46.4 Style GUIAEINEScceeiiieicee et e e e e e s anree e 235
L LT =2] o] 1= SO 236
L L 3N 1Y/ F= o o1 SO 236
B5.47 N-Ary ASSOCIALION ..uuuuuiiiieeiieieiiii s e et e e e e e e e e ere e e e e e e e e e aearnra e eeeas 236
o RS =T 0= g | o= ORI 236
Y 2 o] = i To 1 o H USRI 236
5.47.3 Style GUIAEINESceeeiiieicee e e e e e e e e ree e 237
L - V3] o] = SO 237
Ly Y/ = o] 1T PP 237
5.48 COMPOSILION .ooeiieiiieiieeeeee e 237
B.48.1 SEMANTICS ..eeeiiiiiiiieeiiiittt ettt e ettt et e e e e e e s e e bbb e b et e e e e e e e e e s e e annnbbebeeeaaaaaeas 237
Nt o] = L1 [0 o F PP UTTP TP 238
5.48.3 DeSigN GUIAEIINES ...ccoiiiiiiieee et 238
B5.48.4 EXAMPIE ..o 239
R Y/ F= o] o1 T TSP UTP TSP 240
B5.49 LINK 1o ———————— 240
5.49.1 SEMANTICS ..eeeiiiiiiiieeiiii ettt e ettt et e e e e e e s s e bbb e b bt e e e e e e e e e s e e anab b b e e e eaaaaeas 240
L I o] ¢= L1 [0] o RO UTT TP 240
B5.49.3 EXAMPIE ... 241
L V= Vo] o1 T U UTP T TTPOP 241
5.50 Generalization ..o 241
5.50.1 SEMEANTICS ..eeeiiiiiiiieeiiiiitie ettt e e e e ettt et e e e e e e s e e bbb e be e e e e e e e e e e s e e anbbbabeeeeaaaaens 241
1012 o] = L1 o] o RO PPT RO 241
5.50.3 Presentation OPLiONSc..uuuiiiiiiiiiaiaaiai ittt e e e e e e e ebeebeeee e 242
R O V= o] o1 T U UTT TP 244

© ISO/IEC 2005 - All rights reserved iX

ISO/IEC 19501:2005(E)

5.51 DEPENUENCY ..oovviiiiiiiiiiiee ettt ——— 245
B5.51.1 SEMANLICS . coiieeiiiieeieeee ettt e e e e ettt e e e e e et e e e e e s e aa b s e e e e eeraba e eeeeeraaan 245
LT N 7 o) = L1 o] o FR OO 245
5.51.3 Presentation OPtiONS........ooi ittt e e e e 246
B5.51.4 EXAMPIE ...t e e e e e e e eas 246
NN IRV F=To] o] o To TR PR UUTT PP 247

5.52 DernvVed EIBMENL ...t 247
B5.52.1 SEMANLICS . .ceiiieiii ittt ettt e e e e e e e e e e e et e e e e e s e aa b s e e e e eerabaeaeeeeeraaan 247
oISy o) = L1 o] o KRR UPPPRPRR 247
5.52.3 Style GUIAEIINESeeeeiiiiiieiie et 247

B5.53 INStANCEOT ...t 247
L3 0 ST 4= | o SRS 247
LTS3 3728 o) - o) o PSS 248
LTS3 0 T 1Y =T] o o SRS 248

Part 6 - Use Case Diagrams

5.54 UsSE CaSe DiIAQramMcccoouiiiiiiiiii e ec e s e e e e e et s e e e e e e e eee e s e e e e e e eeeanes 248
B5.54.1 SEMANTICS ..uveiiiiiiiiiiee ettt ettt e sttt e e sttt e e sttt e s b e e e e sbb e e e e naee s 248
B5.54.2 NOLALION ...ceteiiiiiiie ettt ettt e et e e st e e e s nbnbe e e s nnnbreeeeeaneee 248
B5.54.3 EXAMPIE ..ot r e e e e a e 249
LY 1V =T o] o o SO 249

L TS T U ST - 1 249
5.55.1 SEMANTICS .eouveeeiieiiitiee ettt et e e st e e ettt e e s st e e s s enbb e e e e anbbbe e e e e nnnes 249
LTS T4 N o) - 1o o U PPP 250
5.55.3 Presentation OPtioNS.........coiiciiiiiiiiiiiie e e e e e s s ee e e e e e e e e s 250
5.55.4 Style GUIAEIINESevveiieeie i e e e e e e e e 250
LTI J 1Y F= T] o o S 250

Lo G T o | N 250
B5.56.1 SEMANTICS ...uveeiiiiiiiiiee ettt ie ettt ettt e sttt e e sttt e e sbe et e e st b e e e e sbb e e e naeee s 250
LS S 324 N o) - i o o H SO URPPRR 250
5.56.3 Presentation OPtioNS.........coiiccieiiiiiiiiie e e e e e s s e e e e e e e s s e 250
5.56.4 Style GUIAEIINESovveiieeie i e e e e e e e s ne s 251
LTV F= T] o o S 251

5.57 Use Case RelationShipS........ccovvvviiiiiiiii . 251
LRy 0 RS- o = T o o 251
Ry 472 L) - 1[0 o 251
B.57.3 EXAMPIE ... e a e 252
R A 1Y =T o] o] o PP PETT TR 252

5.58 Actor RelationShipscooooiiiii i 252
LR oY e T RS- o= T o o 252
LoIRoY < T2 Lo = 11 o 252
B5.58.3 EXAMPIE ... a e 253
N T 1Y =T o] o] o [T PP UTT PR 253

Part 7 - Interaction Diagrams

SN TS I Of0] [F=1 o Yol 7= 1[0 o [N 253
LR Le I S T=T 0 1 F= 1 L (o2 253
5.60 Sequence DIagramooiiiiiiiieieeee e 254
oI 1O RS T=T 0 1 F= L (o2 254

X © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

S0 238 o] = i To T o H USSP 254
5.60.3 Presentation OPLiONSccuuiiiiiiiiieeee i iiieiieer e e e e e s e s s s e ereaeee e s e s nnsnnnneeeees 255
LT O B = Vg] o] = SO 256
LTSI 1Y/ = o o 1T SO 258
5.61 ODbject LIfeliNeoooviiiiiii 260
Lo O ST =Y ¢ = oo PPN 260
Lo 2 N[= L1 o] o 260
5.61.3 Presentation OPLIONSc..uuiiiiiiiiiiaieiii ittt e e e e e e ebeneeeee s 260
B5.61.4 EXAMPIE ...t e e e e e e e 261
N T Y/ F= o] o1 Vo O U UUT TP 261
B5.62 ACHVALION......cciii i 261
Lo P2 R ST =Y 4 = oo PPN 261
oISy \\ o] 7= L1 o] o O 261
B5.B2.3 EXAMPIE ...t 262
N Y V= T] o1 Lo U UPT T TTROP 262
5.63 Message and SHMUIUS..........ocouiiiiiii e s 262
LG 1 IO AT =T 4 o= o o= PSPPI 262
1S 1228 o] = i To 1 o R SO 262
5.63.3 Presentation OPtiONScccuviiiiiiiiieeieeeie st r e ee e e e e e e s s e e e e e e e e e s e 262
L3 B = Vg] o] = PR 264
L3 TS 1Y/ = o 1T P 264
T A I -V £ T T T 1= 264
LG 7 o AT =T o= o o= PSPPI 264
G732 o] = o 1 o H RSP 264
LN T G o =11 T 0 = L1 [@ o] 1 o] o 1 264
LT = Vg] o] = SO 264
LT ST V= o o 1T SO 264

Part 8 - Collaboration Diagrams

5.65 Collaboration DIagramccieeiiiiieiiriiiiie e eee e e e e e e e e aerr e e e e 264
B.B65.1 SEMANTICS .ovvuttuiiiiiiiiiiieiieieeeeeee e et et et ee e et s e s e seeaeeaeaeaeaeeaeeeeessrereerbarares 264
oIS Lo T2 N[0 = L1 o] o H RSOOSR PR PSP 265
5.65.3 EXAMPIE ... a e e aae e 266
L TSR 3 V= o 1T SO 267

5.66 Pattern SITUCIUIEcoeiniiii e e e e e e e e ea e ens 267
D86, 1 SEMANTICS ..uuiiiiiiie e et e e e e e e e e e e e e e e et et e eeer e e —————— 267
oIS T2 N[0 = L1 o] o H PO PO PSP PRPP PR 268
LTI T 1Y/ F= o o 1T SO 270

5.67 Collaboration CONTENES..........cvuuiiiiiiiieeeeeeeeeee e 270
B.B7.1 SEMANTICS .uuiiiiiiiiiiiiie et e e ettt e e e e e ea e e s e e e eeataaeseeessaban s aeeeesbrbannaaeseees 271
o YA \\[o] = 11 o | o T OO RPPRUPRI 271
N AR V= o] o1 T TSP URT TP 272

5,68 INTEIACLIONS.......cciieiiiiiee it e e e e e e e e e a et e e e e e e e e e e ee bbb e e e e e 272
B5.68.1 SEMANTICS .uuiiieiiiiiiiiiee et e ettt e e e e e et ee s e e e eeeta e e s eeessaban e eeeeebabanaaereees 272
oI ST I \\lo] = 11 o | o H PSPPI 273
N TS Y/ F= o] o1 Vo PP URT TP 273
5.68.4 EXAMPIE ... a e 273

5.69 Collaboration ROIESoouvuiiiiiiie e 273
5.69.1 SEMANTICS ..uiieiiiiiiei ettt ettt e et e e et e e e e e e eea bt e e e e e e s saba e e e e eeerbaaeaanes 273
oI ST B2 \\lo] = 1 1o | o H ORI 273

© ISO/IEC 2005 - All rights reserved Xi

ISO/IEC 19501:2005(E)

5.69.3 Presentation OPtiONSoooiiiiiiiiiiiieee e e e e e e e e e e 274
5.69.4 EXAMPIE ... et e e e e e e e e 275
LG TSR 1Y =T o o S 275
5.70 MURIODJECE .cooviieiiieieeeee e 275
LT A0 T RS- o= o o 275
LT A0 I Lo - 1] o 275
B.70.3 EXAMPIE ... a e e e e 276
IO 1Y =T o] o] o PP UT TP 276
B5.71 ACHVE ODJECE oo 276
LT 0 R ST o = o o 276
LT 4 2 Lo - 11 o 276
D713 EXAMPIE .o a e e e 277
L A 1V =T o] o] o PP ET TP 277
5.72 Message and SHMUIUSceiiiiiiiiiiiiiien e e e e e e eaanens 277
L A RS 1= 4= T 1o SRR 277
LN 72 N o) - (o] o H U PPP 278
5.72.3 Presentation OPLiONSccooviiiiiiiiiiiiei e e e e e e e s saaen e e e e e e e e s nneee e 280
L A B - T 12 o] 280
L 4728531V =T] o o S 280
5.73 Creation/Destruction Markersccuiieiiiiiieiieieeis st e e e e eeanaens 281
L A T0 RS T=T 4= g oSSR 281
LI A< 72 N\ o) - 1o o U PPPP 281
5.73.3 Presentation OPtiONScooiiiiiiiiiiiieee e e e e s e e e e 281
L T B - T 1o o] RS 281
LA ST 1Y =T] o o S 282

Part 9 - Statechart Diagrams

5.74 Statechart DIagramiiiiiiiiiie i e e e e e e e e e e eeaanens 282
L o RS T 4= Vg 1o USRI 282
B.74.2 NOLALION ...ceeiiiiiiiie ettt ettt e e st e e e s st e e e e s ennbbe e e e e aneee 282
L 273 T 1Y =T] o o S 283

I AT] 1= L= PP RUPUUPPPPTPIN 283
L A T8 RS 1= 4= T (o PSSP 283
B.75.2 NOLALION ...ttt e ettt e e st e e e s st et e e e s annbbe e e e e aneee 283
L ST T 1Y =T] o o S 285

5.76 COMPOSItE STALES oiiiiiiieiiciic e ————— 285
B.76.1 SEMANTICS ...ttt ettt e e e e e e e e e bbb e e e e e e e e e e annranae s 285
N (32 N\ [o] - Ui [0 o P UUTT TP 285
B.76.3 EXAMPIES ...t e e 286
N 1Y =T o] o] o RSP UTTP TP 287

.77 EVENES et a e 287
T A ST 1 0 F= T [T P PTUP TP 287
N A v (o) - i [o] o PP TT P TP 288
.77 .3 EXAMPIE ... e a e 289
I A 1V =T o] o] o TSP ET TP 289

5.78 SIMple TranSitioNSooviiiiiiiiiiiei e 289
B.78.1 SEMANTICS ...ttt ettt e e e e e e e e e bbb e e e e e e e e e e e e e e eas 289
N4 32 N[0 - Ui (o] o PP TTP TP 290
B.78.3 EXAMPIE ... e a e 290
I A T 1Y =T o] o] o PP ETTP TP 290

xii © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

5.79 Transitions to and from Concurrent Statescovvvvviieeiieeeee e 291
B.79.1 SEMANTICS ..uiieeieiii ettt e e et ettt e e e e e e ee et e e e e e e s saba e e e eeeebbnaaesanes 291
oI A I \\[o] = 1 1o | o H PSPPI 291
B.79.3 EXAMPIE ... e e 291
A I V= Vo] o1 Vo TSP UTP T TTPUP 291

5.80 Transitions to and from Composite Statesccceeeeeei e ccee e 291
5.80.1 SEMANTICS .uuiiieiiiiiiiiieiee i e e e e e e e ettt e e e et ea e et e e s eeataaeseeesastanteeeeesssbannaaaseres 291
LR 10 I3 \\ Lo = 11 o | o H PPN 292
5.80.3 Presentation OPLIONSuutiiiiiiiiiaiaiia ittt e e e e e e e nbeeaeeee s 292
5.80.4 EXAMPIE ... a e 292
5.80.5 MAPPING .ttt ettt et e e e e e e e et e e e e e e e e nr e e e rea e 293

5.81 Factored Transition Paths ..o 294
D811 SEMANTICS ..uuuuiiieiiieieieie et ettt e e s e e e e e e e e e e e aeaeaeaeeeeeearrarararara 294
o= 1 2 (o) = L1 o] o H O PO PSP PRPP PR 294
LS 3 I T = Vg] o] 1= SO 294

5.82 SUDMAChING StAteSouniiieeeeeeeee e 295
5.82.1 SEMANTICS .uvvutuuiiiiiiiiiiieeieieeeeeee e et ettt e et bbb s e seseeaeeaeaeaeaeseeeeeeesrereerrarares 295
R 2 o] = L1 o] o H OO PSPPSR 296
LS 72 T - V2 4] o] = PR 296
LS ¥ 3 V= o] 1T PP 297

5.83 SYNCH SEAES ... e 297
5.83.1 SEMANTICS .uvvuttuiiiiiiiiiiiiieieieeeeeee ettt et eeeee bbb s e s e seeaeeaeaeaeaeaaeeeeeesrareerbarare 297
LR 1 T2 Vo) = L1 o] o FA PP PR PRRPPUPUPRPRPPPPN 297
B5.83.3 EXAMPIE ...t a e e e 297
LS 3 V= o o 1T SO 297

Part 10 - Activity Diagrams

RS 7 A ol 1171 YA BT Vo | = o 298
B5.84.1 SEMANTICSveiiieiiiiiiee ittt ettt s et e e sttt e e s bttt e e s bbb e e e b e e e nneee s 298
R 7o o] = i To] o H SOOI 298
B5.84.3 EXAMPIE ..ot a e e e 299
LS B V= T o] LT P 300
5.85 ACHON STALE ..oiiiiiiieiieee ettt 300
5.85.1 SEMEANTICS ...eteeeiiiiieie ettt ettt et e e e e e e s e e e e e e e e e e e e s e annbenbeeeeaaae s 300
RS T o] = L1 o] o PP UUPT TP 300
5.85.3 Presentation OPLIONSoc.cuiiiiiiiiiiaaie ettt 300
5.85.4 EXAMPIE ... e a e 300
RS T Y/ F= o] o1 oo PO TR 300
5.86 SUbACHiVIty StAteccooii i 300
5.86.1 SEMEANTICS ..eeeiiiiiiiieeiiiitttt ettt e e ettt e e e e e e e e e bbb e b et e e e e e e e e e s e e annbbbbeeeeaaaeeas 300
RS 32 o] = 11 o] o PSP P T T POTPPI 301
B5.86.3 EXAMPIE ... 301
RS V= o] o1 Vo PR PT TR 301
B5.87 DECISIONS....ceiiieie e 301
B.87.1 SEMEANTICS ...etteeiiiiieie ettt ettt et e e e e e e e s bbbt e e e e e e ae e e e e aanbebbeeeeeaaeeas 301
Ry A o] = L1 [0] o RO URT RO 301
B.87.3 EXAMPIE ... 302
R Sy A V= Vo] o1 Vo P UPP TR 302
5.88 Call STAeS .. cciiiiiieiieee e 302

© ISO/IEC 2005 - All rights reserved Xiii

ISO/IEC 19501:2005(E)

LSS 0 ST 4= U | [P 302
LS 1 S 0720 \\ o) - o) o SRR 302
5.88.3 EXAMPIE ...t a e e a e 302
LRSS 1Y =T] o o SR 303
5.89 SWIMIANES ..oooviiiiiiiiieee e ———— 303
L= T RS- o= o (o 303
LR = 1S T2 Lo = 1[0 o 303
5.89.3 EXAMPIE ... e e 304
RS 1V =T o] o] o PP UTTP TP 304
5.90 Action-Object Flow Relationshipsccccoo i 304
LI [0 T RS T=T o= o o 304
LI [0 2 L) = 1o o 305
5.90.3 EXAMPIE ... a e e e e e 306
RO 1Y F=To] o] o PP RTTT TP 306
R R @ o1 o] I o 0] o 1< PP 306
LR B I I N o) - o) o RS 307
LR B I 1Y =T o] o o S 308
5.92 SYNCH SEAES .oiiiiiiiii i e e e e aaaan 308
5.93 DyNamicC INVOCALIONcccuuiiiiiiiii i e et e e e e e e e aae e e e e e e e e eeaanens 309
LR T ST 1 4= | oSS 309
LRSI 720 o) - o) o SRR 309
LRSI T B 1Y =T] o o S 309
5.94 Conditional FOIKScoooiiiiiiiie 309

Part 11 - Implementation Diagrams

5.95 Component DIAgramcoceeiiiiiiiiiiiiiiiiieiee et 310
5.95.1 SEMANLICS ...ttt ettt e e e e e e e e s e e e e e e e e e e e e aa e eas 310

oS 2 N[0 - Ui [0 o PP UUTP TP 310
B5.95.3 EXAMPIE ... a e e 311
SIS o 1Y =T o] o] o R UT TP 312
5.96 Deployment Diagramccoovviiiiiiiiiiii e 312
5.96.1 SEMANTICS ...ttt e e e e e e e e e e bbb e e e e e e e e e e e e annraeeeeas 312

o 32 N[0 - Ui [0 o TP UUTP TP 312
5.96.3 EXAMIPIE ... a e e e 313
oI 1Y F=To] o] o PP ETT TR 313
5.97 INOE ...t e e 313
oI ST 1 4 F= T 1S PPTTP TP 313

o 2 o] - Ui (o] ¢ TP UUTT TP 314
B5.97.3 EXAMPIE ... a e e 314
oI A 1Y =T o] o] o O PP RTTP TP 315
5.98 COMPONENT ...ttt e e e ettt e e e e e e e e e as e e e e aaaas 315
5.98.1 SEMANLICS ...uviiiiieiiiiiie ettt 315
5.98.2 NOLALIONciiiieieiiec ettt 316
5.98.3 EXAMPIE ... a e e 316

