An OMG® Unified Modeling Language® Publication

s ®
— - s - =
= == == UNIFIED
; - ! | — =
‘5:%—‘ g-_i%"i,///ﬂ" MODELING

’ LANGUAGE
OBJECT MANAGEMENT GROUP

™

OMG?® Unified Modeling Language® (OMG UML®)

Version 2.5.1 (with change bars)

OMG Document Number: formal/2017-12-06
Date: December 2017

Normative Reference: https :”WWW.Omg.Org/SpeC/U ML/2.5.1

Machine readable files:

Normative: https://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi
https://Iwww.omg.org/spec/UML/20161101/UML.xmi
https://Iwww.omg.org/spec/UML/20161101/StandardProfile.xmi
https://Iwww.omg.org/spec/UML/20161101/UMLDI.xmi

http://www.omg.org/spec/UML/20161101/UMLDI.xmi
http://www.omg.org/spec/UML/20161101/StandardProfile.xmi
http://www.omg.org/spec/UML/20161101/UML.xmi
http://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi
http://www.omg.org/spec/UML/20161101
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1

Copyright © 2009-2013 88Solutions

Copyright © 2009-2010 Artisan Software Tools

Copyright © 2001-2013 Adaptive

Copyright © 2009-2010 Armstrong Process Group, Inc.

Copyright © 2001-2010 Alcatel

Copyright © 2001-2010 Borland Software Corporation

Copyright © 2009-2010 Commissariat a I'Energie Atomique
Copyright © 2001-2010 Computer Associates International, Inc.
Copyright © 2009-2010 Computer Sciences Corporation

Copyright © 2009-2013 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2009-2013 Deere & Company

Copyright © 2009-2013 European Aeronautic Defence and Space Company
Copyright © 2001-2013 Fujitsu

Copyright © 2001-2010 Hewlett-Packard Company

Copyright © 2001-2010 I-Logix Inc.

Copyright © 2001-2013 International Business Machines Corporation
Copyright © 2001-2010 IONA Technologies

Copyright © 2013 Ivar Jacobson International SA

Copyright © 2001-2010 Kabira Technologies, Inc.

Copyright © 2009-2010 Lockheed Martin

Copyright © 2001-2010 MEGA International

Copyright © 2009-2010 Mentor Graphics Corporation

Copyright © 2009-2013 Microsoft Corporation

Copyright © 2001-2010 Motorola, Inc.

Copyright © 2009-2010 National Aeronautics and Space Administration
Copyright © 2009-2013 No Magic, Inc.

Copyright © 1997-2017 Object Management Group, Inc

Copyright © 2009-2010 oose Innovative Informatik GmbH
Copyright © 2001-2010 Oracle Corporation

Copyright © 2009-2010 Oslo Software, Inc.

Copyright © 2009-2010 Purdue University

Copyright © 2012-2013 Simula Research Laboratory

Copyright © 2009-2010 SINTEF

Copyright © 2001-2010 SOFTEAM

Copyright © 2009-2013 Sparx Systems Pty Ltd

Copyright © 2001-2010 Telefonaktiebolaget LM Ericsson

Copyright © 2009-2010 THALES

Copyright © 2001-2013 Unisys

Copyright © 2001-2010 X-Change Technologies Group, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

ii Unified Modeling Language 2.5.1

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

This specification is published under the “RF on Limited Terms” IPR mode listed in the OMG Intellectual Property
Rights Policy Statement, OMG Document ipr/12-09-02, available at: http://doc.omg.org/ipr/12-09-02

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48

Unified Modeling Language 2.5.1 iii

C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

iv Unified Modeling Language 2.5.1

http://www.omg.org/legal/tm_list.htm

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Unified Modeling Language 2.5.1

Table of Contents

o S Tole] o 1< Y T T T T T T T 1
2 CONTOIMIAN . ittt ittt ettt ettt ettt ettt te e ee e eee ettt teeeeenteettenttenteeaeenatietienreens 3
3 NOrmMativVe REfEIENCES. ... ieeiiee ettt ettt e et e tee e eeeeeeteenteeenserenaterenaserenaaees 5
4 Terms and DefinitioNS. ...t 7
5 Notational CoONVENtIONS. ...ttt ettt ettt ettt tee ettt teeateeteeateeateeateeneeeaeieaerenseens 9
5.1 Key words for Requirement Statements.ttt ta et aaeaaeans 9
5.2 Annotations on Example DiaQramS . ..o, 9

6 Additional INformMatioN.ttt ettt ettt e e et teeterteiariearieaaeraarenss 11
6.1 Specification SimpPlification..........ooieiiiiiie e, 11
6.2 Architectural AlIGNMENt. .. .ttt ettt et ettt ettt st ettt sttte st seeaseseeaaenrens 12
6.3 Onthe Semantics Of UML ..o, 12
6.3.1 Models and What TheY MOAEL.ieeiiiiii ittt e ettt ettt ieeeeieneteeenarereaaerensas 12

6.3.2 SEMANLIC ATBAS. ciieeeiiieiiieeiieeeeeeeeeeeeeee ettt eeeeenn, 13

6.3.3 Stable and Transient Behavioral SemantiCS.........u.eiiiiiieeiiiiiiiieiiiiiiiieeeeeeiee e 15

6.4 How to Read this SpecifiCation........oooueiiuiieiiiiiiiiiiiieiiiiieiiie e 16
6.4.1 SPECIfiCatiON FOMMAL. . ettt ettt ettt ettt s et eeteeeeeeeterenntereneereneeeenasaeens 16

6.4.2 Diagram FOrmMat.......iiieeeiiieeiiiieiiiieiiieeiiee et 18

6.5 AcCKNOWIEAQEMENES ..t 19
6.5.1 P riMArY AU O S, .. ittt et ettt ettt eee e ee e tete e eeteeeeeeneterentereteerenarennaaenns 19

6.5.2 TeCNNICAl SUPPOIt. ccieeiieeiiieeiieee ettt eeeiis 19

6.5.3 RN (SN =) £ T T T 19

6.5.4 SUDMIEIS . ittt eee i eeaeees 20

7 COMMON StrUCHUIE . ettt ettt ettt ettt et tee et teenteeteeeaeeeaseeaeenaaeeaaeens 21
T SUMMIAIY ettt ettt ettt ettt ettt et ieieeeeenn 21
T2 RO et iieaeeeen, 21
7.2.1 SUI I A Y . ettt ettt ettt ettt ettt esee e eeee e tet e eete e ees e eee e ees e eeesentetenasatensesenstarennaarenns 21

7.2.2 A DS A S N A, ittt ittt ittt ettt et ettt ettt ettt et tee ettt teetetetetteteaetrenierentereaaiarenas 21

7.2.3 S OMANTICS ettt ettt i e, 22

7.2.4 [N [0) 7= 1 (T o T T T T 22

7.2.5 EXAMIPDIES ot 22

.3 T OMPIAES ittt iee e, 22
7.31 SUMIMIAIY .ottt ettt ettt ettt et e e e eeiieenan 22

7.3.2 ADSIraCt SYNTAX. . uuuuiiiiieeiiiiiiieee et eeeeeeeen 23

7.3.3 SEMANEICS. ittt ieeeieann, 24

7.34 [N [0) 7= 1T o T T T O T T T T T T T T 26

4 NI O S DA S . . ittt ittt ettt ettt ettt ettt sttt te it teteteeattasetesteiisitateetesciieieareaceseeseares 27
7.41 SUMMIAIY . ittt ettt ettt et ettt e et ee e i eeieraenae 27

7.4.2 ADSrACt SYNTAX. ceuuiiiiiiiiiiie it eeeeis 27

7.4.3 SEMANTICS. ittt eeeieenn, 27

7.4.4 N[0 7= 1 ([0 o 29

vi Unified Modeling Language 2.5.1

7.4.5 EXAMIDIES it 30

7.5 Types and MURIPICIY.iiiuuiiiiiiiiiieiiiie et 32
7.5.1 SUMIMIAIY ..ottt ettt ettt ettt e ettt et e et e et eeeeetereeeeraearaaananns 32
7.5.2 AbStract SYNtaX......eeiieeeeiiiiiiiie e 33
7.5.3 ST 00 =101 (o T T 33
754 NOTAEION. Lottt e e aeeaen 34
7.5.5 EXAMPIES. .ttt e e 35

7.6 CONSraiNtS..cuuuuiiiiieei i 35
7.6.1 SUMIMAIY ..ottt ettt ettt ettt e e e 35
7.6.2 ADStract SYNtAX....uuuueieiiiiiiiiiiiiieeee e 36
7.6.3 ST 0 0= 110 T T 36
7.6.4 [N (01 7= 1[0 o T T T S s ST TSP TP TTTTT 36
7.6.5 EXAMPIES. ittt e e aaeaan 37

VAR B =Y o1=Ta o IS aTo] 1= S T U T T T T 38
7.71 S0 L0010 0= | T 38
7.7.2 Abstract SyntaX........ooooviiiiiiiiiiiiiiii i 38
7.7.3 SEMANTICS. oot e e et 38
7.7.4 [N [0 =1 110 o T T 39
7.7.5 | e=10010) [T T 39

7.8 Classifier DeSCrHPtONS.iiiiiieeiiiiiiiiei e 40
7.8.1 ADbStraction [ClaSS]......oouiiiiieeeeiiiieie ittt ettt eeeeeeeeeeees 40
7.8.2 [070] 10T 00 =101 8 [OF F= 1] O T 40
7.8.3 (070] 8151 17=11 01 0 (04 F= 11 I U T 41
7.8.4 DependencCy [ClaSS].....ccuiiiiieeeeetiieeie ettt e e et et e e et e e e e e eeeeeeeaeeeees 42
7.8.5 DirectedRelationship [Abstract ClassS]..........ceuvuuuruuiiiiiiiiiiiiiiiiieeeiiieieeeeee e 42
7.8.6 Element [Abstract ClassS]......oouveuueeiiiiiiiieiiiiiiee e 43
7.8.7 Elementimport [Class]. . .ouuu.iiiiieiieiiiiieee et 44
7.8.8 MultiplicityElement [AbStract ClasS]......uuuuueiiiieeeeiiiiieeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaenn, 45
7.8.9 NamedElement [AbStract Class)].......oouueiiiiiiiiiiiiiieeieieeee e eeeeeeeeeeeeeeeees 47
7.8.10 Namespace [Abstract ClasS]........ooooviiiiieieeeiieiiieieiie e eeeeeeeeeeeeennn, 50
7.8.11 Packagelmport [ClaSS].....oouuiieeeeeeeeeiieei ettt ieeeeeeeeeeees 52
7.8.12 PackageableElement [Abstract ClassS]...........uuiiiiieeeiiiiiiiiiieiiiiiiiieieeieeieee e 52
7.8.13 ParameterableElement [Abstract ClassS].......ooeeveeeeiiiiiiiiieiiiiiiiiieeeeiiiieeeeeeeeeeeeeeeeeeee 53
7.8.14 Realization [ClasS]......eeiii ittt 54
7.8.15 Relationship [Abstract ClasS].......eeeeiiiiiiiiiiiiiiiiieiiieeeeee e 54
7.8.16 TemplateBinding [ClasS]....oooviiieeeeeeeieiieieiiee e, 55
7.8.17 TemplateParameter [ClassS]......oovvuuuniiiiieiieieiiiiiiee et 55
7.8.18 TemplateParameterSubstitution [Class]..........ueeeeeiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeen 56
7.8.19 TemplateSignature [ClasSS] . uu.. .ot eeeeeeeeeeereeennn, 57
7.8.20 TemplateableElement [Abstract ClassS].......ooeiveueuiiiiiiiiiiiiiiiieeeiieiee e 58
7.8.21 Type [ADStract ClasSS]....uuuueeueueeuieieieieie e ettt eeeeeeeeeeeeeeeeeens 59
7.8.22 TypedElement [ADStract ClasS].....ouuiiiieeeeeieeeiiieiiieeeeeeeieeeeeeeeee e, 59
7.8.23 USAQE [ClaSS]iiiieeeeeeeeennieiiieeeeeee et e ettt e e e et e e e e 60
7.8.24 VisibilityKind [Enumeration]..........cooueeuuuieiiiiiiiieiiiiiiee e 60

7.9 Association DeSCriPtIONS . .uuieeiieiieiiiiiiiie e eeeieeeen, 61
7.91 A_actual_templateParameterSubstitution [Association].........cooeeeeiiieiieiiiiiiiiiiiiinens 61
7.9.2 A_annotatedElement_comment [Association]..........eeeeeeeeeiiiiiiiiiiiiiiiiii 61
7.9.3 A_clientDependency_client [ASSOCIAtioN]...........ueiiiieuiiiiiiiiiieiiiiiiieie e, 61
794 A_constrainedElement_constraint [ASsoCIiation]..........oeveiieeviiiiiiiiiieiiiiiiiiieeiiiiieeieeiin 61

Unified Modeling Language 2.5.1 vii

7.9.5 A_default_templateParameter [Association]..........ccvveeiiiiiciiiiiiiiiiiiiiiiiiiiii 61
7.9.6 A_elementimport_importingNamespace [Association]...........ceueeeiiiieuueeiiiiiiiieieiiiiiiieeeeenee. 62
7.9.7 A_formal_templateParameterSubstitution [Association].............ooevveeeeeveveiiiiiiiiiieeeeeeeeeeene. 62
7.9.8 A_importedElement import [Association]..........ceeeeeeiiiiicii 62
7.9.9 A_importedMember _namespace [Association]............ccccccniininenneenniiiiii 62
7.9.10 A_importedPackage packagelmport [Association].........c.ceuueeieiiiiiiiiiiiiiiiiieiiiiiiiieieeiieian, 63
7.9.11 A_lowerValue _owninglLower [ASSOCIAtioN].......uiieeuiiieiiiiiiiieeeiieeeeeeeeeeeeeeeeeeeeiieeeenn 63
7.9.12 A_mapping_abstraction [Association]..........ccuueeiiiiiiiiiiiiiiiieiii e 63
7.9.13 A _member_memberNamespace [Association].......coueeeeeeiiiieeriiiiiiiiiieieiiiiiieeeeieeieeeeeeee, 63
7.9.14 A_nameExpression_namedElement [ASSOCIatioN].......uueeeieiiiiiiiiiiiiiieiiiiiiiiiieieieieeeeeeeeee 63
7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]..............c.cccevvune...... 64
7.9.16 A_ownedComment_owningElement [Association].............ooeeveveveiiieiiiiiiieiiiiiiiieiinnnn 64
7.9.17 A_ownedDefault_templateParameter [AsSOCIation]..........uueeeeeieiieiiiiiiiiiiiieiiiiiieieeeeeeeeen 64
7.9.18 A_ownedElement_owner [ASSOCIatioN]........eeeeiiceeeieiiiiiiiiiiiiiiiiii 64
7.9.19 A_ownedMember_namespace [AsSSOCIation]......cocouuuveveeeeeiiiiiiiiiiiiiiiiiiiiieieeeeeeee 65
7.9.20 A_ownedParameter_signature [Association]............oeveeveeueiiiiiiiiiiiiiiiiiiiiieeeiiiiieieeiiieee 65
7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association].......................... 65
7.9.22 A_ownedRule context [Association]..........eeeeeeeiiiei 65
7.9.23 A_ownedTemplateSignature_template [Association]............ccooeeveeieeeeeeiiiieeiiiiiiiiiiiieeeeeennn. . 65
7.9.24 A_packagelmport_importingNamespace [Association]...........eeeeeeeeeeeiiiiieieeiiiiiiiieieeeieenan, 66
7.9.25 A_parameterSubstitution_templateBinding [Association]..........ooeeeeiiiiiiieeeeeiiiiiiiiieieeeeeen 66
7.9.26 A_parameter_templateSignature [ASSOCIation]..........eeeeeeieiiiieiiiiiiiiiiiiiiiiieiieeeieieeeeeeeeeeee 66
7.9.27 A_parameteredElement_templateParameter [Association]..........ceeeeeeeeeeeeiiiiiiiieiiiiiiinnnnn, 66
7.9.28 A_relatedElement_relationship [Association]...........ooeeeeeeeiiiiiiieiiiiiiiiiiiiiiii 67
7.9.29 A_signature_templateBinding [Association]...........oeeeviiieeeiiiiiiiniiiiii 67
7.9.30 A_source_directedRelationship [ASSOCIAtioN].......eeeeieieeiiiiiiiiiiiiiiiiiiiiieiieeeeeeeieeiiieiiiiee 67
7.9.31 A_specification_owningConstraint [Association]..............eeeiieiiiiiieiiiiiiieiiiiiiiiieieieieeeeeeeen. 67
7.9.32 A_supplier_supplierDependency [Association]...........eeeeeeeeeeeeeiiiiiiiiiiiiiieeeeeeeeee 67
7.9.33 A_target directedRelationship [Association]...........oooeeeeeieiiinneieiiiiiiiiieieiiieiiii 68
7.9.34 A_templateBinding_boundElement [ASSOCIAtioN].....uuuveeueieieiiieiiiiiiiieiiiiiiiieieiieieeeeeeeeee 68
7.9.35 A_type typedElement [ASSOCIAtION]. . .uuuuiiiiieeeiiiiieeeieiieeeeeeee e 68
7.9.36 A_upperValue_owningUpper [ASSOCIatioN].....ceuuuiiiiieeiiiiiiiiieieiiiiieeeeeeeeee e 68

8 ValUBS...ouiieeiiii ittt e eaeanne, 69
8.1 SUMMAIY . cuuiiiiii ettt ettt eiees 69
A N1 (=) r- | T 69
8.2.1 ST L0010 0= o T 69
8.2.2 ADSEract SYNtAX....uuuuieiiiiiii i 69
8.2.3 SEMANTICS. oo i ittt e e ettt 69
8.2.4 (o) =110 o P T T 70
oI B = 4 0 (= X-1o] (0] 8 1 T 70
8.3.1 SUMIMIAIY .ottt e ettt ettt ettt ettt e et e et eeeeeteteeeeeaaararnanes 70
8.3.2 ADSIract SYNEAX..uuu. i eeaeeees 71
8.3.3 SEMANTICS. i eeeuee ittt 71
8.3.4 NOTAEION. Lottt aeeeas 72
8.3.5 | e=10010) [T T 73

o I 10 01 73
8.4.1 SUMIMIANY ..ottt ettt et ettt e e et ettt et et e et eeeeeeeeeeeeeaattaraannns 73
8.4.2 ADStract SYNtAX.....uuueiiiiiiiii it 74
8.4.3 ST 0 0= 0110 T O 74
viii Unified Modeling Language 2.5.1

8.4.4 [0 =110 o T T 75
8.4.5 EXAMDIES. ittt e eaeaan 76
8.5 INOIVAIS. ittt eeeeenn, 76
8.5.1 ST L0010 0= o 76
8.5.2 AbStract SYNtaX......oiiieeeueiiiiiiiie e 77
8.5.3 SEMANTICS. oo ittt e e e et e e 77
854 NOLAEION. .ottt 78
855 | e=10010) [T T T 78
8.6 Classifier DeSCriptiONS. ..u.iieee i 79
8.6.1 DUration [ClasS].....couuiiieeeeeeitiieie e ee ettt et e ettt ettt e e e et e eeeeeeeeaeeaeaaees 79
8.6.2 DurationConstraint [ClasSS] iuieeee i eeeeeeeeeeeeieeeeeeeeeeennn, 79
8.6.3 DurationInterval [ClaSS]........iiiiieeieiiiiiiiee et 80
8.6.4 DurationObservation [ClaSS].........eieiiiiiiiiiiiiiieeieieieeeee e eeeeeeee et eiieieeeeeeeeeeeeeeeeeeeeeeeees 80
8.6.5 EXPreSSION [ClaSS]..uuuu ittt ettt 81
8.6.6 INterval [ClaSS]. . uuue ittt eeeeeeas 82
8.6.7 IntervalConstraint [ClasS].......ouuuveeeeeeieiiiiieii e 82
8.6.8 LiteralBoolean [ClaSS].......ooiiiiiiiiiiieeeeeieee ettt 83
8.6.9 Literallnteger [ClaSS].. ... e it e et 83
8.6.10 LiteralNUll [ClasSS].uu.. i iiieeeiiiiiieie ettt ettt e e et e e e et eeeeeeeeeees 84
8.6.11 LiteralReal [ClasS].....uueeeeeuueeuuiieeiiii e eeiei ettt ettt eee ettt eeeeeeeeeieeeeeeeeeeeneenns 84
8.6.12 LiteralSpecification [Abstract ClassS]..........uuuuuuueiiieiiiiiiiiiiiiiiieiiiieiieeeie e, 85
8.6.13 LiteralString [ClasSS]...uuuueeeeeeeeieeiie et eeeeeeeeeeeeeeeaeenns 85
8.6.14 LiteralUnlimitedNatural [ClasSsS].......ooveuuuiiiiieiiiiiiiiiiiei e e 86
8.6.15 Observation [AbStract ClasS].....uuu.iiiieeeeiiiiiiiieeieeeee e eeeeeeiaeeens 86
8.6.16 OpaqUEEXPresSSiON [ClaSS]...ooiiiiiiiiiiieeeeeeeee ettt eeeeee et 86
8.6.17 StriNngEXPresSion [ClaSS]..... .. iiiiiiiiieeieeeeeee et 88
8.6.18 TimeConstraint [ClasS]........couiiiieeeeeiiieieeieiee et 89
8.6.19 TiMEEXPresSion [ClasSS]..uuuuuuueeeeeeeeeieiiiiiiii e ee e e eeeeeeeeeeeeeees 90
8.6.20 Timelnterval [ClasS]. ... i iiiee ittt eeeaanne 90
8.6.21 TimeObservation [ClasS].........oeveeuuueuieiiiieeee ettt eeieeeeeeeeenns, 91
8.6.22 ValueSpecification [Abstract ClassS].........uuuueuueeiiiiiiiiiiiiiiiiieeciiiiieeeieeeeeeeeeeeeeeeeeeinn, 91
8.7 Association DeSCriPtIONS. ..uu.ieeiieiiiiiiiiiei i eeeen 92
8.7.1 A_behavior_opaqueExpression [ASSOCIatioN].........eeeieveeeeiiiiiiieiiiiiiiieiiiiiee 92
8.7.2 A_event_durationObservation [ASSOCIation].........ocoevveieeeeuiiiiiiieiiiieeeeeeeieieeeeeieeieen 93
8.7.3 A_event_timeObservation [ASSOCIation]..........euvveuuueeiieieiiiiiiiiiiiiiieeciiieeeeee e 93
8.7.4 A_expr_duration [AssocCiation].........cccceeeeeiieeeiiiiiiiiii 93
8.7.5 A_expr_timeExpression [ASSOCIAtION].......uuuiiiiieieiiiiiiiiiie i 93
8.7.6 A_max_durationInterval [ASSOCIAtioN].....iieeiiieeiiiieiiiieeeeieeiieeeieeeeeeeeeeeeieeein 93
8.7.7 A_max_interval [ASSOCIAtION].....cuiiiieeeeeieieieiiiee et 94
8.7.8 A _max_timelnterval [ASSOCIAtION].....cuuuuiiiiiieieiiiiiiiiie e 94
8.7.9 A_min_durationInterval [ASSOCIAtioN]..........ooiiiieuuiiiiiiiiiiiiiiiieee e 94
8.7.10 A_min_interval [Association]..........oooeiivieiiiiiiiiiiiiiiiii 94
8.7.11 A_min_timelnterval [ASSOCIAtioN]......ccuvvveiiiiiiiiiiiiiiiiiii 95
8.7.12 A_observation_duration [ASSOCIAtioN].....ceuuuiiiiieiiieiiiiiiiieiiiiiiieee e 95
8.7.13 A_observation_timeExpression [ASSOCIation].......eueeeeeeeeeeieiiiiiiiiiieieeiiiiiiiiiiciiiiiieieee 95
8.7.14 A_operand_expression [Association].........cccceeeeiiiiiiiiii 95
8.7.15 A_result_opaqueExpression [Association]........cccceeeeeniiiinneeeeiiiiiiiiii 96
8.7.16 A_specification_durationConstraint [Association]..............uveeeeeeieieieiiiiiiiiiiiiiiiiiieeeeeee 96
8.7.17 A_specification_intervalConstraint [Association].............oeeveeeueuiiiiieieiiiieiiiiiiieeeieinnn 96
8.7.18 A_specification_timeConstraint [Association].............ueeeeeieiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeee 96

Unified Modeling Language 2.5.1 ix

8.7.19 A_subExpression_owningExpression [Association]..........cceeeeeeeeeeeeiiiiiiiiiee 97

9 ClasSifiCatiON. . .cuuuu ittt eeaeees 99
9.1 SUMMAIY ettt ettt eraees 99
9.2 ClaSSIfiOrS. uuuiiieeiiiiiiiieeeiiie ettt 99
9.2.1 SUMIMAIY ..ottt ettt ettt e et e e eeeaeaanaan 99
9.2.2 ADStract SYNtAX.....uuueiiiiiiiiiiiiiiiiee e 99
9.2.3 ST 0 0= 110 T 99
9.2.4 N[0 = 10 o T T 101
9.2.5 EXAMPIES. .ottt 103
9.3 Classifier TemplatesS.........ooiieuuiiieeiiiieiiiiiiei e, 103
9.3.1 T80 0 0= 103
9.3.2 AbStract SYNtaX......eiiiiieeee it 104
9.3.3 SEMANTICS. oo i ittt e e e 104
9.34 NOTAEION. .ottt e 105
9.3.5 | e=10010) [T T 106
9.4 FRAMUIES . ..ot e ieeeias 107
9.4.1 100010071 T 107
9.4.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiii e 108
9.4.3 ST 00 F= 101 (o T T 108
9.4.4 [N [0) 7= 1 (0] o T T T T T Uy U T T 111
9.5 PropertieS....cocuu i eeeies 111
9.51 S0 L0000 o T 111
9.5.2 AbStract SYNtaX......oeeiieeeiiiiiiiiei e 112
9.5.3 SEeMANTICS. .o i ittt e e 112
9.54 N[0 = (0] o T T 114
9.5.5 | e=10010) [T T 115
9.6 OPEratiONS.....uiiiiiie ittt 116
9.6.1 SUMIMIAIY ..ottt ettt et ettt e e e ettt ettt et e et e eeeeeeeeeeeeeeeaaaeaens 116
9.6.2 AbStract SYNtaX......oiiiieeeeeiiiiiiie e 117
9.6.3 ST 00 F= 10 (o T T 117
9.6.4 NOTAEION. Lottt e e 118
9.6.5 =100 o (=T 119
9.7 Generalization SetS......cuuiiieuiiieiiieiiiiiiieiieei e 120
9.71 T80 010 0= o T 120
9.7.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiieieeeee e 120
9.7.3 SEMANTICS. .o i ittt e e e 120
9.7.4 [N (01 7= (0] o T T T 121
9.7.5 | e=10010) [T T T U U TR T 123
0.8 INSANCES . ittt ieaeen, 127
9.8.1 STV 0 0= 127
9.8.2 Abstract SYNtaX......eeeiieeueeiiiiiiiei e 127
9.8.3 SEMANTICS. oo i ittt e ettt 128
9.8.4 N[0 = (0] o T T 129
9.8.5 | e=10010) [T T 129
9.9 Classifier DeSCHPtONS.iiiiieeei i 130
9.9.1 AggregationKind [Enumeration].........eeeeieeeeieiiiiiieieiiiiieie e, 130
9.9.2 BehavioralFeature [Abstract ClasS]........cuuueiiiieeeeiiiiiiiiiiieiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeen, 131

X Unified Modeling Language 2.5.1

9.9.3 CallConcurrencyKind [ENUMEration]..c....ueee i 132

9.94 Classifier [Abstract ClasS].........oeevueuuuuuieieiiiieiiiiiiiiieeeeeeieeee e, 133
9.9.5 ClassifierTemplateParameter [ClassS]............oveveeveuuuuiiiiieiiiiiiiiieiiieeeeeiiiiiieeeieieeeeeeeeeeeeeees 137
9.9.6 Feature [Abstract ClassS].........uiiiiiieueiiiiiiiie i 139
9.9.7 Generalization [ClasS].....ooeeuuei it 139
9.9.8 GeneralizationSet [ClasS]........ i 140
9.9.9 InstanceSpecification [ClasS].........uuuiiiiiieeeiiiiiieeeiiieieeeee e 141
9.9.10 InstanceValue [ClasS]......couiveuuuiiiiiiiiei et 142
9.9.11 Operation [ClaSS]....uuuieieeeeeeeeeie ittt ettt et e e ee et et e e e e eeeeeeereeeeeeaees 142
9.9.12 OperationTemplateParameter [ClassS]......oouuiiiiieeeeeeeeieiieiiieeeeeeeieeeeeeiceieeeeeee e eeeeeeeeeeeeees 145
9.9.13 Parameter [ClasS]. ... oot 146
9.9.14 ParameterDirectionKind [Enumeration]............coveevuiiiiiieieiiiiiiiiieeeiiiiieeieeieeieeeeeieiee 148
9.9.15 ParameterEffectKind [Enumeration]............ceeeeieeiiiiiiiiiiiieieiiiiiiiiieeieeeieeeeeeeeeeeeeeen, 148
9.9.16 ParameterSet [ClasS]........oovviieieeeeeeiiieiei i 149
9.9.17 Property [ClasS]......oouiiiiieeeeeieie ettt ettt e e e e eeeeeeeeeaeees 150
9.9.18 RedefinableElement [Abstract ClasS].......eeeeieeieiiiiiiiiieieiiiiiiiiiiie e 154
9.9.19 RedefinableTemplateSignature [ClasS].........ooeieiiiiiiiiieeeeiiiiiiiieeiieeeeeeeeeeeeeeeeeieeeeeeeee 155
9.9.20] (o) il [0 F= 1] T T 156
9.9.21 StructuralFeature [Abstract ClasS].........iiiieeueeiiiiiiiiiiiiiiiiiiei e 157
9.9.22 T8l oS3 (100 (o) o W (O F= 11 157
9.10 Association DeSCriptiONS.....o.uuiiieeeiiiiiiieiiiie i 158
9.10.1 A_attribute classifier [Association]...........oooeveveueiiiiiiiiiiiiiiiiiiieiiiiieiieee e, 158
9.10.2 A_bodyCondition_bodyContext [ASSOCIatioN].....uueeeiiieeeieiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeieeieeiinen, 158
9.10.3 A classmer instanceSpecification [ASSOCIation].......oivvieeeiiiiiiiiieiieeeeeeeieieeeeieeee 158
9.10.5 A collaboratlonUse classifier [Assomahon] .. 158
9.10.6 A_condition_parameterSet [ASSOCIAtION]......ocoeeiiiiiiiiiiiiiiiiiiiieieiiee e 159
9.10.7 A_constrainingClassifier_classifierTemplateParameter [Association]...................e............ 159
9.10.8 A_contract substitution [Association]..............cccceieinnnnn 159
9.10.9 A_defaultValue_owningParameter [Association]............eveeeeeeiiiiiiieiiiiiiiiiiiiiiiiiiiieieeeen 159
9.10.10 A_defaultValue_owningProperty [ASSOCIatioN]........eeveeeeiuiiiiiiiiiiiiiiieieiiiiieeiiiiiiiieeen 160
9.10.11 A_definingFeature_slot [AsSOCIiation].........uuveuuueiieeieiieeiiiiiiiiiieieieeeeeeeeeeeeeieeeiie 160
9.10.12 A _extendedSignature_redefinableTemplateSignature [Association].............coceeeveveenen...... 160
9.10.13 A feature featuringClassifier [ASSOCIatioN].........ccoeveiveeeeueiiiiiiiiieieieieieieiieeeeiieeeee 160
9.10.14 A_general_classifier [ASSOCIAtION].uuuuuuiiiiieeeiiiiiiiiiieeeiiieeeeeeeeee e 160
9.10.15 A _general_generalization [ASSOCIAtION]...cceueieeeiiiiiiiieiiiiiieeee e 161
9.10.16 A _generalizationSet_generalization [AssSoCiation]........eeeieeieeeiiiiiiiieiiiiiiiiiiieieeeeeeeeeeeeeee 161
9.10.17 A _generalization_specific [ASSOCIatioN]...ueuueeeeeeeeeeeeiiiiiiiiiiiiieeee e 161
9.10.18 A _inheritedMember_inheritingClassifier [Association]..........ceeeeeeeieiiiiiiccieeeeeeeen, 161
9.10.19 A _inheritedParameter_redefinableTemplateSignature [Association].................ccvvvvvvnee.... 161
9.10.20 A_instance_instanceValue [Association]..............eveiiiiuuiiiiiiiiiiieiiiiiiieeiiiiiiee e 162
9.10.21 A_method_specification [ASSOCIAtION]....uuueueeeieeieiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeee 162
9.10.22 A operation_templateParameter_parameteredElement [Association]..............c.cvuueee....... 162
9.10.23 A opposite_property [ASSOCIAtION].....oceeeiiiiiiiiieeiiiiiie i 162
9.10.24 A ownedParameterSet_behavioralFeature [Association]..........c.coeveiveeiiiieeeieieiiieiennn..., 163
9.10.25 A_ownedParameter_operation [AsSsOCIiation].........ueeiiieeueiiiiiiiiiiiiiiiiieeeeiieieeeeeiiieee 163
9.10.26 A _ownedParameter_ownerFormalParam [Association].........coeeveeeeeiiiieeieeiiiiiiiieeeeieenann.. 163
9.10.27 A_ownedTemplateSignature classifier [Association]...........ceeeevveeeeieiiiieeeiiiiiiiiiieeeiieeennn, 163
9.10.28 A ownedUseCase_classifier [Association]..............ccoccneeniiinnenneeiiiiiiiiiciicieeee, 163
9.10.29 A parameterSet_parameter [ASSOCIation]..........uvueueieiiiiiiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeees 164
9.10.30 A postcondition_postContext [Association]............ceeveuuuuiieeieiiiiieiiiiiiiiieiiiiieieeeeeeeee 164

Unified Modeling Language 2.5.1 xi

9.10.31 A _powertypeExtent powertype [Association].............cccceeneneninnnneeeiiiiiiie 164
9.10.32 A precondition_preContext [ASSOCIAtioN]..........uuvuuueieieieiiiiiiiiiiiieeiiiieieeeeee e 164
9.10.33 A _qualifier_associationEnd [ASSOCIAtION].....ceeeeiiiiiiiiiiiiiiiieiieieieeeieeeieeeeeeeieeeeeeee 164
9.10.34 A raisedException_behavioralFeature [Association]..........coeeveveeeeereueeiiiiiieieieeeeeeeiieeeeennes 165
9.10.35 A _raisedException_operation [Association]..........ccccceeninninnneeeniiiiiii 165
9.10.36 A _redefinedClassifier_classifier [Association]............euueeceeeeieiieiiiiiiiiiieiiiiiiiiiieieeeeeeeeen 165
9.10.37 A _redefinedElement_redefinableElement [Association]..........coeeevivieieeeeeeeiiiiiiieieeeeeeeee 165
9.10.38 A_redefinedOperation_operation [AsSOCIation]............oeieiieerueiiiiiiiieiiiiiiiiieeeiiieieieeeeeeen. 165
9.10.39 A redefinedProperty property [Association]...........ceuuveueeieiiiiiiiiiiiiiiiiiiiieiiiiiieieeeeeeeeen 166
9.10.40 A redefinitionContext_redefinableElement [Association].............eeeeeieeieieeiiiiiiieeeeiiivennne.. 166
9.10.41 A representation_classifier [ASSOCIAtiON]........ccoeviiiiiiiieiiiiiiiieeieieiieeeeeeeeeeeeieeeeeee 166
9.10.42 A _slot owninglnstance [Association].............oeeeiieuueiiiiiiiiiiiiiiiiiiiiee i 166
9.10.43 A_specification_owninginstanceSpec [AssSOCIation]..........eeeeeeeiieeieiieiiiiiiiiiiiiiiiiiiieeieenne. 167
9.10.44 A _subsettedProperty property [Association]............coccceeniiniinnneiiiii 167
9.10.45 A_substitution_substitutingClassifier [Association]...........ccoeeevveeiiiiiiiineiiiiiiiiiiiiineeee 167
9.10.46 A_type_operation [AsSOCIatioN].......eeiieuueiiiiiiiei i, 167
9.10.47 A value_owningSlot [ASSOCIatioN]........ceevvuueuuiiiiiiieiiiiiiiiieeeeeceeeeeeee e 167
10 SimPle ClasSIfierS. . oottt eeeeiie e eeieeeeiies 169
10.1 SUMMAIY. ittt ettt ettt ettt et e e 169
(O DT = 1 Y o 1= T U N T TR T 169
10.2.1 STV 0 010 0= T 169
10.2.2 AbStract SYNtaX......eeiiiieeee it 169
10.2.3 SEMANTICS. oo it e e e e e et 169
10.2.4 NOTAEION. .ottt e e 170
10.2.5 | e=10010) [T T 170
O TS o [= (T 171
10.3.1 100010071 T 171
10.3.2 ADSLract SYNtAX.....uuueeeiiiiiiiiiiiiii e 171
10.3.3 ST 00 F= 101 (o T T T 171
10.34 [N (o) 7= 1 (0] o T T T T U U T TN 172
10.3.5 [e=10010) [T T 172
O [0 (=Y = o Y- T T T, 172
10.4.1 SUMIMIANY .ttt e e ettt e et et eeeeeeeeeeeeeeeeeeeeeeeaeeieeeeeeeeeeeeeeeeeeeeeeaiaas 172
10.4.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiii e 173
10.4.3 ST 0 0= 110 T 173
10.4.4 N[0 7= 110 o T T T 174
10.4.5 EXAMPIES. .ottt 174
10.5 Classifier DeSCIDtIONS. . iuuuiieiieiii i eeeeeeeenn, 176
10.5.1 BehavioredClassifier [Abstract Class)]..........oeeiiiieeeiiiiiiiiiiiiiiiiieiiiiiieeieieeeeeeeeeeeeeee 176
10.5.2 DataType [ClaSS] uuuueueeeeei ettt eeeeeeeeeeeeeeeeeeeeeeeenenns 176
10.5.3 Enumeration [ClasS]......... i 177
10.5.4 EnumerationLiteral [ClasS]........ceuuuuuuuuiiiiiiiiiiiiiiiiiieeeeee e ee et 177
10.5.5 Interface [ClasSS] . uuiuiueeeeeiiie it 178
10.5.6 InterfaceRealization [ClasS].........eiiiieeueiiiiiiiie i 179
10.5.7 PrimitiveType [ClasSS]......oieeeeeeeriiuieieiii ittt eeeeeeeeeeeeeeeees 179
10.5.8 [R{Yetey oY (o) o W K04 P11 O T 180
10.5.9 ST (o [a T 1N (01 P2 1T T T 180
10.6 Association DeScriptionS.oocuuiiieuniiiiiiiiiieii e 181

Xii

Unified Modeling Language 2.5.1

10.6.1 A_classifierBehavior_behavioredClassifier [Association]...............ccoeeeeeeeeeiiennneeennes 181
10.6.2 A_classifier_enumerationLiteral [Association]............cooeveveeueeueiiiiiieiiieieeiiiiiieeeeinnn 181
10.6.3 A_contract_interfaceRealization [ASSOCIAtioN].......vueeeeiiiiieeieiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeiieiinn, 181
10.6.4 A_interfaceRealization_implementingClassifier [Association]...........cccccceeeveeeeeieiiiinnneeeee.s 182
10.6.5 A_nestedClassifier_interface [Association]...............cccccennnnneeeeiiiiiiiiiieeee 182
10.6.6 A_ownedAttribute_datatype [Association]..........cceevvueeiiiieiiieiiiiiiiiieiiiieeeeeeeeeee 182
10.6.7 A_ownedAttribute_interface [ASSOCIAtION]...euueuiiiieeeeiiiieiieeeiieeee e 182
10.6.8 A_ownedAttribute_owningSignal [Association].............ceeeiiieiueiiiiiiiiiiieiiiiiieeeeiiieeeeen 182
10.6.9 A_ownedBehavior_behavioredClassifier [Association].............ooveveeeveeeeeiiiiiiieieeeeeeeeeeeene... 183
10.6.10 A _ownedLiteral_enumeration [ASSOCIation]...........cceuvuuuuuiiiiiiiiiieiiiiiiiiiiiiieieeeeeeeeeee 183
10.6.11 A_ownedOperation_datatype [ASSOCIation].........covvvveeeeeeeeieiieiieieeeeeeieeeeeeeeeeeeee, 183
10.6.12 A _ownedOperation_interface [ASSOCIAtION]....uuuueiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeieeeeeeene 183
10.6.13 A _ownedReception_interface [AsSSOCIiation]..........ooovvvveeeeueuuiieiieiiiiiieieiiiieeeicieieeeeee 184
10.6.14 A_protocol_interface [AssoCiation]...........eeeevicineeiiiiiiinniiiiiiiiiiiiiiiii 184
10.6.15 A redefinedinterface_interface [Association]..........ccoeeeeeeeeeiiiiiiiiiiiiiieeeeeeeeeee 184
10.6.16 A_signal_reception [ASSOCIAtiON].....ccuuuiiiiiuiiiiiiiiiiiiei it 184
11 Structured ClasSifierS.. ..o, 185
o B S TV 1 0 = T T T 185
11.2 Structured ClasSifierS........ovveueiiiiiiiiiiiiiiiiiiieiieiieiee e 185
11.2.1 SUMIMIAIY ..ottt e et ettt e e et ettt e et e e eeeeeeeeeeeeeeeaaeaans 185
11.2.2 AbStract SYNtaX......eiiiiieeee it 185
11.2.3 ST 00 F= 101 (o T T 186
11.24 NOTAEION. Lottt e e 187
11.2.5 =100 o (=T 188
11.3 Encapsulated ClasSifierS.u.uiieiieeiiieiiiiiiiiiieiiieiiieiie i 191
11.3.1 SUMIMAIY . ettt ettt ettt ettt e et e e e e e e ereaaannn 191
11.3.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiieieeeee e 192
11.3.3 SEMANTICS. .o i ittt e e e 192
11.34 [N (01 7= (0] o T T T 193
11.3.5 EXAMPIES. ..ottt ee e 194
o O - 11 T T T T T 196
11.4.1 SUMMIAIY ettt ettt e e e e e et e et e et eee e i e e eeeeeee i 196
11.4.2 Abstract SYNtaX......eeeiiieeeiiiiiiiei e 196
11.4.3 SEMANTICS. oo i ittt e ettt 196
11.4.4 N[0 = (0] o T T 197
11.4.5 | e=10010) [T T 197
11.5 ASSOCIAtIONS...iieeuiiiiiiiii e, 201
11.5.1 SUMIMIAIY ..ottt ettt et ettt e e et e ettt e e et e e eeeeeeeeeeeeeeaaaeaens 201
11.5.2 AbStract SYNtaX......eiiiiieeei it 201
11.5.3 ST 00 =101 (o T 201
11.54 NOTAEION. Lottt e e 203
11.5.5 =100 o (=T 205
11.6 COMPONENES. .euuiiieiiiee ettt ettt ettt 210
11.6.1 ST L0010 0= o T T 210
11.6.2 ADStract SYNtAX......ueeeiiiiiiiiiiiii i 211
11.6.3 SEMANTICS. oo i ittt e e e e 211
11.6.4 [N (01 7= (0] o T T T 212
11.6.5 | e=10010) [T T T U U TR T 213

Unified Modeling Language 2.5.1 Xiii

Xiv

11.7.1 T80 010 0= o T T 217
11.7.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiiei et 217
11.7.3 SEMANTICS. .o iiiiiiieeee e e e e e e, 218
11.7.4 [N (01 7= (0] o T T T 219
11.7.5 EXAMPIES. ..ottt ee e 219
11.8 Classifier DeSCriptiONS. .. iveeeiiieeiiiieiieeee et eeeeee e eeieeeeeeeees 221
11.8.1 J NI Yo Yol = L1 To) A W (O F= 11 T 221
11.8.2 AssociationClass [ClaSS]..uuu.uiiiieeui ittt 222
11.8.3 ClaSS [ClaSS].uuuuuue ittt ettt ettt ettt e e e et e ieeeeens 223
11.8.4 Collaboration [ClaSS]. ittt 224
11.8.5 CollaborationUSe [ClasS]......cooiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee et 225
11.8.6 ComMPONENt [ClaSS].uuuueu ittt 226
11.8.7 ComponentRealization [ClasS]..........uueeeeiiiiiiiiiiiiiieeieceiieeeeee e 227
11.8.8 ConnectableElement [Abstract ClasS].......oviieeeeeiiiiieieiiiiiiiieiiiiiiee e 228
11.8.9 ConnectableElementTemplateParameter [Class]..........uveeeeeeieieieeiiiiiiiiiiiiiiiiieeeieeeeeeen, 228
11.8.10 CoNNECIOr [ClaSS . uuuuuueieiiiiieiiiiiieeeee et e ettt et et e eeeeeeeeeeeeeeennen 229
11.8.11 ConNectorENd [ClaSsS]....cooiiiiiiiiieieiieeeeee ettt 230
11.8.12 ConnectorKind [ENUMEration].........eeiieeeeiiiiiiiiiee e 231
11.8.13 EncapsulatedClassifier [Abstract Class)]...........ueieiiieuuiiiiiiiiiiiiiiiiieeieiieieeeeeieieeeeeeeeaan 232
11.8.14 POIt [ClaSS]iiiiuiueutetieie oottt ettt 232
11.8.15 StructuredClassifier [Abstract ClasSS]........eiiiieeeeiiiiiieiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn, 234
11.9 Association DescriptionS..........ceuiiieuiiiiiiiiiiiiiiiiiei e 235
11.9.1 A_collaborationRole_collaboration [Association]..............eeeeeeieiiiiiiiiiiiiiiiiieiiciiiieieeeeene . 235
11.9.2 A_connectableElement_templateParameter _parameteredElement [Association]............. 235
11.9.3 A_contract_connector [ASSOCIation].....eeeeeeveeiiiiiiiiiiiiiiiiiii 236
11.9.4 A_definingEnd_connectorEnd [Association]...........cceeeveueueieieiiiiiiiiiiiiiiieeeeeeeee 236
11.9.5 A_endType_association [ASSOCIAtioN]........ceuuuieiiiieiiieiiiiiiiieiiiiiiee e 236
11.9.6 A_end_connector [AssSoCiation]........ooeeeeeeeiiiiiiiiiiiiiiiiiii 236
11.9.7 A_end role [Association].........ccceeeeenniiiiiiiiiiee e 236
11.9.8 A_extension_metaclass [ASSOCIAtioN].....cuuuieiiiiuuiiiiiiiiiiii i 237
11.9.9 A_memberEnd_association [Association]..........ccuvueiiiiiiiiiiiiiiiiiieiiiiiiieee e 237
11.9.10 A_navigableOwnedEnd_association [ASsSOCiation].........cccvveeeiiiiiiiiiiiiiiiiiiiiiiieiee, 237
11.9.11 A_nestedClassifier_nestingClass [Ass0CIiation].........eeeiieeeeeieiiiiieeiiiiiiiieieeiiiiieeeeeeen 237
11.9.12 A_ownedAttribute_class [ASSOCIAtioN]..........uuuuiiiiiieeeiiiiiiiiieiiieiieeeeeeeeeeee e, 238
11.9.13 A _ownedAttribute_structuredClassifier [Association]..........ooeeeeeiiiiieeeeeeeiiiiiiiieieieeeeeeeeeen. 238
11.9.14 A _ownedConnector_structuredClassifier [Association].............cceeeeeeeieiiiiiiiiiiiiieeiieeeeeennne.. 238
11.9.15 A _ownedEnd_owningAssociation [ASSOCIatioN]...........ueeiiiieereiiiiiiiiiieiiiiiiieeeeeiieieeeeenee, 238
11.9.16 A _ownedOperation_class [Association]........cccoeeeeeiiiiieiiiiiiiiiiiiiiiiiiiiiii 239
11.9.17 A_ownedPort_encapsulatedClassifier [Association].............oocooeeiiiiiiiiiiiiiiiiiiiin 239
11.9.18 A_ownedReception_class [Association]........ooveevuuiiiiiiiiieiiiiiiiieiiiiiieeeieeiiei e, 239
11.9.19 A _packagedElement _component [Association]........oeeeveevueieiiiiiiiiiiiiiiiiieieiiiiiiieeeeiiii 239
11.9.20 A partWithPort connectorEnd [Association]........cccceeeeeeeiennnneeeeiiiiiiiiiieeeeeee, 239
11.9.21 A part structuredClassifier [Association].........eeeeeeeeeeiissiiiiieeieeeeeeeeeee 240
11.9.22 A _protocol_port [ASSOCIAtION].....uuuueiiiieiiiiiiiiiiiiiecieeeie e 240
11.9.23 A_provided_component [ASSOCIAtION]....uuuuuuiiiiieeeiiiiiieeeeiieiiee e 240
11.9.24 A provided port [ASSOCIAtION]. . eeeuuuueiiiiiiieiiiiiee e 240
11.9.25 A _realization_abstraction_component [Association]...........ccoeeeeiiiieeeeeeiiiiiiieieeiieiieeeeenenee. 240
11.9.26 A_realizingClassifier_componentRealization [Association]...........ccoeeeeveeeeeiieeeieiiiveeenn... 241
11.9.27 A_redefinedConnector_connector [Association]........ccveeeeiiiiineiiiiiiiieiiiiiiieees 241

Unified Modeling Language 2.5.1

11.9.28 A_redefinedPort_port [ASSOCIiation].......ccoeeeuveeeiiiiiiiiiiiiiiiiiiiiiiiiii 241
11.9.29 A _required_component [ASSOCIAtioN]....cuuuuiiiiiiiiiiiiiiiiieiiiiiiiiee e, 241
11.9.30 A _required_port [ASSOCIAtION] . euuuuriiiiiii it e 241
11.9.31 A roleBinding_collaborationUse [ASsOCIiation].....eeeeeeeeeeeeeeeeeiiiiiiiiiiiieieeeeeeeeee 242
11.9.32 A role_structuredClassifier [Association]........cooceeeeeeeeneeeiiiiiiiiiiiiiiiiiieeeee e 242
11.9.33 A _superClass_class [ASSOCIAtiON]......uuuuuuuuuiiiiiiiiiiiiiiiiiieeicieeieeeeee e 242
11.9.34 A _type_collaborationUse [ASSOCIAtION]....euuueeeeieiiiiiiiiiiiiiiiiiiiiiiieeeeeeeiiiiiiiieiieeeeee, 242
11.9.35 A _type connector [ASSOCIatioN]. ucuuuuuiiieee i, 242
12 PacCKaQeS.......uiiieuiiiiiiiii ettt ee e 243
o R S TV 11010 0= T A T 243
12.2 PaCKaAQES. . .ouuuiiiieiiiiiiiiee e 243
12.2.1 ST L0010 0= o T T 243
12.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiieieee e 243
12.2.3 SEMANTICS. oot e e e 243
12.2.4 [N [0) 7= (0] o T T T 250
12.2.5 | e=10010) [T T T U T TR 251
12.3 ProfileS......ccoeeeieeiineeiiieiiineeiieeeiieiiiieeiiieiieeiieee i 254
12.3.1 STV 0 0= 254
12.3.2 Abstract SYNtaX.....eeeiieeeeiiiiiiiiei e 255
12.3.3 SEMANTICS. oottt e e e e et e 255
12.34 N[0 = (0] o P T 264
12.3.5 | e=10010) [T T 266
12.4 Classifier DeSCrPtiONS.cvveuueiiiiiiiieeiiiiiiiei e e, 275
12.4.1 EXtENSION [ClaSS]..uuuueiiiiiiiiiiiiiieeeeee ettt 275
12.4.2 ExtensionENd [ClasS]..uuu..iiieee i 276
12.4.3 IMAQE [ClASS]..iiiiiiiieieeee ettt et e e e e e e e e e e ee e e e, 277
12.4.4 MOAEI [ClaSS]. .ottt ettt eeeeeeeeeeeeaeees 277
12.4.5 Package [ClasSS]....uuueeeueueiuieiie ittt ettt e ettt e e e et e e e e e 278
12.4.6 PackageMerge [ClasS]......oouiiieeeeeeeeiiieieiiieieeeee et ee e, 280
12.4.7 |) (1[N [0 P2 11 T T 280
12.4.8 Profile Application [ClasS].........ouuveeeuuriiiieieeie it 281
12.4.9 StEreotyPe [ClaSS]. ittt ee e eeaeeaes 282
12.5 Association DescriptionS.cocuuiiieuiiiiiiiiiiiiei i 283
12.5.1 A_appliedProfile _profileApplication [Association].............euveeeeeeiiiiiiiiiiiiiiiiiiiiiiieieeeen... 283
12.5.2 A_icon_stereotype [ASSOCIAtioN]......couuuuuiiiiieeeiiiiieee e, 283
12.5.3 A_mergedPackage packageMerge [Association].........c.oeeeeeeeveeeeeeeiiiiieieeeeeiiieiieeee 283
12.5.4 A_metaclassReference_profile [ASSOCIAtON]....ueuuiiieiieeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeieeeiein, 284
12.5.5 A_metamodelReference profile [Association]...........cceeveueeueeiiiiiiiiiiiiiiiieiiiiiiiiiieeeeeeee 284
12.5.6 A _nestedPackage nestingPackage [Association]...........ccoeeeeiiiiiniiiiiiiiiiiiiiiiieeeee, 284
12.5.7 A_ownedEnd_extension [ASSOCIAtiON]..eeeeiiicueneiiiiiiiiiiiiiiiiiiii 284
12.5.8 A_ownedStereotype_owningPackage [Association]............oooovveieeeeeeiiiiiiiieiiieieeeeeeeeieeenns 284
12.5.9 A_ownedType package [AsSOCIatioN]...c..u.ieeieuuiiiiiiiiiieiiiiiieei e, 285
12.5.10 A_packageMerge_receivingPackage [Association]........ccveeeeiiiieiiiiiiiiiiiiiiieinn 285
12.5.11 A_packagedElement_owningPackage [Association]...........eeeeeeecnniiiiiiiiiniiiiiiiiieiennn 285
12.5.12 A _profileApplication_applyingPackage [Association]...........oeeeeeeeuevieiieiiiiiiiiieeeiiiiiiieienns 285
12.5.13 A_profile_stereotype [ASSOCIatiON]......eiiieeeniiiiiiieieieiiieeeeeeeee e 286
12.5.14 A _type extensionEnd [ASSOCIAtION]......oovevueiiiiieiiiiiiiiiieeieeiiiee e, 286
(IS Oe]0 110010) Al 21=) 0 7= 1Vi o] ST T 287

Unified Modeling Language 2.5.1 XV

13 SUMIMIAIY ittt ettt eeieaen, 287

(I 1<) F= Vi (o T T T 287
13.2.1 SUMIMIAIY ..ottt ettt ettt ettt e et et e e e e e e e e e eeeeeeeeeeeeaeaaaeaans 287
13.2.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiii e 288
13.2.3 ST 00 F= 101 (o T T T 288
13.24 [N (o) 7= (0] o T T 292
13.2.5 =100 o (< T 292

13.3 EVENES. .ottt 292
13.3.1 ST L0010 0= o T T 292
13.3.2 Abstract SYNtaX.....oeeeeiieuuiiiiiiiiei e 293
13.3.3 ST 0= 1 (o T 293
13.34 N[0 = (0] o T T 295
13.3.5 EXAMPIES. ittt i e 296

13.4 Classifier DeSCIIDtIONS . . iuuiieiiiiiiiie e eieeeeenn, 296
13.4.1 ANYRECEIVEEVENT [ClaSS]..uuuuuueeneiiiiiiiiieiieieeieeieee et eeeeeieeeeaeees 296
13.4.2 Behavior [AbStract ClasS]......ovvuueuiiiiieiiiiiiiiei e 296
13.4.3 CallEVENt [ClaSS]...ooiiiiiiiiiiiieeieeee ettt e et e et e ettt ieeeeeeeeeeeeeeees 299
13.4.4 ChangeEVvent [ClassS]. . uuuuueueueieiiie ittt ee e eeeeeeeeeeaeees 299
13.4.5 Event [Abstract ClasS].........iiiiieeeiiiiiiiiie it 299
13.4.6 FunctionBehavior [ClasSS]........iiiieeeiiiiiieeii e, 300
13.4.7 MessageEvent [Abstract ClasS]........oovvveveeeuuuiiieiieiiiee e eeeeeeeeeeeeeeeeeeiinann, 300
13.4.8 OpaqueBehaVvior [ClaSS]......ouuiiiieeeeiieeeeeee et eeee e eeeeeeeeeeeeeeeeene 301
13.4.9 SignalEVeNt [ClaSS]..uuuuueeeeiiieiiiiiiiiiiieeeeeeeee et eeeeeeiieeaens 301
13.4.10 TimeEvent [ClasS]...ocuuuiiiiieiiei ittt 301
13.4.11 A Te e[ol O F= o) T 302

13.5 Association DescriptionS........cocuuiiieuuiiiiiiiiiiiiiiiieei e 303
13.5.1 A_changeExpression_changeEvent [ASSOCIation].......uueeeeeeiiieiiiiiiiiiiiiiiiiiieieieeeeeeeee 303
13.5.2 A_context behavior [ASSOCIAtION].........uueiiiiieiiieiiiiiiieiiiiiee e 303
13.5.3 A_event_trigger [ASSOCIAtioON].. . cuuuuuuiiiieeeiiiiiieee e, 303
13.54 A_operation_callEvent [ASSOCIAtON].....cuueueiiieeiiiiiiiie i, 303
13.5.5 A_ownedParameterSet_behavior [ASSOCIatioN].........vueueeeiiiiiiiiiiiiiiiiiiiiiiieeieieieeeeeeeeeee. 303
13.5.6 A_ownedParameter_behavior [Association]............coeeveeuuiiiiiiiiiiiiiiiiiieeiiiiiiieeieeiiieees 304
13.5.7 A_port_trigger [Association]..........cccoeeeniiiiiiiiiiiii i 304
13.5.8 A_postcondition_behavior [ASSOCIation]..........eueveueueiieieiiieiiiiiiiiiiiiieeeeeeeeeeeeeeeieeeen 304
13.5.9 A_precondition_behavior [Association].............eeiiiiieuiiiiiiiiiiiiiiiiiiiee e 304
13.5.10 A _redefinedBehavior_behavior [Association]............cceeveuuuiieiiiiiiiiiiiiiiiiieiiiiiieieeeeeen 304
13.5.11 A_signal_signalEvent [ASSOCIAtON]....uuueeeeiieieieiiiiiiiiiiiiiieieeeeeeeeeeeee 305
13.5.12 A _when_timeEvent [AsSSOCIatioN]..eeuuu.iiiiieeiiiiiiiiieeiieiieee e 305

14 StateMaChiNeS......oovvvueiiiiiiiiiiiii i 307

o S TV 0010 = A T T 307

14.2 Behavior StateMachineS.........ooovvvevuiiiiiiiiiiiiiiiiiiee e 307
14.2.1 SUMIMIAIY ..ottt ettt ettt ettt e et et ettt e e e et e eeeeeaeeeeeeeaaaaaeaens 307
14.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiiei et 308
14.2.3 ST 00 F= 101 (o T 308
14.2.4 [N (01 7= (0] o T T T 321
14.2.5 =100 o) (< T 337

14.3 StateMachine Redefinition............ccvueeiiiiiieeeeiiiiiiiiiiiiiiiiiiie i 338
14.3.1 ST L0010 0= o T 338

XVi Unified Modeling Language 2.5.1

14.3.2 ADSrACt SYNTAX. it eeeeeen, 339

14.3.3 SEMANTICS. oo i ittt e e 339
14.3.4 NOLAEION. .ottt ettt e 341
14.3.5 | e=10010) [T T 342
14.4 ProtocolStateMachineS.ooovveuiiieiiiieiiiiieiiiieeieiieeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeieeen 344
14.4.1 1010010071 T 344
14.4.2 ADSEract SYNtAX.....uuueeeiiiiiiiiiiiiii e 344
14.4.3 ST 00 F= 101 (o T TP 344
14.4.4 [N (o) 7= 1 (0] o T U U O T TN 347
14.5 Classifier DeSCriPtiONS.ouiveeeeiiiiiiieeeieiiiieeeeii e e e eeeeiieeeeeeieees 348
14.5.1 ConnectionPointReference [ClasSS]..iuuuu..iiiieeeiiiiiieeeeiieeeeeeeeeeeee e 348
14.5.2 FiNalState [ClasS]. oottt ee e e e e e e ieeeeeeeeeeeees 349
14.5.3 ProtocolConformance [ClasSS]........uveeeueueeeiiiiiiieiiieiiiieeeeeeeeeie e, 350
14.5.4 ProtocolStateMaching [ClasS]......uuuuuueueeeiieiiiiiiiiieiiiieeeieeeeee ettt 351
14.5.5 ProtocolTransition [ClasS]...........iiiiieeeiiiiiiiiei e, 352
14.5.6 Pseudostate [ClasS]. . ..uuuuueeeeiiieiiiiiiiiiieeeeeeeeee e 353
14.5.7 PseudostateKind [Enumeration]..........eeeieeeueeiiiiiiiieiiiiiiieeieiieiee e 355
14.5.8 ReQION [ClaSS]iiuieeeeeeuenieiiii ittt i e e e e e e e e e e, 355
14.5.9 State [ClasS]....ooiiiiiiiiiiiiieieee ettt e e e e e eeeeeeeeeaeees 358
14.5.10 StateMaching [ClaSS]........ccoouiiiiieeereiiieiiieie ettt eeeeeeeee e eeeeeeee 361
14.5.11 Transition [ClasS]. . ..cuuuieeeeeeetieee e ettt eeee et eeeaeeeeeaeeeaes 364
14.5.12 TransitionKind [Enumeration]...........couuiiiiiieueiiiiiiiiiieiiiiiie e 367
14.5.13 Vertex [AbStract ClassS]......ccuuuiiiiieiiieiiiiiiiiee ettt 367
14.6 Association DeSscriptionS.ocuuiiieeniiiieiiiiiiiiiieei e 369
14.6.1 A_conformance_specificMachine [Association]........coeeeeeeeeiiiiiiieeeeiiiiiiiiiieeieieeeeeeeeeeeeeeennns 369
14.6.2 A_connectionPoint_state [Association].............oeeeiieeuiiiiiiiiiiiiiiiiiiieeiieee e 370
14.6.3 A_connectionPoint_stateMachine [Association]...........cooovvvviiieeeeeiiiiiiieieiieeiieiiiieeeeeeeeveanne. 370
14.6.4 A_connection_state [ASSOCIAtION]....uuuuue i, 370
14.6.5 A_deferrableTrigger_state [Association]..........ooeeeeneeiiiiiiiiiiiiiiiiiiiiiiici 370
14.6.6 A_doActivity state [ASSOCIAtioN]....ceuuuiiiieeieiiiiiiiiieiiiiiiee e 371
14.6.7 A_effect_transition [ASSOCIAtION]......cceeiiiiiieeiiiiiiiieiie i 371
14.6.8 A_entry connectionPointReference [Association]............ooeeeeeeiiiiiiiineiiiiiiiiniiiieeen, 371
14.6.9 A_entry state [Association].......oooieiieiiiiiiiiiiiiiiiiiieiee e 371
14.6.10 A _exit_connectionPointReference [ASSOCIAtION]...uuuuueeiiiiiiiiiiiiiiiiiiiiiiiieeieieieeeeeeeeeeeeeeenns 371
14.6.11 A_exit_state [Association]...........oeveiieuuuiiiiiiiiiiiiiiiiiiee e 372
14.6.12 A extendedRegion_region [Association]............ccccceeeiniennnenneeeeiiiiiiieeeeeeee 372
14.6.13 A _extendedStateMachine_stateMachine [Association]...........ccocvveeeiiiieeeeeieiiiiiiieiieieevann., 372
14.6.14 A_generalMachine_protocolConformance [Association]............eeeeeeieieiieeeeiiiiiiiieeiiiiiennnnn.. 372
14.6.15 A_guard_transition [ASSOCIAtiON]........cuuuiiiiieeeiiiiiiiieeiiiieeee e 372
14.6.16 A_incoming_target vertex [Association]............ceeeiiieuuuiiiiiieiiiiiiiiiiiiieieiiiiiieeeeieiieeeeeeeean 373
14.6.17 A _outgoing_source vertex [ASSOCIatioN]........c.uuiiiiieuuiiiiiiiiiieiiiiiiiieieeieiieeeeeieeeeeeeeeeeae, 373
14.6.18 A_postCondition_owningTransition [ASSOCIAtON]....cccueiiiuiiiiiiiiiiiiiiiiiii 373
14.6.19 A_preCondition_protocolTransition [Association]..........cccoeeeeviiiiiiiiiiiiiiiiiiiiien 373
14.6.20 A _redefinedState_state [ASSOCIAtION]....uuuueueieiiiiiiiiiiiiiieiiiieeeie i 374
14.6.21 A_redefinedTransition_transition [Association]............ccevvveueeieiiieiieiiiiiiiiiieiiiiiiiiiieeeen 374
14.6.22 A redefinedVertex vertex [AssOCIiation].....eeeeeeeeeeeeeeeiiiiiiiiiiiiieee e 374
14.6.23 A redefinitionContext region [Association]..............ceeeeeineeeee 374
14.6.24 A_redefinitionContext_state [ASSOCIAtioN]........uuueeeieiiiiiiiiiiiiiiiiiiiiiiieieieeieeeeeeeeeeeeeeeeieeen 375
14.6.25 A_redefinitionContext_transition [Association]..............ceevevuuuiieiieieiiieeiiiiiiieeeeiciieieeen 375
14.6.26 A_redefinitionContext vertex [ASSOCIAtioN]......uuueeeieiiiiiiiiiiiiiiiiieieieiieeeeeeeeeeeeeeeeeeeeeen 375

Unified Modeling Language 2.5.1 Xvii

14.6.27 A_referred_protocolTransition [ASSOCIation]..........eeeiieceeneiiiiiiiiiiiiiiiiiiiiiie 375
14.6.28 A _region_state [ASSOCIAtION] . eeuuuuiiiiiiiiieiiiiieeeiiiieee e 376
14.6.29 A _region_stateMachine [AssOCiation]........ueiieeueniiiiiiiieiiiiiiiee e 376
14.6.30 A _statelnvariant owningState [Association]..........eeeeeeeeiniiisciieeeeee e 376
14.6.31 A submachineState_submachine [Association].........ccceeeeeeeeeeeiiiiiiiiiiieeeeeeeee 376
14.6.32 A _subvertex_container [ASSOCIation]...........oovveeeeeuiuiiiiieiiieieiiiiiiiieeeeeee e 377
14.6.33 A_transition_container [ASSOCIAtioN] . cuuuuiiiiieeeeiiiiiieieeeeeeeeeeeee e, 377
14.6.34 A _trigger_transition [AsSOCIAtioN]..........ueeiiiieueiiiiiiiiieiiiiiiiiee e 377
15 ACHVItI©S. .. it 379
15,1 SUMMAIY ettt ettt ettt ieeen, 379
15.2 ACHVITIES. ittt reaees 379
15.2.1 SUMIMIANY ..ottt ettt e e ettt et eee et et e et e e et eeeeeeeeeeeeeeeeeeeaens 379
15.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiieieee e 380
15.2.3 SEMANTICS. oot e e e 380
15.2.4 [N [0) 7= (0] o T T T 385
15.2.5 | e=10010) [T T T U T TR 388
15.3 CONtrOl NOUES. ..ottt 393
15.3.1 STV 0 0= 393
15.3.2 Abstract SYNtaX.....eeeiieeeeiiiiiiiiei e 393
15.3.3 SEMANTICS. oottt e e e e et e 393
15.34 N[0 = (0] o P T 396
15.3.5 | e=10010) [T T 398
SR O] o] 1=Tos (o Yo [T T T T 402
15.4.1 SUMIMIAIY ..o e ettt et e ettt e ettt ettt e e et e e eeeeeeeeeeeeaeaaaeaens 402
15.4.2 AbStract SYNtaX......eiiiiieeei it 402
15.4.3 ST 00 F= 101 (o T T 403
15.4.4 NOTAEION. oottt e 405
15.4.5 =100 o (=T 407
15.5 Executable NOAES....couuiiuniieeiiieiiieiiieiiieeiie e, 409
15.5.1 ST L0010 0= T 409
15.5.2 ADSLract SYNtAX.....uuueieiiiiiiiiiiiiii e 409
15.5.3 SEMANTICS. oo ittt e e, 409
15.54 [N [0) 7= (0] o T T T 410
15.5.5 | e=10010) [T T T U U TR T 411
15.6 ACtiVity GrOUDS. .ieuuuiiieuiiii ittt ettt et 411
15.6.1 STV 0 0= 411
15.6.2 Abstract SYNtaX......eeeiieeueeiiiiiiiei e 412
15.6.3 SEMANTICS. oo iiiiiiiiieee et e et e e e 412
15.6.4 N[0 = (0] o T T 414
15.6.5 | e=10010) [T T 415
15.7 Classifier DeSCrPtiONS.cveuuueiiiiiiiieeieiiiieei e et 417
15.7.1 JaN e Y VA (O F= 1= T T 417
15.7.2 ActivityEdge [Abstract ClasS].......oceuuuniiiiiiiiiiiiiiieie e 419
15.7.3 ActivityFinalNOde [ClasS]......ciiiiiiiiiiiiiiiiieiieiee e eeeeeeeeeeeeeannnn, 420
15.7.4 ActivityGroup [Abstract ClassS].......cuuuuuuunieiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e 420
15.7.5 ActivityNode [Abstract ClasS]........coouvvveeeuuuiiiiiiiiiieiiee e, 421
15.7.6 ActivityParameterNode [ClassS].........ooovvviveeeeeeeeiiiiiiiiieeieeeieeeeeeecieeeeeeeeeeeeeeeeeeeeeeeieiieeeees 423
15.7.7 ActivityPartition [ClasSS].......uuueueeeeiiiiiiiiiiiiiiiieeeeceeeeee e eeeeeeens 424
XViii Unified Modeling Language 2.5.1