LR LS 1Y =T o] o o S 317

6 UML EXample Profil€Seeveiiiiiiiiee e e e e e e e ee e eeaeaneannnes 319

Example 1 - UML Profile for Software Development Processes

Xiv © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

6.1 INEFOAUCTION ...oiiiiiiiie ettt 319
6.2 Summary of Profile..........i 319
6.3 Stereotypes and NOAtIONuuuiiiiiie i e 320
6.3.1 USE CaSE SEEIEOLYPES iiiiiiiiiii ittt e e e e e e e e e e e e aeeeeeeeeeeeesersrennnnnes 320
6.3.2 ANAlYSIS STEIEOLYPES ...ttt e e e e e e e eeeaae s 321
6.3.3 DESION STEIEOLYPES ...ttt ittt ettt e e e e e e e bbbt e e e e e e e e e e anbanbeeeeeeaaas 322
6.3.4 Implementation STErEOLYPEScoiii ittt e e 323
6.3.5 ClasSs StEIEOLYPESceiiiiitte ettt e e e e e e e e ae e e e e e e an 324
6.3.6 ASSOCIAtION SEIEOLYPESueiieiiiiiiiiie ettt e e e e e e e e e ab e aeeeeeas 325
6.4 Well-FOrmedness RUIESooviiiiiiiiie s 325
6.4.1 GENETAlIZALIONeveeeiiieis ittt 326
6.4.2 CONLAINMENT....coiiiieiieeeiie et e e sne e e e s e e e nree e 326

Example 2 - UML Profile for Business Modeling

6.5 INTFOAUCTION ..ot e e e e 326
6.6 SUMMArY Of Profile......ccoi oo e 326
6.7 Stereotypes and NOtatioNcoooiiiiiiii 327
6.7.1 USE CaSE SEIEOLYPESciiiiiiiiiiiiiiiiiiiiittt s e e e s e e e e e e e e e e e eetateeeeeessseenearnbennnanns 327
6.7.2 Organization StEIrEOLYPESuiieiiiiiieiae ettt e e e e e e e e e e e e e e enanbeeeeas 328
6.7.3 ClasSS SEEIEOLYPES ...eeeiiii ittt e et e e e e e e e e e nb et e eeaaaa s 329
6.7.4 ASSOCIALION StEIEOLYPES. .. uuttiiiiiieiiee ettt e e e e e et e e e e e e e e e e abeabaeeeeeaaeas 331

6.8 Well-FOrmedness RUIESoeiiiiiiiiiiiii e 332
6.8.1 GENETANZALION ...ceiiiiiiiie e sttt 332

7 UML Model INtEICNANGEcoiiiiiieiiiieee et e e eaeaenans 333
7.1 OVEIVIBW ..ttt ettt ettt e b et e e e e b e e 333
7.2 Model Interchange UsiNg XMlcooooi oo a e e e 353
7.3 Model Interchange Using CORBA IDLcuiiiiiiiiiiiiiciiee et 355
8 Object Constraint Language Specificationcccuvuvviiiiiiiiiiee e 357
8.1 OVEIVIEW ...ttt ettt ettt e e e et e e e e e e e e e e e e e e e e e s 357
B.L.L WRY OCL2. ittt ettt ettt et se e e 357
8.1. 2 WhEre t0 USE OCL.....ooiiiiiiieiiiee ettt 357

8.2 INIFOAUCTION ...ttt 358
S JZ % I I =To =T o [o [U UUT TP 358
8.2.2 EXample Class DIagram..........eeeieiiiaaiaiiiiiiieeeie e e et e e e e e e beebaeeeeeaa s 358

8.3 Relation to the UML Metamodel............coocoiiiiiiiiiiiiiiiieiiecceeee e 359
8.3, L S it bbb b e sre e nanes 359
8.3.2 SpecCifying the UML CONEXLEcoeiiiiiiiiiiiiiiiiiei e 359
8.3 3 INVAITANTS ...ttt e e 360
8.3.4 Pre- and POSICONAITIONSceiiiiiiiiieiiiiee ettt 360
8.3.5 PaCKaAgEe CONEXE ..coiiiiiiiiiiie et as 361
8.3.6 GeNneral EXPrESSIONSuuiiiiiiiiiieaaaiai ittt e e e e e e e e ettt et e e e e e e e s e s aabebeaaeeaaaaaeaeas 361

8.4 BasSiC Values and TYPES ..ooiieieieeieeeeee e 361
8.4.1 Types from the UML MOAEl...........coiiiiiiiiii e 362
8.4.2 ENUMETALION TYPES ..ciiiiiiii ittt ettt e ettt e e e e e e e e e e nnnberee e 362
8.4.3 Let Expressions and «definition» CONSLraintS............ooooviiiiiiiiiieiineiiiiieeeeeeen 362
8.4.4 TYPE CONFOIMANCE.ci ittt ettt e e e e e e e e e e aee e 363
8.4.5 Re-typing OF CASHNG ...t as 364

© ISO/IEC 2005 - All rights reserved XV

ISO/IEC 19501:2005(E)

8.4.6 PreCedencCe RUIEScooiii ittt 364

8.4.7 Use Of INfIX OPEIatOrS ...cceeeiii ittt e e e e e e e e 364

8.4.8 KEYWOITScieeiiiiiieiiei e e et e e e e e e s e e e e e e e e e e e s s et e e e e aeeeeeeanrnnreneeees 365

8.4.9 COMMENT ..ot e e e e e e e e e e e e e e e e 365

8.4.10 UNdefiNEd VAIUESooviiiiiiiieie et 365

8.5 ODbjects and Properti@S.......cccuviiiiiiiiiiieiee e, 366

ST B o o] o L= 4 (=T TP TUP TP 366

8.5.2 Properties: AttrDULES.ooii e 366

8.5.3 Properties: OPEIatiONSccoiuuiiiiiiiiieea ettt e e e e e e e e ebeeaeeea s 366

8.5.4 Properties: Association Ends and Navigationccoccciiiiiiiiiiieeniiiiiiieieeeenn. 367

8.5.5 Navigation to ASSOCIation ClaSSEScoouiiiiiiiiiiiiiiiee et 368

8.5.6 Navigation from Association CIaSSEScccuuiiiiiiiiiiiiiiiiee e 369

8.5.7 Navigation through Qualified ASSOCIAtioNSeeeiiiiiiiiiiiiiiiii e, 370

8.5.8 Using Pathnames for PACKagesS........couuiiiiiiiiiiiiiiiieie et 370

8.5.9 Accessing overridden properties Of SUPEIrtYPESccuvvveiiiiiiiiiiiiiiiieee e 370

8.5.10 Predefined properties on All ODJECESoooueiiiiiiiiei e 371

8.5.11 Features on Classes ThEMSEIVESooviiiiiieiiiie e 372

8.5.12 COllECHONS. ...ttt s e s s bbb 373

8.5.13 Collections Of COlECLIONScoiuuiiiiiiiiiiie e 374

8.5.14 Collection Type Hierarchy and Type Conformance Rulescccoeeiiiinnneen. 374

8.5.15 Previous Values in POStCONItIONSuuvieiiiiiiiieiiiiiie e 374

8.6 Collection OPEratioNSccviiiiiiiiiieee e 375

8.6.1 Select and RejJECt OPEIAtiONSueeiieieiriiiiaiiiiiee it e e e e 375

8.6.2 COllECE OPEIALIONeveeiiieieeiie ittt ettt e e e e e e e e e e e e e s snnbanaeeas 377

8.6.3 FOIAIl OPEIALtIONceeiiiiiiiiiiiee ettt e e e e e e e e e e nnebaeee e 378

8.6.4 EXIStS OPEIAtION ...eeieiiiiiiiiiiiiiee ettt et e e e e e e e e e e e e snne e ae s 378

8.6.5 Iterate OPEIAtiONcieeiiii ittt e ettt et e e e e e e e e e e b ee s 379

8.6.6 Iterators in Collection OPErationsSoooioueiiiiiiiiieaae e 380

8.6.7 RESOIVING PrOPEITIES ..ottt a e e 380

8.7 The Standard OCL Packageooooviiiiii et 380

8.8 Predefined OCL TYPES ..coveiiiiiiiiiiiieeeieeeeiiies s e e e e e e e et e e e e e e e e eee e e e e s eeaeeeanes 381

RS T 2 T T T 8/ o1 381

8.8.2 Collection-Related TYPESccccuviiiiiiiiieie e e e e e e e s s e e e e e e e e s e nnnnanree e 388

8.9 GrAMMEAN ...ceieiiieiiiiie et 397

A UML Standard EIEMENLScoooiiiiiii e 403
B Legal INfOrmMAationouuuuiiiiiiiiiie e 407
GlOSSANY ..ttt e e e e e e e e e e e e e e et ettt b —n e a e e e e e e aaeeeeeeenrrne 411
100 (= TP TPPPPPPPPN 423

XVi © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Preface

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system. The UML offers a standard way to write a system's blueprints,
including conceptual things such as business processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable software components.

The UML represents the culmination of best practices in practical object-oriented modeling. The UML is the product of
several years of hard work, in which we focused on bringing about a unification of the methods most used around the
world, the adoption of good ideas from many quarters of the industry, and, above all, a concentrated effort to make things
simple.

We mean "we" in the most general sense. The three of us started the UML effort at Rational and were its original chief
methodologists, but the final product was a team effort among many UML partners under the sponsorship of OMG. All
partners came with their own perspectives, areas of concern, and areas of interest; this diversity of experience and
viewpoints has enriched and strengthened the final result. We extend our personal thanks to everyone who was a part of
making the UML areality. We would like to thank Rational for giving us the opportunity to work freely so that we might
focus on unification, and we want to recognize all the other companies representing the UML partners for seeing the
importance of the UML to the industry as a whole and giving their representatives time to work on this project. We must
also thank the OMG for providing the framework under which we could bring together many diverse opinions to develop
a consensus result. We expect that OMG's ownership of the UML standard and the public’'s free access to it will ensure
the widespread use and advancement of UML technology over the coming years.

In an effort that involved so many companies and individuals with so many agendas, one would think that the resulting
product would be the software equivalent of a camel: a most dysfunctional-looking animal that appears to have been the
work product of an ill-formed committee of misfits. The UML most decidedly is not a random collection of political
compromises. If anything, because of the focus we placed upon creating a complete and formal model, the UML is
coherent and has harmony of design.

In this context it is also exciting to point out that the UML was developed alongside, and with the full collaboration, of
the OMG's Meta-Object Facility (MOF) team. The MOF, which represents the state of the art in distributed object
repository architectures, is OMG's adopted technology for modeling and representing metadata (including the UML
metamodel) as CORBA objects. The UML and MOF standards are key building blocks of OMG's development
environment for building and deploying distributed object systems.

It isavery real sign of maturity of the industry that the UML exists as a standard. At a time when software is increasingly
more complex and more central to the mission of companies and countries, the UML comes at the right time to help
organizations deal with this complexity. Already, without a lot of the fanfare or hype sometimes associated with
programming languages, the UML is in use in hundreds (if not thousands) of projects around the world, a sign that it is
part of the mainstream of engineering software.

Grady Booch

Ivar Jacobson

Jm Rumbaugh

Rational Software Corporation

© ISO/IEC 2005 - All rights reserved XVii

ISO/IEC 19501:2005(E)

XVviii © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with

I SO, aso take part in the work. SO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. 1SO
shall not be held responsible for identifying any or al such patent rights.

| SO/IEC 19501 was prepared by Technical Committee |SO/IEC/TC JTC1, Information technology, Subcommittee SC 7,
Software and System Engineering in collaboration with the Object Management Group (OMG), following the submission
and processing as a Publicly Available Specification (PAS) of the OMG Unified Modeling Language (UML) specification
Version 1.4.2.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP), the coordinating framework for which is provided by ITU-T Recommendations X.901-904 | ISO/IEC
10746, the Reference Model of Open Distributed Processing (RM-ODP).

Apart from this Foreword, the text of this International Standard isidentical with that for the OMG specification for UML
1.4.2 (OMG reference formal/04-07-02).

© ISO/IEC 2005 - All rights reserved Xix

ISO/IEC 19501:2005(E)

Introduction

The Unified Modeling Language (UML) is a general-purpose modeling language with a semantic specification, a
graphical notation, an interchange format, and a repository query interface. It is designed for use in object-oriented
software applications, including those based on technol ogies recommended by the Object Management Group (OMG). As
such, it serves a variety of purposes including, but not limited to, the following:

» ameans for communicating requirements and design intent,
 abasisfor implementation (including automated code generation),
» areverse engineering and documentation facility.

As an international standard, the various components of UML provide a common foundation for model and metadata
interchange:

+ between software development tools,
 between software developers, and
« between repositories and other object management facilities.

The existence of such a standard facilitates the communication between standardized UML environments and other
environments.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP).

The rapid growth of distributed processing has lead to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability and portability
can be integrated.

RM-ODP Part 2 (1SO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which are related but not
identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML
with appropriate extensions (using stereotypes, tags and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
2 of the RM ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

Structure of this standard

Chapters 1-3: Scope, Nor mative References, and General Information.

Chapter 4: UML Semantics - Specifies semantics for structural and behavioral object models. Structural models (also
known as static models) emphasize the structure of objects in a system, including their classes, interfaces, attributes and
relations.

XX © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Chapter 5: UML Notation Guide - Describes the notation for the visual representation of the Unified Modeling Language
(UML). This notation document contains brief summaries of the semantics of UML constructs, but the UML Semantics
chapter must be consulted for full details.

Chapter 6: UML Example Profiles - Contains these examples: Example 1: UML Profile for Software Development
Processes and Example 2 - UML Profile for Business Modeling.

Chapter 7: UML Model Interchange - UML model interchange is based on the Metaobject Facility (MOF) 1.3
Specification. The UML Semantics abstract syntax is mapped to a set of MOF packages called the UML Interchange
Metamodel.

Chapter 8: Object Constraint L anguage Specification - Introduces and defines the Object Constraint Language (OCL),
aformal language used to express constraints.

Annex A: UML Standard Elements

Annex B: Standard Legal Information

© ISO/IEC 2005 - All rights reserved XXi

ISO/IEC 19501:2005(E)

XXii © ISO/IEC 2005 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19501:2005(E)

Information Technology - Open Distributed Processing -
Unified Modeling Language (UML) Version 1.4.2

1 Scope

This standard specifies the Unified Modeling Language (UML) with the objective of providing system architects working
on object analysis and design with one consistent language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling.

This standard represents the convergence of best practices in the object-technology industry. UML is the proper successor
to the object modeling languages of three previously leading object-oriented methods (Booch, OMT, and OOSE). The
UML is the union of these modeling languages and more, since it includes additional expressiveness to handle modeling
problems that these methods did not fully address.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, in order to enable meaningful exchange of model information between tools, agreement on
semantics and notation is required. UML meets the following requirements:;

» Formal definition of acommon object analysis and design (OA& D) metamodel to represent the semantics of OA&D
models, which include static models, behavioral models, usage models, and architectural models.

» IDL specifications for mechanisms for model interchange between OA& D tools. This document includes a set of IDL
interfaces that support dynamic construction and traversal of a user model.

» A human-readable notation for representing OA& D models. This document defines the UML notation, an elegant
graphic syntax for consistently expressing the UML'’s rich semantics. Notation is an essentia part of OA& D modeling
and the UML.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this International Standard. At the time of publication, the editions indicated were valid.

All Recommendations and Standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and
Standards listed below. Members of IEC and SO maintain registers of currently valid International Standards. The
Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

» ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, OpenDistributed Processing - Reference Model:
Foundations

» ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, OpenDistributed Processing - Reference Model:
Architecture

» ISO/IEC 15474-1:2002(E): Information technology - CDIF framework - Part 1. Overview

© ISO/IEC 2005 - All rights reserved 1

ISO/IEC 19501::2005(E)

» |ISO/IEC 15474-2:2002(E): Information technology - CDIF framework - Part 2: Modelling and extensibility

» ISO/IEC 15475-1:2002(E): Information technology - CDIF transfer format - Part 1: General rules for syntaxes and
encodings

» ISO/IEC 15475-2:2002(E): Information technology - CDIF transfer format - Part 2: Syntax SYNTAX.1

» |ISO/IEC 15475-3:2002(E): Information technology - CDIF transfer format - Part 3: Encoding ENCODING.1

» ISO/IEC 15476-1:2002(E): Information technology - CDIF semantic metamodel - Part 1: Foundation

» ISO/IEC 15476-2:2002(E): Information technology - CDIF semantic metamodel - Part 2: Common

» ISO/IEC 15476-3 (under development): Information technology - CDIF semantic metamodel - Part 3: Data Definition
» ISO/IEC 15476-4 (under development): Information technology - CDIF semantic metamodel - Part 4: Data Models

» ISO/IEC 15476-5 (under development): Information technology - CDIF semantic metamodel - Part 5: Data Flow
Models

» ISO/IEC 15476-6 (under development): Information technology - CDIF semantic metamodel - Part 5: State/Event
Models

3 General Information

3.1 Description

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software systems. The UML represents a
collection of the best engineering practices that have proven successful in the modeling of large and complex systems.

The Unified Modeling Language (UML) is a language for specifying, constructing, visualizing, and documenting the
artifacts of a software-intensive system.

First and foremost, the Unified Modeling L anguage fuses the concepts of Booch, OMT, and OOSE. Theresult isasingle,
common, and widely usable modeling language for users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with existing methods. As an example,
the UML authors targeted the modeling of concurrent, distributed systems to assure the UML adequately addresses these
domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a standard process. Although the
UML must be applied in the context of a process, it is our experience that different organizations and problem domains
require different processes. (For example, the development process for shrink-wrapped software is an interesting one, but
building shrink-wrapped software is vastly different from building hard-real-time avionics systems upon which lives
depend.) Therefore, the efforts concentrated first on a common metamodel (which unifies semantics) and second on a
common notation (which provides a human rendering of these semantics). The UML authors promote a development
process that is use-case driven, architecture centric, and iterative and incremental.

The UML specifies a modeling language that incorporates the object-oriented community’s consensus on core modeling
concepts. It allows deviations to be expressed in terms of its extension mechanisms. The Unified Modeling Language
provides the following:

2 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

» Semantics and notation to address awide variety of contemporary modeling issuesin adirect and economical fashion.

» Semanticsto address certain expected future modeling issues, specifically related to component technol ogy, distrib-
uted computing, frameworks, and executability.

» Extensibility mechanisms so individual projects can extend the metamodel for their application at low cost. We don't
want users to directly change the UML metamodel.

» Extensibility mechanisms so that future modeling approaches could be grown on top of the UML.
« Semanticsto facilitate model interchange among a variety of tools.

» Semanticsto specify the interface to repositories for the sharing and storage of model artifacts.

3.2 Outside the Scope of the UML

3.2.1 Programming Languages

The UML, avisual modeling language, is not intended to be a visual programming language, in the sense of having all
the necessary visual and semantic support to replace programming languages. The UML is a language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system, but it does draw the line as you
move toward code. For example, complex branches and joins are better expressed in a textual programming language.
The UML does have atight mapping to a family of object languages so that you can get the best of both worlds.

3.2.2 Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and their interoperability are very
dependent on a solid semantic and notation definition, such as the UML provides. The UML defines a semantic
metamodel, not a tool interface, storage, or run-time model, although these should be fairly close to one another.

The UML documents do include some tips to tool vendors on implementation choices, but do not address everything
needed. For example, they don’t address topics like diagram coloring, user navigation, animation, storage/implementation
models, or other features.

3.2.3 Process

Many organizations will use the UML as a common language for its project artifacts, but will use the same UML diagram
types in the context of different processes. The UML is intentionally process independent, and defining a standard
process was not a goal of the UML or OMG's RFP.

The UML authors do recognize the importance of process. The presence of awell defined and well managed process is
often a key discriminator between hyper productive projects and unsuccessful ones. The reliance upon heroic
programming is not a sustainable business practice. A process

» provides guidance as to the order of ateam’s activities,
« gpecifieswhat artifacts should be devel oped,
» directsthetasks of individual developers and the team as a whole, and

» offerscriteriafor monitoring and measuring a project’s products and activities.

© ISO/IEC 2005 - All rights reserved 3

ISO/IEC 19501::2005(E)

Processes by their very nature must be tailored to the organization, culture, and problem domain at hand. What works in
one context (shrink-wrapped software development, for example) would be a disaster in another (hard-real-time, human-
rated systems, for example). The selection of a particular process will vary greatly, depending on such things as problem
domain, implementation technology, and skills of the team.

Booch, OMT, OOSE, and many other methods have well defined processes, and the UML can support most methods.
There has been some convergence on development process practices, but there is not yet consensus for standardization.
What will likely result is general agreement on best practices and potentially the embracing of a process framework,
within which individual processes can be instantiated. Although the UML does not mandate a process, its developers have
recognized the value of a use-case driven, architecture-centric, iterative, and incremental process, so were careful to
enable (but not require) this with the UML.

3.3 Primary Artifacts of the UML

What are the primary artifacts of the UML? This can be answered from two different perspectives: the UML definition
itself and how it is used to produce project artifacts.

3.3.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling Language itself, this document consists of
chapters describing UML Semantics, UML Notation Guide, and UML Standard Profiles.

3.3.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon how a problem is attacked and how
a corresponding solution is shaped. Abstraction, the focus on relevant details while ignoring others, is a key to learning
and communicating. Because of this:

» Every complex system is best approached through a small set of nearly independent views of amodel. No single view
is sufficient.

» Every model may be expressed at different levels of fidelity.
» The best models are connected to reality.
In terms of the views of a model, the UML defines the following graphical diagrams:
» usecase diagram
» classdiagram

» behavior diagrams:
« statechart diagram
 activity diagram
* interaction diagrams:
* sequence diagram
« collaboration diagram
 implementation diagrams:
e component diagram

4 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

« deployment diagram
Although other names are sometimes given to these diagrams, this list constitutes the canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or development. The underlying model
integrates these perspectives so that a self-consistent system can be analyzed and built. These diagrams, along with
supporting documentation, are the primary artifacts that a modeler sees, although the UML and supporting tools will
provide for a number of derivative views. These diagrams are further described in the UML Notation Guide (Chapter 5
of this specification).

A frequently asked question has been: Why doesn’'t UML support data-flow diagrams? Simply put, data-flow and other
diagram types that were not included in the UML do not fit as cleanly into a consistent object-oriented paradigm. Activity
diagrams and collaboration diagrams accomplish much of what people want from DFDs, and then some. Activity
diagrams are also useful for modeling workflow.

34 Motivation to Define the UML

This section describes several factors motivating the UML and includes why modeling is essential. It highlights a few key
trends in the software industry and describes the issues caused by divergence of modeling approaches.

3.4.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction or renovation is as essential as
having a blueprint for large building. Good models are essential for communication among project teams and to assure
architectural soundness. We build models of complex systems because we cannot comprehend any such system in its
entirety. As the complexity of systems increase, so does the importance of good modeling techniques. There are many
additional factors of a project’s success, but having a rigorous modeling language standard is one essential factor. A
modeling language must include:

» Model elements — fundamental modeling concepts and semantics
» Notation — visual rendering of model elements
» Guidelines— idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become essential. The UML isawell defined and
widely accepted response to that need. It is the visual modeling language of choice for building object-oriented and
component-based systems.

3.4.2 Industry Trends in Software

As the strategic value of software increases for many companies, the industry looks for techniques to automate the
production of software. We look for techniques to improve quality and reduce cost and time-to-market. These techniques
include component technology, visual programming, patterns, and frameworks. We also seek techniques to manage the
complexity of systems as they increase in scope and scale. In particular, we recognize the need to solve recurring
architectural problems, such as physical distribution, concurrency, replication, security, load balancing, and fault
tolerance. Development for the worldwide web makes some things simpler, but exacerbates these architectural problems.

Complexity will vary by application domain and process phase. One of the key motivations in the minds of the UML
developers was to create a set of semantics and notation that adequately addresses all scales of architectural complexity,
across all domains.

© ISO/IEC 2005 - All rights reserved 5

ISO/IEC 19501::2005(E)

3.4.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose from among many similar
modeling languages with minor differences in overall expressive power. Most of the modeling languages shared a set of
commonly accepted concepts that are expressed slightly differently in various languages. This lack of agreement
discouraged new users from entering the object technology market and from doing object modeling, without greatly
expanding the power of modeling. Users longed for the industry to adopt one, or a very few, broadly supported modeling
languages suitable for general-purpose usage.

Some vendors were discouraged from entering the object modeling area because of the need to support many similar, but
dightly different, modeling languages. In particular, the supply of add-on tools has been depressed because small vendors
cannot afford to support many different formats from many different front-end modeling tools. It isimportant to the entire
object industry to encourage broadly based tools and vendors, as well as niche products that cater to the needs of
specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many companies producing or using
object technology to endorse and support the development of the UML.

While the UML does not guarantee project success, it does improve many things. For example, it significantly lowers the
perpetual cost of training and retooling when changing between projects or organizations. It provides the opportunity for
new integration between tools, processes, and domains. But most importantly, it enables developers to focus on
delivering business value and gives them a paradigm to accomplish this.

3.5 Goals of the UML

The primary design goals of the UML are as follows:
» Provide users with aready-to-use, expressive visual modeling language to develop and exchange meaningful models.
» Furnish extensibility and specialization mechanisms to extend the core concepts.
» Support specifications that are independent of particular programming languages and devel opment processes.
» Provide aformal basis for understanding the modeling language.
» Encourage the growth of the object tools market.
» Support higher-level development concepts such as components, collaborations, frameworks and patterns.
» Integrate best practices.

These goals are discussed in detail below.

Provide users with aready-to-use, expressive visual modeling language to develop and exchange
meaningful models

It is important that the Object Analysis and Design (OA& D) standard supports a modeling language that can be used “out
of the box” to do normal general-purpose modeling tasks. If the standard merely provides a meta-meta-description that
requires tailoring to a particular set of modeling concepts, then it will not achieve the purpose of allowing users to
exchange models without losing information or without imposing excessive work to map their models to a very abstract
form. The UML consolidates a set of core modeling concepts that are generally accepted across many current methods
and modeling tools. These concepts are needed in many or most large applications, although not every concept is needed
in every part of every application. Specifying a meta-meta-level format for the concepts is not sufficient for model users,

6 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

because the concepts must be made concrete for real modeling to occur. If the concepts in different application areas were
substantially different, then such an approach might work, but the core concepts needed by most application areas are
similar and should be supported directly by the standard without the need for another layer.

Furnish extensibility and specialization mechanisms to extend the core concepts

OMG expects that the UML will be tailored as new needs are discovered and for specific domains. At the same time, we
do not want to force the common core concepts to be redefined or re-implemented for each tailored area. Therefore, we
believe that the extension mechanisms should support deviations from the common case, rather than being required to
implement the core modeling concepts themselves. The core concepts should not be changed more than necessary. Users
need to be able to

» build models using core concepts without using extension mechanisms for most normal applications,
« add new concepts and notations for issues not covered by the core,
» choose among variant interpretations of existing concepts, when thereis no clear consensus, and

» gpeciaize the concepts, notations, and constraints for particular application domains.

Support specifications that are independent of particular programming languages and development
processes

The UML must and can support all reasonable programming languages. It also must and can support various methods and
processes of building models. The UML can support multiple programming languages and development methods without
excessive difficulty.

Provide aformal basis for understanding the modeling language

Because users will use formality to help understand the language, it must be both precise and approachable; a lack of
either dimension damages its usefulness. The formalisms must not require excessive levels of indirection or layering, use
of low-level mathematical notations distant from the modeling domain, such as set-theoretic notation, or operational
definitions that are equivalent to programming an implementation. The UML provides a formal definition of the static
format of the model using a metamodel expressed in UML class diagrams. This is a popular and widely accepted formal
approach for specifying the format of a model and directly leads to the implementation of interchange formats. UML
expresses well-formedness constraints in precise natural language plus Object Constraint Language expressions. UML
expresses the operational meaning of most constructs in precise natural language. The fully formal approach taken to
specify languages such as Algol-68 was not approachable enough for most practical usage.

Encourage the growth of the object tools market

By enabling vendors to support a standard modeling language used by most users and tools, the industry benefits. While
vendors still can add value in their tool implementations, enabling interoperability is essential. Interoperability requires

that models can be exchanged among users and tools without loss of information. This can only occur if the tools agree
on the format and meaning of all of the relevant concepts. Using a higher meta-level is no solution unless the mapping to
the user-level concepts is included in the standard.

Support higher-level development concepts such as components, collaborations, frameworks, and
patterns

Clearly defined semantics of these concepts is essential to reap the full benefit of object-orientation and reuse. Defining
these within the holistic context of a modeling language is a unique contribution of the UML.

© ISO/IEC 2005 - All rights reserved 7

ISO/IEC 19501::2005(E)

Integrate best practices

A key motivation behind the development of the UML has been to integrate the best practices in the industry,
encompassing widely varying views based on levels of abstraction, domains, architectures, life cycle stages,
implementation technologies, etc. The UML is indeed such an integration of best practices.

3.5.1 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure from Booch, OMT, or OOSE, but
rather the legitimate successor to all three. This means that if you are a Booch, OMT, or OOSE user today, your training,
experience, and tools will be preserved, because the Unified Modeling Language is a natural evolutionary step. The UML
will be equally easy to adopt for users of many other methods, but their authors must decide for themselves whether to
embrace the UML concepts and notation underneath their methods.

The Unified Modeling Language is more expressive yet cleaner and more uniform than Booch, OMT, OOSE, and other

methods. This means that there is value in moving to the Unified Modeling Language, because it will allow projects to

model things they could not have done before. Users of most other methods and modeling languages will gain value by
moving to the UML, since it removes the unnecessary differences in notation and terminology that obscure the underlying
similarities of most of these approaches.

With respect to other visual modeling languages, including entity-relationship modeling, BPR flow charts, and state-
driven languages, the UML should provide improved expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should not take much relearning and will
bring a clarification of the underlying semantics. If the unification goals have been achieved, UML will be an obvious
choice when beginning new projects, especially as the availability of tools, books, and training becomes widespread.
Many visual modeling tools support existing notations, such as Booch, OMT, OOSE, or others, as views of an underlying
model; when these tools add support for UML (as some aready have) users will enjoy the benefit of switching their
current models to the UML notation without loss of information.

Existing users of any object method can expect a fairly quick learning curve to achieve the same expressiveness as they
previously knew. One can quickly learn and use the basics productively. More advanced techniques, such as the use of
stereotypes and properties, will require some study since they enable very expressive and precise models needed only
when the problem at hand requires them.

3.5.2 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of existing Booch, OMT, and OOSE that
didn't work in practice, to add elements from other methods that were more effective, and to invent new only when an
existing solution was not available. Because the UML authors were in effect designing alanguage (albeit a graphical one),
they had to strike a proper balance between minimalism (everything is text and boxes) and over-engineering (having an
icon for every conceivable modeling element). To that end, they were very careful about adding new things, because they
didn't want to make the UML unnecessarily complex. Along the way, however, some things were found that were
advantageous to add because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including
» extensibility mechanisms (stereotypes, tagged values, and constraints),
 threads and processes,

«» distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),

8 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

» patterns/collaborations,

» activity diagrams (for business process modeling),

» refinement (to handle relationships between levels of abstraction),
» interfaces and components, and

« aconstraint language.

Many of these ideas were present in various individual methods and theories but UML brings them together into a
coherent whole. In addition to these major changes, there are many other localized improvements over the Booch, OMT,
and OOSE semantics and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods, and many other sources. These
various sources incorporated many different elements from many authors, including non-OO influences. The UML
notation is a melding of graphical syntax from various sources, with a number of symbols removed (because they were
confusing, superfluous, or little used) and with a few new symbols added. The ideas in the UML come from the
community of ideas developed by many different people in the object-oriented field. The UML developers did not invent
most of these ideas; rather, their role was to select and integrate the best ideas from object modeling and computer-science
practices. The actual genealogy of the notation and underlying detailed semantics is complicated, so it is discussed here
only to provide context, not to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other object methods. Stereotypes and their
corresponding icons can be defined for various diagrams to support other modeling styles. Stereotypes, constraints, and
taggedVal ues are concepts added in UML that did not previously exist in the major modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with minor modifications. Activity graph
diagrams, which share much of the same underlying semantics, are similar to the work flow diagrams developed by many
sources including many pre-object sources.

Sequence diagrams were found in a variety of object methods under a variety of names (interaction, message trace, and
event trace) and date to pre-object days. Collaboration diagrams were adapted from Booch (object diagram), Fusion
(object interaction graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (component and deployment diagrams) are derived from Booch’s module and process
diagrams, but they are now component-centered, rather than module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the metamodel. User-defined icons can be
associated with given stereotypes for tailoring the UML to specific processes.

Object Constraint Language is used by UML to specify the semantics and is provided as a language for expressions
during modeling. OCL is an expression language having its root in the Syntropy method and has been influenced by
expression languages in other methods like Catalysis. The informal navigation from OMT has the same intent, where
OCL isformalized and more extensive.

Each of these concepts has further predecessors and many other influences. We realize that any brief list of influences is
incompl ete and we recognize that the UML is the product of along history of ideas in the computer science and software
engineering area.

© ISO/IEC 2005 - All rights reserved 9

ISO/IEC 19501::2005(E)

3.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are incorporating the UML as a
standard into their development process and products, which cover disciplines such as business modeling, requirements
management, analysis & design, programming, and testing.

3.6.1 UMLO0.8-0.91

Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970 and the late 1980s as various
methodol ogists experimented with different approaches to object-oriented analysis and design. Several other techniques
influenced these languages, including Entity-Relationship modeling, the Specification & Description Language (SDL,
circa 1976, CCITT), and other techniques. The number of identified modeling languages increased from less than 10 to
more than 50 during the period between 1989-1994. Many users of object methods had trouble finding complete
satisfaction in any one modeling language, fueling the “method wars.” By the mid-1990s, new iterations of these methods
began to appear, most notably Booch’' 93, the continued evolution of OMT, and Fusion. These methods began to
incorporate each other’s techniques, and a few clearly prominent methods emerged, including the OOSE, OMT-2, and
Booch’ 93 methods. Each of these was a complete method, and was recognized as having certain strengths. In simple
terms, OOSE was a use-case oriented approach that provided excellent support business engineering and requirements
analysis. OMT-2 was especially expressive for analysis and data-intensive information systems. Booch’ 93 was
particularly expressive during design and construction phases of projects and popular for engineering-intensive
applications.

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim Rumbaugh of Rational Software
Corporation began their work on unifying the Booch and OMT (Object Modeling Technique) methods. Given that the
Booch and OMT methods were already independently growing together and were collectively recognized as leading
object-oriented methods worldwide, Booch and Rumbaugh joined forces to forge a complete unification of their work. A
draft version 0.8 of the Unified Method, as it was then called, was released in October of 1995. In the Fall of 1995, Ivar
Jacobson and his Objectory company joined Rational and this unification effort, merging in the OOSE (Object-Oriented
Software Engineering) method. The Objectory name is now used within Rational primarily to describe its UML-compliant
process, the Rational Unified Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim Rumbaugh, and Ivar Jacobson were
motivated to create a unified modeling language for three reasons. First, these methods were already evolving toward
each other independently. It made sense to continue that evolution together rather than apart, eliminating the potential for
any unnecessary and gratuitous differences that would further confuse users. Second, by unifying the semantics and
notation, they could bring some stability to the object-oriented marketplace, allowing projects to settle on one mature
modeling language and letting tool builders focus on delivering more useful features. Third, they expected that their
collaboration would yield improvements in al three earlier methods, helping them to capture lessons learned and to
address problems that none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:
1. Enable the modeling of systems (and not just software) using object-oriented concepts
2. Establish an explicit coupling to conceptual as well as executable artifacts

3. Addresstheissues of scale inherent in complex, mission-critical systems

10 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

4. Create amodeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike designing a programming language. There
are tradeoffs. First, one must bound the problem: Should the notation encompass requirement specification? (Yes,
partially.) Should the notation extend to the level of a visual programming language? (No.) Second, one must strike a
balance between expressiveness and simplicity: Too simple a notation will limit the breadth of problems that can be
solved; too complex a notation will overwhelm the mortal developer. In the case of unifying existing methods, one must
also be sensitive to the installed base: Make too many changes, and you will confuse existing users. Resist advancing the
notation, and you will miss the opportunity of engaging a much broader set of users. The UML definition strives to make
the best trade-offs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9 and 0.91 documents in June and
October of 1996. During 1996, the UML authors invited and received feedback from the general community. They
incorporated this feedback, but it was clear that additional focused attention was still required.

3.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their business. A Request for Proposal
(RFP) issued by the Object Management Group (OMG) provided the catalyst for these organizations to join forces around
producing a joint RFP response. Rational established the UML Partners consortium with several organizations willing to
dedicate resources to work toward a strong UML definition. Those contributing most to the UML definition included:
Digital Equipment Corp., HP, i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle,
Rational Software, TI, and Unisys. This collaboration produced UML, a modeling language that was well defined,
expressive, powerful, and generally applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich Technologies; and Softeam also
submitted separate RFP responses to the OMG. These companies joined the UML partners to contribute their ideas, and
together the partners produced the revised UML 1.1 response. The focus of the UML 1.1 release was to improve the
clarity of the UML 1.0 semantics and to incorporate contributions from the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative team effort. The UML Partners have
worked hard as a team to define UML. While each partner came in with their own perspective and areas of interest, the
result has benefited from each of them and from the diversity of their experiences. The UML Partners contributed a
variety of expert perspectives, including, but not limited to, the following: OMG and RM-ODP technology perspectives,
business modeling, constraint language, state machine semantics, types, interfaces, components, collaborations,
refinement, frameworks, distribution, and metamodel.

3.6.3 UML - Present and Future

The UML is non-proprietary and open to all. It addresses the needs of user and scientific communities, as established by
experience with the underlying methods on which it is based.

Many methodol ogists, organizations, and tool vendors have committed to use it. Since the UML builds upon similar
semantics and notation from Booch, OMT, OOSE, and other leading methods and has incorporated input from the UML
partners and feedback from the general public, widespread adoption of the UML should be straightforward.

There are two aspects of "unified" that the UML achieves: Firgt, it effectively ends many of the differences, often
inconsequential, between the modeling languages of previous methods. Secondly, and perhaps more importantly, it
unifies the perspectives among many different kinds of systems (business versus software), development phases
(requirements analysis, design, and implementation), and internal concepts.

© ISO/IEC 2005 - All rights reserved 11

ISO/IEC 19501::2005(E)

Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard, since it is based on the modeling
languages of leading object methods. The UML is ready for widespread use. This document is suitable as the primary
source for authors writing books and training materials, as well as developers implementing visual modeling tools.
Additional collateral, such as articles, training courses, examples, and books, will soon make the UML very approachable
for a wide audience.

The Unified Modeling Language v. 1.1 specification which was added to the list of OMG Adopted Technologies in
November 1997. Since then the OMG has assumed responsibility for the further development of the UML standard.