15.7.8 CentralBufferNOde [ClasS]....uuuuueereeeiiiiiieiiiiiiieieieeeeee e, 425
15.7.9 CONtrOIFIOW [ClaSS].uuuuuuuueneieieiiiiiiiiiiiee ettt oottt e ettt eeeeeeeeeeeeeeeeeeeeeeeaenens 426
15.7.10 ControlNode [Abstract ClassS]........uuuuuuuueeiiiiiiiiiiiiiiieeeiiieie e, 426
15.7.11 DataStoreNode [ClasS]........oooviiiiiiieeeeeeieeei i, 426
15.7.12 DeciSioNNOdE [ClaSS].....oieieeieeeeeueeiiiiiiie e e e e ieeeeeeeeeeeeeeees 427
15.7.13 ExceptionHandler [ClasSsS]........uuuuuuuuiiiiieiiiiiiiiiiieeeeeeeee e eeeeeeeeeeees 428
15.7.14 ExecutableNode [Abstract ClasS]..........uuiiiiieeeniiiiiieieeiiiiiiieeeeeeeeee e 430
15.7.15 FinalNode [Abstract Class].........oouiiieuuuiiiiiiiieiiiiiiee e 430
15.7.16 FIoWFIiNaINOde [ClaSS]......cccoviiiiiiieieeiieieiieeeee et eeeeee e eeeeeeeeeenss 430
15. 717 FOrKNOAE [ClasSS]..ccoeiieeeeeeeeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeeanns 431
15.7.18 INitialNOAE [ClaSS].....ceiiiiiiiiiiiiiieeeeeeee ettt ettt 431
15.7.19 InterruptibleActivityRegion [ClasS].........cooiiiiiiiiiiiieiieiiieiieeeeeieeeeeeeeeeeeeeeiee e 432
15.7.20 JOINNOAE [ClaSS]..ceiiiiiiiiiiiiiiiieee ettt ettt et e e ieeeeeeeeeeeeeeeeinns 432
15.7.21 MerdeNOde [ClasSS]...cuueuueueeenenniiiiiiiiiiieeee et eee et ee e eeeeeeeeeeeeeeeeeeeeeeens 433
15.7.22 ObJeCtFIOW [ClaSS]. ...ttt e et eeeeee e 434
15.7.23 ObjectNode [Abstract ClasS]........coeeeeiiiiiiiiieeeeiiiiieie i eeeeeeeeeeeeeeeeeeeenns 435
15.7.24 ObjectNodeOrderingKind [ENUMEration]............eeeeeeeiiieeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeiiiiieiienns 436
NV I /= 1111 o) (=X [0 1= 11 T T 437
15.8 Association DeSCriptioNS.iieeeiiieeiiiiiiiiieiiieeeieiee e 438
15.8.1 A_containedEdge_inGroup [ASSOCIAtION]...uuu.iiieiiiiiiiiiiiieiiieeieieeeeeeeeeeeeeeeee 438
15.8.2 A_containedNode_inGroup [ASSOCIAtION].......cvuueuiiiiieeiiiiiiieeeeieeeeeeeeeee e 438
15.8.3 A_decisionlnputFlow_decisionNode [AsSSOCIation]........ueeeeeeieieiiiiiiiiiiiiiiiiiiieieieeeeeeeeene 438
15.8.4 A_decisionlnput_decisionNode [ASSOCIatioON].....u.eeeeieeeiiiiiiiieiiiiiieieeeeeeeeeeeeieieeeeiiiiiiaa, 438
15.8.5 A_edge_activity [ASSOCIAtION]....cciiiiiiiiiiiiiiiiiieeee e 438
15.8.6 A_edge_inPartition [Association]..........eeeeiiiiiiiiiiiiiiiiiiiiiii 439
15.8.7 A_exceptionlnput_exceptionHandler [Association]...........coveeveeiiiiieiiiieiiiiiiieieiiiiieeeeeene. 439
15.8.8 A_exceptionType exceptionHandler [Association].............eeeiiveeeeeiiiiiiiieiiiiiiieieiiiiiienn. 439
15.8.9 A_group_inActivity [Association].........coeeeeiiiiiiiiiiiiiiiiii 439
15.8.10 A guard_activityEdge [AssocCiation]......eeeeeeeeeeeeeeeiiiiiiiiiieiee e 440
15.8.11 A_handlerBody exceptionHandler [Association]..............euveeeeeiieiiieiiiiiiiiiieiiiiiiieieeeenne. 440
15.8.12 A _handler_protectedNode [ASSOCIAtIoON]....cuueeeeeeieeiiiiiiiiiiiieiiiiieeeeeeeeeeeeeieiieeeee, 440
15.8.13 A ininterruptibleRegion_node [Association]............cccceeeeeeenennnneeeniiiiiiieeeee 440
15.8.14 A_inPartition_node [AsSSOCIatioN]......coovvuuunieiiiiiiiiiiiiieieiiiiie e 440
15.8.15 A_inState_objectNode [ASSOCIAtiON]..ccuuuuuiiiiieeeeiiiiieeeieeeeeeeeeeee e, 441
15.8.16 A_incoming_target node [ASSOCIAtION]....uuuuueiiiiiiiiiiiiiiiiiiiiiiieieieee e, 441
15.8.17 A _interruptingEdge_interrupts [Association]...........ceevuveeeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeee 441
15.8.18 A _joinSpec_joinNode [ASSOCIatioON].....ceeiiiiiiiiiiiiiiiiiiiieeieieeieee e 441
15.8.19 A _node_activity [ASSOCIatioN]......uvveeiiiiiiiiiiiiiiiiiiiiiiiii 441
15.8.20 A_outgoing_source_node [ASSOCIatioN]....coucveeeeiiiiiiiiiiiiiiiiiiiiiiiiiii 442
15.8.21 A_parameter_activityParameterNode [Association]..........c.uueeiiiieueeeiiiiiiiiieiiiiiiiiieeeeieenan. 442
15.8.22 A_partition_activity [Association]............ceeuiveuuiiiiiiiiiiiiiiiiiiiiieiiieee e 442
15.8.23 A redefinedEdge_activityEdge [Association]..........eeeeeeeeeeeeeeiniiiiiiiiieieeeeeeeeee 442
15.8.24 A redefinedNode_activityNode [Association].......ccceeeeeeeeeeennneeeeeiiiiiiiiieeeeeeee, 443
15.8.25 A _represents_activityPartition [ASSOCIatioN].......eeeeiiiieiiiiiiiiiiiiiiiiiiiieiiiieeeeeeiieieeean, 443
15.8.26 A_selection_objectFlow [ASSOCIAtION] . uuuuuuiiiiiieeiiiiiieeeeieeeeeeeeeeeee e, 443
15.8.27 A_selection_objectNode [AssOCiation].......eeiieeeeniiiiiiiieiiiiiiiieeiiiieeeeeeeeee e 443
15.8.28 A_structuredNode_activity [ASSOCIatioN]...uu.uiiiieeueiiiiiiiieiieiiiiiieeiiiiiee e 443
15.8.29 A _subgroup_superGroup [ASSOCIAtION].....eieiiiiiiiiiiiiieiiiiiiiiiiee e 444
15.8.30 A subpartition_superPartition [Association]...........cccoeeeeeeeeeiiiiiiiiiiiiiiiiiiieeeeeee 444
15.8.31 A_transformation_objectFlow [Association]...........oeveeeveueeueieieiiiiiiiiieiiiieeeeiciiieeeeeeeeeee 444
15.8.32 A_upperBound_objectNode [ASSOCIation]........uueeeeieieiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeiaaene 444

Unified Modeling Language 2.5.1 Xix

15.8.33 A_variable_activityScope [ASSOCIatioN]....cuueeiiviiiiiiiiiiiiiiiiii 444
15.8.34 A _weight_activityEdge [AsSSOCIation]..cu.u.eiiiiiieieiiiiiiieeiiiiiiiie e 445
I AN« (o) o - T T T T T 447
16.1 SUMMIAIY ittt ettt et ittt e e et e ettt e e e i eeeieeaeens 447
16.2 ACHONS ...ttt 448
16.2.1 SUMIMIAIY ..ottt e et ettt e e et et ettt e e e et e eeeeeereeeeeaetearaens 448
16.2.2 ADSIract SYNEAX..uuuu ittt r e 448
16.2.3 STy 0= 1o T 449
16.2.4 NOTATION. Lottt e s 452
16.2.5 EXAMPIES. ittt i e 453
16.3 INVOCAtioN ACHONS. ciiuuuiieiiiiiiiiie e 456
16.3.1 ST L0010 0= T 456
16.3.2 ADStract SYNtAX.....uuueieiiiiiii it 456
16.3.3 SEMANTICS. .o i ittt 456
16.3.4 [N (o) 7= 10 o T T T 459
16.3.5 | e=10010) [T T 462
16.4 ObJECE ACHONS. ..ttt ettt et e it ieeeieeeenn 464
16.4.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 464
16.4.2 Abstract SYNtaX......oooovueiiiiiiiiiiii e 464
16.4.3 SEMANTICS. ettt 464
16.4.4 [N [0) 7= 1 (1o o 466
16.4.5 [e=10010) [T T 466
(S 10 = o o [B = L = P 467
16.5.1 SUMIMIAIY ..ottt et et e ettt e e et et ettt e ettt eeeeeeeeereeeaetearaens 467
16.5.2 A 1] (=T o1 B 1A 0] =) T TN 467
16.5.3 SEMANTICS. ettt e e 467
16.5.4 NOTATION. Lot 468
16.5.5 EXAMPIES. ittt e 468
16.6 LiNK ACHONS. oiieeiieiiiiiie ittt eeieiies 468
16.6.1 STV 0 010 0= T 468
16.6.2 ADStract SYNtAX.....uuueieiiiiiii it 469
16.6.3 SEMANTICS. oo i ittt 469
16.6.4 N[0 7= [0 o T T T 471
16.6.5 | e=10010) [T T 471
16.7 LinK ODJECt ACHONS. coouuiieiieiiieeeeee ettt ee e eeeeieeeeenn, 471
16.7.1 SUMIMIAIY .ottt ettt ettt et ettt e e ettt e et e e e e et eeeeeaereeeeeaeaaaraaas 471
16.7.2 Abstract SYNtaX......oooouueiiiiiiiieiii e 472
16.7.3 SEMANTICS. ettt 472
16.7.4 [N [0) 7= 1 1o o 473
16.7.5 [e=100]) [T 473
16.8 Structural Feature ACHONS.........ovevueiiiiiiieieiiiiiiiee e, 473
16.8.1 SUMIMIAIY ..ottt ettt ettt ettt e et ettt e e et e eeeeeeereeeeeaeaearaens 473
16.8.2 ADSIract SYNTAX..uuuu ittt 473
16.8.3 SEMANTICS. oottt et e e 473
16.8.4 NOTATION. Lottt e s 475
16.8.5 EXAMPIES. .ttt 475
16.9 Variable ACHONS. .oiuuuiie i, 475

XX

Unified Modeling Language 2.5.1

16.9.1 SUMMIBIY .ottt ettt ettt ee i eeeiees 475

16.9.2 ADStract SYNtAX.....uuueeeiiiiiii i 476
16.9.3 SEMANTICS. oo i ittt 476
16.9.4 [N (o) 7= 1[0 o T T 477
16.9.5 | e=10010) [T T 478
16.10 Accept Event ACHIONS. ...vuieeuiiieeiiiieeiieeeieeeeeeeeeeeeeeee e 478
16.10.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 478
16.10.2 Abstract SyNtaX......ooooeveeueiiiiiiiiiiii i 478
16.10.3 SeMANTICS. .euuuuiiiiii ettt e e, 478
S O I S\ o] =Y (o o T T 480
16.10.5 EXAMIPIES. ettt eeaeee e 480
ST IS (Vo3 (0] Yo I AN@ (o 1 T T T 481
16.11.1 SUMIMANY .ttt ettt et ettt et et eeeteeeeeeeteeeeeeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeiaas 481
S N IV A\ o 1] (1= (o 01 ¢) T T 482
16.11.3 ST 00 F= 10110 T T 482
16.11.4 NOTATION. oot 486
16.11.5 EXAMDIES. ittt i e 486
16.12 EXpansion REQIONS . .. ouivuuniiiiiiiii ettt 486
16.12.1 STV 0 010 0= T 486
16.12.2 AbStract SYNtaX.....oeeuuuuuuueieiiiiiiiii e 486
16.12.3 SeMANTICS. .coiiiiiiiiiiieiieeee ettt e e e e e e 487
1o T 2 S \\ o] = (o) o W T 488
R = = 1111 0) =Y T 490
16.13 Other ACONS. .. u ettt ettt ettt et et et eiaieeeans 492
16.13.1 SUMIMIAIY .ottt ettt ettt et ettt e e ettt e et e e e e et eeeeeaereeeeeaeaaaraaas 492
16.13.2 Abstract SyntaX......ooooeveeueeiiiiiiiii i 492
16.13.3 SeMANTICS. .euuuuiiiiiii ittt et e e, 492
S BT N\ (o] =Y (o) o T T 493
16.13.5 EXAMIDIES ettt ieeaee e 493
16.14 Classifier DeSCIPtIONS.oveuuueiiiiiieeiiiiiiiiee e e e, 494
16.14.1 AcceptCallACtion [ClasS]....... i iiiiiiiiiiiiiieieecieeeee e eeeeeeeeeeeeeeeeeeeeeeiienenn, 494
16.14.2 AcceptEVentACtON [ClaSS].....couuiiiiiiiiiiiiiieiieeeee ettt 495
16.14.3 Action [Abstract ClaSS] . ..uuuiiieeeeiiiiiiiiii i 496
16.14.4 ActionINputPin [ClasS]....uueueueiiiiiiiiiiiiiiieeeeeee e, 498
16.14.5 AddStructuralFeatureValueAction [ClasS]......couuuueuiiiiiieeiiiiiieeeeeeiiieee e 498
16.14.6 AddVariableValueAction [ClasS]........cuuueiiiieeuuiiiiieie e eeeeeeennss 499
16.14.7 BroadcastSignalAction [ClasS].........cooeiiiiiiiiieieeeeeieiieieiee e eeeeeeeeeeeeeeeeeeeees 500
16.14.8 CallAction [AbStract ClasSS].......ceuuuuuuuneieieiiiiiiiiiiiiieeeeeeeeeeee e eeeeeenns, 501
16.14.9 CallBehaviorAction [ClasSS].......euuuuuuuuuieieiiiiiieiieiieeeeeeeeeeeee e, 502
16.14.10_ CallOperationAction [ClaSS].......eeeueeuueeeieiiiieiiiiieiiieeeeeee e eeee e eeeeeeeeeene 503
16.14.11 ClauSe [ClasS]..uuuuuiii ittt e et e et it e e eieeeeeeeeeeeeeeeeeeienns 504
16.14.12 ClearAssociationACtioN [ClaSS].....ouuiuueuiiiiieeeeieeiieee e ee e 505
16.14.13_ ClearStructuralFeature Action [ClasS]........uuuiiiiieeuiiiiiieieeieeieieeeeeeeee e 505
16.14.14_ ClearVariable Action [ClasS].........oooiiiiiiiieieiiiieieieie e eeeeeeeeeeeeeeeeeeeeiinann, 506
16.14.15_ ConditionalNOde [ClaSS].......ceeieiiiiiiiiiieieeeee et ee e eeeeeeeeeeeeeeeeinnnnn, 506
16.14.16_ CreateLinkKACtion [ClaSS].....cuuuiiiiieee i, 508
16.14.17 CreatelinkObjectACtion [ClasS].......coiiiiiiiieiiieiiiiiieeeeeeeeeee e eeeeeeeeeeeeieeeieeees 508
16.14.18 CreateObjectACtion [ClaSS]........eiiiiiiiiiiiiiiieeieeeee e eeeeeeeeeeeeeeeeeeeeees 509
16.14.19 DestroyLinkAction [ClasS]........cveveueuuuiueieiiiieie e eeeeeeeeeeeeeeeieieeeeeeeenns, 510

Unified Modeling Language 2.5.1 XXi

16.14.20 DestroyObjectAction [ClasS]..........eiiiiiiiiiiiiiiiiiiieeeiieie e eeeeeeeeeeeeeeeeees 510
16.14.21 ExpansionKind [EnumMeration]............coeuiiuuuiiiiiiiiiiiiiiiiiieieeiiiiee et 511
16.14.22 ExpansionNOde [ClaSS]......coiuieeeueriuiiieiiiiei et eeeeeeeeeee e eeeeeeeens, 511
16.14.23 ExXpansioNREeQiON [ClaSS]....uuuuuuuieiiiiiiiiiiiiieiieeieeeiieiee e ieieeeeeeeeeeieeieeeees 512
16.14.24 INPUIPIN [ClaSS].ciiiiiiiiiiiiiiiiiieeeeeeeeeee ettt eeeeeeeeeeeeeinns 512
16.14.25 InvocationAction [Abstract ClassS]........ceeuuuuuuuuieieiiiiiiiiiiiiiiieeieieieeeeeeeeeeeeeeeeeeeeean, 513
16.14.26 LinkAction [ADStract ClasSS]......ouiuuuuuiiiiiieeieiieeeeeeeeeee e eeeeeeeeeeeeeaeennn, 513
16.14.27 LinkEndCreationData [ClasSS]........iiiiiuuuiiiiiiiiieiiiiiiee e 514
16.14.28 LinkENdData [ClasS]......ccciiiiiiieiieeeeieiieiiiiiieeeeeeeeieeeeeeeee e eeeeieeeeeeeeeeeeeenn 515
16.14.29 LinkEndDestructionData [ClasSS].......uiiieueeniiiiiieieieiiiiieiieeeieeeeeeeeeeeeeeeeeeieeeeeeeieeeeeeeenn, 516
16.14.30 LOOPNOAE [ClASS].uueeiiiiiiiiiiiiiiieeeeeeeeeeee ettt e ettt eeeeieeeeeeeenn 517
16.14.31 OpaquUeACION [ClaSS]....cuuuuuuuueieiiiieiii et eeeeeeeeeeeeeeeeeeeens 520
(ST Y O 10110101 nd | 1 [0 = 111 521
16.14.33_ Pin [AbStract ClasS].....ooouviiiiieeeieeeeieiiiiiee e eeeeeeeees 521
16.14.34_ QualifierValue [ClasS].........ouoiiiiiiiiiiieiiieiiiieeee ettt eeeeeeeeeeeeeeeenns 522
16.14.35_ RaiseExceptionACtion [ClasSsS]......ceeuuuuuuueiiiiiieiiiiiiieiieeieciieeeeieeeeeeeeeeeeeeeeeieeeeeeeeeee 522
16.14.36_ ReadExtentAction [ClasS]........u.ueeiiiiiiiiiiiiiiiieeeceeeee e 523
16.14.37 ReadlsClassifiedObjectAction [Class]..........oeeeiiieuueiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeieeeeeeeeee, 523
16.14.38 ReadlLinKACHON [ClaSS]. . cccuueeeeeieiiiiiiiiiiiiiiiiieiieeeeeeee et eeieeeeeeeeeeeeeeeeeeeieeieieees 524
16.14.39 ReadLinkObjectENAACtION [ClaSS] . uuuuuuiiiiieeeiiiiiiiieeiieee e 526
16.14.40 ReadLinkObjectEndQualifierAction [ClasS].........ccoueviieeeeeuuiiiiiiieieiiieieeiiiieeeeeiiieeeeeee 527
16.14.41 ReadSelfAction [ClasSsS]......uuuuuuueeiiiiiiiiiiiiiiiie e eeeeeeeeeeeeens 528
16.14.42 ReadStructuralFeature Action [ClasS]........eeieiiieeiiiiiiiiiieiieiiieeeeieeeeeeeeeeeeeeeeeeene 529
16.14.43 ReadVariableAction [ClasS].........oooiiiiiiiiiieieeiiiii e eeeeeeeeeeeeeeeeeeeeieiiennn 529
16.14.44 ReclassifyObjectACtion [ClasS].......ooiiiiiiiieiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeees 530
16.14.45 ReduceACtion [ClaSS].....cieeeeeeeueiiiiiiiei ettt eee e e eeeeeeeeeeeeeees 531
16.14.46__RemoveStructuralFeatureValueAction [Class]........ccccuvvveueeeeiiiiiiiieiiiiiiiiiiiiiiiiiieeeeeen, 532
16.14.47 RemoveVariableValueAction [ClassS].......cevueeeueeeeiiiiiiiiiiiiiieieeeiieiieieeeieeeeeeeeeeeeeeeeeeeeeeeeens 533
16.14.48 ReplIYACHON [ClaSS] . uuuuuueueeieiiiiiii it ee e eeeeeeeeeeeeeeeeeeens 533
16.14.49 SendObjectAction [ClasS].......uuuueeiiiiiiiiiiiiiiiie e eeeeeeeeeeeeeens 534
16.14.50 SendSignalAction [ClaSS]..iuuuu.iiiiieee ittt ee e eeeeeeeeees 535
16.14.51 SequenceNOde [ClaSS]...uuuuuuiiiiieuiiiiiiieee ettt 536
16.14.52 StartClassifierBehaviorAction [ClassS].......ccueuuueeueiieiiiiiiiiiiiiiiiieeiiieieee e 536
16.14.53 StartObjectBehaviorAction [ClasS].......coouiiiiiiieeeeeiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 537
16.14.54 _ StructuralFeatureAction [Abstract Class]..........eeeeieeiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeiin, 538
16.14.55 StructuredActivityNode [ClasS].........oovveeueueuuueiieiiiiiiiieieeieeeeeeieeeeie e, 539
16.14.56_ Testldentity ACtion [ClaSS]........ieiiiiiiiiiiiiiieeieeeeeiee e, 541
16.14.57 _UnmarshallAction [ClasS]........ieiiiiiiiiiiiiiiiiieeieeeieeieens 542
16.14.58 ValuePin [ClasS].....ccceeueueeeiiiiiiiiiii ittt e e et eeeeeeeeeeeeeeeeeeeeeenn, 543
16.14.59 ValueSpecificationAction [ClassS].......ceeeueuruuuueiieiiiiiiiiiiiiiiieeecccieeeee e, 544
16.14.60_ VariableAction [Abstract ClasS]..........eeieieiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 544
16.14.61 WriteLinkAction [Abstract ClassS].......oovvveeeeiiiiiiiiiiiiiiiee e 545
16.14.62 WriteStructuralFeatureAction [Abstract ClasS]...........oooovvvivieieeeeeiiiiieieiieieeeieeeeeeeeeeeiieeen. 545
16.14.63 WriteVariableAction [Abstract Class].........eiiiiieeeiiiiiieieiiiiieeeee e, 546
16.15 Association DescriptionS.cocuuiiieuiiiiiiiiiiiiiiiieei e 547
16.15.1 A_argument_invocationAction [Association].........oeveeeeeiiiiiiiiiiiiiiieeieeieeee e 547
16.15.2 A_association_clearAssociationAction [Association]...........cceeeeiiveeeeiiiieeiiieiiiiiiiieieeeeeannn. 547
16.15.3 A _behavior_callBehaviorAction [Association]............uuueeeieiiiiiieiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeen 547
16.15.4 A _bodyOutput_clause [ASsoCiation]...........eeeeiiinneiiiiiiiiiiiiiiiiiiiiiiiii 548
16.15.5 A bodyOutput loopNode [ASSOCIAtION]....uvuureeeiiiiieiieiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeinee 548
16.15.6 A_bodyPart_loopNode [ASSOCIatioN]....uuuiiiiiuieeiiiiiiieeiiiiiiiieeeeiiiee e 548

xxii

Unified Modeling Language 2.5.1

16.15.7 A _body clause [AssoCiation].......cceeeeeueeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie 548

16.15.8 A classifier_createObjectAction [Association]...........ceueveueieeiieiiiiiiiiiiiiiiiiiicieieieeeeeeen 548
16.15.9 A classifier_readExtentAction [Association]..........ceevvuueueiieieiiiiiiiiiiiiiiieiiiiiiiieeieieeeeeeee 549
16.15.10 A classifier_readlsClassifiedObjectAction [Association]..........eeeeeeeiseiiecceeeeee . 549
16.15.11 __A_clause_conditionalNode [ASSOCIAtiON]....uuuueeieieeeiiiiiiiiiiiiieeeeeeeeeeeeeeieeeeeeen 549
16.15.12 A _collection_reduceAction [ASSOCIAtiON].....cceeeiiiiiiiiieeiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 549
16.15.13 A_context_action [ASSOCIAtiON]........euuuiiiiiieeiiiiiiieeiiiieeee e 549
16.15.14 A _decider_clause [ASSOCIAtioN]..........uueiiiieuiieiiiiiiiiie i 550
16.15.15 A _decider _loopNode [ASSOCIatiON]..euuuuuiiiieeeeeiiiieiieei i 550
16.15.16_A_destroyAt_linkEndDestructionData [Association].........ooeeeeeiiiieeeeeeeiiiiiiiiieieieeeeeeiieeeeenes 550
16.15.17__A_edge_inStructuredNode [Association]...........ooevieeeeeuuuiiiiiiiieiiiiieeeeeieeeeeeeeieeeeeeee 550
16.15.18 A_endData_createlLinkAction [ASSOCIAtION]....uuuuiiiiiiiiiiiiiiiiiiiiiieieie e, 550
16.15.19 A_endData_destroyLinkAction [Association]..........eeeeveueeeiiiiiiiiieiiiiiiiieiiiiiiieieeeiiieeeeene 551
16.15.20 A _endData_linkAction [Association]...........eeeeeeeeeeeeeeeiiiiiiiiiiiiiieee e 551
16.15.21 A _end_linkEndData [Association].............cccceeeninniiiiieeeiseseeee e 551
16.15.22 A _end_readLinkObjectEndAction [Association]............ceevevueuueeeeiiiiiiieiiiiiieeieiiiciieeeeen 551
16.15.23 A_exception_raiseExceptionAction [Association].............eeevvuueieiieieiiieiiiiiiiiiiieiiiinnn, 552
16.15.24 A _executableNode_sequenceNode [Association]..........ooeeveeeieeeveuiiiiieiieeeeeeiiiiiiieiiiiiivann, 552
16.15.25_ A first_testldentityAction [ASSOCIAtioON]....uuvueueeeieiiieeiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee, 552
16.15.26_ A_fromAction_actionlnputPin [Association]............ooeveeeueuiuiiiiieiiiieeiiiieiiieeeeieieeeee 552
16.15.27_A_inputElement_regionAsInput [ASSOCIAtiON]....uuuieiiiiiiiiiiiieiiiiiiieiiieeeeeeeeeeeeeeeeeeeeiaa, 552
16.15.28 A_inputValue_linkAction [AssocCiation].......o.eeuuueiiiiieeeiiiiiiiiiieieiiiiieeeeieeee e 553
16.15.29 A _inputValue opaqueAction [ASSOCIatioN]........ceeuvueeeenieiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeees 553
16.15.30 _A_input_action [ASSOCIAtION]...ueeeeiieeeeiiiieiiiiiii i 553
16.15.31 A _insertAt addStructuralFeatureValueAction [Association]............ceeeeeeeeeeeeeeeiiiinn. 553
16.15.32 A_insertAt_addVariableValueAction [AssocCiation]..........eeeiiieueieiiiiiiieiiiiiiiiieeieeiiiieeeeennee, 553
16.15.33__A_insertAt_linkEndCreationData [ASSOCIatioN].......c.ooeveiiiiieeeeiiiiiiiiiieiieeeeieeeiieeeeeiiiiaann, 554
16.15.34 A localPostcondition_action [Association].............ccccceneineneneeeiiiiieeeeeee 554
16.15.35 A _localPrecondition_action [Association]......eeeeeeeeeeeeessssiiiiiiiieeeeeeeeee 554
16.15.36__A_loopVariablelnput_loopNode [ASSOCIation].......uuueeeeieieiieiiiiiiiiiieiiiiiiiieieeieieeeeeeeeeeeeeenns 554
16.15.37__A_loopVariable loopNode [ASSOCIation].........ueuueeeeieiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeiinan, 554
16.15.38 A_newClassifier_reclassifyObjectAction [Association]............eeeiiieeeeeiiiiiieiieiiiiiieieeeenen.. 555
16.15.39 A node_inStructuredNode [ASSociation].........ooovvvieieeeeeeiiiieiiiiiiieieeiiieeeeeeiieeeeeeeee 555
16.15.40 A _object_clearAssociationAction [AsSOCIation].........eeeeeiiiiiiiiiiiiiiiieiiiiiiiieieieieeeeeeeeeeeeeeenns 555
16.15.41 A object readlsClassifiedObjectAction [AssocCiation]......eeeeeeeeeeeeeeeeiiiiiiiiiiieeee, 555
16.15.42 A _object_readLinkObjectEndAction [Association]............oovvveeeeeeeueiiiiiiiiiieiiieiiieeeeieiiinennn. 555
16.15.43 A _object_readLinkObjectEndQualifierAction [Association].............eeeeeeeeeieiieeiiiiieeeeeeeennnee.. 556
16.15.44 A_object_reclassifyObjectAction [Association].........cueeeeeiiieneiiiiiiiiniiiiiiiiiiiieees 556
16.15.45 A object startClassifierBehaviorAction [Association].......eeeeeeeeeeeeeeeiiisiiiieeeeee 556
16.15.46__ A _object_startObjectBehaviorAction [Association]..........ccoeeveveveeeeeveiiiiiieeieieieeeeiiieeeeeeeneee. 556
16.15.47 A _object_structuralFeatureAction [AsSOCIatioN].......eeeeeeeiiiiiiiiiiiiiiiiiiiiiieeieeeieeeeeeeeeeeeeenns 556
16.15.48 A object unmarshallAction [Association].............ccccceneennnneniiiieeeeeee 557
16.15.49 A _oldClassifier_reclassifyObjectAction [Association]........oeeeveeeeeeeiiieiiiieiiiiiiieieeiiiieeee. 557
16.15.50 A_onPort_invocationAction [ASSOCIatioN].........uuueeeeeeiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeiiaen 557
16.15.51_ A_operation_callOperationAction [Association]..........ccouuvveveeeuuuiiiiiieieiiiiieieiiiiieeieeiiiinennn, 557
16.15.52 A _outputElement_regionAsOutput [Association]..........oooeevveieeeeeeeeeiiiieiiiiieiieeiiieeeeeeiiivnnnnn. 557
16.15.53 A outputValue opaqueAction [ASSOCIation]........ooeeeeeeiiiiiieeeiiiiiieieeieieiieeeeeiieeeeeeeiannn 558
16.15.54 A _output action [AsSOCIation]........eeeeieeeeieeiiiiiiiiiiiiiiiie i 558
16.15.55 A_predecessorClause_successorClause [Association]..........eeeeeeieieiiiiiiiiiieiiiiiiinneenneee 558
16.15.56__A_qualifier_linkEndData [ASSOCIAtiON].....coeeeeiiiiiiiiieieiiiieieieeieee e 558
16.15.57 A _qualifier_qualifierValue [AssoCiation].........coccuuuuuveveieiiiiiiiieeeiiiiieiiiieiiiiiiiieeeeeeee 558

Unified Modeling Language 2.5.1 XXiii

16.15.58 A_qualifier_readLinkObjectEndQualifierAction [Association]...........coeeeeveeeiiiicnnneieiiennnn.. 559

16.15.59 A_reducer_reduceAction [ASSOCIAtioN].....uuueueeeieiiieeiiiiiiiiiiiiiiieieieeeeeeeeeeeeieeeiiie, 559
16.15.60 A _removeAt removeStructuralFeatureValueAction [Association]..........coooeeevvieieeuneenn.... 559
16.15.61 A removeAt removeVariableValueAction [Association].........ceeeeeeeeeesssicicceeeeee, 559
16.15.62__A_replyToCall_replyAction [ASSOCIAtioN].....u.eeeieieeiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee, 559
16.15.63 A _replyValue_replyAction [AsSOCIatioN]......cceuueieeieiiiiiiiiiiiiiiiiiiieeeeeeeieeieiiiiieeeeeeen 560
16.15.64 A _request_sendObjectAction [ASSOCIAtION]...uuuueieieeiiiiiiiiiiiiiiiiieieie e, 560
16.15.65 A_result_acceptEventAction [ASSOCIAtION].....iiiiieeeiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeee 560
16.15.66_ A_result_callAction [ASSOCIAtION].....cuuuuiiiiieiiieiiiiiiiiie i 560
16.15.67_A_result_clearStructuralFeatureAction [Association]..........eeeeeeeiieieeiiiiiiiiiiieiiiiiiiiieeeenn. 560
16.15.68 A _result_conditionalNode [ASSOCIAtioON]....uuuueiieiieiiiiiiiiiieiiiieeeeeeee e, 561
16.15.69 A _result _createlLinkObjectAction [Association].........eeeeieieiiiiiiiiiiiiiiiiiiieiieieieeeeeeeeeeeeeeenes 561
16.15.70 A _result_createObjectAction [ASSOCIAtION]....uueeeieiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeenn, 561
16.15.71 A result loopNode [ASSOCIation]...eeeeeeeeeeeeeeeieiieiiiieee e 561
16.15.72__A_result_readExtentAction [ASSOCIAtION]....uuueeieieieeiiiiiiiiiiieeeeeeieeeeeeeeeieeeeeeen 562
16.15.73__A_result_readlsClassifiedObjectAction [Association]...........ccceevvvvvveeeeiiiiiiieeeeiiiiiiiiinnnnns 562
16.15.74 A _result_readLinkAction [ASSOCIAtioN].....uuuuueeiiiiiiiiiiiiiiieiieiieeeeeee e, 562
16.15.75__A_result_readlLinkObjectEndAction [Association].........eveveeeeeeeeeiiieeieiiiiiiiiiiiiieieeeeennn 562
16.15.76__ A _result_readlLinkObjectEndQualifierAction [Association].........ooeeeeeiiieeeiiiiieeeiiiieeeeeenn. ., 562
16.15.77 _A_result_readSelfAction [ASSOCIAtioN].....covvveeeniiiiiieiieiiiiiieeeeeeiee e, 563
16.15.78 A_result_readStructuralFeatureAction [Association]..........ooeeeeviieveeeeeueiiiiiiieieieeeeeiieeeeennns 563
16.15.79 A result_readVariableAction [ASSOCIAtioN].....u.eiiiiiieieiiiiiiiiiiiiiieiieieeeiieeeeeeeeeeeeeeiaen 563
16.15.80 A _result _reduceAction [ASSOCIatioN]..euuuu.iiiieeiieiiiiiieeiiiiiiiee e 563
16.15.81 A result_testldentityAction [Association].............cccccnenennnnneneiiiiiiiiiieeeee 563
16.15.82 A result_unmarshallAction [AssOCIiation].......eeeeeeeeeeeeneeeeiiiiiiiiiieieeeeeee e 564
16.15.83__A_result_valueSpecificationAction [Association]........oceeeeieeeiiiiiiieeeeeiiiiiieiieieieeeeeeeeieeeeeennns 564
16.15.84 A _result_writeStructuralFeatureAction [Association].........eeeeeeeeiiiieiiiiiiiiiiiiiiiiiiieeeeeeeeeennn. 564
16.15.85__A_returninformation_acceptCallAction [Association]...........eeeveeeveveieiieieeeieeeeeeeeiiieeieevnnne. 564
16.15.86__A_returninformation_replyAction [ASSOCIation].......ceeeeeeriiiieeieiiiiiiiiieeeeeeeeeeeieieeeeiiiiiiaen, 564
16.15.87_A_second_testldentityAction [Association]...........ooovvveeeeeuiuiiiiiieiiiieieiiieiiieeeieeeee 565
16.15.88 A_setupPart_loopNode [ASSOCIatioN]....u..iiiieeeeiiiiieeieieeiiiieeeeieeeeeeeeeeee e 565
16.15.89 A_signal_broadcastSignalAction [ASSOCIatioN]..........uueiiiieeueiiiiiiiiieeiiiiiiieeeeiiiiieeeeeeeeaan 565
16.15.90 A _signal_sendSignalAction [ASSOCIAtION]....uuuueeeiiieiiiiiiiiiiiiiiiiieieieieieeeeeeeeeeeeeeeenn, 565
16.15.91 A_structuralFeature_structuralFeatureAction [Association]..........ccooevvveveeeeeveiieieiieeeeen., 565
16.15.92 A structuredNodelnput_structuredActivityNode [Association]...........ccccveeeeeeennnnneneeennnnnnn.

16.15.93 A_structuredNodeOutput_structuredActivityNode [Association]..........eeeeeeiieeeeeiiiiiieenennn.. 566
16.15.94 A _target callOperationAction [AsSSOCIation].........ccevvevuueeeiiiiiiiiiiiiiiiiiieeeeeiieeeeeeeeeeeee 566
16.15.95 A_target destroyObjectAction [Association]..........eeeeeeeeeeiiiiiiineiiiiiiiieiiiiiieeiieeeee 566
16.15.96 A target sendObjectAction [Association]..........eeeeeeeeeeeeeeiiiiiiiiiieiiiieeee e 566
16.15.97 A _target sendSignalAction [AsSSOCIation]..........ooveveeeeeuuuiiiiiiiiiiiiieiiiiiieeeeeiieieeeeeeeee 567
16.15.98 A _test clause [ASSOCIAtON]. . .cueeeuuruiiiiieiieieie e 567
16.15.99 A test loopNode [AssoCiation].........eeeeeeeeeeeneeeiiiiiiiiiiiiieeeeee e 567
16.15.100_A_trigger_acceptEventAction [Association]..........ooevveeeeeeeeeeiiiieiiiiiiiiiieiieeeeiiieeeeeee 567
16.15.101_A_unmarshallType unmarshallAction [Association]..............eeuveieeeeieieiieiiiiiiiiieeeiiiiiinnnn., 567
16.15.102_A_value_linkEndData [ASSOCIAtioN]......ccuuuiiiiieeeiiiiiieeieieiieeee e, 568
16.15.103_A_value_qualifierValue [AsSOCiation]...........euveeeeiiieiiiiiiiiiiiiiiiiiiiiiieeie e, 568
16.15.104_A_value_valuePin [AssOCIatioN]......couveuuueiiiiiiiieiiiiiiiie e 568
16.15.105_A_value_valueSpecificationAction [Association]...........coeeeeniiiiiiiiiiiiiiiiiiiiiiiieenee 568
16.15.106_A_value_writeStructuralFeatureAction [Association].........coeeeeeiiiiieieiiiiiiieiiiiiieeene 568
16.15.107_A_value_writeVariableAction [ASSOCIatioN].........uvueeeieiiiiiiiiiiiiiiieiiiiiiiieeee e, 569
16.15.108 _A_variable_scope [ASSOCIatioN]..........uuiiiiiuuiieiiiiiiiiee it 569

XXiv Unified Modeling Language 2.5.1

16.15.109 A_variable variableAction [ASSOCIatioN].........veeeeiiieeiiiiiiiiiiiiiiiiiiiie 569

o A 11 (=T = (i o) 1 T T 571
oA R S TV 1010 = T A T T T T 571
17.1.1 (@ LY V= T 571
17.1.2 Basic trace MOdeliiiieeeiiiiiiiiee e 571
17.1.3 Partial ordering constraints on valid and invalid traces.............cccccoeeeiiiieivieieiiiiiieeeeeeen. . 572
17.1.4 Interaction Diagram VariantS..........oooooiiiiiiiieeeeeiiieee e 572
17.2 INteraCtioNS......cuuiiieeiiiiiiei i 572
17.2.1 SUMIMIAIY ..ottt ettt et ettt e e et e ettt e e et e e eeeeeeeeeeeeeeaaaeaens 572
17.2.2 ADStract SYNtAX.....uuueieiiiiiiiiiiiiiiieee e 573
17.2.3 ST 00 =101 (o T T 573
17.2.4 [N (o) 7= 10 o T T T 574
17.2.5 EXQMPIES. .ottt 576
A T 1 =Y 1= T T 577
17.3.1 SUMIMIANY ..ottt ettt e e ettt et eee et et e et e e et eeeeeeeeeeeeeeeeeeeaens 577
17.3.2 Abstract SYNtaX......oooovueiiiiiiiiiiii e 578
17.3.3 SEMANTICS. .o iiiiiiieeee e e e e e e, 578
17.3.4 [N [0) 7= 1 (1o o 578
17.3.5 EXAMPIES. ..ottt ee e 579
174 MESSAQES. .oiieeueniiiiiie ettt 579
17.4.1 SUMIMIAIY .ottt et et e et e e ee et et et e e e it e et eeeeeieeeeeeeeeeeeens 579
17.4.2 ADSIract SYNEAX..uuuu ittt i e 580
17.4.3 SEMANTICS. oottt e e e 580
17.4.4 NOTATION. Lot 582
17.4.5 | e=10010) [T T 584
17.5 OCCUIMENCES. ettt ettt ettt ettt et e et eeeeeeeeeeeeeieeeeeeees 585
17.5.1 SUMIMIAIY ..o e ettt et e ettt e ettt ettt e e et e e eeeeeeeeeeeeaeaaaeaens 585
17.5.2 ADStract SYNtAX.....uuueieiiiiiii it 586
17.5.3 ST 00 F= 101 (o T T 586
17.5.4 N[0 7= [0 o T T T 587
17.5.5 EXQMPIES. .ottt ee e 587
176 FragmentS....ooooeee i 587
17.6.1 ST L0010 0= T 587
17.6.2 Abstract SYNtaX......oooouueiiiiiiiieiii e 588
17.6.3 SEMANTICS. oo ittt e e, 588
17.6.4 [N [0) 7= 1 1o o 591
17.6.5 | e=10010) [T T T U U TR T 592
17.7 INteraction USES.....iieuiiieiiieiiiiiieiie et 596
17.7.1 STV 0 0= 596
17.7.2 ADSIract SYNTAX..uuuu ittt 597
17.7.3 SEeMANTICS. oo iiiiiiiieeie et e e e e 597
17.7.4 NOTATION. Lottt e s 597
17.7.5 | e=10010) [T T 598
17.8 Sequence DiagramsS. oouveeueeiiiiiieee et 601
17.8.1 Sequence Diagram NotatioNn..........oooovviiiiiieeieiiiiieeii i 601
17.8.2 Example Sequence Diagram.ceeuuuuuuiieiiiiiiiiiiiiiiiieeeeeeeeee e 605
17.9 Communication DiagQramsS.........eiieuniiiiiiiiiie e 605

Unified Modeling Language 2.5.1 XXV

17.9.1 Communication Diagram Notation..............ceueeeiiiiieeiiiiiiiiiieieiiieiee e 605
17.9.2 Example Communication Diagram............oeoeeeieieiiieieeeeiiiiiieieiie e, 607
17.10 Interaction Overview DiagramS. iue.iieu i 607
17.10.1 Interaction Overview Diagram Notation............coeeeveeeeeiiiiiiieiiiiiiiieeieiieiieieeieeeeeeeeeeean 607
17.10.2 Examples of Interaction Overview Diagrams..............eeeeiieeeeiiiiiieiiiiiiiiiiieeeeieeieeeeeeeeeann . 609
A O T VT T T = o L= T T 609
17.11.1 Timing Diagram Notation............coveuuueiiiiiiiiiiiiiiiiiei e 610
17.11.2 Examples of Timing DiagramsS.ooeeuuueiiiiiiiiiiiiiiiiee e eeeeens 611
17.12 Classifier DeSCriptiONS. . iveeeiiieeiiieiiiie e eeieeeeeieees 612
17.12.1 ActionExecutionSpecification [Class]..........uuuuuueiiiiiiiiiiiiiiiiiiiiiciiieieee e, 612
17.12.2 BehaviorExecutionSpecification [ClasS]..........ceeuiiiiiiiiiiiiiiiiiiiiiiiiieeeieiiiiiiiviiiiiieeee, 613
17.12.3 CombinedFragment [ClasS].........oouiiiiiiiiiiiieeiiiiieieeee e eeeeeeeeeeeee e eeeeeeeieeeieeees 613
17.12.4 ConsiderlgnoreFragment [ClassS]..........eeiiiiuuuiiiiiiiiieeiiiiiiie e 614
17.12.5 ContinUation [ClaSS]....uuuuuueueiiiiieieieeieiiieeeeee et eeeeeeeeeeeeeieeieeieeeeees 615
17.12.6 DestructionOccurrenceSpecification [Class].........ceeeuvuuuuiiiiiiiiiiiiiiiiiiiieeiiiiiiieieieeeeeeeeene 616
17.12.7 ExecutionOccurrenceSpecification [ClasS]..........oovvveieeeueueuiiiiiiiiieiiiiieiieeeeeeiciieeeeeeene 617
17.12.8 ExecutionSpecification [Abstract ClasS]..........cooeveeiiiiiiiiieeeeiiiiiiiiieieieeeeeieeeeeeeeeenn 617
(AR I C T | (=X (01 F=T1=) T T 618
17.12.10 GeneralOrdering [ClaSS]. e et eeieeeeeeeeeiieeieeeees 621
17.12.11 Interaction [ClaSS].....uiuueeeuueeueieieei ittt e e eeeeeeeeeeeeeeeeeeeeeens 621
17.12.12_ InteractionConstraint [ClasS]..........ooeeiiiiiiiiieeeiiiiiieie e eeeeeeeeeeeeeeeeeeeenns 622
17.12.13__ InteractionFragment [Abstract Class]............oovveeeeeiiiiiieiiiiiiiiiiieiiiiiiee e, 623
17.12.14_ InteractionOperand [ClaSS]........uuiiiiiiiiiiiiiieeieieeeeee e ieeeeeeeeeee e e e e eeeieeeiieeees 624
17.12.15__InteractionOperatorKind [Enumeration].........ccouuveeveeeiiiiniiiiiiiiiiiiiiiiieiiiiiieeeeeeeiiiieiieens 624
17.12.16__ InteractioNUsSe [ClaSS].......... i eeeeeeee e, 626
171217 Lifeline [ClasS] . iiiiii ittt e et e et e eeeeeeeeeeeeeeeeeeieeiieneees 628
17.12.18 MeSSAQE [ClaSS].euuuuuuunniiiiiiiiiieeiieee ettt ee e e et eeeeeeeeeeeeeeeeeeennen 629
17.12.19 MessageENnd [AbStract ClasS]......eeuiiiiiiiiiiiiiiiieeeieeeee e eeeeeeeeeeeeeens 632
17.12.20 MessageKind [ENUMEration].........oooeiiiiiiiiiieeeieeieeie i ieeeeeeeeeeeeeeeecceeieeeeieeeeeeeeeeeeeeeeeeeeees 633
17.12.21 MessageOccurrenceSpecification [ClasS].........eiiiiieeeiiiiiiieiiiiiieeeeiiieeeeee e, 634
17.12.22 MessageSort [ENUMEration]..........oovvveeeeueueueiiieiiiiiiieeiiiiieeeeeeeeeeee et 634
17.12.23 OccurrenceSpecification [ClasS].......uuueueeeeiieiiiiiiiiiiiiiiiiiieieeieieieee e 635
17.12.24 PartDecomposition [ClasSS]. . ..uuuuueeeueeeiieiiiiiiiiieiiieeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns, 635
17.12.25 Statelnvariant [ClaSS]........uu.eiiiiiiiiiiiiiieieeeeee ettt eeeeeeee e, 636
17.13 Association DeSCriptiONS . uu.ieeuiie it 637
17.13.1 A action_actionExecutionSpecification [Association]...........cccoeeeeeereeeeniiniiiiiiiiee 637
17.13.2 A action_interaction [Association].......eeeeeeeeeeeesiiiiiiiieeee 637
17.13.3 A_actualGate_interactionUse [AsSSOCIation]...........ceevvuueueiiiiiiiiiiiiiiiiiiiiiieiiiiieeieeeeeeeeee 637
17.13.4 A_argument_interactionUse [ASSOCIatioN]......uuueieieiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeean, 637
17.13.5 A _argument _message [ASSOCIatioN]. euuuuiiiieuueeiiiiiiieieeiiiiie e 637
17.13.6 A before toAfter [ASSOCIatioN].......cveviiieeeeuiiieiiieiiiiiiieieeiiieeeeeeeeee e 638
17.13.7 A_behavior_behaviorExecutionSpecification [Association]..........cc.ceeieeiieeiiieiiieieeenn.. 638
17.13.8 A_cfragmentGate combinedFragment [Association].............cooveveiiiciiniiiniiiiiniiiiinnn. 638
17.13.9 A _connector_message [ASSOCIatiON]. . euuuuuiiiieeriiiiiiiiieii e 638
17.13.10_A_covered_coveredBy [ASSOCIAtiON]. cuuuuiiiiiiiieiiiiiiieeiiiiiiiiee e 638
17.13.11 A _covered_events [ASSOCIAtION]....cuueeeeiiiiiiiiie it 639
17.13.12 A covered_statelnvariant [Association].........ccccceeeeeeenneneiiiiiiiiiiiiieeeeeeeeeee 639
17.13.13__A_decomposedAs_lifeline [ASSOCIAtION]...uuuureeiieeeeeiieiiiiiiiiiiiieeiiiiiieeee e 639
17.13.14__A_execution_executionOccurrenceSpecification [Association]..............ooeevveveeveviieeeennn.... 639
17.13.15 A finish_executionSpecification [Association].........cccceeeeeeeeeneeeeeiiniiiiiiiieeeeeee, 639

XXvi

Unified Modeling Language 2.5.1

17.13.16__A_formalGate_interaction [Association]............covveeiiiiiiiniiiiiiiiiiiiiiiiiiiiciie 640

17.13.17__A_fragment_enclosingInteraction [ASsociation]..........coooeviiiiieieeeveiiiiiieiiiiieieeeeeeeeeeeeeieenn. 640
17.13.18__A_fragment_enclosingOperand [ASSOCIatioN]...........uvuueueeiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeee 640
17.13.19 A generalOrdering_interactionFragment [Association]..........eeeeeeeeeiseiiccceeeeeeeen . 640
17.13.20__A_guard_interactionOperand [ASSOCIAtioN]......uuueeeeieieieeeeiiiiiiiiiiiiieeeeeeeeeeeeeeieeeeeeiiiiian 641
17.13.21__A_invariant_statelnvariant [ASSOCIQtiON].......cceeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 641
17.13.22 A_lifeline_interaction [ASSOCIAtION]......uuuuuiiiiieeeeiiiiiieeieeiieieeeeeeee e, 641
17.13.23 A_maxint_interactionConstraint [Association].............cooevvueeiiiiieiiiiiiiiiiiieieeiiiieeeeeeeine 641
17.13.24 A_message_considerlgnoreFragment [Association].........oocevuiiiiiieeieiiiiiiiieeieeiiiiieeeeeenee, 641
17.13.25 A_message_interaction [ASSOCIAtioN]........cuuuuiiiiieeeiiiiiiiiiee e 642
17.13.26_ A _message_messageEnd [ASSOCIAtioON]....uu.eiiiiiieiiiiiiiiiiiiiiieieeeee e 642
17.13.27__A_minint_interactionConstraint [ASSOCIation].........ccoovvvveeeeeeeiiiiieiiiiieeiiiiieeeeeeiieeen 642
17.13.28 A_operand_combinedFragment [ASSOCIation]............eeeiiieeuueieiiiiiiiieiiiiiiieeeiiiiiieeeeeeeevan, 642
17.13.29 A receiveEvent_endMessage [AssOCiation].....eeeeeeeeeeeeeiiisieieiieeeeeeeeeeeie 642
17.13.30__A_refersTo_interactionUse [ASSOCIAtION]....ceeeeeeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeieeieeeeieeeeeeee 643
17.13.31__A_represents_lifeline [ASSOCIAtioN].......uuuuuuueeeiiiiiiiiiiiiiiieieiicieeiee e 643
17.13.32__A_returnValueRecipient_interactionUse [ASSOCIQtioN].....uueeeeieeeeeeieiiiiiiiiiiiiiiiiiiiiiiieeeeeen, 643
17.13.33__A_returnValue_interactionUse [ASsSOCiation].......ccueuuiieieeeriuiiiiiieeieieeeeeeeieieieeeieeeen 643
17.13.34_A_selector_lifeline [AssoCiation].........cuuuiiiiieuuiiiiiiiiiieiiiiiiiiee e 643
17.13.35__A_sendEvent_endMessage [ASSOCIAtiON].....ooeeeeiiiiiiiiieeiiiiiiiiieieeieeeeeeeeeeeeeeeeeee 643
17.13.36__A_signature_message [ASSOCIAtiON] . ucuuuuiiiieeeeiiiiiiieeieieeeee e, 644
17.13.37__A_start_executionSpecification [ASSOCIatioN].......uueeeeeiiiiiiiiiiiiiiiiiiiiiiieieeieieeeeeeeeeeeeeeeeenes 644
17.13.38__A_toBefore_after [ASSOCIation].........ovvveveeeeeeeeiiieieiiiiieieeeiieeeeeeeeee e 644
18 USECASES. .. iiieeeiiiiie ittt ettt e et e e e e eeeees 645
18.1 USE CaASES. .. iiiiiueiiiiiee ettt ettt ettt 645
18.1.1 SUMIMIAIY .ttt et ettt ettt et eeeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaiaas 645
18.1.2 ADSErACE SYNEAX. uututiieiiiiiieeiiee ettt 645
18.1.3 ST 0 0= 110 T 645
18.1.4 NOTALION. Lottt e e 647
18.1.5 EXAMPIES. .ottt 649
18.2 Classifier DeSCIIPtIONS. . iuuuiieiiiiiieiiei e eieeeeen, 653
18.2.1 Y e (o) il (O F= 3= T T T T 653
18.2.2 EXtENd [ClaSS]....uu ittt eeeeeaees 653
18.2.3 ExtensionPoint [ClaSS]......uuuuuee i eeeeee e 654
18.2.4 INCIUAE [ClASS]..oiiiiiiiiiiieeeee ettt ettt e e e eeeeeeeeeeeeeeeeeeeeenns 654
18.2.5 USECASE [ClaSS].uuuuueiiiiiiiiiiiiieeeeeeeee ettt et e e e et eeeeee e eeeeeeenes 655
18.3 Association DeSCriptioNS.iieeeiiieeiiiieiiiieieieeeeeieeee i 656
18.3.1 A_addition_include [Association].........cuuuuiiiiiieiiiiiiiiiie i 656
18.3.2 A_condition_extend [Association].............ccccneninnin 656
18.3.3 A_extend_extension [Association]...............cccciin 657
18.3.4 A_extendedCase_extend [AsSSOCIation]..........uuuuuuueeeiiiiiiiiiiiiiiiieiiiiieeeeeee e 657
18.3.5 A_extensionLocation_extension [Association].............ceeiiiieueiiiiiiiiiiiiiiiiiiiiieeeiiiiieeeeeeee, 657
18.3.6 A_extensionPoint_useCase [Association]........eieieeeuiiiiiiiieiiiiiiiee e 657
18.3.7 A_include_includingCase [AsSOCiation]..........cceuueueuuniieiiiiiiiiiiiiiiieeiecieiieeeeieeeeeeeeeeeeeees 657
18.3.8 A_subject_useCase [ASSOCIAtION]....uiiiiiiiiiiiiiiiiiieiieeeeee e eeeeeeeeeeeees 658
(ES I B =Y o] (01 0101=) 01 €T T T 659
9.1 SUMMIAIY ettt ettt ettt ettt ettt ettt et et it e it e e eieieeen, 659
(S =Y o] (o)1 41 01 £ T T 659

Unified Modeling Language 2.5.1 XXVii

19.2.1 SUMMIBIY .ottt ettt ettt ee i eeeiees 659

19.2.2 ADStract SYNtAX.....uuueeeiiiiiii i 659
19.2.3 SEMANTICS. oo i ittt 659
19.24 [N (o) 7= 1[0 o T T 660
19.2.5 | e=10010) [T T 660
19.3 AN ACES. et ee e eeieeenn, 662
19.3.1 SUMIMIAIY .ot e ettt et et e ettt e e ettt ee e et et e eeeeeeereereeaeaaaranns 662
19.3.2 Abstract SYNtaX......oooovueiiiiiiiiiii e 662
19.3.3 SEMANTICS. ettt 662
19.34 N[0 7= 1 (1o o 663
19.3.5 [e=10010) [T 663
S R\ (o T [T 663
19.4.1 SUMIMIAIY ..ottt et et e ettt e e et et ettt e ettt eeeeeeeeereeeaetearaens 663
19.4.2 ADSIract SYNTAX..uuuu it 664
19.4.3 ST 00 F= 10110 T T 664
19.4.4 NOTATION. oot 664
19.4.5 EXAMDIES. ittt i e 665
19.5 Classifier DeSCIIPtIONS. . iuuuiieiieiiiiiei e eieeeeieeieeeeeenn, 666
19.5.1 PN 101 7= (o A (O = T T T 666
19.5.2 CommunicationPath [ClassS]........uuuuuueiieiiiiiiiiiiiiiiieeeceieeieieeeeeeeeeeeeeeeeeeieeeeeeeeeeeee 667
19.5.3 DeployedArtifact [Abstract ClasS].......uu.eeieiiiiiiiiiiiiiiiieiiiiiiiieeie e 667
19.5.4 Deployment [ClasS].....ooouuiiiieeeeeeeeiiiiiiee ettt ee e eeeeeeeeeieeeees 667
19.5.5 DeploymentSpecification [ClasS].........eeiiiiiiiiiiiiiiiiieiieieieieiieeeeeeeeeeeeeeeeciieeeeeeeeeeeen 668
19.5.6 DeploymentTarget [Abstract ClassS]........ooeveeeeeuuuiiieieiiiiiiiiiiiiieeeeeiieeeee e 669
19.5.7 DNV ol Y (O F= 1Y) 669
19.5.8 ExecutionEnvironment [ClassS]........uuiiiiiuieiiiiiiiiei e 670
19.5.9 Manifestation [ClasS].........coouiiiiiieeeeiiiiieiei i 670
19.5.10 NOAE [ClaSS]. ettt e et e e e e et e e eeeeeeeeeeeaenn 670
19.6 Association DescriptionS..........c.uiiieuiiiiiiiiiiiieiiiieii e 671
19.6.1 A_configuration_deployment [Association]...........oovvveeeeeeuuiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeee 671
19.6.2 A_deployedArtifact_deploymentForArtifact [Association]............eeeeeeeeeeeeeeiiiiiiiiiiiiiiveenn., 671
19.6.3 A_deployedElement deploymentTarget [Association]............cccceceiineeeeeenneeeeeiiiiie 671
19.6.4 A_deployment_location [ASSOCIAtiON]...eeeeieeeeeiiiiiiiiiiiiiiiiiiiiii 671
19.6.5 A_manifestation_artifact [Association]...........oooovvviiveeeeeeiiiiiiiiiiiiiiiiee e 672
19.6.6 A_nestedArtifact_artifact [ASSOCIAtioN]......ueeieiieiiiiiiiiiiiiiiicieiie e 672
19.6.7 A_nestedNode node [ASsOCIation].....eeeeeeeeeeeeeeiiiieeeee e, 672
19.6.8 A_ownedAttribute artifact [Association].......eeeeeeeeeeeeiiiiiiiiiii 672
19.6.9 A_ownedQOperation_artifact [Association]...........coovevveeveueuriiiiiiiiiiieieiiiiieeeeiiieiieeeeeee 672
19.6.10 A_utilizedElement_manifestation [Association].........cceeeeeieiiiiiiiiiieeeeiiiiiiiiieieieeeeeeeeieeeeeenns 673
20 INfOrmatioNFIOWS. ...o.uuiiieeiiieiiiiiiiee et eee i 675
20.1 Information FIOWS. ...oou.iieiiiiiieeeeeeeeee ettt eeieeens 675
20.1.1 100010071 T 675
20.1.2 AbStract SYNtaX......eiiiiieeeeiiiiiiie e 675
20.1.3 ST 00 F= 101 (o T T T 675
20.1.4 NOTAtION. .ottt 676
20.1.5 =101) [T T 677
20.2 Classifier DeSCHPtONS. . ..u.iiiiieieei i 678
20.2.1 InformationFIOW [ClasS]......cuuuuiiiiiiiiiei et 678

Xxviii Unified Modeling Language 2.5.1

20.2.2 INformMationItemM [ClaSS] e e 679

20.3 AsSSOCIation DESCIIDtIONS . ..euieieiieiieiiiie ettt eeeeieeenaes 680
20.3.1 A_conveyed_conveyingFlow [ASSOCIAtioN]. u...iieeuiiieeiiieiiiieiiieiieeiieeeeeeeeeeeeeeieeeee 680
20.3.2 A_informationSource_informationFlow [Association]...........ccoeeveiiiiiiinneiiiiiiieiiiiiieeeenes 680
20.3.3 A_informationTarget informationFlow [Association]..........cccceeeeeeneeeeeeieiiiiiie 681
20.3.4 A_realization_abstraction_flow [AsSOCIatioN].........eeeiiieiiiiiiiiiiiiiiiiiiiieiieeieieieeeeeeiieeeeeeeeenns 681
20.3.5 A_realizingActivityEdge _informationFlow [Association].......cooeveeeeiiiiieeeiiiiiiiiieeeiiiiiienns 681
20.3.6 A_realizingConnector_informationFlow [Association].............eevvveueeieeeieiieeeeiiiiiiiiieevieeenne. 681
20.3.7 A_realizingMessage_informationFlow [ASSOCIation]......eiieeiiieeiiieeiiieiiiieiiiieeeiiieeieeennn 681
20.3.8 A_represented_representation [ASSOCIation]...........ueeeiiieueieiiiiiiiiiiiiiiie e 682

2] P MtV Ty DS ittt ittt ettt ettt ettt ettt ettt et e teeeeeereeteeenteeenteeenaserenteenseeenasaes 683

20 SUIMI AN . ettt ettt et ettt ettt ettt ettt ttaeeaetaetttatteteatteitatiaiiateesieaienaieaieenies 683

202 S OIMANE CS . . ittt ettt ettt ee et ettt tteite.tteiteitiesieiseesieiieesissiesiiesieeseess 683

213 INOTAION. ettt eeeeiannes 683

214 EXAMPDIES ittt 683

22 StanNdard Profile. . .. ittt ettt et it ieeieraiiiiieitieaieeaiireaiieaiieniees 685

221 SUMMIAIY ettt eeeeeeaennes 685

22.2 MOAC. it eeeeeeaenns 685

22.3 Standard StereotYPeS. . oo 685

ANNEX AL DI A S ittt ittt ettt ettt ettt ettt ettt teenteeeteee st ateeteteateeateenaeenaeeeareenss 689
Annex B: UML Diagram INterChanQe. . .. c.u ettt ettt i iieeeeeeieaseenen, 693

Bl QUMMM ittt eeeeeees 693

B2 G ONBIIC. ittt ettt e e ieiaeeans 694
B.2.1 SUMMIBIY ettt ettt ettt ettt ettt ettt et ee i e 694
B.2.2 UML Diagrams and Diagram ElementS...........ooovveeiiieeiiiiiiiiiiiiiieiiieeiiieeeieeeeeieeeeeen 694
B.2.3 UML Shapes and EdQesS. .. oiueiiieiiii ittt ettt et ettt e eeteteeeeetteeaeeeesieeenterenaeerenaass 695
B.2.4 LADIS e 695
B.2.5 Compartmentable ShapeS.......ooouueeiiiiiiiiiiiiiieeeeeeeeeeee e, 697
B.2.6 Stereotype APPIICAtIONS. ... 697
B.2.7 UML SHVIES .o 699

B3 StUCKUIE . ettt ieeeenan 699
B.3.1 SUMIMIAIY .ot ettt ettt ettt et ettt e et e e e i e e aeiaeeann 699
B.3.2 StruCtUre DiagramS. .iouueeee ittt e e eeeieees 699
B.3.3 ClasSifier SNAPES. ..iiuuiiiiiiiiiieee et eeeeies 701
B.3.4 Multiplicity and Association End LabelS..........oiiieeiiiieniiiiiiiiiiiiiiieiiieeeiiieeeiieeeeeeeeeeee, 702
B.3.5 Association, Connector, and Link ShapeS........coouvveeuiiiiieeiiiiiiiiieeeeiieieeeeeeieeeeeeeeees 703

B4 BENAVIO . ittt eeeeiennen 703
B.4.1 SUMMIBIY .ottt ettt ettt eei e 703
B.4.2 Behavior DiagramiS. .. oot 703
B.4.3 ACtiVity Diagram LabeIS.ttt ittt ettt etetee et teetieteeteeteeereeiaeenss 707
B.4.4 St SIS, . ittt ettt et teieiiereetietieieeeiieresitereiiiireiiereieiieaieeienies 708
B.4.5 Interaction TableS.. ..., 709

B.5 InfOrmation FIOWS...ouiuiiiiiiiii e, 709

B.6 UML Notations and UML DI RepresentationS..........ooeieeiiieiiiieiiieiiiiiiiiiiiiiieiiieeiieeieennns 710

Unified Modeling Language 2.5.1 XXix

B.7 Classifier DEeSCIPtIONS. . vuuiieuiiieiieiiieiiiieiiieiiieeiie i, 730
B.7.1 UMLACtivityDiagram [ClasSS]...cuuueueeeeeeieiiiiiiiiiieeeieeeeieieieeeeeeeeeeeeeeeeeeeeiieeeeeeeeeeeeenne, 730
B.7.2 UMLAssociationEnNdLabel [ClasS]........uu.ueeiieiiiiiiiiiiiiieeicieieieee e 730
B.7.3 UMLAssociationOrConnectorOrLinkShape [Class]......cccovveeveeeiiiiiiiiiiieeiiiiiiiiiiiiieeenn, 731
B.7.4 UMLAssociationOrConnectorOrLinkShapeKind [Enumeration]........ooeeeeveeeeeieeieeveneeenee.... 732
B.7.5 UMLBehaviorDiagram [Abstract Class]...........eeeiiieueuieiiiiiiieiiiiiiiiieieeieeieeeeeeeeeeeeeeenn 732
B.7.6 UMLCIlassDiagram [ClaSS]....uuuuu.uiiiieeeeieiiiiieeeieeieeiee et eeeee e e eeeieiiaeeeeees 732
B.7.7 UMLClassifierShape [ClasS].......uuueeeueeeeeeeiiiiieeeieeiiiieieeeeeeeee et 733
B.7.8 UMLCompartment [ClasS].......oeeiiiiiiiiiiieeeeiieeie e e eeeeeeeeeeeeeeeeeennnnn, 733
B.7.9 UML CompartmentableShape [ClasS].......coeeuiiieiiiiiiiiiieieiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeene 734
B.7.10 UMLComponentDiagram [ClaSS]......uuueuuueeeeeieiiieeeeieeeeeeieeeee e, 734
B.7.11 UMLCompositeStructureDiagram [ClasSS].......oiueeuueneiiiiiiiiiiiiiiiieieeieiieeeeeeeeeeeeeieeeeees 734
B.7.12 UMLDeploymentDiagram [ClasS].........ooeeevueureuinieieiiiiiieiiiiieeeeieeiieeeieeeeeeeeeeeeeeeeeeeeieiiannnn, 735
B.7.13 UMLDiagram [Abstract Class]...........ouvvieeeuuuuiiiieiiieiiiieiiiiiieeeiciiieeeeee e, 735
B.7.14 UMLDiagramElement [Abstract Class]..........oeiiiieeuuniiiiiiiiieiiiiiiieieieeiieeieeeeeieeeeeeeeen 736
B.7.15 UMLDiagramWithAssociations [Abstract Class]........ceeeeeeeeieiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeieeeeeennns 737
B.7.16 UMLEAQE [ClaSS]..oiiiiiiiiiiiiiiieieee ettt et et eeeeeeeeeeeeeeeeeeeeenss 737
B.7.17 UMLInteractionDiagram [ClaSS].........uiiiieueeiiiiiieiieeiiieee e eeeeeeeeeeeeieeeeeeeieeeeeeees 737
B.7.18 UMLInteractionDiagramKind [Enumeration]..............eeiiiieeuieiiiiiiiieiiiiiiiieeeiiieieeeeeeeenn 738
B.7.19 UMLInteractionTablelLabel [ClasS].........uuuuueueiiiiiiiiiiiiiiiiieieiciieeeeeee e, 738
B.7.20 UMLInteractionTableLabelKind [Enumeration]............ceeeeeeieiiieieiiiiiieeeeiiiiiiiiieeeieeeeeeeeeenn. 739
B.7.21 UMLKeywordLabel [ClasS]........oooviiiiiiiiieeeeeiiee e eeeeeeeeeeeeeeeeeeeeenannnn, 739
B.7.22 [0V =Y oY= W (O F= 1= 740
B.7.23 UMLMultiplicityLabel [ClasS]........uuuiieeeiiiiiieiieeeiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeiieees 740
B.7.24 UMLNameLabel [ClasS]....cuuuiiiiieeeiiiiiiiie e, 740
B.7.25 UMLNavigabilityNotationKind [Enumeration].............cevuveueiiiiiiiiiieeeiiiiiiieiiiiiieeeeeeee 741
B.7.26 UMLODbjectDiagram [ClasSS].....uuuuuuuueeiiiiiiiiiiiiiiieeeeeeieeieeeeieeeeeeeeeeeeeeeeeiieeeeeeeeeeeeens, 741
B.7.27 UMLPackageDiagram [ClasSS]......ceuuuuuuuueiieiiiiiiiiiiiiieeeeeeieeeee e eeeeeeenns, 741
B.7.28 UMLProfileDiagram [ClassS]......ocuuuiiiieeeeeiiiiiieeieeieeee e, 742
B.7.29 UMLRedefinesLabel [ClassS]......iuiieuuiiiiiiiiieeiiiiiee e, 742
B.7.30 (01 S g =T o TN (O F= 1] 742
B.7.31 UML StateMachineDiagram [ClasSS]........ ..ot 743
B.7.32 UMLStateShape [ClasS]......iiiieeeeeeeeeeeeiiiiieeieeeeiieeieeeeeeei e e eee i eieeeeeeeeeeeeeeeen 743
B.7.33 UML StereotypePropertyValuelLabel [ClassS]..........ooevveeeeeeiiiiiiiiiiiiiieiieieeeeieeeeeeeeeeen 744
B.7.34 UMLStructureDiagram [Abstract ClasS].........ooiieieeeeiiiiiiiiiiiiiiiiiieeieieiieeeeeeeeiieeeeeeeis 745
B.7.35 UMLSHYIE [ClaSS]...iiiiiiieieeeeeeeie it e e e ee e e et ettt eeeeeeeeeeeeeeeeeeeeeees 745
B.7.36 UMLTypedElementLabel [ClassS].......ceuuuuuuuuiiiiiieiiiiiiiiiiieeeeeeeee e, 745
B.7.37 UMLUseCaseDiagram [ClasS]........eeiiiiiiiiiiiiiieeieiieeiee i ieeeeeeeeeeeeeeeeiiieieeeeeeeeeeeeeeeeenes 746

B.8 Association DeSCrPtONS. ...iueuiieeiiieiiiiiieiiiiiiie e, 746
B.8.1 A_UMLActivityDiagram_modelElement_umlIDiagramElement [Association]..................... 746
B.8.2 A_UMLAssociationEndLabel _modelElement_umlDiagramElement [Association]............. 746
B.8.3 A_UMLBehaviorDiagram_modelElement_umiDiagramElement [Association]................... 746
B.8.4 A_UMLClassifierShape_modelElement_umlIDiagramElement [Association]..................... 747
B.8.5 A_UMLCompartment_elementinCompartment _owningCompartment [Association]......... 747
B.8.6 A_UML CompartmentableShape _compartmentedShape_shape [Association].................. 747
B.8.7 A_UMLDiagramElement_localStyle_styledElement [Association].......oeoeveeeeeieeiieeeennnnenee.. 747
B.8.8 A_UMLDiagramElement_modelElement_umlDiagramElement [Association].................... 747
B.8.9 A_UMLDiagramElement_ownedElement_owningElement [Association]........................... 747

8. A_UMLDiagramElement_sharedStyle_styledElement [Association]...............cceeeeeennnnn....
B.8.11 A_UMLDiagram_heading_headedDiagram [Association].............ccooeeiiviiiiniiiinniinnnnnn. 748
B.8.12 A_UMLEdge_source_sourceEdge [AsSoCiation].........eeeieieiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeenee. 748

XXX

Unified Modeling Language 2.5.1

B.8.13 A_UMLEdge_target targetEdge [Association]........cceeeeeiiiinieiiiiiiiieiniiiiiiiiieee 748

B.8.14 A _UMLInteractionDiagram modelElement _umlIDiagramElement [Association]................ 748
B.8.15 A_UMLMultiplicityElement_modelElement_umlDiagramElement [Association]................. 748
B.8.16 A_UMLNameLabel_modelElement_umlDiagramElement [Association]............................ 748
B.8.17 A_UMLRedefines_modelElement_umiDiagramElement [Association].............ceeeeeeeeenn..... 749
B.8.18 A_UML StateMachine_modelElement_umlDiagramElement [Association]........................ 749
B.8.19 A_UML StateShape _modelElement_umiIDiagramElement [Association]........................... 749
B.8.20 A_UML StereotypePropertyValuelLabel modelElement_umlIDiagramElement [Association
.. 749
B.8.21 A_UML StereotypePropertyValuelLabel_stereotypedElement_labelShowingStereotypeValue
[AS SO C At ON . ettt ettt ettt ettt e et ettt eeeeeteeeeitereetieierieeaeieeiieeaaieeieeaaaaaaeees 749
ANNEX G KO WO TS . ittt ettt ettt ettt ettt ee sttt st teeeteeeteenseenaernaeeeteeteeaeraaeeenseens 751
Annex D: Tabular Notation for Sequence Diagrams.........oooeeeeiieeiiieeiiiieiiiieiiiieeiieeeeeenn. 755
Dl EXAMDIES . ettt eeeeeianaen 756
Annex E: XMI Serialization and SChema.......oo.oiiieiiiieiiiee et eereeieeens 759
Bl QUMMM ittt eee et 759
E.2 XMlI Serialization of the UML 2 metamodel......ooovieiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeen 759
E.3 XMI Serialization of the Primitive Types model library.........occeeeiieeeiiiieeiiiieiiiieeeiiiieennnn. 760
E.4 XMI Serialization of the StandardProfile..........ocooeiiieiiiieiiiiiiiieiieeiieeieeieeieeieeeeeeen, 760
E.5 XMI Serialization of the UMLDI... ...ttt ettt ettt e eteseaseaseaseaeanaes 760

Unified Modeling Language 2.5.1 XXXi

Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21

XXXii

Table of Figures

Semantic Areas Of UML. et e e e e e e e e e e e e e 14
ROO. ..ot h et b ettt 21
(070] 0010 41=T 01 Qg T0] =1 (o o TR SO 22
TOMIPIALES.ot e e e e e e e e e e ————————— 23
Template DINAINGS. e e e e e e e e e e e e e e e ee s 23
N E= T TS o= (o PSP 27
Template package with string parameters............oocuuiiiiiii e 31
Example of element iMport...... ... 31
Example of element import with aliasing...........cccccviiiiiiiiiiiii e 32
Examples of public and private package imports............cueeiiiiiiiiiie e 32
Abstract syntax of types and multiplicity elements.............coooi 33
Multiplicity within a textual Specification................cooiiiiiiiiiee e 35
Multiplicity as an adornment to @ Symbol.............ooueieiiiiiiii s 35
Abstract Syntax of CONSIraINTS.eiiiiiii e 36
Constraint in @ NOte SYMDOL..........e e 37
Constraint attached to an attribute............coo i 37
{XOI} CONSITAINT. ...t e et e e e et e e e e e b e e e e e e nnees 37
Abstract syntax of dEPENAENCIES.coiiuiiiii i e 38
Notation for a Dependency between two elements..........ccccoociiiiiiiiiiiiie e 39
An example of an «Instantiate» Dependency...........cccooiiiiiiiiiiiiii e 39
An example of @ «USE» DEPENUENCY.........eeiiiiiiiiiiee et e et e e e e eree e e e e erre e e e e e snreeas 39
An example of a realization DEPENAENCY...........cccoiiiiiiiiieeeeeee e 40
LITEIAIS. ... e e e e e s s 69
D q 0 == [o 1 TSR 71
B g TSIR= 1 Lo I 0T = 1 o PSSR 73
1] (= V= = PO PP OPP PR PPPPPRPP 76
Example of DurationConstraints and TimeConstraints..........c.ccoccviieiiiiiii e 77
L@ =171 =T OSSR 97
Generalization notation showing different target styles............ccccoviiiiiiicii e, 101
Example of Substitution NOtation..............ceeiii i 101
Classifier TEMPIAtES.cooi ettt e e e eeeeeaaes 102
Template Class and BouNd CIass............uuueeiiiiiiiiiiiie ittt 104
ANONYMOUS BOUNA CIASS.......uuuiiiiiiiiiiiiei et e e e e e e e e e e e e e e eaans 104
Template Class with constrained Class parameter............occueeieiiiiiiiie i 104
Lo T T I O F= T PSSP 105
FRAIUIES......cei e 105
L 0] 0 =15 (=T T USRI 109
Examples of attributes. e 113
Association-like notation for attributes............coo 114
L@ oT=T =1 i o] o <SP EPR 114
GENEraliZAtION SEES......uuiiiiiiiiiiiiei e a e e e e e e 117
GeneralizationSets designated by NAME..........c..evii i 118
GeneralizationSets designated by shared target............ccccveiiiiiiiiiii e, 118
GeneralizationSet designated by dashed line spanning Generalization arrows..................... 119
GeneralizationSet constraint notation with shared target style..............ccccooiiii 119
GeneralizationSet constraint notation with dashed line style.................cccccciiiiiel. 120
Power type notation with shared target style..............cooorric 120
Power type notation with dashed line Style.............oooiiiiiii e 120