Revision of the UML

After adoption of the UML 1.1 specification by the OMG membership in November 1997, the OMG chartered a revision
task force (RTF) to accept comments from the general public and to make revisions to the specifications to handle bugs,
inconsistencies, ambiguities, and minor omissions that could be handled without a major change in scope from the
original specification. The members of the RTF were drawn from the original proposers with a few additional persons.
The RTF issued several preliminary reports with the final report containing UML 1.3 scheduled for the second quarter of
1999. It contained a number of changes to the UML metamodel, semantics, and notation, but in the big picture this
version should be considered a minor upgrade to the original specification. More substantive changes and expansion in
scope requires the full OMG specification and adoption process.

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The number of endorsing organizations is
expected to grow significantly over time. These organizations will continue to encourage the use of the Unified Modeling
Language by making the definition readily available and by encouraging other methodol ogists, tool vendors, training
organizations, and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the increasing demand for supporting tools,
books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future improvements in modeling concepts. We have
addressed many |eading-edge techniques, but expect additional techniques to influence future versions of the UML. Many
advanced techniques can be defined using UML as a base. The UML can be extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including those for visual modeling, simulation,
and development environments. As interesting tool integrations are developed, implementation standards based on the
UML will become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the use of object-orientation.
Component-based development is an approach worth mentioning. It is synergistic with traditional object-oriented
technigues. While reuse based on components is becoming increasingly widespread, this does not mean that component-
based techniques will replace object-oriented techniques. There are only subtle differences between the semantics of
components and classes.

12 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

4 UML Semantics

Part 1 - Background

4.1 Introduction

4.1.1 Purpose and Scope

The primary audience for this detailed description consists of the OMG, other standards organizations, tool builders,
metamodelers, methodologists, and expert modelers. The authors assume familiarity with metamodeling and advanced object
modeling. Readers looking for an introduction to the UML or object modeling should consider another source.

Although the document is meant for advanced readers, it is also meant to be easily understood by its intended audience.
Consequently, it is structured and written to increase readability. The structure of the document, like the language, builds on
previous concepts to refine and extend the semantics. In addition, the document is written in a‘semi-formal’ style that
combines natural and formal languages in a complementary manner.

This section specifies semantics for structural and behavioral object models. Structural models (also known as static models)
emphasize the structure of objectsin a system, including their classes, interfaces, attributes and relations. Behavioral models
(also known as dynamic models) emphasize the behavior of objectsin a system, including their methods, interactions,
collaborations, and state histories.

This section provides complete semantics for all modeling notations described in the UML Notation Guide (Chapter 5). This
includes support for a wide range of diagram techniques: class diagram, object diagram, use case diagram, sequence diagram,
collaboration diagram, state diagram, activity diagram, and deployment diagram. The UML Notation Guide includes a
summary of the semantics sections that are relevant to each diagram technique.

4.1.2 Approach

This section emphasi zes language architecture and formal rigor. The architecture of the UML is based on a four-layer
metamodel structure, which consists of the following layers: user objects, model, metamodel, and meta-metamodel. This
document is primarily concerned with the metamodel layer, which is an instance of the meta-metamodel layer. For example,
Class in the metamodel is an instance of MetaClass in the meta-metamodel. The metamodel architecture of UML is discussed
further in Section 4.2, “Language Architecture,” on page 14.

The UML metamodel isalogical model and not a physical (or implementation) model. The advantage of alogical metamodel
isthat it emphasizes declarative semantics, and suppresses implementation details. Implementations that use the logical
metamodel must conform to its semantics, and must be able to import and export full aswell as partial models. However, tool
vendors may construct the logical metamodel in various ways, so they can tune their implementations for reliability and
performance. The disadvantage of alogical model isthat it lacks the imperative semantics required for accurate and efficient
implementation. Consequently, the metamodel is accompanied with implementation notes for tool builders.

UML isalso structured within the metamodel layer. The language is decomposed into several logical packages: Foundation,
Behavioral Elements, and Model Management. These packages in turn are decomposed into subpackages. For example, the
Foundation package consists of the Core, Extension Mechanisms, and Data Types subpackages. The structure of the language
is fully described in Section 4.2, “Language Architecture,” on page 14.

The metamodel is described in a semi-formal manner using these views:

© ISO/IEC 2005 - All rights reserved 13

ISO/IEC 19501:2005(E)

e Abstract syntax
* Well-formedness rules
¢ Semantics

The abstract syntax is provided as amodel described in asubset of UML, consisting of aUML class diagram and a supporting
natural language description. (In thisway the UML bootstraps itself in amanner similar to how a compiler is used to compile
itself.) The well-formedness rules are provided using aformal language (Object Constraint Language) and natural language
(English). Finally, the semantics are described primarily in natural language, but may include some additional notation,
depending on the part of the model being described. The adaptation of formal techniques to specify the language is fully
described in Section 4.3, “Language Formalism,” on page 17.

In summary, the UML metamodel is described in a combination of graphic notation, natural language, and formal language.
We recognize that there are theoretical limitsto what one can express about ametamodel using the metamodel itself. However,
our experience suggests that this combination strikes a reasonabl e balance between expressiveness and readability.

4.2 Language Architecture

4.2.1 Four-Layer Metamodel Architecture

The UML metamodel is defined as one of the layers of a four-layer metamodeling architecture. This architecture is a proven
infrastructure for defining the precise semantics regquired by complex models. There are several other advantages associated
with this approach:

« It refines semantic constructs by recursively applying them to successive metalayers.
e It provides an architectural basis for defining future UML metamodel extensions.

« It furnishes an architectural basis for aligning the UML metamodel with other standards based on afour-layer
metamodeling architecture, in particular the OMG Meta-Object Facility (MOF).

The generally accepted framework for metamodeling is based on an architecture with four layers:
e meta-metamodel
¢ metamodel
e model
e user objects

The functions of these layers are summarized in the following table.

Table 1 - Four Layer Metamodeling Architecture

Layer Description Example

meta-metamodel The infrastructure for a metamodeling MetaClass, MetaAttribute, MetaOperation
architecture. Defines the language for
specifying metamodels.

14 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Table 1 - Four Layer Metamodeling Architecture

Layer Description Example

metamodel An instance of a meta-metamodel. Definesthe | Class, Attribute, Operation, Component
language for specifying a model.

model An instance of a metamodel. Defines a StockShare, askPrice, sellLimitOrder,
language to describe an information domain. StockQuoteServer

user objects (user data) | An instance of a model. Defines a specific <Acme_SW_Share 98789>, 654.56,
information domain. sell_limit_order, <Stock_Quote Svr_32123>

The meta-metamodeling layer forms the foundation for the metamodeling architecture. The primary responsibility of thislayer
is to define the language for specifying a metamodel. A meta-metamodel defines amodel at a higher level of abstraction than
ametamodel, and is typically more compact than the metamodel that it describes. A meta-metamodel can define multiple
metamodels, and there can be multiple meta-metamodel s associated with each metamodel.

Whileit is generally desirable that related metamodels and meta-metamodel s share common design philosophies and
constructs, thisis not a strict rule. Each layer needs to maintain its own design integrity. Examples of meta-metaobjectsin the
meta-metamodeling layer are: MetaClass, MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. The primary responsibility of the metamodel layer isto define alanguage
for specifying models. Metamodel s are typically more elaborate than the meta-metamodels that describe them, especially
when they define dynamic semantics. Examples of metaobjectsin the metamodeling layer are: Class, Attribute, Operation, and
Component.

A model is an instance of a metamode. The primary responsibility of the model layer isto define alanguage that describes an
information domain. Examples of objects in the modeling layer are: StockShare, askPrice, sellLimitOrder, and
StockQuoteServer.

User objects (a.k.a. user data) are an instance of a model. The primary responsibility of the user objects layer isto describe a
specific information domain. Examples of objectsin the user objects layer are: <Acme_Software_Share 98789>, 654.56,
sell_limit_order, and <Stock_Quote Svr_32123>.

4.2.1.1 Architectural Alignment with the MO F Meta-Metamodel

Both the UML and the MOF are based on afour-layer metamodel architecture, where the MOF meta-metamodel is the meta-
metamodel for the UML metamodel. Since the MOF and UML have different scopes and differ in their abstraction levels (the
UML metamodel tends to be more of alogical model than the M OF meta-metamodel), they are rel ated by 1oose metamodeling

rather than strict metamodeling.> As aresult, the UML metamodel is an instance of the MOF meta-metamodel.

Consequently, there is not a strict isomorphic instance-of mapping between all the M OF meta-metamodel elements and the
UML metamodel elements. In spite of this, since the two models were designed to be interoperable, the UML Core package
metamodel and the MOF meta-metamodel are structurally quite similar.

4.2.2 Package Structure

The complexity of the UML metamodel is managed by organizing it into logical packages. These packages group metaclasses

1. In loose (or “non-strict”) metamodeling aM, level model isaninstance of aM,,,4 level model. In strict metamodeling, every
element of aM, level model isan instance of exactly one element of M. level model.

© ISO/IEC 2005 - All rights reserved 15

ISO/IEC 19501:2005(E)

that show strong cohesion with each other and loose coupling with metaclasses in other packages. The metamodel is
decomposed into the top-level packages shown in Figure 1.

]

Behavioral
Elements

Model
Management
/
/ ’
/
\ /
A\H v

Foundation

Figure 1 - Top-Level Packages

The Foundation and Behavioral Elements packages are further decomposed as shown in Figure 2 and Figure 3.

]

Core

Data Types

Figure 2 - Foundation Packages

16

I

Extension
Mechanisms

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

[1

Activity Graphs

\/
Collaborations Use Cases State Machines
- | P
O Vv /
/4
Common
Behavior

Figure 3 - Behavioral Elements Packages

The functions and contents of these packages are described in Section 4.8, “Behavioral Elements Package,” on page 85.

4.3 Language Formalism

This section contains a description of the techniques used to describe UML. The specification adapts formal techniques to
improve precision while maintaining readability. The technique describes the UML metamodel in three views using both text
and graphic presentations. The benefits of adapting formal techniques include:

 the correctness of the description isimproved,

e ambiguities and inconsistencies are reduced,

¢ the architecture of the metamodel is validated by a complementary technique, and
« the readability of the description isincreased.

It isimportant to note that the current description is not a completely formal specification of the language because to do so
would have added significant complexity without clear benefit. In addition, the state of the practice in formal specifications
does not yet address some of the more difficult language issues that UML introduces.

The structure of the language is nevertheless given a precise specification, which is required for tool interoperability. The
dynamic semantics are described using natural language, although in a precise way so they can easily be understood.
Currently, the dynamic semantics are not considered essential for the development of tools; however, thiswill probably change
in the future.

4.3.1 Levels of Formalism

A common technique for specification of languagesis to first define the syntax of the language and then to describe its static
and dynamic semantics. The syntax defines what constructs exist in the language and how the constructs are built up in terms

© ISO/IEC 2005 - All rights reserved 17

ISO/IEC 19501:2005(E)

of other constructs. Sometimes, especially if thelanguage has a graphic syntax, it isimportant to define the syntax in anotation
independent way, that is, to define the abstract syntax of the language. The concrete syntax is then defined by mapping the
notation onto the abstract syntax. The syntax is described in the Abstract Syntax sections.

The static semantics of alanguage define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of awell formed construct. The meaning of a description written
in the language is defined only if the description iswell formed, that is, if it fulfills the rules defined in the static semantics.
The static semantics are found in sections headed Well-Formedness Rules. The dynamic semantics are described under the
heading Semantics. In some cases, parts of the static semantics are also explained in the Semantics section for completeness.

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other sources of

information are needed to read the document?. Although thisis a metacircular descri ption3, understanding this document is
practical since only asmall subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of the
capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in essence
being variants of other ones, are defined as stereotypes of metaclassesin the metamodel. This mechanism allowsthe semantics
of the variant construct to be significantly different from the base metaclass. Another more “lightweight” way of defining
variantsis to use metaattributes. As an example, the aggregation construct is specified by an attribute of the metaclass
AssociationEnd, which is used to indicate if an association is an ordinary aggregate, a composite aggregate, or a common
associ ation.

4.3.2 Package Specification Structure

This section provides information for each package in the UML metamodel. Each package has one or more of the following
subsections.

4.3.2.1 Abstract Syntax

The abstract syntax is presented in a UML class diagram showing the metaclasses defining the constructs and their
relationships. The diagram also presents some of the well-formedness rules, mainly the multiplicity requirements of the

rel ationships, and whether or not the instances of a particular sub-construct must be ordered. Finally, a short informal
description in natural language describing each construct is supplied. The first paragraph of each of these descriptionsisa
general presentation of the construct that sets the context, while the following paragraphs give the informal definition of the
metacl ass specifying the construct in UML. For each metaclass, its attributes are enumerated together with a short explanation.
Furthermore, the opposite role names of associations connected to the metaclass are also listed in the same way.

4.3.2.2 Well-Formedness Rules

The static semantics of UML metaclasses, except for multiplicity and ordering constraints, are defined as a set of invariants of
an instance of the metaclass. (Note that a metaclassis not required to have any invariants.) These invariants have to be
satisfied for the construct to be meaningful. The rules thus specify constraints over attributes and associations defined in the
metamodel. Each invariant is defined by an OCL expression together with an informal explanation of the expression. In many
cases, additional operations on the metaclasses are needed for the OCL expressions. These are then defined in a separate
subsection after the well-formedness rules for the construct, using the same approach as the abstract syntax: an informal
explanation followed by the OCL expression defining the operation.

2. Although a comprehension of the UML’sfour-layer metamodel architecture and its underlying meta-metamodel is helpful, itis
not essentia to understand the UML semantics.
3. Inorder to understand the description of the UML semantics, you must understand some UML semantics.

18 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

The statement ‘No extrawell-formedness rules' means that all current static semantics are expressed in the superclasses
together with the multiplicity and type information expressed in the diagrams.

4.3.2.3 Semantics

The meanings of the constructs are defined using natural language. The constructs are grouped into logical chunksthat are
defined together. Since only concrete metaclasses have a true meaning in the language, only these are described in this section.

4.3.2.4 Standard Elements

Stereotypes of the metaclasses defined previously in the section are listed, with an informal definition in natural language.
Well-formednessrules, if any, for the stereotypes are also defined in the same manner as in the Well-Formedness Rules
subsection.

Other kinds of standard elements (constraints and tagged-values) are listed, and are defined in the Sandard Elements
appendix.

4.3.2.5 Notes

This subsection may contain rational es for metamodeling decisions, pragmatics for the use of the constructs, and examples all
written in natural language.

4.3.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Chapter 6, “Object Constraint Language
Soecification” for expressing well-formedness rules.

The following conventions are used to promote readability:

e Sef - which can be omitted as a reference to the metaclass defining the context of the invariant, has been kept for
clarity.

¢ Inexpressions where a collection isiterated, an iterator is used for clarity, even when formally unnecessary. The type
of the iterator is usually omitted, but included when it adds to understanding.

e The‘collect’ operationisleft implicit wherethisis practical.

4.3.4 Use of Natural Language

We strove to be precise in our use of natural language, in this case English. For example, the description of UML semantics
includes phrases such as“ X provides the ability to...” and “X isaY.” In each of these cases, the usual English meaning is
assumed, although a deeply formal description would demand a specification of the semantics of even these simple phrases.

The following general rules apply:

« When referring to an instance of some metaclass, we often omit the word “instance.” For example, instead of saying “a
Classinstance” or “an Association instance,” wejust say “aClass’ or “an Association.” By prefixing it withan “a’ or
“an,” assumethat we mean “an instance of.” Inthe same way, by saying something like “ Elements” we mean “a set (or
the set) of instances of the metaclass Element.”

e Every time aword coinciding with the name of some construct in UML is used, that construct is referenced.

« Termsincluding one of the prefixes sub, super, or meta are written as one word (for example, metamodel, subclass).

© ISO/IEC 2005 - All rights reserved 19

ISO/IEC 19501:2005(E)

4.3.5 Naming Conventions and Typography

In the description of UML, the following conventions have been used:

When referring to constructsin UML, not their representation in the metamodel, normal text is used.

Metaclass names that consist of appended nounsg/adjectives, initial embedded capitals are used (for example,
‘ModelElement,” ‘ Structural Feature’).

Names of metaassociations/association classes are written in the same manner as metaclasses (for example,
‘ElementReference’).

Initial embedded capital is used for names that consist of appended nouns/adjectives (for example, ‘ ownedElement,’
‘alContents’).

Bool ean metaattribute names always start with ‘is’ (for example, ‘isAbstract’).
Enumeration types always end with “Kind” (for example, ‘ AggregationKind').

While referring to metaclasses, metaassoci ations, metaattributes, etc. in the text, the exact names as they appear in the
model are always used.

Names of stereotypes are delimited by guillemets and begin with lowercase for those languages that distinguish
between uppercase and lowercase characters (for example, «type»).

Part 2 - Foundation

4.4 Foundation Package

The Foundation package is the language infrastructure that specifies the static structure of models. The Foundation packageis
decomposed into the following subpackages: Core, Extension Mechanisms, and Data Types. Figure 4 illustrates the
Foundation Packages. The Core package specifies the basic concepts required for an elementary metamodel and defines an
architectural backbone for attaching additional language constructs, such as metaclasses, metaassociations, and metaattributes.
The Extension Mechanisms package specifies how model elements are customized and extended with new semantics. The
Data Types package defines basic data structures for the language.

] |

Core Extension
< — — — .
Mechanisms

= z

Data Types

Figure 4 - Foundation Packages

20

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

45 Core

45.1 Overview

The Core package isthe most fundamental of the subpackages that compose the UML Foundation package. It definesthe basic
abstract and concrete metamodel constructs needed for the development of object models. Abstract constructs are not
instantiable and are commonly used to reify key constructs, share structure, and organize the UML metamodel. Concrete
metamodel constructs are instantiable and reflect the modeling constructs used by object modelers (cf. metamodelers).
Abstract constructs defined in the Core include M odel Element, GeneralizableElement, and Classifier. Concrete constructs
specified in the Core include Class, Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and defines an architectural backbone
(“skeleton™) for attaching additional language constructs such as metacl asses, metaassociations, and metaattributes. Although
the Core package contains sufficient semantics to define the remainder of UML, it is not the UML meta-metamodel. It isthe
underlying base for the Foundation package, which in turn serves as the infrastructure for the rest of language. In other
packages, the Core is extended by adding metaclasses to the backbone using generalizations and associations.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the Core package.

4.5.2 Abstract Syntax

The abstract syntax for the Core package is expressed in graphic notation in the following figures. Figure 5 on page 22 shows
the model elements that form the structural backbone of the metamodel. Figure 6 on page 23 shows the model elements that
define relationships. Figure 7 on page 24 shows the model elements that define dependencies. Figure 8 on page 25 shows the
various kinds of classifiers. Figure 9 on page 26 shows auxiliary elements for template parameters, presentation elements, and
comments.