Unified Modeling Language 2.5.1

Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 9.28
Figure 9.29
Figure 9.30
Figure 9.31
Figure 9.32
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9

Figure 10.10
Figure 10.11
Figure 10.12
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 11.9

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16
Figure 11.17
Figure 11.18
Figure 11.19
Figure 11.20
Figure 11.21
Figure 11.22
Figure 11.23
Figure 11.24
Figure 11.25

Unified Modeling Language 2.5.1

GeneralizationSet notation OPIONS..........cooiiiiiii e 121
GeneralizationSets and CONSTraINTS...........oooiiiiiiiii e 121
POWET tyPE EXAMPIE......ceeeiiieece e e e e e e e e e e e e e e e ————— 122
MoOre POWET tYPE ©XAMPIES. ..cooiiiiiee ettt e e e et e e e e e e e e e e e e e e e e e e nnnnennes 123
More than 0NE POWEITYPE.coo it e e e e e e e e e eeeeas 124
1] o= o= T PR 124
Specification of an Instance of StriNG..........cooiiii i 127
SIOtS WIth VaAIUES. ...ttt e e e e e e e e e e e e e nenneeeee 127
InstanceSpecifications representing two objects connected by a link.............ccccceeeiiiiinennn. 127
InstanceValue represented textually............ccooiiiiiiiiiiii 127
InstanceValue represented graphiCally............c..ooiiiiiiiiiii e 127
= L= 1 Y/ 01 P UEURPURUR 165
PrimitiveType NOtatioN........cccoi i 166
DataType NOTALION.ooii et e e e e e st ee e e e e 166
Enumeration NOTatiON.........ooiii e 167
T To 4 = PP PPUPPPRPR 167
ReCeption NOTAtiION. ... e e e e e e e e e e e e 168
11 (=T =T USSR 169
ISensor is a provided Interface of ProxXimitySensor..............euiiiiiiiiiiiieeeee e 170
ISensor, a provided Interface of ProximitySensor, is shown as inherited by

CaAPACHIVESENSON. ... ettt e e sttt e e e e e e e e nneee s 171
ISensor is a required Interface of TheftAlarm...............coooiiiiiiieeee 171
Alternative notation for required and provided Interface..........ccccccccccooiiiiiiiiiiiiiiiiieeeeeeeeeee, 171
A set of collaborating INterfaces. ... 171
SErUCIUrEd ClasSifiers.ot e e e e e e e e e e e e e e e e e annnes 181
Parts @nd FOIES........oooii e e e e e e e e e e e 184
Parts and roles With POIS...........uuiiii e 184
Alternative notations for connecting parts and roles with Ports.............ccooooiiiiiin. 185
Associations compared With CONNECLOrS....... ..o 185
"Star" ConNECIOr PAtlErN.. ... e e e e e 186
"Array" ConNECLOr PAEIN. ... e e 186

An assembly Connector maps a simple Port of a Component to a matching simple Port

Of @NOther COMPONENL...........uuiiiiiiiiiiie et e e e e e e e e e e e e e e e e eannns 187
An n-ary Connector that assembles four simple Ports using channeled ball-and-socket
L0} =1 (o o PR 187
Encapsulated CIasSifiers..........cccuuuuiiiiiiiiiiieeee e 188
POt NOTALION. ...ttt e e e e e e e e 190
Behavior Port NOtatioN........ ... e 190
Port notation showing multiple provided Interfaces............ccccoui e 191
o Ty =) €= o 0] o] L= T 191
L0 T RSP 192
Class NOtation VariantS.oiiiiii oot e e e e e eeeeas 194
Class notation: attributes and Operations grouped according to visibility.............................. 194
11T O = T SO 194
(070] a1 a1=Tor (o] £-3K= 1 To I = o £ SO 195
Connectors and Parts in a structure diagram using multiplicities..........cc.ccccccvcveiiiicieee e 195
AN INStance Of the Car Class.........c.oiiuiiiiie i a e e e enneeas 195
InstanceSpecification indicating @ CONSIIUCION...........c.uviiiiiiii e 196
A constructor for the Car Class..........oooii i e e 196
Showing that the extended Class is @ Metaclass.............ceeeviiiieiiiiiiiiiiiiieeee e, 196
ASSOCIATIONS. ...ttt e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e naarane 197
XXXiii

Figure 11.26
Figure 11.27
Figure 11.28
Figure 11.29
Figure 11.30
Figure 11.31
Figure 11.32
Figure 11.33
Figure 11.34
Figure 11.35

Figure 11.36
Figure 11.37
Figure 11.38
Figure 11.39
Figure 11.40
Figure 11.41
Figure 11.42
Figure 11.43
Figure 11.44
Figure 11.45
Figure 11.46

Figure 11.47
Figure 11.48

Figure 11.49
Figure 11.50
Figure 11.51
Figure 11.52
Figure 11.53
Figure 11.54
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 12.15
Figure 12.16
Figure 12.17
Figure 12.18
Figure 12.19

XXXiV

Graphic notation indicating exactly one Association end owned by the Association.............. 200
Binary and ternary ASSOCIAtIONS.ooeviiiiiiiiiiiie e ——————— 202
Association ends with various adornmENtSs.............ccueiiiiiiiiiiiei e 202
Examples of navigable association-owned ends.............ooccuiiiiiiiiii 203
Examples of Class-0Wwned €ndS.........coooieiei e 204
Example of attribute notation for navigable end owned by an end Class.................cccccuuune 204
Derived SUPEISELS (UNION)......ccoii ittt et e e et e e e et e e e e e e snnee e e e e e anneee 204
Composite aggregation is depicted as a black diamond...............cccoo s 205
Composite aggregation sharing @ Source SEgMENt............cceoviiiiiiieiiiiiiiee e e e 205
Example AssociationClass Job, which is defined between the two Classes Person and
LO70] 201 07T 0|28 PRSI 205
Example AssociationClass using diamond Symbol............ccccoocuiiiiiiiiiiiie e 206
Qualified @SSOCIAtIONS........ccicuiiiiiiii et te e st e et e e e erae e e anaeeeenes 206
(O70] 0] oTe] aT=T o) - TP PPPPP TIPSR 207
Example of an overview diagram showing Components and their general Dependencies....209
A Component with two provided and three required Interfaces..........cccccooeeeeviiiiiiiieieeeennnnen, 209
Black box notation showing a listing of provided and required interfaces...............ccccevveeee.... 210
Optional “white-box” representation of a Component.............cccoviiiiiiiiiiiiiiiiiiieeeee e 210
Explicit representation of provided and required Interfaces using Dependency notation....... 210
A representation of the realization of a complex Component............cccoociiiieiiii e, 211
An alternative nested representation of a complex Component..........ccccoooceieiiiie e, 211
Example model of a Component, its provided and required Interfaces, and wiring

through DEPENAENCIES.oeiiiiiiiee et e e e e e e e e e e e e eee e 212
Internal structure of @ COMPONENT............oiiiiiii e 212
Delegation Connectors connect externally provided Interfaces to the parts that realize

Lo g (=0 U 1T =0 £ U= o o USRS 213
L0701 F= Lo To] =1 110] 1 - TP PP PPPPP 213
The internal structure of the Observer Collaboration................ooooiiiiiiiii e 215
Alternative notation for the parts of the Observer Collaboration...............cccccceeiiiiiiii. 216
The Sale Collaboration.ccoiiiiiiii e 216
The BrokeredSale Collaboration............ccoeiiiiiicciiiiiieeeieeee e e e e e e e e e eanees 216
A subset of the BrokeredSale Collaboration using «occurrence» and Dependency arrows. .217
= Ted €= To [PPSR 239
lllustration of the Meaning of Package Merge............coocuuiiiiiiiiiiiie e 240
Conceptual View of the Package Merge SemantiCs...........ccccooiuiiiiiiiiiiiiiie e 241
Notation for Package MEIGE.coooi ittt e e e 247
Examples of a Package With MEmMDErS............cooiiiiiiiiiiiii e 247
Simple Example of Package Merge.........c.uuiiiiiiiiiiiiiiee e 248
Simple Example of Transformed Packages Following the Merges...........cccccciiiiieiiiinineen. 248
Introducing Additional Package MErges...........ooeuuiiuiiiiiiiie e e e e e e e eeeeaaeens 249
Result of the Additional Package MErgES...........cooocuiiiiiiiiiiieieee e 249
Three Models Representing Parts of @ System..........cciiii 249
Two Views of One System Collected in a Container Model............ccccccooiiiiiiiiiiiii 250
e o) 1 L= PO 251
Using the HomeExample Profile to Extend a Model.............occooiiiiiiiiiiee e 255
Specification of an Available Metaclass..............cuuveeeiiiiiiiii e 257
MOF Model Equivalent to Extending "Interface" by the "Home" Stereotype............ccccceeenne. 259
Example of Multiple Metaclass EXtENSION. ... 259
MOF Model Equivalent to Multiple Metaclass EXteNSIioN............ccccoviieiiiiniini i 260
The Notation for an EXTENSION........coooiiiiiii e 260
Example of USING @n EXIENSION..........cccoiiiiiiiiceeeeeee e e e e e e e e e e e enenes 262

Unified Modeling Language 2.5.1

Figure 12.20
Figure 12.21
Figure 12.22
Figure 12.23
Figure 12.24
Figure 12.25
Figure 12.26
Figure 12.27
Figure 12.28
Figure 12.29
Figure 12.30
Figure 12.31
Figure 12.32

Figure 12.33

Figure 13.1
Figure 13.2
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14.17
Figure 14.18
Figure 14.19
Figure 14.20
Figure 14.21
Figure 14.22
Figure 14.23
Figure 14.24
Figure 14.25
Figure 14.26
Figure 14.27
Figure 14.28
Figure 14.29
Figure 14.30
Figure 14.31
Figure 14.32

Unified Modeling Language 2.5.1

Example of a Required EXTENSION..........coooiiiiiiiiii e 262
Defining @ Simple EJB Profile...........ooooiiiiiiiieeeee et 263
Importing a Package from a Profile.............ooooiiiiie e 263
Profiles Applied t0 @ PacCKage.........ccccueiiiieeeeie e 264
DefiNiNg @ STErEOLYPE.coii e 264
Presentation Options for an Extended Class............cooooiiiiiiiiiiiiiiiiieeeeeeee e 264
An Instance Diagram when Defining a Stereotype............oooi i 264
Defining Multiple Stereotypes on Multiple Stereotypes..........cooo oo, 265
0] Lo = TS (=Y (=T 0) 4] o1V SRS 265
Showing Values of Stereotypes and a Simple Instance Specification..........ccccccceeevveiiiiiinnnns 265
Using Stereotypes and Showing ValUEs...........cuuiiiiiiiiiiiiiiiie e 265
Other Notational Forms for Depicting Stereotype Values...........cccooeveiiiiiiiiie 266
Example of a Profile defining Classes and binary composite and non-composite

=TT o7 =1 oo - S 266

Diagram example of applying a profile defining Classes and Associations and of
creating instances of such Classes. Tools can provide a notation similar to that of

object diagrams for instances of Profile-defined Classes, DataTypes and Associations........ 269
LY g E NV o) SR 284
=T o) PO 289
Behavior StateMacChines.uuiiiiiiiiiieie e e 304
Compound transition @XamPIe...........cooiiiiiiiiiiiiie e 316
Notation for a composite State with Regions.............cooviiiiiiiiiiiiiiie e 317
Y= -3 0] =1 1] o TSRS 317
State With @ NAME 1aD........eee e ——————— 318
State With ComMPartMENtS........o..eeiii e 318
Composite State with two States..........ccccciiiiiii e 320
Composite State with a hidden decomposition indicator icon................ccocccciiiiiiieeieieeeeee, 320
Composite State With REGIONS...........eiiiiiii e 320
Composite State with two Regions and entry, exit, and do Behaviors..................cccc 321
Submaching State EXamMPIE..........uuiiiiiiiiee e e e e 322
StateMachine with an exit point as part of the StateMachine graph.......................... 323
StateMachine with an exit point on the border...............ooiiiiiiii e, 323
Submachine Sate that uses an exit Point.............cooooiiiiiiiiiiiiee e 324
State list NOtation OPLION.........ooi i 324
Diagram equivalent to Figure 14.15 without using statelists.............cccccoiiie, 325
FiNalState NOtAtioN. e e e e e e e a e e 325
INitial PSEUAOSIALE. ... 325
ShalloWHIStory PSEUAOSAtE.cooiiiiiii e 325
deepHistory PSeUdOSTAte.ouuiiiii 325
entryPoint PSEUAOSTIALE.coo i ————— 326
eXitPOINt PSEUAOSTALE.coiiiiiiiiie e 326
entryPoint and exitPoints on a composite State............ccociiiiii 326
junction Pseudostate with incoming and outgoing Transitions..............cccccieiiiniiicie 327
ChOICE PSEUAOSIALES. ... e e e e e as 327
terminate PSEUAOSIALE..........uiiiiiiiiiiiie e e 327
fork and jOIN PSEUAOSIALES.oiiiiiiiiiiie e e e e as 328
Entry point ConnectionPointReference notation..............cccco i 328
Exit point ConnectionPointReference notation...............cccooiii 328
Alternative entry point ConnectionPointReference notation.............ccccooiiiicen, 329
Alternative exit point ConnectionPointReference notation.................ccccovveeeiiiiiii, 329
Symbols for Signal reception, Sending, and Actions on a Transition..............cccccceveieeeenennn. 331

XXXV

Figure 14.33
Figure 14.34
Figure 14.35
Figure 14.36
Figure 14.37
Figure 14.38
Figure 14.39
Figure 14.40
Figure 14.41
Figure 14.42
Figure 14.43
Figure 14.44
Figure 14.45
Figure 14.46
Figure 15.1

Figure 15.2

Figure 15.3

Figure 15.4

Figure 15.5

Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.9

Figure 15.10
Figure 15.11
Figure 15.12
Figure 15.13
Figure 15.14
Figure 15.15
Figure 15.16
Figure 15.17
Figure 15.18
Figure 15.19
Figure 15.20
Figure 15.21
Figure 15.22
Figure 15.23
Figure 15.24
Figure 15.25
Figure 15.26
Figure 15.27
Figure 15.28
Figure 15.29
Figure 15.30
Figure 15.31
Figure 15.32
Figure 15.33
Figure 15.34
Figure 15.35
Figure 15.36
Figure 15.37

XXXVi

Deferred Trigger NOLAtION.eiii i 332
[Tor=| I I =T 0111 o] o 1T PP PP 333
EXternal TranSitioNS.........cooi i e s 333
StateMachine diagram representing a telephone............cccooii 334
StateMachine redefinition............. .. e 335
A general StateMacChine.............oooi i —————————— 337
An extended StateMacChine............ccouiiiiii e ——————————— 337
X [o [T a T I I =10 71 1T} o - USSP 338
ProtoColStatEMAaCHINES.ccoiiiiiiiie et e e 339
An example of a ProtocolTransition associated with the operation "m1".............................. 341
Example of several ProtocolTransitions associated with the same operation (m1)............... 341
ProtocolStateMaching eXample.............uueeiiiiiiiiiiiiii e 342
Notation for a State with an invariant..............ccooiiiii e 343
ProtocolTransition NOtAtION. i e e e e e e e e e e 343
217 =SSR 372
ACHVILY NOTALION.ot e e e e et s e e e e e e e e e eeeeeeaearana 377
ACHIVILY Class NOTALION. e e e e e e e 378
ACIVItYNOAE NOLATION. ... 378
ACHIVItYEAGE NOTAtION. ...t e e e e e e e 378
ActivityEdge conNeCtor NOTAtION.oooiiiiiiii e 378
ACIVItYEAGE NOTALION. ...t et e e 379
(070)0) 0] | =l To 1V s To) =1 i o] o PR 379
(@ o] =T ox (o (011 A T] ¢= 11T o 1= S PRRR 379
Specifying selection behavior on an ObJeCtFIOW..............ooiiiiiiiiiiiii e 379
Eliding objects flowing on the €dge...........oooiiiiiiii e 380
Activity node example (where the arrowed lines are the only non-activity node symbols).....380
ACHVItYEAQGE EXAMPIES. ... r e e e e e e e e e e e e e e et aaaaaaaaaaaan 380
ODJECFIOW ©XAMPIE..... .t e e e e e e e aneeas 381
Eliding objects flowing on the €dge...........cooiiiiiiiiii e 381
Specifying selection and transformation Behaviors on an ObjectFlow.............cccccccceeeeiiinne. 381
Linking a class diagram to an object NOde.............oooiiiiiiiiiiiiii e 382
Specifying multicast and multireceive on the edge..........oooiiiiiiiiiiiii e 382
ActivityEdge connector @XampPle............eeiiiiiiiiiiiii e 382
EQUIVAIENT MOEL......c e a e nneeeae s 382
ActivityEdge Weight @Xamples.... ... 383
Example of an activity with input parameter..............cccoi i 383
Part selection WOrkflow €Xample...........coooiiiiiiiiiiiiiiieeeeee e 384
Trouble ticket WOrkflow eXample.........oooiiiiiii i 384
Activity with attributes and Operations..............ooouiiiiiiiii 385
L070] 011 o]l N oo 1= ST PP TP PP PPPPPTPI 385
INItTAINOAE NOTALION. ... e 388
[TaF=11N (oo (=30 o) -1 4o o TSR 389
ForkNode and JoiNNOde NOtatioN..............eiiiiiiiiii e 389
J{oT1 01T o T=Tol gTo] ¢= 11 o] o XN U PRRT 389
Combined JoinNode/ FOrkNode Notation..............eeeiviiiiiiee i 389
MergeNOde NOLALION. e e e e e e e e e e e e enenes 390
DeciSIONNOAE NOTALION.eeiiiiiiiieee et e e e e e e e e e e e e e e nnneeees 390
Combined MergeNode/DecisionNode Notation.............cooieiiiiiiiiiiiiie e 390
INItIAINOAE EXAMPIE. ..ottt e e et e e e s abaeeee e e 390
o (N (oo [N =) =T o 1] o] [391
B [o]\ ToTe [N =Y e a] o 1= TS 391

Unified Modeling Language 2.5.1

Figure 15.38
Figure 15.39
Figure 15.40
Figure 15.41
Figure 15.42
Figure 15.43
Figure 15.44
Figure 15.45
Figure 15.46
Figure 15.47
Figure 15.48
Figure 15.49
Figure 15.50
Figure 15.51
Figure 15.52
Figure 15.53
Figure 15.54
Figure 15.55
Figure 15.56
Figure 15.57
Figure 15.58
Figure 15.59
Figure 15.60
Figure 15.61
Figure 15.62
Figure 15.63
Figure 15.64
Figure 15.65
Figure 15.66
Figure 15.67
Figure 15.68
Figure 15.69
Figure 15.70
Figure 15.71
Figure 15.72
Figure 15.73
Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10
Figure 16.11
Figure 16.12
Figure 16.13
Figure 16.14
Figure 16.15

Unified Modeling Language 2.5.1

JOINSPEC EXAMIPIE. ...ttt e e ettt e e e e ab bt e e e e s abbe e e e e e aanbeneeeeeann 391
MeErgeNOdE EXAMPIE.ccoi it e e s e e e e e e e e e e e e e e e e e et aeaas 391
DeCiSIONNOGE EXAMPIE..... it e e e e e e e e e et e e e e eaes e e e eeas 392
DecisionNode example with decCiSiONINPUL...........oooiiii i 392
ActivityFinaINOdE @XamIPIE.........oiiiiieie e 392
ActiVityFiNalNOAEe €XamMPIE......ccoo i e e e ——————— 392
ACLiVityFINaINOAE €XaMPIE........euiiiiiiiiiiiie e e e 393
FIOWFINAINOAE €XAMPIE......eeeieieii et e e e e e e e e e e e e e e e e eeaeaeaaaaas 393
FlowFinalNode and ActivityFinalNode example..........c.c..uuiiiiii e 393
ControlNode examples (with accompanying actions and control flows).............cccevvviiiiiinnns 394
(@] o] =Ted g [o = T RSP R 394
(@01 =To1 1\ [oTo [l aTo] ¢= 1110] o 1T USRS 397
ObjectNOdE anNOtAtiONS.........c..uuuiiiiiiiieieieceee e e e e e e e e e 398
Specifying selection behavior on an ObjectNOde..............cooiiiiiiiiiiii e 398
Notation for stream and exception parameters.............cccuiiiiiiiie e 398
Presentation option for flows between pins and parameter nodes..........ccccceveveeeeeeeieiiiiicccnns 399
Optional CentralBufferNode notation..............cccuiiiiiiiiiiiiiic e 399
DataStoreNOde NOtAtION. e e e e e e e e e e e e e e enneenes 399
Example of ActivityParameterNodes for regular and exception Parameters.......................... 399
Example of ActivityParameterNodes for streaming Parameters............cccccccvvvvviiiiiinnnnnnnn.... 400
CentralBufferNode eXample...........ooo i 400
DataStoreNOde EXAMPIE.........cceieiiieeeeeeee et aaa e 400
EXECULADIE NOTES.ttt e e e e e e e e e e e e e e e e e e annes 401
(= CCTe18] c= 1] =1\ (oTo L= g o] =1 i o T o SRR 402
ExceptionHandler NOtation..............ueii e 403
Alternative ExceptionHandler Notation.............cccoooo i 403
ExceptionHandler @Xample...........oooo oo ————— 403
F e 11147 €] (o100 1 PP PPRP 404
ActivityPartition NOAtIONS. ... 406
ActivityPartition NOtatioNS...........ooeiiieie e 407
Interruptable ACtiVItYREGION.ooi e 407
InterruptableActivityRegion alternative notation................oooiiii e 407
ActivityPartitions using swimlane notation..................iie e 408
ActivityPartitions using annotation.............cooiiiiiiiii e 408
ActivityPartitions using multidimensional swimlane notation...............cccoccoeiiiii e 409
InterruptableActivityRegion eXample.............cooiiiiiiiii e 409
A CTIONS ettt e e e e e oo e e e e et e e e e e e e e e e e e e a e e e eeees 440
1o) o SR 444
Local pre- and post-CONAItIONS..........coiiieeeee e e e 444
PiN NOTALIONS.eeee it e e e e e e e e e e e e e 444
Pin notations, With @rMOWS............ooi i 445
Standalone Pin NOtatioNS. ... e 445
EXamPIEs Of ACHIONS.... .o 445
Example of action using a tool-specific concrete syntax..........ccceeeeiiiiiiiiii i 445
Example of an action with local pre- and post-conditions.............ccoccveiiiiiiiiic i 446
PN EXAMIPIES. .. et e e e e e e e e ——————————— 446
Specifying selection behavior on an ObJECtFIOW............c..eeiiiiiiiiiiiie e 447
Example abstract syntax model showing the use of ActionInputPins.............cccccciiiiinis 447
TNV o= i 0 Yo T o - 448
CalliNg @ BENAVIOT.........cc ittt e e e e e e e e e e e e e e e e e e aaaeeeeaeaaaannns 452
CalliNg AN ACHVILY....ceee et e e e e e e e e e e s e e e a e e e e e e e eaaaaeeeeaeaaanans 452

XXXVii

Figure 16.16
Figure 16.17
Figure 16.18
Figure 16.19
Figure 16.20
Figure 16.21
Figure 16.22
Figure 16.23
Figure 16.24
Figure 16.25
Figure 16.26
Figure 16.27
Figure 16.28
Figure 16.29
Figure 16.30
Figure 16.31
Figure 16.32
Figure 16.33
Figure 16.34
Figure 16.35
Figure 16.36
Figure 16.37
Figure 16.38
Figure 16.39
Figure 16.40
Figure 16.41
Figure 16.42
Figure 16.43
Figure 16.44
Figure 16.45
Figure 16.46
Figure 16.47
Figure 16.48
Figure 16.49
Figure 16.50
Figure 16.51
Figure 16.52
Figure 16.53
Figure 16.54
Figure 16.55
Figure 16.56
Figure 17.1

Figure 17.2

Figure 17.3

Figure 17.4

Figure 17.5

Figure 17.6

Figure 17.7

Figure 17.8

Figure 17.9

Figure 17.10

XXXViii

O 1o To I=Ta I @ o= = 11[o] o TR PP PRRPRRRN 452
Calling an Operation, showing the OWNer NAME...............ccvevieiiiiiiieee e 452
SeNAING @ SIGNAL.....ci i aaaaaa e e e e e e e 453
Exception Pin @annotations............oooriiiiii i 453
Effect Pin @annotations. e 453
Stream Pin annotations..........oooi e 453
Stream Pin annotations, with filled arrows and rectangles...........cccccccieeeeiiiiiiieccceee, 454
Alternative input/outputs using ParameterSet notation................cccco e 454
INVOKING 8N ACHIVITY ...t e e e e e e e e e e e e eeeeas 454
SeNAING SIGNAIS.......eeiiiiiiie e nres 455
Streaming Pin @XamMPIES........ooo i 455
EXCeption Pin @XamMPIES.... oo oot ———— 455
Pin example With €ffECES..........ooo i 455
Alternative input/outputs using ParameterSets............cooo i 455
ODJECE ACHIONS. ...t e e e et e e e e e e e anees 456
ValueSpecificationAction NOTAtION.............ooooiiiiiiie e 458
ValueSpecCifiCatioNACHIONS. ...t e e e e e e e e 459
[T S =t o 1 7= - TSRS 459
o o] = 3PS 461
LiNK ODJECE ACHIONS.ttt e et e e e s e e e s e nneeeeens 464
Structural FEature ACLIONS..........coo i e e e e e e e s e e aae s 465
Variable ACHONS. ...ttt et e e e e e e e e e e e e e e e e eeaaeas 468
Presentation option for AddVariableValueAction................ccccouiiiiiiiiiiiieeceeee 469
ACCEPT EVENT ACHONS. ...t e e e 470
AcceptEVentACtion NOTAtIONS.........ooi i 472
Implicitly enabled ACCEPIEVENTACHON.........cceiiiii e 473
Explicitly enabled ACCEPtEVENTACHON.coiiii i 473
Repetitive tiIMe @VENT.... ...t e e e e e e e e 473
UNMarshallACHION. ...t e aaannnns 473
Y 0o (U= Yo e 1] 13 PSP 474
Notation for StructuredActivityNOdE.coooiiiiiiiii e 478
EXPansion REGIONS. ... ittt e e e e e e e e e e e e an 478
EXPanSion REGION.t e e e e e e e e e e e e e e e 481
Shorthand notation for expansion region containing single node................cccoooii 481
Full form of previous shorthand Notation................cceeii i 481
Notation for expansion region with one behavior invocation..............ccccccoei i 481
Expansion region with two inputs and one output.............coooiiiiiiccccce e 482
EXPaNSION REGION.ottt e e e sttt e e e e an b e e e e e e abbeeeeaeaans 483
Examples of expansion region shorthand.............coooiiiiiiii e 483
Shorthand notation for eXpansion regioN............cccuuiiiiiiiiiiieee e e 484
(@ 1T o 1] L3P ERR 484
11 0= =T o) o 13RS 565
Overlapping ExecutionSpecifiCations............ooo i 567
An example of an Interaction in the form of a Sequence Diagram............cccccoviiieieiiiiiieenenn. 568
OCCUITeNCESPECITICALION.ciiiiiiiiiii e 568
Sequence Diagram with time and timing CONCEPLS.........ccvviiiiiiiiiiiiie e 569
Y] o PSR 570
1= S= To = T PP PR 572
DestructionOccurrenceSpecification Symbol...........coocueiiiiiii e 576
(@ o o104 (=0T TP TURSR 578
Example showing GeneralOrdering in a sequence diagram...........ccccuveeeeeeeeeeeeeeeeeiceccciniinnns 579

Unified Modeling Language 2.5.1

Figure 17.11
Figure 17.12
Figure 17.13
Figure 17.14
Figure 17.15
Figure 17.16
Figure 17.17
Figure 17.18
Figure 17.19
Figure 17.20
Figure 17.21
Figure 17.22
Figure 17.23

Figure 17.24
Figure 17.25
Figure 17.26
Figure 17.27
Figure 17.28
Figure 17.29
Figure 17.30
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8
Figure 18.9
Figure 18.10
Figure 18.11
Figure 18.12
Figure 19.1
Figure 19.2

Figure 19.3

Figure 19.4
Figure 19.5

Figure 19.6
Figure 19.7
Figure 19.8
Figure 19.9
Figure 19.10
Figure 19.11
Figure 19.12

Figure 19.13
Figure 19.14

Unified Modeling Language 2.5.1

= Lo 1T o €T PRI 580
(07 g1 1Ter=1 I =T [[o] o PP OPPOPPP 585
- Loop CombinedFragment............coooiiieeeeeee e 586
CombiINEdFragmENnt.........ooo i e e 586
L@ a1 (110 F=1 1o o RS 587
Continuation INtErPretatioN..............eii i e e e e e e e e e e e e e 587
Ignore, consider, assert with Statelnvariants............ccccccevee i 588
T (=T = T3 o] 1O =T3P ERRRRR 589
INEErACHIONUSE.ottt e e e e e e e e e e e e e e e e e 590
InteractionUse With Value retUIN..........cceiiiiiieeee e e 591
PartDecomposition - the decomposed part...........c..eeiiiiiiiiiii e 591
PartDecomposition - the decomMpPOSItioN............ccooiiiiiiiiiiiee e 591
Sequence Diagrams where two Lifelines refer to the same set of Parts (and
INEINAl STIUCIUIE)....ceiie e e 592
Describing Collaborations and their binding.............ooooii 593
Overview of Metamodel elements of a Sequence Diagram...............cccoeeviiiiiiiiiiiiiieeeeeeee e, 597
CommuNiCatioN IAgIam..........oooi i e e e e e e e e e e aaaaaaaaas 599
Interaction Overview Diagram representing a High Level Interaction diagram...................... 601
A Lifeline for a discrete ODJECT..... ..o 603
Compact Lifeline with States..........cooo e 604
Timing Diagram with more than one Lifeline and with Messages.............cccccool 604
LT 0= 1T USRS 637
Class diagram of a Package owning a set of UseCases, Actors, and a Subsystem.............. 641
EXaMPIE EXIENG. ... e e e e e e 641
EXaMPIE INCIUAE. ..ottt e e s e e s as 642
UseCase using Classifier rectangle notation................ceeevviiiiiiie e 642
Actor notation USING SHCK-MaAN...........uiiiiiiii e e e 642
Actor notation using Class rectangle........ ..o 642
ACtOr NOLALION USING ICOM. ...ttt 642
Notation for UseCase owned by ClasSifier..........ccouiiiieiiiiiiiiiieeee e 643
Example ATM system with UseCases and ACLOrS...........ccooiiiiiieiiiiiiiee e 643
Example UseCases owned by Packages...........oooiiiiiiiiiiiiiiiiee e 644
Example UseCase with associated StateMachine.................cccoooiiii s 644
(D =T o] (o)1 1T o (3 PP 651
A visual representation of the deployment location of artifacts, including a dependency
between them, inside a DeployedTarget graphicC..........c.oooeiioiiiiiiiiiiiiie e 652
Alternative deployment representation of using a dependency called «deploy» used
when DeployedAtrtifacts are visually outside their DeployedTarget graphics......................... 652
Textual list based representation of DeployedArtifacts.........ccccceeeiiiiiiiiii e, 653
DeploymentSpecification for an artifact. On the left, a type-level specification, and on
the right, an instance-level specification.............ccuuvviiiiiiiii e 653
DeploymentSpecifications related to the DeployedArtifacts that they parameterize.............. 653
A DeploymentSpecification for a DeployedArtifact ... 654
N 1 = Lo £ TP PSURRRRRR 654
AN AIfACE INSTANCE....ceiiieie e e aaaa s 655
A Manifestation relationship between an Artifact and a Component.................ccccceeiiinnnnn. 655
N[00 [= 3 TR 656
Notation for a Device containing an ExecutionEnvironment and connected to another
Device by a CommunicationPath lINK............coooiiiiii e 657
Notation for @ EXeCUtiONENVIFONMENT..........ooiiiiiiiiii et 657
AN NSTANCE OF @ NOE......oiiiiiiiiiii e e e s e e e s neeeeeas 657
XXXiX

Figure 19.15 CommunicationPath between AppServer with deployed Artifacts and a DBServer................ 657
Figure 19.16 Deployed component Artifacts on @ NOde..............uuiiiiiiiiiiiic e, 657
Figure 20.1 INfOrMation FIOWS.........coooiiiiiiii et e e e e e e e e e e e et e e e e e eeaeaeeeeaaaan 667
Figure 20.2 Example of InformationFlows conveying Informationltems...............cccooiiniccee, 669
Figure 20.3 Information Item represented as a Classifier..........ccooouiiiiiiii 669
Figure 20.4 Examples of «representation» NOtation..............ccceeeeiiiiiiiiiiiiiee e 669
Figure 20.5 Informationltems attached to CoNNECIOrS............coiiiiiiiiiii e 669
Figure 20.6 Informationltems attached to ASSOCIAtiONS..........cooi i 670
FIGUre 2711 PrimItIVe Ty DES. .ottt ettt e e e e e e e e e e e e e bt e et e e e e eaaaaeeeeasaaaannnrnnes 675
Figure 21.2 An Integer used as a type for an attribute, with a default value...............ccccccoiiin, 675
Figure 21.3 A Boolean used as a type for an attribute, with a default value.................ccccocooiiiiiiiii 676
Figure 21.4 A String used as a type for an attribute, with a default value..............ccccoociiiiiii e, 676
Figure 21.5 An UnlimitedNatural used as an upper bound for a multiplicity................ccccoviiieien. 676
Figure 21.6 Two attributes with type Real...........ooooiiiiii e 676
Figure 22.1 Model of StandardProfile...............eoii i 677
Figure A.1 LU 1Y/ I =T = 1 o U 681
Figure A.2 Class diagram of PACKAGE P...........uuiiiiiiiiiiiiii et aa e 681
Figure A.3 Two diagrams Of PACKAGES.coiiiiiiiiii e 682
Figure A.4 A class diagram and a composite structure diagram..............ccoooiiiiiiiee 682
Figure A.5 The taxonomy of structure and behavior diagrams..............cccooiiiiiiiiie e 683
Figure B.1 UML Diagram Interchange ArchiteCture............coooiiiiiiiiiii e 685
Figure B.2 UML Diagrams and Diagram Elements...........oooi e 686
Figure B.3 UML Shapes and EAQES.........cooieiiiiiiiieeiiiiiiee e sttt e e e e sttt e e e e ettt e e e s eentaeeeeessntaeeaeesanraeeeeeeanns 687
Figure B.4 0= o= £ U PRRP 687
Figure B.5 UML Compartmentable Shapes...........coo i 689
Figure B.6 Stereotype Application Labels............cc..uuiiiiiiiiiiii e 689
Figure B.7 1Y S 4 [P PEPURPRTT 691
Figure B.8 STTUCKUIE DIAGIAMS. ..ccei ittt e e e e bt e e e e bt e e e e e e abbe e e e e e e nneeas 691
Figure B.9 ClasSIfier SNAPES.ciiii e 693
Figure B.10 Multiplicity and Association End Labels..............coooiiiiiiiiiiiiiieeeeee e 694
Figure B.11 Association, Connector, and Link Shapes..........ccccviieiiiiiiiiiiiieeeeeee e 695
Figure B.12 Behavior DIagramS.ottt e e e e e e e e e e e e e et e e e e e e aaaaaeaeeaeaaaannnns 695
o U = T B Y =Y (Y] = o =Y SRR 700
Figure B.14 Interaction Shapes..........ooiiiiiiiiiiii et e e e s ee e e e anes 701
Figure D.1 Sequence diagram enhanced with identification of the Event occurrences........................... 748
Figure D.2 Sequence diagram with guards, parallel composition and alternatives............ccccccceevvivveennn. 749

xI

Unified Modeling Language 2.5.1

Table 7.1

Table 9.1

Table 17.1
Table 17.2
Table 17.3
Table 17.4
Table 17.5

Table 17.6
Table 21.1
Table 22.1
Table B.1
Table B.2
Table C.1
Table D.1
Table D.2

Table of Tables

Collection types for MUltipliCityElements..........cc.ueeiiiiii e 34
GeneralizationSet CONSIraINtS..........cuiiiiiiiii e 119
Graphic Nodes Included in Sequence Diagrams............occueiiieiiiiiiiiee e 594
Graphic Paths Included in Sequence Diagrams..........ccccuuiiiiiiiiieiieeae e 596
Graphic Nodes Included in Communication Diagrams............ccceeeeiviiireeeiiiiieee e esiiee e 598
Graphic Paths Included in Communications Diagrams...........cccoocueeeieniiiiiiieeniiiieeee e 598
Graphic nodes included in Interaction Overview Diagrams in addition to those borrowed

from ACHIVIEY DIAgramS.coii ittt e e s e e e e e e e e e e e et e e e e e e nnaeeaeeeanrees 600
Graphic nodes and paths included in timing diagrams...........cccccccccoooiiiiiiiiiiiiiieeeeeee e, 602
PrimitiveTYPE dOM@INS. ... et e e et e e e s e rabeeeeeeeanes 675
Description of the Stereotypes in the UML StandardProfile..............ooooiiiiiiii, 678
1Y] T T o1 OO 702
1Y I o [[OSSP 716
KBYWOITS. ...ttt e e e e ettt e e e e o bbbt e e e e e aab b et e e e e aaabbe e e e e e anbeeeeeeeaan 744
Interaction Table describing Figure D. e 748
Interaction Table for FIQUIE D.2.........coo i e e 749

Unified Modeling Language 2.5.1 xli

1 Scope

This specification defines the Unified Modeling Language (UML), revision 2. The objective of UML is to provide
system architects, software engineers, and software developers with tools for analysis, design, and implementation of
software-based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly
more precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly
improved capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and syntax is required. UML meets the following requirements:

¢ A formal definition of a common MOF-based metamodel that specifies the abstract syntax of the UML. The
abstract syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the
rules for combining these concepts to construct partial or complete UML models.

* A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a
technology-independent manner, how the UML concepts are to be realized by computers.

* A specification of the human-readable notation elements for representing the individual UML modeling
concepts as well as rules for combining them into a variety of different diagram types corresponding to
different aspects of modeled systems.

Unified Modeling Language 2.5.1 1

2

Conformance

There are five distinct types of conformance. These are listed below. Unless otherwise stated these types of
conformance are independent.

1

Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete UML metaclasses to be created, read, updated, and deleted. The
tool must also provide a way to validate the well-formedness of models that corresponds to the constraints
defined in the UML metamodel.

Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of UML notation to be created, read, updated, and deleted. Note that a
conforming tool may provide the ability to create, read, update and delete additional diagrams and notational
elements that are not defined in UML.

Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid UML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. A conforming UML 2.5 tool shall be able to
load and save XMI in UML 2.4.1 format as well as UML 2.5 format (see Annex E).

Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and
export conformant DI (see Annex B) for all valid UML models with diagrams, including models with profiles
defined and/or applied. Diagram interchange conformance implies both concrete syntax conformance and
model interchange conformance.

Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
UML semantics, e.g., code generation, model execution, or semantic model analysis. The normative
specification for UML semantics includes clause 6.3 in addition to the Semantics subdivisions of clauses 7-22.
Semantic conformance implies Abstract Syntax conformance.

Where the UML specification provides options for a conforming tool, these are explicitly stated in the specification. In a
number of other cases, certain aspects of the semantics are listed as "undefined" or “intentionally not specified” or “not
specified”, allowing for domain- or application-specific customizations. Only customizations that do not contradict the
provisions of this specification will be deemed to conform to it. However, models whose meaning is based on such
customizations can only be interchanged without loss with tools that support the same or compatible customizations.

This specification comprises this document together with XMI serialization contained in machine-consumable files as
listed on the cover page. If there are any conflicts between this document and the machine-consumable files, the
machine-consumable files take precedence.

Unified Modeling Language 2.5.1 3

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, Sixth Edition 2011
* OMG Object Constraint Language (OCL) 2.3.1 Specification: http://www.omg.org/spec/OCL/2.3.1

* OMG Meta Object Facility (MOF) Core 2.5 Specification: http://www.omg.org/spec/MOF/2.5

* OMG XML Metadata Interchange (XMI) 2.5 Specification: http://www.omg.org/spec/XMI/2.5

* OMG Diagram Definition (DD) 1.1 Specification: http://www.omg.org/spec/DD/1.1

Unified Modeling Language 2.5.1

http://www.omg.org/spec/DD/1.0.1
http://www.omg.org/spec/XMI/2.5
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/OCL/2.3.1

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

Unified Modeling Language 2.5.1

5 Notational Conventions

5.1 Key words for Requirement Statements

The words SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, CAN and CANNOT in this
specification shall be interpreted according to Annex H of ISO/IEC Directives, Part 2, Rules for the structure and
drafting of International Standards, Sixth Edition 2011.

5.2 Annotations on Example Diagrams

Some of the diagram examples in this specification include explanatory annotations, which should not be confused as
being part of the formal UML graphical notation.

In these cases, the explanatory text originates outside the UML diagram boundary, and has an arrow pointing at the
feature of the diagram which is being explained by the annotation. The color rendition of this spec shows these
annotations in red.

Unified Modeling Language 2.5.1

6 Additional Information

6.1 Specification Simplification

This specification has been extensively re-written from its previous version to make it easier to read by removing
redundancy and increasing clarity. In particular, the following major changes have been made since UML 2.4.1:

¢ The UML Infrastructure no longer forms part of the UML specification. The entire UML specification is
constituted in this document.

* Package Merge is not used within the specification. Every metaclass is specified completely in one clause.

* The specification is organized to reduce forward references as much as possible. This means that topics such as
Templates which are pervasive in their effects appear early in the specification.

* Every clause has a section of documentation generated from the metamodel that contains all of the metaclasses
with their properties, and all of the metaassociations with their properties. All cross-references in this generated
documentation include hyperlinks to their targets.

* The compliance levels L0, L1, L2, and L3 have been eliminated, because they were not found to be useful in
practice. A tool either complies with the whole of UML or it does not. A tool may partially comply with UML
by implementing a subset of its metamodel, notation, and semantics, in which case the vendor should declare
which subset it implements.

However, the metamodel itself remains unchanged from UML 2.4.1 superstructure, with a few exceptions:

* The metamodel has been partitioned into packages, corresponding to the clause structure of this specification.
All of these packages are owned by a top-level package named UML; they are also imported into UML so that
metaclasses may be referred to by their unqualified name in UML.

* Many OCL constraints have been corrected or added where they were absent. In order to do this, some names
of association-owned properties and the corresponding associations have been changed in order to avoid
ambiguity in OCL expressions.

* A small number of lower multiplicities have been relaxed from 1 to 0, in order to represent default values that
cannot be formally represented using MOF. In these cases the absence of a value signifies the presence of a
default value. These cases could not be represented at all in earlier versions of UML. They all occur in Clause
15: Activities and are made explicit in the text there.

* The property LoopNode::loopVariable has been made composite, in order to enable interchange of loop variables,
which was not possible in a standard way in UML 2.4.1.

* NamedElement::clientDependency has been made derived.

* {ordered} has been added to or removed from some properties in order to make the semantics consistent.

Unified Modeling Language 2.5.1 11

6.2 Architectural Alignment

The OMG’s Model Driven Architecture (MDA) initiative is a conceptual architecture for a set of industry-wide
technology specifications that support a model-driven approach to software development. Although MDA is not itself a
technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. UML, MOF, and related specifications play important roles in MDA by providing the
languages for creating and transforming models.

The abstract syntax of UML is specified using a UML model called the UML mefamodel. This metamodel uses
constructs from a constrained subset of UML that is identified in the MOF 2 specification and used for constructing
metamodels. Classes in a metamodel are called metaclasses. So, for example, the UML metaclass Element is an abstract
class in the UML metamodel: which also means that it can be viewed from the MOF perspective as an instance of the
metaclass Class, whose isAbstract property has the value true. Another such instance is the UML metaclass Comment,
which has an attribute named body, which can in turn be viewed from the MOF perspective as an instance of the
metaclass Property whose name property has the value “body”.

The fact that UML is defined using itself is no more surprising than the fact that many programming languages have
compilers written in the language itself, or that recursive functions (such as the factorial function) can be defined using
themselves. Certain conditions are required to ensure that the resulting definition is well-formed and unique; there is no
formal proof that UML satisfies these conditions, but the existence of numerous interoperable implementations of UML
offer substantial confidence that it does.

Defining UML using this constrained subset of itself ensures that UML models can be held in a MOF 2 repository
where they can be manipulated using MOF features, and interchanged using XMI in accordance with the MOF 2 XMI
Mapping Specification.

Since version 2.4.1 a MOF 2.x metamodel, including the UML 2.x metamodel, is a valid UML 2.x model. This was a
substantial simplification and alignment compared to earlier versions. It is expected that future versions of MOF and
UML will continue to be aligned in this manner.

Further discussion of metamodels and the relationship between UML and MOF may be found in the MOF 2 Core
specification.

6.3 On the Semantics of UML

6.3.1 Models and What They Model

A model is always a model of something. The thing being modeled can generically be considered a system within some
domain of discourse. The model then makes some statements of interest about that system, abstracting from all the
details of the system that could possibly be described, from a certain point of view and for a certain purpose. For an
existing system, the model may represent an analysis of the properties and behavior of the system. For a planned
system, the model may represent a specification of how the system is to be constructed and behave.

A UML model consists of three major categories of model elements, each of which may be used to make statements
about different kinds of individual things within the system being modeled (termed simply “individuals” in the
following). These categories are:

* Classifiers. A classifier describes a set of objects. An object is an individual with a state and relationships to
other objects. The state of an object identifies the values for that object of properties of the classifier of the
object. (In some cases, a classifier itself may also be considered an individual; for example, see the discussion
of static structural features in sub clause 9.4.3.)

* FEvents. An event describes a set of possible occurrences. An occurrence is something that happens that has
some consequence with regard to the system.

* Behaviors. A behavior describes a set of possible executions. An execution is a performance of a set of actions
(potentially over some period of time) that may generate and respond to occurrences of events, including

12 Unified Modeling Language 2.5.1

accessing and changing the state of objects. (As described in sub clause 13.2, behaviors are themselves
modeled in UML as kinds of classifiers, so that executions are essentially modeled as objects. However, for
the purposes of the present discussion, it is clearer to consider behaviors and executions to be in a separate
semantic category than classifiers and objects.)

UML models do not contain objects, occurrences, or executions, because such individuals are part of the domain being
modeled, not the content of the models themselves. UML does have modeling constructs for directly modeling
individuals: instance specifications, occurrence specifications, and execution specifications for modeling objects,
occurrences, and executions, respectively, within a particular context. However, these are again just model elements,
making statements about the individuals being modeled. As for any model, such statements can be incomplete,
imprecise, and abstract, according to the purpose of the model, and may turn out to be wrong (or even be asserted as
counterfactual). The individuals being modeled, on the other hand, are always complete, precise, and concrete within
their domain.

The execution of behaviors within a modeled system may result in the creation and destruction of objects within that
system. The system may also reference other objects in the domain of discourse that are external to the system.
Generally, the distinction of whether an object is internal or external is not important to the formal semantics of
behaviors that access those objects. However, in certain cases — in particular, static properties (see sub clause 9.5) and
classifier extents (see sub clause 16.4 on read extent actions) — the system may be considered to provide an execution
scope that explicitly delineates those objects existing within the system (“within the execution scope”) from those
outside. The concept of an execution scope is not further defined within UML semantics, because exactly to what it
corresponds varies depending on the domain of discourse. For example, for a model of factory processes, the execution
scope may encompass the execution of those processes within a single factory, while, for a model of a software
program, the execution scope will correspond to a single execution of that program.

6.3.2 Semantic Areas

Clause 2 makes the distinction of the conformance of a tool to the (concrete and abstract) syntax of UML from
conformance to its semantics.

The syntax of UML has to do with how UML models may be constructed, represented and interchanged. The UML
specification defines the syntax of UML, both abstractly and concretely. However, the syntax of UML is specified
within the framework of MOF, and the meaning of syntactic models for the purposes of tool conformance are given in
the MOF Core specification and related XMI and Diagram Interchange specifications.

In contrast, the semantics of UML itself have to do with the standard meaning of the statements made by a UML model
about the system being modeled. This is sometimes referred to as the “run-time” semantics of UML, especially in the
context of UML models of executable software or other enactable processes. However, not all UML models are
executable in this sense and not all UML semantics relate to “running” software or other processes.

Instead, consider the general division of UML modeling constructs into two semantic categories:

* Structural Semantics defines the meaning of UML structural model elements about individuals in the domain
being modeled, which may be true at some specific point in time. (Note that this category is sometimes called
“static semantics”. However, in programming language definition, the term “static semantics” is generally used
to mean context-sensitive name resolution and type constraints beyond the base context-free syntax of the
language, which corresponds to well-formedness constraints in the UML abstract syntax specification. In order
to avoid confusion, the term “structural semantics” is used here instead.)

* Behavioral Semantics defines the meaning of UML behavioral model elements that make statements about
how individuals in the domain being modeled change over time. (This is sometimes also called “dynamic

semantics.”)

Figure 6.1 shows a more detailed delineation of the semantic areas of UML within these categories and the notional
layering of these areas.

Unified Modeling Language 2.5.1 13

Use Cases Deployments Information Flows

Supplemental
Modeling

State Machines Activities Interactions

Actions

Behavioral
Modeling

Common Behavior

Values Classifiers Packages

Structural
Modeling

Common Structure

Figure 6.1 Semantic Areas of UML

The structural semantics of UML provides the foundation for the behavioral semantics of UML. This reflects the
conception of behavioral semantics in terms of changes in the system state specified through structural modeling.
Structural modeling constructs in UML are built on a common base of fundamental concepts such as type, namespace,
relationship and dependency (see Clause 7). Specific modeling constructs then include a number of different kinds of
classifiers: data types, classes, signals, interfaces, and components (see Clauses 9 through 11), corresponding constructs
for modeling values and instances (see Clause 8), and constructs for packaging and profiling (see Clause 12).

The base behavioral semantics of UML builds on this structural foundation to provide a basic framework for the
execution of behaviors (see Clause 13). This common behavioral semantics also addresses the communication that may
result between structural objects with associated behavior. Note that this framework only deals with event-driven, or
discrete, behaviors. However, UML semantics do not dictate the amount of time between events (unless this is
specifically modeled using timing constraints, see sub clause 8.5). Thus, the intervals between certain events can be
considered to be as small as needed by the application; for example, when simulating continuous behaviors.

Actions are the fundamental units of behavior in UML, used to define fine-grained behaviors (see Clause 16). Their
resolution and expressive power are comparable to the executable instructions in traditional programming languages.
Actions are available for use with any of the higher-level formalisms to be used for describing detailed behaviors. Such
higher-level behavioral constructs in UML are state machines, activities and interactions (see Clauses 14, 15 and 17,
respectively).

In addition, there are some supplemental modeling constructs that have both structural and behavioral aspects. These
include use cases, deployments and information flows (see Clauses 18, 19 and 20, respectively).

14 Unified Modeling Language 2.5.1

file:///Users/seidewitz/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_20

6.3.3 Stable and Transient Behavioral Semantics

Though structural semantics, as defined in sub clause 6.3.2, has to do with modeling things at a specific point in time,
the structural modeling constructs in UML still include the ability to model certain behavioral aspects of otherwise
primarily structural elements. For example, a classifier may have behavioral features that can be invoked to request
some behavior from the classifier. Or a class may be modeled as being active, meaning that an instance of the class has
some autonomous behavior.

The behavioral characteristics of primarily structural modeling constructs make high-level statements about the
behavior of a system that may generally be verified when the system is in a stable state at some specific point in time.
However, they do not define how the system actually got into that state from a previous state, just that some behavior
must have happened to cause this change. The detailed definition of transient behavior over time requires the use of
behavioral modeling constructs.

In many cases, a structural element in a UML model will have related behavioral elements that define the detailed
behavior to realize the high-level behavior identified for the structural element. For example, an operation owned by a
class may have a related method that defines its detailed behavior. Or an active class may have a classifier behavior that
details its autonomous behavior. In these cases, it is the responsibility of the modeler to ensure that the detailed transient
behavior specified using the behavioral modeling elements actually results in the high-level stable behavior specified
for the corresponding structural elements. (A tool may assist the modeler in this responsibility, but a conforming UML
tool is not required to do so.)

The following are some areas in which this semantic distinction is particularly important in UML.

* Operation behaviors. An operation is a behavioral feature of a class that may be directly invoked on instances
of that class (see sub clause 9.6). The definition of an operation includes the types of input and output
parameters of the operation and may also include pre- and postconditions on the state of the system being
modeled before and after invocation of the operation. The semantics of such a model are that, if the operation
is invoked with inputs of the given types and in a state in which the precondition holds, then, when the invoked
behavior of the operation completes, it will have produced outputs of the given types and the postcondition will
hold in the resulting system state. An operation may also have a method, which is a detailed definition of its
required behavior (see sub clause 13.2). It is a modeler responsibility to ensure that the detailed behavior
modeled by the method of the operation meets the behavioral requirements given by the pre- and
postconditions of the operation. Note, however, that the postcondition is not required to hold during the
transient execution of the method behavior, but only at the stable point of the completion of execution of that
behavior. A class may also have invariant conditions that must be true before and after the execution of the
operation but may be violated during the course of the execution of the operation method.

* Property default values. The semantics of properties specify that, when a property with a default value is
instantiated, in the absence of some specific setting for the property, the default value is evaluated to provide
the initial values of the property (see sub clause 9.5). Thus, when instantiating a classifier, all its attributes (i.e.,
properties of the classifier) with default values should be properly initialized once any behavior required to
instantiate the classifier completes. However, a create object action is specified to create an object with its
attributes initially having no initial values, whether or not those attributes have default values in the classifier
of the object (see sub clause 16.4.3). Therefore, when modeling the detailed behavior of the instantiation of a
classifier, it is a modeler responsibility to ensure that the modeled behavior carries out the proper initialization
of any attributes with default values once the object is created. (This is often done by encapsulating the
instantiation behavior for a class in a constructor operation — see sub clause 11.4 — in which case the
initialization of the attributes becomes an implicit postcondition for the constructor.)

* Active class behaviors. The semantics of active classes specify that, when such a class is instantiated, the new
object commences execution of its behavior as a direct consequence of its creation (see sub clause 11.4).
However, a create object action is specified to create an object without commencing the execution of any
associated behaviors (see sub clause 16.4.3). Instead, it is necessary to use a start object behavior action to
execute those behaviors (see sub clause 16.3.3). Therefore, when modeling the detailed behavior of the
instantiation of a classifier, it is a modeler responsibility to ensure that the modeled behavior properly starts the

Unified Modeling Language 2.5.1 15

classifier behavior of an instance of an active class, after that instance is created. (This behavior may also be
encapsulated in a constructor operation for the class.)

6.4 How to Read this Specification

6.4.1 Specification Format

The rest of this document contains the technical content of this specification.

The concepts of UML are grouped into clauses. A clause typically covers a specific modeling formalism. For instance,
all concepts related to state machine modeling are gathered in the State Machines clause and all concepts related to
activities modeling are in the Activities clause.

The clauses in the specification as a whole are presented in an order that minimizes forward references. Clauses 7 — 12
are primarily concerned with the modeling of structure. Clauses 13 — 17 are primarily concerned with the modeling of
behavior. Clauses 18 — 20 cover supplementary concepts including UseCases, Deployments, and InformationFlows.
Clauses 21 and 22 specify primitive types and the standard profile.

Annex A discusses UML Diagrams. Annex B specifies a model for the interchange of UML diagrams: this is a new part
of the specification that was absent from earlier versions of UML. Annex C specifies keywords; Annex D specifies
some alternative tabular notations; Annex E specifies the format for XMI serialization.

Although the clauses are organized in a logical manner and can be read sequentially, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

Within each clause, there is first a brief informal description of the concepts described in that clause. The clause is then
split into sub clauses, each describing a coherent set of concepts that constitute a portion of the formalism specified by
the clause. Each sub clause is then split into Abstract Syntax, Semantics, Notation, and Examples.

The Abstract Syntax subdivision contains one or more diagrams that define that capability in terms of a MOF model
(i.e., the UML metamodel) with each modeling concept represented by an instance of a metaclass or association. These
diagrams are designed to provide information about a related set of concepts. Within such a diagram, all of the
metaclasses described in that clause are depicted with their attribute compartments, while metaclasses whose definition
appears in another clause are depicted with just their headers and no compartments.

The following stylistic conventions are applied in the Semantics, Notation, and Examples subdivisions:

* Headings without numbers are used to break up the sections into meaningful chunks. These headings are
organized by coherent chunks of tightly-coupled semantics. Often these headings will turn out to be pluralized
metaclass names (e.g., Comments); they might equally represent particular semantic themes (e.g., Run-to-
Completion).

¢ TItalics are used for emphasis.

* Names of metaclasses in the text are capitalized but otherwise used as if they are nouns in English, e.g., “Every
Element has the inherent capability of owning other Elements,” pluralizing where necessary.

* Names of properties in the text are styled as 8-point Arial, and used as if they are English nouns pluralizing
where necessary, e.g., “the ownedAttributes of the Classifier.”

The Semantics subdivision specifies the semantics of all of the concepts described in the sub clause.

The Notation subdivision specifies the notation corresponding to all of the concepts defined in the sub clause. Only
concepts that can appear in diagrams will have a notation specified. For textual notations a variant of the Backus-Naur
Form (BNF) is often used to specify the legal formats. The conventions of this BNF are:

16 Unified Modeling Language 2.5.1

* All non-terminals are in italics and enclosed between angle brackets (e.g., <non-terminal>).

* All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or’).

* Non-terminal production rule definitions are signified with the ‘::=" operator.

* Repetition of an item is signified by an asterisk placed after that item: “*’.

* Alternative choices in a production are separated by the ‘|’ symbol (e.g., <alternative-A> | <alternative-B>).
* Items that are optional are enclosed in square brackets (e.g., [<item-x>]).

* Where items need to be grouped they are enclosed in simple parenthesis; for example:
(<item-1> | <item-2>) *
signifies a sequence of one or more items, each of which is <item-1> or <item-2>.

NOTE. As for all UML surface syntax, UML textual notations are generally for presentation. There is no requirement
that such notations be unambiguously parsable — for example, a modeler may use arbitrary characters like “/”” and “:”
in a property name, even though these are used as special punctuation in the BNF for property textual notation. This
may be confusing to some readers, since BNF is commonly used to specify parsable programming language text.

The Examples subdivision gives examples intended to illustrate the concepts in the sub clause.

NOTE. All examples in this specification are provided for the purposes of illustrating syntax and semantics of UML
modeling constructs and do not assert or claim facts about the world.

Diagrams appearing in the Notation and Examples subdivisions have been produced by a variety of tools, and may
differ in stylistic details such as fonts, line thicknesses, size of arrowheads, etc. Such differences are not material to the
specification.

Statements in the Notation subdivision assume that diagrams are to be rendered in black on a white background.
Conforming tools may adopt other color schemes, in which case the word “black” shall be interpreted as “solid”,
“white” shall be interpreted as “un-filled”, and “gray” shall be interpreted as “a distinguishable color between solid and
un-filled”.

Finally in each clause are machine-generated sub clauses called Classifier Descriptions and Association Descriptions,
containing a complete description for all of the classifiers and associations in the metamodel. In Classifier Descriptions,
each classifier (Class, Abstract Class, or Enumeration) is documented under the following headings:

* Name [Type]

* Description: a summary of the role played by the classifier in the metamodel.
* Diagrams: a list of links to diagrams in which the classifier appears.

* Generalizations: a list of links to generalizing classifiers, if any.

* Specializations: a list of links to specializing classifiers, if any.

* Attributes: each specified by its name, type, and multiplicity, and any additional properties such as {readOnly}.
If no multiplicity is listed, it defaults to 1..1. This is followed by a textual description of the purpose and
meaning of the attribute. If an attribute is derived, the name will be preceded by a forward slash. Where an
attribute is derived, the logic of the derivation is in most cases shown using OCL.

Unified Modeling Language 2.5.1 17

Association Ends: each specified by its name, type, and multiplicity, any additional properties such as {union},
and a link to its opposite end. If the association end subsets or redefines others, this is shown in the additional
properties as {subsets <end>} or {redefines <end>}, where <end> is a link to the applicable end. This is
followed by a textual description of the purpose and meaning of the association end. If an association end is
derived, the name will be preceded by a forward slash. If the association end is a composition, this is indicated
by a small black diamond adjacent to the name of the end.

Derivation: where an Attribute or Association End is marked as derived and is not a derived union, the
derivation is specified by an Operation with the same name and type as the derived Attribute or Association
End.

Operations: each specified by its signature, a textual description of the logic of the operation, and a
specification of the logic of the operation in OCL. Note that in some cases the OCL is absent. Note also that
the body: of each operation is shown as an expression <expr> having the result type of the Operation. In the
XML, this is serialized as a bodyCondition of the form result = (<expr>).

Constraints: each specified by its name, a textual description of the logic of the constraint, and a specification
of the logic of the constraint in OCL. Note that in some cases the OCL is absent.

In Association Descriptions , each association is documented under the following headings:

6.4.2

Name [Type].

Diagrams: a list of links to diagrams in which the association appears.
Generalizations: a list of links to generalizing associations, if any.
Specializations: a list of links to specializing associations, if any.

Member Ends: links to each end of the association; this appears if neither of the ends is owned by the
association itself.

Owned Ends: documentation for each association end owned by the association itself, each specified by its
name, type and multiplicity, any additional properties such as {union}, and a link to its opposite end. If the
association end subsets or redefines others, this is shown in the additional properties as {subsets <end>} or
{redefines <end>}, where <end> is a link to the applicable end. If an association end is derived, the name will
be preceded by a forward slash.

Diagram Format

The following conventions are adopted for all metamodel diagrams throughout this specification.

18

A metaclass may appear on many diagrams, but takes a primary role on only one diagram, which is the diagram
adjacent to where the semantics of the metaclass are described. A metaclass in a primary role is shown with its
attribute compartment expanded; a metaclass in a secondary role is shown as just its header rectangle.

Dot notation is used to denote association end ownership, where the dot shows that the Class at the other end of the
line owns the Property whose type is the Class touched by the dot. See 11.5.4 for details of Association notation
and 11.5.5 for examples.

Arrow notation is used to denote association end navigability. By definition, all class-owned association ends are
navigable. By convention, all association-owned ends in the metamodel are not navigable.

Unified Modeling Language 2.5.1

* An association with neither end marked by navigability arrows means that the association is navigable in both
directions.

* Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

* The constraint {subsets endA} means that the association end to which this constraint is applied subsets
the association end endA.

* The constraint {redefines endA} means that the association end to which this constraint is applied
redefines the association end endA.

* If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

e Ifan association end is unlabeled, the default name for that end is the name of the class to which the end is
attached, modified such that the first letter is a lowercase letter. Note that, by convention, non-navigable association
ends are often left unlabeled although all association ends have a name which is documented in the Association
Description section of each clause.

* Associations that are not explicitly named, are given names that are constructed according to the following
production rule:
"4 " <association-end-namel> " " <association-end-name2>

where <association-end-namel> is the name of the first association end and <association-end-name2> is the name
of the second association end.

6.5 Acknowledgements

6.5.1 Primary Authors
The following people wrote this specification, incorporating the work of authors of earlier versions of UML:

Conrad Bock, Steve Cook (lead), Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, Doug Tolbert

6.5.2 Technical Support

The following people provided technical support for this specification, including writing tools to generate portions of
the document and to validate the OCL:

Peter Denno, Maged Elaasar, Nicolas Rouquette, Ed Willink

6.5.3 Reviewers

In addition to the authors and technical supporters, the following people provided invaluable contributions by reviewing
some or all of the specification in detail:

Omar Bahy Badreddin, Neil Capey, Michael Jesse Chonoles (lead), Adriano Comai, Lenny Delligatti, Sanford
Friedenthal, Dave Hawkins, Darren Kumasawa, Jim Logan, Sam Mancarella, Milagros Nguyen, Axel Scheithauer, John
Watson, Marc-Florian Wendland, Ed Willink.

Unified Modeling Language 2.5.1 19

6.5.4 Submitters

The following companies were submitters of this specification: 88solutions, Adaptive, Deere&Company, Fujitsu,
International Business Machines, Microsoft Corporation, Model Driven Solutions, No Magic Inc, Sparx Systems and
Unisys.

20 Unified Modeling Language 2.5.1

7 Common Structure

71 Summary

This clause specifies the basic modeling concepts underlying all structural modeling in UML. Many of the metaclasses

defined here are abstract, providing the base for specialized, concrete classes defined in subsequent clauses. However,
in order to provide examples of how these basic concepts are applied in UML, it is necessary to use these concrete
modeling constructs, even though they are specified in later clauses. Appropriate forward references are provided as

necessary.

7.2 Root

7.21 Summary

The root concepts of Element and Relationship provide the basis for all other modeling concepts in UML.

7.2.2 Abstract Syntax

{readOnly, union, subsets
relatedElement}

{readOnly, union, subsets
relatedElement}

+ /source + annotatedElement
—
1% Element *

+ /target

1.%

{readOnly, union}
+/ relatedElement

1"*

{subsets owner}
+ owningElement

0..1

{readOnly, union}
+ /owner

0..1

{readOnly, union}

T *
+ /ownedElement
{readOnly, union}

{subsets ownedElement}
*| + ownedComment

+ /relationship

Relationship Comment + comment

*

+ body : String [0..1]] *

+ /directedRelationshif

{readOnly, union, subsets relationship}

{readOnly, union, subsets relationship}

*

DirectedRelationship

+ /directedRelationshif

Figure 7.1 Root

*

Unified Modeling Language 2.5.1

21

7.2.3 Semantics

7.2.31 Elements

An Element is a constituent of a model. Descendants of Element provide semantics appropriate to the concept they
represent.

Every Element has the inherent capability of owning other Elements. When an Element is removed from a model, all its
ownedElements are also necessarily removed from the model. The abstract syntax for each kind of Element specifies
what other kind of Elements it may own. Every Element in a model must be owned by exactly one other Element of that
model, with the exception of the top-level Packages of the model (see also Clause 12 on Packages).

7.2.3.2 Comments

Every kind of Element may own Comments. The ownedComments for an Element add no semantics but may represent
information useful to the reader of the model.

7.23.3 Relationships

A Relationship is an Element that specifies some kind of relationship between other Elements. Descendants of
Relationship provide semantics appropriate to the concept they represent.

A DirectedRelationship represents a Relationship between a collection of source model elements and a collection of
target model elements. A DirectedRelationship is said to be directed from the source elements fo the target elements.

7.2.4 Notation

There is no general notation for Element, Relationships, and DirectedRelationships. The descendants of these classes
define their own notation. For Relationships, in most cases the notation is a variation on a line drawn between the
relatedElements. For DirectedRelationships, the line is usually directed in some way from the source(s) to the target(s).

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotatedElement is shown by a separate dashed
line. The dashed line connecting the note symbol to the annotatedElement(s) may be suppressed if it is clear from the
context, or not important in this diagram.

7.2.5 Examples

This class was added
by Alan Wright after
meeting with the
mission planning team.

== Account

Figure 7.2 Comment notation

7.3 Templates

7.31 Summary

Templates are model Elements that are parameterized by other model Elements. This sub clause specifies the general
concepts applicable to all kinds of templates. Further details of specific kinds of templates allowed in UML are
discussed in later sub clauses, including Classifier templates (see sub clause 9.3), Operation templates (see sub clause
9.6) and Package templates (see sub clause 12.2).

22 Unified Modeling Language 2.5.1

7.3.2 Abstract Syntax

A\

{subsets ownedElement}

{subsets owner}
+ template 7 Element
|

1

TemplateSignature + ownedTemplateSignature
I W

+ templateSignature

{subsets templateSignature,

subsets owner} .
+ signature

{ordered, subsets ownedElemen

subsets parameter} {ordered}

+ parameter

+ ownedParameter
TemplateParameter

{subsets templateParameter,
subsets owner}

{subsets ownedElement,
subsets parameteredElement) | _FarameterableElement

+ ownedParameteredElement

+ owningTemplateParameter
@ gfemp

0.1
+ templateParameter

+ parameteredElement

0.1

0.1
+ templateParameter

1

+ default

*

{subsets owner, redefines
templateParameter}
+ templateParameter

{subsets ownedElement,
subsets default}

0.1

+ ownedDefault

0.1

Figure 7.3 Templates

0.1

\V/

/\

+ templateParameterSubstitution

TemplateParameterSubstitution

1 + formal
TemplatePar ter < ¥
1
+ actual + templateParameterSubstitution
ParameterableElement 1 *
{subsets ownedElement,
subsets actual}
+ ownedActual *
0..1 + owningTemplateParameterSubstitution
{subsets owner, redefines
templateParameterSubstitution} *
{subsets source, {subsets ownedElement, subsets
subsets owner} directedRelationship}
| remp — — + boundElement + templateBinding TemplateBinding
1 *

{subsets ownedElement}
+ parameterSubstitution

{subsets owner}
+ templateBinding

{subsets target}
+ signature

{subsets directedRelationship}
+ templateBinding

| TemplateSignature |

1

Figure 7.4 Template bindings

Unified Modeling Language 2.5.1

*

DirectedRelationship

7.3.3 Semantics

7.3.31 Templates

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates. A
template is a TemplateableElement that is parameterized using a TemplateSignature. Such a template can be used to
generate other model Elements using TemplateBinding relationships.

A template cannot be used in the same manner as a non-template Element of the same kind (e.g., a template Class
cannot be used as the type of a TypedElement). The template Element can only be used to generate bound Elements or
as part of the specification of another template (e.g., a template Class may specialize another template Class).

The TemplateSignature of a template defines a set of TemplateParameters that may be bound to actual model Elements
in a bound element for the template. A bound element is a TemplateableElement that has one or more such
TemplateBindings.

A completely bound element is a bound element all of whose TemplateBindings bind all the TemplateParameter of the
template being bound. A completely bound element is an ordinary element and can be used in the same manner as a
non-bound (and non-template) element of the same kind. For example, a completely bound element of a Class template
may be used as the type of a Typed Element.

A partially bound element is a bound element at least one of whose TemplateBindings does not bind a
TemplateParameter of the template being bound. A partially bound element is still considered to be a template,
parameterized by the remaining TemplateParameters left unbound by its TemplateBindings.

7.3.3.2 Template Signatures

The TemplateParameters for a TemplateSignature specify the formal parameters that will be substituted by actual
parameters (or the default) in a binding. A TemplateParameter is defined in terms of a ParameterableElement contained
within the template that owns the TemplateSignature of which the TemplateParameter is a part. Such an element is said
to be exposed by the TemplateParameter.

An exposed ParameterableElement may be owned, directly or indirectly, by the template or it may be owned by the
TemplateParameter itself, in situations in which the element does not otherwise have an ownership association within
the template model. In either case, the ParameterableElement is meaningful only within the context of the template—it
will be effectively replaced by an actual Element in the context of a binding. Thus, a ParameterableElement exposed by
a TemplateParameter cannot be referenced outside its owning template or other templates that have access to the
internals of the original template (e.g., if the template is specialized). Subclasses of TemplateSignature can also add
additional rules that constrain what sort of ParameterableElement can be used for a TemplateParameter in the context of
a particular kind of template.

A TemplateParameter may also reference a ParameterableElement as the default for this formal parameter in any
TemplateBinding that does not provide an explicit TemplateParameterSubstitution for the parameter. Similarly to an
exposed ParameterableElement, a default ParameterableElement may be owned either directly by the template or by the
TemplateParameter itself. The TemplateParameter may own this default ParameterableElement even in situations where
the exposed ParameterableElement is not owned by the TemplateParameter.

7.3.3.3 Template Bindings

A TemplateBinding is a relationship between a TemplateableElement and a template that specifies the substitutions of
actual ParameterableElements for the formal TemplateParameters of the template. A TemplateParameterSubstitution
specifies the actual parameter to be substituted for a formal TemplateParameter within the context of a TemplateBinding.
If no actual parameter is specified in this binding for a formal parameter, then the default ParameterableElement for that
formal TemplateParameter (if specified) is used.

A bound element may have multiple bindings, possibly to the same template. In addition, the bound element may
contain elements other than the bindings. The details of how the expansions of multiple bindings, and any other
Elements owned by the bound element, are combined together to fully specify the bound element are specific to the
subclasses of TemplateableElement. The general principle is that one evaluates the bindings in isolation to produce

24 Unified Modeling Language 2.5.1

intermediate results (one for each binding), which are then merged to produce the final result. It is the way the merging
is done that is specific to each kind of TemplateableElement.

A TemplateableElement may contain both a TemplateSignature and TemplateBindings. Thus a TemplateableElement
may be both a template and a bound element.

A conforming tool may require that all formal TemplateParameters must be bound as part of a TemplateBinding
(complete binding) or may allow just a subset of the formal TemplateParameters to be bound (partial binding). In the
case of complete binding, the bound element may have its own TemplateSignature, and the TemplateParameters from
this can be provided as actual parameters of the TemplateBinding. In the case of partial binding, the unbound formal
TemplateParameters act as formal TemplateParameters of the bound element, which is thus still a template.

NOTE. A TemplateParameter with a default can never be unbound, as it has an implicit binding to the default, even if an
explicit TemplateParameterSubstitution is not given for it.

7.3.34 Bound Element Semantics

ATemplateBinding implies that the bound element has the same well-formedness constraints and semantics as if the
contents of the template owning the target TemplateSignature were copied into the bound element, substituting any
ParameterableElements exposed as formal TemplateParameters by the corresponding ParameterableElements specified
as actual template parameters in the TemplateBinding. However, a bound element does not explicitly contain the model
Elements implied by expanding the templates to which it binds. Nevertheless, it is possible to define an expanded
bound element that results from actually applying the TemplateParameterSubstitution for a bound element to the target
templates.

Formally, an expanded bound element for a bound element with a single TemplateBinding and no Elements other than
from that binding is constructed as follows:

1 Copy the template associated with the TemplateSignature that is the target of the TemplateBinding. For the
present purposes, a copy of a model Element is an instance of the same metaclass as the original model
Element, with:

a Values for all composite properties (owned attributes and owned association ends) that are copies (in
the same sense) of the corresponding values from the original Element.

b Values for all non-composite properties that are the same as the corresponding values from the
original Element, except that references to Elements owned (directly or indirectly) by the original
Element are replaced with references to the copies of those Elements created as specified above and
references to the original Element itself are replaced by references to the copy.

2 If'the copy specializes any Elements that are templates, then redirect the Generalization relationships to
equivalent bound elements for the general elements, using the same TemplateBinding. If the copy is an
Operation that has an associated method that is also a template, then replace that method with an equivalent
bound element using the same template binding.

NOTE. It is necessary for the method of a template Operation to also be a template, presumably with
TemplateParameters corresponding to those of the Operation. In particular, Operation TemplateParameters are
typically used to parameterize the types of Operation Parameters, but the method of an Operation does not
directly reference the Parameters of the Operation that specifies it. Rather, the method has its own
ownedParameter list, which should match that of the Operation (see sub clause 13.2). The types of the method
Parameters thus need to be separately templated to match the template parameterization of the Operation.

3 For each Element owned directly or indirectly by the copy, replace any reference to the parameteredElement of
a TemplateParameter of the copy with a reference to the actual Element associated with the parameter in the
TemplateBinding. If an actual Element has a TemplateBinding itself, then reference the equivalent bound
element.

4 Remove all TemplateParameters that are referenced in the TemplateBinding from the TemplateSignature of the
copy. If this would remove all TemplateParameters from the TemplateSignature, then remove the
TemplateSignature entirely.

Unified Modeling Language 2.5.1 25

If a bound element has more than one TemplateBinding, then a specific expanded bound element can be defined based
on each TemplateBinding. The overall expanded bound element is then constructed by merging all the
TemplateBinding-specific expanded bound elements with any other Elements contained by the original bound element.
As noted previously, how this merging is performed depends on the kind of TemplateableElement being bound.

Including a bound element in a model does not automatically require that the corresponding expanded bound element be
included in the model. However, if the expanded bound element constructed as given above violates any well-
formedness constraints, then the original bound element is also considered to not be well formed.

On the other hand, if the bound element is for a Namespace template, then it may be necessary to be able to refer to
members of the bound element considered as a Namespace itself. For example, for a bound element of a Class template,
it may be necessary to reference Operations of that Class, e.g., from a CallOperationAction.

NOTE. Referencing the Operation from the template is not sufficient, as each bound element of the template Class is to
be considered to have its own effective copy of the Operations of the template.

In order to accommodate a situation like this, it is allowable to include in a model the expanded bound element for a
bound element in addition to the bound element itself. In this case, the expanded bound element must have a realization
dependency (see sub clause 7.7) to the bound element that it is expanding. The expanded bound element must be
constructed (either manually by the modeler or automatically by a tool) according to the rules given above. References
then made as usual from other model elements to visible members of the expanded bound element are considered to be
semantically equivalent to effective references made to the corresponding implicit members of the original bound
element. Any relationships made directly to the expanded bound element are semantically equivalent to relationships
made to the bound element itself.

7.3.4 Notation

If a TemplateableElement has TemplateParameters, a small dashed rectangle is superimposed on the symbol for the
TemplateableElement, typically on the upper right-hand corner of the notation (if possible). The dashed rectangle
contains a list of the formal TemplateParameters. The parameter list must not be empty, although it may be suppressed
in the presentation. Any other compartments in the notation of the TemplateableElement appear as normal.

The formal TemplateParameter list may be shown as a comma-separated list, or it may be one formal
TemplateParameter per line. The general notation for a TemplateParameter is a string displayed within the
TemplateParameter list for the template:

<template-parameter> ::= <template-param-name> [‘:’ <parameter-kind> | [‘=" <default>
p y4 p v4 y4

where <parameter-kind> is the name of the metaclass for the exposed element. The syntax of <template-param-name>
and <default> depend on the kind of ParameteredElement for this TemplateParameter.

A bound element has the same graphical notation as other Elements of that kind. A TemplateBinding is shown as a
dashed arrow with the tail on the bound element and the arrowhead on the template and the keyword «bind». The
binding information may be displayed as a comma-separated list of template parameter substitutions:

<template-param-substitution> ::= <template-param-name> ‘->’<actual-template-parameter>

where the syntax of <template-param-name> is the name or qualifiedName of the parameteredElement of the formal
TemplateParameter and the kind of <actual-template-parameter> depends upon the kind of ParameteredElement for
that TemplateParameter.

An alternative presentation for the bindings for a bound element is to include the binding information within the
notation for the bound element. The name of the bound element is extended to contain binding expressions with the
following syntax:

[<element-name> ‘:’] <binding-expression> [*,’ <binding-expression>]*

<binding-expression> ::= <template-element-name> ‘<‘ <template-param-substitution> [, <template-param-
substitution] * >’

26 Unified Modeling Language 2.5.1

and <template-param-substitution™> is defined as above.

7.4 Namespaces

7.41 Summary

A Namespace is an Element in a model that contains a set of NamedElements that can be identified by name. Packages
(see Clause 12) are Namespaces whose specific purpose is to contain other NamedElements in order to organize a
model, but many other kinds of model Elements are also Namespaces, including Classifiers (see sub clause 9.2), which
contain named Features and nested Classifiers, and BehavioralFeatures (see sub clause 9.4), which contain named
Parameters.

7.4.2 Abstract Syntax

A N
{readOnly, union, subsets member, iz';:’gﬁgﬁzm
subsets ownedElement} Sublic
+ fowmedMember NamedElement {subsets owner} {subsets ownedElement} private
* e Sting [0.1] + namedElement + nameExpression Pmtke‘:ted
: y ri ession L package
* | + /qualifiedName : String [0..1] {readOnIy}‘ 0..1 0..1 st
+ visibility : VisibilityKind [0..1]
e o) T
r Y, uni
{readOnly, subsets member
H /memberNamespace Namespace * + /importedMember PackageableElement |
{readOnly, union} * + namespace ¥ + visibility : VisibilityKind [0..1] = public {redefines visibility}
! + importedElement
subsets memberNamespace 1
{ pace} {subsets target}
0..1
{subsets directedRelationship)
+
/na'mespace {subsets ownedElement, subsets *| + import
{readOnly, union, subsets directedRelationship}
memberNamespace, 1 + elementImport ElementImpori
subsets owner} + alias : String [0..1]
+ importingNamespace * |+ visibility : VisibilityKind = public
{subsets source,
subsets owner}
{subsets source, {subsets ownedElement, subsets
subsets owner} directedRelationship}
+ importingNamespace + packageImportJ PackageImport |
1 + visibility : VisibilityKind = public
+ packageImport
* {subsets directedRelationship}
subsets target
{subsets namespace} {subsets ownedMember} 1 ﬂ impo,tedpgacﬁage
+ context + ownedRule X $
o Constraint | [package |
0.1
Figure 7.5 Namespaces
743 Semantics
7.4.31 Namespaces

A Namespace provides a container for NamedElements, which are called its ownedMembers. A Namespace may also
import NamedElements from other Namespaces, in which case these, along with the ownedMembers, are members of the
importing Namespace. If a member of a Namespace with the name N is a NamedElement with the name x, then the
member can be referred to by a qualified name of the form N::x.

Unified Modeling Language 2.5.1 27

When a distinction is necessary, a simple name that is not qualified with Namespace names may be referred to as an
unqualified name. Within a Namespace, unqualified names may be used to refer to the members of that Namespace and
to outer names that are not hidden. An outer name is the name of a NamedElement that may be referenced using an
unqualified name in an immediately enclosing Namespace. An outer name is hidden unless it is distinguishable from all
members of the inner Namespace. (See the discussion on distinguishability below under “Named Elements”.)

As a Namespace is itself a NamedElement, the fully qualified name of a NamedElement may include multiple
Namespace names, such as N1.::N2::x.

The ownedRule Constraints for a Namespace represent well-formedness rules for the constrained elements (see sub
clause 7.6 on Constraints). These constraints are evaluated when determining if the constrained elements are well-
formed.

7.4.3.2 Named Elements

A NamedElement is an Element in a model that may have a name. The name may be used for identification of the
NamedElement within Namespaces where its name is accessible.

NOTE. The name of a NamedElement is optional, which provides for the possibility of the absence of a name (which is
different from the empty name).

NamedElements may appear within a Namespace according to rules that specify how one NamedElement is
distinguishable from another. The default rule is that two members are distinguishable if they have different names or if
they have the same names, but their metaclasses are different and neither is a (direct or indirect) subclass of the other.
This rule may be overridden for particular cases, such as Operations that are distinguished by their signature (see sub
clause 9.6).

The visibility of a NamedElement provides a means to constrain the usage of the Element, either in Namespaces or in
access to the Element. It is intended for use in conjunction with import, generalization, and access mechanisms.

A NamedElement may, in addition to having an explicit name, be associated with a StringExpression (see sub clause 8.3)
that may be used to specify a calculated name for the NamedElement. In a template (see sub clause 7.3), a
NamedElement may have an associated StringExpression whose subexpressions may be ParameteredElements exposed
by TemplateParameters. When the template is bound, the exposed subexpressions are substituted with the actuals
substituted for the TemplateParameters. The value of the StringExpression is then a string resulting from concatenating
the values of the subexpression, which then provides the name of the NamedElement.

A NamedElement may have both a name and a nameExpression associated with it. In this case, the name can be used as an
alias for the NamedElement, which may be used, for example, in referencing the element in a Constraint expression.
(This avoids the need to use StringExpressions in textual surface notation, which is often cumbersome, although it does
not preclude it.)

7.4.3.3 Packageable Elements and Imports

A PackageableElement is a NamedElement that may be owned directly by a Package (see Clause 12 on Packages). Any
such element may serve as a TemplateParameter (see sub clause 7.3 on Templates).

An ElementImport is a DirectedRelationship between an importing Namespace and a PackageableElement. It adds the
name of the PackageableElement to the importing Namespace. The visibility of the ElementImport may be either the
same or more restricted than that of the imported element.

In case of a name clash with an outer name (an element that is defined in an enclosing Namespace that is available using
its unqualified name in enclosed Namespaces) in the importing Namespace, the outer name is hidden by an
ElementImport, and the unqualified name refers to the imported element. The outer name can be accessed using its
qualified name.

A Packagelmport is a DirectedRelationship between an importing Namespace and a Package, indicating that the
importing Namespace adds the names of the members of the Package to its own Namespace. Conceptually, a Package
import is equivalent to having an ElementImport to each individual member of the imported Namespace, unless there is

28 Unified Modeling Language 2.5.1

a separately-defined ElementImport. If there is an ElementImport for an Element, then this takes precedence over a
potential import of the same Element via a Packagelmport.

If indistinguishable Elements would be imported into a Namespace as a consequence of ElementImports or
Packagelmports, the Elements are not added to the importing Namespace and the names of those Elements must be
qualified in order to be used in that Namespace. If the name of an imported Element is indistinguishable from an
Element owned by the importing Namespace, that Element is not added to the importing Namespace and the name of
that Element must be qualified in order to be used.

An Element that is publicly imported is a public member of the importing Namespace. This means that, if the
Namespace is a Package, a Packagelmport of it by another Namespace will result in the further import of those publicly
imported members into the other Namespace, in addition to the public ownedMembers of the Package.

NOTE. A Namespace may not import itself, nor may it import any of its own ownedMembers. This means that it is not
possible for a NamedElement to acquire an alias in its owning Namespace.

7.4.4 Notation

7441 Namespaces
There is no general notation for Namespaces. Specific kinds of Namespace have their own specific notation.

Conforming tools may optionally allow the “circle-plus” notation defined in sub clause 12.2.4 to show Package
membership to also be used to show membership in other kinds of Namespaces (for example, to show nestedClassifiers
and ownedBehaviors of Classes).

744.2 Name Expressions

The nameExpression associated with a NamedElement can be shown in two ways, depending on whether an alias is
required or not. Both notations are illustrated in Figure 7.6.

* No alias: The StringExpression appears as the name of the model Element.

* With alias: Both the StringExpression and the alias are shown wherever the name usually appears. The alias is
given first and the StringExpression underneath.

In both cases the StringExpression appears between “$” signs. The specification of Expressions in UML supports the
use of alternative string expression languages in the abstract syntax—they have to have String as their type and can be
some structure of operator Expressions with operands. The notation for this is discussed in sub clause 8.3 on Expressions.
In the context of templates, subexpressions of a StringExpression (usually LiteralStrings) that are parametered in a
template are shown between angle brackets.

7443 Imports

A Packagelmport or ElementImport is shown using a dashed arrow with an open arrowhead from the importing
Namespace to the imported Package or Element. The keyword «import» is shown near the dashed arrow if the visibility
is public; otherwise, the keyword «access» is shown to indicate private visibility. The alias may be shown after or below
the keyword «import». If the imported element for an ElementImport is a Package, the keyword may optionally be
preceded by “element”, i.e., «element importy.

As an alternative to the dashed arrow, it is possible to show a Packagelmport or ElementImport by having a text that
uniquely identifies the imported Package or Element within curly brackets either below or after the name of the
Namespace. The textual syntax for a Packagelmport is:

a0

Yimport * <qualified-name> *}’| ‘{access *<qualified-name>

The textual syntax for an ElementImport is:

‘

V| {element access *<qualified-name>

0

‘Yelement import’ <qualified-name>

Unified Modeling Language 2.5.1 29

Optionally, the alias, if any, may be shown as well:

‘{element import *<qualified-name> ‘as ’<alias> ‘}’| ‘{element access ’<qualified-name> ‘as’ <alias> ‘}’

7.4.5 Examples

7.4.51 Name Expressions

Figure 7.6 shows a ResourceAllocation Package template where the first two formal TemplateParameters are
StringExpression parameters. These formal TemplateParameters are used within the Package template to name some of
the Classes and Association ends. The figure also shows a bound Package (named TrainingAdmin) that has two
bindings to this ResourceAllocation template. The first binding substitutes the string “Instructor” for Resource, the
string “Qualification” for ResourceKind, and the Class TrainingAdminSystem for System. The second binding
substitutes the string “Facility” for Resource, the string “FacilitySpecification” for ResourceKind, and the Class
TrainingAdminSystem is again substituted for System.

The result of the binding includes Classes Instructor, Qualification, and InstructorAllocation as well as Classes Facility,
FacilitySpecification, and FacilityAllocation. The associations are similarly replicated.

NOTE. Request will have two attributes derived from the single “the<ResourceKind>" attribute (shown here by an
arrow), namely theQualification and theFacilitySpecification.

30 Unified Modeling Language 2.5.1

ResourceAllocation Resource: StringExpression,
ResourceKind: StringExpression,
System
Sa<Resource>$
*]
v allocation
$ $ resource Allocation $a<Resource>Allocation$
<Resource> — . SRS ——
1 $<Resource>Allocation$ *
resource | *
. timeSlot s
TimeSlot - ystem
1 request
kind | 1 \i
Sthe<ResourceKind>$ request

$<ResourceKind>$ <1 Request <€ "

* A Sa<ResourceKind>$

= A
S
\\ ///
\\\ s

«bind» N 7 «bind»

Resource -> "Instructor”, \\ e Resource -> "Facility",

ResourceKind -> "Qualification”, AN il ResourceKind -> "FacilitySpecification",

System -> TrainingAdminSystem \\\ /,/ System -> TrainingAdminSystem

TrainingAdmin

Figure 7.6 Template package with string parameters

7.4.5.2 Imports

The ElementImport shown in Figure 7.7 allows Elements in the Package Program to refer by name to the DataType
Time in Types without qualification. However, they still need to refer explicitly to Types::Integer, as this Element is not
imported. The DataType String is imported into the Program Package but it is not publicly visible as a member of
Program outside of that Package, and it cannot be further imported from the Program Package by other Namespaces.

Types

=datatypes
- String

caccesss -~
sdatatypes
Integer
- datatypes
Program |————————--— == sdataty]
¢ mport | Time

Figure 7.7 Example of element import

Unified Modeling Language 2.5.1

31

In Figure 7.8, the ElementImport is combined with aliasing, meaning that the DataType Types::Real will be referred to
by name as Double in the package Shapes.

Types Shapes

simports

cdatatypes P — Double | Circle
Real radius : Double

Figure 7.8 Example of element import with aliasing

In Figure 7.9, a number of Packagelmports are shown. The public members of Types are imported into ShoppingCart
and then further imported into WebShop. However, the members of Auxiliary are only privately imported by
ShoppingCart and cannot be referenced using unqualified names from WebShop.

1
Auxiliary Q.Jic?:. — —
’: ShoppingCart [€-=T2%2-4 WebShop
Types |&="cmports

Figure 7.9 Examples of public and private package imports

7.5 Types and Multiplicity

7.51 Summary

Types and multiplicity are used in the declaration of Elements that contain values, in order to constrain the kind and
number of values that may be contained.

32 Unified Modeling Language 2.5.1

7.5.2 Abstract Syntax

NamedElement | PackageableElement

TypedElement |+ typedElement + type Type
* 0..1

/\
{subsets owner} {subsets ownedElement}
MultiplicityElement + owningLowe + lowerValue | ValueSpecification
+ isOrdered : Boolean = false 0.1 0.1
: I/Skl)JerngLlle I;Ee%(irean = true {subsets owner} {subsets ownedElement}
+ Jupper : UnlimitedNatural + owningUpper + upperValue
0.1 0.1

Figure 7.10 Abstract syntax of types and multiplicity elements

7.5.3 Semantics

7.5.31 Types and Typed Elements

A Type specifies a set of allowed values known as the instances of the Type. Depending on the kind of Type, instances
of the Type may be created or destroyed over time. However, the rules for what constitutes an instance of the Type
remain fixed by the definition of that Type. All Types in UML are Classifiers (see Clause 9).

A TypedElement is a NamedElement that, in some way, represents particular values. Depending on the kind of
TypedElement, the actual values that it represents may change over time. Examples of kinds of TypedElement include
ValueSpecification, which directly specifies a collection of values (see Clause 8), and StructuralFeature, which
represents values held as part of the structure of the instances of the Classifier that owns it (see sub clause 9.4).

If a TypedElement has an associated Type, then any value represented by the TypedElement (at any point in time) shall
be an instance of the given Type. A TypeElement with no associated Type may represent any value.

7.5.3.2 Multiplicities

A MultiplicityElement is an Element that may be instantiated in some way to represent a collection of values.

Depending on the kind of MultiplicityElement, the values in the collection may change over time. Examples of kinds of
MultiplicityElement include StructuralFeature, which has values in the context of an instance of the Classifier that owns
it (see sub clause 9.4) and Variable, which has values in the context of the execution of an Activity (see sub clause 15.2).

The cardinality of a collection is the number of values contained in that collection. The multiplicity of a
MultiplicityElement specifies valid cardinalities of the collection it represents. The multiplicity is a constraint on the
cardinality, which shall not be less than the lower bound and not greater than the upper bound specified for the
multiplicity (unless the multiplicity is unlimited, in which case there is no constraint on the upper bound).

The lower and upper bounds for the multiplicity of a MultiplicityElement are specified by ValueSpecifications (see
Clause 8), which must evaluate to an Integer value for the lowerBound and an UnlimitedNatural value for the

Unified Modeling Language 2.5.1 33

upperBound (see Clause 21 on Primitive Types). A MultiplicityElement is unlimited if its upperBound has the
UnlimitedNatural value of unlimited (“*””). A MultiplicityElement is multivalued if it has an upperBound greater than 1
(including unbounded). A MultiplicityElement that is not multivalued can represent at most a single value.

A MultiplicityElement can define a multiplicity both of whose bounds are zero. This restricts the allowed cardinality to
be 0; that is, it requires that an instantiation of this element contain no values. This is useful in the context of
Generalizations (see sub clause 9.2) to constrain the cardinalities of a more general Classifier. It applies to (but is not
limited to) redefining properties existing in more general Classifiers.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the collection of values in an instantiation
of this Element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the
collection of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this Element.

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the collection of values in an instantiation of
this Element must be unique. That is, no two values in the collection may be equal, where equality of objects (instances
of Classes) is based on object identity while equality of data values (instances of DataTypes) and Signal instances is
based on value (see also sub clauses 10.2, 10.3, and 11.4 on DataTypes, Signals and Classes, respectively). If a
MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

Taken together, the isOrdered and isUnique properties can be used to specify that the collection of values in an
instantiation of a MultiplicityElement is of one of four types. Table 7.1shows the traditional names given to each of
these collection types.

Table 7.1 Collection types for MultiplicityElements

isOrdered isUnique Collection Type
false true Set
true true OrderedSet
false false Bag
true false Sequence

7.5.4 Notation

7541 Multiplicity Element

The specific notation for a MultiplicityElement is defined for each concrete kind of MultiplicityElement. In general, the
notation will include a multiplicity specification, which is shown as a text string containing the bounds of the
multiplicity and a notation for showing the optional ordering and uniqueness specifications.

The multiplicity bounds may be shown in the format:

<lower-bound> ".." <upper-bound>

where <lower-bound> is a ValueSpecification of type Integer and <upper-bound> is a ValueSpecification of type
UnlimitedNatural. The star character (*) is used as part of a multiplicity specification to represent an unlimited upper

bound.

If the multiplicity is associated with a MultiplicityElement whose notation is a text string (such as an attribute), the

multiplicity string is placed within square brackets ([]) as part of that text string.

If the multiplicity is associated with a MultiplicityElement that appears as a symbol (such as an Association end), the
multiplicity string is displayed without square brackets and may be placed near the symbol for the element.

34

Unified Modeling Language 2.5.1

If the lower bound is equal to the upper bound, then an alternate notation is to use a string containing just the upper
bound. For example, “1” is semantically equivalent to “1..1” multiplicity. A multiplicity with zero as the lower bound
and an unspecified upper bound may use the alternative notation containing a single star “*” instead of “0..*”
multiplicity.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific kind of
MultiplicityElement. A general notation is to use a textual annotation containing “ordered” or “unordered” to define the
ordering, and “unique” or “nonunique” to define the uniqueness.

The following BNF defines the general syntax for a multiplicity string, including support order and uniqueness
designators:

<multiplicity> ::= <multiplicity-range> [[{* <order-designator> [‘,” <uniqueness-designator>] ‘}’] |
[{ <uniqueness-designator> [,” <order-designator>] }’] |

<multiplicity-range> ::= [<lower> "..”] <upper>

<lower> ::= <value-specification>

<upper> ::= <value-specification>
<order-designator> ::= ‘ordered’| ‘unordered’
<uniqueness-designator> ::= ‘unique’| ‘nonunique’

See also Clause 8 on the textual notation for ValueSpecifications.

7.5.5 Examples

Figure 7.11 shows two multiplicity strings as part of attribute specifications within a class symbol.

Customer

purchase : Purchase [*] {ordered, unique}
account : Account [0..5] {unique}

Figure 7.11 Multiplicity within a textual specification

Figure 7.12 shows two multiplicity strings as part of the specification of two association ends.

purchase account
Purchase [= - Customer = Account
. {urd_e.ed {unique}
unique} 0.5

Figure 7.12 Multiplicity as an adornment to a symbol

7.6 Constraints

7.6.1 Summary
A Constraint is an assertion that indicates a restriction that must be satisfied by any valid realization of the model

containing the Constraint. A Constraint is attached to a set of constrainedElements, and it represents additional semantic
information about those Elements.

Unified Modeling Language 2.5.1 35

7.6.2 Abstract Syntax

PackageableElement
A
" {ordered}
Constraint + constraint + constrainedElement
‘=|| Element
* *
{subsets namespace} {subsets ownedMember}
+ context + ownedRule
[Namespace joe>
0..1 *
{subsets owner} {subsets ownedElement}
+ owningConstraint + specification

s |

0.1 1

Figure 7.13 Abstract Syntax of Constraints

7.6.3 Semantics

UMLR-92: UML/OCL spec mismatch-Constraint.context vs Constraint.constrainedElement

The specification of a Constraint is given by a ValueSpecification (see Clause 8) of type Boolean. The computation of
the spec1ﬁcat10n may reference the constrainedElements of the Constrarnt and also the context of the Constrarnt h+

In general there are many possible kinds of ewnerscontext for a Constraint. Fhe > >-OW

: > ¢ ‘ >-constrainedElements- The ewnercontext of the Constrarnt determmes when the Constralnt
specification is evaluated For example, a Constraint that is a precondition of an Operation is evaluated at the start of the
invocation of the Operation, while a Constraint that is a postcondition is evaluated at the conclusion of the invocation (see
sub clause 9.6 on Operations).

A Constraint is evaluated by evaluating its specification. If the specification evaluates to true, then the Constraint is
satisfied at that time. If the specification evaluates to false, then the Constraint is not satisfied, and the realization of the
model in which the evaluation occurs is not valid.

7.6.4 Notation

Certain kinds of Constraints are predefined in UML, others may be user-defined. The specification of a user-defined
Constraint is often expressed as a text string in some language, whose syntax and interpretation is as defined by that
language. In some situations, a formal language (such as OCL) or a programming language (such as Java) may be
appropriate, in other situations natural language may be used. Such a specification may be represented as an
OpaqueExpression with the appropriate language and body (see sub clause 8.3). The Constraint may then be notated
textually within braces ({}) according to the following BNF:

‘

<constraint> ::= {* [<name> ‘:’] <boolean-expression> ‘}’

where <name> is the name of the Constraint and <boolean-expression> is the appropriate textual notation for the
Constraint specification.

Most generally, the constraint string is placed in a note symbol and attached to each of the symbols for the
constrainedElements by dashed lines. (See Figure 7.14 for an example.)

For a Constraint that applies to a single constrainedElement (such as a single Class or Association), the constraint string
may be directly placed near the symbol for the constrainedElement, preferably near the name, if any. A tool shall make it
possible to determine the constrainedElement.

For an Element whose notation is a text string (such as an attribute, etc.), the constraint string may follow the Element
text string. The Element so annotated is then the single constrainedElement of the Constraint. (Figure 7.15 shows a
Constraint string that follows an attribute within a Class symbol.)

36 Unified Modeling Language 2.5.1

For a Constraint that applies to two Elements (such as two Classes or two Associations), the Constraint may be shown
as a dashed line between the Elements labeled by the constraint string. (See Figure 7.16 for an example.)

If the Constraint is shown as a dashed line between two Elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the Constraint. The Element at the tail of the arrow is mapped to
the first position and the element at the head of the arrow is mapped to the second position in the constrainedElement
collection.

For three or more paths of the same kind (such as Generalization paths or Association paths), the constraint string may
be attached to a dashed line crossing all of the paths.

7.6.5 Examples

Figure 7.14 shows an example of a Constraint in a note symbol.

0.4 boss

employee employer
Person Company
" 0.1

self employer = self boss.employer}

{self boss-=isEmpiy(} or ﬁ

Figure 7.14 Constraint in a note symbol

Figure 7.15 shows a constraint string attached to an attribute.

Stack

size: Integer {size >= 0}

push()
pop()

Figure 7.15 Constraint attached to an attribute

Figure 7.16 shows an {xor} constraint between two associations.

Person

Account

- Corporation

Figure 7.16 {xor} constraint

Unified Modeling Language 2.5.1 37

7.7 Dependencies

7.71 Summary

A Dependency signifies a supplier/client relationship between model elements where the modification of a supplier may
impact the client model elements.

7.7.2 Abstract Syntax

DirectedRelationship | PackageableElement

{subsets directedRelationship.

{subsets target}
+ supplier + supplierDependenc
NamedElement i *pp dd P : Dependency
1--* *
+ client + /clientDependency
{subsets source}) o
{subsets directedRelationship.

{subsets ownedElement} {subsets owner}

+ mappin + abstraction -
OpaqueExpression 0 pping PN Abstraction Usage

W1 0.1

Realization

Figure 7.17 Abstract syntax of dependencies

7.7.3 Semantics

7.7.31 Dependency

A Dependency implies that the semantics of the clients are not complete without the suppliers. The presence of
Dependency relationships in a model does not have any runtime semantic implications. The semantics are all given in
terms of the NamedElements that participate in the relationship, not in terms of their instances.

7.73.2 Usage

A Usage is a Dependency in which one NamedElement requires another NamedElement (or set of NamedElements) for
its full implementation or operation. The Usage does not specify how the client uses the supplier other than the fact that
the supplier is used by the definition or implementation of the client.

7.7.3.3 Abstraction

An Abstraction is a Dependency that relates two NamedElements or sets of NamedElements that represent the same
concept at different levels of abstraction or from different viewpoints. The relationship may be defined as a mapping
between the suppliers and the clients. Depending on the specific stereotype of Abstraction, the mapping may be formal or
informal, and it may be unidirectional or bidirectional. Abstraction has predefined stereotypes (such as «Derivey,
«Refiney, and «Tracey) that are defined in the Standard Profile (see Clause 22). If an Abstraction has more than one
client, the supplier maps into the set of clients as a group. For example, an analysis-level Class might be split into several
design-level Classes. The situation is similar if there is more than one supplier.

38 Unified Modeling Language 2.5.1

7.7.3.4 Realization

Realization is a specialized Abstraction dependency between two sets of NamedElements, one representing a
specification (the supplier) and the other representing an implementation of that specification (the client). Realization can
be used to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework
composition, etc. A Realization signifies that the set of clients is an implementation of the set of suppliers, which serves
as the specification. The meaning of “implementation” is not strictly defined, but rather implies a more refined or
elaborate form in respect to a certain modeling context. It is possible to specify a mapping between the specification and
implementation elements, although this is not necessarily computable.

7.7.4 Notation

A Dependency is shown as a dashed arrow between two model Elements. The model Element at the tail of the arrow
(the client) depends on the model Element at the arrowhead (the supplier). The arrow may be labeled with an optional
keyword or stereotype and an optional name (see Figure 7.18).

«keywordOrStereotypeName»

dependencyName
NamedElement-1 9| NamedElement-2

Figure 7.18 Notation for a Dependency between two elements

It is possible to have a set of Elements for the client or supplier. In this case, one or more arrows with their tails on the
clients are connected to the tails of one or more arrows with their heads on the suppliers. A small dot can be placed on the
junction if desired. A note on the Dependency should be attached at the junction point.

A Usage is shown as a Dependency with a «use» keyword attached to it.

An Abstraction is shown as a Dependency with an «abstraction» keyword or the specific predefined stereotype attached
to it.

A Realization is shown as a dashed line with a triangular arrowhead at the end that corresponds to the realized Element.
7.7.5 Examples
In Figure 7.19, the CarFactory Class has a Dependency on the Car Class. In this case, the Dependency is a Usage with

the standard stereotype «Instantiate» applied, indicating that an instance of the CarFactory Class creates instances of the
Car Class.

«Instantiate»
CarFactory > Car

Figure 7.19 An example of an «Instantiate» Dependency

In Figure 7.20, an Order Class requires the Line Item Class for its full implementation.

qusen :
Order fp—————— = Line

Item

Figure 7.20 An example of a «use» Dependency

Unified Modeling Language 2.5.1 39

Figure 7.21 illustrates an example in which the Business class is realized by a combination of Owner and Employee
classes.

Business

Owner Employee

Figure 7.21 An example of a realization Dependency

7.8 Classifier Descriptions

7.81 Abstraction [Class]

7.81.1 Description

An Abstraction is a Relationship that relates two Elements or sets of Elements that represent the same concept at
different levels of abstraction or from different viewpoints.

7.8.1.2 Diagrams

Dependencies, Artifacts

7.81.3 Generalizations
Dependency
7.81.4 Specializations

Realization, Manifestation

7.8.1.5 Association Ends

® ¢ mapping : OpaqueExpression [0..1]{subsets Element::ownedElement} (opposite

A_mapping_abstraction::abstraction)
An OpaqueExpression that states the abstraction relationship between the supplier(s) and the client(s). In some

cases, such as derivation, it is usually formal and unidirectional; in other cases, such as trace, it is usually
informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the Elements is not specified.

7.8.2 Comment [Class]

7.8.21 Description

A Comment is a textual annotation that can be attached to a set of Elements.

7.8.2.2 Diagrams

40 Unified Modeling Language 2.5.1

7.8.2.3

7.8.2.4

7.8.2.5

7.8.3

7.8.3.1

A Constraint is a condition or restriction expressed in natural language text or in a machine readable language for the

Generalizations

Element

Attributes

body : String [0..1]
Specifies a string that is the comment.

Association Ends

annotatedElement : Element [0..*] (opposite A_annotatedElement comment::comment)
References the Element(s) being commented.

Constraint [Class]

Description

purpose of declaring some of the semantics of an Element or set of Elements.

7.8.3.2

7.8.3.3

7.8.3.4

7.8.3.5

7.8.3.6

Diagrams

Namespaces, Constraints, Intervals, Use Cases, Behavior State Machines, Protocol State Machines,
Interactions, Fragments, Behaviors, Features, Operations, Actions

Generalizations

PackageableElement
Specializations

IntervalConstraint, InteractionConstraint

Association Ends

constrainedElement : Element [0..*]{ordered} (opposite A_constrainedElement constraint::constraint)
The ordered set of Elements referenced by this Constraint.

context : Namespace [0..1]{subsets NamedElement::namespace} (opposite Namespace::ownedRule)
Specifies the Namespace that owns the Constraint.

¢ specification : ValueSpecification [1..1]{subsets Element::ownedElement} (opposite
A_specification owningConstraint::owningConstraint)
A condition that must be true when evaluated in order for the Constraint to be satisfied.

Constraints

boolean value
The ValueSpecification for a Constraint must evaluate to a Boolean value.

Cannot be expressed in OCL

Unified Modeling Language 2.5.1

41

* no_side effects
Evaluating the ValueSpecification for a Constraint must not have side effects.

Cannot be expressed in OCL

* not apply to_self
A Constraint cannot be applied to itself.

inv: not constrainedElement->includes(self)

784 Dependency [Class]

7.8.41 Description

A Dependency is a Relationship that signifies that a single model Element or a set of model Elements requires other
model Elements for their specification or implementation. This means that the complete semantics of the client
Element(s) are either semantically or structurally dependent on the definition of the supplier Element(s).

7.8.4.2 Diagrams

Dependencies, Collaborations, Deployments
7.8.4.3 Generalizations

DirectedRelationship, PackageableElement
7.8.4.4 Specializations

Abstraction, Usage, Deployment

7.8.4.5 Association Ends

¢ client : NamedElement [1..*]{subsets DirectedRelationship::source} (opposite

NamedFElement::clientDependency)
The Element(s) dependent on the supplier Element(s). In some cases (such as a trace Abstraction) the

assignment of direction (that is, the designation of the client Element) is at the discretion of the modeler and is
a stipulation.

® supplier : NamedElement [1..*]{subsets DirectedRelationship::target} (opposite

A_supplier_supplierDependency::supplierDependency)
The Element(s) on which the client Element(s) depend in some respect. The modeler may stipulate a sense of

Dependency direction suitable for their domain.

7.8.5 DirectedRelationship [Abstract Class]

7.8.5.1 Description

A DirectedRelationship represents a relationship between a collection of source model Elements and a collection of
target model Elements.

7.8.5.2 Diagrams

Root, Template Bindings, Namespaces, Dependencies, Use Cases, Packages, Profiles, Information Flows,
Classifiers

42 Unified Modeling Language 2.5.1

7.8.5.3 Generalizations
Relationship
7.8.5.4 Specializations

Dependency, ElementImport, Packagelmport, TemplateBinding, Extend, Include, ProtocolConformance,
PackageMerge, ProfileApplication, InformationFlow, Generalization

7.8.5.5 Association Ends

® /source : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_source directedRelationship::directedRelationship)
Specifies the source Element(s) of the DirectedRelationship.

® /target : Element [1..*]{union, subsets Relationship::relatedElement} (opposite

A_target directedRelationship::directedRelationship)
Specifies the target Element(s) of the DirectedRelationship.

7.8.6 Element [Abstract Class]

7.8.6.1 Description

An Element is a constituent of a model. As such, it has the capability of owning other Elements.

7.8.6.2 Diagrams

Root, Template Bindings, Templates, Namespaces, Types, Constraints, Activity Groups, Executable Nodes,

Profiles, Instances, Link End Data, Structured Actions

7.8.6.3 Specializations

Comment, MultiplicityElement, NamedElement, ParameterableElement, Relationship, TemplateableElement,

TemplateParameter, TemplateParameterSubstitution, TemplateSignature, ExceptionHandler, Image, Slot,
Clause, LinkEndData, QualifierValue

7.8.6.4 Association Ends

* ¢ ownedComment : Comment [0..*]{subsets Element::ownedElement} (opposite

A_ownedComment owningElement::owningElement)
The Comments owned by this Element.

* ¢ /ownedElement : Element [0..*]{union} (opposite Element::owner)
The Elements owned by this Element.

¢ /owner : Element [0..1]{union} (opposite Element::ownedElement)
The Element that owns this Element.

7.8.6.5 Operations

¢ allOwnedElements() : Element [0..*]
The query allOwnedElements() gives all of the direct and indirect ownedElements of an Element.

body: ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))->asSet()

Unified Modeling Language 2.5.1

43

7.8.6.6

7.8.7

7.8.7.1

mustBeOwned() : Boolean

The query mustBeOwned() indicates whether Elements of this type must have an owner. Subclasses of
Element that do not require an owner must override this operation.

body: true

Constraints

has_owner
Elements that must be owned must have an owner.

inv: mustBeOwned() implies owner->notEmpty ()

not_own_self
An element may not directly or indirectly own itself.

inv: not allOwnedElements()->includes(self)
Elementimport [Class]

Description

An ElementImport identifies a NamedElement in a Namespace other than the one that owns that NamedElement and
allows the NamedElement to be referenced using an unqualified name in the Namespace owning the ElementImport.

7.8.7.2

7.8.7.3

7.8.7.4

7.8.7.5

44

Diagrams

Namespaces, Profiles

Generalizations

DirectedRelationship

Attributes

alias : String [0..1]

Specifies the name that should be added to the importing Namespace in lieu of the name of the imported
PackagableElement. The alias must not clash with any other member in the importing Namespace. By default,
no alias is used.

visibility : VisibilityKind [1..1] = public

Specifies the visibility of the imported PackageableElement within the importingNamespace, i.e., whether the
importedElement will in turn be visible to other Namespaces. If the ElementImport is public, the
importedElement will be visible outside the importingNamespace while, if the ElementImport is private, it will
not.

Association Ends

importedElement : PackageableElement [1..1]{subsets DirectedRelationship::target} (opposite

A_importedElement import::import)
Specifies the PackageableElement whose name is to be added to a Namespace.

importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite Namespace::elementlmport)
Specifies the Namespace that imports a PackageableElement from another Namespace.

Unified Modeling Language 2.5.1

7.8.7.6

7.8.7.7

7.8.8

7.8.8.1

Operations

getName() : String
The query getName() returns the name under which the imported PackageableElement will be known in the
importing namespace.

body: if alias->notEmpty() then
alias

else
importedElement.name

endif

Constraints

imported _element is_public
An importedElement has either public visibility or no visibility at all.

inv: importedElement.visibility <> null implies importedElement.visibility =
VisibilityKind::public

visibility public or private
The visibility of an ElementImport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
MultiplicityElement [Abstract Class]

Description

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A MultiplicityElement embeds this information to specify the allowable
cardinalities for an instantiation of the Element.

7.8.8.2

7.8.8.3

7.8.8.4

7.8.8.5

Diagrams

Types, Activities, Structured Classifiers, Features, Actions
Generalizations

Element
Specializations

Attributes

isOrdered : Boolean [1..1] = false
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are sequentially ordered.

isUnique : Boolean [1..1] = true
For a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this
MultiplicityElement are unique.

/lower : Integer [1..1]
The lower bound of the multiplicity interval.

Unified Modeling Language 2.5.1 45

¢ /upper : UnlimitedNatural [1..1]
The upper bound of the multiplicity interval.

7.8.8.6 Association Ends

® ¢ lowerValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite
A_lowerValue owningl ower::owningl ower)
The specification of the lower bound for this multiplicity.

® ¢ upperValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_upperValue owningUpper::owningUpper)
The specification of the upper bound for this multiplicity.

7.8.8.7 Operations

® compatibleWith(other : MultiplicityElement) : Boolean
The operation compatibleWith takes another multiplicity as input. It returns true if the other multiplicity is
wider than, or the same as, self.

body: (other.lowerBound() <= self.lowerBound()) and ((other.upperBound() = *) or
(self.upperBound() <= other.upperBound()))

® includesMultiplicity(M : MultiplicityElement) : Boolean
The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the
specified multiplicity.

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty() and M.upperBound()-
>notEmpty() and M.lowerBound()->notEmpty()
body: (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

* is(lowerbound : Integer, upperbound : UnlimitedNatural) : Boolean
The operation is determines if the upper and lower bound of the ranges are the ones given.

body: lowerbound = self.lowerBound() and upperbound = self.upperBound()

® isMultivalued() : Boolean
The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

pre: upperBound()->notEmpty ()
body: upperBound() > 1

* lower() : Integer [0..1]
The derived lower attribute must equal the lowerBound.

body: lowerBound()

® lowerBound() : Integer [1..1]
The query lowerBound() returns the lower bound of the multiplicity as an integer, which is the integerValue of
lowerValue, if this is given, and 1 otherwise.

body: if (lowerValue=null or lowerValue.integerValue()=null) then 1 else
lowerValue.integerValue() endif

¢ upper() : UnlimitedNatural [0..1]
The derived upper attribute must equal the upperBound.

46 Unified Modeling Language 2.5.1

body: upperBound()

¢ upperBound() : UnlimitedNatural [1..1]
The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited
natural, which is the unlimitedNatural Value of upperValue, if given, and 1, otherwise.

body: if (upperValue=null or upperValue.unlimitedValue()=null) then 1 else
upperValue.unlimitedvalue() endif

7.8.8.8 Constraints

e upper_ge lower
The upper bound must be greater than or equal to the lower bound.

inv: upperBound() >= lowerBound()

* lower ge O
The lower bound must be a non-negative integer literal.

inv: lowerBound() >= 0

* value specification no_side effects
If a non-literal ValueSpecification is used for lowerValue or upperValue, then evaluating that specification
must not have side effects.

Cannot be expressed in OCL

* value specification_constant
If a non-literal ValueSpecification is used for lowerValue or upperValue, then that specification must be a
constant expression.

Cannot be expressed in OCL

* lower is_integer
If it is not empty, then lowerValue must have an Integer value.

inv: lowerValue <> null implies lowerValue.integerValue() <> null

* upper_is_unlimitedNatural
If it is not empty, then upperValue must have an UnlimitedNatural value.

inv: upperValue <> null implies upperValue.unlimitedvValue() <> null

7.8.9 NamedElement [Abstract Class]

7.8.9.1 Description

A NamedElement is an Element in a model that may have a name. The name may be given directly and/or via the use of
a StringExpression.

7.8.9.2 Diagrams

Namespaces, Types, Dependencies, Activity Groups, Time, Use Cases, Collaborations, Behavior State
Machines, Interactions, Messages, Lifelines, Occurrences, Fragments, Information Flows, Deployments
Events, Classifiers

Unified Modeling Language 2.5.1 47

7.8.9.3

7.8.9.4

7.8.9.5

7.8.9.6

7.8.9.7

48

Generalizations

Element

Specializations

Namespace, PackageableElement, TypedElement, ActivityGroup, Trigger, Extend, Include, CollaborationUse,
Vertex, GeneralOrdering, InteractionFragment, Lifeline, Message, MessageEnd, DeployedArtifact
DeploymentTarget, ParameterSet, RedefinableElement

Attributes

name : String [0..1]
The name of the NamedElement.

/qualifiedName : String [0..1]

A name that allows the NamedElement to be identified within a hierarchy of nested Namespaces. It is
constructed from the names of the containing Namespaces starting at the root of the hierarchy and ending with
the name of the NamedElement itself.

visibility : VisibilityKind [0..1]
Determines whether and how the NamedElement is visible outside its owning Namespace.

Association Ends

/clientDependency : Dependency [0..*]{subsets A_source directedRelationship::directedRelationship }

(opposite Dependency::client)
Indicates the Dependencies that reference this NamedElement as a client.

¢ nameExpression : StringExpression [0..1]{subsets Element::ownedElement} (opposite

A nameExpression _namedElement::namedElement)
The StringExpression used to define the name of this NamedElement.

/namespace : Namespace [0..1]{union, subsets A_member _memberNamespace::memberNamespace, subsets

Element::owner} (opposite Namespace::ownedMember)
Specifies the Namespace that owns the NamedElement.

Operations

allNamespaces() : Namespace [0..*]{ordered}
The query allNamespaces() gives the sequence of Namespaces in which the NamedElement is nested, working
outwards.

body: if owner.oclIsKindOf (TemplateParameter) and
owner.oclAsType (TemplateParameter).signature.template.oclIsKindOf (Namespace) then
let enclosingNamespace : Namespace =
owner.oclAsType(TemplateParameter).signature.template.oclAsType(Namespace) in
enclosingNamespace.allNamespaces ()->prepend(enclosingNamespace)
else
if namespace->isEmpty()
then OrderedSet{}
else
namespace.allNamespaces () ->prepend(namespace)
endif
endif

Unified Modeling Language 2.5.1

7.8.9.8

allOwningPackages() : Package [0..*]
The query allOwningPackages() returns the set of all the enclosing Namespaces of this NamedElement,
working outwards, that are Packages, up to but not including the first such Namespace that is not a Package.

body: if namespace.oclIsKindOf (Package)
then
let owningPackage : Package = namespace.oclAsType(Package) in
owningPackage->union(owningPackage.allOwningPackages())
else
null
endif

isDistinguishableFrom(n : NamedElement, ns : Namespace) : Boolean

The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a
Namespace. By default, two named elements are distinguishable if (a) they have types neither of which is a
kind of the other or (b) they have different names.

body: (self.oclIsKindOf(n.oclType()) or n.oclIsKindOf(self.oclType())) implies
ns.getNamesOfMember (self)->intersection(ns.getNamesOfMember (n))->isEmpty ()

qualifiedName() : String
When a NamedElement has a name, and all of its containing Namespaces have a name, the qualifiedName is
constructed from the name of the NamedElement and the names of the containing Namespaces.

body: if self.name <> null and self.allNamespaces()->select(ns | ns.name=null)->isEmpty()
then
self.allNamespaces()->iterate(ns : Namespace; agg: String = self.name |
ns.name.concat(self.separator()).concat(agg))
else
null
endif

separator() : String
The query separator() gives the string that is used to separate names when constructing a qualifiedName.

body: '::'

clientDependency() : Dependency [0..*]
body: Dependency.allInstances()->select(d | d.client->includes(self))

Constraints

visibility _needs ownership

If a NamedElement is owned by something other than a Namespace, it does not have a visibility. One that is
not owned by anything (and hence must be a Package, as this is the only kind of NamedElement that overrides
mustBeOwned()) may have a visibility.

inv: (namespace = null and owner <> null) implies visibility = null

has_qualified name
When there is a name, and all of the containing Namespaces have a name, the qualifiedName is constructed
from the name of the NamedElement and the names of the containing Namespaces.

inv: (name <> null and allNamespaces()->select(ns | ns.name = null)->isEmpty()) implies
qualifiedName = allNamespaces()->iterate(ns : Namespace; agg: String = name |
ns.name.concat (self.separator()).concat(agg))

Unified Modeling Language 2.5.1 49

* has no qualified name
If there is no name, or one of the containing Namespaces has no name, there is no qualifiedName.

inv: name=null or allNamespaces()->select(ns | ns.name=null)->notEmpty() implies
qualifiedName = null

7.8.10 Namespace [Abstract Class]

7.8.10.1 Description

A Namespace is an Element in a model that owns and/or imports a set of NamedElements that can be identified by
name.

7.8.10.2 Diagrams

Namespaces, Constraints, Behavior State Machines, Packages, Fragments, Classifiers, Features, Structured
Actions

7.8.10.3 Generalizations

NamedElement

7.8.10.4 Specializations

Region, State, Transition, Package, InteractionOperand, BehavioralFeature, Classifier, StructuredActivityNode

7.8.10.5 Association Ends

® ¢ clementlmport : ElementImport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite ElementImport::importingNamespace)
References the ElementImports owned by the Namespace.

* /importedMember : PackageableElement [0..*]{subsets Namespace::member} (opposite
A_importedMember_namespace::namespace)
References the PackageableElements that are members of this Namespace as a result of either Packagelmports
or ElementImports.

®* /member : NamedElement [0..*]{union} (opposite A_member memberNamespace::memberNamespace)
A collection of NamedElements identifiable within the Namespace, either by being owned or by being
introduced by importing or inheritance.

* ¢ /ownedMember : NamedElement [0..*]{union, subsets Namespace::member, subsets

Element::ownedElement} (opposite NamedElement::namespace)
A collection of NamedElements owned by the Namespace.

¢ ¢ ownedRule : Constraint [0..*]{subsets Namespace::ownedMember} (opposite Constraint::context)
Specifies a set of Constraints owned by this Namespace.

® ¢ packagelmport : Packagelmport [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite Packagelmport::importingNamespace)
References the Packagelmports owned by the Namespace.

50 Unified Modeling Language 2.5.1

7.8.10.6 Operations

excludeCollisions(imps : PackageableElement [0..*]) : PackageableElement [0..*]
The query excludeCollisions() excludes from a set of PackageableElements any that would not be
distinguishable from each other in this Namespace.

body: imps->reject(impl | imps->exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

getNamesOfMember(element : NamedElement) : String [0..%]

The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace,
taking importing into account. In general a member can have multiple names in a Namespace if it is imported
more than once with different aliases.

body: if self.ownedMember ->includes(element)
then Set{element.name}
else let elementImports : Set(ElementImport) = self.elementImport->select(ei |
ei.importedElement = element) in
if elementImports->notEmpty ()
then
elementImports->collect(el | el.getName())->asSet()
else
self.packageImport->select(pi |
pi.importedPackage.visibleMembers().oclAsType (NamedElement)->includes(element))-> collect(pi
| pi.importedPackage.getNamesOfMember (element))->asSet()
endif
endif

importMembers(imps : PackageableElement [0..*]) : PackageableElement [0..*]

The query importMembers() defines which of a set of PackageableElements are actually imported into the
Namespace. This excludes hidden ones, i.e., those which have names that conflict with names of
ownedMembers, and it also excludes PackageableElements that would have the indistinguishable names when
imported.

body: self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll (mem |
imp.isDistinguishableFrom(mem, self)))

importedMember() : PackageableElement [0..*]
The importedMember property is derived as the PackageableElements that are members of this Namespace as
a result of either Packagelmports or ElementImports.

body: self.importMembers(elementImport.importedElement->asSet()-
>union (packageImport.importedPackage->collect(p | p.visibleMembers()))->asSet())

membersAreDistinguishable() : Boolean
The Boolean query membersAreDistinguishable() determines whether all of the Namespace's members are
distinguishable within it.

body: member->forAll(memb |
member->excluding(memb)->forAll (other |
memb.isDistinguishableFrom(other, self)))

7.8.10.7 Constraints

members_distinguishable
All the members of a Namespace are distinguishable within it.

inv: membersAreDistinguishable()

Unified Modeling Language 2.5.1 51

e cannot import self
A Namespace cannot have a Packagelmport to itself.

inv: packageImport.importedPackage.oclAsType(Namespace)->excludes(self)

* cannot_import_ownedMembers
A Namespace cannot have an ElementImport to one of its ownedMembers.

inv: elementImport.importedElement.oclAsType(Element)->excludesAll (ownedMember)

7.8.11 Packagelmport [Class]

7.8.11.1 Description

A Packagelmport is a Relationship that imports all the non-private members of a Package into the Namespace owning
the Packagelmport, so that those Elements may be referred to by their unqualified names in the importingNamespace.

7.8.11.2 Diagrams

Namespaces, Profiles

7.8.11.3 Generalizations

DirectedRelationship

7.8.11.4 Attributes

® visibility : VisibilityKind [1..1] = public
Specifies the visibility of the imported PackageableElements within the importingNamespace, i.e., whether
imported Elements will in turn be visible to other Namespaces. If the Packagelmport is public, the imported
Elements will be visible outside the importingNamespace, while, if the Packagelmport is private, they will not.

7.8.11.5 Association Ends

* importedPackage : Package [1..1]{subsets DirectedRelationship::target} (opposite

A_importedPackage packagelmport::packagelmport)
Specifies the Package whose members are imported into a Namespace.

® importingNamespace : Namespace [1..1]{subsets DirectedRelationship::source, subsets Element::owner}
(opposite Namespace::packagelmport)
Specifies the Namespace that imports the members from a Package.

7.8.11.6 Constraints

* public_or private
The visibility of a Packagelmport is either public or private.

inv: visibility = VisibilityKind::public or visibility = VisibilityKind::private
7.8.12 PackageableElement [Abstract Class]

7.8.121 Description

A PackageableElement is a NamedElement that may be owned directly by a Package. A PackageableElement is also
able to serve as the parameteredElement of a TemplateParameter.

52 Unified Modeling Language 2.5.1

7.8.12.2 Diagrams

Namespaces, Types, Constraints, Dependencies, Literals, Time, Components, Packages, Information Flows
Deployments, Artifacts, Events, Instances, Generalization Sets

7.8.12.3 Generalizations

ParameterableElement, NamedElement

7.8.12.4 Specializations

Constraint, Dependency, Type, Event, Observation, ValueSpecification, Package, InformationFlow,
GeneralizationSet, InstanceSpecification

7.8.12.5 Attributes

* visibility : VisibilityKind [0..1] = public
A PackageableElement must have a visibility specified if it is owned by a Namespace. The default visibility is
public.

7.8.12.6 Constraints

* namespace _needs_visibility
A PackageableElement owned by a Namespace must have a visibility.

inv: visibility = null implies namespace = null
7.8.13 ParameterableElement [Abstract Class]

7.8.13.1 Description

A ParameterableElement is an Element that can be exposed as a formal TemplateParameter for a template, or specified
as an actual parameter in a binding of a template.

7.8.13.2 Diagrams

Template Bindings, Templates, Namespaces, Structured Classifiers, Properties, Operations

7.8.13.3 Generalizations
Element
7.8.13.4 Specializations

PackageableElement, ConnectableElement, Operation

7.8.13.5 Association Ends

¢ owningTemplateParameter : TemplateParameter [0..1]{subsets ParameterableElement::templateParameter,

subsets Element::owner} (opposite TemplateParameter::ownedParameteredElement)
The formal TemplateParameter that owns this ParameterableElement.

® templateParameter : TemplateParameter [0..1] (opposite TemplateParameter::parameteredElement)
The TemplateParameter that exposes this ParameterableElement as a formal parameter.

Unified Modeling Language 2.5.1 53

7.8.13.6 Operations

* isCompatibleWith(p : ParameterableElement) : Boolean
The query isCompatibleWith() determines if this ParameterableElement is compatible with the specified
ParameterableElement. By default, this ParameterableElement is compatible with another
ParameterableElement p if the kind of this ParameterableElement is the same as or a subtype of the kind of p.
Subclasses of ParameterableElement should override this operation to specify different compatibility
constraints.

body: self.oclIsKindOf(p.oclType())

® isTemplateParameter() : Boolean
The query isTemplateParameter() determines if this ParameterableElement is exposed as a formal
TemplateParameter.

body: templateParameter->notEmpty()

7.8.14 Realization [Class]

7.8.14.1 Description

Realization is a specialized Abstraction relationship between two sets of model Elements, one representing a
specification (the supplier) and the other represents an implementation of the latter (the client). Realization can be used
to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

7.8.14.2 Diagrams

Dependencies, Components, Interfaces, Classifiers

7.8.14.3 Generalizations
Abstraction
7.8.14.4 Specializations

ComponentRealization, InterfaceRealization, Substitution

7.8.15 Relationship [Abstract Class]

7.8.15.1 Description

Relationship is an abstract concept that specifies some kind of relationship between Elements.

7.8.15.2 Diagrams

Root, Associations, Information Flows

7.8.15.3 Generalizations
Element
7.8.15.4 Specializations

DirectedRelationship, Association

54 Unified Modeling Language 2.5.1

7.8.15.5 Association Ends

¢ /relatedElement : Element [1..*]{union} (opposite A_relatedElement relationship::relationship)
Specifies the elements related by the Relationship.

7.8.16 TemplateBinding [Class]

7.8.16.1 Description

A TemplateBinding is a DirectedRelationship between a TemplateableElement and a template. A TemplateBinding
specifies the TemplateParameterSubstitutions of actual parameters for the formal parameters of the template.

7.8.16.2 Diagrams

Template Bindings

7.8.16.3 Generalizations

DirectedRelationship

7.8.16.4 Association Ends

® boundElement : TemplateableElement [1..1]{subsets DirectedRelationship::source, subsets Element::owner}

(opposite TemplateableElement::templateBinding)
The TemplateableElement that is bound by this TemplateBinding.

® ¢ parameterSubstitution : TemplateParameterSubstitution [0..*]{subsets Element::ownedElement} (opposite

TemplateParameterSubstitution::templateBinding)
The TemplateParameterSubstitutions owned by this TemplateBinding.

® signature : TemplateSignature [1..1]{subsets DirectedRelationship::target} (opposite
A_signature_templateBinding::templateBinding)
The TemplateSignature for the template that is the target of this TemplateBinding.

7.8.16.5 Constraints

* parameter_substitution formal
Each parameterSubstitution must refer to a formal TemplateParameter of the target TemplateSignature.

inv: parameterSubstitution->forAll(b | signature.parameter->includes(b.formal))

* one parameter_substitution
A TemplateBiinding contains at most one TemplateParameterSubstitution for each formal TemplateParameter
of the target TemplateSignature.

inv: signature.parameter->forAll(p | parameterSubstitution->select(b | b.formal = p)->size()
<= 1)

7.8.17 TemplateParameter [Class]

78171 Description

A TemplateParameter exposes a ParameterableElement as a formal parameter of a template.

Unified Modeling Language 2.5.1 55

7.8.17.2 Diagrams

Template Bindings, Templates, Structured Classifiers, Classifier Templates, Operations

7.8.17.3 Generalizations
Element
7.8.17.4 Specializations

ConnectableElementTemplateParameter, ClassifierTemplateParameter, OperationTemplateParameter

7.8.17.5 Association Ends

¢ default : ParameterableElement [0..1] (opposite A_default templateParameter::templateParameter)
The ParameterableElement that is the default for this formal TemplateParameter.

® ¢ ownedDefault : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameter::default} (opposite A_ownedDefault templateParameter::templateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of providing a default.

® ¢ ownedParameteredElement : ParameterableElement [0..1]{subsets Element::ownedElement, subsets

TemplateParameter::parameteredElement} (opposite ParameterableElement::owningTemplateParameter)
The ParameterableElement that is owned by this TemplateParameter for the purpose of exposing it as the

parameteredElement.

® parameteredElement : ParameterableElement [1..1] (opposite ParameterableElement::templateParameter)
The ParameterableElement exposed by this TemplateParameter.

® signature : TemplateSignature [1..1]{subsets A_parameter_templateSignature::templateSignature, subsets
Element::owner} (opposite TemplateSignature::ownedParameter)
The TemplateSignature that owns this TemplateParameter.

7.8.17.6 Constraints

* must_be compatible
The default must be compatible with the formal TemplateParameter.

inv: default <> null implies default.isCompatibleWith(parameteredElement)

7.8.18 TemplateParameterSubstitution [Class]

7.8.18.1 Description

A TemplateParameterSubstitution relates the actual parameter to a formal TemplateParameter as part of a template
binding.

7.8.18.2 Diagrams

Template Bindings
7.8.18.3 Generalizations

Element

56 Unified Modeling Language 2.5.1

7.8.18.4 Association Ends

actual : ParameterableElement [1..1] (opposite

A_actual templateParameterSubstitution::templateParameterSubstitution)
The ParameterableElement that is the actual parameter for this TemplateParameterSubstitution.

formal : TemplateParameter [1..1] (opposite
A _formal templateParameterSubstitution::templateParameterSubstitution)
The formal TemplateParameter that is associated with this TemplateParameterSubstitution.

¢ ownedActual : ParameterableElement [0..1]{subsets Element::ownedElement, subsets
TemplateParameterSubstitution::actual} (opposite

A_ownedActual owningTemplateParameterSubstitution::owningTemplateParameterSubstitution)

The ParameterableElement that is owned by this TemplateParameterSubstitution as its actual parameter.

templateBinding : TemplateBinding [1..1]{subsets Element::owner} (opposite

TemplateBinding::parameterSubstitution)
The TemplateBinding that owns this TemplateParameterSubstitution.

7.8.18.5 Constraints

7.8.19

7.8.19.1

must_be_compatible
The actual ParameterableElement must be compatible with the formal TemplateParameter, e.g., the actual
ParameterableElement for a Class TemplateParameter must be a Class.

inv: actual->forAll(a | a.isCompatibleWith(formal.parameteredElement))

TemplateSignature [Class]

Description

A Template Signature bundles the set of formal TemplateParameters for a template.

7.8.19.2 Diagrams

Template Bindings, Templates, Classifier Templates

7.8.19.3 Generalizations
Element
7.8.19.4 Specializations

RedefinableTemplateSignature

7.8.19.5 Association Ends

¢ ownedParameter : TemplateParameter [0..*]{ordered, subsets Element::ownedElement, subsets

TemplateSignature::parameter} (opposite TemplateParameter::signature)
The formal parameters that are owned by this TemplateSignature.

parameter : TemplateParameter [1..*]{ordered} (opposite A_parameter templateSignature::templateSignature)

The ordered set of all formal TemplateParameters for this TemplateSignature.

Unified Modeling Language 2.5.1

57

® template : TemplateableElement [1..1]{subsets Element::owner} (opposite
TemplateableElement::ownedTemplateSignature)
The TemplateableElement that owns this TemplateSignature.

7.8.19.6 Constraints

* own_elements
Parameters must own the ParameterableElements they parameter or those ParameterableElements must be
owned by the TemplateableElement being templated.

inv: template.ownedElement->includesAll (parameter.parameteredElement->asSet() -
parameter.ownedParameteredElement->asSet())

* unique parameters
The names of the parameters of a TemplateSignature are unique.

inv: parameter->forAll(pl, p2 | (pl <> p2 and
pl.parameteredElement.oclIsKindOf (NamedElement) and
p2.parameteredElement.oclIsKindOf (NamedElement)) implies
pl.parameteredElement.oclAsType(NamedElement) .name <>
p2.parameteredElement.oclAsType (NamedElement) .name)

7.8.20 TemplateableElement [Abstract Class]

7.8.20.1 Description

A TemplateableElement is an Element that can optionally be defined as a template and bound to other templates.
7.8.20.2 Diagrams

Template Bindings, Templates, Expressions, Packages, Classifiers, Classifier Templates, Operations

7.8.20.3 Generalizations
Element
7.8.20.4 Specializations

StringExpression, Package, Classifier, Operation

7.8.20.5 Association Ends

* ¢ ownedTemplateSignature : TemplateSignature [0..1]{subsets Element::ownedElement} (opposite

TemplateSignature::template)
The optional TemplateSignature specifying the formal TemplateParameters for this TemplateableElement. If a

TemplateableElement has a TemplateSignature, then it is a template.

* ¢ templateBinding : TemplateBinding [0..*]{subsets Element::ownedElement, subsets

A source directedRelationship::directedRelationship} (opposite TemplateBinding::boundElement)
The optional TemplateBindings from this TemplateableElement to one or more templates.

7.8.20.6 Operations

¢ isTemplate() : Boolean
The query isTemplate() returns whether this TemplateableElement is actually a template.

body: ownedTemplateSignature <> null

58 Unified Modeling Language 2.5.1

® parameterableElements() : ParameterableElement [0..*]
The query parameterableElements() returns the set of ParameterableElements that may be used as the
parameteredElements for a TemplateParameter of this TemplateableElement. By default, this set includes all
the ownedElements. Subclasses may override this operation if they choose to restrict the set of
ParameterableElements.

body: self.allOwnedElements()-
>select(oclIsKindOf (ParameterableElement)).oclAsType (ParameterableElement)->asSet()

7.8.21 Type [Abstract Class]

7.8.21.1 Description

A Type constrains the values represented by a TypedElement.

7.8.21.2 Diagrams

Types, Associations, Packages, Classifiers, Features, Operations

7.8.21.3 Generalizations

PackageableElement
7.8.21.4 Specializations

Classifier
7.8.21.5 Attributes

7.8.21.6 Association Ends

® package : Package [0..1]{subsets A_packagedElement owningPackage::owningPackage} (opposite

Package::ownedType)
Specifies the owning Package of this Type, if any.

7.8.21.7 Operations

¢ conformsTo(other : Type) : Boolean

The query conformsTo() gives true for a Type that conforms to another. By default, two Types do not conform

to each other. This query is intended to be redefined for specific conformance situations.

body: false

7.8.22 TypedElement [Abstract Class]

7.8.22.1 Description

A TypedElement is a NamedElement that may have a Type specified for it.

7.8.22.2 Diagrams

Types, Object Nodes, Literals, Structured Classifiers, Features

7.8.22.3 Generalizations

NamedFElement

Unified Modeling Language 2.5.1

59

7.8.22.4 Specializations

ObjectNode, ValueSpecification, ConnectableElement, StructuralFeature

7.8.22.5 Association Ends

* type: Type [0..1] (opposite A_type typedElement::typedElement)
The type of the TypedElement.

7.8.23 Usage [Class]

7.8.23.1 Description

A Usage is a Dependency in which the client Element requires the supplier Element (or set of Elements) for its full
implementation or operation.

7.8.23.2 Diagrams
Dependencies
7.8.23.3 Generalizations
Dependency
7.8.24 VisibilityKind [Enumeration]
7.8.24.1 Description
VisibilityKind is an enumeration type that defines literals to determine the visibility of Elements in a model.

7.8.24.2 Diagrams

®* Namespaces

7.8.24.3 Literals

* public
A Named Element with public visibility is visible to all elements that can access the contents of the Namespace
that owns it.

* private
A NamedElement with private visibility is only visible inside the Namespace that owns it.

* protected
A NamedElement with protected visibility is visible to Elements that have a generalization relationship to the
Namespace that owns it.

* package
A NamedElement with package visibility is visible to all Elements within the nearest enclosing Package (given
that other owning Elements have proper visibility). Outside the nearest enclosing Package, a NamedElement
marked as having package visibility is not visible. Only NamedElements that are not owned by Packages can
be marked as having package visibility.

60 Unified Modeling Language 2.5.1

7.9 Association Descriptions

791 A_actual_templateParameterSubstitution [Association]
7911 Diagrams

Template Bindings
7.9.1.2 Specializations

A_ownedActual owningTemplateParameterSubstitution

7.91.3 Owned Ends

® templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::actual)

7.9.2 A_annotatedElement_comment [Association]
7.9.21 Diagrams

Root
7.9.2.2 Owned Ends

* comment : Comment [0..*] (opposite Comment::annotatedElement)

7.9.3 A_clientDependency_client [Association]
7.9.31 Diagrams

Dependencies

7.9.3.2 Member Ends
* NamedElement::clientDependency

¢ Dependency::client

794 A_constrainedElement_constraint [Association]
7.9.41 Diagrams

Constraints
7.9.4.2 Owned Ends

® constraint : Constraint [0..*] (opposite Constraint::constrainedElement)

7.9.5 A_default_templateParameter [Association]
7.9.5.1 Diagrams
Templates

Unified Modeling Language 2.5.1 61

7.9.5.2 Specializations

A_ownedDefault templateParameter

7.9.5.3 Owned Ends
* templateParameter : TemplateParameter [0..*] (opposite TemplateParameter::default)

7.9.6 A_elementlmport_importingNamespace [Association]
7.9.6.1 Diagrams
Namespaces
7.9.6.2 Member Ends
®* Namespace::elementlmport

¢ ElementImport::importingNamespace

7.9.7 A_formal_templateParameterSubstitution [Association]
7.9.71 Diagrams
Template Bindings

7.9.7.2 Owned Ends

¢ templateParameterSubstitution : TemplateParameterSubstitution [0..*] (opposite
TemplateParameterSubstitution::formal)

7.9.8 A_importedElement_import [Association]
7.9.8.1 Diagrams

Namespaces

7.9.8.2 Owned Ends

® import : ElementImport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
ElementImport::importedElement)

7.9.9 A_importedMember_namespace [Association]
7.9.91 Diagrams
Namespaces

7.9.9.2 Owned Ends

® namespace : Namespace [0..*]{subsets A_member memberNamespace::memberNamespace } (opposite
Namespace::importedMember)

62 Unified Modeling Language 2.5.1

7.9.10 A_importedPackage_packagelmport [Association]
7.9.10.1 Diagrams

Namespaces
7.9.10.2 Owned Ends

® packagelmport : Packagelmport [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
Packagelmport::importedPackage)

7.9.11 A_lowerValue_owningLower [Association]
7.9.11.1 Diagrams
Types

7.9.11.2 Owned Ends

* owningLower : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::lowerValue)

7.9.12 A_mapping_abstraction [Association]
7.9.121 Diagrams
Dependencies

7.9.12.2 Owned Ends

® abstraction : Abstraction [0..1]{subsets Element::owner} (opposite Abstraction::mapping)

7.9.13 A_member_memberNamespace [Association]
7.9.13.1 Diagrams
Namespaces

7.9.13.2 Owned Ends

* /memberNamespace : Namespace [0..*]{union} (opposite Namespace::member)

7.9.14 A_nameExpression_namedElement [Association]
7.9.14.1 Diagrams

Namespaces
7.9.14.2 Owned Ends

¢ namedElement : NamedElement [0..1]{subsets Element::owner} (opposite NamedElement::nameExpression)

Unified Modeling Language 2.5.1 63

7.9.15 A_ownedActual_owningTemplateParameterSubstitution [Association]
7.9.15.1 Diagrams

Template Bindings
7.9.15.2 Generalizations
A actual templateParameterSubstitution

7.9.15.3 Owned Ends

¢ owningTemplateParameterSubstitution : TemplateParameterSubstitution [0..1]{subsets Element::owner,

redefines A_actual templateParameterSubstitution::templateParameterSubstitution} (opposite
TemplateParameterSubstitution::ownedActual)

7.9.16 A_ownedComment_owningElement [Association]

7.9.16.1 Diagrams
Root

7.9.16.2 Owned Ends

* owningElement : Element [0..1]{subsets Element::owner} (opposite Element::ownedComment)

7.9.17 A_ownedDefault_templateParameter [Association]
79171 Diagrams

Templates

7.9.17.2 Generalizations

A_default templateParameter
7.9.17.3 Owned Ends

* templateParameter : TemplateParameter [0..1]{subsets Element::owner, redefines
A_default templateParameter::templateParameter} (opposite TemplateParameter::ownedDefault)

7.9.18 A_ownedElement_owner [Association]

7.9.18.1 Diagrams
Root

7.9.18.2 Member Ends
®* Element::ownedElement

®* Element::owner

64 Unified Modeling Language 2.5.1

7.9.19 A_ownedMember_namespace [Association]
7.9.19.1 Diagrams
Namespaces
7.9.19.2 Member Ends
® Namespace::ownedMember

® NamedElement::namespace

7.9.20 A_ownedParameter_signature [Association]
7.9.20.1 Diagrams
Templates
7.9.20.2 Member Ends
* TemplateSignature::ownedParameter

¢ TemplateParameter::signature

7.9.21 A_ownedParameteredElement_owningTemplateParameter [Association]
7.9.211 Diagrams
Templates
7.9.21.2 Member Ends
¢ TemplateParameter::ownedParameteredElement

¢ ParameterableElement::owningTemplateParameter

7.9.22 A_ownedRule_context [Association]

7.9.221 Diagrams
Namespaces, Constraints

7.9.22.2 Member Ends
®* Namespace::ownedRule

® (Constraint::context

7.9.23 A_ownedTemplateSignature_template [Association]
7.9.23.1 Diagrams

Templates

Unified Modeling Language 2.5.1 65

7.9.23.2 Member Ends
¢ TemplateableElement::ownedTemplateSignature
¢ TemplateSignature::template

7.9.24 A_packagelmport_importingNamespace [Association]
7.9.241 Diagrams
Namespaces
7.9.24.2 Member Ends
® Namespace::packagelmport

¢ Packagelmport::importingNamespace

7.9.25 A_parameterSubstitution_templateBinding [Association]
7.9.25.1 Diagrams
Template Bindings
7.9.25.2 Member Ends
¢ TemplateBinding::parameterSubstitution

¢ TemplateParameterSubstitution::templateBinding

7.9.26 A_parameter_templateSignature [Association]
7.9.26.1 Diagrams
Templates

7.9.26.2 Owned Ends

* templateSignature : TemplateSignature [0..*] (opposite TemplateSignature::parameter)

7.9.27 A_parameteredElement_templateParameter [Association]
7.9.271 Diagrams
Templates

7.9.27.2 Member Ends

® TemplateParameter::parameteredElement

® ParameterableElement::templateParameter

66 Unified Modeling Language 2.5.1

7.9.28 A_relatedElement_relationship [Association]

7.9.28.1 Diagrams

Root

7.9.28.2 Owned Ends
® /relationship : Relationship [0..*]{union} (opposite Relationship::relatedElement)

7.9.29 A_signature_templateBinding [Association]
7.9.291 Diagrams

Template Bindings
7.9.29.2 Owned Ends

¢ templateBinding : TemplateBinding [0..*]{subsets A_target_directedRelationship::directedRelationship }
(opposite TemplateBinding::signature)

7.9.30 A_source_directedRelationship [Association]

7.9.301 Diagrams
Root

7.9.30.2 Owned Ends

¢ /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::source)

7.9.31 A_specification_owningConstraint [Association]

7.9.311 Diagrams
Constraints
7.9.31.2 Specializations

A_specification_intervalConstraint
7.9.31.3 Owned Ends

® owningConstraint : Constraint [0..1]{subsets Element::owner} (opposite Constraint::specification)

7.9.32 A_supplier_supplierDependency [Association]
7.9.32.1 Diagrams

Dependencies

Unified Modeling Language 2.5.1

67

7.9.32.2 Owned Ends

* supplierDependency : Dependency [0..*]{subsets A_target directedRelationship::directedRelationship}

(opposite Dependency::supplier)
Indicates the dependencies that reference the supplier.