© ISO/IEC 2005 - All rights reserved 21

ISO/IEC 19501:2005(E)

Element
? + constrainedElement
ModelElement
name : Name N {ordered}
*
ElementOwnership +ownedElement
visibility : VisibilityKind - _ |)
isSpecification : Boolean + constraint
+namespace
0.1 .
Feature NameSpace GeneralizableElement Parameter Constraint
ownerScope : ScopeKind isRoot : Boolean defaultValue : Expression body : BooleanExpression
visibility : VisibilityKind isLeaf : Boolean kind : ParameterDirectionKind
7'y isAbstract : Boolean
N +feature
+ow(;1e1r *| +typedParameter + parameter
N Classifier 1 +type
v
{ordered}
1 +type
StructuralFeature BehavioralFeature
* +typedFeature 0.1 fordered}
muItIpIICIty . MuItIpIICIty IsQuery : Boolean
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind
Attribute Operation 1 *

initialValue : Expression

Figure 5 - Core Package

22

Method

concurrency : CallConcurrencyKind)
isRoot - Boolean + specification body : ProcedureExpression
isLeaf : Boolean

isAbstract : Boolean
specification : String

- Backbone

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

+ source

ModelElement

*

name : Name

T

target *

Relationship
+sourceFlow +targetFlow *
* *
- +generalization +child)
Flow Generalization Y GeneralizableElement
* 1
discriminator: Name IsRoot: Boolean
* 1
IsLeaf : Boolean
+ specialization rparenq IsAbstract : Boolean
+powertypeRange * *
+ powertype 0.1 |
Classifier —
B AssociationEnd {ordered}

*oarticipant + association .

isNavigable : Boolean 2,
1 * ordering : OrderingKind 1| Associatio

aggregation ; AggregationKind S 0

+ specification +specifiedEnd | targetScope: ScopeKind
multiplicity : Multiplicity

* X changeability : ChangeableKind A

T visibility : VisibilityKind + correction
Class Attribute +associationEnd
. +qualifier
IsActive : Boolean InitialValue : Expression
* ()"1
{ordered}
AssociationClass

Figure 6 - Core Package - Relationships

© ISO/IEC 2005 - All rights reserved 23

ISO/IEC 19501:2005(E)

Relationship
+supplier +supplierDependency
ModelElement Dependency
name : Name 1 *
1.* *
+client +clientDependency Lﬁ
Binding Usage
Abstraction

Pemisson

mapping : Map pingExpre sson

Figure 7 - Core Package - Dependencies

24 © ISO/IEC 2005 - All rights reserved

Classifier

ISO/IEC 19501:2005(E)

Class Interface

IsActive : Boolean

+deploymentLocation

Primitive

Node * Component J timplementationtLocation Artifact
+ +deployedComponent * +implementation
+container
ElementResidence [|
visibility : VisibilityKind
. +resident
DataType ModelElement
Name : Name
A A
I A —
- + enumeration + literal EnumerationLiteral
Enumeration
*
1 1.
{ordered}

ProgrammingLanguageDataType

Expression : TypeExpression

Figure 8 - Core Package - Classifiers

© ISO/IEC 2005 - All rights reserved

25

ISO/IEC 19501:2005(E)

TemplateParameter '
|
| {ordered} Element
i + templateParameter
| 0.1 + defaultElement
0.1 J ModelElement
+emplate name: Name + subject *presentation presentationElement
TemplateArgument smodelElement) -
* 1
+argument 11c;.r*uere d * +annotatedElement
1 +hinding *
Binding Comment
body : String

Figure 9 - Core Package - Auxiliary Elements

4.5.2.1 Abstraction

An abstraction is a Dependency relationship that relates two elements or sets of elements that represent the same concept at
different levels of abstraction or from different viewpoints.

In the metamodel, an Abstraction is a Dependency in which there is a mapping between the supplier and the client. Depending
on the specific stereotype of Abstraction, the mapping may be formal or informal, and it may be unidirectional or bidirectional.

If an Abstraction element has more than one client element, the supplier element maps into the set of client elementsasa
group. For example, an analysis-level class might be split into several design-level classes. The situation is similar if thereis
more than one supplier element.

The UML standard stereotyped classes of Abstraction are Derivation, Realization, Refinement, and Trace. (These are the
names for the Abstraction class with the stereotypes «derive», «realize», «refine», and «trace», respectively.)

Attributes

mapping A MappingExpression that states the abstraction relationship between the supplier and the client. In some
cases, such as Derivation, it is usualy formal and unidirectional; in other cases, such as Trace, it is usually
informal and bidirectional. The mapping attribute is optional and may be omitted if the precise relationship
between the elements is not specified.

26 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Stereotypes

«derive» (Name for the stereotyped class is Derivation.) Specifies a derivation relationship among model elements that
are usualy, but not necessarily, of the same type. A derived dependency specifies that the client may be
computed from the supplier. The mapping specifies the computation. The client may be implemented for
design reasons, such as efficiency, even though it is logically redundant.

«realize» (Name for the stereotyped class is Redlization.) Specifies a redlization relationship between a specification
model element or elements (the supplier) and a model element or elements that implement it (the client). The
implementation model element is required to support all of the operations or received signals that the
specification model element declares. The implementation model element must make or inherit its own
declarations of the operations and signal receptions. The mapping specifies the relationship between the two.
The mapping may or may not be computable. Realization can be used to model stepwise refinement,
optimizations, transformations, templates, model synthesis, framework composition, etc.

«refine» (Name for the stereotyped class is Refinement.) Specifies refinement relationship between model elements at
different semantic levels, such as analysis and design. The mapping specifies the relationship between the two
elements or sets of elements. The mapping may or may not be computable, and it may be unidirectional or
bidirectiona. Refinement can be used to model transformations from analysis to design and other such
changes.

«trace» (Name for the stereotyped class is Trace.) Specifies a trace relationship between model elements or sets of
model elements that represent the same concept in different models. Traces are mainly used for tracking
requirements and changes across models. Since model changes can occur in both directions, the directionality
of the dependency can often be ignored. The mapping specifies the relationship between the two, but it is
rarely computable and is usually informal.

4.5.2.2 Artifact

An Artifact represents a physical piece of information that is used or produced by a software development process. Examples
of Artifactsinclude models, sourcefiles, scripts, and binary executable files. An Artifact may constitute the implementation of
a deployable component.

In the metamodel, an Artifact is a Classifier with an optional aggregation association to one or more Components. As a
Classifier, Artifacts may have Features that represent properties of the Artifact (for example, a“read-only” attribute or a
“check in” operation).

It should be noted that sometimes Artifacts may need to be linked to Classifiers directly, without introducing a‘ Component.’
For instance, in the context of code generation, the resulting Artifacts (source code files) are never deployed as Components.
In that case, a «derive» Dependency can be used between the Classifier(s) and the generated Artifact.

The standard stereotypes of Artifact are «file», the subclasses of «file» («executable», «source», «library», and «document),
and «table». These stereotypes can be further subclassed into implementation and platform specific stereotypes (for example,
«jarFile» for Java archives).

Associations

implementationLocation The deployable Component(s) that are implemented by this Artifact.
Stereotypes

«document» Denotes a generic file that is not a «source» file or «executable». Subclass of «file».

«executable» Denotes a program file that can be executed on a computer system. Subclass of «file».

© ISO/IEC 2005 - All rights reserved 27

ISO/IEC 19501:2005(E)

«file» Denotes a physical file in the context of the system developed.

«library» Denotes a static or dynamic library file. Subclass of «filex».

«source» Denotes a source file that can be compiled into an executable file. Subclass of «file».
«table» Denotes a database table.

4.5.2.3 Association

An association defines a semantic relationship between classifiers. The instances of an association are a set of tuplesrelating
instances of the classifiers. Each tuple value may appear at most once.

In the metamodel, an Association is a declaration of a semantic relationship between Classifiers, such as Classes. An
Association has at least two AssociationEnds. Each end is connected to a Classifier - the same Classifier may be connected to
more than one AssociationEnd in the same Association. The Association represents a set of connections among instances of
the Classifiers. Aninstance of an Association isaLink, whichisatuple of Instances drawn from the corresponding Classifiers.

Attributes

name

The name of the Association that in combination with its associated Classifiers must be unique within the
enclosing namespace (usually a Package).

Associations

connection An Association consists of at least two AssociationEnds, each of which represents a connection of the
association to a Classifier. Each AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is defined by its AssociationEnds. The
classifiers belonging to the association are related to the AssociationEnds by the participant rolename
association.
Stereotypes
«implicit» The «implicit» stereotype is applied to an association, specifying that the association is not manifest, but rather

is only conceptual.

Standard Constraints

Xxor

The {xor} constraint is applied to a set of associations, specifying that over that set, exactly one is manifest for
each associated instance. Xor is an exclusive or (not inclusive or) constraint.

Tagged Values

persistence Persistence denotes the permanence of the state of the association, marking it as transitory (its state is
destroyed when the instance is destroyed) or persistent (its state is not destroyed when the instance is
destroyed).
28 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Inherited Features
Association is a GeneralizableElement. The following elements are inherited by a child Association.

connection The child must have the same number of ends as the parent. Each participant class must be a descendant of
the participant class in the same position in the parent. If the Association is an AssociationClass, its class
properties (attributes, operations, etc.) are inherited. Various other properties are subject to change in the
child. This specification is likely to be further clarified in UML 2.0.

Non-Inherited Features

isRoot Not inheritable by their very nature, but they define the generalization structure.
isLeaf

isAbstract

name Each model element has a unique name.

4.5.2.4 AssociationClass

An association classis an association that is also a class. It not only connects a set of classifiers but also defines a set of
features that belong to the relationship itself and not any of the classifiers.

Inherited Features
AssociationClass inherits features as specified in both Class and Association.

In the metamodel, an AssociationClass is a declaration of a semantic relationship between Classifiers, which has a set of
features of its own. AssociationClassis a subclass of both Association and Class (that is, each AssociationClass is both an
Association and a Class); therefore, an AssociationClass has both A ssociationEnds and Features.

4.5.2.5 AssociationEnd

An association end is an endpoint of an association, which connects the association to a classifier. Each association end is part
of one association. The association-ends of each association are ordered.

In the metamodel, an AssociationEnd is part of an Association and specifies the connection of an Association to a Classifier. It
has a name and defines a set of properties of the connection (for example, which Classifier the Instances must conform to, their
multiplicity, and if they may be reached from another Instance viathis connection).

In the following descriptions when referring to an association end for a binary association, the source end isthe other end. The
target end is the one whose properties are being discussed.

Attributes

aggregation When placed on one end (the “target” end), specifies whether the class on the target end is an aggregation with
respect to the class on the other end (the “source”end). Only one end can be an aggregation.

Possihilities are:

* none - The target class is not an aggregate.

e aggregate - The target class is an aggregate; therefore, the source class is a part and must have the
aggregation value of none. The part may be contained in other aggregates.

e composite - The target class is a composite; therefore, the source class is a part and must have the
aggregation value of none. The part is strongly owned by the composite and may not be part of any other
composite.

© ISO/IEC 2005 - All rights reserved 29

ISO/IEC 19501:2005(E)

changeability

When placed on one end (the “target” end), specifies whether an instance of the Association may be modified
by an instance of the class on the other end (the “source” end). In other words, the attribute controls the access
by operations on the class on the opposite end.

Possibilities are:

¢ changeable - No restrictions on modification.

* frozen - No links may be added by operations on the source class after the creation of the source object.
Operations on the target class may add links (provided they are not similarly restricted).

¢ addOnly - Links may be added at any time by operations on the source object, but once created a link
may not be removed by operations on the source class. Operations on the target class may add or remove
links (provided they are not similarly restricted).

ordering

When placed on atarget end, specifies whether the set of links from the source instance to the target instance
is ordered. The ordering must be determined and maintained by Operations that add links. It represents
additiona information not inherent in the objects or links themselves.

Possibilities are:

e unordered - The links form a set with no inherent ordering.

* ordered - A set of ordered links can be scanned in order.

¢ Other possihilities (such as sorted) may be defined later by declaring additional keywords. As with user-
defined stereotypes, this would be a private extension supported by particular editing tools.

isNavigable

When placed on atarget end, specifies whether traversal from a source instance to its associated target
instances is possible. Specification of each direction across the Association is independent. A value of true
means that the association can be navigated by the source class and the target rolename can be used in
navigation expressions.

multiplicity

When placed on atarget end, specifies the number of target instances that may be associated with a single
source instance across the given Association.

name

(Inherited from ModelElement) The rolename of the end. When placed on atarget end, provides a name for
traversing from a source instance across the association to the target instance or set of target instances. It
represents a pseudo-attribute of the source classifier; that is, it may be used in the same way as an Attribute and
must be unique with respect to Attributes and other pseudo-attributes of the source Classifier.

targetScope

Specifies whether the target value is an instance or a classifier.

Possihilities are:

¢ instance. An instance value is part of each link. This is the default.

e classifier. A classifier itself is part of each link. Normally this would be fixed at modeling time and need
not be stored separately at run time.

visibility

Specifies the visibility of the association end from the viewpoint of the classifier on the other end.

Possibilities are:

e public - Other classifiers may navigate the association and use the rolename in expressions, similar to the
use of a public attribute.

¢ protected - Descendants of the source classifier may navigate the association and use the rolename in
expressions, similar to the use of a protected attribute.

e private - Only the source classifier may navigate the association and use the rolename in expressions,
similar to the use of a private attribute.

¢ package - Classifiers in the same package (or a nested subpackage, to any level) as the association
declaration may navigate the association and use the rolename in expressions.

30

© ISO/IEC 2005 - All rights reserved

Associations

ISO/IEC 19501:2005(E)

qualifier

An optional list of qualifier Attributes for the end. If the list is empty, then the Association is not qualified.

specification

Designates zero or more Classifiers that specify the Operations that may be applied to an Instance accessed by
the AssociationEnd across the Association. These determine the minimum interface that must be realized by
the actua Classifier attached to the end to support the intent of the Association. May be an Interface or another
Classifier. These classifiers do not indicate the classes of the participantsin a link, merely the operations that
may be applied when traversing a link.

participant

Designates the Classifier participating in the Association at the given end. A link of the Association contains a
reference to an instance of the class (including a descendant of the given class or a class that realizes a given
interface) in the given position in the link.

(unnamed composite
end)

Designates the Association that owns the AssociationEnd.

Stereotypes
«associ ation» Specifies areal association (default and redundant, but may be included for emphasis).
«global» Specifies that the target is a global value that is known to al elements rather than an actual association.
«local» Specifies that the relationship represents a local variable within a procedure rather than an actual association.
«parameter» Specifies that the relationship represents a procedure parameter rather than an actual association.
«self» Specifies that the relationship represents a reference to the object that owns an operation or action rather than
an actual association.

4.5.2.6 Attribute

An attribute is anamed slot within a classifier that describes arange of values that instances of the classifier may hold.

In the metamodel, an Attribute is a named piece of the declared state of a Classifier, particularly the range of values that
Instances of the Classifier may hold.

Attributes

initialValue

An Expression specifying the value of the attribute upon initialization. It is meant to be evaluated at the time
the object isinitialized. (Note that an explicit constructor may supersede an initial value.)

Associations

associationEnd

Designates the optional AssociationEnd that owns a qualifier attribute. Note that an attribute may be part of an
AssociationEnd (in which case it is a qualifier) or part of a Classifier (by inheritance from Feature, in which
case it is afeature) but not both. If the value is empty, the attribute is not a qualifier attribute.

4.5.2.7 BehavioralFeature

A behavioral feature refersto adynamic feature of a model element, such as an operation or method.

In the metamodel, a Behavioral Feature specifies abehavioral aspect of a Classifier. All different kinds of behavioral aspects of
a Classifier, such as Operation and Method, are subclasses of Behavioral Feature. Behavioral Feature is an abstract metaclass.

© ISO/IEC 2005 - All rights reserved 31

ISO/IEC 19501:2005(E)

Attributes
isQuery Specifies whether an execution of the Feature leaves the state of the system unchanged. True indicates that the
state is unchanged; false indicates that side-effects may occur.
name (Inherited from Model Element) The name of the Feature. The entire signature of the Feature (name and
parameter list) must be unique within its containing Classifier.

Associations

parameter An ordered list of Parameters for the Operation. To call the Operation, the caller must supply alist of values
compatible with the types of the Parameters.

Stereotypes
«create» Specifies that the designated feature creates an instance of the classifier to which the feature is attached. May
be promoted to the Classifier containing the feature.
«destroy» Specifies that the designated feature destroys an instance of the classifier to which the feature is attached. May
be promoted to the classifier containing the feature.
4.5.2.8 Binding

A binding is arelationship between a template (as supplier) and amodel element generated from the template (as client). It
includes alist of arguments that match the template parameters. The template is aform that is cloned and modified by
substitution to yield an implicit model fragment that behaves asif it were adirect part of the model. A Binding must have one
supplier and one client; unlike a general Dependency, the supplier and client may not be sets.

In the metamodel, a Binding is a Dependency where the supplier is the template and the client is the instantiation of the
template that performs the substitution of parameters of atemplate. A Binding has alist of arguments that replace the
parameters of the supplier to yield the client. The client is fully specified by the binding of the supplier’s parameters and does
not add any information of its own. An element may participate as a supplier in multiple Binding relationships to different
clients. An element may participate in only one Binding relationship as a client.

Associations

argument An ordered list of arguments. Each argument is a TemplateArgument element. The model element attached to
the TemplateArgument by the model Element association replaces the corresponding supplier parameter in the
supplier definition, and the result represents the definition of the client as if it had been defined directly.

45.2.9 Class

A classis adescription of aset of objectsthat share the same attributes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of operationsit provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a collection of Features, including Operations, Attributes and
Methods, that are common to the set of Objects. Furthermore, a Class may realize zero or more Interfaces; this meansthat its
full descriptor (see Section 4.5.4.4, “Inheritance,” on page 67 for the definition) must contain every Operation from every
realized Interface (it may contain additional operations aswell).

A Class defines the data structure of Objects, although some Classes may be abstract; that is, no Objects can be created
directly from them. Each Object instantiated from a Class contains its own set of values corresponding to the

32 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Structural Features declared in the full descriptor. Objects do not contain val ues corresponding to Behavioral Features or class-
scope Attributes; all Objects of a Class share the definitions of the Behavioral Features from the Class, and they all have access
to the single value stored for each class-scope attribute.

Attributes
isActive Specifies whether an Object of the Class maintains its own thread of control. If true, then an Object has its own
thread of control and runs concurrently with other active Objects. Such a class is informally called an active
class. If false, then Operations run in the address space and under the control of the active Object that controls
the caller. Such aclassis informally called a passive class.
Stereotypes
«auxiliary» Specifies a class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. The class that the auxiliary supports may be defined explicitly using a Focus class or
implicitly by a dependency relationship. Auxiliary classes are typically used together with Focus classes, and
are particularly useful for specifying the secondary business logic or control flow of components during
design. See also: «focus».
«focus» Specifies a class that defines the core logic or control flow for one or more auxiliary classes that support it.

Support classes may be defined explicitly using Auxiliary classes or implicitly by dependency relationships.
Focus classes are typically used together with one or more Auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: «auxiliary».

«implementation»

Specifies the implementation of a classin some programming language (for example, C++, Smalltalk, Java) in
which an instance may not have more than one class. Thisisin contrast to Class, for which an instance may
have multiple classes at one time and may gain or lose classes over time, and an object (a child of instance)
may dynamically have multiple classes.

An Implementation class is said to realize a Type if it provides all of the operations defined for the Type with
the same behavior as specified for the Type's operations. An Implementation Class may realize a number of
different Types. Note that the physical attributes and associations of the Implementation class do not have to be
the same as those of any Type it realizes and that the Implementation Class may provide methods for its
operations in terms of its physical attributes and associations. See also: «type».

«type»

Specifies a domain of objects together with the operations applicable to the objects, without defining the
physical implementation of those objects. A type may not contain any methods, maintain its own thread of
control, or be nested. However, it may have attributes and associations. The associations of a Type are defined
solely for the purpose of specifying the behavior of the type's operations and do not represent the
implementation of state data.

Although an object may have at most one Implementation Class, it may conform to multiple different Types.
See also: «implementationy.

Inherited Features

ClassisaGeneralizableElement. The following elements are inherited by a child classifier, in addition to those specified under

its parent, Classifier.

isActive

The child may be active when the parent is passive, but not vice versa. In most cases, they are the same.

© ISO/IEC 2005 - All rights reserved 33

ISO/IEC 19501:2005(E)

4.5.2.10 Classifier

A classifier is an element that describes behavioral and structural features; it comesin several specific forms, including class,
datatype, interface, component, artifact, and others that are defined in other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such as Attributes, Methods, and Operations. It has a name,
which is unique in the Namespace enclosing the Classifier. Classifier is an abstract metaclass.

Classifier isachild of GeneralizableElement and Namespace. As a GeneralizableElement, it may inherit Features and
participation in Associations (in addition to things inherited as a Model Element). It also inherits ownership of StateMachines,
Collaborations, etc.