7.9.33 A_target_directedRelationship [Association]

7.9.33.1 Diagrams

Root

7.9.33.2 Owned Ends

¢ /directedRelationship : DirectedRelationship [0..*]{union, subsets
A_relatedElement relationship::relationship} (opposite DirectedRelationship::target)

7.9.34 A_templateBinding_boundElement [Association]
7.9.34.1 Diagrams

Template Bindings

7.9.34.2 Member Ends
* TemplateableElement::templateBinding
¢ TemplateBinding::boundElement

7.9.35 A_type_typedElement [Association]
7.9.35.1 Diagrams

Types

7.9.35.2 Owned Ends
¢ typedElement : TypedElement [0..*] (opposite TypedElement::type)

7.9.36 A_upperValue_owningUpper [Association]
7.9.36.1 Diagrams
Types

7.9.36.2 Owned Ends

¢ owningUpper : MultiplicityElement [0..1]{subsets Element::owner} (opposite
MultiplicityElement::upperValue)

68 Unified Modeling Language 2.5.1

8 Values

8.1 Summary

This clause describes the specification of values. In general, a ValueSpecification is a model element that is considered
semantically to yield zero or more values. The type and number of values shall be suitable for the context in which the
ValueSpecification is used (as determined by the constraints given in that context).

The following sub clauses describe the various kinds of ValueSpecifications available in UML.

8.2 Literals

8.21 Summary

A LiteralSpecification is a ValueSpecification that specifies a literal value. There is a different kind of
LiteralSpecification for each of the UML standard PrimitiveTypes, with a corresponding textual literal notation, plus a
“null” literal that represents the “lack of a value.”

8.2.2 Abstract Syntax

| TypedElement | | PackageableElement
ValueSpecification
LiteralSpecification
LiteralNull LiteralInteger LiteralUnlimitedNatural
+ value : Integer = 0 + value : UnlimitedNatural = C
LiteralString LiteralBoolean LiteralReal
+ value : String [0..1 + value : Boolean = false + value : Real

Figure 8.1 Literals

8.2.3 Semantics

There are six kinds of LiteralSpecifications:

1 A LiteralNull is intended to be used to explicitly model the lack of a value. In the context of a
MultiplicityElement with a multiplicity lower bound of 0, this corresponds to the empty set (i.e., a set of no
values). It is equivalent to specifying no values for the Element.

2 A LiteralString specifies a constant value of the PrimitiveType String. Though a String is specified as a
sequence of characters, String values are considered to be primitive in UML, so their internal structure is not
specified as part of UML semantics.

Unified Modeling Language 2.5.1 69

A Literallnteger specifies a constant value of the PrimitiveType Integer.
A LiteralBoolean specifies a constant value of the PrimitiveType Boolean.
A LiteralUnlimitedNatural specifies a constant value of the PrimitiveType UnlimitedNatural.

A LiteralReal specifies a constant value of the PrimitiveType Real.

See also Clause 21 for further discussion of the standard UML primitive types.

8.24

Notation

LiteralSpecifications are notated textually.

8.3

8.3.1

The notation for a LiteralNull varies depending on where it is used. It often appears as the word “null.” Other
notations are described elsewhere for specific uses.

A LiteralString is shown as a sequence of characters within double quotes. The String value is the sequence of
characters, not including the quotes. The character set used is unspecified.

A Literallnteger is shown as a sequence of digits representing the decimal numeral for the Integer value.
A LiteralBoolean is shown as either the word “true” or the word “false,” corresponding to its value.

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where an asterisk
denotes unlimited. Note that “unlimited” denotes the lack of a limit on the value of some element (such as a
multiplicity upper bound), not a value of “infinity.”

A LiteralReal is shown in decimal notation or scientific notation. Decimal notation consists of an optional sign
character (+/-) followed by zero or more digits followed optionally by a dot (.) followed by one or more digits.
Scientific notation consists of decimal notation followed by either the letter “e” or “E” and an exponent
consisting of an optional sign character followed by one or more digits. The scientific notation expresses a real
number equal to that given by the decimal notation before the exponent, times 10 raised to the power of the
exponent.

This notation is specified by the following EBNF rules:
<natural-literal> ::= ('0"..'9")+
<decimal-literal> ::= ['+'| -'] <natural-literal> | ['+'| -'] [<natural-literal>] "' <natural-literal>

<real-literal> ::= <decimal-literal> [("e' | 'E") ['+'| '] <natural-literal>]
Expressions

Summary

Expressions are ValueSpecifications that specify values resulting from a computation.

70

Unified Modeling Language 2.5.1

8.3.2 Abstract Syntax

{ordered, subsets ownedElement}

+ operand - -
" >-|.| ValueSpecification |
0.1 - OpaqueExpression
L @ Expression + body : String [*] {ordered, nonunique}§
+ expression + symbol : String [0..1] + lanquage : String [*] {ordered
{subsets owner} + opaqueExpression | % * | + opaqueExpression

{subsets owner}
+ owningExpression

0.1 {readOnly}
+ behavior | 0..1 0..1 | + /result
* . .
StringExpression Behavior | | Parameter |
+ subExpression

{ordered, subsets ownedElement}

V

| TemplateableElement

Figure 8.2 Expressions

8.3.3 Semantics

8.3.3.1 Expressions

An Expression is specified as a tree structure. Each node in this tree structure consists of a symbol and an optional set of
operands. If there are no operands, the Expression represents a terminal node. If there are operands, the Expression
represents the operator given by the symbol applied to those operands.

An Expression is evaluated by first evaluating each of its operands and then performing the operation denoted by the
Expression symbol to the resulting operand values. However, the actual interpretation of the symbol depends on the
context of use of the Expression and this specification does not provide any standard symbol definitions. A conforming
tool may define a specific set of symbols for which it provides interpretations or it may simply treat all Expressions as
uninterpreted.

8.3.3.2 String Expressions

A StringExpression is an Expression that specifies a String value that is derived by concatenating a list of substrings.
The substrings are given as either a list of LiteralString operands or as a list of StringExpression subExpressions (but it is
not allowed to mix the two). The String value of a StringExpression is obtained by concatenating, in order, the String
values of either the operands or the subExpressions, depending on which is given.

StringExpressions are intended to be used to specify the names of NamedElements in the context of Templates. Either
the entire StringExpression or one or more of its subExpressions may be used as the ParameterableElements of
TemplateParameters, allowing the name of a NamedElement to be parameterized within a template. See the semantics
of NamedElements in sub clause 7.4.3 for further discussion of this.

8.3.3.3 Opaque Expressions

An OpaqueExpression specifies the computation of a set of values either in terms of a UML Behavior or based on a
textual statement in a language other than UML.

Unified Modeling Language 2.5.1 71

An OpaqueExpression may have a body that consists of a sequence of text Strings representing alternative means of
computing the values of the OpaqueExpression. A corresponding sequence of language Strings may be used to specify
the languages in which each of the body Strings is to be interpreted. Languages are matched to body Strings by order.
The UML specification does not define how body Strings are interpreted relative to any language, though other
specifications may define specific language Strings to be used to indicate interpretation with respect to those
specifications (e.g., “OCL” for expressions to be interpreted according to the OCL specification). Note also that it is not
required to specify the languages. If they are unspecified, then the interpretation of any body Strings must be determined
implicitly from the form of the bodies or the context of use of the OpaqueExpression.

UMLR-696: The behavior of an OpaqueExpression should be allowed to have input parameters

An OpaqueExpression may also be defined by a UML Behavior (see sub clause 13.2) that is restricted to have only in

Parameters and a return Parameter. The values of the OpaqueExpression are given by invoking the Behavior and
returning the values on the return Parameter. The in Parameters may be used to pass data into the Behavior. However,

what data is actually passed in is dependent on the context of the use of the OpaqueExpression. For example, the

Parameters could provide event data to the behavior of an OpaqueExpression used as a guard_on an ActivityEdge or the
specification_of a guard_on a Transition. The exact mechanism for this is not further defined in this specification, but, to
evaluate an OpaqueExpression whose behavior has one or more input Parameters, a tool must provide a mechanism to
determine the values of all input Parameters as a tool-specific function of the OpaqueExpression and of its behavior.
Such a behavior may also access data through elements of its behavioral description, such as by reading attribute values
of a context object.

If an OpaqueExpression has more than one body String, or a behavior in addition to one or more body Strings, then any
one of the bodies or the behavior may be used to evaluate the OpaqueExpression. The UML specification does not
determine how this choice is made.

8.3.4 Notation

8.3.4.1 Expressions

An Expression with no operands is notated simply by its symbol (unlike a StringLiteral, the symbol is not enclosed in
quotes). An Expression with operands may be notated by its symbol, followed by round parentheses containing its
operands in order, separated by commas. However, in particular contexts, a conforming tool may permit special
notations, including infix operators.

See sub clause 7.4.4 for the notation of the use of StringExpressions with NamedElements.
8.3.4.2 Opaque Expressions

If an OpaqueExpression has one or more body Strings, then these are used to display the OpaqueExpression in the
context of its containing element. The UML Specification does not define the syntax of such Strings, but, if a
corresponding language is given for a body String, a conforming tool may enforce the syntax of that language. A
conforming tool may also restrict the languages allowed or assume a particular default language.

If languages are specified for an OpaqueExpression, then a language name may be displayed in braces ({}) before the
body String to which it corresponds. It is not required, however, that the languages of an OpaqueExpression be displayed.

If a language has a specification that defines its language name, then the language name used in an OpaqueExpression
should be spelled and capitalized exactly as it appears in the specification for the language. For example, use “OCL,”
not “ocl.”

72 Unified Modeling Language 2.5.1

8.3.5 Examples

8.3.5.1 Expressions

xor

else

plus(x,1)

x+1

8.3.5.2 Opaque Expressions
a>0

{OCL} i > j and self.size > i

average hours worked per week

8.4 Time

8.41 Summary

This sub clause defines TimeExpressions and Durations that produce values based on a simple model of time. This
simple model of time is intended as an approximation for situations in which the more complex aspects of time and time
measurement can safely be ignored. For example, in many distributed systems there is no global notion of time, only the
notion of local time relative to each distributed element of the system. This relativity of time is not accounted for in the
simple time model, nor are the effects resulting from imperfect clocks with finite resolution, overflows, drift, skew, etc.
It is assumed that applications for which such characteristics are relevant will use a more sophisticated model of time
provided by an appropriate profile.

Unified Modeling Language 2.5.1 73

8.4.2 Abstract Syntax

{subsets ownedElement} {subsets ownedElement}
texpr ro———————— +expr
ValueSpecification
0..1 0..1

{subsets owner}

{subsets owner}
0..1| + duration

+ timeExpression | 0..1

[]
TimeExpression Duration

+ timeExpression | 0..1 0..1 | + duration

[

PackageableElement

+ observation + observation

Observation
* Zr *
TimeObservation DurationObservation
+ firstEvent : Boolean = true + firstEvent : Boolean [0..2]
+ timeObservation | x x| + durationObservation
+ event
+ event {ordered}

1.2
Figure 8.3 Time and Duration
8.4.3 Semantics
8.4.3.1 Time

The structural modeling constructs of UML are used to model the properties of entities at specific points in time. In
contrast, behavioral modeling constructs are used to model how these properties change over time. An event is a
specification of something that may occur at a specific point in time when something of interest happens relative to the
properties and behaviors being modeled, such as the change in value of a Property or the beginning of execution of an
Activity.

Time in this conception is simply a coordinate that orders the occurrence of events. Every event occurrence can be given
a time coordinate value and, based on this, can be said to be before, after or at the same time as another event
occurrence.

A duration is the period of time between two event occurrences, computed as the difference of the time coordinates of
those events. If a model Element has a behavioral effect, then this effect may occur over some duration. The starting
event of this duration is known as entering the element and the ending event is known as exiting the Element.

74 Unified Modeling Language 2.5.1

8.4.3.2 Observations

An Observation denotes the observation of events that may occur relative to some other part of a model. An
Observation is made on a NamedElement within the model. The events of interest are when the reference
NamedElement is entered and exited. If the referenced NamedElement is not a behavioral element, then the duration
between entering and exiting the NamedElement is considered to be zero, but this specification does not otherwise
define what specific events are observed on the Element.

There are two kinds of Observations, TimeObservations and DurationObservations.

A TimeObservation observes either entering or exiting a specific NamedElement. If firstEvent is true, then it is the entry
event that is observed, otherwise the exit event is observed. The result of a TimeObservation is the time at which the
observed event occurs.

A DurationObservation observes a duration relative to either one or two NamedElements. If a single element is
observed, then the observed duration is between sequential occurrences of the entry and exit events of the element. If
two elements are observed, then the duration is between either the entry or the exit event of the first element and a
subsequent entry or exit event of the second element. In the latter case, two corresponding firstEvent values must also be
given for the DurationObservation, such that, if firstEvent=true for an observed element, then it is the entry event that is
observed, otherwise it is the exit event that is observed.

8.4.3.3 TimeExpression

A TimeExpression is a ValueSpecification that evaluates to the time coordinate for an instant in time, possibly relative
to some given set of observations.

If the TimeExpression has an expr, then this is evaluated to produce the result of the TimeExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may
reference the observations associated with the TimeExpression but no standard notation is defined for such references. If
the TimeExpression has an expr but no observations, then the expr evaluates to a time constant.

If the TimeExpression does not have an expr, then it must have a single TimeObservation and the result of that
observation is the value of the TimeExpression.

8.4.34 Duration

A Duration is a ValueSpecification that evaluates to some duration in time, possibly relative to some given set of
observations.

If the Duration has an expr, then this is evaluated to produce the result of the DurationExpression. The expr must
evaluate to a single value, but UML does not define any specific type or units that the value must have. The expr may
reference the observations associated with the Duration but no standard notation is defined for such references. If the
Duration has an expr but no observations, then the expr evaluates to a duration constant.

If the Duration does not have an expr, then it must have a single DurationObservation and the result of that observation is
the value of the Duration.

8.4.4 Notation

8.4.4.1 Observations

An Observation may be denoted by a straight line attached to the NamedElement it references. The Observation is given
a name that is shown close to the unattached end of the line. Additional notation conventions on Observations are given
elsewhere relative to the modeling constructs in which they are typically used (such as Interactions, see sub clause
17.2).

Unified Modeling Language 2.5.1 75

8.44.2 Time Expressions and Durations

A TimeExpression or Duration is denoted by the textual representation of its expr, if it has one (see sub clause 8.3.5).
The representation is of a formula for computing the time or duration value, which may include the names of related
Observations and constants. If a TimeExpression or Duration does not have an expr, then it is simply represented by its
single associated Observation.

A Duration is a value of relative time given in an implementation specific textual format. Often a Duration is a non-
negative integer expression representing the number of “time ticks” which may elapse during this duration.

8.4.5 Examples

Time is often represented using a numeric coordinate, in which case the expr of a TimeExpression should evaluate to a
numeric value, the units of which may be assumed by convention in a model (e.g., times are always in seconds).
Alternatively, DataTypes may be used to model time values with specific units (e.g., Second, Day, etc.) and the expr of a
TimeExpression should then have the appropriate one of those types.

A Duration is a value of relative time and, as such, is often represented as a non-negative number, such as an Integer
count of the number of “time ticks” on a reference clock that elapsed during the duration. In this case, the expr of a
DurationExpression should evaluate to a non-negative numeric value. A Duration value may also be used to represent a
time coordinate value as a Duration since some fixed “origin” of time.

See also Figure 8.5 in sub clause 8.5.5.

8.5 Intervals

8.5.1 Summary
An Interval is a range between two values, primarily for use in Constraints that assert that some other Element has a

value in the given range. Intervals can be defined for any type of value, but they are especially useful for time and
duration values as part of corresponding TimeConstraints and DurationConstraints.

76 Unified Modeling Language 2.5.1

8.5.2 Abstract Syntax

ValueSpecification
+ min| 1 1| + max
+ interval | * *| + interval . .
{redefines owningConstraint}

Interval L/ 1 + intervalConstraint IntervalConstraint

|] ™ + specification 0.1
{redefines specification}

{redefines specification} {redefines intervalConstraint}

TimeInterval + specification + timeConstraint ‘e TimeConstraint
1 0..1 + firstEvent : Boolean [0..1] = true
{redefines interval {redefines interval}
+ timeInterva? * *| + timelnterval
{redefines min} {redefines max}
+ minj/1 1\/+ max
TimeExpression
{redefines specification} {redefines intervalConstraint}
DurationInterval + specification + durationConstraint DurationConstraint
| 1 0.1 + firstEvent : Boolean [0..2]
{redefines interval} {redefines interval}

*

+ durationInterval | * + durationInterval

{redefines min} {redefines max}
+ mi + max

1 1
Duration

Figure 8.4 Intervals

8.5.3 Semantics

8.5.3.1 Intervals

An Interval is a ValueSpecification specified using two other ValueSpecifications, the min and the max. An Interval is
evaluated by first evaluating each of its constituent ValueSpecifications, which must each evaluate to a single value. The
value of the Interval is then the range from the min value to the max value—that is, the set of all values greater than or
equal to the min value and less than or equal to the max value (which may be the empty set). Note that, while
syntactically any ValueSpecifications of any type are allowed for the min and max of an Interval, a standard semantic
interpretation is only given for Intervals for which the min and max ValueSpecifications have the same type and that type
has a total ordering defined on it.

There are two specializations of Interval for use with timing constraints. A Timelnterval specifies the range between two
time values given by TimeExpressions. A DurationInterval specifies the range between two duration values given by
Durations.

8.5.3.2 IntervalConstraint

An IntervalConstraint defines a Constraint whose specification is given by an Interval (see also sub clause 7.6 on
Constraints). The constrainedElements of an IntervalConstraint are asserted to have values that are within the range
specified by the Interval of the IntervalConstraint. If a constrainedElement has a value outside this range, then the
IntervalConstraint is violated. If any constrainedElement cannot be interpreted to have a value, or its value is not the same
type as the range given by the IntervalConstraint, then the IntervalConstraint has no standard semantic interpretation.

There are two specializations of IntervalConstraint for use in specifying timing constraints. A TimeConstraint defines an
IntervalConstraint on a single constrainedElement in which the constraining Interval is a Timelnterval. A
DurationConstraint defines an IntervalConstraint on either one or two constrainedElements in which the constraining

Unified Modeling Language 2.5.1 77

Interval is a DurationInterval. If there are two constrainedElements, then the start of the duration being observed may be
between an event in the first constrainedElement and an event in the second.

8.5.4 Notation

8.5.4.1 Intervals

An Interval is denoted textually by the textual representation of its two ValueSpecifications separated by “..”:

¢

<interval> ::= <min-value> *.." <max-value>

A Timelnterval is shown with the notation of Interval where each ValueSpecification element is a TimeExpression. A
DurationInterval is shown using the notation of Interval where each ValueSpecification element is a Duration. (See sub
clause 8.4.4 on the notation for TimeExpressions and Durations.)

8.5.4.2 Interval Constraints

An IntervalConstraint is shown as an annotation of its constrainedElement. The general notation for Constraints (see sub
clause 7.6.4) may be used for an IntervalConstraint, with the specification Interval denoted textually as above. Special
notational constructs are defined for TimeConstraints and DurationConstraints, as given below.

A TimeConstraint of a single constrainedElement may be shown as a small line between the graphical representation of
the constrainedElement and the textual representation of the Timelnterval of TimeConstraint. A DurationConstraint may
also be shown using a graphical notation relating its constrainedElements. However, the notation used is specific to the
diagram type on which the DurationConstraint appears (see sub clause 17.8 for the notation on Sequence Diagrams and
sub clause 17.11 for the notation on Timing Diagrams).

8.5.5 Examples

Figure 8.5 shows a DurationConstraints associated with the duration of a Message and with the duration between two
OccurrenceSpecifications. It also shows a TimeConstraint associated with the reception of a Message. (See also sub
clause 17.2.5.)

sd UserAccepted)

‘User “ACSystem
l DurationObservation
Code d=duratien e With Duration

.

|
|
DurationConstraint —__'-—--—>{d..3‘d]|
|

\I/ o li'::i‘i,/”’f/] TimeObservation with
- I=N0W i

|_H_ = TimeExpression
- Ok
TimeConstraint "_'_'—'—-——-a. {t"[+314r£//

Unleck

/

Figure 8.5 Example of DurationConstraints and TimeConstraints

78 Unified Modeling Language 2.5.1

8.6 Classifier Descriptions

8.6.1 Duration [Class]

8.6.1.1 Description
A Duration is a ValueSpecification that specifies the temporal distance between two time instants.
8.6.1.2 Diagrams
Time, Intervals
8.6.1.3 Generalizations

ValueSpecification

8.6.1.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite A_expr_duration::duration)
A ValueSpecification that evaluates to the value of the Duration.

® observation : Observation [0..*] (opposite A_observation duration::duration)
Refers to the Observations that are involved in the computation of the Duration value.

8.6.1.5 Constraints

* no_expr_requires_observation
If a Duration has no expr, then it must have a single observation that is a DurationObservation.

inv: expr = null implies (observation->size() = 1 and observation-
>forAll(oclIsKindOf (DurationObservation)))

8.6.2 DurationConstraint [Class]
8.6.2.1 Description
A DurationConstraint is a Constraint that refers to a DurationInterval.
8.6.2.2 Diagrams
Intervals
8.6.2.3 Generalizations
IntervalConstraint

8.6.2.4 Attributes

* firstEvent : Boolean [0..2]
The value of firstEvent[i] is related to constrainedElement[i] (where i is 1 or 2). If firstEvent[i] is true, then the
corresponding observation event is the first time instant the execution enters constrainedElement[i]. If
firstEvent[i] is false, then the corresponding observation event is the last time instant the execution is within
constrainedElement][i].

Unified Modeling Language 2.5.1 79

8.6.2.5 Association Ends

® ¢ specification : Durationlnterval [1..1]{redefines IntervalConstraint::specification} (opposite

A_specification durationConstraint::durationConstraint)
The Durationlnterval constraining the duration.

8.6.2.6 Constraints
e first_event multiplicity

The multiplicity of firstEvent must be 2 if the multiplicity of constrainedElement is 2. Otherwise the
multiplicity of firstEvent is 0.

inv: if (constrainedElement->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endif

* has one or two constrainedElements
A DurationConstraint has either one or two constrainedElements.

inv: constrainedElement->size() = 1 or constrainedElement->size()=2
8.6.3 Durationinterval [Class]
8.6.3.1 Description

A DurationInterval defines the range between two Durations.
8.6.3.2 Diagrams

Intervals
8.6.3.3 Generalizations

Interval

8.6.3.4 Association Ends

® max : Duration [1..1]{redefines Interval::max} (opposite A_max durationlnterval::durationlnterval)
Refers to the Duration denoting the maximum value of the range.

® min : Duration [1..1]{redefines Interval::min} (opposite A_min durationInterval::durationlnterval)
Refers to the Duration denoting the minimum value of the range.

8.6.4 DurationObservation [Class]

8.6.4.1 Description

A DurationObservation is a reference to a duration during an execution. It points out the NamedElement(s) in the model
to observe and whether the observations are when this NamedElement is entered or when it is exited.

8.6.4.2 Diagrams

80 Unified Modeling Language 2.5.1

8.6.4.3

8.6.4.4

8.6.4.5

8.6.4.6

8.6.5

8.6.5.1

Generalizations

Observation

Attributes

firstEvent : Boolean [0..2]

The value of firstEvent[i] is related to event[i] (where i is 1 or 2). If firstEvent[i] is true, then the corresponding
observation event is the first time instant the execution enters event[i]. If firstEvent[i] is false, then the
corresponding observation event is the time instant the execution exits event[i].

Association Ends
event : NamedElement [1..2]{ordered} (opposite A_event durationObservation::durationObservation)
The DurationObservation is determined as the duration between the entering or exiting of a single event
Element during execution, or the entering/exiting of one event Element and the entering/exiting of a second.

Constraints

first_event_multiplicity
The multiplicity of firstEvent must be 2 if the multiplicity of event is 2. Otherwise the multiplicity of firstEvent
is 0.

inv: if (event->size() = 2)
then (firstEvent->size() = 2) else (firstEvent->size() = 0)
endif

Expression [Class]

Description

An Expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are ValueSpecifications. It denotes a (possibly empty) set of values
when evaluated in a context.

8.6.5.2

8.6.5.3

8.6.5.4

8.6.5.5

Diagrams
Expressions
Generalizations
ValueSpecification
Specializations
StringExpression
Attributes

symbol : String [0..1]
The symbol associated with this node in the expression tree.

Unified Modeling Language 2.5.1 81

8.6.5.6 Association Ends

® ¢ operand : ValueSpecification [0..*]{ordered, subsets Element::ownedElement} (opposite

A_operand_expression::expression)
Specifies a sequence of operand ValueSpecifications.

8.6.6 Interval [Class]

8.6.6.1 Description

An Interval defines the range between two ValueSpecifications.

8.6.6.2 Diagrams
Intervals
8.6.6.3 Generalizations

ValueSpecification
8.6.6.4 Specializations

DurationInterval, Timelnterval

8.6.6.5 Association Ends

® max : ValueSpecification [1..1] (opposite A_max_interval::interval)
Refers to the ValueSpecification denoting the maximum value of the range.

®* min : ValueSpecification [1..1] (opposite A_min_interval::interval)
Refers to the ValueSpecification denoting the minimum value of the range.

8.6.7 IntervalConstraint [Class]
8.6.7.1 Description
An IntervalConstraint is a Constraint that is specified by an Interval.
8.6.7.2 Diagrams
Intervals
8.6.7.3 Generalizations
Constraint
8.6.7.4 Specializations
DurationConstraint, TimeConstraint

8.6.7.5 Association Ends

® ¢ specification : Interval [1..1]{redefines Constraint::specification} (opposite

A_specification intervalConstraint::intervalConstraint)
The Interval that specifies the condition of the IntervalConstraint.

82 Unified Modeling Language 2.5.1

8.6.8 LiteralBoolean [Class]

8.6.8.1 Description

A LiteralBoolean is a specification of a Boolean value.

8.6.8.2 Diagrams
Literals
8.6.8.3 Generalizations

LiteralSpecification

8.6.8.4 Attributes

¢ value : Boolean [1..1] = false
The specified Boolean value.

8.6.8.5 Operations

® DbooleanValue() : Boolean {redefines ValueSpecification::booleanValue() }

The query booleanValue() gives the value.

body: wvalue

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

8.6.9 Literallnteger [Class]

8.6.9.1 Description

A Literallnteger is a specification of an Integer value.

8.6.9.2 Diagrams
Literals
8.6.9.3 Generalizations

LiteralSpecification

8.6.9.4 Attributes

¢ value: Integer [1..1]=0
The specified Integer value.

8.6.9.5 Operations

* integerValue() : Integer {redefines ValueSpecification::integerValue()}
The query integerValue() gives the value.

Unified Modeling Language 2.5.1

83

body: wvalue

* isComputable() : Boolean {redefines ValueSpecification::isComputable() }
The query isComputable() is redefined to be true.

body: true

8.6.10 LiteralNull [Class]
8.6.10.1 Description
A LiteralNull specifies the lack of a value.
8.6.10.2 Diagrams
Literals
8.6.10.3 Generalizations
LiteralSpecification

8.6.10.4 Operations

* isComputable() : Boolean {redefines ValueSpecification::isComputable() }
The query isComputable() is redefined to be true.

body: true

¢ isNull() : Boolean {redefines ValueSpecification::isNull()}
The query isNull() returns true.

body: true

8.6.11 LiteralReal [Class]

8.6.11.1 Description

A LiteralReal is a specification of a Real value.

8.6.11.2 Diagrams
Literals
8.6.11.3 Generalizations

LiteralSpecification

8.6.11.4 Attributes

® value: Real [1..1]
The specified Real value.

8.6.11.5 Operations

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

84

Unified Modeling Language 2.5.1

8.6.12

8.6.12.1

body: true

realValue() : Real {redefines ValueSpecification::realValue()}
The query realValue() gives the value.

body: wvalue
LiteralSpecification [Abstract Class]

Description

A LiteralSpecification identifies a literal constant being modeled.

8.6.12.2 Diagrams
Literals
8.6.12.3 Generalizations

ValueSpecification

8.6.12.4 Specializations

8.6.13

8.6.13.1

LiteralBoolean, Literallnteger, LiteralNull, LiteralReal, LiteralString, LiteralUnlimitedNatural

LiteralString [Class]

Description

A LiteralString is a specification of a String value.

8.6.13.2 Diagrams
Literals
8.6.13.3 Generalizations

LiteralSpecification

8.6.13.4 Attributes

value : String [0..1]
The specified String value.

8.6.13.5 Operations

isComputable() : Boolean {redefines ValueSpecification::isComputable() }

The query isComputable() is redefined to be true.

body: true

stringValue() : String {redefines ValueSpecification::stringValue()}
The query stringValue() gives the value.

body: value

Unified Modeling Language 2.5.1

85

8.6.14 LiteralUnlimitedNatural [Class]

8.6.14.1 Description

A LiteralUnlimitedNatural is a specification of an UnlimitedNatural number.

8.6.14.2 Diagrams
Literals
8.6.14.3 Generalizations

LiteralSpecification

8.6.14.4 Attributes

¢ value : UnlimitedNatural [1..1] =0
The specified UnlimitedNatural value.

8.6.14.5 Operations

¢ isComputable() : Boolean {redefines ValueSpecification::isComputable()}
The query isComputable() is redefined to be true.

body: true

¢ unlimitedValue() : UnlimitedNatural {redefines ValueSpecification::unlimitedValue() }
The query unlimitedValue() gives the value.

body: wvalue

8.6.15 Observation [Abstract Class]

8.6.15.1 Description

Observation specifies a value determined by observing an event or events that occur relative to other model Elements.

8.6.15.2 Diagrams

Time

8.6.15.3 Generalizations
PackageableElement

8.6.15.4 Specializations
DurationObservation, TimeObservation

8.6.16 OpaqueExpression [Class]

8.6.16.1 Description

An OpaqueExpression is a ValueSpecification that specifies the computation of a collection of values either in terms of
a UML Behavior or based on a textual statement in a language other than UML

86 Unified Modeling Language 2.5.1

8.6.16.2

8.6.16.3

Diagrams
Expressions, Dependencies
Generalizations

ValueSpecification

8.6.16.4 Attributes

body : String [0..*]
A textual definition of the behavior of the OpaqueExpression, possibly in multiple languages.

language : String [0..*]

Specifies the languages used to express the textual bodies of the OpaqueExpression. Languages are matched to

body Strings by order. The interpretation of the body depends on the languages. If the languages are
unspecified, they may be implicit from the expression body or the context.

8.6.16.5 Association Ends

8.6.16.6

behavior : Behavior [0..1] (opposite A_behavior_opaqueExpression::opaqueExpression)
Specifies the behavior of the OpaqueExpression as a UML Behavior.

/result : Parameter [0..1]{} (opposite A_result opaqueExpression::opaqueExpression)

If an OpaqueExpression is specified using a UML Behavior, then this refers to the single required return
Parameter of that Behavior. When the Behavior completes execution, the values on this Parameter give the
result of evaluating the OpaqueExpression.

Operations

isIntegral() : Boolean
The query isIntegral() tells whether an expression is intended to produce an Integer.

body: false

isNonNegative() : Boolean
The query isNonNegative() tells whether an integer expression has a non-negative value.

pre: self.isIntegral()
body: false

isPositive() : Boolean
The query isPositive() tells whether an integer expression has a positive value.

pre: self.isIntegral()
body: false

result() : Parameter [0..1]
Derivation for OpaqueExpression::/result

body: if behavior = null then
null

else
behavior.ownedParameter->first()

endif

Unified Modeling Language 2.5.1

87

® value() : Integer
The query value() gives an integer value for an expression intended to produce one.

pre: self.isIntegral()
body: 0

8.6.16.7 Constraints

* language body size
If the language attribute is not empty, then the size of the body and language arrays must be the same.

inv: language->notEmpty() implies (_'body'->size() = language->size())

* one return_result parameter
The behavior must have exactly one return result parameter.

inv: behavior <> null implies
behavior.ownedParameter->select(direction=ParameterDirectionKind: :return)->size() = 1

UMLR-696: The behavior of an OpaqueExpression should be allowed to have input parameters

* only—return—result—parametersonly in or return parameters
The-behaviormay-onlyhavereturnresult-parameters- The behavior may only have non-stream in or return
parameters.

inv: behavior <> null implies behavior.ownedParameter-
> 1 1 1 1 3 3 1 forAll (not isStream and
(direction=ParameterDirectionKind::in or direction=ParameterDirectionKind::return))

8.6.17 StringExpression [Class]

8.6.17.1 Description

A StringExpression is an Expression that specifies a String value that is derived by concatenating a sequence of
operands with String values or a sequence of subExpressions, some of which might be template parameters.

8.6.17.2 Diagrams
Expressions, Namespaces
8.6.17.3 Generalizations

TemplateableElement, Expression

8.6.17.4 Association Ends

® owningExpression : StringExpression [0..1]{subsets Element::owner} (opposite

StringExpression::subExpression)
The StringExpression of which this StringExpression is a subExpression.

® ¢ subExpression : StringExpression [0..*]{ordered, subsets Element::ownedElement} (opposite

StringExpression::owningExpression)
The StringExpressions that constitute this StringExpression.

88 Unified Modeling Language 2.5.1

8.6.17.5

8.6.17.6

8.6.18

8.6.18.1

Operations

stringValue() : String {redefines ValueSpecification::stringValue() }

The query stringValue() returns the String resulting from concatenating, in order, all the component String
values of all the operands or subExpressions that are part of the StringExpression.

body: if subExpression->notEmpty()

then subExpression->iterate(se; stringValue: String = '' |
stringValue.concat(se.stringvValue()))

else operand->iterate(op; stringValue: String =
endif

| stringValue.concat(op.stringValue()))

Constraints

operands
All the operands of a StringExpression must be LiteralStrings

inv: operand->forAll (oclIsKindOf (LiteralString))

subexpressions
If a StringExpression has sub-expressions, it cannot have operands and vice versa (this avoids the problem of
having to define a collating sequence between operands and subexpressions).

inv: if subExpression->notEmpty() then operand->isEmpty() else operand->notEmpty() endif

TimeConstraint [Class]

Description

A TimeConstraint is a Constraint that refers to a Timelnterval.

8.6.18.2 Diagrams

Intervals

8.6.18.3 Generalizations

IntervalConstraint

8.6.18.4 Attributes

firstEvent : Boolean [0..1] = true

The value of firstEvent is related to the constrainedElement. If firstEvent is true, then the corresponding
observation event is the first time instant the execution enters the constrainedElement. If firstEvent is false,
then the corresponding observation event is the last time instant the execution is within the
constrainedElement.

8.6.18.5 Association Ends

¢ specification : Timelnterval [1..1]{redefines IntervalConstraint::specification} (opposite
A_specification timeConstraint::timeConstraint)
TheTimelnterval constraining the duration.

Unified Modeling Language 2.5.1 89

8.6.18.6 Constraints

* has _one constrainedElement
A TimeConstraint has one constrainedElement.

inv: constrainedElement->size() = 1

8.6.19 TimeExpression [Class]

8.6.19.1 Description

A TimeExpression is a ValueSpecification that represents a time value.

8.6.19.2 Diagrams

Time, Intervals, Events

8.6.19.3 Generalizations

ValueSpecification
8.6.19.4 Association Ends

® ¢ cxpr: ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_expr_timeExpression::timeExpression)
A ValueSpecification that evaluates to the value of the TimeExpression.

® observation : Observation [0..*] (opposite A_observation_timeExpression::timeExpression)
Refers to the Observations that are involved in the computation of the TimeExpression value.

8.6.19.5 Constraints

* no_expr_requires observation
If a TimeExpression has no expr, then it must have a single observation that is a TimeObservation.

inv: expr = null implies (observation->size() = 1 and observation-
>forAll (oclIsKindOf (TimeObservation)))

8.6.20 Timelnterval [Class]

8.6.20.1 Description

A Timelnterval defines the range between two TimeExpressions.

8.6.20.2 Diagrams

Intervals

8.6.20.3 Generalizations

Interval

8.6.20.4 Association Ends

* max : TimeExpression [1..1]{redefines Interval::max} (opposite A_max_timelnterval::timelnterval)
Refers to the TimeExpression denoting the maximum value of the range.

20 Unified Modeling Language 2.5.1

®* min : TimeExpression [1..1]{redefines Interval::min} (opposite A_min_timelnterval::timelnterval)
Refers to the TimeExpression denoting the minimum value of the range.

8.6.21 TimeObservation [Class]

8.6.21.1 Description

A TimeObservation is a reference to a time instant during an execution. It points out the NamedElement in the model to
observe and whether the observation is when this NamedElement is entered or when it is exited.

8.6.21.2 Diagrams

Time

8.6.21.3 Generalizations

Observation

8.6.21.4 Attributes

* firstEvent : Boolean [1..1] = true
The value of firstEvent is related to the event. If firstEvent is true, then the corresponding observation event is
the first time instant the execution enters the event Element. If firstEvent is false, then the corresponding
observation event is the time instant the execution exits the event Element.

8.6.21.5 Association Ends

¢ event: NamedElement [1..1] (opposite A_event timeObservation::timeObservation)
The TimeObservation is determined by the entering or exiting of the event Element during execution.

8.6.22 ValueSpecification [Abstract Class]

8.6.22.1 Description

A ValueSpecification is the specification of a (possibly empty) set of values. A ValueSpecification is a
ParameterableElement that may be exposed as a formal TemplateParameter and provided as the actual parameter in the
binding of a template.

8.6.22.2 Diagrams

Expressions, Literals, Time, Intervals, Object Nodes, Activities, Control Nodes, Messages, Lifelines,
Fragments, Interaction Uses, Types, Constraints, Events, Features, Properties, Instances, Actions, Object
Actions

8.6.22.3 Generalizations
TypedElement, PackageableElement
8.6.22.4 Specializations

Duration, Expression, Interval, LiteralSpecification, OpaqueExpression, TimeExpression, InstanceValue

8.6.22.5 Operations

®* booleanValue() : Boolean [0..1]
The query booleanValue() gives a single Boolean value when one can be computed.

Unified Modeling Language 2.5.1 91

8.7

8.71

8.7.1.1

92

body: null

integerValue() : Integer [0..1]
The query integerValue() gives a single Integer value when one can be computed.

body: null

isCompatibleWith(p : ParameterableElement) : Boolean {redefines
ParameterableElement::isCompatibleWith() }

The query isCompatibleWith() determines if this ValueSpecification is compatible with the specified
ParameterableElement. This ValueSpecification is compatible with ParameterableElement p if the kind of this
ValueSpecification is the same as or a subtype of the kind of p. Further, if p is a TypedElement, then the type of
this ValueSpecification must be conformant with the type of p.

body: self.oclIsKindOf(p.oclType()) and (p.oclIsKindOf (TypedElement) implies
self.type.conformsTo(p.oclAsType(TypedElement) .type))

isComputable() : Boolean

The query isComputable() determines whether a value specification can be computed in a model. This
operation cannot be fully defined in OCL. A conforming implementation is expected to deliver true for this
operation for all ValueSpecifications that it can compute, and to compute all of those for which the operation is
true. A conforming implementation is expected to be able to compute at least the value of all
LiteralSpecifications.

body: false

isNull() : Boolean
The query isNull() returns true when it can be computed that the value is null.

body: false

realValue() : Real [0..1]
The query realValue() gives a single Real value when one can be computed.

body: null

stringValue() : String [0..1]
The query stringValue() gives a single String value when one can be computed.

body: null

unlimitedValue() : UnlimitedNatural [0..1]
The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.

body: null

Association Descriptions

A_behavior_opaqueExpression [Association]
Diagrams

Expressions

Unified Modeling Language 2.5.1

8.7.1.2 Owned Ends

* opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::behavior)

8.7.2 A_event_durationObservation [Association]
8.7.21 Diagrams

Time
8.7.2.2 Owned Ends

® durationObservation : DurationObservation [0..*] (opposite DurationObservation::event)

8.7.3 A_event_timeObservation [Association]
8.7.3.1 Diagrams

Time
8.7.3.2 Owned Ends

® timeObservation : TimeObservation [0..*] (opposite TimeObservation::event)

8.74 A_expr_duration [Association]
8.7.4.1 Diagrams

Time
8.7.4.2 Owned Ends

® duration : Duration [0..1]{subsets Element::owner} (opposite Duration::expr)

8.7.5 A_expr_timeExpression [Association]
8.7.51 Diagrams

Time
8.7.5.2 Owned Ends

¢ timeExpression : TimeExpression [0..1]{subsets Element::owner} (opposite TimeExpression::expr)

8.7.6 A_max_durationinterval [Association]
8.7.6.1 Diagrams

Intervals
8.7.6.2 Generalizations

A_max_interval

Unified Modeling Language 2.5.1

93

8.7.6.3 Owned Ends

® durationInterval : DurationInterval [0..*]{redefines A_max_interval::interval} (opposite
DurationInterval::max)

8.7.7 A_max_interval [Association]
8.7.71 Diagrams

Intervals
8.7.7.2 Specializations

A_max_timelnterval, A_max_durationlnterval

8.7.7.3 Owned Ends

® interval : Interval [0..*] (opposite Interval::max)

8.7.8 A_max_timelnterval [Association]
8.7.8.1 Diagrams

Intervals
8.7.8.2 Generalizations

A_max_interval

8.7.8.3 Owned Ends

¢ timelnterval : Timelnterval [0..*]{redefines A_max_interval::interval} (opposite Timelnterval::max)

8.7.9 A_min_durationinterval [Association]
8.7.9.1 Diagrams

Intervals
8.7.9.2 Generalizations

A_min_interval

8.7.9.3 Owned Ends

¢ durationlnterval : DurationlInterval [0..*]{redefines A_min_interval::interval} (opposite DurationInterval::min)

8.7.10 A_min_interval [Association]

8.7.101 Diagrams

Intervals

94 Unified Modeling Language 2.5.1

8.7.10.2 Specializations

A_min_timelnterval, A _min_durationInterval

8.7.10.3 Owned Ends

* interval : Interval [0..*] (opposite Interval::min)

8.7.11 A_min_timelnterval [Association]

8.7.11.1 Diagrams
Intervals
8.7.11.2 Generalizations

A_min_interval

8.7.11.3 Owned Ends

¢ timelnterval : Timelnterval [0..*]{redefines A_min_interval::interval} (opposite Timelnterval::min)

8.7.12 A_observation_duration [Association]
8.7.121 Diagrams
Time

8.7.12.2 Owned Ends

® duration : Duration [0..1] (opposite Duration::observation)

8.7.13 A_observation_timeExpression [Association]

8.7.13.1 Diagrams
Time

8.7.13.2 Owned Ends
* timeExpression : TimeExpression [0..1] (opposite TimeExpression::observation)

8.7.14 A_operand_expression [Association]
8.7.141 Diagrams

Expressions

8.7.14.2 Owned Ends

® expression : Expression [0..1]{subsets Element::owner} (opposite Expression::operand)

Unified Modeling Language 2.5.1

95

8.7.15 A_result_opaqueExpression [Association]
8.7.15.1 Diagrams

Expressions
8.7.15.2 Owned Ends

® opaqueExpression : OpaqueExpression [0..*] (opposite OpaqueExpression::result)

8.7.16 A_specification_durationConstraint [Association]

8.7.16.1 Diagrams
Intervals
8.7.16.2 Generalizations

A_specification_intervalConstraint
8.7.16.3 Owned Ends

¢ durationConstraint : DurationConstraint [0..1]{redefines
A_specification_intervalConstraint::intervalConstraint} (opposite DurationConstraint::specification)

8.7.17 A_specification_intervalConstraint [Association]

8.7.171 Diagrams
Intervals
8.7.17.2 Generalizations

A_specification owningConstraint

8.7.17.3 Specializations

A_specification timeConstraint, A_specification durationConstraint
8.7.17.4 Owned Ends

* intervalConstraint : IntervalConstraint [0..1]{redefines A_specification owningConstraint::owningConstraint}
(opposite IntervalConstraint::specification)

8.7.18 A_specification_timeConstraint [Association]

8.7.18.1 Diagrams
Intervals
8.7.18.2 Generalizations

A_specification_intervalConstraint

96 Unified Modeling Language 2.5.1

8.7.18.3 Owned Ends

¢ timeConstraint : TimeConstraint [0..1]{redefines A_specification_intervalConstraint::intervalConstraint}
(opposite TimeConstraint::specification)

8.7.19 A_subExpression_owningExpression [Association]
8.7.191 Diagrams

Expressions

8.7.19.2 Member Ends
¢ StringExpression::subExpression

* StringExpression::owningExpression

Unified Modeling Language 2.5.1

97

9

9.1

Classification is an important technique for organization. This clause specifies concepts relating to classification. The
core concept is Classifier, an abstract metaclass whose concrete subclasses are used to classify different kinds of values.
The other metaclasses in this clause represent the constituents of Classifiers, models of how Classifiers are instantiated
using InstanceSpecifications, and various relationships between all of these concepts.

Classification

Summary

9.2 Classifiers

9.21 Summary

A Classifier represents a classification of instances according to their Features. Classifiers are organized in hierarchies
by Generalizations. RedefinableElements may be redefined in the context of Generalization hierarchies.

JAN

9.2.2 Abstract Syntax

* Namespace TemplateableElemen:

[Wemedeiemen
A + /inheritedMember

{readOnly, subsets member}

DirectedRelationship
JAN

+ inheritingClassifie

{subsets source, {subsets ownedElement, subsets

{subsets memberNamespace}* Classifier subsets owner} directedRelationship}
+ isAbstract : Boolean + specific + generalization
Teleat Boolean = false + isFinalSpecialization : Boolean 1 « | + isSubstitutable : Boolean [0..1] = true
: {subsets
{readOnly, union} {subsets target} directedRelationship}
+ /redefinableElement + general + generalization
*
* {subsets redefinedElement} 1 §
+ redefinedClassifier + classifier -
* * * | + generalization
*
*
+ /redefinedElement %
{readOnly, union} + dlassifier + /general * | + generalizationSet
{subsets redefinableElement} + powertype + powertypeExtent ﬁ:
. *
{readOnly, union} {readOnly, union} 0-1
+ /redetinableElement + /redefinitionContext + subject + useCase
* * * * UseCase
+ classifier + ownedUseCase
* 0..1 {subsets namespace} {subsets ownedMember}
Featu - "
cature + [feature + /featuringClassifier| 0.1 *
{readOnly, union, subsets member} {readOnly, union, subsets memberNamespace}| + contract + substitution
{subsets supplier} {subsets supplierDependency}
1 * Substitution
+ substitutingClassifie!
{readOnly, union, subsets featuringClassifier, {subsets client, subsets owner} *
subsets redefinitionContext} 1 + substitution
* + /classifier subsets memberNamespace} {Slébsfts IqwzeDdElerréent,
Property + /attribute 0.1 + inheritingClassifie subsets diientDependency} v
{ordered, readOnly, union, subsets *

feature, subsets redefinableElement} {redefines classifier}

{subsets owner}

N 1 0..1 | + classifier
+ classifier
{subsets ownedElement} {subsets collaborationUse} Ueéd:n!zﬂ ;;bse;s member}
+ collaborationUse | * 0..1 | + representation + [inheritedMember

NamedElemem

CollaborationUse

Figure 9.1 Classifiers

9.2.3 Semantics

9.2.3.1 Classifiers

A Classifier has a set of Features, some of which are Properties called the attributes of the Classifier. Each of the Features
is a member of the Classifier (see sub clause 7.4 Namespaces).

The values that are classified by a Classifier are called instances of the Classifier.

A Classifier may be redefined (see below).

Unified Modeling Language 2.5.1 929

A Classifier may own CollaborationUses that relate the Classifier to Collaborations. The Collaborations describes
aspects of this Classifier. See 11.7 Collaborations.

A Classifier may own UseCases. See 18.1 Use Cases.

9.2.3.2 Generalization

Generalizations define generalization/specialization relationships between Classifiers. Each Generalization relates a
specific Classifier to a more general Classifier. Given a Classifier, the transitive closure of its general Classifiers is often
called its generalizations, and the transitive closure of its specific Classifiers is called its specializations. The immediate
generalizations are also called the Classifier’s parents, and where the Classifier is a Class, its superClasses (see 11.4).

NOTE. The concept of parent (a generalization relationship between Classifiers) is unrelated to the concept of owner (a
composition relationship between instances).

An instance of a Classifier is also an (indirect) instance of each of its generalizations. Any Constraints applying to
instances of the generalizations also apply to instances of the Classifier.

When a Classifier is generalized, certain members of its generalizations are inherited, that is they behave as though they
were defined in the inheriting Classifier itself. For example, an inherited member that is an attribute may have a value or
collection of values in any instance of the inheriting Classifier, and an inherited member that is an Operation may be
invoked on an instance of the inheriting Classifier.

The set of members that are inherited is called the inheritedMembers. Unless specified differently for a particular kind of
Classifier, the inheritedMembers are members that do not have private visibility.

Type conformance means that if one Type conforms to another, then any instance of the first Type may be used as the
value of a TypedElement whose type is declared to be the second Type. A Classifier is a Type, and conforms to itself and
to all of its generalizations.

The isAbstract property of Classifier, when true, specifies that the Classifier is abstract, i.e., has no direct instances: every
instance of the abstract Classifier shall be an instance of one of its specializations.

If one Classifier (the parent) generalizes another (the child) it is not necessarily the case that instances of the child are
substitutable for instances of the parent under every possible circumstance. For example, Circle may be defined as a
specialization of Ellipse, and its instances would be substitutable in every circumstance involving accessing the
properties of an Ellipse. However, if Ellipse were to define a stretch behavior that modifies the length of its major axis
only, then a Circle object would be unable to implement such a behavior. The isSubstitutable property may be used to
indicate whether the specific Classifier can be used in every circumstance that the general Classifier can be used.

9.2.3.3 Redefinition

Any member (that is a kind of RedefinableElement) of a generalization of a specializing Classifier may be redefined
instead of being inherited. Redefinition is done in order to augment, constrain, or override the redefined member(s) in
the context of instances of the specializing Classifier. When this occurs, the redefining member contributes to the
structure or behavior of the specializing Classifier in place of the redefined member(s); specifically, any reference to a
redefined member in the context of an instance of the specializing Classifier shall resolve to the redefining member (note
that to avoid circularity “any reference” here excludes the redefinedElement reference itself).

The Classifier from which the member may be redefined is called the redefinitionContext. Although in the metamodel
redefinitionContext has the multiplicity ‘*’, there are no cases in the UML specification where there is more than one
redefinitionContext. The redefinitionContext is defined for each kind of RedefinableElement; it is often, but not always, the
owner of the member.

A redefining element shall be consistent with the RedefinableElement it redefines, but it may add specific constraints or
other details that are particular to instances of the specializing redefinitionContext that do not contradict constraints in the
general context.

One redefining element may redefine multiple RedefinableElements. Furthermore, a RedefinableElement may be
redefined multiple times, as long as it is unambiguous which definition applies for a particular instance.

100 Unified Modeling Language 2.5.1

The isLeaf property, when true for a particular RedefinableElement, specifies that it shall have no redefinitions.

The detailed semantics of redefinition vary for each specialization of RedefinableElement. There are various kinds of
compatibility between a redefined element and its redefining element, such as name compatibility (the redefining
element has the same name as the redefined element), structural compatibility (the client visible properties of the
redefined element are also properties of the redefining element), or behavioral compatibility (the redefining element is
substitutable for the redefined element). Any kind of compatibility involves a constraint on redefinitions.

Classifier is itself a RedefinableElement. This can come into play when a Classifier is nested in a Class or Interface,
which becomes the redefinitionContext. Redefining a Classifier in the context of a specializing Class or Interface has the
effect of making any references to the redefined Classifier from an instance of the specializing Class or Interface resolve
to the redefining Classifier.

9.2.34 Substitution

A Substitution is a relationship between two Classifiers which signifies that the substitutingClassifier complies with the
contract specified by the contract Classifier. This implies that instances of the substitutingClassifier are runtime
substitutable where instances of the contract Classifier are expected. The Substitution dependency denotes runtime
substitutability that is not based on specialization. Substitution, unlike specialization, does not imply inheritance of
structure, but only compliance of publicly available contracts. It requires that:

* Interfaces implemented by the contract Classifier are also implemented by the substitutingClassifier or else the
substitutingClassifier implements a more specialized Interface type.

* Any Port owned by the contract Classifier has a matching Port (see 11.3.3) owned by the substitutingClassifier.

9.24 Notation

9.2.41 Classifiers

Classifier is an abstract metaclass. It is nevertheless convenient to define in one place a default notation available for
any concrete subclass of Classifier. Some specializations of Classifier have their own distinct notations.

The default notation for a Classifier is a solid-outline rectangle containing the Classifier’s name, and with compartments
separated by horizontal lines below the name. The name of the Classifier should be centered in boldface. For those
languages that distinguish between uppercase and lowercase characters, Classifier names should begin with an
uppercase character.

If the default notation is used for a Classifier, a keyword corresponding to the metaclass of the Classifier shall be shown
in guillemets above the name. The keywords for each metaclass are listed in Annex C and are specified in the notation
for each subclass of Classifier. No keyword is needed to indicate that the metaclass is Class.

Any keywords (including stereotype names) should also be centered in plain face within guillemets above the Classifier
name. If multiple keywords and/or stereotype names apply to the same model element, each may be enclosed in a
separate pair of guillemets and listed one after the other. Alternatively they may all appear between the same pair of
guillemets, separated by commas.

The name of an abstract Classifier is shown in italics, where permitted by the font in use. Alternatively or in addition,
an abstract Classifier may be shown using the textual annotation {abstract} after or below its name.

Some compartments in Classifier shapes are mandatory and shall be supported by tools that exhibit concrete syntax
conformance. Others are optional, in the sense that a conforming tool may not support such compartments.

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference may be drawn about the presence or absence of elements in it.

The compartment named “attributes” contains notation for the Properties that are reached via the attribute property. The
attributes compartment is mandatory and always appears above other compartments, if it is not suppressed.

Unified Modeling Language 2.5.1 101

file:///Users/seidewitz/C:%5CUsers%5Cstcook%5CDocuments%5COMG%5CUML-Spec-Simplification%5Ctrunk%5CModels%5CMetamodel%5CSpecification%5CUML_11_3_3

The compartment named “operations” contains notation for Operations. The operations compartment is mandatory and
always appears below the attributes compartment, if it is not suppressed. The operations compartment is used for
Classifiers that own Operations, including Class (see 11.4), DataType (see 10.2) and Interface (see 10.4).

The compartment named “receptions” contains notation for Receptions. The receptions compartment is mandatory and
always appears below the operations compartment, if it is not suppressed. The receptions compartment is used for
Classifiers that own Receptions, including Class (see 11.4).

Any compartment which contains notation for Features may show those Features grouped under the literals public,
private and protected, representing their visibility. The visibility literals are left-justified in the compartment with the
Features’ notation appearing indented beneath them. The groups may appear in any order. Visibility grouping is
optional: a conforming tool need not support it.

A conforming tool may provide the option to suppress individual Features in a compartment containing notation for
Features.

A conforming tool may optionally support compartment naming. A compartment’s name may be shown to remove
ambiguity, or it may be hidden. Compartment names should be centered and start with lower-case letters. Compartment
names may contain spaces and should not contain punctuation (including guillemets).

If a Classifier has ownedMembers that are Classifiers (including Behaviors — see 13.2), a conforming tool may provide
the option to show the owned Classifiers, and relationships between them, diagrammatically nested within a separate
compartment of the owning Classifier’s rectangle. Unless otherwise specified, the name of such a compartment shall be
derived from the corresponding metamodel property, pluralized if that property has multiplicity greater than 1. So, for
example, a compartment showing the contents of the property nestedClassifier for a Class (see 11.4.2) shall be called
“nested classifiers;” a compartment showing the contents of the property ownedBehavior for a BehavioredClassifier shall
be called “owned behaviors.”

If a Classifier owns Constraints, a conforming tool may implement a compartment to show the owned Constraints listed
within a separate compartment of the owning Classifier’s rectangle. The name of this optional compartment is
“constraints.”

9.2.4.2 Other elements

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved Classifiers. The arrowhead points to the symbol representing the general Classifier.

Multiple Generalization relationships that reference the same general Classifier may be shown as separate lines with
separate arrowheads. This notation is referred to as the “separate target style.” Alternatively they may be connected to
the same arrowhead in the “shared target style.”

There is no general notation for RedefinableElement. See the subclasses of RedefinableElement for specific notations.
A Substitution is shown as a Dependency with the keyword «substitute» attached to it.

Members that are inherited by a Classifier may be shown on a diagram of that Classifier by prepending a caret **’ symbol
to the textual representation that would be shown if the member were not inherited. Thus the notation for an inherited
Property is defined like this:

<inherited-property> ::= "’ <property>

where <property> is specified in 9.5.4.

Similarly, the notation for an inherited Connector is defined like this:
<inherited-connector> ::= "’ <connector>

where <connector> is specified in 11.2.4.

Analogous notations may be used for all NamedElements that are inheritedMembers of a Classifier to indicate that they
are inherited.

102 Unified Modeling Language 2.5.1

Inherited members may also be shown in a lighter color to help distinguish them from non-inherited members. A
conforming implementation does not need to provide this option.

9.2.5 Examples

Examples for Classifier notation are shown under its various concrete subclasses, especially Class (see 11.4.4).

Figure 9.2 illustrates Generalization notation with different target styles.

Shape
Separate target style
Polygon Ellipse Spline
Shape

Shared target style

Polygon Ellipse Spline

Figure 9.2 Generalization notation showing different target styles

In Figure 9.3, a generic Window class is substitutable in a particular environment by the Resizable Window class.

Window ResizableWindow

< ________________________

«substitute»

Figure 9.3 Example of Substitution notation

9.3 Classifier Templates

9.31 Summary

Classifier is a kind of TemplateableElement signifying that a Classifier may be parameterized. It is also (via
PackageableElement) a kind of ParameterableElement so that a Classifier may be a formal TemplateParameter and may
be specified as an actual parameter in a binding of a template. Sub clause 7.3 describes the general semantics of
templates and their parameters.

Unified Modeling Language 2.5.1 103

9.3.2 Abstract Syntax

TemplateableElement
\

RedefinableElement | | TemplateSignature |
{subsets redefinableElement, {subsets redefinitionContext,
redefines ownedTemplateSignature} redefines template}
+ ownedTemplateSignature + classifier
01 @
.. il
{subsets redefinableElement} {redefines parameteredElement} - N
+ constrainingClassifier
+ redefinableTemplateSignature + parameteredElement | 1 * 9
*
{subsets templateSignature} 1\ .
+ redefinableTemplateSignature | *
+ extendedSignature
{subsets redefinedElement}
{readOnly, subsets parameter} {redefines templateParameter} .
+ [inheritedParameter | * + templateParameter | 0..1 * | + classifierTemplateParameter
[remplateparameter | [<

[+ allowst - Boolean = trug|

Figure 9.4 Classifier Templates

9.3.3 Semantics

9.3.3.1 Template and Bound Classifiers
The meanings of the terms template and bound element are defined in 7.3 — Templates.

A Classifier that is parameterized using a RedefinableTemplateSignature is called a template Classifier, while a
Classifier with one or more TemplateBindings is called a bound Classifier.

The general semantics of templates as defined in sub clause 7.3.3. There the details of how the contents are merged into
a bound element are left open. In the case of Classifier the semantics are equivalent to inserting an anonymous general
bound Classifier representing the intermediate result for each binding, and specializing all these intermediate results by
the bound Classifier.

Members of the expanded bound Classifier may be used as actual parameters in a binding.
A bound Classifier may have contents in addition to those resulting from its bindings.

The parameters of a template Classifier can be any kind of TemplateParameter. Semantics and notation are only defined
when the parameter is a Classifier, a LiteralSpecification, a Property or an Operation.

When the parameter is a Classifier, represented by a ClassifierTemplateParameter, the semantics and notation are
defined in this clause.

When the parameter is a LiteralSpecification, the semantics and notation are as specified in 7.3.
When the parameter is an Operation, the semantics and notation are as specified in 9.6.

When the parameter is a Property, the semantics and notation are as specified in 9.5.

9.3.3.2 Template Classifier specialization

RedefinableTemplateSignature specializes both TemplateSignature and RedefinableElement in order to allow the
addition of new formal TemplateParameters in the context of a specializing template Classifier.

A RedefinableTemplateSignature redefines the RedefinableTemplateSignatures of all parent Classifiers that are
templates. All the formal TemplateParameters of the extended (redefined) signatures are included as formal
TemplateParameters of the extending signature, along with any TemplateParameters locally specified for the extending
signature.

104 Unified Modeling Language 2.5.1

9.3.3.3 Classifier Template Parameters

ClassifierTemplateParameter is a TemplateParameter where the parameteredElement is a Classifier in its capacity of being
a kind of ParameterableElement.

All subclasses of Classifier (such as Class, Collaboration, Component, Datatype, Interface, Signal, and UseCases) may
be parameterized, bound, and used as TemplateParameters. The same holds for Behavior as a subclass of Class, and
thereby all subclasses of Behavior (such as Activity, Interaction, StateMachine).

The constrainingClassifier property of ClassifierTemplateParameter specifies a set of Classifiers that constrain the
argument that can be used for the parameter. If there are any Classifiers in this set, then the argument shall be
compatible with all of them, in the following sense:

* If allowSubstitutable is false, then compatibility means being the same as or a specialization of all of the
constrainingClassifiers.

¢ If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

Furthermore, if there are any constrainingClassifiers, the parameteredElement shall be constrained as follows:

* If allowSubstitutable is false, then compatibility means being the same as or a direct specialization of all of the
constrainingClassifiers, with no additional features.

¢ If allowSubstitutable is true, then compatibility additionally allows a Substitution whose contract is a
constrainingClassifier.

In all cases, if the parameteredElement is not abstract then the Classifier used as an argument shall not be abstract. Apart
from this, if the constrainingClassifier property is empty, there are no constraints on the Classifier that can be used as an
argument. In this case the parameteredElement shall have no generalizations and no features, and allowSubstitutable shall be
false.

9.34 Notation

See TemplateableElement for the general notation for displaying a template and a bound element.

When a bound Classifier is used directly as the type of a Property, then <template-param-name> acts as the prop-type of
the Property in its notation (see Property).

The general notation for template parameters specified in 7.3.4 is extended for the parameters of a template Classifier to
include the following:

<template-parameter> ::= <classifier-template-parameter> | <operation-template-parameter>| <connectable-
element-template-parameter>

A ClassifierTemplateParameter extends the notation for a TemplateParameter to include an optional type constraint:
<classifier-template-parameter> ::= <parameter-name> | ‘:* <parameter-kind> | [*>’ <constraint>] [‘=" <default>]
<constraint> ::=[*{contract }’] <classifier-name>*

<default> ::= <classifier-name>

The parameter-kind indicates the metaclass of the parameteredElement. It may be suppressed if it is ‘Class.’

The classifier-name of constraint designates a constrainingClassifier, of which there may be zero or more, with the
meaning specified in the semantics above. The ‘contract’ option indicates that allowSubstitutable is true.

Unified Modeling Language 2.5.1 105

9.3.5 Examples

The example shows a Class template (named FArray) with two formal TemplateParameters. The first formal
TemplateParameter (named T) is an unconstrained class TemplateParameter: the metaclass Class has been suppressed
from the diagram. The second formal TemplateParameter (named k) is a Literallnteger that has a default of 10. There is

also a bound Class (named AddressList) that substitutes Address for T and 3 for k.

FArray

T, k : LiteralInteger = 10

contents: T[0..k]

A

«bind» T -> Address, k -> 3

AddresslList

Figure 9.5 Template Class and Bound Class

The following figure shows an anonymous bound Class that substitutes the Point class for T. As there is no substitution

for k, the default (10) will be used.

FArray<T -> Point>

Figure 9.6 Anonymous Bound Class

106

Unified Modeling Language 2.5.1

The following figure shows a template Class (named Car) with two formal TemplateParameters. The first formal
TemplateParameter (named CarEngine) is a Class that is constrained to conform to the Class called Engine. The second
formal TemplateParameter (named n) is a Literallnteger.

CarEngine->Engine,
n:LiteralInteger

Car

e : CarEngine dw : Wheel [n+1]

Figure 9.7 Template Class with constrained Class parameter

The following figure shows a bound Class (named DieselCar) that binds CarEngine to DieselEngine and n to 2: thus
defining a class of 3-wheeled diesel cars.

DieselCar : Car<CarEngine -> DieselEngine, n -> 2>

Figure 9.8 Bound Class

9.4 Features

9.4.1 Summary

Features represent structural and behavioral characteristics of Classifiers.

Unified Modeling Language 2.5.1 107

9.4.2 Abstract Syntax

RedefinableElement CallConcurrencyKind irectionKi Paramete

" JA\ uential in create

{readOnly, union, subsets {readOnly, union, subsets Pt out —
memberNamespace} member} concurrent out update
return delete

+ /featuringClassifier + /feature -
Classifier Feature TypedElement
0.1 * |+ isStatic : Boolean = false A
N
TypedElement MultiplicityElement ConnectableElement
{ordered, subsets
{subsets namespace} ownedMember} Parameter
StructuralFeature eature ___ -+ ownerFormalParam + ownedParameter _ | +/default : Sting [0.1]
+ isReadOnly : Boolean = false + concurrency : CallConcurrencyKind = sequential | & 0.1 N + direction : ParameterDirectionkind = in
+ isAbstract - Boolean = false + effect : ParameterEffectKind [0..1]
- + isException : Boolean = false
+ behavioralFeature | * + specification | 0..1 {subsets namespace} + isStream : Boolean = false

0.1] + behavioralFeature

+ parameter | 1..* {subsets owner}
{subsets ownedMember} 0..1| + owningParameter
* + ownedParameterSet

+ raisedException | *

+ method | *
*
Behavior + {subsets ownedElement}
parameterSet 0..1| + defaultValue
{subsets owner}

0.1 |+ parameterSet [valuespecification |

{subsets ownedElement}
* |, + condition

Constraint

Figure 9.9 Features

9.4.3 Semantics

9.4.3.1 Features

Each Feature is associated with a Classifier called its featuringClassifier. The Feature represents some structural or
behavioral characteristic for its featuringClassifier, except for Properties acting as qualifiers (see 9.5.3).

The isStatic property specifies whether the characteristic relates to the Classifier’s instances considered individually
(isStatic=false), or to the Classifier itself (isStatic=true). All semantics relating to Features that do not explicitly state
whether the feature is static shall be assumed to refer to non-static Features. Where semantics are not explicitly
specified for static Features, those semantics are undefined.

9.4.3.2 Structural Features
A StructuralFeature is a typed Feature of a Classifier that specifies the structure of instances of the Classifier.

The StructuralFeatures of a Classifier that are Properties are called the attributes of the Classifier (see 9.2.3). In UML,
Property is the only kind of StructuralFeature so all of the StructuralFeatures of a Classifier are Properties, and hence
attributes.

For each instance of a Classifier there is a value or collection of values for each direct or inherited non-static attribute of
the Classifier, as follows:

¢ Ifthe attribute’s multiplicity is 0..1, there shall either be no value or a single value whose Type conforms to the
Type of the attribute

¢ Ifthe attribute’s multiplicity is 1..1, there shall be a single value whose Type conforms to the Type of the
attribute.

¢ Ifthe attribute’s multiplicity is j..k where k is not 1, there shall be a collection of values whose size is not less
than j and not greater than k, each of whose Types conforms to the Type of the attribute.

¢ Ifthe attribute’s multiplicity is 0..0, there shall be no value or values.

108 Unified Modeling Language 2.5.1

If a StructuralFeature is marked with isStatic = true, then the bullet points above are relative to the Classifier itself
considered as an identifiable individual within some execution scope, rather than to individual instances. (See sub
clause 6.3.1 for a discussion of execution scope.)

In a semantically conforming tool, each inherited static StructuralFeature shall have one of two alternative semantics:

1. Within an execution scope, the value or collection of values of the StructuralFeature is always the same for any
inheriting Classifier as its value or collection of values for the owning Classifier. These semantics correspond
to those for static members in Java and C#.

2. Within an execution scope, the StructuralFeature has a separate and independent value or collection of values
for its owning Classifier and for each Classifier that inherits it. These semantics correspond to those for class
instance variables in Ruby and Smalltalk.

If a StructuralFeature is marked with isReadOnly true, then it may not be updated once it has been assigned an initial
value. Conversely, when isReadOnly is false (the default), the value may be modified.

9.4.3.3 Behavioral Features

A non-static BehavioralFeature specifies that an instance of its featuringClassifier will react to an invocation of the
BehavioralFeature by carrying out a specific behavioral response. Subclasses of BehavioralFeature model different
behavioral aspects of a Classifier.

The list of ownedParameters describes the order, type, and direction of arguments that may be given when the
BehavioralFeature is invoked, or which are output and returned when the invocation completes.

The ownedParameters with direction in or inout define the arguments that shall be provided when invoking the
BehavioralFeature. The ownedParameters with direction out, inout, or return define the arguments that will be output and
returned from a successful invocation.

A BehavioralFeature may raise an exception during its invocation. Possible exception types may be specified by
attaching them to the BehavioralFeature using the raisedException association.

One way to define the behavioral response of a BehavioralFeature is to specify one or more Behaviors as methods that
implement the BehavioralFeature. An invocation of the BehavioralFeature then results in the execution of one of the
associated methods (as further discussed in sub clause 13.2 on Behaviors). The isAbstract property, when true, specifies
that the BehavioralFeature does not have any methods implementing it, with the expectation that an implementation will
be supplied by a more specific element.

The concurrency property specifies the semantics of concurrent calls to the same instance. Its type is
CallConcurrencyKind, an enumeration with the following literals:

sequential | No concurrency management mechanism is associated with the BehavioralFeature and, therefore,
concurrency conflicts may occur. Instances that invoke a BehavioralFeature need to coordinate so
that only one invocation to a target on any BehavioralFeature occurs at once.

guarded Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance, but only
one is allowed to commence. The others are blocked until the performance of the currently executing
BehavioralFeature is complete. It is the responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocking.

concurrent | Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance and all of
them may proceed concurrently.

9.4.34 Parameters

A Parameter is a specification of an argument used to pass information into or out of an invocation of a
BehavioralFeature. The Type and Multiplicity of a Parameter restrict what values may be passed, how many, and
whether the values are ordered. The Multiplicity defines a lower and upper bound on the values passed to the Parameter
at runtime. A lower bound of zero means the Parameter is optional. Actions using the Parameter may execute without

Unified Modeling Language 2.5.1 109

having a value for optional Parameters. A lower bound greater than zero means values for the Parameter are required to
arrive sometime during the execution of the action.

If a defaultvalue is specified for a Parameter, then it is evaluated at invocation time and used as the argument for this
Parameter if and only if no argument is supplied at invocation of the BehavioralFeature.

A Parameter may be given a name, which then identifies the Parameter uniquely within the Parameters of the same
BehavioralFeature. If it is unnamed, it is distinguished only by its position in the ordered list of Parameters.

The direction property specifies whether a value is passed into, out of, or both into and out of the owning
BehavioralFeature. Its type is ParameterDirectionKind, an enumeration of the following literal values:

in Indicates that Parameter values are passed in by the caller.

inout Indicates that Parameter values are passed in by the caller and (possibly different) values passed out
to the caller.

out Indicates that Parameter values are passed out to the caller.

return Indicates that Parameter values are passed as return values back to the caller.

No more than one Parameter for a BehavioralFeature may be marked as a return Parameter by setting its direction to
return.

The effect property may be used to specify what happens to objects passed in or out of a Parameter. It does not apply to
parameters typed by data types, because these do not have identity with which to detect changes. It is a declaration of
modeler intent that must be consistent with the behaviors having the effect. Multiple effects might occur during
execution, whether or not an effect is specified. For example, an update effect does not preclude reading from occurring
during execution, and a lack of value for effect does not prevent effects from occurring during execution. The effect is
specified using an enumerated value typed by ParameterEffectKind, an enumeration of the following literals:

create Objects passed out of executions of the behavior as values of the parameter do not exist before those
executions start.

read Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classifiers retrieved during executions of the behavior.

update Objects that are values of the parameter have values of their properties, or links in which they
participate, or their classification changed during executions of the behavior.

delete Objects that are values of the parameter do not exist after executions of the behavior are finished.

Only in and inout Parameters may have a delete effect. Only out, inout, and return Parameters may have a create effect.

The isException property applies to output Parameters. An output posted to a Parameter with isException true during an
invocation of a BehavioralFeature excludes outputs from being posted to any other outputs of the BehavioralFeature
during the same invocation. The type of such an exception Parameter may be included in the raisedException set, but does
not have to be included.

The isStream property, when true, designates a streaming Parameter. A streaming Parameter expresses the expectation
that any Behavior implementing this feature will exhibit streaming behavior on this Parameter — see sub clause 13.2.
The semantics for a Parameter designated as streaming when the implementing Behavior does not exhibit streaming

behavior are undefined.

A ParameterSet owned by a BehavioralFeature is an element that provides alternative sets of inputs or outputs that the

Behaviors that implements that BehavioralFeature may use. The Parameters in a ParameterSet shall all be inputs or all

outputs of the same BehavioralFeature: a ParameterSet with all inputs is called an input ParameterSet, and one with all
outputs is called an output ParameterSet.

A BehavioralFeature with input ParameterSets may only accept inputs from Parameters in one of the sets per
invocation. A BehavioralFeature with output ParameterSets may only return outputs to the Parameters in one of the sets
per invocation. The semantics of conditions on input and output ParameterSets of BehavioralFeatures is the same as
Operation preconditions and postconditions, respectively, but apply to only to invocations that accept inputs to or return
outputs from Parameters in the ParameterSet having the condition.

More detailed semantics and examples of ParameterSets may be found in sub clause 16.3.

110 Unified Modeling Language 2.5.1

9.4.4 Notation

There is no general notation for Feature. Subclasses define their specific notation.
Static Features are underlined.

Where Features are shown in lists, an ellipsis (...) as the final element of a list of Features may be used to indicate that
additional Features exist but are not shown in that list.

A read only StructuralFeature is shown using {readOnly} as part of the notation for the StructuralFeature. This
annotation may be suppressed, in which case it is not possible to determine its value from the diagram. Alternatively a
conforming tool may only allow suppression of the {readOnly} annotation when isReadOnly=false (the default). In this
case it is possible to assume this value in all cases where {readOnly} is not shown.

Feature redefinitions may either be explicitly notated with the use of a {redefines <x>} property string on the Feature or
implicitly by having a Feature which cannot be distinguished using isDistinguishableFrom() from another Feature in
one of the owning Classifier’s more general Classifiers. In both cases, the redefined Feature shall conform to the
compatibility constraint on the redefinitions.

A Parameter is shown as a text string of the form:
<parameter> ::= [<direction>] <parameter-name> .’ <type-expression> [’["<multiplicity-range>"1"] [’=" <default>|
[{* <parm-property> [’,” <parm-property>]* ’}’] where:
e <direction> ::="in’ | "out’ | ’inout’ (defaults to ’in’ if omitted).
* <parameter-name> is the name of the Parameter.
* <type-expression> is an expression that specifies the type of the Parameter.
* <multiplicity-range> is the multiplicity of the Parameter. (See MultiplicityElement — sub clause 7.5).
* <default> is an expression that defines the value specification for the default value of the Parameter.
* <parm-property> indicates additional property values that apply to the Parameter.
<parm-property> ::="ordered’ | unordered’ | *unique’ | 'nonunique’ | ’seq’ | ’sequence’ where
* ’ordered’ applies when there is a multi-valued Parameter and means that its values are ordered.
¢ ’unordered’ applies when there is a multi-valued Parameter and means that its values are not ordered.
* ’unique’ applies when there is a multi-valued Parameter and means that its values have no duplicates.
* ’nonunique’ applies when there is a multi-valued Parameter and means that its values may have duplicates.

* ’seq’ or sequence’ applies when there is a multi-valued Parameter and means that its values constitute an
ordered bag, i.e., isUnique = false and isOrdered = true.

Notation for ParameterSets in activity diagrams may be found in sub clause 16.3.4. There is no notation for
ParameterSets in other diagrams.

9.5 Properties

9.5.1 Summary

Properties are StructuralFeatures that represent the attributes of Classifiers, the memberEnds of Associations, and the parts
of StructuredClassifiers.

Unified Modeling Language 2.5.1 111

9.5.2 Abstract Syntax
«enumeration»
AggregationKind
none
(e 3 E ezl |
1 composite
{ordered, subsets feature, subsets {subsets featuringClassifier, subsets
redefinableElement, subsets namespace, subsets association,
memberEnd, subsets ownedMember} subsets redefinitionContext}
{subsets namespace, {ordered, subsets attribute, subsets Property + ownedEnd + owningAssociation
subsets classifier} ownedMember} - Tbis * 0.1 Association
. ; + aggregation : AggregationKind = none
+ interface + ownedAttribute + [isComposite : Boolean = false
Interface rL% o1 . + isDerived : Boolean = false {ordered, subsets member} {subsets memberNamespace}
- + isDerivedUnion : Boolean = false + memberEnd + association
+isID : Boolean = false 2% 0.1
{subsets namespace, {ordered, subsets attribute, subsets + qualifier {ordered, subsets ownedElement}
subsets classifier} ownedMember} *
+ datatype + ownedAttribute
DataType L,-% typ 0.1
0.1 *
+ associationEnd {subsets owner}
0.1
ordered, subsets attribute, subsets "
{subsets namespace, subsets gwnedMémber redefines + opposite
structuredClassifier, subsets classifier} ownedAttributé}
+ class + ownedAttribute 0.1
[ciass b + property
0.1 * {subsets owner} {subsets ownedElement}
+ owningProperty + defaultValue ——
o romnPobety - deaitae f]
0.1 0.1
rty Mk subsettedProperty
+ proj
property |« {subsets redefinedElement} *+ srL‘;Jh[)seertt;/
+ redefinedProperty | * redefinableElement}

Figure 9.10 Properties

9.5.3 Semantics

A Property may represent an attribute of a Classifier, a memberEnd of an Association, or in some cases both
simultaneously.

A useful convention for general modeling scenarios is that a Property whose type is a kind of Class is an Association
end, while a property whose type is a kind of DataType is not. This convention is not enforced by UML.

A Property represents a declared state of one or more instances in terms of a named relationship to a value or values.
When a Property is a non-static attribute of a Classifier, the value or values are related to the instance of the Classifier
by being held in slots of the instance. When a Property is an Association’s memberEnd, the value or values are related to
the instance or instances at the other end(s) of the association (see 11.5 Associations). When a Property is a static
attribute of a Classifier, the value or values are related to the Classifier itself within some execution scope.

A Property that is a memberEnd may itself have other Properties that serve as qualifiers.

When a Property is owned by a Classifier other than an Association via ownedAttribute, then it represents an attribute of
the Classifier. When related to an Association via memberEnd it represents an end of the Association. For a binary
Association, it may be both at once. In either case, when instantiated a Property represents a value or collection of
values associated with an instance of one (or in the case of a ternary or higher-order association, more than one)
Classifier. This set of Classifiers is called the context for the Property; in the case of an attribute the context is the owning
Classifier, and in the case of an association end the context is the set of Classifiers at the other end or ends of the
Association.

If there is a defaultvValue specified for a Property, this default is evaluated when an instance of the Property is created in
the absence of a specific setting for the Property or a constraint in the model that requires the Property to have a specific
value. The evaluated default then becomes the initial value (or values) of the Property.

If a Property has isDerived = true, it is derived and its value or values may be computed from other information. Actions
involving a derived Property behave the same as for a nonderived Property. Derived Properties are often specified to be
read-only (i.e., clients may not directly change values). But where a derived Property is changeable, an implementation

112 Unified Modeling Language 2.5.1

is expected to make appropriate changes to the model in order for all the constraints to be met, in particular the
derivation constraint for the derived Property. The derivation for a derived Property may be specified by a constraint.

Property is indirectly a kind of RedefinableElement, so Properties may be redefined. The name and visibility of a Property
are not required to match those of any Property it redefines.

A derived Property may redefine one which is not derived. An implementation shall ensure that the constraints implied
by the derivation are maintained if the Property is updated.

If a Property has a specified default, and the Property redefines another Property with a specified default, then the
redefining Property’s default is used in place of the more general default from the redefined Property.

Sometimes a Property is used to model circumstances in which one instance is used to group together a set of instances;
this is called aggregation. To represent such circumstances, a Property has an aggregation property, of type
AggregationKind; the instance representing the whole group is classified by the owner of the Property, and the instances
representing the grouped individuals are classified by the type of the Property. AggregationKind is an enumeration with
the following literal values:

none Indicates that the Property has no aggregation semantics.

shared Indicates that the Property has shared aggregation semantics. Precise semantics of shared aggregation
varies by application area and modeler.

composite | Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for
the existence and storage of the composed objects (see the definition of parts in 11.2.3).

Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite
object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.

NOTE. A part object may (where otherwise allowed) be removed from a composite object before the composite object
is deleted, and thus not be deleted as part of the composite object.

Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
object in one part of the graph will also result in the deletion of all objects of the subgraph below that object. The
precise lifecycle semantics of composite aggregation is intentionally not specified. The order and way in which
composed objects are created is intentionally not defined. The semantics of composite aggregation when the container
or part is typed by a DataType are intentionally not specified.

A Property may be marked as the subset of another subsettedProperty. In this case, calculate a set by eliminating
duplicates from the collection of values denoted by the subsetting property in some context. Then that set shall be
included in (or the same as) a set calculated by eliminating duplicates from the collection of values denoted by the
subsettedProperty in the same context.

A Property may be marked as being a derived union, by setting isDerivedUnion to true. This means that the collection of
values denoted by the Property in some context is derived by being the strict union of all of the values denoted, in the
same context, by Properties defined to subset it. If the Property has a multiplicity upper bound of 1, then this means that
the values of all the subsets shall be null or the same.

When an attribute marked as a derived union is marked with isOrdered = true, and in a particular context all of its
subsetting properties are attributes marked as ordered or with upper bound 1, and the value in that context of the
Classifier::allAttributes() operation gives a well-defined ordering, then the ordering of the union is defined by
evaluating the subsetting properties in the order in which they appear in the result of allAttributes() and concatenating
the results. In all other cases the ordering of a property marked as an ordered derived union is undefined.

A Property may be marked, via the property isID, as being (part of) the identifier (if any) for Classifiers of which it is a
member. The interpretation of this is left open but this could be mapped to implementations such as primary keys for
relational database tables or ID attributes in XML. If multiple Properties are marked as isID (possibly in generalizing
Classifiers) then it is the combination of the (Property, value) tuples that will logically provide the uniqueness for any
instance. Hence there is no need for any specification of order and it is possible for some of the Property values to be
empty. If the Property is multivalued then all values are included.

Unified Modeling Language 2.5.1 113

Property specializes ParameterableElement to specify that a Property may be exposed as a formal
ConnectableElementTemplateParameter (see 11.2.3), and provided as an actual parameter in a binding of a template.
Within a template a Property TemplateParameter may be used like any other accessible Property. Any references to the
Property TemplateParameter within the template will end up being a reference to the actual Property in the bound
element.

9.54 Notation

The following general notation is defined for Properties.

NOTE. Some specializations of Property may also have additional notational forms. These are covered in the
appropriate Notation sub clauses of those classes.

<property> ::= [<visibility>] ["/'] <name> [*:’ <prop-type>] [[<multiplicity-range> T'] ['="<default>] ['{"
<prop-modifier > [‘,” <prop-modifier >]* '}’]

where:

* <visibility> is the visibility of the Property. (See VisibilityKind - sub clause 7.4.)
<visibility> ::= +7| ~°| #'| ~’

e ‘/’signifies that the Property is derived.
* <name> is the name of the Property, or the empty string if the Property has no name.
* <prop-type> is the name of the Classifier that is the type of the Property.

* <multiplicity-range> is the multiplicity range of the Property. If this term is omitted, it implies a multiplicity
of 1 (exactly one). (See MultiplicityElement — sub clause 7.5.)

* <default> is an expression that evaluates to the default value or values of the Property.

* <prop-modifier> indicates a modifier that applies to the Property.
<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets’ <property-name> |
‘redefines’ <property-name> | ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’
‘id’ | <prop-constraint>

where:
* ‘readOnly’ means that the Property is read only.
* ‘union’ means that the Property is a derived union of its subsets.

* ‘subsets’ <property-name> means that the Property is a proper subset of the Property identified by
<property-name>, where <property-name> may be qualified.

* ‘redefines’ <property-name> means that the Property redefines an inherited Property identified by
<property-name>, where <property-name> may be qualified.

* ‘ordered’ means that the Property is ordered, i.e., isOrdered = true.

* ‘unordered’ means that the Property is not ordered, i.e., isOrdered = false.

* ‘unique’ means that there are no duplicates in a multi-valued Property, i.e., isUnique = true.

* ‘nonunique’ means that there may be duplicates in a multi-valued Property, i.e., isUnique = false.

* ‘seq’or ‘sequence’ means that the property represents an ordered bag, i.e., isUnique = false and
isOrdered = true

* ‘id’ means that the Property is part of the identifier for the class.

114 Unified Modeling Language 2.5.1

* <prop-constraint> is an expression that specifies a constraint that applies to the Property.
The notation for qualifiers is defined in 11.5 Associations.
The notation for the aggregation of a Property is defined in 11.5 Associations.

In a Classifier, the type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if
there are values in the model.

In a Classifier, the individual properties of an attribute may be shown in columns rather than as a continuous string.

In a Classifier, an attribute may also be shown using association notation, where only an aggregation adornment (hollow
or filled diamond) may be shown at the tail of the arrow.

The notation for a ConnectableElementTemplateParameter used to parameterize a template Classifier by a Property is
this:

<connectable-element-template-parameter> ::= <property-name> *: Property’

9.5.5 Examples

ClassA

name: String

shape: Rectangle

+size: Integer[0..1]
/area: Integer {readOnly}
height: Integer =5
width: Integer

ClassB

id {redefines name}
shape: Square
Atsize: Integer[0..1]
Integer =7

/width

Figure 9.11 Examples of attributes

The attributes in Figure 9.11 are explained below.
* ClassA::name is an attribute with type String.
* ClassA::shape is an attribute with type Rectangle.
* ClassA::size is a public attribute of type Integer with multiplicity 0..1.

* ClassA::area is a derived attribute with type Integer. It is marked as read-only.

Unified Modeling Language 2.5.1 115

Figure 9.12 shows how an attribute may be shown using association notation.

ClassA::height is an attribute of type Integer with a default initial value of 5.
ClassA::width is an attribute of type Integer.

ClassB::id is an attribute that redefines ClassA::name.

ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

ClassB shows size as an attribute inherited from ClassA, as signified by the prepended caret symbol (see

9.2.4).

ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that

overrides the ClassA default of 5.

ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

Window

size
S

Figure 9.12 Association-like notation for attributes

9.6

Operations

9.6.1

Summary

Area

An Operation is a BehavioralFeature that may be owned by an Interface, DataType or Class. Operations may also be

templated and used as template parameters.

116

Unified Modeling Language 2.5.1

9.6.2

{subsets featuringClassifier,
subsets namespace, subsets

Abstract Syntax

e] |

{ordered, subsets feature,
subsets redefinableElement,

{subsets ownerFormalParam}

Operation

+ operation

{ordered, redefines ownedParameter}

+ /isOrdered : Boolean {readOnly}
+ isQuery : Boolean = false

0.1

+ ownedParameter ﬁ[:
*

subsets ownedMember} + /isUnique : Boolean {readOnly} {subsets context} {subsets ownedRule}

redeflnltlonContext} . + [lower : Integer [0..1] {readOnly} + preContext + precondition ——————
+ interface + ownedOperation + /upper : UnlimitedNatural [0..1] {readOnly} C
-‘—4 *
01 ¥ 0.1
{subsets context} {subsets ownedRule}
. N {ordered, subsets feature, + postContext + postcondition
{subsets featuringClassifier, g psets redefinableElement .
subsets namespace, subsets subsets ownedMember} 0..1
redefinitionContext}
+ datatype + ownedOperation {subsets context} {subsets ownedRule}
0.1 . + bodyContext + bodyCondition
0.1 0.1
{ordered, subsets .
{subsets featuringClassifier, feature, subsets + operation 0.1 Type
subsets namespace, subsets redefinableElement, % + [type P
redefinitionContext} subsets ownedMember} {subsets behavioralFeature} {readOnly}
+ class + ownedOperation + operation ¥
0.1 * % + raisedException

{redefines raisedException}
{subsets redefinableElement}
+ operation
x

{redefines parameteredElement} *

+ parameteredElement

-

+ redefinedOperation
{subsets redefinedElement}

{redefines templateParameter}
+ templateParameter

0.1

OperationTemplateParameter]
I

[

\V4
TemplateParameter

Figure 9.13 Operations

9.6.3 Semantics

9.6.3.1 Operations

An Operation is a BehaviorialFeature of an Interface, DataType, or Class. An Operation may be directly invoked on
instances of its featuringClassifiers. The Operation specifies the name, type, Parameters, and Constraints for such
invocations.

If there is a return Parameter, the type of the Operation is the same as the type of this Parameter. Otherwise the
Operation has no type.

The preconditions for an Operation define conditions that shall be true when the Operation is invoked. These preconditions
may be assumed by an implementation of this Operation. The behavior of an invocation of an Operation when a
precondition is not satisfied is not defined in UML.

The postconditions for an Operation define conditions that will be true when the invocation of the Operation completes
successfully, assuming the preconditions were satisfied. These postconditions shall be satisfied by any implementation of
the Operation.

The bodyCondition for an Operation constrains the return result to a value calculated by the specification of the
bodyCondition. This value should satisfy the postconditions, if any. The bodyCondition differs from postconditions in that the
bodyCondition may be overridden when an Operation is redefined, whereas postconditions may only be added during
redefinition.

Unified Modeling Language 2.5.1 117

An Operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that
the postconditions or bodyCondition of the Operation are satisfied.

An Operation may be redefined in a specialization of the featuringClassifier. This redefinition may add new preconditions or
postconditions, add new raisedExceptions, or otherwise refine the specification of the Operation.

Different type-conformance systems adopt different schemes for how the types of parameters and results may vary
when an Operation is redefined in a specialization. When the type may not vary, it is called invariance. When the
parameter type may be specialized in a specialized type, it is called covariance. When the parameter type may be
generalized in a specialized type, it is called contravariance. In UML, such rules for type conformance are intentionally
not specified. Redefined parameters shall have compatible multiplicity, and the same direction, ordering and uniqueness
as the redefined parameters.

If the isQuery property is true, an invocation of the Operation shall not modify the state of the instance or any other
element in the model.

An Operation may be owned by and in the namespace of a Class, DataType or Interface that provides the context for its
possible redefinition. The owning classifier of the Operation provides its redefinitionContext.

9.6.3.2 Template Operations

Operation specializes TemplateableElement in order to support specification of template Operations and bound
Operations. Bound Operations must be owned by a Classifier. If the original operation was defined with a Behavior,
then the bound element has to be owned by a Classifier that is consistent with that Behavior. This means one of three
things: (a) the bound operation appears in the same Classifier as the template; (b) the bound operation appears in a
subtype of the template’s owner; (c) the template was defined without side-effects in a static class and the bound one
can then appear anywhere.

9.6.3.3 Operation Template Parameters

An Operation may be exposed by a template as a formal template parameter via an OperationTemplateParameter.
OperationTemplateParameter is a kind of TemplateParameter where the parametered element is an Operation. Within a
template Classifier an OperationTemplateParameter may be used like any other accessible Operation. Any references to
the OperationTemplateParameter within the template will end up being a reference to the actual Operation in the bound
Classifier. For example, a call to the OperationTemplateParameter will be a call to the actual Operation.

A default for an OperationTemplateParameter must be an Operation with the same parameter types, directions, and
multiplicities as the exposed Operation.

9.6.4 Notation

If shown in a diagram, an Operation is shown as a text string of the form:

[<visibility>] <name> ‘(* [<parameter-list>] ‘)’ [‘:’ [<veturn-type>] [‘[<multiplicity-range> ‘]’]
[" <oper-property> [",” <oper-property>]* ‘}']]

where:

* <visibility> is the visibility of the Operation (see 7.4).
<visibility> =+ | - | ‘#’| =’

* <name> is the name of the Operation.

* <parameter-list> is a list of Parameters of the Operation in the following format:
<parameter-list> ::= <parameter> [*,’<parameter>]*

where <parameter> is defined in 9.4.4.

* <return-type> is the type of the return result Parameter if the Operation has one defined.

118 Unified Modeling Language 2.5.1

* <multiplicity-range> is the multiplicity of the return type (see 7.5).

* <oper-property> indicates the properties of the Operation.
<oper-property> .= ‘redefines’ <oper-name> | ‘query’ | ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ |
‘sequence’ | <oper-constraint>

where:

* ‘redefines’ <oper-name> means that the Operation redefines an inherited Operation identified by <oper-
name>, where <oper-name> may be qualified.

* ‘query’ means that the Operation does not change the state of the system.
* ‘ordered’ applies when there is a multi-valued return Parameter and means that its values are ordered.

* ‘unordered’ applies when there is a multi-valued return Parameter and means that its values are not
ordered.

* ‘unique’ applies when there is a multi-valued return Parameter and means that its values have no
duplicates.

* ‘nonunique’ applies when there is a multi-valued return Parameter and means that its values may have
duplicates.

* ‘seq’or ‘sequence’ applies when there is a multi-valued return Parameter and means that its values
constitute an ordered bag, i.e., isUnique = false and isOrdered = true.

* <oper-constraint> is a constraint that applies to the Operation. The parameter list may be suppressed.

The TemplateParameters of a template Operation are in a list between the name of the Operation and the Parameters of
the Operation.

[<visibility>] <name> ‘<‘ <template-parameter-list> ‘>’ (* [<parameter-list>])’ [*:" [<return-type>] [‘[* <multiplicity>
‘T1[*{* <oper-property> [*,” <oper-property>]* *}’]]

The TemplateParameter bindings of a bound template Operation are in a list between the name of the Operation and the
Parameters of the Operation.

[<visibility>] <name> ‘<<* <binding-expression-list> ‘>>’ ‘(* [<parameter-list>])’ [‘:” [<return-type>] [‘[*
<multiplicity> ‘'] [*{* <oper-property> [*,” <oper-property>]* ‘}’]]

where < binding-expression-list> ::= <binding-expression> [,” <binding-expression>]*, and <binding-expression> is
defined in 7.3.4.

Within the notation for formal TemplateParameters and TemplateParameter bindings, an Operation is shown as
<operation-name> ‘(‘<parameter-list>)’.

An OperationTemplateParameter extends the notation for a TemplateParameter to include the Parameters for the
Operation:

<operation-template-parameter> ::= <parameter> [‘. Operation’] [‘=" <default>]
<parameter> ::= <operation-name> ‘(‘<parameter-list> ‘)’
<default> ::= <operation-name ‘(‘<parameter-list> ‘)’

The notation in class diagrams for exceptions and streaming Parameters on Operations has the keywords “exception” or
“stream” in the property string.

9.6.5 Examples

Normal Operations:

Unified Modeling Language 2.5.1 119

display ()
-hide ()
+createWindow (location: Coordinates, container: Container [0..1]): Window
+toString (): String
A template Operation:
f <T:Class>(x: T)
A binding of that template Operation.
f << T -> Window >>(x : Window)

NOTE. Parameters may be suppressed; they are calculated by the binding.

9.7 Generalization Sets

9.71 Summary
GeneralizationSet provides a way to group Generalizations into orthogonal dimensions. A GeneralizationSet may be

associated with a Classifier called its powertype. These techniques provide additional expressive power for organizing
classification hierarchies.

9.7.2 Abstract Syntax

| PackageableElement

- + powertype + powertypeExtent GeneralizationSet + generalizationSet + generalization —
Classifier I- + isCovering : Boolean J| Generalization
0.1 * |+ isDisjoint : Boolean | * *

Figure 9.14 Generalization Sets

9.7.3 Semantics

Generalizations may be grouped to represent orthogonal dimensions of generalization. Each group is represented by a
GeneralizationSet. The generalizationSet property designates the GeneralizationSets to which the Generalization belongs.
All of the Generalizations in a particular GeneralizationSet shall have the same general Classifier.

The isCovering property of GeneralizationSet specifies whether the specific Classifiers of the Generalizations in that set
are complete, in the following sense: if isCovering is true, then every instance of the general Classifier is an instance of
(at least) one of the specific Classifiers. The isDisjoint property specifies whether the specific Classifiers of the
Generalizations in that set may overlap, in the following sense: if isDisjoint is true, then no instance of any of the specific
Classifiers may also be an instance of any other of the specific Classifiers. By default, both properties are false.

A GeneralizationSet may optionally be associated with a Classifier called its powertype. This means that for every
Generalization in the GeneralizationSet, the specializing Classifier is uniquely associated with an instance of the
powertype, i.€., there is a 1-1 correspondence between instances of the powertype and specializations in the
GeneralizationSet, so that the powertype instances and the corresponding Classifiers may be treated as semantically
equivalent. How this semantic equivalence is implemented and how its integrity is maintained is not defined within the
scope of UML.

120 Unified Modeling Language 2.5.1

9.7.4 Notation

When Generalization relationship lines are named, that name designates a GeneralizationSet to which the
Generalization belongs. All Generalization relationships with the same GeneralizationSet name are part of the same
GeneralizationSet. This notation form is depicted in Figure 9.15.

GeneralizationSet1 GeneralizationSet2

Generalizationpetl

Figure 9.15 GeneralizationSets designated by name

When two or more lines are drawn to the same arrowhead and labeled by a single GeneralizationSet name, i.e., “shared
target” style as illustrated in Figure 9.16, the specific Classifiers are part of the same GeneralizationSet.

A A

o GeneralizationSet2
GeneralizationSet1 GeneralizationSet1 GeneralizationSet2

e

Figure 9.16 GeneralizationSets designated by shared target

With either of the notation forms above, if there are no labels on the Generalization arrows it cannot be determined from
the diagram whether there are any GeneralizationSets in the model.

Lastly in Figure 9.17, a GeneralizationSet may be designated by drawing a dashed line across those lines with separate
arrowheads that are meant to be part of the same set. Here, as in Figure 9.16, the GeneralizationSet is labeled with a
single name, instead of each line labeled separately. This label may be elided.

neralizationSetl
Generalizati Sle— ———————— GeneralizationSet2

Figure 9.17 GeneralizationSet designated by dashed line spanning Generalization arrows

Unified Modeling Language 2.5.1 121

To indicate whether or not a generalization set is covering and disjoint, each set may be labeled with a constraint
consisting of one of the textual annotations indicated below.

Table 9.1 GeneralizationSet constraints

{complete, disjoint} Indicates the generalization set is covering and its specific Classifiers have no common
instances.

{incomplete, disjoint} Indicates the generalization set is not covering and its specific Classifiers have no common

instances.
{complete, Indicates the generalization set is covering and its specific Classifiers do share common
overlapping} instances.
{incomplete, Indicates the generalization set is not covering and its specific Classifiers do share common
overlapping} instances.

The constraints may appear in either order: {complete, disjoint} is equivalent to {disjoint, complete}. The default
values are {incomplete, overlapping}. If only one constraint is shown, the other takes its default value.

Graphically, the GeneralizationSet constraints are placed next to the sets, whether the common arrowhead notation is
employed as illustrated in Figure 9.18 below, or the dashed line notation as shown in Figure 9.19.

A

{GeneralizationSetConstraint1} {GeneralizationSetConstraint2}

Figure 9.18 GeneralizationSet constraint notation with shared target style

{GeneralizationSetConstraint3} {GeneralizationSetConstraint4}

Figure 9.19 GeneralizationSet constraint notation with dashed line style

Power type specification is indicated by placing the name of the powertype Classifier—preceded by a colon—next to
the corresponding GeneralizationSet. Figure 9.20 below indicates how this would appear for the shared arrowhead
notation, and Figure 9.21 shows it for the dashed-line notation.

122 Unified Modeling Language 2.5.1

PowerTypel PowerType2

A

:PowerTypel
:PowerTypel

Figure 9.20 Power type notation with shared target style

PowerTypel PowerType2

‘PowerTypel

:PowerTypel

Figure 9.21 Power type notation with dashed line style

The labels for GeneralizationSet name, GeneralizationSet constraint and powertype may appear together in any
combination on a diagram.

9.7.5 Examples

In Figure 9.22, Person (an abstract class) is specialized as Woman and Man. Separately, Person is specialized as
Employee. Here, the specializations to Woman and Man constitute one GeneralizationSet and that to Employee another.
This example employs the various notation forms.

Unified Modeling Language 2.5.1 123

Person Person
A
gender 7 er Teats gender employment
Woman Man Employee Woman — Employee
Man —
Person Person

employment
status

Woman Man Employee Woman Man Employee

Figure 9.22 GeneralizationSet notation options

In Figure 9.23 below, Person (an abstract class) is specialized as Woman and Man. Because this GeneralizationSet is
partitioned (i.e., is constrained to be complete and disjoint), each instance of Person shall either be a Woman or a Man;
that is, it shall be one or the other and not both. Person is also specialized as Employee, and this single specialization is
expressed as {incomplete}, which means that a Person may either be an Employee or not. Taken together, the diagram
indicates that a Person may be 1) either a Man or Woman, and 2) an Employee or not (a total of four options).

{complete, disjoint} {incomplete}

Woman — Employee

Figure 9.23 GeneralizationSets and constraints

One of the ways botanists organize trees is by species. Each tree we see may be classified as an American elm, sugar
maple, apricot, saguaro—or some other species of tree. The class diagram below expresses that each Tree Species
classifies zero or more instances of Tree, and each Tree is classified as exactly one Tree Species. For example, one of
the instances of Tree could be the tree in your front yard, the tree in your neighbor’s backyard, or trees at your local
nursery. Furthermore, this figure indicates the relationships that exist between these two sets of objects. For instance,
the tree in your front yard might be classified as a sugar maple, your neighbor’s tree as an apricot, and so on. This class

124 Unified Modeling Language 2.5.1

diagram indicates that each Tree Species is identified with a Leaf Pattern and has a general location in any number of

Geographic Locations. For example, the saguaro cactus has leaves reduced to large spines and is generally found in

southern Arizona and northern Sonora. Additionally, this figure indicates each Tree has an actual location at a particular
Geographic Location. In this way, a particular tree could be classified as a saguaro and be located in Phoenix, Arizona.

tree tree species
Tree * 1 Tree Species
*
N * 1
: TreeSpecies | {disjoint, actual general | leaf
incomplete} Sy locati
location + |locations 1 pattern
Geographic Leaf
— Sugar Maple Location Pattern
— Apricot
| | American
Elm
L1 Saguaro

Figure 9.24 Power type example

This diagram also illustrates that Tree is subtyped as American Elm, Sugar Maple, Apricot, or Saguaro—or something
else. Each subtype, then, may have its own specialized Properties. For instance, each Sugar Maple could have a yearly

maple sugar yield of some given quantity, each Saguaro could be inhabited by zero or more instances of a Gila

Woodpecker, and so on.

The powertype designation on the Tree GeneralizationSet specifies that the instances of TreeSpecies are in one-to-one
correspondence to the subclasses of Tree.

This concept applies to many situations within many lines of business. Figure 9.25 depicts other examples of power
types. The name on the GeneralizationSet beginning with a colon indicates the power type.

Unified Modeling Language 2.5.1

125

account 1 vehicle 1
Account . - Vehicle
Account * account type Vehicle vehicle type
ty Type tve Type
{disjoint, incomplete} {disjoint, incomplete}
:AccountType :VehicleType
Checking
Account Truck
Savings
Account Car
(a) Bank account/account type example (b) Vehicle/vehicle type example
disease 1 Tnstalled service 1 Teleph
Disease P Disease ns e’epnone
Occurrence * classification Classification Telephone * category Service
Service Category

{disjoint, incomplete} {disjoint, incomplete}

:DiseaseClassification :TelephoneServiceCategory
Call
ChickenPox Waiting
Call
Measles Transferring

(c) Disease occurrence/classification example (d) Telephone service/cateqory example

Figure 9.25 More power type examples

In diagram (a), each instance of Checking Account could have its own attributes (including those inherited from
Account), such as account number and balance. Additionally, the equivalent instance for Checking Account may have
attributes, such as interest rate and maximum delay for withdrawal.

The example (b) depicts a vehicle-modeling example. Here, each Vehicle may be classified as either a Truck or a Car or
something else. Furthermore, Truck and Car are equivalent to instances of Vehicle Type. In (c), Disease Occurrence
classifies each occurrence of disease (e.g., my chicken pox and your measles). Disease Classification is the power type
whose instances are equivalent to classes such as Chicken Pox and Measles.

Labeling collections of subtypes with powertypes becomes increasingly important when a type has more than one
powertype. Figure 9.26 illustrates one such example, showing which subtype collection contains Policy Coverage Types
and which Insurance Lines. For instance, a Policy may be classified as Life, Health, Property/Casualty, or some other
Insurance Line. The same Policy may be classified with its Policy Coverage Type as Group or Individual.

126 Unified Modeling Language 2.5.1

C::e"rg;e 1 palicy Policy policy insurance line | Insurance
Type coverage type * * 1 Line
1?. ﬂ {disjoint, incomplete}
:Insuranceline
{disjoint, complete}
:PolicyCoverageType
|| Life
Policy
| Group
Policy Health
] Policy
|| Individual
Policy Property/
< Casualty
Policy

Figure 9.26 More than one powertype

9.8 Instances

9.8.1 Summary

InstanceSpecifications represent instances of Classifiers in a modeled system. They are often used to model example
configurations of instances. They may be partial or complete representations of the instances that they correspond to.

9.8.2 Abstract Syntax

| PackageableElement |
DeploymentTarget | | DeployedArtifact |
A\
{subsets owner} {subsets ownedElement}
InstanceSpecification + owningInstance + slot

1

{subsets ownedElement} + value {ordered, subsets ownedElement}
0..1 + specificatio

+ owningInstanceSpec 0.1
{subsets owner}

+ instance + instanceValue

1 *I—I

+ instanceSpecification | x

+ classifieg|,*
Classifier

Figure 9.27 Instances

Unified Modeling Language 2.5.1 127

9.8.3 Semantics

An InstanceSpecification represents the possible or actual existence of instances in a modeled system and completely or
partially describes those instances.

A Slot specifies that an instance modeled by an InstanceSpecification has a value or values for a specific
StructuralFeature, which shall be a StructuralFeature that is related to a classifier of the InstanceSpecification owning
the Slot by being a direct attribute, inherited attribute, private attribute in a generalization, or a memberEnd if the
classifier is an Association, but excluding redefined StructuralFeatures. The values in a Slot shall conform to the
defining StructuralFeature of the Slot (in type, multiplicity, etc.). The values in a Slot are specified using
ValueSpecifications (see Clause 8).

The InstanceSpecification may represent:
* C(lassification of the instance by one or more Classifiers, any of which may be abstract.

* The kind of instance, based on its classifiers. For example, an InstanceSpecification whose classifier is a Class
describes an instance of that Class, while an InstanceSpecification whose classifier is an Association describes a
link of that Association. If no classifiers are given, then the InstanceSpecification does not constrain the kind of
instance represented. If classifiers of different kinds are given, then the semantics are not defined.

* Specification of values of StructuralFeatures of the instance, where the values are contained in Slots. Not all
StructuralFeatures of all Classifiers of the InstanceSpecification need be represented by Slots, in which case
the InstanceSpecification is a partial description.

* An optional specification, by a ValueSpecification, of how to compute, derive, or construct the instance. If
such a ValueSpecification is given, then the represented instance is equal to the value resulting from the
evaluation of the ValueSpecification. If the InstanceSpecification has one or more classifiers, then the type of
the ValueSpecification must conform to at least one of those classifiers.

An InstanceSpecification may specify the actual existence of an instance in a modeled system. Or, an
InstanceSpecification may provide an illustration or example of a possible instance in a modeled system. The purpose of
an InstanceSpecification is to show what is of interest about the instance. The instance conforms to each classifier of the
InstanceSpecification, and has properties with values indicated by each slot of the InstanceSpecification. Having no slot
in an InstanceSpecification for some properties does not mean that the represented instance does not have the property,
but merely that the property is not of interest in the model. Similarly, the actual instance might conform to a
specialization of a modeled classifier of the InstanceSpecification, but this fact may not be of interest in the model.

An InstanceSpecification may represent an instance at a point in time (a snapshot). Changes to the instance may be
modeled using multiple InstanceSpecification, one for each snapshot.

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the
instance that it is modeling. As an InstanceSpecification may only partially determine the properties of an instance,
there may actually be multiple instances in the modeled system that satisfy the requirements of the
InstanceSpecification. On the other hand, an InstanceSpecification may model a situation which is not actually
supposed to occur in the modeled system, in which case no instance meeting the requirements of the
InstanceSpecification may ever actually occur in the system.

An InstanceValue is a kind of ValueSpecification whose value is specified using an InstanceSpecification. Each
evaluation of the InstanceValue is considered to result in a distinct instance conforming to the InstanceSpecification. If
the InstanceSpecification has a specification, then that ValueSpecification is evaluated to give the value of the
InstanceValue. Otherwise, an InstanceValue is evaluated by creating a value that is an instance of each of the classifiers
identified in the InstanceSpecification. Any slots in the InstanceSpecification then provide values for the corresponding
StructuralFeatures of the instance by evaluating the ValueSpecifications associated with those slots. A StructuralFeature
for which no slot is given either has the value obtained by evaluating its defaultValue, if it is a Property with a
defaultValue, or no value, otherwise.

NOTE. An InstanceValue does not own the InstanceSpecification to which it refers; multiple InstanceValues may refer
to the same InstanceSpecification.

128 Unified Modeling Language 2.5.1

9.8.4 Notation

An InstanceSpecification is depicted using similar notation to its classifiers, but in place of the Classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:”) and the Classifier name or names. The
convention for showing multiple classifiers is to separate their names by commas.

An InstanceSpecification whose classifier is an Association represents a link and is shown using the same notation as for
an Association, but the solid path or paths connect InstanceSpecifications rather than Classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an Association. End names may adorn the ends. Navigation arrows may be shown, but if shown, they shall agree with
the navigation of the Association’s ends.

NOTE. Names are optional for Classifiers and InstanceSpecifications. The absence of a name in a diagram does not
necessarily reflect its absence in the underlying model.

The standard notation for an anonymous InstanceSpecification of an unnamed Classifier is an underlined colon (“:”).

If an InstanceSpecification has a ValueSpecification as its specification, the ValueSpecification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the InstanceSpecification is shown
using an enclosing shape (such as a rectangle) that contains the name, the ValueSpecification is shown within the
enclosing shape.

Slots are shown using similar notation to that of the corresponding StructuralFeatures. Where a StructuralFeature would
be shown textually in a compartment, a Slot for that StructuralFeature may be shown textually as a StructuralFeature
name or qualifiedName followed by an equal sign (‘=") and a value specification. Other properties of the
StructuralFeature, such as its type, may optionally be shown.

An InstanceValue may appear using textual or graphical notation. When textual, as may appear for the value of a Slot,
the name of the InstanceSpecification is shown. This may be displayed as a qualified name. When graphical, an
InstanceValue is represented using the notation for its InstanceSpecification.

A Slot value that is an InstanceValue may alternatively be shown using a graphical notation similar to that for a link. A
solid path runs from the owning InstanceSpecification to the symbol representing the InstanceValue that is the Slot’s
value, and the name of the attribute adorns the target end of the path. Navigability, if shown, shall be only in the
direction of the target. This notation can give rise to visual ambiguity with the link notation when the only adornments
are at the target end; in such cases the model should be inspected to determine the presence or absence of an actual
Association instance.

Where an InstanceSpecification is classified by a StructuredClassifier (see 11.2.3) it may contain nested rectangles
representing the instances playing its roles. The namestring of such a nested InstanceSpecification obeys the following
syntax:

{<name> [/’ <rolename>] | I’ <rolename>} [‘:* <classifiername> [*,” <classifiername>]*]

The name of the InstanceSpecification may be followed by the name of the role which the instance plays. The role name
may only be present if the instance plays a role.

Where an InstanceSpecification contains both Slot values and nested rectangles depicting roles, it is divided into
compartments analogous to the attributes and internal structure compartments of its corresponding StructuredClassifier.

Examples of InstanceSpecifications for StructuredClassifiers are shown in 11.4.5.

9.8.5 Examples

The example in Figure 9.28 below shows an InstanceSpecification called “streetName,” classified as String, and with a
specification that is a LiteralString whose value is “S.Crown Street.”

Unified Modeling Language 2.5.1 129

streetMame : String
"S. Crown Street”

Figure 9.28 Specification of an Instance of String

The example in Figure 9.29 below shows an InstanceSpecification with Slots.

myAddr : Addr

streetName = "S. Crown Street”
streetNumber: Integer = 381

Figure 9.29 Slots with values

The example in Figure 9.30 below shows a link between two InstanceSpecifications.

Don : Person Josh : Person
father son

Figure 9.30 InstanceSpecifications representing two objects connected by a link

The example in Figure 9.31 below shows an InstanceValue as the value of a Slot represented using textual notation.

Window medium : Area

size = medium

Figure 9.31 InstanceValue represented textually

The example in Figure 9.32 below shows the same model represented using graphical notation.

‘Window - medium : Area
size

Figure 9.32 InstanceValue represented graphically

9.9 Classifier Descriptions

9.9.1 AggregationKind [Enumeration]

9.9.1.1 Description

AggregationKind is an Enumeration for specifying the kind of aggregation of a Property.

9.9.1.2 Diagrams

® Properties

130 Unified Modeling Language 2.5.1

9.9.1.3 Literals

* none
Indicates that the Property has no aggregation.

* shared
Indicates that the Property has shared aggregation.

* composite
Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for the
existence and storage of the composed objects (parts).

9.9.2 BehavioralFeature [Abstract Class]

9.9.2.1 Description

A BehavioralFeature is a feature of a Classifier that specifies an aspect of the behavior of its instances. A
BehavioralFeature is implemented (realized) by a Behavior. A BehavioralFeature specifies that a Classifier will respond
to a designated request by invoking its implementing method.

9.9.2.2 Diagrams
Features, Operations, Signals, Behaviors
9.9.2.3 Generalizations

Feature, Namespace

9.9.24 Specializations

Operation, Reception
9.9.2.5 Attributes

® concurrency : CallConcurrencyKind [1..1] = sequential
Specifies the semantics of concurrent calls to the same passive instance (i.e., an instance originating from a
Class with isActive being false). Active instances control access to their own BehavioralFeatures.

® isAbstract : Boolean [1..1] = false
If true, then the BehavioralFeature does not have an implementation, and one must be supplied by a more
specific Classifier. If false, the BehavioralFeature must have an implementation in the Classifier or one must be
inherited.

9.9.2.6 Association Ends

* method : Behavior [0..*] (opposite Behavior::specification)
A Behavior that implements the BehavioralFeature. There may be at most one Behavior for a particular pairing
of a Classifier (as owner of the Behavior) and a BehavioralFeature (as specification of the Behavior).

® ¢ ownedParameter : Parameter [0..*]{ordered, subsets Namespace::ownedMember} (opposite
A_ownedParameter_ownerFormalParam::ownerFormalParam)
The ordered set of formal Parameters of this BehavioralFeature.

Unified Modeling Language 2.5.1 131

9.9.2.7

9.9.2.8

9.9.3

9.9.3.1

¢ ownedParameterSet : ParameterSet [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedParameterSet behavioralFeature::behavioralFeature)
The ParameterSets owned by this BehavioralFeature.

raisedException : Type [0..*] (opposite A_raisedException behavioralFeature::behavioralFeature)
The Types representing exceptions that may be raised during an invocation of this BehavioralFeature.

Operations

isDistinguishableFrom(n : NamedElement, ns : Namespace) : Boolean {redefines
NamedElement::isDistinguishableFrom() }

The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same
Namespace. It specifies that they must have different signatures.

body: (n.oclIsKindOf (BehavioralFeature) and ns.getNamesOfMember (self)-
>intersection(ns.getNamesOfMember (n))->notEmpty()) implies
Set{self}->including(n.oclAsType(BehavioralFeature))->isUnique (ownedParameter->collect (p|
Tuple { name=p.name,
type=p.type,effect=p.effect,direction=p.direction,isException=p.isException,
isStream=p.isStream, isOrdered=p.isOrdered, isUnique=p.isUnique,lower=p.lower,
upper=p.upper }))

inputParameters() : Parameter [0..*]{ordered}
The ownedParameters with direction in and inout.

body: ownedParameter->select(direction=ParameterDirectionKind:: 'in' or
direction=ParameterDirectionKind::inout)

outputParameters() : Parameter [0..*]{ordered}
The ownedParameters with direction out, inout, or return.

body: ownedParameter->select(direction=ParameterDirectionKind::out or
direction=ParameterDirectionKind::inout or direction=ParameterDirectionKind::return)

Constraints

abstract no_method
When isAbstract is true there are no methods.

inv: isAbstract implies method->isEmpty()
CallConcurrencyKind [Enumeration]

Description

CallConcurrencyKind is an Enumeration used to specify the semantics of concurrent calls to a BehavioralFeature.

9.9.3.2

132

Diagrams

Features

Unified Modeling Language 2.5.1

9.9.3.3

9.94

9.9.4.1

Literals

sequential

No concurrency management mechanism is associated with the BehavioralFeature and, therefore, concurrency
conflicts may occur. Instances that invoke a BehavioralFeature need to coordinate so that only one invocation
to a target on any BehavioralFeature occurs at once.

guarded

Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance, but only one is
allowed to commence. The others are blocked until the performance of the currently executing
BehavioralFeature is complete. It is the responsibility of the system designer to ensure that deadlocks do not
occur due to simultaneous blocking.

concurrent
Multiple invocations of a BehavioralFeature that overlap in time may occur to one instance and all of them
may proceed concurrently.

Classifier [Abstract Class]

Description

A Classifier represents a classification of instances according to their Features.

9.9.4.2

9.94.3

9.94.4

9.94.5

9.9.4.6

Diagrams

Structured Classifiers, Classes, Associations, Components, Collaborations, State Machine Redefinition,
DataTypes, Signals, Interfaces, Information Flows, Artifacts, Actions, Accept Event Actions, Object Actions

Generalizations
Namespace, Type, TemplateableElement, RedefinableElement
Specializations

Association, StructuredClassifier, BehavioredClassifier, DataType, Interface, Signal, Informationltem, Artifact

Attributes

isAbstract : Boolean [1..1] = false
If true, the Classifier can only be instantiated by instantiating one of its specializations. An abstract Classifier is
intended to be used by other Classifiers e.g., as the target of Associations or Generalizations.

isFinalSpecialization : Boolean [1..1] = false
If true, the Classifier cannot be specialized.

Association Ends
/attribute : Property [0..*]{ordered, union, subsets Classifier::feature, subsets

A _redefinitionContext redefinableElement::redefinableElement} (opposite A_attribute classifier::classifier)
All of the Properties that are direct (i.e., not inherited or imported) attributes of the Classifier.

Unified Modeling Language 2.5.1 133

® ¢ collaborationUse : CollaborationUse [0..*]{subsets Element::ownedElement} (opposite
A_collaborationUse_classifier::classifier)
The CollaborationUses owned by the Classifier.

¢ /feature : Feature [0..*]{union, subsets Namespace::member} (opposite Feature::featuringClassifier)
Specifies each Feature directly defined in the classifier. Note that there may be members of the Classifier that
are of the type Feature but are not included, e.g., inherited features.

® /general : Classifier [0..*] (opposite A_general classifier::classifier)
The generalizing Classifiers for this Classifier.

® ¢ generalization : Generalization [0..*]{subsets Element::ownedElement, subsets
A_source directedRelationship::directedRelationship} (opposite Generalization::specific)
The Generalization relationships for this Classifier. These Generalizations navigate to more general Classifiers
in the generalization hierarchy.

¢ /inheritedMember : NamedElement [0..*]{subsets Namespace::member} (opposite

A_inheritedMember_inheritingClassifier::inheritingClassifier)
All elements inherited by this Classifier from its general Classifiers.

* ¢ ownedTemplateSignature : RedefinableTemplateSignature [0..1]{subsets
A_redefinitionContext redefinableElement::redefinableElement, redefines

TemplateableElement::ownedTemplateSignature} (opposite RedefinableTemplateSignature::classifier)
The optional RedefinableTemplateSignature specifying the formal template parameters.

* ¢ ownedUseCase : UseCase [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedUseCase_classifier::classifier)
The UseCases owned by this classifier.

* powertypeExtent : GeneralizationSet [0..*] (opposite GeneralizationSet::powertype)
The GeneralizationSet of which this Classifier is a power type.

® redefinedClassifier : Classifier [0..*]{subsets RedefinableElement::redefinedElement} (opposite

A_redefinedClassifier classifier::classifier)
The Classifiers redefined by this Classifier.

® representation : CollaborationUse [0..1]{subsets Classifier::collaborationUse} (opposite
A_representation_classifier::classifier)
A CollaborationUse which indicates the Collaboration that represents this Classifier.

® ¢ substitution : Substitution [0..*]{subsets Element::ownedElement, subsets NamedElement::clientDependency }

(opposite Substitution::substitutingClassifier)
The Substitutions owned by this Classifier.

* templateParameter : ClassifierTemplateParameter [0..1]{redefines ParameterableElement::templateParameter}

(opposite ClassifierTemplateParameter::parameteredElement)
TheClassifierTemplateParameter that exposes this element as a formal parameter.

® useCase : UseCase [0..*] (opposite UseCase::subject)
The set of UseCases for which this Classifier is the subject.

134 Unified Modeling Language 2.5.1

9.94.7 Operations

® allFeatures() : Feature [0..*]
The query allFeatures() gives all of the Features in the namespace of the Classifier. In general, through
mechanisms such as inheritance, this will be a larger set than feature.

body: member->select(oclIsKindOf (Feature))->collect(oclAsType(Feature))->asSet()

¢ allParents() : Classifier [0..*]
The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

body: parents()->union(parents()->collect(allParents())->asSet())

® conformsTo(other : Type) : Boolean {redefines Type::conformsTo()}
The query conformsTo() gives true for a Classifier that defines a type that conforms to another. This is used,
for example, in the specification of signature conformance for operations.

body: if other.oclIsKindOf(Classifier) then
let otherClassifier : Classifier = other.oclAsType(Classifier) in
self = otherClassifier or allParents()->includes(otherClassifier)
else
false
endif

¢ general() : Classifier [0..*]
The general Classifiers are the ones referenced by the Generalization relationships.

body: parents()

® hasVisibilityOf(n : NamedElement) : Boolean
The query hasVisibilityOf() determines whether a NamedElement is visible in the classifier. Non-private
members are visible. It is only called when the argument is something owned by a parent.

pre: allParents()->including(self)->collect (member)->includes(n)
body: n.visibility <> VisibilityKind::private

® inherit(inhs : NamedElement [0..*]) : NamedElement [0..*]
The query inherit() defines how to inherit a set of elements passed as its argument. It excludes redefined
elements from the result.

body: inhs->reject(inh |
inh.oclIsKindOf (RedefinableElement) and
ownedMember->select (oclIsKindOf (RedefinableElement))->
select(redefinedElement->includes(inh.oclAsType (RedefinableElement)))
=->notEmpty())

® inheritableMembers(c : Classifier) : NamedElement [0..*]
The query inheritableMembers() gives all of the members of a Classifier that may be inherited in one of its
descendants, subject to whatever visibility restrictions apply.

pre: c.allParents()->includes(self)
body: member->select(m | c.hasVisibilityOf(m))

® inheritedMember() : NamedElement [0..¥]
The inheritedMember association is derived by inheriting the inheritable members of the parents.

body: inherit(parents()->collect(inheritableMembers(self))->asSet())

Unified Modeling Language 2.5.1 135

136

isTemplate() : Boolean {redefines TemplateableElement::isTemplate()}
The query isTemplate() returns whether this Classifier is actually a template.

body: ownedTemplateSignature <> null or general->exists(g | g.isTemplate())

maySpecializeType(c : Classifier) : Boolean

The query maySpecializeType() determines whether this classifier may have a generalization relationship to
classifiers of the specified type. By default a classifier may specialize classifiers of the same or a more general
type. It is intended to be redefined by classifiers that have different specialization constraints.

body: self.oclIsKindOf(c.oclType())

parents() : Classifier [0..*]
The query parents() gives all of the immediate ancestors of a generalized Classifier.

body: generalization.general->asSet()

directlyRealizedInterfaces() : Interface [0..*]
The Interfaces directly realized by this Classifier

body: (clientDependency->
select (oclIsKindOf (Realization) and supplier->forAll(oclIsKindOf(Interface))))->
collect(supplier.oclAsType(Interface))->asSet()

directlyUsedInterfaces() : Interface [0..*]
The Interfaces directly used by this Classifier

body: (supplierDependency->
select (oclIsKindOf (Usage) and client->forAll(oclIsKindOf(Interface))))->
collect(client.oclAsType(Interface))->asSet()

allRealizedInterfaces() : Interface [0..*]
The Interfaces realized by this Classifier and all of its generalizations

body: directlyRealizedInterfaces()->union(self.allParents()-
>collect(directlyRealizedInterfaces()))->asSet()

allUsedInterfaces() : Interface [0..*]
The Interfaces used by this Classifier and all of its generalizations

body: directlyUsedInterfaces()->union(self.allParents()->collect(directlyUsedInterfaces()))-
>asSet ()

isSubstitutableFor(contract : Classifier) : Boolean

body: substitution.contract->includes(contract)

allAttributes() : Property [0..*]{ordered}

The query allAttributes gives an ordered set of all owned and inherited attributes of the Classifier. All owned
attributes appear before any inherited attributes, and the attributes inherited from any more specific parent
Classifier appear before those of any more general parent Classifier. However, if the Classifier has multiple
immediate parents, then the relative ordering of the sets of attributes from those parents is not defined.

body: attribute->asSequence()->union(parents()->asSequence().allAttributes())->select(p |
member->includes (p))->asOrderedSet ()

Unified Modeling Language 2.5.1

® allSlottableFeatures() : StructuralFeature [0..*]
All StructuralFeatures related to the Classifier that may have Slots, including direct attributes, inherited
attributes, private attributes in generalizations, and memberEnds of Associations, but excluding redefined
StructuralFeatures.

body: member->select(oclIsKindOf (StructuralFeature))->
collect(oclAsType(StructuralFeature))->
union(self.inherit(self.allParents()->collect(p | p.attribute)->asSet())->
collect(oclAsType(StructuralFeature)))->asSet()

9.9.4.8 Constraints

* specialize type
A Classifier may only specialize Classifiers of a valid type.

inv: parents()->forAll(c | self.maySpecializeType(c))

* maps to generalization_ set
The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an
instance of itself nor may its instances also be its subclasses.

inv: powertypeExtent->forAll(gs
gs.generalization->forAll(gen
not (gen.general = self) and not gen.general.allParents()->includes(self) and not
(gen.specific = self) and not self.allParents()->includes(gen.specific)

* non_final parents
The parents of a Classifier must be non-final.

inv: parents()->forAll(not isFinalSpecialization)

* no cycles in_ generalization
Generalization hierarchies must be directed and acyclical. A Classifier can not be both a transitively general
and transitively specific Classifier of the same Classifier.

inv: not allParents()->includes(self)

9.9.5 ClassifierTemplateParameter [Class]
9.9.51 Description
A ClassifierTemplateParameter exposes a Classifier as a formal template parameter.

9.9.5.2 Diagrams

Classifier Templates

9.9.5.3 Generalizations
TemplateParameter
9.9.54 Attributes

¢ allowSubstitutable : Boolean [1..1] = true
Constrains the required relationship between an actual parameter and the parameteredElement for this formal
parameter.

Unified Modeling Language 2.5.1 137

9.9.5.5 Association Ends

® constrainingClassifier : Classifier [0..*] (opposite
A_constrainingClassifier_classifierTemplateParameter::classifierTemplateParameter)
The classifiers that constrain the argument that can be used for the parameter. If the allowSubstitutable
attribute is true, then any Classifier that is compatible with this constraining Classifier can be substituted;
otherwise, it must be either this Classifier or one of its specializations. If this property is empty, there are no
constraints on the Classifier that can be used as an argument.

® parameteredElement : Classifier [1..1]{redefines TemplateParameter::parameteredElement} (opposite

Classifier::templateParameter)
The Classifier exposed by this ClassifierTemplateParameter.

9.9.5.6 Constraints

* has_constraining_classifier
If allowSubstitutable is true, then there must be a constrainingClassifier.

inv: allowSubstitutable implies constrainingClassifier->notEmpty()

* parametered element no_features
The parameteredElement has no direct features, and if constrainedElement is empty it has no generalizations.

inv: parameteredElement.feature->isEmpty() and (constrainingClassifier->isEmpty() implies
parameteredElement.allParents()->isEmpty())

* matching_abstract
If the parameteredElement is not abstract, then the Classifier used as an argument shall not be abstract.

inv: (not parameteredElement.isAbstract) implies templateParameterSubstitution.actual-
>forAll(a | not a.oclAsType(Classifier).isAbstract)

e actual is_classifier
The argument to a ClassifierTemplateParameter is a Classifier.

inv: templateParameterSubstitution.actual->forAll(a | a.oclIsKindOf(Classifier))

* constraining_classifiers constrain_args
If there are any constrainingClassifiers, then every argument must be the same as or a specialization of them,
or if allowSubstitutable is true, then it can also be substitutable.

inv: templateParameterSubstitution.actual->forAll(a |
let arg : Classifier = a.oclAsType(Classifier) in
constrainingClassifier->forAll(
ce |
arg = cc or arg.conformsTo(cc) or (allowSubstitutable and

arg.isSubstitutableFor(cc))

)
)

* constraining_classifiers constrain_parametered element
If there are any constrainingClassifiers, then the parameteredElement must be the same as or a specialization of
them, or if allowSubstitutable is true, then it can also be substitutable.

inv: constrainingClassifier->forAll(
cc | parameteredElement = cc or parameteredElement.conformsTo(cc) or
(allowSubstitutable and parameteredElement.isSubstitutableFor(cc))

)

138 Unified Modeling Language 2.5.1

9.9.6 Feature [Abstract Class]
9.9.6.1 Description
A Feature declares a behavioral or structural characteristic of Classifiers.

9.9.6.2 Diagrams

Classifiers, Features, Structured Classifiers

9.9.6.3 Generalizations
RedefinableElement
9.9.6.4 Specializations

BehavioralFeature, StructuralFeature, Connector

9.9.6.5 Attributes

® isStatic : Boolean [1..1] = false
Specifies whether this Feature characterizes individual instances classified by the Classifier (false) or the
Classifier itself (true).

9.9.6.6 Association Ends

¢ /featuringClassifier : Classifier [0..1]{union, subsets A_member_memberNamespace::memberNamespace }
(opposite Classifier::feature)
The Classifiers that have this Feature as a feature.

9.9.7 Generalization [Class]

9.9.71 Description

A Generalization is a taxonomic relationship between a more general Classifier and a more specific Classifier. Each
instance of the specific Classifier is also an instance of the general Classifier. The specific Classifier inherits the features
of the more general Classifier. A Generalization is owned by the specific Classifier.

9.9.7.2 Diagrams

Classifiers, Generalization Sets

9.9.7.3 Generalizations
DirectedRelationship
9.9.74 Attributes

® isSubstitutable : Boolean [0..1] = true
Indicates whether the specific Classifier can be used wherever the general Classifier can be used. If true, the
execution traces of the specific Classifier shall be a superset of the execution traces of the general Classifier. If
false, there is no such constraint on execution traces. If unset, the modeler has not stated whether there is such
a constraint or not.

Unified Modeling Language 2.5.1 139

9.9.7.5

9.9.8

9.9.8.1

Association Ends

general : Classifier [1..1]{subsets DirectedRelationship::target} (opposite

A_general generalization::generalization)
The general classifier in the Generalization relationship.

generalizationSet : GeneralizationSet [0..*] (opposite GeneralizationSet::generalization)
Represents a set of instances of Generalization. A Generalization may appear in many GeneralizationSets.

specific : Classifier [1..1]{subsets DirectedRelationship::source, subsets Element::owner} (opposite

Classifier::generalization)
The specializing Classifier in the Generalization relationship.

GeneralizationSet [Class]

Description

A GeneralizationSet is a PackageableElement whose instances represent sets of Generalization relationships.

9.9.8.2

9.9.8.3

9.9.84

9.9.8.5

9.9.8.6

140

Diagrams
Classifiers, Generalization Sets
Generalizations

PackageableElement

Attributes

isCovering : Boolean [1..1] = false

Indicates (via the associated Generalizations) whether or not the set of specific Classifiers are covering for a
particular general classifier. When isCovering is true, every instance of a particular general Classifier is also an
instance of at least one of its specific Classifiers for the GeneralizationSet. When isCovering is false, there are
one or more instances of the particular general Classifier that are not instances of at least one of its specific
Classifiers defined for the GeneralizationSet.

isDisjoint : Boolean [1..1] = false

Indicates whether or not the set of specific Classifiers in a Generalization relationship have instance in
common. If isDisjoint is true, the specific Classifiers for a particular GeneralizationSet have no members in
common; that is, their intersection is empty. If isDisjoint is false, the specific Classifiers in a particular
GeneralizationSet have one or more members in common; that is, their intersection is not empty.

Association Ends

generalization : Generalization [0..*] (opposite Generalization::generalizationSet)
Designates the instances of Generalization that are members of this GeneralizationSet.

powertype : Classifier [0..1] (opposite Classifier::powertypeExtent)
Designates the Classifier that is defined as the power type for the associated GeneralizationSet, if there is one.

Constraints

generalization_same_classifier
Every Generalization associated with a particular GeneralizationSet must have the same general Classifier.

Unified Modeling Language 2.5.1

9.9.9

9.9.9.1

inv: generalization->collect(general)->asSet()->size() <=1

maps_to_generalization set

The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an
instance of itself nor may its instances be its subclasses.

inv: powertype <> null implies generalization->forAll(gen |
not (gen.general = powertype) and not gen.general.allParents()->includes (powertype) and
not (gen.specific = powertype) and not powertype.allParents()->includes(gen.specific)

InstanceSpecification [Class]

Description

An InstanceSpecification is a model element that represents an instance in a modeled system. An InstanceSpecification
can act as a DeploymentTarget in a Deployment relationship, in the case that it represents an instance of a Node. It can
also act as a DeployedArtifact, if it represents an instance of an Artifact.

9.9.9.2

9.9.9.3

9.9.94

9.9.9.5

9.9.9.6

Diagrams

Instances, DataTypes, Deployments
Generalizations

DeploymentTarget, PackageableElement, DeployedArtifact
Specializations

EnumerationLiteral

Association Ends

classifier : Classifier [0..*] (opposite A_classifier instanceSpecification::instanceSpecification)
The Classifier or Classifiers of the represented instance. If multiple Classifiers are specified, the instance is
classified by all of them.

¢ slot : Slot [0..*]{subsets Element::ownedElement} (opposite Slot::owninglnstance)

A Slot giving the value or values of a StructuralFeature of the instance. An InstanceSpecification can have one
Slot per StructuralFeature of its Classifiers, including inherited features. It is not necessary to model a Slot for
every StructuralFeature, in which case the InstanceSpecification is a partial description.

¢ specification : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite
A_specification owninglnstanceSpec::owninglnstanceSpec)
A specification of how to compute, derive, or construct the instance.

Constraints

deployment_artifact
An InstanceSpecification can act as a DeployedArtifact if it represents an instance of an Artifact.

inv: deploymentForArtifact->notEmpty() implies classifier->exists(oclIsKindOf(Artifact))

structural feature
No more than one slot in an InstanceSpecification may have the same definingFeature.

Unified Modeling Language 2.5.1 141

inv: classifier->forAll(c | (c.allSlottableFeatures()->forAll(f | slot->select(s |
s.definingFeature = f)->size() <= 1)))

* defining_feature
The definingFeature of each slot is a StructuralFeature related to a classifier of the InstanceSpecification,
including direct attributes, inherited attributes, private attributes in generalizations, and memberEnds of
Associations, but excluding redefined StructuralFeatures.

inv: slot->forAll(s | classifier->exists (¢ | c.allSlottableFeatures()->includes
(s.definingFeature)))

* deployment_target

An InstanceSpecification can act as a DeploymentTarget if it represents an instance of a Node and functions as

a part in the internal structure of an encompassing Node.

inv: deployment->notEmpty() implies classifier->exists(node | node.oclIsKindOf(Node) and
Node.allInstances()->exists(n | n.part->exists(p | p.type = node)))

9.9.10 InstanceValue [Class]

9.9.10.1 Description

An InstanceValue is a ValueSpecification that identifies an instance.

9.9.10.2 Diagrams
Instances
9.9.10.3 Generalizations

ValueSpecification

9.9.10.4 Association Ends

® instance : InstanceSpecification [1..1] (opposite A_instance_instanceValue::instanceValue)
The InstanceSpecification that represents the specified value.

9.9.11 Operation [Class]

9.9.11.1 Description

An Operation is a BehavioralFeature of a Classifier that specifies the name, type, parameters, and constraints for
invoking an associated Behavior. An Operation may invoke both the execution of method behaviors as well as other
behavioral responses. Operation specializes TemplateableElement in order to support specification of template
operations and bound operations. Operation specializes ParameterableElement to specify that an operation can be
exposed as a formal template parameter, and provided as an actual parameter in a binding of a template.

9.9.11.2 Diagrams

Operations, Classes, Protocol State Machines, DataTypes, Interfaces, Artifacts, Events, Invocation Actions

9.9.11.3 Generalizations

TemplateableElement, ParameterableElement, BehavioralFeature

142 Unified Modeling Language 2.5.1

9.9.11.4 Attributes

® /isOrdered : Boolean [1..1]
Specifies whether the return parameter is ordered or not, if present. This information is derived from the return
result for this Operation.

® isQuery : Boolean [1..1] = false
Specifies whether an execution of the BehavioralFeature leaves the state of the system unchanged
(isQuery=true) or whether side effects may occur (isQuery=false).

¢ /isUnique : Boolean [1..1]
Specifies whether the return parameter is unique or not, if present. This information is derived from the return
result for this Operation.

® /lower : Integer [0..1]
Specifies the lower multiplicity of the return parameter, if present. This information is derived from the return
result for this Operation.

¢ /upper : UnlimitedNatural [0..1]
The upper multiplicity of the return parameter, if present. This information is derived from the return result for
this Operation.

9.9.11.5 Association Ends

® ¢ bodyCondition : Constraint [0..1]{subsets Namespace::ownedRule} (opposite

A_bodyCondition bodyContext::bodyContext)
An optional Constraint on the result values of an invocation of this Operation.

¢ class : Class [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Class::ownedOperation)
The Class that owns this operation, if any.

® datatype : DataType [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite DataType::ownedOperation)
The DataType that owns this Operation, if any.

® interface : Interface [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Interface::ownedOperation)
The Interface that owns this Operation, if any.

® ¢ ownedParameter : Parameter [0..*]{ordered, redefines BehavioralFeature::ownedParameter} (opposite

Parameter::operation)
The parameters owned by this Operation.

® ¢ postcondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_postcondition postContext::postContext)
An optional set of Constraints specifying the state of the system when the Operation is completed.

® ¢ precondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_precondition_preContext::preContext)
An optional set of Constraints on the state of the system when the Operation is invoked.

Unified Modeling Language 2.5.1 143

9.9.11.6

144

raisedException : Type [0..*]{redefines BehavioralFeature::raisedException} (opposite
A_raisedException_operation::operation)
The Types representing exceptions that may be raised during an invocation of this operation.

redefinedOperation : Operation [0..*]{subsets RedefinableElement::redefinedElement} (opposite

A_redefinedOperation _operation::operation)
The Operations that are redefined by this Operation.

templateParameter : OperationTemplateParameter [0..1]{redefines ParameterableElement::templateParameter}

(opposite OperationTemplateParameter::parameteredElement)
The OperationTemplateParameter that exposes this element as a formal parameter.

/type : Type [0..1]{} (opposite A_type operation::operation)
The return type of the operation, if present. This information is derived from the return result for this
Operation.

Operations

isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith() }

The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible,
whether redefinition would be consistent. A redefining operation is consistent with a redefined operation if it
has the same number of owned parameters, and for each parameter the following holds: - Direction, ordering
and uniqueness are the same. - The corresponding types are covariant, contravariant or invariant. - The
multiplicities are compatible, depending on the parameter direction.

pre: redefiningElement.isRedefinitionContextValid(self)
body: redefiningElement.oclIsKindOf (Operation) and
let op : Operation = redefiningElement.oclAsType(Operation) in
self.ownedParameter->size() = op.ownedParameter->size() and
Sequence{l..self.ownedParameter->size()}->
forAll(i |
let redefiningParam : Parameter = op.ownedParameter->at(i),
redefinedParam : Parameter = self.ownedParameter->at(i) in
(redefiningParam.isUnique = redefinedParam.isUnique) and
(redefiningParam.isOrdered = redefinedParam. isOrdered) and
(redefiningParam.direction = redefinedParam.direction) and
(redefiningParam.type.conformsTo(redefinedParam.type) or
redefinedParam.type.conformsTo(redefiningParam.type)) and
(redefiningParam.direction = ParameterDirectionKind::inout implies
(redefinedParam.compatibleWith(redefiningParam) and
redefiningParam.compatibleWith(redefinedParam))) and
(redefiningParam.direction = ParameterDirectionKind:: 'in' implies
redefinedParam.compatibleWith(redefiningParam)) and
((redefiningParam.direction = ParameterDirectionKind::out or
redefiningParam.direction = ParameterDirectionKind::return) implies
redefiningParam.compatibleWith(redefinedParam))

isOrdered() : Boolean

If this operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise
isOrdered is false.

body: if returnResult()->notEmpty() then returnResult()-> exists(isOrdered) else false endif
isUnique() : Boolean

If this operation has a return parameter, isUnique equals the value of isUnique for that parameter. Otherwise

isUnique is true.

body: if returnResult()->notEmpty() then returnResult()->exists(isUnique) else true endif

Unified Modeling Language 2.5.1

® lower() : Integer
If this operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower
has no value.

body: if returnResult()->notEmpty() then returnResult()->any(true).lower else null endif

® returnResult() : Parameter [0..*]
The query returnResult() returns the set containing the return parameter of the Operation if one exists,
otherwise, it returns an empty set

body: ownedParameter->select (direction = ParameterDirectionKind::return)

* type() : Type
If this operation has a return parameter, type equals the value of type for that parameter. Otherwise type has no
value.

body: if returnResult()->notEmpty() then returnResult()->any(true).type else null endif

® upper() : UnlimitedNatural
If this operation has a return parameter, upper equals the value of upper for that parameter. Otherwise upper
has no value.

body: if returnResult()->notEmpty() then returnResult()->any(true).upper else null endif

9.9.11.7 Constraints

* at most one return
An Operation can have at most one return parameter; i.e., an owned parameter with the direction set to 'return.'

inv: self.ownedParameter->select(direction = ParameterDirectionKind::return)->size() <= 1

* only body for query
A bodyCondition can only be specified for a query Operation.

inv: bodyCondition <> null implies isQuery

9.9.12 OperationTemplateParameter [Class]
9.9.12.1 Description
An OperationTemplateParameter exposes an Operation as a formal parameter for a template.
9.9.12.2 Diagrams
Operations
9.9.12.3 Generalizations
TemplateParameter

9.9.12.4 Association Ends

® parameteredElement : Operation [1..1]{redefines TemplateParameter::parameteredElement} (opposite

Operation::templateParameter)
The Operation exposed by this OperationTemplateParameter.