As aNamespace, a Classifier may declare other Classifiers nested in its scope. Nested Classifiers may be accessed by other
Classifiersonly if the nested Classifiers have adequate visibility. There are no data value or state consequences of nested
Classifiers(i.e., it isnot an aggregation or composition).

Associations

feature An ordered list of Features, like Attribute, Operation, Method, owned by the Classifier.

association Denotes the AssociationEnd of an Association in which the Classifier participates at the given end. Thisis the
inverse of the participant association from AssociationEnd. A link of the association contains a reference to an
instance of the class in the given position.

powertypeRange Designates zero or more Generalizations for which the Classifier is a powertype. If the cardinality is zero, then
the Classifier is not a powertype. If the cardinality is greater than zero, then the Classifier is a powertype over
the set of Generalizations designated by the association, and the child elements of the Generalizations are the
instances of the Classifier as a powertype. A Classifier that is a powertype can be marked with the «powertype»
stereotype.

specifiedEnd Indicates an AssociationEnd for which the given Classifier specifies operations that may be applied to instances
obtained by traversing the association from the other end. (This relationship does not define the structure of the
association, merely operations that may be applied on traversing it.)

Stereotypes

«metaclass» Specifies that the instances of the classifier are classes.

«powertype» Specifies that the classifier is a metaclass whose instances are siblings marked by the same discriminator. For
example, the metaclass TreeSpecies might be a power type for the subclasses of Tree that represent different
species, such as AppleTree, BananaTree, and CherryTree.

«process» Specifies a classifier that represents a heavy-weight flow of control.

«thread» Specifies a classifier that represents a flow of control.

«utility» Specifies a classifier that has no instances, but rather denotes a named collection of non-member attributes and

operations, al of which are class-scoped.

Tagged Values

persistence Persistence denotes the permanence of the state of the classifier, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is not destroyed when the instance is destroyed).

semantics Semantics is the specification of the meaning of the classifier.

34 © ISO/IEC 2005 - All rights reserved

Inherited Features

ISO/IEC 19501:2005(E)

Classifier is a GeneralizableElement. The following elements are inherited by a child classifier.

Note that inheritance makes the inherited elements part of the (virtual) full descriptor of the classifier, but it does not change its
actual data structure. See the explanation for the meaning of each kind of inheritance.

associationEnd

The child class inherits participation in all associations of its parent, subject to al the same properties.

constraint

Constraints on the parent apply to the child.

feature

Attributes of the parent are part of the full descriptor of the child and may not be declared again or
overridden.

Operations of the parent are part of the full descriptor of the child but may be overridden; a redeclaration
may change its hierarchy location (isRoot, isLeaf, isAbstract) but may not change its specification or
parameter structure. The concurrency level may be loosened (e.g., from guarded to concurrent). An
overriding operation may link to a different Method. An overriding operation can have isQuery=true when
the parent had a false value, but not vice versa (in other words, once a side-effect, always a side-effect).

Methods of the parent are part of the full descriptor of the child but may be overridden. An overriding
method can set the isQuery status, change its hierarchy structure, but may not change its parameter structure.
It may link to a different operation that overrides the operation of the parent method.

generalization
specialization

These are implicitly inherited, in the sense that they define ancestors and descendants, but not explicitly
inherited, asthey are the arcs in the generalization graph. They establish the generalization structure itself as
a directed graph, into which the child classifier fits.

ownedElement

The namespace of the parent is available to the child, except for private access.

Non-Inherited Features
The following elements are not inherited by a child classifier:

isRoot By their very nature, these are not inherited.

isLeaf

isAbstract

name Each classifier has its own unique name.

parameter Template structure is not inherited. Each classifier must declare its own template structure, if any. A non-
template can be child of atemplate and vice versa.

powertypeRange A powertype corresponds to a particular node in the generalization hierarchy, so it is not inherited.

4.5.2.11 Comment

A comment is an annotation attached to a model element or a set of model elements. It has ho semantic force but may contain
information useful to the modeler.

Attributes

body

A string that is the comment.

© ISO/IEC 2005 - All rights reserved 35

ISO/IEC 19501:2005(E)

Associations

annotatedElem A ModelElement or set of Model Elements described by the Comment.

Stereotypes
«requirement» Specifies a desired feature, property, or behavior of an element as part of a system.
«responsi bility» Specifies a contract or an obligation of an element in its relationship to other elements.

45.2.12 Component

A component represents a modular, deployable, and replaceable part of a system that encapsul ates implementation and
exposes a set of interfaces.

A component istypically specified by one or more classifiers that reside on the component. A subset of these classifiers
explicitly defines the component’s external interfaces. A component conforms to the interfaces that it exposes, where the
interfaces represent services provided by elements that reside on the component. A component may be implemented by one or
more artifacts, such as binary, executable, or script files. A component may be deployed on a node.

Components may be specified in both design models (for example, using static structure diagrams) and in implementation
models (for example, using implementation diagrams). When they are specified as part of a design model components need
not be allocated to nodes, nor do they need to have any associated implementation artifacts.

In the metamodel, a Component is achild of Classifier. It does not have its own Features, but instead acts as a container for
other Classifiersthat have Features. A Component is specified by the Interfaces it exposes and the Classifiers that reside onit.
The visibility attribute of the ElementResi dence association defines whether aresident element is visible outside the
Component: an external Interface of a Component has visibility value ‘public.” A Component may be implemented by one or
more Artifacts, and may be deployed on a Node.

Associations

deploymentLocation | The set of Nodes the Component is residing on.

resident Association class ElementResidence - The set of model elements that specify the component. The visibility
attribute shows the external visibility of the element outside the component: an external Interface of a
Component has visibility = ‘public’ for its ElementResidence association.

implementation The set of Artifacts that implement the Component. For a Component, these Artifacts are generally
«executable».

Inherited Features
The following elements are inherited by a child Component, in addition to those specified under Classifier.

(none)

Non-Inherited Features

deploymentLocation | The set of locations may differ. Often it is more restrictive on the child.

resident The set of resident elements may differ. Often it is more restrictive on the child and contains additional
elements.

36 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

implementation The set of Artifacts that implement the child Component will usually differ.

4.5.2.13 Constraint
A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an associated Model Element(s), which must be true for the model to
be well formed. This restriction can be stated in natural language, or in different kinds of languages with awell defined
semantics. Certain Constraints are predefined in the UML, others may be user defined. Note that a Constraint is an assertion,
not an executable mechanism. It indicates arestriction that must be enforced by correct design of a system.

Attributes

body A BooleanExpression that must be true when evaluated for an instance of a system to be well formed.

Associations

constrainedElement A ModelElement or list of ModelElements affected by the Constraint. If the constrained element is a
Stereotype, then the constraint applies to all Model Elements that use the stereotype.
Stereotypes

«invariant» Specifies a constraint that must be attached to a set of classifiers or relationships. It indicates that the
conditions of the constraint must hold over time (for the time period of concern in the particular containing
element) for the classifiers or relationships and their instances.

«postcondition» Specifies a constraint that must be attached to an operation, and denotes that the conditions of the constraint
must hold after the invocation of the operation.

«precondition» Specifies a constraint that must be attached to an operation, and denotes that the conditions of the constraint
must hold for the invocation of the operation.

«statel nvariant» Specifies a constraint that must be attached to a state vertex in a state machine that has a classifier for a
context. The stereotype indicates that the constraint holds for instances of the classifier when an instanceisin
that state.

4.5.2.14 DataType

A datatype is atype whose values have no identity; that is, they are pure values. Data types include primitive built-in types
(such asinteger and string) as well as definable enumeration types (such as the predefined enumeration type boolean whose
literals are false and true).

In the metamodel, a DataType defines a special kind of Classifier in which Operations are all pure functions; that is, they can
return DataValues but they cannot change DataValues, because they have no identity. For example, an “add” operation on a
number with another number as an argument yields a third number as a result; the target and argument are unchanged.

Inherited Features
DataType inherits features as specified in Classifier.

© ISO/IEC 2005 - All rights reserved 37

ISO/IEC 19501:2005(E)

4.5.2.15 Dependency

A term of convenience for a Relationship other than Association, Generalization, Flow, or metarelationship (such as the
rel ationship between a Classifier and one of its Instances).

A dependency states that the implementation or functioning of one or more elements requires the presence of one or more
other elements.

In the metamodel, a Dependency is a directed relationship from a client (or clients) to a supplier (or suppliers) stating that the
client is dependent on the supplier; that is, the client element requires the presence and knowledge of the supplier element.

The kinds of Dependency are Abstraction, Binding, Permission, and Usage. Various stereotypes of those elements are
predefined.

Associations

client The element that is affected by the supplier element. In some cases (such as a Trace Abstraction) the direction
is unimportant and serves only to distinguish the two elements.

supplier Inverse of client. Designates the element that is unaffected by a change. In atwo-way relationship (such as some
Refinement Abstractions) this would be the more genera element. In an undirected situation, such as a Trace
Abstraction, the choice of client and supplier may be irrelevant.

45.2.16 Element
An element is an atomic constituent of a model.

In the metamodel, an Element is the top metaclassin the metaclass hierarchy. It has two subclasses: Model Element and
PresentationElement. Element is an abstract metaclass.

Tagged Values

documentation Documentation is a comment, description, or explanation of the element to which it is attached.

4.5.2.17 ElementOwnership
Element ownership defines the visibility of a Model Element contained in a Namespace.

In the metamodel, ElementOwnership reifies the relationship between Model Element and Namespace denoting the ownership
of aModelElement by a Namespace and its visibility outside the Namespace. See Section 4.5.2.27, “Model Element,” on

page 44.

Attributes

isSpecification Specifies whether the ownedElement is part of the specification for the containing namespace (in cases where
specification is distinguished from the realization). Otherwise the ownedElement is part of the realization. In
cases in which the distinction is not made, the value is false by defaullt.

38 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

visibility Specifies whether the Model Element can be seen and referenced by other Model Elements.

Possibilities include:

* public - Any outside ModelElement can see the Model Element.

* protected - Any descendant of the Model Element can see the Model Element.

e private - Only the ModelElement itself, or elements nested within it can see the Model Element.

* package - ModelElements declared in the same package (or a nested subpackage, to any level) as the
given Model Element can see the Model Element.

Note that use of an element in another Package may also be subject to access or import of its Package as
described in Model Management; see Permission.

4.5.2.18 ElementResidence

Association class between Component and Model Element that defines the set of Model Elements that specify a Component.
See Component::resident in Section 4.5.2.12, “Component,” on page 36. Shows that the component supports the element. The
visibility attribute of ElementResidence defines the visibility of aresident element outside the component: an external
Interface of a Component has visibility = ‘public’ for its ElementResidence association.

Attributes

visibility Specifies whether a Model Element that resides in a Component is visible externally. Possible values for
ElementResidence visibility are:

e public - Any resident ModelElement with public visibility is part of the Component’s external Interface
and can be used by other elements, if they have permission to access or import the Component.

e private - The ModelElement is internal to the Component and cannot be used by external elements.

¢ protected - The ModelElement is only visible to Descendant Components.

Note: the visibility values ‘package’ does not apply to Element Residence visibility. The Component and its
residents have ElementOwnership associations with visibility values to the Package that contains them.

4.5.2.19 Enumeration

In the metamodel, Enumeration defines akind of DataType whose rangeisalist of predefined values, called enumeration
literals.

Enumeration literals can be copied, stored as values, and passed as arguments. They are ordered within their enumeration
datatype. An enumeration literal can be compared for an exact match or to arange within its enumeration datatype. Thereisno
other algebra defined on them (e.g., they cannot be added or subtracted).

The run-time instances of a Primitive datatype are Values. Each such value corresponds to exactly one EnumerationL iteral
defined as part of the Enumeration type itself.

An Enumeration may have operations, but they must be pure functions (thisis the rule for all DataType elements).

Associations

literal An ordered set of EnumerationLiteral elements, each specifying a possible value of an instance of the
enumeration element.

© ISO/IEC 2005 - All rights reserved 39

ISO/IEC 19501:2005(E)

4.5.2.20 EnumerationLiteral

An EnumerationLiteral defines an element of the run-time extension of an Enumeration data type. It has no relevant
substructure, that is, it is atomic. The enumeration literals of a particular Enumeration datatype are ordered.

It has a name (inherited from Model Element) that can be used to identify it within its enumeration datatype.

Note that an EnumerationL iteral isaModel Element and may appear in (M 1) modelsto define the structure of an Enumeration.
In arun-time (MQ) system, enumeration literals are DataValues in many-to-one correspondence to EnumerationLiterals that
they represent. (Thisisa subtle but necessary distinction between M1 and MO entities.)

The run-time values corresponding to enumeration literals can be compared for equality and for relative ordering or inclusion
in arange of enumeration literals.

Associations

enumeration The enumeration classifier of which this enumeration literal is an instance.

4.5.2.21 Feature
A feature is a property, like operation or attribute, which is encapsulated within a Classifier.

In the metamodel, a Feature declares a behavioral or structural characteristic of an Instance of a Classifier or of the Classifier
itself. Feature is an abstract metaclass.

Attributes

name (Inherited from Model Element) The name used to identify the Feature within the Classifier or Instance. It must
be unique across inheritance of names from ancestors including names of outgoing AssociationEnd. See more
specific rules for the exact details.

Attributes, discriminators, and opposite association ends must have unique names in the set of inherited names.
There may be multiple declarations of the same operation. Multiple operations may have the same name but
different signatures; see the rules for precise details.

owner Scope Specifies whether Feature appears in each Instance of the Classifier or whether thereisjust a single instance of
the Feature for the entire Classifier.

Possihilities are:
¢ instance - Each Instance of the Classifier holds its own value for the Feature.
* classifier - There is just one value of the Feature for the entire Classifier.

visibility Specifies whether the Feature can be used by other Classifiers. Visibilities of nested Classifiers combine so that
the most restrictive visibility is the resuilt.

Possibilities include:

e public - Any outside Classifier with visibility to the Classifier can use the Feature.

» protected - Any descendent of the Classifier can use the Feature.

e private - Only the Classifier itself can use the Feature.

* package - Any Classifier declared in the same package (or a nested subpackage, to any level) as the
owner of the Feature can use the Feature.

40 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Associations

owner The Classifier declaring the Feature. Note that an Attribute may be owned by a Classifier (in which caseitisa
feature) or an AssociationEnd (in which case it is a qualifier) but not both.

4.5.2.22 Flow
A flow isarelationship between two versions of an object or between an object and a copy of it.

In the metamodel, a Flow isa child of Relationship. A Flow is adirected relationship from a source or sources to atarget or
targets.

Predefined stereotypes of Flow are «become» and «copy». Become relates one version of an object to another with a different
value, state, or location. Copy relates an object to another object that starts as a copy of it.

Stereotypes

«become» Specifies a Flow relationship, source and target of which represent the same instance at different points in time,
but each with potentially different values, state instance, and roles. A Become flow relationship from A to B
means that instance A becomes B with possibly new values, state instance, and roles at a different moment in
time/space.

«copy» Specifies a Flow relationship, the source and target of which are different instances, but each with the same
values, state instance, and roles (but a distinct identity). A Copy flow relationship from A to B meansthat B is
an exact copy of A. Future changesin A are not necessarily reflected in B.

4.5.2.23 GeneralizableElement
A generalizable element is amodel element that may participate in a generalization relationship.

In the metamodel, a Generalizabl eElement can be a generalization of other GeneralizableElements; that is, all Features defined
in and all Model Elements contained in the ancestors are al so present in the GeneralizableElement. GeneralizableElement isan
abstract metaclass.

Attributes

isAbstract Specifies whether the GeneralizableElement may not have a direct instance. True indicates that an instance of
the Generalizabl eElement must be an instance of a child of the GeneralizableElement. False indicates that there
may be an instance of the GeneralizableElement that is not an instance of a child. An abstract
GeneralizableElement is not instantiable since it does not contain all necessary information. That is, it may not
have a direct instance. It may have an indirect instance, and a model at a higher level of abstraction may
include instances of an abstract type, with the understanding that in a fully expanded concrete snapshot, such
instances would have concrete types that are descendants of the abstract types.

isLeaf Specifies whether the GeneralizableElement is a GeneralizableElement with no descendants. True indicates
that it may not have descendants, false indicates that it may have descendants (whether or not it actually has
any descendents at the moment).

isRoot Specifies whether the GeneralizableElement is a root GeneralizableElement with no ancestors. True indicates
that it may not have ancestors, false indicates that it may have ancestors (whether or not it actually has any
ancestors at the moment).

© ISO/IEC 2005 - All rights reserved 41

ISO/IEC 19501:2005(E)

Associations

generalization

Designates a Generalization whose parent GeneralizableElement is the immediate ancestor of the current
GeneralizableElement.

specialization

Designates a Generalization whose child GeneralizableElement is the immediate descendant of the current
Generalizabl eElement.

Inherited Features

The following elements are inherited by a child GenerizableElement.

constraint

All constraints on the parent apply to the child.

Non-Inherited Features

isRoot Not inheritable by their very nature, but they define the generalization structure. IsRoot may be true only if
isLeaf there are no parents. IsLeaf may be true only if there are no children.

isAbstract

name Each model element has a unique name.

4.5.2.24 Generalization

A generalization is a taxonomic relationship between amore general element and a more specific element. The more specific
element isfully consistent with the more general element (it has all of its properties, members, and relationships) and may
contain additional information.

In the metamodel, a Generalization is a directed inheritance relationship, uniting a GeneralizableElement with a more general
GeneralizableElement in a hierarchy. Generalization is a subtyping relationship; that is, an Instance of the more general
GeneralizableElement may be substituted by an Instance of the more specific GeneralizableElement. See Inheritance for the
consequences of Generalization relationships.

Attributes

discriminator

Designates the partition to which the Generalization link belongs. All of the Generalization links that share a
given parent GeneralizableElement are divided into disjoint sets (that is, partitions) by their discriminator
names. Each partition (a set of links sharing a discriminator name) represents an orthogonal dimension of
specialization of the parent GeneralizableElement. The discriminator need not be unique. The empty string is
also considered as a partition name; therefore all Generalization links have a discriminator. If the set of
Generalization links that have the same parent all have the same name, then the children in the Generalization
links are Generalizabl eElements that specialize the parent, and an instance of any of them isalegal instance of
the parent. Otherwise an indirect instance of the parent must be a (direct or indirect) instance of at least one
element from each of the partitions.

Associations

child Designates a GeneralizableElement that is the specialized version of the parent GeneralizableElement.
parent Designates a GeneralizableElement that is the generalized version of the child GeneralizableElement.
42 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

powertype Designates a Classifier that serves as a powertype for the child element along the dimension of generalization
expressed by the Generalization. The child element is therefore an instance of the powertype element.

Stereotypes

«implementati on» Specifies that the child inherits the implementation of the parent (its attributes, operations, and methods) but
does not make public the supplier’s interfaces nor guarantee to support them, thereby violating substitutability.
This is private inheritance and is usually used only for programming implementation purposes.

Standard Constraints

complete Specifies a constraint applied to a set of generalizations with the same discriminator and the same parent,
indicating that any instance of the parent must be an instance of at least one child within the set of
generdizations. If a parent has a single discriminator, the set of its child generalizations being complete
implies that the parent is abstract. The connotation of declaring a set of generalizations complete is that all of
the children with the given discriminator have been declared and that additional ones are not expected (in
other words, the set of generalizations is closed), and designs may assume with some confidence that the set
of children isfixed. If anew child is nevertheless added in the future, existing models may be adversely
affected and may require modification.

disjoint Specifies a constraint applied to a set of generalizations, indicating that instance of the parent may be an
instance of no more than one of the given children within the set of generalizations. This is the default
semantics of generalization.

incomplete Specifies a constraint applied to a set of generalizations with the same discriminator, indicating that an
instance of the parent need not be an instance of a child within the set (but there is no guarantee that such an
instance will actually exist). Being incomplete implies that the parent is concrete. The connotation of
declaring a set of generalizations incomplete is that al of the children with the given discriminator have not
necessarily been declared and that additional ones might be added; therefore, users should not count on the set
of children being fixed.

overlapping Specifies a constraint applied to a set of generaizations, indicating that an instance of one child may be
simultaneously an instance of another child in the set (but there is no guarantee that such an instance will
actualy exist).