Unified Modeling Language 2.5.1 145

9.9.12.5 Constraints

* match default signature

inv: default->notEmpty() implies (default.oclIsKindOf (Operation) and (let defaultOp :
Operation = default.oclAsType(Operation) in
defaultOp.ownedParameter->size() = parameteredElement.ownedParameter->size() and
Sequence{l.. defaultOp.ownedParameter->size()}->forAll(ix |
let pl: Parameter = defaultOp.ownedParameter->at(ix), p2 : Parameter =
parameteredElement.ownedParameter->at(ix) in

pl.type = p2.type and pl.upper = p2.upper and pl.lower = p2.lower and pl.direction
= p2.direction and pl.isOrdered = p2.isOrdered and pl.isUnique = p2.isUnique)))

9.9.13 Parameter [Class]
9.9.13.1 Description

A Parameter is a specification of an argument used to pass information into or out of an invocation of a
BehavioralFeature. Parameters can be treated as ConnectableElements within Collaborations.

9.9.13.2 Diagrams

Features, Operations, Object Nodes, Expressions, Behaviors
9.9.13.3 Generalizations

MultiplicityElement, ConnectableElement

9.9.13.4 Attributes

¢ /default : String [0..1]
A String that represents a value to be used when no argument is supplied for the Parameter.

® direction : ParameterDirectionKind [1..1] =in
Indicates whether a parameter is being sent into or out of a behavioral element.

® effect : ParameterEffectKind [0..1]

Specifies the effect that executions of the owner of the Parameter have on objects passed in or out of the
parameter.

® isException : Boolean [1..1] = false
Tells whether an output parameter may emit a value to the exclusion of the other outputs.

® isStream : Boolean [1..1] = false

Tells whether an input parameter may accept values while its behavior is executing, or whether an output
parameter may post values while the behavior is executing.

9.9.13.5 Association Ends

¢ defaultValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_defaultValue_owningParameter::owningParameter)
Specifies a ValueSpecification that represents a value to be used when no argument is supplied for the
Parameter.

146 Unified Modeling Language 2.5.1

® operation : Operation [0..1]{subsets A_ownedParameter_ownerFormalParam::ownerFormalParam} (opposite
Operation::ownedParameter)
The Operation owning this parameter.

® parameterSet : ParameterSet [0..*] (opposite ParameterSet::parameter)
The ParameterSets containing the parameter. See ParameterSet.

9.9.13.6 Operations

¢ default() : String [0..1]
Derivation for Parameter::/default

body: if self.type = String then defaultValue.stringValue() else null endif

9.9.13.7 Constraints

* in and out
Only in and inout Parameters may have a delete effect. Only out, inout, and return Parameters may have a
create effect.

inv: (effect = ParameterEffectKind::delete implies (direction =
ParameterDirectionKind:: 'in' or direction = ParameterDirectionKind::inout))

and

(effect = ParameterEffectKind::create implies (direction = ParameterDirectionKind::out or
direction = ParameterDirectionKind::inout or direction = ParameterDirectionKind::return))

* not exception
An input Parameter cannot be an exception.

inv: isException implies (direction <> ParameterDirectionKind:: 'in' and direction <>
ParameterDirectionKind: :inout)

* connector_end
A Parameter may only be associated with a Connector end within the context of a Collaboration.

inv: end->notEmpty() implies collaboration->notEmpty ()

* reentrant_behaviors
Reentrant behaviors cannot have stream Parameters.

inv: (isStream and behavior <> null) implies not behavior.isReentrant

* stream_and_exception
A Parameter cannot be a stream and exception at the same time.

inv: not (isException and isStream)

* object effect
Parameters typed by DataTypes cannot have an effect.

inv: (type.oclIsKindOf (DataType)) implies (effect = null)

Unified Modeling Language 2.5.1 147

9.9.14 ParameterDirectionKind [Enumeration]

9.9.14.1 Description

ParameterDirectionKind is an Enumeration that defines literals used to specify direction of parameters.

9.9.14.2 Diagrams
® Features
9.9.14.3 Literals

* in
Indicates that Parameter values are passed in by the caller.

* inout
Indicates that Parameter values are passed in by the caller and (possibly different) values passed out to the
caller.

e out

Indicates that Parameter values are passed out to the caller.

¢ return
Indicates that Parameter values are passed as return values back to the caller.

9.9.15 ParameterEffectKind [Enumeration]

9.9.15.1 Description

ParameterEffectKind is an Enumeration that indicates the effect of a Behavior on values passed in or out of its
parameters.

9.9.15.2 Diagrams

® Features

9.9.15.3 Literals

e create
Indicates that the behavior creates values.

* read
Indicates objects that are values of the parameter have values of their properties, or links in which they
participate, or their classifiers retrieved during executions of the behavior.

* update
Indicates objects that are values of the parameter have values of their properties, or links in which they

participate, or their classification changed during executions of the behavior.

e delete
Indicates objects that are values of the parameter do not exist after executions of the behavior are finished.

148 Unified Modeling Language 2.5.1

9.9.16 ParameterSet [Class]

9.9.16.1 Description

A ParameterSet designates alternative sets of inputs or outputs that a Behavior may use.

9.9.16.2 Diagrams

Features, Behaviors

9.9.16.3 Generalizations

NamedElement

9.9.16.4 Association Ends

® ¢ condition : Constraint [0..*]{subsets Element::ownedElement} (opposite
A_condition_parameterSet::parameterSet)
A constraint that should be satisfied for the owner of the Parameters in an input ParameterSet to start execution
using the values provided for those Parameters, or the owner of the Parameters in an output ParameterSet to
end execution providing the values for those Parameters, if all preconditions and conditions on input
ParameterSets were satisfied.

® parameter : Parameter [1..*] (opposite Parameter::parameterSet)
Parameters in the ParameterSet.

9.9.16.5 Constraints

* same parameterized entity
The Parameters in a ParameterSet must all be inputs or all be outputs of the same parameterized entity, and the
ParameterSet is owned by that entity.

inv: parameter->forAll(pl, p2 | self.owner = pl.owner and self.owner = p2.owner and
pl.direction = p2.direction)

* input
If a parameterized entity has input Parameters that are in a ParameterSet, then any inputs that are not in a
ParameterSet must be streaming. Same for output Parameters.

inv: ((parameter->exists(direction = ParameterDirectionKind::_'in')) implies
behavioralFeature.ownedParameter->select(p | p.direction = ParameterDirectionKind:: 'in'
and p.parameterSet->isEmpty())->forAll(isStream))
and

((parameter->exists(direction = ParameterDirectionKind::out)) implies
behavioralFeature.ownedParameter->select(p | p.direction = ParameterDirectionKind::out
and p.parameterSet->isEmpty())->forAll(isStream))

* two_parameter_sets
Two ParameterSets cannot have exactly the same set of Parameters.

inv: parameter->forAll(parameterSet->forAll(sl, s2 | sl->size() = s2->size() implies
sl.parameter->exists(p | not s2.parameter->includes(p))))

Unified Modeling Language 2.5.1 149

9.9.17 Property [Class]

9.9.17.1 Description

A Property is a StructuralFeature. A Property related by ownedAttribute to a Classifier (other than an association)
represents an attribute and might also represent an association end. It relates an instance of the Classifier to a value or
set of values of the type of the attribute. A Property related by memberEnd to an Association represents an end of the
Association. The type of the Property is the type of the end of the Association. A Property has the capability of being a
DeploymentTarget in a Deployment relationship. This enables modeling the deployment to hierarchical nodes that have
Properties functioning as internal parts. Property specializes ParameterableElement to specify that a Property can be
exposed as a formal template parameter, and provided as an actual parameter in a binding of a template.

9.9.17.2 Diagrams

Classifiers, Properties, Encapsulated Classifiers, Structured Classifiers, Classes, Associations, DataTypes,
Signals, Interfaces, Profiles, Deployments, Artifacts, Link End Data, Link Object Actions

9.9.17.3 Generalizations
ConnectableElement, DeploymentTarget, StructuralFeature
9.9.17.4 Specializations

Port, ExtensionEnd

9.9.17.5 Attributes

® aggregation : AggregationKind [1..1] = none
Specifies the kind of aggregation that applies to the Property.

® /isComposite : Boolean [1..1] = false
If isComposite is true, the object containing the attribute is a container for the object or value contained in the
attribute. This is a derived value, indicating whether the aggregation of the Property is composite or not.

¢ isDerived : Boolean [1..1] = false
Specifies whether the Property is derived, i.e., whether its value or values can be computed from other
information.

¢ isDerivedUnion : Boolean [1..1] = false
Specifies whether the property is derived as the union of all of the Properties that are constrained to subset it.

* isID: Boolean [1..1] = false
True indicates this property can be used to uniquely identify an instance of the containing Class.

9.9.17.6 Association Ends

® association : Association [0..1]{subsets A_member memberNamespace::memberNamespace} (opposite
Association::memberEnd)
The Association of which this Property is a member, if any.

® associationEnd : Property [0..1]{subsets Element::owner} (opposite Property::qualifier)
Designates the optional association end that owns a qualifier attribute.

150 Unified Modeling Language 2.5.1

® class: Class [0..1]{subsets NamedElement::namespace, subsets
A_ownedAttribute_structuredClassifier::structuredClassifier, subsets A_attribute_classifier::classifier}
(opposite Class::ownedAttribute)
The Class that owns this Property, if any.

® datatype : DataType [0..1]{subsets NamedElement::namespace, subsets A_attribute_classifier::classifier}
(opposite DataType::ownedAttribute)
The DataType that owns this Property, if any.

® ¢ defaultValue : ValueSpecification [0..1]{subsets Element::ownedElement} (opposite

A_defaultValue owningProperty::owningProperty)
A ValueSpecification that is evaluated to give a default value for the Property when an instance of the owning

Classifier is instantiated.

* interface : Interface [0..1]{subsets NamedFElement::namespace, subsets A_attribute classifier::classifier}
(opposite Interface::ownedAttribute)
The Interface that owns this Property, if any.

® Jopposite : Property [0..1] (opposite A_opposite property::property)
In the case where the Property is one end of a binary association this gives the other end.

® owningAssociation : Association [0..1]{subsets Feature::featuringClassifier, subsets
NamedElement::namespace, subsets Property::association, subsets RedefinableElement::redefinitionContext}
(opposite Association::ownedEnd)
The owning association of this property, if any.

® ¢ qualifier : Property [0..*]{ordered, subsets Element::ownedElement} (opposite Property::associationEnd)
An optional list of ordered qualifier attributes for the end.

® redefinedProperty : Property [0..*]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedProperty property::property)
The properties that are redefined by this property, if any.

® subsettedProperty : Property [0..*] (opposite A_subsettedProperty property::property)
The properties of which this Property is constrained to be a subset, if any.

9.9.17.7 Operations

® isAttribute() : Boolean
The query isAttribute() is true if the Property is defined as an attribute of some Classifier.

body: not classifier->isEmpty()

¢ isCompatibleWith(p : ParameterableElement) : Boolean {redefines
ParameterableElement::isCompatibleWith() }
The query isCompatibleWith() determines if this Property is compatible with the specified
ParameterableElement. This Property is compatible with ParameterableElement p if the kind of this Property is
thesame as or a subtype of the kind of p. Further, if p is a TypedElement, then the type of this Property must be
conformant with the type of p.

body: self.oclIsKindOf(p.oclType()) and (p.oclIsKindOf(TypeElement) implies
self.type.conformsTo(p.oclAsType(TypedElement).type))

Unified Modeling Language 2.5.1 151

isComposite() : Boolean
The value of isComposite is true only if aggregation is composite.

body: aggregation = AggregationKind::composite

isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith() }

The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible,
whether redefinition would be logically consistent. A redefining Property is consistent with a redefined
Property if the type of the redefining Property conforms to the type of the redefined Property, and the
multiplicity of the redefining Property (if specified) is contained in the multiplicity of the redefined Property.

pre: redefiningElement.isRedefinitionContextValid(self)
body: redefiningElement.oclIsKindOf (Property) and
let prop : Property = redefiningElement.oclAsType(Property) in
(prop.type.conformsTo(self.type) and
((prop.lowerBound()->notEmpty() and self.lowerBound()->notEmpty()) implies
prop.lowerBound() >= self.lowerBound()) and
((prop.upperBound()->notEmpty() and self.upperBound()->notEmpty()) implies
prop.lowerBound() <= self.lowerBound()) and
(self.isComposite implies prop.isComposite))

isNavigable() : Boolean
The query isNavigable() indicates whether it is possible to navigate across the property.

body: not classifier->isEmpty() or association.navigableOwnedEnd->includes(self)

opposite() : Property
If this property is a memberEnd of a binary association, then opposite gives the other end.

body: if association <> null and association.memberEnd->size() = 2
then
association.memberEnd->any(e | e <> self)
else
null
endif

subsettingContext() : Type [0..¥]

The query subsettingContext() gives the context for subsetting a Property. It consists, in the case of an
attribute, of the corresponding Classifier, and in the case of an association end, all of the Classifiers at the other
ends.

body: if association <> null
then association.memberEnd->excluding(self)->collect(type)->asSet()
else
if classifier<>null
then classifier->asSet()
else Set{}
endif
endif

9.9.17.8 Constraints

152

subsetting context conforms
Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted
property.

inv: subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext ()->exists(c | sc.conformsTo(c)))))

Unified Modeling Language 2.5.1

¢ derived union_is_read only
A derived union is read only.

inv: isDerivedUnion implies isReadOnly

* multiplicity of composite
A multiplicity on the composing end of a composite aggregation must not have an upper bound greater than 1.

inv: isComposite and association <> null implies opposite.upperBound() <= 1

* redefined property inherited
A redefined Property must be inherited from a more general Classifier.

inv: (redefinedProperty->notEmpty()) implies
(redefinitionContext->notEmpty() and
redefinedProperty->forAll(rp|
((redefinitionContext->collect (fc|
fc.allParents()))->asSet())->collect(c| c.allFeatures())->asSet()->includes(rp)))

* subsetting rules
A subsetting Property may strengthen the type of the subsetted Property, and its upper bound may be less.

inv: subsettedProperty->forAll(sp |
self.type.conformsTo(sp.type) and
((self.upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
self.upperBound() <= sp.upperBound()))

* binding to_attribute
A binding of a PropertyTemplateParameter representing an attribute must be to an attribute.

inv: (self.isAttribute()
and (templateParameterSubstitution->notEmpty())
implies (templateParameterSubstitution->forAll(ts |
ts.formal.oclIsKindOf (Property)
and ts.formal.oclAsType(Property).isAttribute())))

* derived union_is_derived
A derived union is derived.

inv: isDerivedUnion implies isDerived

* deployment_target
A Property can be a DeploymentTarget if it is a kind of Node and functions as a part in the internal structure of
an encompassing Node.

inv: deployment->notEmpty() implies owner.oclIsKindOf(Node) and Node.allInstances()-
>exists(n | n.part->exists(p | p = self))

* subsetted property names
A Property may not subset a Property with the same name.

inv: subsettedProperty->forAll(sp | sp.name <> name)

* type of opposite_end
If a Property is a classifier-owned end of a binary Association, its owner must be the type of the opposite end.

inv: (opposite->notEmpty() and owningAssociation->isEmpty()) implies classifier =
opposite.type

Unified Modeling Language 2.5.1 153

9.9

e qualified is_association_end
All qualified Properties must be Association ends

inv: qualifier->notEmpty() implies association->notEmpty()

18 RedefinableElement [Abstract Class]

9.9.18.1 Description

A RedefinableElement is an element that, when defined in the context of a Classifier, can be redefined more specifically
or differently in the context of another Classifier that specializes (directly or indirectly) the context Classifier.

9.9.18.2 Diagrams

Classifiers, Classifier Templates, Features, Activities, Use Cases, State Machine Redefinition

9.9.18.3 Generalizations
NamedElement
9.9.18.4 Specializations

Classifier, Feature, RedefinableTemplateSignature, ActivityEdge, ActivityNode, ExtensionPoint, Region,
State, Transition

9.9.18.5 Attributes

® isLeaf: Boolean [1..1] = false
Indicates whether it is possible to further redefine a RedefinableElement. If the value is true, then it is not
possible to further redefine the RedefinableElement.

9.9.18.6 Association Ends

® /redefinedElement : RedefinableElement [0..*]{union} (opposite
A_redefinedElement redefinableElement::redefinableElement)
The RedefinableElement that is being redefined by this element.

® /redefinitionContext : Classifier [0..*]{union} (opposite
A_redefinitionContext redefinableElement::redefinableElement)
The contexts that this element may be redefined from.

9.9.18.7 Operations

154

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean
The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is
possible, whether redefinition would be logically consistent. By default, this is false; this operation must be
overridden for subclasses of RedefinableElement to define the consistency conditions.

pre: redefiningElement.isRedefinitionContextvalid(self)
body: false

® isRedefinitionContextValid(redefinedElement : RedefinableElement) : Boolean
The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement
are properly related to the redefinition contexts of the specified RedefinableElement to allow this element to

Unified Modeling Language 2.5.1

redefine the other. By default at least one of the redefinition contexts of this element must be a specialization of
at least one of the redefinition contexts of the specified element.

body: redefinitionContext->exists(c | c.allParents()-
>includesAll (redefinedElement.redefinitionContext))

9.9.18.8 Constraints

* redefinition consistent
A redefining element must be consistent with each redefined element.

inv: redefinedElement->forAll(re | re.isConsistentWith(self))

* non_leaf redefinition
A RedefinableElement can only redefine non-leaf RedefinableElements.

inv: redefinedElement->forAll(re | not re.isLeaf)

* redefinition_context valid
At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.

inv: redefinedElement->forAll(re | self.isRedefinitionContextValid(re))

9.9.19 RedefinableTemplateSignature [Class]

9.9.19.1 Description

A RedefinableTemplateSignature supports the addition of formal template parameters in a specialization of a template
classifier.

9.9.19.2 Diagrams
Classifier Templates

9.9.19.3 Generalizations
RedefinableElement, TemplateSignature

9.9.19.4 Association Ends

® classifier : Classifier [1..1]{subsets RedefinableElement::redefinitionContext, redefines

TemplateSignature::template} (opposite Classifier::ownedTemplateSignature)
The Classifier that owns this RedefinableTemplateSignature.

® extendedSignature : RedefinableTemplateSignature [0..*]{subsets RedefinableElement::redefinedElement}
(opposite A_extendedSignature_redefinableTemplateSignature::redefinableTemplateSignature)
The signatures extended by this RedefinableTemplateSignature.

® /inheritedParameter : TemplateParameter [0..*]{subsets TemplateSignature::parameter} (opposite

A_inheritedParameter redefinableTemplateSignature::redefinableTemplateSignature)
The formal template parameters of the extended signatures.

Unified Modeling Language 2.5.1 155

9.9.19.5 Operations

® inheritedParameter() : TemplateParameter [0..*]
Derivation for RedefinableTemplateSignature::/inheritedParameter

body: if extendedSignature->isEmpty() then Set{} else extendedSignature.parameter->asSet()
endif

¢ isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith() }
The query isConsistentWith() specifies, for any two RedefinableTemplateSignatures in a context in which
redefinition is possible, whether redefinition would be logically consistent. A redefining template signature is
always consistent with a redefined template signature, as redefinition only adds new formal parameters.

pre: redefiningElement.isRedefinitionContextvalid(self)
body: redefiningElement.oclIsKindOf (RedefinableTemplateSignature)

9.9.19.6 Constraints

* redefines_parents
If any of the parent Classifiers are a template, then the extendedSignature must include the signature of that
Classifier.

inv: classifier.allParents()->forAll(c | c.ownedTemplateSignature->notEmpty() implies self-
>closure(extendedSignature)->includes(c.ownedTemplateSignature))

9.9.20 Slot [Class]

9.9.20.1 Description

A Slot designates that an entity modeled by an InstanceSpecification has a value or values for a specific
StructuralFeature.

9.9.20.2 Diagrams
Instances

9.9.20.3 Generalizations
Element

9.9.20.4 Association Ends

® definingFeature : StructuralFeature [1..1] (opposite A_definingFeature slot::slot)
The StructuralFeature that specifies the values that may be held by the Slot.

® owninglnstance : InstanceSpecification [1..1]{subsets Element::owner} (opposite InstanceSpecification::slot)
The InstanceSpecification that owns this Slot.

® ¢ value : ValueSpecification [0..*]{ordered, subsets Element::ownedElement} (opposite

A _value owningSlot::owningSlot)
The value or values held by the Slot.

156 Unified Modeling Language 2.5.1

9.9.21 StructuralFeature [Abstract Class]

9.9.21.1 Description

A StructuralFeature is a typed feature of a Classifier that specifies the structure of instances of the Classifier.

9.9.21.2 Diagrams

Features, Properties, Instances, Structural Feature Actions
9.9.21.3 Generalizations

MultiplicityElement, TypedElement, Feature

9.9.21.4 Specializations

Property

9.9.21.5 Attributes

¢ isReadOnly : Boolean [1..1] = false
If isReadOnly is true, the StructuralFeature may not be written to after initialization.

9.9.22 Substitution [Class]

9.9.221 Description

A substitution is a relationship between two classifiers signifying that the substituting classifier complies with the
contract specified by the contract classifier. This implies that instances of the substituting classifier are runtime
substitutable where instances of the contract classifier are expected.

9.9.22.2 Diagrams
Classifiers

9.9.22.3 Generalizations
Realization

9.9.22.4 Association Ends

¢ contract : Classifier [1..1]{subsets Dependency::supplier} (opposite A_contract substitution::substitution)
The contract with which the substituting classifier complies.

* substitutingClassifier : Classifier [1..1]{subsets Dependency::client, subsets Element::owner} (opposite
Classifier::substitution)
Instances of the substituting classifier are runtime substitutable where instances of the contract classifier are
expected.

Unified Modeling Language 2.5.1 157

9.10 Association Descriptions

9.10.1 A_attribute_classifier [Association]

9.10.1.1 Diagrams
Classifiers
9.10.1.2 Owned Ends

® Jclassifier : Classifier [0..1]{union, subsets Feature::featuringClassifier, subsets
RedefinableElement::redefinitionContext} (opposite Classifier::attribute)

9.10.2 A_bodyCondition_bodyContext [Association]
9.10.21 Diagrams
Operations

9.10.2.2 Owned Ends

®* bodyContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::bodyCondition)

9.10.3 A_classifier_instanceSpecification [Association]

9.10.3.1 Diagrams
Instances
9.10.3.2 Specializations

A_classifier_enumerationLiteral

9.10.3.3 Owned Ends
® instanceSpecification : InstanceSpecification [0..*] (opposite InstanceSpecification::classifier)

9.10.4 A_classifier_templateParameter_parameteredElement [Association]
9.10.4.1 Diagrams

Classifier Templates

9.10.4.2 Member Ends
¢ (lassifier::templateParameter
® (lassifierTemplateParameter::parameteredElement

9.10.5 A_collaborationUse_classifier [Association]

9.10.51 Diagrams

Classifiers, Collaborations

158 Unified Modeling Language 2.5.1

9.10.5.2 Specializations

A_representation_classifier

9.10.5.3 Owned Ends

® classifier : Classifier [0..1]{subsets Element::owner} (opposite Classifier::collaborationUse)

9.10.6 A_condition_parameterSet [Association]

9.10.6.1 Diagrams

Features

9.10.6.2 Owned Ends
® parameterSet : ParameterSet [0..1]{subsets Element::owner} (opposite ParameterSet::condition)
9.10.7 A_constrainingClassifier_classifierTemplateParameter [Association]

9.10.71 Diagrams

Classifier Templates

9.10.7.2 Owned Ends

® classifierTemplateParameter : ClassifierTemplateParameter [0..*] (opposite
ClassifierTemplateParameter::constrainingClassifier)

9.10.8 A_contract_substitution [Association]

9.10.8.1 Diagrams
Classifiers
9.10.8.2 Owned Ends

® substitution : Substitution [0..*]{subsets A_supplier_supplierDependency::supplierDependency} (opposite
Substitution::contract)

9.10.9 A_defaultValue_owningParameter [Association]

9.10.9.1 Diagrams

Features

9.10.9.2 Owned Ends

® owningParameter : Parameter [0..1]{subsets Element::owner} (opposite Parameter::defaultValue)

Unified Modeling Language 2.5.1 159

9.10.10 A_defaultValue_owningProperty [Association]
9.10.10.1 Diagrams
Properties

9.10.10.2 Owned Ends

® owningProperty : Property [0..1]{subsets Element::owner} (opposite Property::defaultValue)

9.10.11 A_definingFeature_slot [Association]

9.10.11.1 Diagrams

Instances

9.10.11.2 Owned Ends
® slot: Slot [0..*] (opposite Slot::definingFeature)

9.10.12 A_extendedSignature_redefinableTemplateSignature [Association]
9.10.12.1 Diagrams
Classifier Templates

9.10.12.2 Owned Ends

® redefinableTemplateSignature : RedefinableTemplateSignature [0..*]{subsets
A_redefinedElement_redefinableElement::redefinableElement} (opposite
RedefinableTemplateSignature::extendedSignature)

9.10.13 A_feature_featuringClassifier [Association]

9.10.13.1 Diagrams

Classifiers, Features

9.10.13.2 Member Ends

® (lassifier::feature

¢ Feature::featuringClassifier

9.10.14 A_general_classifier [Association]

9.10.14.1 Diagrams

Classifiers

9.10.14.2 Owned Ends

® classifier : Classifier [0..*] (opposite Classifier::general)

160 Unified Modeling Language 2.5.1

9.10.15 A_general_generalization [Association]

9.10.15.1 Diagrams

Classifiers

9.10.15.2 Owned Ends

¢ generalization : Generalization [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
Generalization::general)

9.10.16 A_generalizationSet_generalization [Association]

9.10.16.1 Diagrams

Classifiers, Generalization Sets

9.10.16.2 Member Ends
® Generalization::generalizationSet
® GeneralizationSet::generalization

9.10.17 A_generalization_specific [Association]

9.10.17.1 Diagrams

Classifiers

9.10.17.2 Member Ends
® (lassifier::generalization
® Generalization::specific

9.10.18 A_inheritedMember_inheritingClassifier [Association]

9.10.18.1 Diagrams

Classifiers

9.10.18.2 Owned Ends

® inheritingClassifier : Classifier [0..*]{subsets A_member _memberNamespace::memberNamespace} (opposite
Classifier::inheritedMember)

9.10.19 A_inheritedParameter_redefinableTemplateSignature [Association]
9.10.19.1 Diagrams

Classifier Templates

Unified Modeling Language 2.5.1 161

9.10.19.2 Owned Ends

® redefinableTemplateSignature : RedefinableTemplateSignature [0..*]{subsets

A_parameter_templateSignature::templateSignature} (opposite
RedefinableTemplateSignature::inheritedParameter)

9.10.20 A_instance_instanceValue [Association]

9.10.20.1 Diagrams

Instances

9.10.20.2 Owned Ends

® instanceValue : InstanceValue [0..*] (opposite InstanceValue::instance)

9.10.21 A_method_specification [Association]

9.10.21.1 Diagrams

Features, Behaviors

9.10.21.2 Member Ends
* BehavioralFeature::method
® Behavior::specification

9.10.22 A_operation_templateParameter_parameteredElement [Association]
9.10.22.1 Diagrams

Operations

9.10.22.2 Member Ends
® Operation::templateParameter
® OperationTemplateParameter::parameteredElement

9.10.23 A_opposite_property [Association]
9.10.23.1 Diagrams
Properties

9.10.23.2 Owned Ends

® property : Property [0..1] (opposite Property::opposite)

162 Unified Modeling Language 2.5.1

9.10.24 A_ownedParameterSet_behavioralFeature [Association]

9.10.24.1 Diagrams

Features

9.10.24.2 Owned Ends

® behavioralFeature : BehavioralFeature [0..1]{subsets NamedElement::namespace} (opposite
BehavioralFeature::ownedParameterSet)

9.10.25 A_ownedParameter_operation [Association]
9.10.25.1 Diagrams
Operations
9.10.25.2 Member Ends
® Operation::ownedParameter

® Parameter: :operation

9.10.26 A_ownedParameter_ownerFormalParam [Association]

9.10.26.1 Diagrams

Features

9.10.26.2 Owned Ends

¢ ownerFormalParam : BehavioralFeature [0..1]{subsets NamedElement::namespace} (opposite
BehavioralFeature::ownedParameter)

9.10.27 A_ownedTemplateSignature_classifier [Association]
9.10.27.1 Diagrams

Classifier Templates

9.10.27.2 Member Ends
¢ (lassifier::ownedTemplateSignature
¢ RedefinableTemplateSignature::classifier

9.10.28 A_ownedUseCase_classifier [Association]

9.10.28.1 Diagrams

Classifiers, Use Cases

Unified Modeling Language 2.5.1 163

9.10.28.2 Owned Ends
¢ classifier : Classifier [0..1]{subsets NamedElement::namespace} (opposite Classifier::ownedUseCase)

9.10.29 A_parameterSet_parameter [Association]

9.10.29.1 Diagrams

Features

9.10.29.2 Member Ends
¢ Parameter::parameterSet
® ParameterSet: ‘parameter

9.10.30 A_postcondition_postContext [Association]
9.10.30.1 Diagrams
Operations

9.10.30.2 Owned Ends

® postContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::postcondition)

9.10.31 A_powertypeExtent_powertype [Association]

9.10.31.1 Diagrams

Classifiers, Generalization Sets

9.10.31.2 Member Ends

® (lassifier::powertypeExtent

® GeneralizationSet::powertype

9.10.32 A_precondition_preContext [Association]
9.10.32.1 Diagrams
Operations

9.10.32.2 Owned Ends

¢ preContext : Operation [0..1]{subsets Constraint::context} (opposite Operation::precondition)

9.10.33 A_qualifier_associationEnd [Association]

9.10.33.1 Diagrams

Properties, Associations

164 Unified Modeling Language 2.5.1

9.10.33.2 Member Ends
® Property::qualifier
® Property::associationEnd

9.10.34 A_raisedException_behavioralFeature [Association]

9.10.34.1 Diagrams

Features

9.10.34.2 Owned Ends

® behavioralFeature : BehavioralFeature [0..*] (opposite BehavioralFeature::raisedException)

9.10.35 A_raisedException_operation [Association]
9.10.35.1 Diagrams
Operations

9.10.35.2 Owned Ends

® operation : Operation [0..*]{subsets A_raisedException_behavioralFeature::behavioralFeature} (opposite
Operation::raisedException)

9.10.36 A_redefinedClassifier_classifier [Association]

9.10.36.1 Diagrams

Classifiers

9.10.36.2 Owned Ends

¢ classifier : Classifier [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Classifier::redefinedClassifier)

9.10.37 A_redefinedElement_redefinableElement [Association]

9.10.37.1 Diagrams

Classifiers

9.10.37.2 Owned Ends

® /redefinableElement : RedefinableElement [0..*]{union} (opposite RedefinableElement::redefinedElement)

9.10.38 A_redefinedOperation_operation [Association]
9.10.38.1 Diagrams

Operations

Unified Modeling Language 2.5.1 165

9.10.38.2 Owned Ends

® operation : Operation [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Operation::redefinedOperation)

9.10.39 A_redefinedProperty_property [Association]
9.10.39.1 Diagrams
Properties

9.10.39.2 Owned Ends

® property : Property [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Property::redefinedProperty)

9.10.40 A _redefinitionContext_redefinableElement [Association]

9.10.40.1 Diagrams

Classifiers

9.10.40.2 Specializations

A_redefinitionContext transition, A_redefinitionContext state, A redefinitionContext region

9.10.40.3 Owned Ends

¢ /redefinableElement : RedefinableElement [0..*]{union} (opposite RedefinableElement::redefinitionContext)

9.10.41 A _representation_classifier [Association]
9.10.41.1 Diagrams

Classifiers, Collaborations
9.10.41.2 Generalizations

A_collaborationUse_classifier

9.10.41.3 Owned Ends

® classifier : Classifier [0..1]{redefines A_collaborationUse_classifier::classifier} (opposite
Classifier::representation)

9.10.42 A_slot_owninginstance [Association]

9.10.42.1 Diagrams

Instances

9.10.42.2 Member Ends

* InstanceSpecification::slot

166 Unified Modeling Language 2.5.1

® Slot::owninglnstance

9.10.43 A_specification_owninglnstanceSpec [Association]

9.10.43.1 Diagrams

Instances

9.10.43.2 Owned Ends

* owninglnstanceSpec : InstanceSpecification [0..1]{subsets Element::owner} (opposite

InstanceSpecification::specification)

9.10.44 A_subsettedProperty_property [Association]
9.10.44.1 Diagrams

Properties

9.10.44.2 Owned Ends
® property : Property [0..*] (opposite Property::subsettedProperty)

9.10.45 A_substitution_substitutingClassifier [Association]

9.10.45.1 Diagrams

Classifiers

9.10.45.2 Member Ends

® (lassifier::substitution

® Substitution::substitutingClassifier

9.10.46 A_type_operation [Association]
9.10.46.1 Diagrams

Operations

9.10.46.2 Owned Ends
® operation : Operation [0..*] (opposite Operation::type)

9.10.47 A_value_owningSlot [Association]

9.10.47.1 Diagrams

Instances

9.10.47.2 Owned Ends

® owningSlot : Slot [0..1]{subsets Element::owner} (opposite Slot::value)

Unified Modeling Language 2.5.1

167

10 Simple Classifiers

10.1 Summary

This clause specifies various kinds of Classifier that do not have complex internal structure.

10.2 DataTypes

10.2.1 Summary

DataTypes model Types whose instances are distinguished only by their value.

10.2.2 Abstract Syntax

/\
{subsets namespace {ordered, subsets attribute,
subsets classifier} ! subsets ownedMember}
+ datatype + ownedAttribute
DataType 0.1 N Property

{subsets featuringClassifier, {ordered, subsets feature, subsets
subsets namespace, subsets redefinableElement, subsets
redefinitionContext} ownedMember}

+ datatype + ownedOperation -

ZF 0..1 *

| InstanceSpecification

{ordered, subsets

{subsets namespace} ownedMember}
PrimitiveType Enumeration + enumeration + ownedLiteral | EnumerationLiteral
1 E3
1 *
+ /classifier + enumerationLiteral

{readOnly, redefines classifier} {redefines instanceSpecification’

Figure 10.1 DataTypes

10.2.3 Semantics

10.2.3.1 DataTypes

A DataType is a kind of Classifier. DataType differs from Class in that instances of a DataType are identified only by
their value. All instances of a DataType with the same value are considered to be equal instances.

If a DataType has attributes (i.e., Properties owned by it and in its namespace) it is called a structured DataType.
Instances of a structured DataType contain attribute values matching its attributes. Instances of a structured DataType are
considered to be equal if and only if the structure is the same and the values of the corresponding attributes are equal.

Unified Modeling Language 2.5.1 169

A DataType may be parameterized, bound, and used as TemplateParameters.
10.2.3.2 Primitive Types

A PrimitiveType defines a predefined DataType, without any substructure. A PrimitiveType may have algebra and
operations defined outside of UML, for example, mathematically. The run-time instances of a PrimitiveType are values
that correspond to mathematical elements defined outside of UML (for example, the Integers).

10.2.3.3 Enumerations

Enumeration is a kind of DataType. Each value of an Enumeration corresponds to one of its user-defined
EnumerationLiterals.

As a specialization of Classifier, Enumerations can participate in generalization relationships. An Enumeration that
specializes another may define new EnumerationLiterals that are not defined in the generalizing Enumeration; in such a
case the set of applicable literals comprises inherited literals plus locally-defined ones.

An EnumerationLiteral defines an element of the run-time extension of an Enumeration. Values corresponding to
EnumerationLiterals are immutable and may be compared for equality. EnumerationLiterals may not change during
their existence, so any attributes on an Enumeration shall be read-only.

An EnumerationLiteral has a name that shall be used to identify it within its Enumeration. The EnumerationLiteral
name is scoped within and shall be unique within its Enumeration. EnumerationLiteral names shall be qualified for
general use.

10.2.4 Notation

A DataType is designated using the Classifier notation (a rectangle) with keyword «dataType» or, when it is referenced
(e.g., by an attribute), by the name of the DataType. A compartment listing the attributes is placed below the name
compartment. A compartment listing the Operations is placed below the attribute compartment.

A PrimitiveType is similarly designated with the keyword «primitive» above or before the name of the PrimitiveType.

An Enumeration is similarly designated. The name of the Enumeration is placed in the upper compartment with the
keyword «enumeration» above or before the name. A list of EnumerationLiterals may be placed, one to a line, in a
compartment named “literals” below the operations compartment. The attributes and operations compartments may be
suppressed, and typically are suppressed and empty.

10.2.5 Examples

Figure 10.2 illustrates the notation for defining a PrimitiveType.

«primitive»
Integer

Figure 10.2 PrimitiveType Notation

Figure 10.3 illustrates the notation for defining DataTypes. The FullName type defined on the left is used as the type of
the fullName attribute in the Person type defined on the right.

«dataType» «dataType»
FullName Person
firstName : String fullName : FullName

secondName : String
initial : String

Figure 10.3 DataType Notation

170 Unified Modeling Language 2.5.1

Figure 10.4 illustrates the notation for defining Enumerations.

«enumeration»
VisibilityKind
public
private
protected
package

Figure 10.4 Enumeration Notation

10.3 Signals

10.3.1 Summary

Signals and Receptions are used to model asynchronous communication between objects.

10.3.2 Abstract Syntax

| BehavioralFeature |

Signal + signal + reception | Reception
1 *

{subsets namespace,
subsets classifier}
+ owningSignal

o
N

{ordered, subsets attribute,
subsets ownedMember}
* | + ownedAttribute

Property

Figure 10.5 Signals

10.3.3 Semantics

10.3.3.1 Signals

A Signal is a specification of a kind of communication between objects in which a reaction is asynchronously triggered
in the receiver without a reply. The receiving object handles Signals as specified by clause 13.3. The data carried by the
communication are represented as attributes of the Signal. A Signal is defined independently of the Classifiers handling
it.

The sender of a Signal will not block waiting for a reply but continue execution immediately. By declaring a Reception
associated to a given Signal, a Classifier specifies that its instances will be able to receive that Signal, or a subtype
thereof, and will respond to it with the designated Behavior.

A Signal may be parameterized, bound, and used as TemplateParameters.

10.3.3.2 Receptions

A Reception specifies that its owning Class or Interface is prepared to react to the receipt of a Signal. A Reception
matches a Signal if the received Signal is a specialization of the Reception’s signal. The details of how the object

Unified Modeling Language 2.5.1 171

responds to the received Signal depend on the kind of Behavior associated with the Reception and its owning Class or
Interface. See 13.2. The name of the Reception is the same as the name of the Signal. A Reception may only have in
Parameters (see 9.4.3) that match the attributes of the Signal by name, type, and multiplicity.

10.3.4 Notation

A Signal is depicted by a Classifier symbol with the keyword «signaly.

Receptions are shown in the receptions compartment using the same notation as for Operations with the keyword
«signaly.

10.3.5 Examples

Figure 10.6 shows an interface IAlarm that defines two Receptions, each referring to a Signal also shown in the
example.

NOTE. The name of the Reception matches the name of the Signal, and the parameter of the Reception matches the
attribute of the Signal.

. «signal»
«interface» Notify
IAlarm
«signal» Notify() «signal»
«signal» Activate() Activate

Figure 10.6 Reception Notation

104 Interfaces

10.4.1 Summary

Interfaces declare coherent services that are implemented by BehavioredClassifiers that implement the Interfaces via
InterfaceRealizations.

172 Unified Modeling Language 2.5.1

10.4.2 Abstract Syntax

{ordered, subsets redefinableElement,
subsets ownedMember}

Classifier + nestedClassifier
*

{subsets namespace, subsets

{ordered, subsets attribute, subsets {subsets namespace, redefinitionContext}
ownedMember} subsets classifier} Interface o nerface
j + interface e
Property : ownedAttribute Toc - 0.1
{subsets ownedMember}
{ordered, subsets feature, subsets {subsets featuringClassifier, 0.1 + protocol -
redefinableElement, subsets subsets namespace, subsets
ownedMember} redefinitionContext} {+ ;Jntetrface) 0.1
o - + ownedOperation + interface Subsets namespace.
-
0.1 {subsets redefinedClassifier}
{subsets feature, subsets {subsets featuringClassifier, : redefinedinterface
ownedMember} subsets namespace} .
*
0.1 *
{subsets supplier}
1| + contract
{subsets ownedElement,
subsets clientDependency}
. . % | + interfaceRealization
{subsets client, subsets owner} {subsets supplierDependency}
i Jassifier | T iMplementingClassifier + interfac izati Inter izati
1 *
{redefines behavioredClassifier} {subsets namespace}
+ behavioredClassifier | 0..1 0..1| + behavioredClassifier v
{subsets ownedBehavior} {subsets ownedMember}

+ classifierBehavior | 0..1 + ownedBehavior

*

Behavior
Figure 10.7 Interfaces

10.4.3 Semantics

10.4.3.1 Interfaces

An Interface is a kind of Classifier that represents a declaration of a set of public Features and obligations that together
constitute a coherent service. An Interface specifies a contract; any instance of a Classifier that realizes the Interface
shall fulfill that contract. The obligations associated with an Interface are in the form of constraints (such as pre- and
postconditions) or protocol specifications, which may impose ordering restrictions on interactions through the Interface.

Interfaces may not be instantiated. Instead, an Interface specification is implemented or realized by a
BehavioredClassifier, which means that the BehavioredClassifier presents a public facade that conforms to the Interface
specification.

NOTE. A given BehavioredClassifier may implement more than one Interface and that an Interface may be
implemented by a number of different BehavioredClassifiers.

Interfaces provide a way to partition and characterize groups of public Features and obligations that realizing
BehavioredClassifiers shall possess. An Interface does not specify how it is to be implemented, but merely what needs
to be supported by realizing BehavioredClassifiers. That is, such BehavioredClassifiers shall provide a public fagade
consisting of attributes, Operations, and externally observable Behavior that conforms to the Interface.

NOTE. If an Interface declares an attribute, this does not necessarily mean that the realizing BehavioredClassifier will
necessarily have such an attribute in its implementation, but only that it will appear so to external observers.

The set of Interfaces realized by a BehavioredClassifier are its provided Interfaces, which represent the services and
obligations that instances of that BehavioredClassifier offer to their clients. Interfaces may also be used to specify
required Interfaces, which are specified by a Usage dependency between the BehavioredClassifier and the
corresponding Interfaces. Required Interfaces specify services that a BehavioredClassifier needs in order to perform its
function and fulfill its own obligations to its clients.

Unified Modeling Language 2.5.1 173

Properties owned by Interfaces (including Association ends) imply that the realizing BehavioredClassifier should
maintain information corresponding to the type and multiplicity of the Property and facilitate retrieval and modification
of that information. A Property declared on an Interface does not necessarily imply that there will be such a Property on
a realizing BehavioredClassifier (e.g., it may be realized by equivalent get and set Operations). Interfaces may also own
constraints that impose constraints on the Features of the implementing BehavioredClassifier.

Interfaces may own a ProtocolStateMachine that specifies event sequences and pre/post conditions for the Operations
and Receptions described by the Interface. A BehavioredClassifier realizing an Interface shall comply with the
ProtocolStateMachine owned by the Interface.

An Interface may be parameterized, bound, and used as TemplateParameters.

An InterfaceRealization relationship between a BehavioredClassifier and an Interface implies that the
BehavioredClassifier conforms to the contract specified by the Interface by supporting the set of Features owned by the
Interface, and any of its parent Interfaces. For BehavioralFeatures, the implementing BehavioredClassifier will have an
Operation or Reception for every Operation or Reception, respectively, defined by the Interface. For Properties, the
realizing BehavioredClassifier will provide functionality that maintains the state represented by the Property. While
such may be done by direct mapping to a Property of the realizing BehavioredClassifier, it may also be supported by the
StateMachine of the BehavioredClassifier or by a pair of Operations that support the retrieval of the state information
and an Operation that changes the state information.

10.4.4 Notation

An Interface may be designated using the default notation for Classifier (see 9.2.4) with the keyword «interface».

Alternatively an InterfaceRealization dependency from a BehavioredClassifier to an Interface may be shown by
representing the Interface by a circle or ball, often also called lollipop, labeled with the name of the Interface, attached
by a solid line to the BehavioredClassifier that realizes this Interface.

The Usage dependency from a Classifier to an Interface is shown by representing the Interface by a half-circle or socket,
labeled with the name of the Interface, attached by a solid line to the Classifier that requires this Interface.

Interfaces inherited from a generalization of the BehavioredClassifier may be notated on a diagram through a lollipop.
These Interfaces are indicated on the diagram by preceding the name of the Interface by a caret symbol. Earlier versions
of UML permitted a forward slash preceding the name to indicate inherited Interfaces; this notation is permitted but
discouraged.

If a Dependency is wired from a Usage to an InterfaceRealization that are represented using a socket and a lollipop, the
dependency arrow may be shown joining the socket to the lollipop

10.4.5 Examples

The InterfaceRealization dependency from ProximitySensor to ISensor is shown using ball (lollipop) notation (see
Figure 10.8).

ProximitySensor

O

ISensor

Figure 10.8 ISensor is a provided Interface of ProximitySensor

Figure 10.9 shows the lollipop notation for an inherited provided interface.

174 Unified Modeling Language 2.5.1

ProximitySensor

A ISensor
CapacitiveSensor |——O

Figure 10.9 ISensor, a provided Interface of ProximitySensor, is shown as inherited by CapacitiveSensor

The Usage dependency from TheftAlarm to ISensor is shown using socket notation (see Figure 10.10).

TheftAlarm

—
S

Figure 10.10 ISensor is a required Interface of TheftAlarm

Alternatively, in cases where Interfaces are represented using the rectangle notation, InterfaceRealization and Usage
dependencies are denoted with appropriate dependency arrows (see Figure 10.11). The Classifier at the tail of the arrow
implements the Interface at the head of the arrow or uses that Interface, respectively.

«interface»

ISensor
se: ..
TheftAlarm | ._____XUs€>_____- ativae () . ProximitySensor
read ()

Figure 10.11 Alternative notation for required and provided Interface

It is often the case in practice that two or more Interfaces are mutually coupled through application-specific
dependencies. In such situations, each Interface represents a specific role in a multi-party “protocol.” These types of
protocol role couplings may be captured by Associations between Interfaces as shown in the example in Figure 10.12.
This shows the specification of three Interfaces, 14/arm, ISensor, and [Buzzer. I4larm and ISensor are shown as
engaged in a bidirectional protocol, meaning that any implementation of ISensor must maintain the information needed
to realize the theAlarm property, and similarly for [Alarm and theSensor. /Buzzer describes an Interface that implementers
of IAlarm must be able to access.

«interface»

1 * «interface» «interface»
| IBuzzIe: IAlarm + theAlarm + theSensor ISensor
volume : Integer - i
+ theBuzzer notify () 1 1 activate ()
start () read ()

reset ()

Figure 10.12 A set of collaborating Interfaces

Unified Modeling Language 2.5.1 175

10.5 Classifier Descriptions

10.5.1 BehavioredClassifier [Abstract Class]

10.5.1.1 Description

A BehavioredClassifier may have InterfaceRealizations, and owns a set of Behaviors one of which may specify the
behavior of the BehavioredClassifier itself.

10.5.1.2 Diagrams

10.5.1.3 Generalizations
Classifier
10.5.1.4 Specializations

Actor, UseCase, Class, Collaboration

10.5.1.5 Association Ends

® classifierBehavior : Behavior [0..1]{subsets BehavioredClassifier::ownedBehavior} (opposite
A_classifierBehavior _behavioredClassifier::behavioredClassifier)
A Behavior that specifies the behavior of the BehavioredClassifier itself.

® ¢ interfaceRealization : InterfaceRealization [0..*]{subsets Element::ownedElement, subsets

NamedElement::clientDependency } (opposite InterfaceRealization::implementingClassifier)
The set of InterfaceRealizations owned by the BehavioredClassifier. Interface realizations reference the

Interfaces of which the BehavioredClassifier is an implementation.

® ¢ ownedBehavior : Behavior [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedBehavior_behavioredClassifier::behavioredClassifier)
Behaviors owned by a BehavioredClassifier.

10.5.1.6 Constraints

¢ class behavior
If a behavior is classifier behavior, it does not have a specification.

inv: classifierBehavior->notEmpty() implies classifierBehavior.specification->isEmpty()

10.5.2 DataType [Class]

10.5.2.1 Description

A DataType is a type whose instances are identified only by their value.
10.5.2.2 Diagrams

DataTypes, Properties, Operations
10.5.2.3 Generalizations

Classifier

176 Unified Modeling Language 2.5.1

10.5.2.4 Specializations

Enumeration, PrimitiveType

10.5.2.5 Association Ends

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember }

(opposite Property::datatype)
The attributes owned by the DataType.

® ¢ ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext_redefinableElement::redefinableElement, subsets Namespace::ownedMember}

(opposite Operation::datatype)
The Operations owned by the DataType.

10.5.3 Enumeration [Class]

10.5.3.1 Description

An Enumeration is a DataType whose values are enumerated in the model as EnumerationLiterals.
10.5.3.2 Diagrams

DataTypes
10.5.3.3 Generalizations
DataType

10.5.34 Association Ends

® ¢ ownedLiteral : EnumerationLiteral [0..*]{ordered, subsets Namespace::ownedMember} (opposite
EnumerationLiteral::enumeration)
The ordered set of literals owned by this Enumeration.

10.5.3.5 Constraints

e immutable
inv: ownedAttribute->forAll (isReadOnly)
10.5.4 EnumerationLiteral [Class]

10.5.4.1 Description

An EnumerationLiteral is a user-defined data value for an Enumeration.
10.5.4.2 Diagrams

DataTypes

10.5.4.3 Generalizations

InstanceSpecification

Unified Modeling Language 2.5.1 177

10.5.4.4 Association Ends

® /classifier : Enumeration [1..1]{redefines InstanceSpecification::classifier} (opposite
A_classifier enumerationLiteral::enumerationLiteral)
The classifier of this EnumerationLiteral derived to be equal to its Enumeration.

® enumeration : Enumeration [1..1]{subsets NamedElement::namespace} (opposite Enumeration::ownedLiteral)
The Enumeration that this EnumerationLiteral is a member of.

10.5.4.5 Operations

¢ classifier() : Enumeration
Derivation of Enumeration::/classifier

body: enumeration

10.5.5 Interface [Class]

10.5.5.1 Description

Interfaces declare coherent services that are implemented by BehavioredClassifiers that implement the Interfaces via
InterfaceRealizations.

10.5.5.2 Diagrams

Interfaces, Encapsulated Classifiers, Components, Properties, Operations

10.5.5.3 Generalizations
Classifier
10.5.5.4 Association Ends

® ¢ nestedClassifier : Classifier [0..*]{ordered, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}
(opposite A_nestedClassifier_interface::interface)
References all the Classifiers that are defined (nested) within the Interface.

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember }

(opposite Property::interface)
The attributes (i.e., the Properties) owned by the Interface.

®* ¢ ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}

(opposite Operation::interface)
The Operations owned by the Interface.

* ¢ ownedReception : Reception [0..*]{subsets Classifier::feature, subsets Namespace::ownedMember }

(opposite A_ownedReception_interface::interface)
Receptions that objects providing this Interface are willing to accept.

® ¢ protocol : ProtocolStateMachine [0..1]{subsets Namespace::ownedMember} (opposite
A_protocol_interface::interface)

178 Unified Modeling Language 2.5.1

References a ProtocolStateMachine specifying the legal sequences of the invocation of the BehavioralFeatures
described in the Interface.

® redefinedInterface : Interface [0..*]{subsets Classifier::redefinedClassifier} (opposite
A_redefinedInterface interface::interface)
References all the Interfaces redefined by this Interface.

10.5.5.5 Constraints
e visibility
The visibility of all Features owned by an Interface must be public.
inv: feature->forAll(visibility = VisibilityKind::public)

10.5.6 InterfaceRealization [Class]

10.5.6.1 Description

An InterfaceRealization is a specialized realization relationship between a BehavioredClassifier and an Interface. This
relationship signifies that the realizing BehavioredClassifier conforms to the contract specified by the Interface.

10.5.6.2 Diagrams
Interfaces

10.5.6.3 Generalizations
Realization

10.5.6.4 Association Ends

® contract : Interface [1..1]{subsets Dependency::supplier} (opposite
A_contract_interfaceRealization::interfaceRealization)
References the Interface specifying the conformance contract.

* implementingClassifier : BehavioredClassifier [1..1]{subsets Dependency::client, subsets Element::owner}
(opposite BehavioredClassifier::interfaceRealization)
References the BehavioredClassifier that owns this InterfaceRealization, i.e., the BehavioredClassifier that
realizes the Interface to which it refers.

10.5.7 PrimitiveType [Class]

10.5.7.1 Description

A PrimitiveType defines a predefined DataType, without any substructure. A PrimitiveType may have an algebra and
operations defined outside of UML, for example, mathematically.

10.5.7.2 Diagrams

DataTypes

10.5.7.3 Generalizations

DataType

Unified Modeling Language 2.5.1 179

10.5.8 Reception [Class]

10.5.8.1 Description

A Reception is a declaration stating that a Classifier is prepared to react to the receipt of a Signal.

10.5.8.2 Diagrams

Signals, Interfaces, Classes

10.5.8.3 Generalizations

BehavioralFeature

10.5.8.4 Association Ends

® signal : Signal [1..1] (opposite A_signal reception::reception)
The Signal that this Reception handles.

10.5.8.5 Constraints

* same name as signal
A Reception has the same name as its signal

inv: name = signal.name

* same_structure as signal
A Reception's parameters match the ownedAttributes of its signal by name, type, and multiplicity

inv: signal.ownedAttribute->size() = ownedParameter->size() and

Sequence{l..signal.ownedAttribute->size()}->forAll(i |
ownedParameter->at(i).direction = ParameterDirectionKind:: 'in' and
ownedParameter->at(i).name = signal.ownedAttribute->at(i).name and
ownedParameter->at(i).type = signal.ownedAttribute->at(i).type and
ownedParameter->at(i).lowerBound() signal.ownedAttribute->at(i).lowerBound() and
ownedParameter->at (i) .upperBound() signal.ownedAttribute->at (i) .upperBound()

10.5.9 Signal [Class]

10.5.9.1 Description

A Signal is a specification of a kind of communication between objects in which a reaction is asynchronously triggered
in the receiver without a reply.

10.5.9.2 Diagrams

Signals, Events, Invocation Actions

10.5.9.3 Generalizations

Classifier

10.5.9.4 Association Ends

® ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember}

(opposite A_ownedAttribute owningSignal::owningSignal)
The attributes owned by the Signal.

180 Unified Modeling Language 2.5.1

10.6 Association Descriptions

10.6.1 A_classifierBehavior_behavioredClassifier [Association]
10.6.1.1 Diagrams

Interfaces, Behaviors
10.6.1.2 Generalizations

A_ownedBehavior_behavioredClassifier

10.6.1.3 Owned Ends

¢ behavioredClassifier : BehavioredClassifier [0..1]{redefines
A_ownedBehavior_behavioredClassifier::behavioredClassifier} (opposite
BehavioredClassifier::classifierBehavior)

10.6.2 A_classifier_enumerationLiteral [Association]
10.6.2.1 Diagrams

DataTypes

10.6.2.2 Generalizations

A_classifier_instanceSpecification

10.6.2.3 Owned Ends

¢ enumerationLiteral : EnumerationLiteral [0..*]{redefines
A classifier instanceSpecification::instanceSpecification} (opposite EnumerationLiteral::classifier)

10.6.3 A_contract_interfaceRealization [Association]

10.6.3.1 Diagrams
Interfaces
10.6.3.2 Owned Ends

* interfaceRealization : InterfaceRealization [0..*]{subsets
A_supplier_supplierDependency::supplierDependency } (opposite InterfaceRealization::contract)

10.6.4 A_interfaceRealization_implementingClassifier [Association]

10.6.4.1 Diagrams
Interfaces
10.6.4.2 Member Ends

® BehavioredClassifier::interfaceRealization

Unified Modeling Language 2.5.1 181

* InterfaceRealization::implementingClassifier

10.6.5 A_nestedClassifier_interface [Association]

10.6.5.1 Diagrams

Interfaces

10.6.5.2 Owned Ends

* interface : Interface [0..1]{subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Interface::nestedClassifier)

10.6.6 A_ownedAttribute_datatype [Association]

10.6.6.1 Diagrams

DataTypes, Properties

10.6.6.2 Member Ends
¢ DataType::ownedAttribute
® Property::datatype

10.6.7 A_ownedAttribute_interface [Association]

10.6.7.1 Diagrams
Interfaces, Properties

10.6.7.2 Member Ends

® Interface::ownedAttribute

® Property::interface

10.6.8 A_ownedAttribute_owningSignal [Association]
10.6.8.1 Diagrams
Signals

10.6.8.2 Owned Ends

® owningSignal : Signal [0..1]{subsets NamedElement::namespace, subsets A_attribute classifier::classifier}
(opposite Signal::ownedAttribute)

10.6.9 A_ownedBehavior_behavioredClassifier [Association]

10.6.9.1 Diagrams

Interfaces, Behaviors

182 Unified Modeling Language 2.5.1

10.6.9.2 Specializations

A_classifierBehavior_behavioredClassifier

10.6.9.3 Owned Ends

® DbehavioredClassifier : BehavioredClassifier [0..1]{subsets NamedElement::namespace} (opposite
BehavioredClassifier::ownedBehavior)

10.6.10 A_ownedLiteral_enumeration [Association]
10.6.10.1 Diagrams

DataTypes

10.6.10.2 Member Ends
®* Enumeration::ownedL iteral

® EnumerationLiteral::enumeration

10.6.11 A_ownedOperation_datatype [Association]
10.6.11.1 Diagrams

DataTypes, Operations
10.6.11.2 Member Ends

¢ DataType::ownedOperation
® Operation::datatype

10.6.12 A_ownedOperation_interface [Association]
10.6.12.1 Diagrams
Interfaces, Operations

10.6.12.2 Member Ends
¢ Interface::ownedOperation
® Operation::interface

10.6.13 A_ownedReception_interface [Association]

10.6.13.1 Diagrams

Interfaces

Unified Modeling Language 2.5.1 183

10.6.13.2 Owned Ends

* interface : Interface [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace} (opposite
Interface::ownedReception)

10.6.14 A_protocol_interface [Association]

10.6.14.1 Diagrams

Interfaces

10.6.14.2 Owned Ends

® interface : Interface [0..1]{subsets NamedElement::namespace} (opposite Interface::protocol)
Specifies the namespace in which the protocol state machine is defined.

10.6.15 A_redefinedinterface_interface [Association]

10.6.15.1 Diagrams

Interfaces

10.6.15.2 Owned Ends

® interface : Interface [0..*]{subsets A_redefinedClassifier classifier::classifier} (opposite
Interface::redefinedInterface)

10.6.16 A_signal_reception [Association]
10.6.16.1 Diagrams

Signals

10.6.16.2 Owned Ends

® reception : Reception [0..*] (opposite Reception::signal)

184 Unified Modeling Language 2.5.1

11

1.1

Summary

Structured Classifiers

StructuredClassifiers are Classifiers that may have an internal structure comprising a network of linked roles (which can
themselves be instances of structured classifiers) and an external structure consisting of one or more Ports. The Ports of
EncapsulatedClassifiers act as local agents of remote collaborators, allowing EncapsulatedClassifiers to differentiate
between them but without being directly coupled to them. Classes, Components, Associations and Collaborations are
concrete metaclasses that use these capabilities.

11.2

11.2.1

Summary

Structured Classifiers

StructuredClassifiers may contain an internal structure of connected elements each of which plays a role in the overall
behavior modeled by the StructuredClassifier. It may be helpful to read this sub clause in conjunction with sub clause
11.5 - Associations.

11.2.2

A\

StructuredClassifier

Abstract Syntax

{readOnly, union, subsets
memberNamespace}

+ /structuredClassifier

TemplateParameter
JAN

[«

Element’]

*

{subsets namespace,
subsets classifier, redefines
structuredClassifier}

+ structuredClassifier

0.1

+ structuredClassifier

0.1

{subsets featuringClassifier,
subsets namespace, subsets
redefinitionContext}

+ structuredClassifier

0.1

l | [1ypeder | L]
{redefines ol {redefines templateParameter}
) parameteredElement} 1| + templateParameter
{readOnly, union, + parameteredElement
subsets member}
ConnectableElement 1
+ /role
+ role
*
1
{ordered, subsets attribute,
subsets role, subsets
ownedMember}
+ ownedAttribute
Property {readOnly}
* + /definingEnd
{readOnly} 0.1
+ /part
*
{subsets feature, subsets TAN {readOnly}
redefinableElement, subsets + connectorEnd | * «| +/end
ownedMember}
+ ownedConnector Connector {ordered, subsets
subsets owner
* + /kind : ConnectorKind {readOnly’ E_ connector ' ownedElefIggg} cm:gnd

{subsets redefinableElement}

«enumeration»
ConnectorKind
assembly
delegation

Figure 11.1 Structured Classifiers

Unified Modeling Language 2.5.1

+ connector

*

1

+ redefinedConnector

{subsets redefinedElement} 4 type

* + connector| x

Association

Behavior

2.%

V
MultiplicityElemem

185

11.2.3 Semantics

11.2.3.1 Connectable Elements

ConnectableElement is an abstract metaclass. Each ConnectableElement represents a participant within the internal
structure of a StructuredClassifier; these participants are called roles. Roles may be joined by Connectors, and specify
configurations of linked instances contained or referenced within an instance of the containing StructuredClassifier.

The detailed semantics of ConnectableElement is given by its concrete subtypes. In general, each ConnectableElement
exhibits a set of effective required Interfaces and a set of effective provided Interfaces. These sets are used to determine
the connectability of ConnectableElements using Connectors, see below.

For ConnectableElements except delegating Ports (see 11.3.3) the effective required Interfaces are the required
Interfaces, and the effective provided Interfaces are the provided Interfaces, derived as follows:

® The provided Interfaces comprises the union of the sets of Interfaces realized by the type of the
ConnectableElement and its supertypes, or the set containing just its type if it is typed by an Interface.

® The required Interfaces comprises the union of the sets of Interfaces used by the type of the
ConnectableElement and its supertypes.

A ConnectableElement may be exposed via a ConnectableElementTemplateParameter as a formal parameter for a
template. The semantics and notation for this are only defined when the ConnectableElement is a Property (see the
semantics and notation for Property in 9.5).

11.2.3.2 Parts and Roles

The Properties of a StructuredClassifier obey the semantics of Property specified in 9.5.

Property is a kind of ConnectableElement. All of the ownedAttributes of a StructuredClassifier are roles and can be
connected using Connectors.

Those ownedAttributes of a StructuredClassifier that have isComposite = true (see 9.5.3) are called its parts. Hence parts
constitute a subset of roles.

11.2.3.3 Connectors

A Connector specifies /inks (see 11.5 Associations) between two or more instances playing owned or inherited roles
within a StructuredClassifier. Each link may be realized by something as simple as a pointer or by something as
complex as a network connection, and may represent the possibility of instances being able to communicate because
their identities are known by virtue of being passed in as parameters, held in variables or slots, or even because the
communicating instances are the same instance.

In contrast to Associations, which specify links between any suitably-typed instance of the associated Classifiers,
Connectors specify links between instances playing the connected roles only.

Each Connector may be attached to two or more ConnectableElements, each representing a set of instances that
contribute to the instantiation of the containing StructuredClassifier.

A ConnectorEnd is an endpoint of a Connector, which attaches the Connector to a ConnectableElement.

Links corresponding to Connectors may be created upon the creation of the instance of the containing
StructuredClassifier. All such links are destroyed when the containing StructuredClassifier instance is destroyed.

A Connector may be typed by an Association, in which case the links specified by the Connector are instances of the
typing Association.

Each feature of each of the effective required Interfaces of each ConnectableElement at the end of a Connector must
have at least one compatible feature among the features of the effective provided Interfaces of ConnectableElements at
the other ends. One feature is compatible with another at least in the cases when the two features are the same or when

186 Unified Modeling Language 2.5.1

they are both properties or operations and the second feature is a redefinition of the first. However, conforming tools
may allow additional cases of compatible features beyond this.

When there are multiple connectors attached to a single ConnectableElement, the semantics are the same as a single n-
ary Connector connecting the ConnectableElement to all of the ConnectableElements connected via the multiple
connectors.

Connectors have a kind, whose value is assembly or delegation. The semantics of delegation connectors are only related
to Ports and described under Port (see 11.3). All other Connectors are assembly connectors.

ConnectorKind is an enumeration of the following literal values:

assembly Indicates that the Connector is an assembly Connector.
delegation Indicates that the Connector is a delegation Connector.

Behaviors may be associated with Connectors as contracts to specify valid interaction patterns across the Connector.

11.2.3.4 Multiplicities and topologies

The multiplicities on ConnectableElements constrain the number of objects that may be created within an instance of
the containing StructuredClassifier, according to the semantics of MultiplicityElement (see 7.5.3).

For a binary Connector, the ConnectorEnd’s multiplicity indicates the number of instances that may be linked to each
instance of the ConnectableElement on the other end. For an n-ary Connector, the multiplicity of one end constrains the
number of links that may refer to a set containing one particular instance for each of the other ends.

When an instance is removed from a role of an instance of a StructuredClassifier, links that exist due to Connectors
between that role and others are destroyed.

The topologies that result from matching the multiplicities of ConnectorEnds and those of ConnectableElements they
interconnect cannot always be deduced from the model. Specific examples in which the topology can be determined
from the multiplicities are shown in Figure 11.6 and Figure 11.7.

11.24 Notation

The internal structure of a StructuredClassifier is shown in a separate compartment with the name “internal structure.”
This compartment is mandatory: all tools that conform to the concrete syntax of UML must implement it. The internal
structure compartment contains symbols representing the roles and connectors. The internal structure compartment
appears below the attributes and operations compartments.

A part may be shown by graphical nesting of a box symbol with a solid outline representing the part within the internal
structure compartment. A role that is not a composition may be shown by graphical nesting of a box symbol with a
dashed outline. In either case the box may be called a part box, even though strictly-speaking only the compositions are
parts. Lollipop and socket symbols may optionally be shown to indicate the provided and required interfaces of the part,
using the same notation as for the definition of the part’s type (see 10.4.4).

The part box symbol has a name compartment, which contains a string according to the syntax defined in sub clause
9.5.4. Detail may also be shown within the part box indicating specific values for Properties of the part's type when
instances corresponding to the Property are created.

The multiplicity for a Property may also be shown as a multiplicity mark in the top right corner of the part box.

When a role is typed by an EncapsulatedClassifier (see 11.3), any Ports of the type may also be shown as small square
symbols overlapping the boundary of the part box denoting the role. The name of the Port is shown near the Port; the
multiplicity follows the name surrounded by square brackets. Name and multiplicity may be elided. Lollipop and socket
symbols may optionally be shown to indicate the provided and required interfaces of the Port, using the same notation
as for the Port’s definition (see 11.3.4).

Unified Modeling Language 2.5.1 187

If a role is typed by a classifier other than Class, the name compartment of the part box symbol contains the appropriate
keyword (e.g., «component») above the name. For some kinds of Classifiers, optionally in the right hand corner an icon
denoting the kind of Classifier can be displayed.

A Connector is drawn using similar notation to that for Association (see 11.5.4). The optional name string of the
Connector obeys the following syntax:

<connector> ::= ([<name>] ’:’<associationname>) | ([<name>] ’:’ <associationclassname>) |
[<name> |

where <name> is the name of the Connector, and <associationname> or <associationclassname> is the name of the
Association or AssociationClass, respectively, that is its type. A stereotype keyword within guillemets may be placed
above or in front of the Connector name. A property string may be placed after or below the Connector name.

Adornments may be shown on the ConnectorEnd using the same notation as adornments on Association ends. If no
multiplicity is shown, the multiplicity matches the multiplicity of the role the end is attached to.

If a ConnectorEnd is attached to a Port on a part or role of the internal structure and no multiplicity is shown, the
multiplicity of the ConnectorEnd matches the multiplicity of the Port multiplied by the multiplicity of the role (if any).

The notational specifications in the next three paragraphs are optional: a conforming tool does not need to implement
them. They are useful for scalability in complex systems.

If the parts have simple Ports (Ports with a single required or provided Interface), then ball-and-socket notation may be
used to represent assembly Connectors between those Ports. Ball-and-socket notation may not be used to connect
complex (i.e., non-simple) Ports or parts without Ports.

When connecting simple Ports, normal Connector notation for assembly or delegation may be shown connected to the
ball or socket symbol rather than to the Port symbol itself.

When there is an n-ary Connector connecting more than two simple Ports, and two or more of the Ports provide or
require the same or compatible Interfaces, a single symbol representing the Interface can be shown, and lines from the
Components can be drawn to that symbol, in a “channeled ball-and-socket” notation.

An internal structure compartment may also contain symbols representing CollaborationUses, following the notation
described in 11.7.4.

11.2.5 Examples

4
w: Wheel

@
m
=)
e,
5
)
=
N
L

Figure 11.2 Parts and roles

Figure 11.2 shows examples of part boxes. On the left, the part box denotes that the containing instance will own four
instances of the Wheel class by composition. The multiplicity is shown in the corner of the part box. The part box on the
right is not composite, and denotes that the containing instance will reference one or two instances of the Engine class.

4 |

|

| |

w : Wheel T &: Engine |
|

Figure 11.3 Parts and roles with Ports

Figure 11.3 shows examples of part boxes for properties typed by EncapsulatedClassifiers with Ports, in this case
simple Ports. The notation for more complex Ports can also be used.

188 Unified Modeling Language 2.5.1

:]

w : Wheel e: Engine |
I I

L i

‘]

w : Wheel 1] &: Engine |
I I

L i

4 ro T

) |

W Wheel @ d] e: Engine |
| |

L N

Figure 11.4 Alternative notations for connecting parts and roles with Ports

Figure 11.4 shows three alternative notations for connecting simple Ports on the parts and roles within a
StructuredClassifier. In the top example, the connector is joined to the Port symbols themselves. This is the only
mandatory notation for connecting Ports in an internal structure. The lollipops and sockets indicate the provided and
required interfaces of the Ports; their appearance is optional.

In the second example, the connector line is attached to the ball and socket symbols; in the third example, ball-and-
socket notation is used. These notations correspond to the same model as the top example.

Car
Car
internal structure
a : Axle ro |
rear : Wheel [2] I e:Engine !
rear e 2 1! |
2 1 L |
Axle
Wheel = - Engine
(i) (ii)

Figure 11.5 Associations compared with Connectors

Figure 11.5 shows two possible views of the Car Class. In subfigure (i), Car is shown as having a composition
Association with role name rear to a class Wheel and an Association with role name e to a class Engine. In subfigure (ii),
the same is specified. However, in addition, in subfigure (ii) it is specified that rear and e belong to the internal structure
of the class Car. This allows specification of detail that holds only for instances of the Wheel and Engine classes within
the context of the class Car, but which will not hold for wheels and engines in general. For example, subfigure (i)
specifies that any instance of class Engine can be linked to an arbitrary number of instances of class Wheel. Subfigure
(i1), however, specifies that within the context of class Car, the instance playing the role of e may only be connected to
two instances playing the role of rear. In addition, the instances playing the e and rear roles may only be linked if they
are roles of the same instance of class Car. In other words, subfigure (ii) asserts additional constraints on the instances
of the classes Wheel and Engine, when they are playing the respective roles within an instance of class Car. These
constraints are not true for instances of Wheel and Engine in general. Other wheels and engines may be arbitrarily
linked as specified in subfigure (i).

For each instance playing a role in an internal structure, there will initially be as many links as indicated by the lower
multiplicity of the opposite ends of Connectors attached to that role. If the multiplicities of the ends match the
multiplicities of the roles they are attached to as defined in Figure 11.6 (i), the initial configuration that will be created
when an instance of the containing StructuredClassifier is created consists of the set of instances corresponding to the
roles (as specified by the multiplicities on the roles) fully connected by links; see the resultant instance shown in Figure
11.6 (ii).

Unified Modeling Language 2.5.1 189

0] C
a A 2 b: B 2
2 2
:C
(i) _
[a: A [b:B
le: A [b:B

Figure 11.6 "Star" Connector pattern

Links will be created for each instance playing the connected roles according to their ordering until the minimum
ConnectorEnd multiplicity is reached for both ends of the Connector; see the resultant instance in Figure 11.7 (ii). In

this example, only two links are created.

() C
a A 2 b: B 2
1 1
(i)
la:A /b B
JEHE [b:B

Figure 11.7 "Array" Connector pattern
Figure 11.8 shows example notation for parts typed by Components with simple Ports (Ports with only one interface),

and the optional ball-and-socket notation to represent an assembly Connector between compatible Ports. The
Component definitions are on the left and the corresponding parts on the right.

190 Unified Modeling Language 2.5.1

OrderEntry «components E OrderEntry «components E

' by
~ Order O :Order
-H\n
vy {1
Orderableltem
Orderableltem
«components E N
O Product O
QOrderableltem ’J-‘ Orderableltem
| -
«components E
:Product

Figure 11.8 An assembly Connector maps a simple Port of a Component to a matching simple Port of another
Component.