4.5.2.25 Interface
Aninterface is a named set of operations that characterize the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the
Interface. A Classifier may offer several services, which meansthat it may realize several Interfaces, and several Classifiers
may realize the same Interface.

Interfaces are GeneralizableElements.

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the
Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that
is navigable from the Classifier but not from the Interface.

Inherited Features
Interface inherits features as specified in Classifier.

© ISO/IEC 2005 - All rights reserved 43

ISO/IEC 19501:2005(E)

4.5.2.26 Method
A method is the implementation of an operation. It specifies the algorithm or procedure that effects the results of an operation.

In the metamodel, a Method is a declaration of a named piece of behavior in a Classifier and realizes one (directly) or a set
(indirectly) of Operations of the Classifier.

There may be at most one method for a particular classifier (as owner of the method) and operation (as specification of the
method) pairing.

Attributes

body The implementation of the Method as a ProcedureExpression.

Associations

specification Designates an Operation that the Method implements. The Operation must be owned by the Classifier that
owns the Method or be inherited by it. The signatures of the Operation and Method must match.

4.5.2.27 ModelElement

A model element is an element that is an abstraction drawn from the system being modeled. Contrast with view element,
which is an element whose purpose is to provide a presentation of information for human comprehension.

In the metamodel, a Model Element is anamed entity in aModel. It isthe base for all modeling metaclassesin the UML (even
though it is not displayed explicitly as such on diagrams for ElementOwnership, ElementResidence, Elementl mport,
TemplateParameter, TemplateArgument, and Argument). All other modeling metaclasses are either direct or indirect
subclasses of Model Element.

Each ModelElement can be regarded as atemplate. A template has a set of templateParameters that denotes which of the parts
of aModelElement are the template parameters. A ModelElement is atemplate when thereis at |east one template parameter.
If it is not atemplate, a M odel Element cannot have template parameters. However, such embedded parameters are not usually
complete and need not satisfy well-formedness rules. It is the arguments supplied when the template is instantiated that must
be well formed.

Partially instantiated templates are allowed. Thisis the case when there are arguments provided for some, but not all
templateParameters. A partially instantiated template is still atemplate, sinceit still has parameters.

Attributes

name An identifier for the ModelElement within its containing Namespace.

Associations

asArgument Indicates zero or more TemplateArgument for which the model element is an argument in atemplate
binding.

clientDependency Inverse of client. Designates a set of Dependency in which the ModelElement is a client.

constraint A set of Constraints affecting the element.

implementationLocation The component that an implemented model element resides in.

44 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

namespace Designates the Namespace that contains the ModelElement. Every Model Element except a root
element must belong to exactly one Namespace or el se be a composite part of another M odel Element
(which is akind of virtual namespace). The pathname of Namespace or Model Element names
starting from the root package provides a unique designation for every ModelElement. The
association attribute visibility specifies the visibility of the element outside its namespace (see
Section 4.5.2.17, “ElementOwnership,” on page 38).

presentation A set of PresentationElements that present a view of the Model Element.
supplierDependency Inverse of supplier. Designates a set of Dependency in which the ModelElement is a supplier.
templateParameter (association class TemplateParameter) A composite aggregation ordered list of parameters. Each

parameter is a dummy ModelElement designated as a placeholder for a real Model Element to be
substituted during a binding of the template (see Section 4.5.2.8, “Binding,” on page 32). The rea
model element must be of the same kind (or a descendant kind) as the dummy ModelElement. The
properties of the dummy ModelElement are ignored, except the name of the dummy element is used
as the name of the template parameter. The association class TemplateParameter may be associated
with a default Model Element of the same kind as the dummy Model Element. In the case of a
Binding that does not supply an argument corresponding to the parameter, the value of the default
ModelElement is used. If a Binding lacks an argument and there is no default Model Element, the
congtruct is invalid.

Note that the template parameter element lacks structure. For example, a parameter that is a Class
lacks Features; they are found in the actual argument.

Note that if aModel Element has at least one templateParameter, then it is atemplate; otherwise, it is an ordinary element.

Tagged Values

derived A true value indicates that the model element can be completely derived from other model
elements and is therefore logically redundant. In an analysis model, the element may be included
to define a useful name or concept. In a design model, the usual intent is that the element should
exist in the implementation to avoid the need for recomputation.

Inherited Features

Model Element is not a Generalizabl eElement but some of its descendants are. The following elements are inherited by
children of elements that are GeneralizableElements.

constraint The child is subject to all constraints of the parent.

presentation The child is, by default, presented the same as the parent, but the presentation may be overridden.

stereotype If amodel element is classified by a stereotype, then its children are also classified by the stereotype.
They may use the tags defined on the sterectype and they are subject to constraints imposed by the
stereotype.

taggedValue If atag is defined to apply to a model element (for example, because it is classified by a stereotype
defining the tag), then the tag applies to children of the model element.

Non-Inherited Features

clientDependency A generd inheritance rule is not possible
supplierDependency

© ISO/IEC 2005 - All rights reserved 45

ISO/IEC 19501:2005(E)

deploymentL ocation The set of locations may differ. Often it is more restrictive on the child.
implementationL ocation The child may be implemented differently from the parent.

name Each model element has its own name. Names are not inherited.
namespace The child and the parent may be in different namespaces.
templateParameter A parent and child may have different template structure.

4.5.2.28 Namespace

A namespace is a part of amodel that contains a set of Model Elements each of whose names designates a unique el ement
within the namespace.

In the metamodel, a Namespace is a Model Element that can own other M odel Elements, like Associations and Classifiers. The
name of each owned M odel Element must be unique within the Namespace. Moreover, each contained ModelElement is
owned by at most one Namespace. The concrete subclasses of Namespace have additional constraints on which kind of
elements may be contained. Namespace is an abstract metaclass.

Note that explicit parts of amodel element, such as the features of a Classifier, are not modeled as owned elementsin a
namespace. A namespace is used for unstructured contents such as the contents of a package or a class declared inside the
scope of another class.

Associations

ownedElement association class ElementOwnership - A set of ModelElements owned by the Namespace. Its visibility
attribute states whether the element is visible outside the namespace.

4.5.2.29 Node

A node is arun-time physical object that represents a computational resource, generally having at least a memory and often
processing capability aswell, and upon which components may be deployed.

In the metamodel, a Node is a subclass of Classifier. It is associated with a set of Components that are deployed on the Node.

Associations

deployedComponent The set of Components deployed on the Node.

Inherited Features
The following elements are inherited by a child Node, in addition to those specified under Classifier.

(none)

Non-Inherited Features

resident The set of resident elements may differ. Often it is more restrictive on the child.

4.5.2.30 Operation

An operation isaservice that can be requested from an object to effect behavior. An operation has a signature, which describes
the actual parametersthat are possible (including possible return values).

46 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

In the metamodel, an Operation is a Behavioral Feature that can be applied to the Instances of the Classifier that contains the
Operation.

Attributes

concurrency Specifies the semantics of concurrent calls to the same passive instance; that is, an Instance originating from a
Classifier with isActive=false. Active instances control access to their own Operations so this property is
usualy (although not required in UML) set to sequential. Possihilities include:

* sequential - Callers must coordinate so that only one call to an Instance (on any sequential Operation)
may be outstanding at once. If simultaneous calls occur, then the semantics and integrity of the system
cannot be guaranteed.

e guarded - Multiple calls from concurrent threads may occur simultaneously to one Instance (on any
guarded Operation), but only one is allowed to commence. The others are blocked until the performance
of the first Operation is complete. It is the responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocks. Guarded Operations must perform correctly (or block
themselves) in the case of a simultaneous sequential Operation or guarded semantics cannot be claimed.

* concurrent - Multiple calls from concurrent threads may occur simultaneously to one Instance (on any
concurrent Operation). All of them may proceed concurrently with correct semantics. Concurrent
Operations must perform correctly in the case of a simultaneous sequential or guarded Operation or
concurrent semantics cannot be claimed.

isAbstract If true, then the operation does not have an implementation, and one must be supplied by a descendant. If
false, the operation must have an implementation in the class or inherited from an ancestor.

isLeaf If true, then the implementation of the operation may not be overriden by a descendant class. If false, then the
implementation of the operation may be overridden by a descendant class (but it need not be overridden).

isRoot If true, then the class must not inherit a declaration of the same operation. If false, then the class may (but
need not) inherit a declaration of the same operation. (But the declaration must match in any case; a class may
not modify an inherited operation declaration.)

Tagged Values

semantics Semantics is the specification of the meaning of the operation.

4.5.2.31 Parameter

A parameter is an unbound variable that can be changed, passed, or returned. A parameter may include a name, type, and
direction of communication. Parameters are used in the specification of operations, messages and events, templates, etc.

In the metamodel, a Parameter is a declaration of an argument to be passed to, or returned from, an Operation, a Signal, etc.

Attributes

defaultValue An Expression whose evaluation yields a value to be used when no argument is supplied for the Parameter.

© ISO/IEC 2005 - All rights reserved 47

ISO/IEC 19501:2005(E)

kind Specifies what kind of a Parameter is required. Possibilities are:

* in- Aninput Parameter (may not be modified).

e out - An output Parameter (may be modified to communicate information to the caller).
* inout - An input Parameter that may be modified.

e return -A return value of acall.

name (Inherited from Model Element) The name of the Parameter, which must be unique within its containing
Parameter list.

Associations

type Designates a Classifier to which an argument value must conform.

4.5.2.32 Permission
Permission is akind of dependency. It grants amodel element permission to access elementsin another namespace.

In the metamodel, Permission in a Dependency between a client Model Element and a supplier ModelElement. The client
receives permission to reference the supplier’s contents. The supplier must be a Namespace.

The predefined stereotypes of Permission are access, import, and friend.

In the case of the access and import stereotypes, the client is granted permission to reference elements in the supplier
namespace with public visibility. In the case of the import stereotype, the public namesin the supplier namespace are added to
the client namespace. An element may also access any protected contents of an ancestor namespace. An element may also
access any contents (public, protected, private, or package) of its own namespace or a containing namespace.

In the case of the friend stereotype, the client is granted permission to reference elementsin the supplier namespace, regardless
of visibility.

Stereotypes

«access» Access is a stereotyped permission dependency between two namespaces, denoting that the public contents of
the target namespace are accessible to the namespace of the source package.

«friend» Friend is a stereotyped permission dependency whose source is a model element, such as an operation, class,
or package, and whose target is a model element in a different package, such as an operation, class or package.
A friend relationship grants the source access to the target regardliess of the declared visibility. It extends the
visibility of the supplier so that the client can see into the supplier.

«import» Import is a stereotyped permission dependency between two namespaces, dencting that the public contents of
the target package are added to the namespace of the source package.

4.5.2.33 PresentationElement
A presentation element is atextual or graphical presentation of one or more model elements.

In the metamodel, a PresentationElement is an Element that presents a set of Model Elements to areader. It isthe base for all
metaclasses used for presentation. All other metaclasses with this purpose are either direct or indirect subclasses of
PresentationElement. PresentationElement is an abstract metaclass. The subclasses of this class are proper to a graphic editor
tool and are not specified here. It is astub for their future definition.

48 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

4.5.2.34 Primitive

A Primitive defines a predefined DataType, without any relevant UML substructure; that is, it has no UML parts. A primitive
datatype may have an algebra and operations defined outside of UML (for example, mathematically). Primitive datatypes used
in UML itself include Integer, Unlimitedinteger, and String.

The run-time instances of a Primitive datatype are DataValues. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

4.5.2.35 ProgrammingLanguageDataType

A datatype is atype whose values have no identity (i.e., they are pure values). A programming language datatypeis a data
type specified according to the semantics of a particular programming language, using constructs available in that language.
There are awide variety of programming languages and many of them include type constructs not included as UML
classifiers. In some cases, it isimportant to represent those constructs such that their exact form in the programming language
is available. The ProgrammingL anguageData type captures such programming language types in alanguage-dependent
fashion. They are represented by the name of the language and a string characterizing them, subject to interpretation by the
particular language. Because they are dependent on particular languages, they are not portable among languages (except by
agreement among the languages) and they do not map into other UML classifiers. Their semanticsis therefore opaque within
UML except by special interpretation by a profile intended for the particular language.

Note that many or most programming language types can be directly represented using other UML classifiers, and such
representation makes available deeper semantic analysis.

A ProgrammingL anguageDataType may omit its name. Two ProgrammingL anguageDataType elements without names are not
considered equivalent.

Attributes

expression An expression for the ProgrammingLanguageDataType expressed in its particular programming language.

Inherited Features

ProgrammingL anguageDataType is meant to define language-dependent constructs for which inheritance properties are
undefined in UML.

4.5.2.36 Relationship

A relationship is a connection among model elements.

In the metamodel, Relationship is aterm of convenience without any specific semantics. It is abstract.
Children of Relationship are Association, Dependency, Flow, and Generalization.

4.5.2.37 StructuralFeature

A structural feature refers to a static feature of amodel element, such as an attribute.

In the metamodel, a Structural Feature declares a structural aspect of an Instance of a Classifier, such as an Attribute. For
example, it specifies the multiplicity and changeability of the Structural Feature. Structural Feature is an abstract metaclass.

© ISO/IEC 2005 - All rights reserved 49

ISO/IEC 19501:2005(E)

Attributes
changeability Whether the value may be modified after the object is created.
Possibilities are:
¢ changeable - No restrictions on modification.
* frozen - The value may not be altered after the object is instantiated and its values initialized. No
additional values may be added to a set.
¢ addOnly - Meaningful only if the multiplicity is not fixed to a single value. Additional values may be
added to the set of values, but once created a value may not be removed or altered.
multiplicity The possible number of data values for the feature that may be held by an instance. The cardinality of the set
of values is an implicit part of the feature. In the common case in which the multiplicity is 1..1, then the
feature is a scalar; that is, it holds exactly one value.
ordering Specifies whether the set of instances is ordered. The ordering must be determined and maintained by
Operations that add values to the feature. This property is only relevant if the multiplicity is greater than one.
Possihilities are:
¢ unordered - The instances form a set with no inherent ordering.
e ordered - A set of ordered instances can be scanned in order.
* Other possihilities (such as sorted) may be defined later by declaring additional keywords. As with user-
defined stereotypes, this would be a private extension supported by particular editing tools.
targetScope Specifies whether the targets are ordinary Instances or are Classifiers.
Possihilities are:
* instance - Each value contains a reference to an Instance of the target Classifier. Thisis the setting for a
normal Attribute.
» classifier - Each value contains a reference to the target Classifier itself. This represents a way to store
meta-information.

Associations

type

Designates the classifier whose instances are values of the feature. Must be a Class, Interface, or DataType.
The actual type may be a descendant of the declared type or (for an Interface) a Class that realizes the declared
type.

Tagged Values

persistence

Persistence denotes the permanence of the state of the feature, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is not destroyed when the instance is destroyed).

4.5.2.38 TemplateArgument

Reifies the relationship between a Binding and one of its arguments (a M odel Element).

Associations

binding

The Binding that owns the template argument.

model Element

The actual argument for the subject Binding.

50

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

4.5.2.39 TemplateParameter

Defines the relationship between a template (a Model Element) and its parameter (a M odel Element). A Model Element with at
least one templateParameter association is atemplate (by definition).

In the metamodel, TemplateParameter reifies the relationship between a Model Element that is atemplate and a M odel Element
that is a dummy placehol der for atemplate argument. See association templateParameter in Section 4.5.2.27,
“ModelElement,” on page 44 for details.

Associations

defaultElement An optional default value ModelElement. In case of a Binding of the template ModelElement in the reified
TemplateParameter class association, the defaultElement is used as the argument of the bound element if no
argument is supplied for the corresponding template parameter. If no argument is supplied and there is no
default value, the model isill formed.

4.5.2.40 Usage

A usageisarelationship in which one element requires another element (or set of elements) for its full implementation or
operation. The relationship isnot amere historical artifact, but an ongoing need; therefore, two elementsrelated by usage must
be in the same model.

In the metamodel, a Usage is a Dependency in which the client requires the presence of the supplier. How the client uses the
supplier, such as a class calling an operation of another class, a method having an argument of another class, and a method
from a class instantiating another class, is defined in the description of the particular Usage stereotype.

Various stereotypes of Usage are predefined, but the set is open-ended and may be added to.

Stereotypes

«call» Call is a stereotyped usage dependency whose source is an operation and whose target is an operation. The
relationship may also be subsumed to the class containing an operation, with the meaning that there exists an
operation in the class to which the dependency applies. A call dependency specifies that the source operation
or an operation in the source class invokes the target operation or an operation in the target class. A call
dependency may connect a source operation to any target operation that is within scope including, but not
limited to, operations of the enclosing classifier and operations of other visible classifiers.

«create» Create is a stereotyped usage dependency denoting that the client classifier creates instances of the supplier
classifier.

«instantiate» A stereotyped usage dependency among classifiers indicating that operations on the client create instances of
the supplier.

«send» Send is a stereotyped usage dependency whose source is an operation and whose target is a signal, specifying
that the source sends the target signal.

4.5.3 Well-Formedness Rules

The following well-formedness rules apply to the Core package.

4.5.3.1 Association

[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(rl, r2 | rl.name = r2.name implies rl = r2)

© ISO/IEC 2005 - All rights reserved 51

ISO/IEC 19501:2005(E)

(2]

(3]

[4]

At most one AssociationEnd may be an aggregation or compaosition.

self.allConnections->select (aggregation <#none)->size <= 1

If an Association has three or more AssociationEnds, then no Associ ationEnd
may be an aggregation or composition.

self.allConnections->size >=3 implies
self.allConnections->forall (aggregation = #none)

The connected Classifiers of the AssociationEnds should be included in the Namespace of the Association, or be

Classifierswith public visibility in other Namespaces to which the Namespace of the Association has “ access’
Permissions.

self.allConnections->forAll (r | self .namespace.allContents->includes (r.participant)) or

self.allConnections->forAll (r | self .namespace.allContents->excludes (r.participant)
implies

self .namespace.clientDependency->exists (d |
d.oclIsTypeOf (Permission) and
d.stereotype.name = 'access' and
d.supplier.oclAsType (Namespace) .ownedElement->select (e |

e.elementOwnership.visibility =
#ipublic) ->includes (r.participant) or

d.supplier.oclAsType (GeneralizableElement) .
allParents.oclAsType (Namespace) .ownedElement->select (e |
e. elementOwnership.visibility =
#ipublic) ->includes (r.participant) or
d.supplier.oclAsType (Package) .allImportedElements->select (e |
e. elementImport.visibility =

#public) -s>includes (r.participant)))

Additional operations

(1]

4.5.

(1]

The operation allConnections results in the set of all AssociationEnds of the Association.
allConnections : Set (AssociationEnd) ;

allConnections = self.connection
3.2 AssociationClass

The names of the AssociationEnds and the Structural Features do not overlap.
self.allConnections->forAll (ar |
self.allFeatures->forAll(£ |

f.oclIsKindOf (StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

52

self.allConnections->forAll (ar | ar.participant <> self)

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the AssociationClass, including all
connections defined by its parent (transitive closure).

allConnections : Set (AssociationEnd) ;

allConnections = self.connection->union(self.parent->select

(s | s.oclIsKindOf (Association))->collect (a : Association |
a.allConnections)) ->asSet

4.5.3.3 AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the association is navigable away from
that end.

(self.participant.oclIsKindOf (Interface) or
self.participant.oclIsKingOf (DataType)) implies
self.association.connection->select
(ae | ae <> self)->forAll (ae | ae.isNavigable = #false)

[2] An Instance may not belong by composition to more than one composite Instance.

self.aggregation = #composite implies self.multiplicity.upperbound = 1

Additional operations

[1] The operation upperbound returns the maximum upperbound value across all potential ranges of a multiplicity.

upperbound() : UnlimitedInteger;

upperbound =
self.range->exists(r : MultiplicityRange | r.upper = result) and
self.range->forall (r : MultiplicityRange | r.upper <= result)

4.5.3.4 Attribute

No extrawell-formedness rul es.
4.5.3.5 BehavioralFeature

[1] All Parameters should have a unique name.
self .parameter->forAll(pl, p2 | pl.name = p2.name implies pl = p2)
[2] Thetype of the Parameters should be included in the Namespace of the Classifier.
self.parameter->forAll(p |

self.owner.namespace.allContents->includes (p.type))

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature as the instance itself.
hasSameSignature (b : BehavioralFeature) : Boolean;
hasSameSignature (b) =

(self.name = b.name) and

© ISO/IEC 2005 - All rights reserved 53

ISO/IEC 19501:2005(E)

(2]

(self.parameter->size = b.parameter->size) and
Sequence{ 1..(self.parameter->size) }—>forAll(index : Integer |
b.parameter-s>at (index) .type =
self .parameter->at (index) .type and
b.parameter-s>at (index) .kind =
self .parameter->at (index) .kind

)

The operation matchesSignature checks if the argument has a signature that would clash with the signature of the
instance itself (and therefore must be unique). Mismatchesin kind or any differences in return parameters do not
cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;
matchesSignature (b) =
(self.name = b.name) and
(self.parameter->size = b.parameter->size) and
Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |
b.parameter->at (index) .type =
self .parameter->at (index) .type or
(b.parameter->at (index) .kind = return and
self .parameter->at (index) .kind = return)

)

4.5.3.6 Binding

(1]

(2]

(3]

[4]

(5]

54

The client Model Element must conform to the type of the supplier Model Element in a Binding.

self.client.oclIsKindOf (self.supplier)

Each argument Model Element of the supplier must have the same type (or a descendant of the type) of the
corresponding supplier parameter Model Element in a Binding.

let range : Set(Integer) = [1l..self.arguments->size()] in

range->forAll (index |

arguments-s>at (index) .oclIsKindOf (
supplier.templateParameter->at (index) .oclType

The number of arguments must equal the number of parameters.
self.arguments->size() = self.supplier.templateParameter->size ()
A Binding has one client and one supplier.

(self.client->size = 1) and (self.supplier->size = 1)

A ModelElement may participate in at most one Binding as a client.

Binding.allInstances->forAll

[bl, b2 | (bl <> b2) implies (bl.client <> b2.client)]

© ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

4.5.3.7 Class

(4

(2]

If aClassis concrete, all the Operations of the Class should have arealizing Method in the full descriptor.
not self.isAbstract implies self.allOperations->forAll (op |

self.allMethods->exists (m | m.specification->includes (op)))

A Class can only contain Classes, Associations, Generalizations, UseCases, Constraints, Dependencies,
Collaborations, DataTypes, and Interfaces as a Namespace.

self.allContents->forAll->(c |
c.oclIsKindOf (Class) or
c.oclIsKindOf (Association) or

c.oclIsKindOf (Generalization) or

c.oclIsKindOf (UseCase) or
c.oclIsKindOf (Constraint) or
c.oclIsKindOf (Dependency) or

c.oclIsKindOf (Collaboration) or
c.oclIsKindOf (DataType) or

c.oclIsKindOf (Interface)

4.5.3.8 Classifier

(1

(2]

(3]

[4]

No Behavioral Feature of the same kind may match the same signature in a Classifier.

self.feature->forAll(f, g |

(

(
(f.oclIsKindOf (Operation) and g.oclIsKindOf (Operation)) or
(f.oclIsKindOf (Method) and g.oclIsKindOf (Method)) or
(f.oclIsKindOf (Reception) and g.oclIsKindOf (Reception))

) and

f.oclAsType (BehavioralFeature) .matchesSignature (g)

)

implies f = g)

No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->foraAll (p, q |

p.name = g.name implies p = q)

No opposite AssociationEnds may have the same name within a Classifier.

self.allOppositeAssociationEnds->forAll (p, g | p.name = g.name implies p = q)

The name of an Attribute may not be the same as the name of an opposite AssociationEnd or a M odel Element
contained in the Classifier.

© ISO/IEC 2005 - All rights reserved 55

ISO/IEC 19501:2005(E)

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |
not self.allOppositeAssociationEnds->union (self.allContents)->collect (g |

g.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an Attribute or a M odel Element
contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |
not self.allAttributes->union (self.allContents)->collect (g |

g.name)->includes (o.name))

[6] For each Operation in an specification realized by the Classifier, the Classifier must have a matching Operation.
self.specification.allOperations->forAll (interOp |

self.allOperations->exists(op | op.hasMatchingSignature (interOp)))

[7] All of the generalizationsin the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | gl.discriminator = g2.discriminator)

[8] Discriminator names must be distinct from attribute names and opposite AssociationEnd names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name)) ->isEmpty

Additional operations

[1] The operation allFeatures resultsin a Set containing all Features of the Classifier itself and all itsinherited Features.
allFeatures : Set (Feature) ;
allFeatures = self.feature->union

self .parent.oclAsType (Classifier) .allFeatures)

[2] The operation allOperations results in a Set containing all Operations of the Classifier itself and all itsinherited
Operations.

allOperations : Set (Operation) ;
allOperations = self.allFeatures->select (f | f.oclIsKindOf (Operation))

[3] The operation allMethods resultsin a Set containing all Methods of the Classifier itself and al itsinherited Methods.
allMethods : set (Method) ;

allMethods = self.allFeatures->select (f | f.oclIsKindOf (Method))

[4] The operation all Attributes results in a Set containing all Attributes of the Classifier itself and all itsinherited
Attributes.

allAttributes : set (Attribute) ;

allAttributes = self.allFeatures->select (f | f.oclIsKindOf (Attribute))

[5] The operation associations resultsin a Set containing all Associations of the Classifier itself.
associations : set (Association) ;

associations = self.association.association->asSet

56 © ISO/IEC 2005 - All rights reserved

ISO/IEC 19501:2005(E)

[6] The operation allAssociations resultsin a Set containing all Associations of the Classifier itself and all its inherited

Associations.
allAssociations : set (Association) ;
allAssociations = self.associations->union (

self .parent.oclAsType (Classifier) .allAssociations)

[7] The operation oppositeAssociationEnds resultsin a set of al AssociationEnds that are opposite to the Classifier.
oppositeAssociationEnds : Set (AssociationEnd) ;
oppositeAssociationEnds =
self.associations->select (a | a.connection-s>select (ae |
ae.participant = self).size = 1)->collect (a |

a.connection->

select (ae | ae.participant <> self))->union (
self.associations->select (a | a.connection->select (ae |
ae.participant = self).size > 1)->collect (a |

a.connection))

[8] The operation allOppositeAssociationEnds resultsin aset of all AssociationEnds, including the inherited ones, that
are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd) ;
allOppositeAssociationEnds = self.oppositeAssociationEnds->union (
self .parent.allOppositeAssociationEnds)
[9] The operation specification yields the set of Classifiers that the current Classifier realizes.
specification: Set (Classifier)

specification = self.clientDependency->

select (d |
d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realization"

and d.supplier.oclIsKindOf (Classifier))
.supplier.oclAsType (Classifier)

[10] The operation allContents returns a Set containing all Model Elements contained in the Classifier together with the
contents inherited from its parents.

allContents : Set (ModelElement) ;

allContents = self.contents->union(

self.parent.allContents->select (e |
e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators resultsin a Set containing al Discriminators of the Generalizations from which the
Classifier is descended itself and all itsinherited Festures.

allDiscriminators : Set (Name) ;

© ISO/IEC 2005 - All rights reserved 57

ISO/IEC 19501:2005(E)

allDiscriminators = self.generalization.discriminator->union (

self .parent.oclAsType (Classifier) .allDiscriminators)

4.5.3.9 Comment

No extrawell-formedness rules.
4.5.3.10 Component

[1] A Component may only contain other Components in its namespace.

self.allContents-forAll(c | c.oclIsKindOf (Component))

[2] A Component does not have any Features.

self.feature->isEmpty

[3] A Component may only have as residents DataTypes, Interfaces, Classes, Associations, Dependencies, Constraints,
Signals, DataValues, and Objects.

self.allResidentElements->forAll (re |
re.oclIsKindOf (DataType) or
re.oclIsKindOf (Interface) or
re.oclIsKindOf (Class) or
re.oclIsKindOf (Association) or
re.oclIsKindOf (Dependency) or
re.oclIsKindOf (Constraint) or
re.oclIsKindOf (Signal) or
re.oclIsKindOf (DataValue) or

re.oclIsKindOf (Object))

Additional operations

[1] The operation allResidentElements resultsin a Set containing al Model Elements resident in a Component or one of
its ancestors.

allResidentElements : set (ModelElement)

allResidentElements = self.resident->union/(

self .parent.oclAsType (Component) .allResidentElements->select (re |
re.elementResidence.visibility = #public or

re.elementResidence.visibility = #protected))
4.5.3.11 Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)
45.3.12 DataType
[1] A DataType can only contain Operations, which all must be queries.

58 © ISO/IEC 2005 - All rights reserved

self.allFeatures->forAll (f |

ISO/IEC 19501:2005(E)

f.oclIsKindOf (Operation) and f.oclAsType (Operation) .isQuery)

[2] A DataType cannot contain any other ModelElements.

self.allContents->isEmpty
4.5.3.13 Dependency
No extrawell-formedness rules.
4.5.3.14 Element
No extrawell-formedness rules.
4.5.3.15 ElementOwnership
No additional well-formedness rules.
4.5.3.16 ElementResidence
No additional well-formedness rules.
4.5.3.17 Enumeration
No additional well-formedness rules.
4.5.3.18 EnumerationLiteral
No additional well-formedness rules.
4.5.3.19 Feature
No extrawell-formedness rules.
4.5.3.20 GeneralizableElement

[1] A root cannot have any Generalizations.

self.isRoot implies self.generalization->isEmpty

[2] No GeneralizableElement can have a parent Generalization to an element that is aleaf.

self.parent->forAll (s | not s.isLeaf)

[3] Circular inheritanceis not allowed.

not self.allParents->includes(self)

[4] The parent must be included in the Namespace of the GeneralizableElement.

self.generalization->forAll (g |

self .namespace.allContents->includes (g.parent)

[5] A GeneralizableElement may only be achild of GeneralizableElement of the same kind.

self.generalization.parent->forAll (p | self.oclIsKindOf (p))

© ISO/IEC 2005 - All rights reserved

59

ISO/IEC 19501:2005(E)

Additional Operations
[1] The operation parent returns a Set containing all direct parents.
parent : Set (GeneralizableElement) ;

parent = self.generalization.parent

[2] The operation allParents returns a Set containing all the Generalizable Elements inherited by this
GeneralizableElement (the transitive closure), excluding the GeneralizableElement itself.

allParents : Set (GeneralizableElement) ;
allParents = self.parent->union(self.parent.allParents)

4.5.3.21 Generalization

No extrawell-formedness rules.
4.5.3.22 ImplementationClass (stereotype of Class)

[1] All direct instances of an implementation class must not have any other Classifiers that are implementation classes.
self.instance.forall(i | i.classifier.forall(c |

c.stereotype.name = "implementationClass" implies c = self))
[2] A parent of animplementation class must be an implementation class.

self .parent->forAll (stereotype.name="implementationClass")

4.5.3.23 Interface

[1] AnInterface can only contain Operations.
self.allFeatures->forAll (£ |

f.oclIsKindOf (Operation) or f.oclIsKindOf (Reception))

[2] AnInterface cannot contain any Model Elements.

self.allContents->isEmpty

[3] All Featuresdefined in an Interface are public.
self.allFeatures->forAll (£ | f.visibility = #public)

4.5.3.24 Method

[1] If therealized Operation is a query, then so is the Method.
self.specification->isQuery implies self.isQuery

[2] The signature of the Method should be the same as the signature of the realized Operation.

self.hasSameSignature (self. specification)
[3] Thevishility of the Method should be the same as for the realized Operation.
self.visibility = self.specification.visibility
[4] Therealized Operation must be afeature (possibly inherited) of the same Classifier as the Method.

self.owner.allOperations->includes (self.specification)

60 © ISO/IEC 2005 - All rights reserved

(5]

6]

ISO/IEC 19501:2005(E)

If the realized Operation has been overridden one or more timesin the ancestors of the owner of the Method, then the
Method must realize the latest overriding (that is, all other Operations with the same signature must be owned by
ancestors of the owner of the realized Operation).

self.specification.owner.allOperations->includesAll (
(self.owner.allOperations->select (op |
self .hasSameSignature (op)))

There may be at most one method for a given classifier (as owner of the method) and operation (as specification of
the method) pair.

self.owner.allMethods->select (operation = self.operation)->size = 1

4.5.3.25 ModelElement

That part of the model owned by atemplate is not subject to all well-formednessrules. A templateis not directly usablein a
well formed model. The results of binding atemplate are subject to well-formedness rules.

(not expressed in OCL)

Additional operations

[1]

(2]

(3]

[4]

(3]

The operation supplier resultsin a Set containing all direct suppliers of the Model Element.
supplier : Set (ModelElement) ;

supplier = self.clientDependency.supplier

The operation all Suppliers resultsin a Set containing all the M odel Elements that are suppliers of this Model Element,
including the suppliers of these Model Elements. Thisis the transitive closure.

allSuppliers : Set (ModelElement) ;
allSuppliers = self.supplier->union(self.supplier.allSuppliers)
The operation “model” resultsin the set of Models to which the Model Element belongs.
model : Set (Model) ;
model = self.namespace->union(self.namespace.allSurroundingNamespaces)
->select (ns|
ns.oclIsKindOf (Model))
A ModelElement is atemplate when it has parameters.
isTemplate : Boolean;
isTemplate = (self.templateParameter->notEmpty)
A ModelElement is an instantiated template when it is related to a template by a Binding relationship.
isInstantiated : Boolean;

isInstantiated = self.clientDependency->select (
oclIsKindOf (Binding)) - >notEmpty

[6] The templateArguments are the arguments of an instantiated template, which substitute for template parameters.

templateArguments : Set (ModelElement) ;

© ISO/IEC 2005 - All rights reserved 61

ISO/IEC 19501:2005(E)

templateArguments = self.clientDependency->

select (oclIsKindOf (Binding)) .oclAsType (Binding) .argument
4.5.3.26 Namespace

[1] If acontained element that is not an Association or Generalization has a name, then the name must be uniquein the
Namespace.

self.allContents->forAll (mel, me2 : ModelElement |
(not mel.oclIsKindOf (Association) and not me2.oclIsKindOf (Association) and
mel.name <> ‘'’ and me2.name <> ‘'’ and mel.name = me2.name
) implies
mel = me2)
[2] All Associations must have a unique combination of name and associated Classifiers in the Namespace.
self.allContents -> select (oclIsKindOf (Association))->
forAll(al, a2 |
al.name = a2.name and
al.connection.participant = a2.connection.participant
implies al = a2)
Additional operations
[1] The operation contents resultsin a Set containing all M odel Elements contained by the Namespace.
contents : Set (ModelElement)
contents = self.ownedElement -> union(self.namespace, contents)
[2] The operation allContents resultsin a Set containing all M odel Elements contained by the Namespace.
allContents : Set (ModelElement) ;
allContents = self.contents
[3] The operation allVisibleElements results in a Set containing all Model Elements visible outside of the Namespace.
allvisibleElements : Set (ModelElement)
allvisibleElements = self.allContents -> select(e |
e.elementOwnership.visibility = #public)
[4] The operation all SurroundingNamespaces results in a Set containing all surrounding Namespaces.
allSurroundingNamespaces : Set (Namespace)
allSurroundingNamespaces =

self.namespace->union(self.namespace.allSurroundingNamespaces)

4.5.3.27 Node

No extra well-formedness rules.

4.5.3.28 Operation

No additional well-formedness rules.

62 © ISO/IEC 2005 - All rights reserved

4.5.3.29 Parameter

No additional well-formedness rules.

4.5.3.30 PresentationElement

No extrawell-formedness rul es.

4.5.3.31 Primitive

No additional well-formedness rules.

4.5.3.32 StructuralFeature

[1]

(2]

The connected type should be included in the owner’s Namespace.
self.owner.namespace.allContents->includes (self.type)

The type of a Structural Feature must be a Class, DataType, or Interface.

self.type.oclIsKindOf (Class) or
self.type.oclIsKindOf (DataType) or
self.type.oclIsKindOf (Interface)

4.5.3.33 Trace

ISO/IEC 19501:2005(E)

A trace is an Abstraction with the «trace» stereotype. These are the additional constraints due to the stereotype.

[1]

(2]

(3]

[4]

The client Model Elements of a Trace must all be from the same Model.

self.client->forAll (el, e2 | el.model = e2.model)
The supplier ModelElements of a Trace must all be from the same Model.
self.supplier->forAll(el, e2 | el.model = e2.model)

The client and supplier Model Elements must be from two different Models.

self.client.model <> self.supplier.model

The client and supplier Model Elements must all be from models of the same system.

self.client.model.intersection(self.supplier.model) <> Set{}

4.5.3.34 Type (stereotype of Class)

(4

(2]

A Type may not have any Methods.

not self.feature->exists (oclIsKindOf (Method))

The parent of atype must be atype.

self .parent->forAll (stereotype.name = "type")

45.3.35 Usage

No extrawell-formedness rul es.

4.5.4 Detailed Semantics

This section provides a description of the dynamic semantics of the elementsin the Core. It is structured based on the major

© ISO/IEC 2005 - All rights reserved

63

ISO/IEC 19501:2005(E)

constructs in the core, such asinterface, class, and association.

4.5.4.1 Association

An association declares a connection (link) between instances of the associated classifiers (e.g., classes). It consists of at least
two association ends, each specifying a connected classifier and a set of properties that must be fulfilled for the relationship to
be valid. The multiplicity property of an association end specifies how many instances of the classifier at a given end (the one
bearing the multiplicity value) may be associated with a single instance of the classifier at the other end. A multiplicity isa
range of non-negative integers. The association end also states whether or not the connection may be traversed towards the
instance playing that role in the connection (isNavigable), for instance, if the instanceis directly reachable viathe association.
An association-end also specifies whether or not an instance playing that role in a connection may be replaced by another
instance.

It may state that
e no constraints exist (changeable),
¢ thelink cannot be modified once it has been initialized (frozen), or
« new links of the association may be added but not removed or atered (addOnly).

These constraints do not affect the modifiability of the objects themselves that are attached to the links. Moreover, the
classifier, or (achild of) the classifier itself. The ordering attribute of association-end states that if the instances related to a
single instance at the other end have an ordering that must be preserved, the order of insertion of new links must be specified
by operations that add or modify links. Note that sorting is a performance optimization and is not an example of alogically
ordered association, because the ordering information in a sort does not add any information.

In UML, Associations can be of three different kinds: 1) ordinary association, 2) composite aggregate, and 3) shareable
aggregate. Since the aggregate construct can have several different meanings depending on the application area, UML givesa
more precise meaning to two of these constructs; that is, association and composite aggregate and |eaves the shareable
aggregate more loosely defined in between.

An association may represent an aggregation; that is, awhole/part relationship. In this case, the association-end attached to the
whole element is designated, and the other association