Figure 11.9 shows “channeled ball-and-socket notation” for a 4-ary Connector. The two simple Ports that require Person
have been channeled into a single socket, and the two simple Ports that provide Person (either directly or indirectly)

have been channeled into a single ball.

«components E
:BackOrder
OrderEntry
Person
«components gl . Person «components gl
(. :Order L :Customer
Orderentry Person
«components @
:Organization
Client

Note: Client interface is a subtype of Person interface

Figure 11.9 An n-ary Connector that assembles four simple Ports using channeled ball-and-socket notation.

11.3 Encapsulated Classifiers

11.3.1 Summary

EncapsulatedClassifier extends StructuredClassifier with the ability to own Ports, a mechanism for isolating an
EncapsulatedClassifier from its environment.

Unified Modeling Language 2.5.1 191

11.3.2 Abstract Syntax

+ partWithPort + connectorEnd

StructuredClassifier Property 0l " C End
A ? ..
{readOnly, subsets ownedAttribute} readOnl
0.. ’ + /ownedPort Port { only}
P - - + port + /required Interface
| + encapsulatedClassifier * + isBehavior : Boolean = false
" + isConjugated : Boolean = false| * *
{subsets structuredClassifier} M isSer\}icg - Boolean = true
{subsets property} {readOnly}
+ port + port + /provided
. * *
. — sy protocastateMachine |
Pi hine
*
+ redefinedPort 0.1

{subsets redefinedProperty}

Figure 11.10 Encapsulated Classifiers

11.3.3 Semantics

11.3.3.1 Ports

Ports represent interaction points through which an EncapsulatedClassifier communicates with its environment.
Multiple Ports can be defined for an EncapsulatedClassifier, enabling different communications to be distinguished
based on the Port through which they occur. By decoupling the internals of the EncapsulatedClassifier from its
environment, Ports allow an EncapsulatedClassifier to be defined independently of its environment, making it reusable
in any environment that conforms to the constraints imposed by its Ports.

A Port is a Property of an EncapsulatedClassifier that specifies a distinct interaction point between that
EncapsulatedClassifier and its environment or between the Behavior of the EncapsulatedClassifier and its internal roles.
Ports are connected by Connectors through which requests can be made to invoke the BehavioralFeatures of an
EncapsulatedClassifier. A Port may specify the services an EncapsulatedClassifier provides (offers) to its environment
as well as the services that an EncapsulatedClassifier expects (requires) of its environment.

The property isService, when true, indicates that this Port is used to provide the published functionality of an
EncapsulatedClassifier. If false, this Port is used to implement the EncapsulatedClassifier but is not part of the essential
externally-visible functionality of the EncapsulatedClassifier and can, therefore, be altered or deleted along with the
internal implementation of the EncapsulatedClassifier and other properties that are considered part of its
implementation.

The phrase Port on Part or more generally Port on Property signifies the situation where a Property playing a role in a
StructuredClassifier is typed by an EncapsulatedClassifier that has Ports. A Connector within the containing
StructuredClassifier may be connected to one of these Ports. In such a case, the property partwithPort of the applicable
ConnectorEnd references the actual Property being connected: in general, there might be many Properties in the
structure typed by the same EncapsulatedClassifier, and partwithPort is used to signify the right one.

The Interfaces associated with a Port specify the nature of the interactions that may occur over it. The required Interfaces
of a Port characterize the requests that may be made from the EncapsulatedClassifier to its environment through this
Port. Instances of this EncapsulatedClassifier expect that the Features owned by its required Interfaces will be offered by
one or more instances in its environment. The provided Interfaces of a Port characterize requests to the
EncapsulatedClassifier that its environment may make through this Port. The owning EncapsulatedClassifier must offer
the Features owned by the provided Interfaces.

As a kind of Property, a Port has a type. The provided and required interfaces of the Port are related to its type mediated by
the value of isConjugated as follows:

® IfisConjugated is false, provided is derived as the union of the sets of Interfaces realized by the type of the Port
and its supertypes, or directly from the type of the Port if the Port is typed by an Interface; required is derived as
the union of the sets of Interfaces used by the type of the Port and its supertypes.

192 Unified Modeling Language 2.5.1

¢ IfisConjugated is true, provided is derived as the union of the sets of Interfaces used by the type of the Port and
its supertypes; required is derived as the union of the sets of Interfaces realized by the type of the Port and its
supertypes, or directly from the type of the Port if the Port is typed by an Interface.

The Interfaces do not necessarily establish the exact sequences of interactions across the Port. A Port’s protocol may
reference a ProtocolStateMachine that describes valid sequences of Operation and Reception invocations that may occur
at this Port.

When an instance of an EncapsulatedClassifier is created, instances corresponding to each of its Ports are created and
held in the slots specified by each Port, in accordance with its type and multiplicity. These instances are referred to as
“interaction points” and provide unique references. It is, therefore, possible for an EncapsulatedClassifier instance to
differentiate between requests for the invocation of a BehavioralFeature targeted at its different Ports. Similarly, it is
possible to direct such requests at a Port, and the requests will be routed as specified by the links corresponding to
Connectors attached to this Port.

NOTE. In the following, “requests arriving at a Port” shall mean “request occurrences arriving at the interaction point
of this instance corresponding to this Port.”

A Port has the ability, by setting the property isBehavior to true, to specify that any requests arriving at this Port are
handled by the Behavior of the instance of the owning EncapsulatedClassifier, rather than being forwarded to any
contained instances, if any. Such a Port is called a behavior Port. If there is no Behavior defined for this
EncapsulatedClassifier, any communication arriving at a behavior Port is lost.

A delegation Connector is a Connector that links a Port to a role within the owning EncapsulatedClassifier. It represents
the forwarding of requests (Operation invocations and Signals). A request that arrives at a Port that has a delegation
Connector to one or more Properties or Ports on Properties will be passed on to those targets for handling.

Delegation Connectors can be used to model the hierarchical decomposition of behavior, where services provided by an
EncapsulatedClassifier may ultimately be realized by one that is nested multiple levels deep within it.

As a ConnectableElement, the effective provided Interfaces (see 11.2.3) of a Port are its provided interfaces, and the
effective required Interfaces are its required Interfaces. However, for a delegating Port, i.c., a Port that is at an end of a
delegation Connector and is not on a role and that is not a behavior Port, the effective provided Interfaces are its required
interfaces and its effective required Interfaces are its provided interfaces. Consequently a delegating Port behaves, for
connection, as though it had an internal “face” that is the conjugate of its external “face.”

If several Connectors are attached on one side of a Port, then any request arriving at this Port on a link derived from a
Connector on the other side of the Port will be forwarded on links corresponding to these Connectors. It is not defined
whether these requests will be forwarded on all links, or on only one of those links.

11.34 Notation

A Port of an EncapsulatedClassifier is shown as a small square symbol. The name of the Port is placed near the square
symbol. The Port symbol may be placed either overlapping the boundary of the rectangle symbol denoting that
EncapsulatedClassifier or it may be shown inside the rectangle symbol. When the Port is connected to elements visually
contained in a compartment of the EncapsulatedClassifier, such as parts or roles in the internal structure compartment,
the Port symbol must be placed within or overlapping the boundary of that compartment.

The type of a Port may be shown following the Port name, separated by colon (“:””). When isConjugated is true for the
Port, the type of the Port is shown with a tilde “~” prepended. A provided Interface may be shown using the lollipop
notation (see Interface — 10.4) attached to the Port. A required Interface may be shown by the socket notation attached to
the Port.

A behavior Port is indicated by a Port being connected through a line to a small state symbol drawn inside the symbol
representing the containing EncapsulatedClassifier. The small state symbol indicates the Behavior of the containing
EncapsulatedClassifier.

Unified Modeling Language 2.5.1 193

The name of a Port may be suppressed. Every depiction of an unnamed Port denotes a different Port from any other
Port.

If there are multiple Interfaces associated with a Port, these Interfaces may be listed on the one Interface lollipop,
separated by commas.

In the case of a Dependency wired from a simple Port with a required Interface to a simple Port to a provided Interface
it is a notational option to show the dependency arrow joining the socket to the lollipop.

11.3.5 Examples

Figure 11.11 illustrates the notation for Ports. At the top of the figure is the definition of a class PowerTrain, together
with an interface /PowerTrain that it realizes, and an interface /Feedback that it uses.

On the lower left figure, p is a Port on the Engine Class which is typed by PowerTrain. As a consequence, the provided
Interface of Port p is IPowerTrain and the required Interface is /Feedback. The multiplicity of p is 1, and isConjugated is
false. On the right figure, e is a Port of the Class Wheel, which also has the type PowerTrain and isConjugated set to true,
which results in the reversal of the provided and required Interfaces.

«interface» . “use» «interface»
A PowerTrain
IPowerTrain = owerlra IFeedback
Engine |lPowerTrain IPowerTrain Wheel
L ?]e : ~PowerTrain
p : PowerTrain :
IFeedback IFeedback

Figure 11.11 Port notation

Figure 11.12 illustrates a behavior port p, as indicated by its connection to the small state symbol representing the
Behavior of the Engine Class. Its type is PowerTrain, as in the earlier example.

Eng ine IPowerTrain

——[x P : PowerTrain

[Feedback

Figure 11.12 Behavior Port notation

Figure 11.13 below shows a Port OnlineServices on the OrderProcess Class with two provided Interfaces, OrderEntry
and Tracking listed on the same interface lollipop, as well as a required Interface Payment.

194 Unified Modeling Language 2.5.1

Online OrderEntry,
SErVICeS Tracking

OrderProcess
Payment

Figure 11.13 Port notation showing multiple provided Interfaces

Engine Car
P+ IPowerTrain
axle
1 eng engl? rear : Wheel[2] eng : Engine
C p
0.1 0.1
Car Boat
) 1 Boat
rear| 2 prop | 1 shaft
e : ~IPowerTrain prop : Propeller eng : Engine
Wheel Propeller & P

Figure 11.14 Port examples

Figure 11.14 shows a Class Engine with a Port p typed by its provided Interface /PowerTrain. This Interface specifies the
services that the Engine offers at this Port (i.e., the Operations and Receptions that are accessible by communication
arriving at this Port).

Two uses of the Engine Class are depicted: Both a Boat and a Car contain a part that is an Engine. The Car Class
connects Port p of the Engine to a pair of Wheels via the axle. The Boat Class connects Port p of the engine to a
Propeller via the shaft. As long as the interaction between the Engine and the part linked to its Port p obeys the
constraints specified by its Interface, the Engine will function as specified, whether it is in a Car or a Boat. This
example also shows that Connectors need not necessarily attach to parts via Ports (as shown in the Car Class).

Because the Ports are simple, the depiction of the connector within Boat could have been shown using any of the
notational options shown in Figure 11.4.

Unified Modeling Language 2.5.1 195

1.4 Classes

11.4.1 Summary

Class is the concrete realization of EncapsulatedClassifier and BehavioredClassifier. The purpose of a Class is to
specify a classification of objects and to specify the Features that characterize the structure and behavior of those
objects.

11.4.2 Abstract Syntax

| EncapsulatedClassifier | | BehavioredClassifier

Class *

+ isAbstract : Boolean = false {redefines isAbstract}
+ isActive : Boolean = false

+ class
{subsets classifier}

*

+ /superClass
{redefines general}
{ordered, subsets

{subsets namespace, subsets redefinableElement,
redefinitionContext} subsets ownedMember}
+ nestingClass + nestedClassifier
0.1 *
{subsets namespace, {ordered, subsets attribute, subsets
subsets structuredClassifier, ownedMember, redefines
subsets classifier} ownedAttribute}
+ class i
+ ownedAttribute
= = JI Property
0.1 *
) . {ordered, subsets
{subsets featuringClassifier, feature, subsets
subsets namespace, subsets redefinableElement,
redefinitionContext} subsets ownedMember}
+ class + ownedOperation
> 4 Operation
0.1 *
{subsets featuringClassifier, {subsets feature, subsets
subsets namespace} ownedMember}
+ class + ownedReception
0.1 *
{readOnly} {readOnly}

+ /metaclass + /extension :
*

1

Figure 11.15 Classes

1.4.3 Semantics

11.4.31 Classes

Class is a kind of EncapsulatedClassifier whose Features are Properties, Operations, Receptions, Ports and Connectors.
Attributes of a Class are Properties that are owned by the Class. Some of these attributes may represent the ends of
binary Associations.

Objects of a Class must contain values for each attribute that is a member of that Class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

196 Unified Modeling Language 2.5.1

When an object is instantiated in a Class, for every attribute of the Class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default ValueSpecification is evaluated to set the
initial value of the attribute for the object.

Operations of a Class can be invoked on an object, given a particular set of values for the parameters of the Operation,
according to the semantics specified in 9.6.3.

A Class cannot access private Features of another Class, or protected Features on another Class that is not its ancestor.

A Class acts as the namespace for various kinds of Classifiers defined within its scope, including Classes. Nested
Classifiers are members of the namespace of the containing Class. Classifier nesting is used for reasons of information
hiding.

A Class may be designated by setting isActive to true as active (i.e., each of its instances is an active object). When
isActive is false the Class is passive (i.e., each of its instances executes within the context of some other object).

An active object is an object that, as a direct consequence of its creation, commences to execute its classifierBehavior, and
does not cease until either the complete Behavior is executed or the object is terminated by some external object. (This
is sometimes referred to as “the object having its own thread of control.””) The points at which an active object responds
to communications from other objects is determined solely by the Behavior of the active object and not by the invoking
object. If the classifierBehavior of an active object completes, the object is terminated.

A Class’s Receptions specify which Signals the instances of this Class handle.
An InstanceSpecification may be used to specify the initial value to be created for a Class.

All instances corresponding to parts and ports of a Class are destroyed recursively, when an instance of that Class is
deleted.

A Class may act as a metaclass in the definition of Profiles and metamodels. See Profiles in 12.3.

1144 Notation

A Class is shown using the Classifier symbol. As Class is the most widely used Classifier, no keyword is needed to
indicate that the metaclass is Class.

A Class has four mandatory compartments: attributes, operations, receptions (see 9.2.4) and internal structure (see
11.2.4). A Class may also have optional compartments as described for Classifiers in general (see 9.2.4).

The operations compartment of a Class contains notation for its ownedOperations using the notation specified in 9.6.4.
The receptions compartment contains ownedReceptions using the notation specified in 10.3.4.

A usage dependency may relate an InstanceSpecification to a constructor for a Class, describing the single value
returned by the constructor Operation. The Operation is the client, the created instance the supplier. The
InstanceSpecification may reference parameters declared by the Operation. A constructor is an Operation having a
single return result parameter of the type of the owning Class, and marked with the standard stereotype «Create». The
InstanceSpecification that is the supplier of the usage dependency represents the default value of the single return result
parameter of a constructor Operation.

A Class with the Property isActive = true can be shown by a Class box with an additional vertical bar on either side.

A Class that represents a metaclass may be extended by the optional stereotype «Metaclass» (see StandardProfile in
clause 22) shown above or before its name.

11.4.5 Examples

Figure 11.16 shows three ways of displaying the Class Window, according to the options set out for Classifier notation
in 9.2.4. The top left symbol shows all compartments suppressed. The lower left symbol shows the attributes and
operations compartments, each listing the features but suppressing details such as default values, parameters, and
visibility markings. The right symbol shows these details, as well as the optional compartment headers.

Unified Modeling Language 2.5.1 197

NOTE. The display() and hide() operations have no visibility specified.

Window Window
attributes
+size: Area = (100, 100)
#visibility: Boolean = true
Window +defaultSize: Rectangle
-XWin: XWindow
size: Area ,
A operations
visibility: Boolean
- v display()
d!splav() hide()
hide() -attachX(xWin: XWindow)

Figure 11.16 Class notation variants

Figure 11.17 shows the visibility grouping option (see 9.2.4) applied to the attributes and operations compartments in
the Class Window.

Window

attributes

public

size: Area = (100, 100)

defaultSize: Rectangle
protected

visibility: Boolean = true
private

*Win: XWindow

operations
public
display()
hide()
private
attachX{(xWin: XWindow)

Figure 11.17 Class notation: attributes and Operations grouped according to visibility

Figure 11.18 shows an example of an active class.

EngineControl

Figure 11.18 Active Class

The following example uses two Classes, Car and Wheel. The Car Class has four parts, all of type Wheel, representing
the four wheels of the car. The front wheels and the rear wheels are linked via Connectors representing the front and
rear axle, respectively. Figure 11.19 specifies that whenever an instance of the Car Class is created, four instances of the
Wheel Class are created and held by composition within the car instance. In addition, one link each is created between
the front wheel instances and the rear wheel instances.

198 Unified Modeling Language 2.5.1

Car

frontaxle
eftFront: Whee

internal structure

rightFront: Wheel

rearaxle
eftRear: Wheel

rightRear: Whee

Figure 11.19 Connectors and Parts

Figure 11.20 specifies an equivalent system, but relies on multiplicities to show the replication of the wheel and axle

arrangement. This diagram specifies that there will be exactly two instances of the left wheel and exactly two instances
of the right wheel, with each matching instance connected by a link deriving from the Connector representing the axle.

Car

internal structure

axle
left: Wheel [2]

right: Wheel [2]

Figure 11.20 Connectors and Parts in a structure diagram using multiplicities

Figure 11.21 shows an InstanceSpecification (see 9.8) for an instance of the Car Class (as specified in Figure 11.19). It

describes the internal structure of the Car that it creates and how the four contained instances of Wheel will be

initialized. In this case, every instance of Wheel will have the predefined size and use the brand of tire as specified. The
left wheel instances are given names, and all wheel instances are shown as playing the respective roles. The types of the
wheel instances have been suppressed.

Wheel
tire : String
size : String

: Car
11 / leftFront frontaxle / rightFront
tire = "Michelin" tire = "Michelin"
size = "215x95" size = "215x95"
/ 12 / rightRear
12 / leftRear rearaxle 12 / rightRear
tire = "Firestone" tire = "Firestone"
size = "215x95" size = "215x95"

Figure 11.21 An Instance of the Car Class

Figure 11.22 shows a constructor for the Window class, illustrating how the standard stereotype «Createy is applied to
the makeWindow Operation to mark it as a constructor.

Unified Modeling Language 2.5.1

199

Window

«Create» makeWindow(...) : Window --_] _
" theW : Window

Figure 11.22 InstanceSpecification indicating a constructor

Figure 11.23 shows a constructor for the Car Class. This constructor takes a parameter brand of type String. It describes
the internal structure of the Car that it creates and how the four contained instances of Wheel will be initialized. In this
case, every instance of Wheel will have the predefined size and use the brand of tire passed as parameter. The left wheel
instances are given names, and all wheel instances are shown as playing the parts. The types of the wheel instances have
been suppressed.

: Car
Car
«Create» createCar(brand: String) —}--___ 11 / leftFront / rightFront

~~~~~ EY frontaxle

tire = "Michelin" tire = "Michelin"

size = "215x95" size = "215x95"

12 / leftRear 12 / rightRear
rearaxle

tire = "Firestone" tire = "Firestone"
size = "215x95" size = "215x95"

Figure 11.23 A constructor for the Car Class

In Figure 11.24, it is made explicit that the extended Class Interface is in fact a metaclass (from a reference metamodel).

«Metaclass» «stereotype»
Interface Remote

Figure 11.24 Showing that the extended Class is a metaclass

200 Unified Modeling Language 2.5.1



11.5 Associations

11.5.1 Summary

An Association classifies a set of tuples representing links between typed instances. An AssociationClass is both an
Association and a Class.

11.5.2 Abstract Syntax

. " Relationship | | Classifier

{ordered, subsets feature, subsets {Sﬁbsfts featurlngCIassg |eré

redefinableElement, subsets SUDSELS namespace, subsets

memberEnd, subsets assoqa_tl_on, subsets

ownedM emb’er} redefinitionContext}

Property + ownedEnd + owningAssociatior Association

N 0.1 + isDerived : Boolean = false
{subsets ownedEnd} {subsets owningAssociation}
+ navigableOwnedEnd + association
¥ 0.1

{ordered, subsets member} {subsets memberNamespace}

+ memberEnd + association

{subsets relationship}
i * + association
- * | + qualifier
+ associationEnd | 0..1 @
{subsets owner} {ordered, subsets A
ownedElement} {readOnly, subsets
relatedElement}
1.5/ + /endType
AssociationClass Type

Figure 11.25 Associations

11.5.3 Semantics

11.5.3.1 Associations

An Association specifies a semantic relationship that can occur between typed instances. It has at least two memberEnds
represented by Properties, each of which has the type of the end. More than one end of the Association may have the
same type.

An Association declares that there can be links between instances whose types conform to or implement the associated
types. A link is a tuple with one value for each memberEnd of the Association, where each value is an instance whose
type conforms to or implements the type at the end.

Not all links need to be classified by an Association.

When one or more ends of the Association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the Association are ordered, links carry ordering information in addition to their end values.

For an Association with N memberEnds, choose any N-1 ends. Let the Property that constitutes the other end be called
oep, so that the Classifiers at the chosen N-1 ends are the context for oep (see 9.5.3). Associate specific instances with
the context ends. Then the collection of links of the Association that refer to these specific instances will identify a set

Unified Modeling Language 2.5.1 201



of instances at oep. The value represented by oep (see 9.5.3) is a collection calculated from this set as follows: All of the
instances in the set occur in the collection, and nothing else does. If oep is marked as unique, each instance will occur in
the collection just once, regardless of how many links connect to it. If oep is marked as nonunique, each instance will
occur in the collection once for each link that connects to it. If oep is marked as ordered, the collection will be ordered
in accordance with the ordering information in the links. The cardinality of this collection is its size. The multiplicity of
oep constrains this cardinality, or in the case of qualified associations, the size of the collection partition that may be
associated with a qualifier value.

Subsetting of Association ends has the meaning specified for Property (see 9.5.3).

Specialization is, in contrast to subsetting, a relationship in the domain of intentional semantics, which is to say it
characterizes the criteria whereby membership in the collection is defined, not by the membership. In the case of
Associations, specialization means that a link classified by the specializing Association is also classified by the
specialized Association. Semantically this implies that sets calculated by eliminating duplicates from the collections
representing the ends of the specializing Association are subsets of the corresponding sets calculated by eliminating
duplicates from collections representing the ends of the specialized Association; this fact of subsetting may or may not
be explicitly declared in a model.

NOTE. For n-ary Associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end of an n-
ary Association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for
the other ends.

A binary Association may represent a composite aggregation (i.e., a whole/part relationship). Composition is
represented by the isComposite attribute on the part end of the Association being set to true. See the semantics of
composition in 9.5.3. An end Property of an Association may only be marked as a shared or composite aggregation if
the Association is binary and the other end is not marked as a shared or composite aggregation.

An end Property of an Association that is owned by an end Class or that is a navigableOwnedEnd of the Association
indicates that the Association is navigable from the opposite ends; otherwise, the Association is not navigable from the
opposite ends. Navigability means that instances participating in links at runtime (instances of an Association) can be
accessed efficiently from instances at the other ends of the Association. The precise mechanism by which such efficient
access is achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be
possible, and if it is, it might not be efficient.

NOTE. Tools operating on UML models are not prevented from navigating Associations from non-navigable ends.

A qualified Association end has qualifiers that partition the instances associated with an instance at that end, the qualified
instance. Each partition is designated by a qualifier value, which is a tuple comprising one value for each qualifier. The
multiplicities at the other ends of the association determine the number of instances in each partition. So, for example,
0..1 means there is at most one instance per qualifier value. If the lower bounds are non-zero, the qualifier values must be a
finite set, for example because the qualifiers are typed by enumerations.

The existence of an association may be derived from other information in the model. The logical relationship between
the derivation of an Association and the derivation of its ends is model-specific.

11.5.3.2 Association Classes

An AssociationClass is a declaration of an Association that has a set of Features of its own. An AssociationClass is both
an Association and a Class, and preserves the static and dynamic semantics of both. An AssociationClass describes a set
of objects that each share the same specifications of Features, Constraints, and semantics entailed by the
AssociationClass as a kind of Class, and correspond to a unique link instantiating the AssociationClass as a kind of
Association.

Both Association and Class are Classifiers and hence have a set of common properties, like being able to have Features,
having a name, etc. These properties are multiply inherited from the same construct (Classifier), and are not duplicated.
Therefore, an AssociationClass has only one name, and has the set of Features that are defined for Classes and
Associations. The constraints defined for Class and Association also are applicable for AssociationClass, which implies
for example that the attributes of the AssociationClass, the memberEnds of the AssociationClass, and the opposite ends of
Associations connected to the AssociationClass must all have distinct names. Moreover, the specialization and

202 Unified Modeling Language 2.5.1



refinement rules defined for Class and Association are also applicable to AssociationClass. Redefinition is applicable to
an AssociationClass nested in the context of a Classifier just as it is applicable to a nested Class.

An AssociationClass inherits the composite Properties Class::ownedAttribute and Association::ownedEnd. Values of
ownedAttribute are Properties that are attributes of the Class, not ends of the AssociationClass owned through
Association::ownedEnd. Values of Association::ownedEnd are the ends of the Association owned by the AssociationClass, not
attributes of the AssociationClass. As Association ends, they can be used for navigation between end objects, as in all
Associations, depending on whether they are navigable (see Navigability in the semantics of Association).

An instance of an AssociationClass has the characteristics both of a link representing an instantiation of the
AssociationClass as a kind of Association, and of an object representing an instantiation of the AssociationClass as a
kind of Class.

NOTE. Even when all ends of the AssociationClass have isUnique=true, it is possible to have several instances
associating the same set of instances of the end Classes.

An AssociationClass cannot be a generalization of an Association or a Class.

11.54 Notation

Any Association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each Association
memberEnd connecting the diamond to the Classifier that is the end’s type. An Association with more than two ends can
only be drawn this way.

A binary Association is normally drawn as a solid line connecting two Classifiers, or a solid line connecting a single
Classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to a tool in dragging
or resizing an Association symbol.

An Association symbol may be adorned as follows:

* The Association’s name can be shown as a name string near the Association symbol, but not near enough to an
end to be confused with the end’s name.

*  Aslash appearing in front of the name of an Association, or in place of the name if no name is shown, marks
the Association as being derived.

* A property string may be placed near the Association symbol, but far enough from any end to not be confused
with a property string on an end.

On a binary Association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
Association and pointing along the line in the direction of one end indicates that end to be the last in the order of the
ends of the Association. The arrow indicates that the Association is to be read as associating the end away from the
direction of the arrow with the end to which the arrow is pointing (see Figure 11.27). This notation is for documentation
purposes only and has no general semantic interpretation. It is used to capture some application-specific detail of the
relationship between the associated Classifiers.

Generalizations between Associations can be shown using a generalization arrow between the Association symbols.
Other notational options for Generalizations such as “shared target style” (see 9.2.4) and the notations defined in 9.7.4
may be used for Generalizations between Associations, but a conforming tool is not required to support those options.

An Association end is the connection between the line depicting an Association and the icon (often a box) depicting the
connected Classifier. A name string may be placed near the end of the line to show the name of the Association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:

* A multiplicity

Unified Modeling Language 2.5.1 203



* A <prop-modifier> enclosed in curly braces, where <prop-modifier> is defined in Property (see 9.5.4).
* A <visibility> symbol (see 9.5.4).

NOTE. If no multiplicity is shown on the diagram, no conclusion may be drawn about the multiplicity in the model.

An open arrowhead on the end of an Association indicates the end is navigable. A small x on the end of an Association
indicates the end is not navigable.

If the Association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

A binary Association may have one end with aggregation = AggregationKind::shared or aggregation =
AggregationKind::composite. When one end has aggregation = AggregationKind::shared a hollow diamond is added as a
terminal adornment at the end of the Association line opposite the end marked with aggregation =
AggregationKind::shared. The diamond shall be noticeably smaller than the diamond notation for Associations. An
Association with aggregation = AggregationKind::composite likewise has a diamond at the corresponding end, but
differs in having the diamond filled in.

Ownership of Association ends by an associated Classifier may be indicated graphically by a small filled circle, which
for brevity we will term a dot. The dot is to be drawn integral to the graphic path of the line, at the point where it meets
the Classifier, inserted between the end of the line and the side of the node representing the Classifier. The diameter of
the dot shall not exceed half the height of the aggregation diamond, and shall be larger than the width of the line. This
avoids visual confusion with the filled diamond notation while ensuring that it can be distinguished from the line. The
dot shows that the model includes a Property of the type represented by the Classifier touched by the dot. This Property
is owned by the Classifier at the other end. In such a case it is normal to suppress the Property from the attributes
compartment of the owning Classifier.

The dot may be used in combination with the other graphic line-path notations for Properties of Associations and
Association ends. These include aggregation type and navigability.

Explicit end-ownership notation is not mandatory, i.e., a conforming tool may not support it. Where the dot notation is
used, it shall be applied consistently throughout each diagram, so that the absence of the dot signifies ownership by the
Association. Stated otherwise, when applying this notation to a binary Association in a user model, the dot will be
omitted only for ends which are not owned by a Classifier. In this way, in contexts where the notation is used, the
absence of the dot on certain ends does not leave the ownership of those ends ambiguous.

The dot is illustrated in Figure 11.26, at the maximum allowed size. The diagram shows endA to be owned by Classifier
B, and because the notation must be applied consistently throughout the diagram, this diagram also shows
unambiguously that endB is owned by BinaryAssociationAB.

endA endB
A P B
BinaryAssociationAB *

Figure 11.26 Graphic notation indicating exactly one Association end owned by the Association

Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were
assumed to be owned by the Association whereas navigable ends were assumed to be owned by the Classifier at the
opposite end. This convention is now deprecated. Aggregation type, navigability, and end ownership are separate
concepts, each with their own explicit notation. Association ends owned by classes are always navigable, while those
owned by associations may be navigable or not.

An AssociationClass is shown as a Class symbol attached to the Association path by a dashed line. The Association path
may include a diamond, in which case the Class symbol shall be shown attached to the diamond by a dashed line. The
Association path and the AssociationClass symbol represent the same underlying model element, which has a single
name. The name may be placed on the path, in the Class symbol, or on both, but they must be the same name.

204 Unified Modeling Language 2.5.1



Association end names appear in the same position as regular Associations, not in the attribute compartment of the
AssociationClass.

Logically, the AssociationClass and the Association are the same semantic entity; however, they are graphically distinct.
The AssociationClass symbol can be dragged away from the line, but the dashed line must remain attached to both the
path and the Class symbol.

When two association lines cross, a conforming tool may provide the option to show a small semicircular jog to indicate
that the lines do not intersect (as in electrical circuit diagrams).

In practice, it is often convenient to suppress some of the arrows and crosses that signify navigability of association
ends. A conforming tool may provide various options for showing navigation arrows and crosses. As with dot notation,
these options apply at the level of complete diagrams.

* Show all arrows and crosses. Navigation and its absence are made completely explicit.
¢ Suppress all arrows and crosses. No inference can be drawn about navigation.

e Suppress all crosses. Suppress arrows for Associations with navigability in both directions, and show arrows
only for Associations with one-way navigability. In this case, the two-way navigability cannot be distinguished
from situations where there is no navigation at all; however, the latter case occurs rarely in practice.

If there are two or more aggregations to the same aggregate, a conforming tool may as a purely presentational option
show them as a tree by merging the aggregation ends into a single segment adorned by the solid or hollow aggregation
diamond symbol. Any adornments on that single segment apply to all of the aggregation ends. The absence of an
adornment on a merged segment does not imply that the properties corresponding to the suppressed adornment have
equal values for all of the aggregation ends.

A qualifier is shown as a small rectangle attached to the end of an association path between the final path segment and the
symbol of the Classifier that it connects to. The qualifier rectangle should be smaller than the attached class rectangle,
unless this is not practical. The qualifier rectangle is part of the association path, not part of the Classifier. The qualifier
rectangle is attached to the end of the association path that represents the memberEnd that owns the qualifier.

The multiplicity attached to the target end denotes the possible cardinalities of the set of target instances selected by the
pairing of a qualified instance and a qualifier value.

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes, shown one to a line.
Qualifier attributes have the same notation as Classifier attributes, except that initial value expressions are not
meaningful.

It is permissible (although somewhat rare), to have a qualifier on every end of a single association.

A qualifier may not be suppressed.

11.5.5 Examples

Figure 11.27 shows a binary Association from Player to Year named PlayedinYear.

Unified Modeling Language 2.5.1 205



* 4 PlayedinYear
Year =
year
season|
Team - - Player
team goalie

Figure 11.27 Binary and ternary Associations

The solid triangle indicates the order of reading: Player PlayedInYear Year. The figure further shows a ternary
Association between Team, Year, and Player with ends named team, season, and goalie respectively.

The following example shows Association ends with various adornments.

+a +b {ordered}
0.1 *

+d {ordered, subsets b
C { 5 1} D

Figure 11.28 Association ends with various adornments

The following adornments are shown on the four Association ends in Figure 11.28.

Names a, b, and d on three of the ends.

Public visibility marked on the ends a, b and d.
Multiplicities 0..1 on @, * on b, and 0..1 on d.
Specification of ordering on b and d.

Subsetting on d. For an instance of Class C, the collection d is a subset of the collection b. This is equivalent to
the OCL constraint:

context C inv: b->includesAll(d)

The following examples show notation for ends owned by an association (no dots).

206

Unified Modeling Language 2.5.1



a b
A B
1.4 2.5
c d
C > > D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
i J
J
1.4 2.5

Figure 11.29 Examples of navigable association-owned ends

In Figure 11.29:

The top pair AB shows a binary Association with two navigable ends.
The second pair CD shows a binary Association with two non-navigable ends.

The third pair EF shows a binary Association with unspecified navigability. In a diagram where arrows are
only shown for one-way navigable associations, this probably signifies bidirectional navigability.

The fourth pair GH shows a binary Association with one end navigable and the other non-navigable.

The fifth pair 1J shows a binary Association with one end navigable and the other non-navigable, in a diagram
where arrows are only shown for one-way navigable associations, and crosses are suppressed.

The following examples show some class-owned ends, where class ownership is indicated by the dot. In Figure 11.30:

In the top pair AB, end b is owned by Class A and end a is owned by Class B. Because the ends are class-
owned, they are navigable.

In the second pair CD, end d is owned by Class C, and hence is navigable. End c is owned by the Association,
and is marked as navigable.

In the third pair EF, end f is owned by Class E, and hence is navigable. End e is owned by the Association, and
is marked as not navigable, in a diagram where arrows are only shown for one-way navigable associations, and
crosses are suppressed.

In the fourth pair GH, end h is owned by Class G and end g is owned by Class H. Because the ends are class-
owned, they are navigable. This is in a diagram where arrows are only shown for one-way navigable
associations.

Unified Modeling Language 2.5.1 207



a b
A B
1.4 2.5
C d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5

Figure 11.30 Examples of class-owned ends

Figure 11.31 shows that the attribute notation can be used for an Association end owned by a Class, because an
Association end owned by a Class is also an attribute. Although it would typically be suppressed on grounds of
redundancy, this notation may be used in conjunction with the association notation to make it perfectly clear that the
attribute is also an Association end.

b: B[']

Figure 11.31 Example of attribute notation for navigable end owned by an end Class

Figure 11.32 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the
attributes that subset it. In this case there is just one of these, C::d. So for an instance of the Class C, d is a subset of b,
and b is derived from d.

+3 +/b {union}

0.1 *

c +d {subsets b} D

ES

Figure 11.32 Derived supersets (union)

Figure 11.33 shows the black diamond notation for composite aggregation. The names of the composite ends have been
suppressed in the diagram.

208 Unified Modeling Language 2.5.1



Window

+scrollbar

Slider
Panel

Header

Figure 11.33 Composite aggregation is depicted as a black diamond

Figure 11.34 shows a similar model using the notational option of sharing the same source segment between multiple
compositions. The multiplicity and name adornments on the shared end apply to all of the compositions. The model
values for absent adornments on the merged segment, such as property modifiers or visibility, may differ.

Window

+window | 1

+scrollbar 2 +title| 1 *body | 1

Slider Header Panel

Figure 11.34 Composite aggregation sharing a source segment

Figure 11.35 shows the notation for an AssociationClass. In this example the name of the AssociationClass appears
twice, once on the Class rectangle and once on the Association. These are both renderings of the same model element.

Person Company

person company

salary

Figure 11.35 Example AssociationClass Job, which is defined between the two Classes Person and Company

Figure 11.36 shows the same model using the diamond notation for the AssociationClass.

Unified Modeling Language 2.5.1 209



Job

* 1..
Person —<>— Company
person company

Job

salary

Figure 11.36 Example AssociationClass using diamond symbol

Figure 11.37 illustrates some qualified Associations. The left diagram shows that given a Bank, a particular accountNo
identifies zero or one Person. The qualifier is the Property accountNo, and the qualified object is the Bank. The qualifier is
owned by the unnamed Property at the Bank end of the Association, i.e., the Property whose type is Bank.

The right diagram shows how an individual Square on the Chessboard may be identified by rank and file; in this case
because the multiplicity is 1, the diagram shows that every possible value for Rank and File indicates an individual
Square. In this case the qualifiers are owned by the unnamed association end Property whose type is Chessboard, while
the opposite Property whose type is Square is marked with aggregation = composite.

Bank Chessboard
accountNo rank : Rank
m file : File
1
0.1 1
Person Square

Figure 11.37 Qualified associations

1.6 Components

11.6.1 Summary

This sub clause specifies a set of constructs that can be used to define software systems of arbitrary size and complexity.
In particular, it specifies a Component as a modular unit with well-defined Interfaces that is replaceable within its
environment. The Component concept addresses the area of component-based development and component-based
system structuring, where a Component is modeled throughout the development life cycle and successively refined into
deployment and run-time.

An important aspect of component-based development is the reuse of previously constructed Components. A
Component can always be considered an autonomous unit within a system or subsystem. It has one or more provided
and/or required Interfaces (potentially exposed via Ports), and its internals are hidden and inaccessible other than as
provided by its Interfaces. Although it may be dependent on other elements in terms of Interfaces that are required, a
Component is encapsulated and its Dependencies are designed such that it can be treated as independently as possible.
As aresult, Components and subsystems can be flexibly reused and replaced by connecting (“wiring”) them together.

210 Unified Modeling Language 2.5.1



The aspects of autonomy and reuse also extend to Components at deployment time. The artifacts that implement
Component are intended to be capable of being deployed and re-deployed independently, for instance to update an
existing system.

The Components package supports the specification of both logical Components (e.g., business components, process
components) and physical Components (e.g., EJB components, CORBA components, COM+ and .NET components,
WSDL components, etc.), along with the artifacts that implement them and the nodes on which they are deployed and
executed. It is anticipated that profiles based around Components will be developed for specific component
technologies and associated hardware and software environments.

11.6.2 Abstract Syntax

[ ctass |
/\

{subsets supplier,  {subsets ownedElement,

subsets owner} subsets supplierDependency}
Component + abstraction + realization ComponentRealization
+ isIndirectlyInstantiated : Boolean = true 0.1 *
+ component | * * | + component {subsets clientDependency}

{subsets namespace}

x | + componentRealization
0..1 | + component

{readOnly} {readOnly} {subsets ownedMember} N {subsets client} -
+ [required | * « | + /provided x| + packagedElement 1..*¥ | + realizingClassifiel

| Interface | | PackageableElement Classifier

Figure 11.38 Components

11.6.3 Semantics

11.6.3.1 Components

A Component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment.

A Component is a self~contained unit that encapsulates the state and behavior of a number of Classifiers. A Component
specifies a formal contract of the services that it provides to its clients and those that it requires from other Components
or services in the system in terms of its provided and required Interfaces.

A Component is a substitutable unit that can be replaced at design time or run-time by a Component that offers
equivalent functionality based on compatibility of its Interfaces. As long as the environment is fully compatible with the
provided and required Interfaces of a Component, it will be able to interact with this environment. Similarly, a system can
be extended by adding new Component types that add new functionality. Larger pieces of a system’s functionality may
be assembled by reusing Components as parts in an encompassing Component or assembly of Components, and wiring
them together.

A Component is modeled throughout the development life cycle and successively refined into deployment and run-time.
A Component may be manifested by one or more Artifacts, and in turn, that Artifact may be deployed to its execution
environment. A DeploymentSpecification may define values that parameterize the Component’s execution. (See
Deployments — Clause 19).

The required and provided Interfaces of a Component allow for the specification of StructuralFeatures such as attributes
and Association ends, as well as BehavioralFeatures such as Operations and Receptions. A Component may implement
a provided Interface directly, or its realizing Classifiers may do so, or they may be inherited. The required and provided
Interfaces may optionally be organized through Ports; these enable the definition of named sets of provided and required
Interfaces that are typically (but not always) addressed at run-time.

Unified Modeling Language 2.5.1 211



A Component has an external view (or “black-box” view) by means of its publicly visible Properties and Operations.
Optionally, a Behavior such as a ProtocolStateMachine may be attached to an Interface, Port, and to the Component
itself, to define the external view more precisely by making dynamic constraints in the sequence of Operation calls
explicit.

The wiring between Components in a system or other context can be structurally defined by using Dependencies
between compatible simple Ports, or between Usages and matching InterfaceRealizations that are represented by
sockets and lollipops (see 10.4.4) on Components on Component diagrams. Creating a wiring Dependency between a
Usage and a matching InterfaceRealization, or between compatible simple Ports, means that there may be some
additional information, such as performance requirements, transport bindings, or other policies that determine that the
Interface is realized in a way that is suitable for consumption by the depending Component. Such additional information
could be captured in a profile by means of stereotypes.

A Component also has an internal view (or “white-box” view) by means of its private Properties and realizing
Classifiers. This view shows how the external Behavior is realized internally. Dependencies on the external view
provide a convenient overview of what may happen in the internal view; they do not prescribe what must happen. More
detailed behavior specifications such as Interactions and Activities may be used to detail the mapping from external to
internal behavior.

The execution time semantics for an assembly Connector in a Component are that requests (signals and operation
invocations) travel along an instance of a Connector. The execution semantics for multiple Connectors directed to and
from different roles, or n-ary Connectors where n> 2, indicates that the instance that will originate or handle the request
will be determined at execution time.

A number of UML standard stereotypes exist that apply to Component. For example, «Subsystem» to model large-scale
Components, and «Specification» and «Realization» to model Components with distinct specification and realization
definitions, where one specification may have multiple realizations (see the Standard Profiles).

A Component may be realized (or implemented) by a number of Classifiers. In that case, a Component owns a set of
ComponentRealizations to these Classifiers.

A component acts like a Package for all model elements that are involved in or related to its definition, which should be
either owned or imported explicitly. Typically the Classifiers that realize a Component are owned by it.

The isDirectlyInstantiated property specifies the kind of instantiation that applies to a Component. If false, the Component
is instantiated as an addressable object. If true, the Component is defined at design-time, but at run-time (or execution-
time) an object specified by the Component does not exist, that is, the Component is instantiated indirectly, through the
instantiation of its realizing Classifiers or parts.

11.6.4 Notation

A Component is shown as a Classifier rectangle with the keyword «component». Optionally, in the right hand corner a
Component icon can be displayed. This is a Classifier rectangle with two smaller rectangles protruding from its left
hand side. If the icon symbol is shown, the keyword «component» may be hidden.

The attributes, operations and internal structure compartments all have their normal meaning. The internal structure uses
the notation defined in StructuredClassifiers (11.2).

The provided and required Interfaces of a Component may be shown by means of ball (lollipop) and socket notation
(see 10.4.4), where the lollipops and sockets stick out of the Component rectangle.

For displaying the full signature of a provided or required Interface of a Component, the Interfaces can also be
displayed as normal expandable Classifier rectangles. For this option, the Interface rectangles are connected to the
Component rectangle by appropriate dependency arrows, as specified in 7.7.4 and 10.4.4.

A conforming tool may optionally support compartments named “provided interfaces” and “required interfaces” listing
the provided and required Interfaces by name. This may be a useful option in scenarios in which a Component has a
large number of provided or required Interfaces.

212 Unified Modeling Language 2.5.1



Additional optional compartments “realizations” and “artifacts” may be used to list the realizing Classifiers (Classifiers
reached by following the realization property) and manifesting Artifacts (Artifacts that manifest this component — see
19.3).

A ComponentRealization is notated in the same way as a Realization dependency (i.e., as a general dashed line with a
hollow triangle as an arrowhead).

The packagedElements of a Component may be displayed in an optional compartment named “packaged elements,”
according to the specification for optional compartments for ownedMembers set out in 9.2.4.

11.6.5 Examples

An overview diagram can show Components related by Dependencies, which signify some further unspecified kind of
dependency between the components, and by implication a lack of dependency where there are no Dependency arrows.

«component» gl «component»
Order — [---—------------ > Account

1

|

1

1

|

:

|

v

«compon ent»
Product E

Figure 11.39 Example of an overview diagram showing Components and their general Dependencies

Figure 11.40 shows an external (“black-box”) view of a Component by means of interface lollipops and sockets sticking
out of the Component rectangle.

ltemAllocation

: «component» @ MC

Tracking Order

: _ Invoice :

Orderableltem

Figure 11.40 A Component with two provided and three required Interfaces

Figure 11.41 shows provided and required interfaces listed in optional compartments.

Unified Modeling Language 2.5.1 213



«components g1
Order

provided interfaces
ItemAllocation
Tracking

reguired interfaces
Person
Invoice
Orderableltem

Figure 11.41 Black box notation showing a listing of provided and required interfaces

Figure 11.42 shows a “white box” view of a Component listing realizing Classifiers and manifesting Artifacts in
additional optional compartments.

«component:» gl

Order

provided interfaces
ItemAllocation
Tracking

required interfaces
Person
Invoice
Orderableltem

realizations
OrderHeader
Lineltem

artifacts
Order.jar

Figure 11.42 Optional “white-box” representation of a Component

Figure 11.43 shows explicit representation of the provided and required Interfaces using Dependency notations,
allowing Interface details such as Operations to be displayed.

«interface» 2 « cumponent»g eusas «interface» &J
OrderEntry [~ ~~~~~~77] Order |~~~ - = Person
operations operations
Create() Create()
Validate() FindByName()
AddOrderLine() GetDetails()

Figure 11.43 Explicit representation of provided and required Interfaces using Dependency notation.

Figure 11.44 shows a set of Classifiers that realize a Component with realization arrows representing the
ComponentRealizations.

214 Unified Modeling Language 2.5.1



8]

ecomponents
Customer

Customerimpl CustomerColl CustomerDef

Figure 11.44 A representation of the realization of a complex Component

Figure 11.45 shows owned Classes that realize a Component nested within an optional “packaged elements”
compartment of the Component shape.

«components»
Order

packaged elements

OrderHeader

OrderEntry Person
A order T 1 C

item| *

Lineltem

Figure 11.45 An alternative nested representation of a complex Component

Figure 11.46 shows various ways of wiring Components using Dependencies.

The Dependency on the right of the figure is from the Usage of Orderableltem to the InterfaceRealization of
Orderableltem. This also shows that “/Orderableltem” is an Interface that is implemented by a supertype of Product,
following the notation specified in 10.4.4.

The Dependency between the AccountPayable Ports illustrates the notational option of showing the dependency arrow
joining the socket to the lollipop, when a Dependency is wired between simple Ports.

When realizing Classifiers are shown in a packaged elements compartment, a Dependency may be shown from a simple
Port to a realizing Classifier to indicate that the Interface provided or required by the Port is dependent in some way
upon the Classifier. This is illustrated by the Dependency from AccountPayable to OrderHeader, which indicates that
something about the fact that the Component requires AccountPayable is dependent upon OrderHeader.

Unified Modeling Language 2.5.1 215



«component:
«components 21| Accountayable Order
Account

)

5 packaged elements

h

% «Focus»
N )_[ —
+ Z  OrderHeader

AccountPayable
[ ) Orderableltem

order

A

Yy «component»{‘
item| * Product
/Orderableltem

Lineltem

Figure 11.46 Example model of a Component, its provided and required Interfaces, and wiring through
Dependencies

Figure 11.47 shows an internal or white-box view of the internal structure of a Component that contains other
Components with simple Ports as parts of its internal assembly. The assembly Connectors use ball-and-socket notation.
The delegation connectors use the notational option that the Connector line can end on the ball or socket, rather than the
simple port itself.

«component» ]
Store

internal structure

il «component»%j Person «component» & |
:Order :Customer
o —

o—L
OrderEntry

OrderEntry
Account x Account
—C
IOH:I erableltem
«com pl_‘on ent»3 ]
:Product

Figure 11.47 Internal structure of a Component

Figure 11.48 shows delegation Connectors from delegating Ports to handling parts; in this example the parts in the
internal structure compartment are typed by Classes shown in the optional packaged elements compartment.

216 Unified Modeling Language 2.5.1



«component»
Order
internal structure
OrderEntry
Oo—A

:OrderHeader

Pe[son

Lineltem | ——————— -

packaged elements

1 * .
OrderHeader > der Tam Lineltem

Figure 11.48 Delegation Connectors connect externally provided Interfaces to the parts that realize or require
them.

11.7 Collaborations

11.71 Summary

The primary purpose of Collaborations is to explain how a system of communicating elements collectively accomplish
a specific task or set of tasks without necessarily having to incorporate detail that is irrelevant to the explanation.
Collaborations are one way that UML may be used to capture design patterns.

A CollaborationUse represents the application of the pattern described by a Collaboration to a specific situation
involving specific elements playing its collaborationRoles.

11.7.2 Abstract Syntax

NamedElement
JaY
StructuredClassifier | | BehavioredClassifier
\R N .
+ classifier
+ collaborationUse
{subsets ownedElement} {subsets owner}
CollaborationUse * 0.1 Classifier

+ type + collaborationUse >
1 * 0..1 0.1

{subsets structuredClassifier} | *

+ collaboration + representation
{subsets collaborationUse}

{subsets role} {subsets owner}
+ collaborationRole| * 0..1 | + collaborationUse
| ConnectableElement

{subsets ownedElement}
* + roleBinding

Dependency

Figure 11.49 Collaborations

Unified Modeling Language 2.5.1 217



11.7.3 Semantics

11.7.3.1 Collaborations

Collaborations may be used to explain how a collection of cooperating instances achieve a joint task or set of tasks.
Therefore, a Collaboration typically incorporates only those aspects that are necessary for its explanation and
suppresses everything else. Thus, a given object may be simultaneously playing collaborationRoles in multiple different
Collaborations, but each Collaboration would only represent those aspects of that object that are relevant to its purpose.

A Collaboration defines a set of cooperating participants that are needed for a given task. The collaborationRoles of a
Collaboration will be played by instances when interacting with each other. Their relationships relevant for the given
task are shown as Connectors between the collaborationRoles. CollaborationRoles of Collaborations define a usage of
instances, while the Classifiers typing these collaborationRoles specify all required Properties of these instances. Thus, a
Collaboration specifies what Properties instances must have to be able to participate in the Collaboration. The
Connectors between the collaborationRoles specify what communication paths must exist between the participating
instances.

Neither all Features nor all contents of the participating instances nor all links between these instances are always
required in a particular Collaboration. Therefore, a Collaboration is often defined in terms of collaborationRoles typed by
Interfaces.

Collaborations may be specialized from other Collaborations. If a collaborationRole is extended in the specialization, its
type in the specialized Collaboration must conform to its type in the general Collaboration. The specialization of the
types of the collaborationRoles does not imply corresponding specialization of the Classifiers that realize those
collaborationRoles. It is sufficient that they conform to the constraints defined by those collaborationRoles.

A Collaboration is not directly instantiable. Instead, the cooperation defined by the Collaboration comes about as a
consequence of the actual cooperation between the instances that play the collaborationRoles defined in the Collaboration.

11.7.3.2 CollaborationUses

A CollaborationUse represents a particular use of a Collaboration to explain the relationships between a set of elements.
A CollaborationUse shows how the pattern described by a Collaboration is applied in a given confext Classifier, by
binding specific ConnectableElements from that context to the collaborationRoles of the Collaboration. There may be
multiple CollaborationUses related to a given Collaboration within a Classifier, each bound differently. A given
collaborationRole or Connector may be involved in multiple uses of the same or different Collaborations.

The roleBindings are implemented using Dependencies owned by the CollaborationUse. Each collaborationRole in the
Collaboration is bound by a distinct Dependency and is its supplier. The client of the Dependency is a
ConnectableElement that relates in some way to the context Classifier: it may be a direct collaborationRole of the context
Classifier, or an element reachable by some set of references from the context Classifier. These roleBindings indicate
which ConnectableElement from the context Classifier plays which collaborationRole in the Collaboration.

Connectors in a Collaboration typing a CollaborationUse must have corresponding Connectors between elements bound
in the context Classifier, and these corresponding Connectors must have the same or more general type than the
Collaboration Connectors.

One of the CollaborationUses owned by a Classifier may be singled out as representing the Behavior of the Classifier as
a whole. This is called the Classifier’s representation. The Collaboration that is related to the Classifier by its
representation shows how the instances corresponding to the StructuralFeatures of this Classifier (e.g., its attributes and
parts) interact to generate the overall Behavior of the Classifier. The representing Collaboration may be used to provide
a description of the Behavior of the Classifier at a different level of abstraction than is offered by the internal structure
of the Classifier. The Properties of the Classifier are mapped to collaborationRoles in the Collaboration by the roleBindings
of the CollaborationUse.

Any Behavior attached to the Collaboration applies to the set of collaborationRoles and Connectors bound within a given
CollaborationUse. For example, an interaction among parts of a Collaboration applies to the Classifier parts bound to a
single CollaborationUse.

218 Unified Modeling Language 2.5.1



If the same ConnectableElement is used in both the Collaboration and the represented element, no roleBinding is
required.

It is not specified further when client and supplier elements in roleBindings are compatible.

11.74 Notation

A Collaboration is shown as a dashed ellipse shape containing the name of the Collaboration. The internal structure of a
Collaboration as comprised by collaborationRoles and Connectors may be shown in a compartment within the dashed
ellipse shape. This compartment follows the same notational specification as for the internal structure compartment of a
normal Classifier rectangle.

Alternatively, a composite structure diagram can be used, or a normal Classifier rectangle with the keyword
«collaboration».

There is no notation defined for a Collaboration whose collaborationRoles are not Properties.

Using an alternative notation for Properties, a line may be drawn from the elliptical Collaboration shape to rectangles
denoting Classifiers that are the types of Properties of the Collaboration. Each line is labeled by the name of the
Property. In this manner, a diagram can show the definition of a Collaboration together with the actual Classifiers that
type the collaborationRoles in that definition

A CollaborationUse is shown within an internal structure compartment of the context Classifier by a dashed ellipse
containing the name of the occurrence, a colon, and the name of the Collaboration type. For every roleBinding, there is a
dashed line from the ellipse to the client element; the dashed line is labeled on the client end with the name of the supplier
element. With this notation the Connectors that must exist in the context Classifier as a consequence of the bindings
may be suppressed.

An optional notation for CollaborationUse is as a dashed arrow with the keyword «occurrence» pointing from the using
Classifier to the used Collaboration. In conjunction with this the roleBindings are shown as normal Dependency arrows.
With this option any Connectors that must exist in the context Classifier as a consequence of the bindings should be
shown.

11.7.5 Examples

Figure 11.50 shows the internal structure of the Collaboration named Observer, with two parts that are collaborationRoles
named subject and observer, and a Connector between them.

=T Observer Te—a
B e .
- -
- ~
s Y
/ A
| subject: CallQueue observer: SlidingBarlcon |
\
~ ,"
s -
- t - -

Figure 11.50 The internal structure of the Observer Collaboration

Figure 11.51 shows the alternative notation for definition of the parts of the Observer Collaboration, which allows the
details of the Classes CallQueue and SlidingBarlcon to be shown in the same definition. Any instance playing the
Subject collaborationRole must possess the Properties specified by CallQueue, and similarly for the Observer
collaborationRole. The example also shows a Constraint on Observer.

Unified Modeling Language 2.5.1 219



CallQueue —
g subjiect - N Sbeerver SlidingBarIcon
e | observer ———readng ke
capacity: Integer R = rangé: Interval

observer.reading = length(subject.queue)
observer.range = (0..subject.capacity)

]

Figure 11.51 Alternative notation for the parts of the Observer Collaboration.

The next example shows the definition of two Collaborations, Sale (Figure 11.52) and BrokeredSale (Figure 11.53).
Sale is used twice as part of the definition of BrokeredSale. Sale is a Collaboration among two collaborationRoles
(actually parts), a seller and a buyer. An interaction, or other Behavior specification, could be attached to Sale to specify
the steps involved in making a Sale.

Figure 11.52 The Sale Collaboration

BrokeredSale is a Collaboration among three collaborationRoles, a producer, a broker, and a consumer. The specification
of BrokeredSale shows that it consists of two CollaborationUses of the Sale Collaboration, indicated by the dashed
ellipses. The occurrence wholesale indicates a Sale in which the producer is the seller and the broker is the buyer. The
occurrence retail indicates a Sale in which the broker is the seller and the consumer is the buyer. The Connectors
between sellers and buyers are not shown in the two occurrences; these Connectors must exist in the BrokeredSale
Collaboration as a consequence of the Connector defined in Sale. The BrokeredSale Collaboration could itself be used
as part of a larger Collaboration.

< P ~

s - - s AN
7 /" wholesale: ~
4 — — Sale ™~ N
/ broker [— - 4 ~ p
buyer T
/ Y ~  seller \
et =
seller
i
1 \ producer
. \ |
. ,
N A /s
P ) /
AN / retail: N 7
~ / e
~ s

Sale

buyer

—

consumer

Figure 11.53 The BrokeredSale Collaboration

220

Unified Modeling Language 2.5.1



Figure 11.54 shows part of the BrokeredSale Collaboration using the optional «occurrence» notation.

e — «occurrence» T
P - e T Sale -
.~~~ BrokeredSale " y 5
e N !
7 \\ \x": buyer — seller /"
é 5 < e 7
/ \ T
' broker
—
| . T
" “~._| producer |-
N s
N Ed

Figure 11.54 A subset of the BrokeredSale Collaboration using «occurrence» and Dependency arrows

11.8 Classifier Descriptions

11.8.1 Association [Class]

11.8.1.1 Description

A link is a tuple of values that refer to typed objects. An Association classifies a set of links, each of which is an
instance of the Association. Each value in the link refers to an instance of the type of the corresponding end of the
Association.

11.8.1.2 Diagrams

Structured Classifiers, Associations, Profiles, Nodes, Properties, Link Actions

11.8.1.3 Generalizations
Relationship, Classifier
11.8.1.4 Specializations
AssociationClass, Extension, CommunicationPath

11.8.1.5 Attributes

¢ isDerived : Boolean [1..1] = false
Specifies whether the Association is derived from other model elements such as other Associations.

11.8.1.6 Association Ends

/endType : Type [1..*]{subsets Relationship::relatedElement} (opposite A_endType association::association)
The Classifiers that are used as types of the ends of the Association.

* memberEnd : Property [2..*]{ordered, subsets Namespace::member} (opposite Property::association)
Each end represents participation of instances of the Classifier connected to the end in links of the Association.

® navigableOwnedEnd : Property [0..*]{subsets Association::ownedEnd} (opposite

A navigableOwnedEnd association::association)
The navigable ends that are owned by the Association itself.

Unified Modeling Language 2.5.1 221



® ¢ ownedEnd : Property [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Association::memberEnd, subsets

Namespace::ownedMember} (opposite Property::owningAssociation)
The ends that are owned by the Association itself.

11.8.1.7 Operations

* endType() : Type [1..*]
endType is derived from the types of the member ends.

body: memberEnd->collect(type)->asSet()

11.8.1.8 Constraints

* specialized end number
An Association specializing another Association has the same number of ends as the other Association.

inv: parents()->select(oclIsKindOf (Association)).oclAsType(Association)->forAll(p |
p.memberEnd->size() = self.memberEnd->size())

* specialized_end_types
When an Association specializes another Association, every end of the specific Association corresponds to an
end of the general Association, and the specific end reaches the same type or a subtype of the corresponding
general end.

inv: Sequence{l..memberEnd->size()}->
forAll(i | general->select(oclIsKindOf (Association)).oclAsType(Association)->
forAll(ga | self.memberEnd->at(i).type.conformsTo(ga.memberEnd->at(i).type)))

* Dbinary associations
Only binary Associations can be aggregations.

inv: memberEnd->exists(aggregation <> AggregationKind::none) implies (memberEnd->size() = 2
and memberEnd->exists(aggregation = AggregationKind::none))

* association_ends
Ends of Associations with more than two ends must be owned by the Association itself.

inv: memberEnd->size() > 2 implies ownedEnd->includesAll (memberEnd)
* ends must be typed
inv: memberEnd->forAll (type->notEmpty())
11.8.2 AssociationClass [Class]

11.8.2.1 Description

A model element that has both Association and Class properties. An AssociationClass can be seen as an Association that
also has Class properties, or as a Class that also has Association properties. It not only connects a set of Classifiers but
also defines a set of Features that belong to the Association itself and not to any of the associated Classifiers.

11.8.2.2 Diagrams

Associations

222 Unified Modeling Language 2.5.1



11.8.2.3 Generalizations

Class, Association

11.8.2.4 Constraints

e cannot be defined
An AssociationClass cannot be defined between itself and something else.

inv: self.endType()->excludes(self) and self.endType()->collect(et]|
et.oclAsType(Classifier).allParents())->flatten()->excludes(self)

* disjoint_attributes_ends
The owned attributes and owned ends of an AssociationClass are disjoint.

inv: ownedAttribute->intersection(ownedEnd)->isEmpty ()

11.8.3 Class [Class]

11.8.3.1 Description

A Class classifies a set of objects and specifies the features that characterize the structure and behavior of those objects.
A Class may have an internal structure and Ports.

11.8.3.2 Diagrams

Classes, Associations, Components, Profiles, Nodes, Behaviors, Properties, Operations

11.8.3.3 Generalizations
BehavioredClassifier, EncapsulatedClassifier
11.8.3.4 Specializations
AssociationClass, Component, Behavior, Stereotype, Node

11.8.3.5 Attributes

® isAbstract : Boolean [1..1] = false
If true, the Class does not provide a complete declaration and cannot be instantiated. An abstract Class is
typically used as a target of Associations or Generalizations.

® isActive : Boolean [1..1] = false
Determines whether an object specified by this Class is active or not. If true, then the owning Class is referred
to as an active Class. If false, then such a Class is referred to as a passive Class.

11.8.3.6 Association Ends
® /extension : Extension [0..*]{} (opposite Extension::metaclass)
This property is used when the Class is acting as a metaclass. It references the Extensions that specify
additional properties of the metaclass. The property is derived from the Extensions whose memberEnds are

typed by the Class.

® ¢ nestedClassifier : Classifier [0..*]{ordered, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember}

Unified Modeling Language 2.5.1 223



11.8.3.7

11.8.3.8

(opposite A_nestedClassifier_nestingClass::nestingClass)
The Classifiers owned by the Class that are not ownedBehaviors.

¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets Namespace::ownedMember,
redefines StructuredClassifier::ownedAttribute} (opposite Property::class)
The attributes (i.e., the Properties) owned by the Class.

¢ ownedOperation : Operation [0..*]{ordered, subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember }

(opposite Operation::class)
The Operations owned by the Class.

+ ownedReception : Reception [0..*]{subsets Classifier::feature, subsets Namespace::ownedMember}

(opposite A_ownedReception_class::class)
The Receptions owned by the Class.

/superClass : Class [0..*]{redefines Classifier::general} (opposite A_superClass class::class)
The superclasses of a Class, derived from its Generalizations.

Operations

extension() : Extension [0..*]
Derivation for Class::/extension : Extension

body: Extension.alllnstances()->select(ext |

let endTypes : Sequence(Classifier) = ext.memberEnd->collect(type.oclAsType(Classifier))
in

endTypes->includes(self) or endTypes.allParents()->includes(self) )

superClass() : Class [0..*]
Derivation for Class::/superClass : Class

body: self.general()->select(oclIsKindOf(Class))->collect(oclAsType(Class))->asSet()

Constraints

passive_class
Only an active Class may own Receptions and have a classifierBehavior.

inv: not isActive implies (ownedReception->isEmpty() and classifierBehavior = null)

11.8.4 Collaboration [Class]
11.8.4.1 Description
A Collaboration describes a structure of collaborating elements (roles), each performing a specialized function, which
collectively accomplish some desired functionality.
11.8.4.2 Diagrams
Collaborations
11.8.4.3 Generalizations

224

StructuredClassifier, BehavioredClassifier

Unified Modeling Language 2.5.1



11.8.4.4 Association Ends

¢ collaborationRole : ConnectableElement [0..*]{subsets StructuredClassifier::role} (opposite
A_collaborationRole_collaboration::collaboration)
Represents the participants in the Collaboration.

11.8.5 CollaborationUse [Class]

11.8.5.1 Description

A CollaborationUse is used to specify the application of a pattern specified by a Collaboration to a specific situation.

11.8.5.2 Diagrams

Collaborations, Classifiers

11.8.5.3 Generalizations
NamedElement
11.8.5.4 Association Ends

® ¢ roleBinding : Dependency [0..*]{subsets Element::ownedElement} (opposite
A_roleBinding_collaborationUse::collaborationUse)
A mapping between features of the Collaboration and features of the owning Classifier. This mapping indicates
which ConnectableElement of the Classifier plays which role(s) in the Collaboration. A ConnectableElement
may be bound to multiple roles in the same CollaborationUse (that is, it may play multiple roles).

® type : Collaboration [1..1] (opposite A_type collaborationUse::collaborationUse)
The Collaboration which is used in this CollaborationUse. The Collaboration defines the cooperation between
its roles which are mapped to ConnectableElements relating to the Classifier owning the CollaborationUse.

11.8.5.5 Constraints

* client_elements
All the client elements of a roleBinding are in one Classifier and all supplier elements of a roleBinding are in
one Collaboration.

inv: roleBinding->collect(client)->forAll(nel, ne2 |
nel.oclIsKindOf (ConnectableElement) and ne2.oclIsKindOf (ConnectableElement) and
let cel : ConnectableElement = nel.oclAsType(ConnectableElement), ce2 :
ConnectableElement = ne2.oclAsType(ConnectableElement) in
cel.structuredClassifier = ce2.structuredClassifier)
and
roleBinding->collect(supplier)->forAll(nel, ne2
nel.oclIsKindOf (ConnectableElement) and ne2.oclIsKindOf (ConnectableElement) and
let cel : ConnectableElement = nel.oclAsType(ConnectableElement), ce2 :
ConnectableElement = ne2.oclAsType(ConnectableElement) in
cel.collaboration = ce2.collaboration)

* every role
Every collaborationRole in the Collaboration is bound within the CollaborationUse.

inv: type.collaborationRole->forAll(role | roleBinding->exists(rb | rb.supplier-
>includes(role)))

*  connectors
Connectors in a Collaboration typing a CollaborationUse must have corresponding Connectors between

Unified Modeling Language 2.5.1 225



elements bound in the context Classifier, and these corresponding Connectors must have the same or more
general type than the Collaboration Connectors.

inv: type.ownedConnector->forAll(connector |
let rolesConnectedInCollab : Set(ConnectableElement) = connector.end.role->asSet(),
relevantBindings : Set(Dependency) = roleBinding->select(rb | rb.supplier-
>intersection(rolesConnectedInCollab)->notEmpty()),
boundRoles : Set(ConnectableElement) = relevantBindings-
>collect(client.oclAsType(ConnectableElement))->asSet(),
contextClassifier : StructuredClassifier = boundRoles-
>any(true).structuredClassifier->any(true) in
contextClassifier.ownedConnector->exists( correspondingConnector |
correspondingConnector.end.role->forAll( role | boundRoles->includes(role) )
and (connector.type->notEmpty() and correspondingConnector.type->notEmpty())
implies connector.type->forAll (conformsTo(correspondingConnector.type)) )

)
11.8.6 Component [Class]

11.8.6.1 Description

A Component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment.

11.8.6.2 Diagrams
Components
11.8.6.3 Generalizations

Class

11.8.6.4 Attributes

¢ isIndirectlylnstantiated : Boolean [1..1] = true
If true, the Component is defined at design-time, but at run-time (or execution-time) an object specified by the
Component does not exist, that is, the Component is instantiated indirectly, through the instantiation of its
realizing Classifiers or parts.

11.8.6.5 Association Ends

® ¢ packagedElement : PackageableElement [0..*]{subsets Namespace::ownedMember} (opposite
A_packagedElement component::component)
The set of PackageableElements that a Component owns. In the namespace of a Component, all model
elements that are involved in or related to its definition may be owned or imported explicitly. These may
include e.g., Classes, Interfaces, Components, Packages, UseCases, Dependencies (e.g., mappings), and
Artifacts.

® /provided : Interface [0..*]{} (opposite A_provided component::component)
The Interfaces that the Component exposes to its environment. These Interfaces may be Realized by the
Component or any of its realizingClassifiers, or they may be the Interfaces that are provided by its public Ports.

® ¢ realization : ComponentRealization [0..*]{subsets Element::ownedElement, subsets

A_supplier_supplierDependency::supplierDependency } (opposite ComponentRealization::abstraction)
The set of Realizations owned by the Component. Realizations reference the Classifiers of which the

Component is an abstraction; i.e., that realize its behavior.

® /required : Interface [0..*]{} (opposite A_required component::component)
The Interfaces that the Component requires from other Components in its environment in order to be able to

226 Unified Modeling Language 2.5.1



offer its full set of provided functionality. These Interfaces may be used by the Component or any of its
realizingClassifiers, or they may be the Interfaces that are required by its public Ports.

11.8.6.6 Operations

¢ provided() : Interface [0..*]
Derivation for Component::/provided

body: let ris : Set(Interface) = allRealizedInterfaces(),

realizingClassifiers : Set(Classifier) = self.realization.realizingClassifier-
>union(self.allParents()->collect(realization.realizingClassifier))->asSet(),

allRealizingClassifiers : Set(Classifier) = realizingClassifiers-
>union(realizingClassifiers.allParents())->asSet(),

realizingClassifierInterfaces : Set(Interface) = allRealizingClassifiers->iterate(c;
rci : Set(Interface) = Set{} | rci->union(c.allRealizedInterfaces())),

ports : Set(Port) = self.ownedPort->union(allParents()->collect(ownedPort))-
>asSet (),

providedByPorts : Set(Interface) = ports.provided->asSet()
in ris->union(realizingClassifierInterfaces) ->union(providedByPorts)->asSet()

® required() : Interface [0..*]
Derivation for Component::/required

body: let uis : Set(Interface) = allUsedInterfaces(),

realizingClassifiers : Set(Classifier) = self.realization.realizingClassifier-
>union(self.allParents()->collect(realization.realizingClassifier))->asSet(),

allRealizingClassifiers : Set(Classifier) = realizingClassifiers-
>union(realizingClassifiers.allParents())->asSet(),

realizingClassifierInterfaces : Set(Interface) = allRealizingClassifiers->iterate(c;
rci : Set(Interface) = Set{} | rci->union(c.allUsedInterfaces())),

ports : Set(Port) = self.ownedPort->union(allParents()->collect(ownedPort))-
>asSet (),

usedByPorts : Set(Interface) = ports.required->asSet()
in uis->union(realizingClassifierInterfaces)->union(usedByPorts)->asSet()

11.8.6.7 Constraints

* no nested classifiers
A Component cannot nest Classifiers.

inv: nestedClassifier->isEmpty()

* no_packaged elements
A Component nested in a Class cannot have any packaged elements.

inv: nestingClass <> null implies packagedElement->isEmpty()

11.8.7 ComponentRealization [Class]

11.8.71 Description

Realization is specialized to (optionally) define the Classifiers that realize the contract offered by a Component in terms
of its provided and required Interfaces. The Component forms an abstraction from these various Classifiers.

11.8.7.2 Diagrams

Components
11.8.7.3 Generalizations

Realization

Unified Modeling Language 2.5.1 227



11.8.7.4 Association Ends

® abstraction : Component [0..1]{subsets Dependency::supplier, subsets Element::owner} (opposite

Component::realization)
The Component that owns this ComponentRealization and which is implemented by its realizing Classifiers.

® realizingClassifier : Classifier [1..*]{subsets Dependency::client} (opposite

A_realizingClassifier componentRealization::componentRealization)

The Classifiers that are involved in the implementation of the Component that owns this Realization.

11.8.8 ConnectableElement [Abstract Class]

11.8.8.1 Description

ConnectableElement is an abstract metaclass representing a set of instances that play roles of a StructuredClassifier.
ConnectableElements may be joined by attached Connectors and specify configurations of linked instances to be
created within an instance of the containing StructuredClassifier.

11.8.8.2 Diagrams

Structured Classifiers, Collaborations, Activities, Lifelines, Features, Properties

11.8.8.3 Generalizations

TypedElement, ParameterableElement

11.8.8.4 Specializations

Variable, Parameter, Property

11.8.8.5 Association Ends

® /end : ConnectorEnd [0..*]{} (opposite ConnectorEnd::role)
A set of ConnectorEnds that attach to this ConnectableElement.

* templateParameter : ConnectableElementTemplateParameter [0..1]{redefines

ParameterableElement::templateParameter} (opposite
ConnectableElementTemplateParameter::parameteredElement)

The ConnectableElementTemplateParameter for this ConnectableElement parameter.
11.8.8.6 Operations

* end() : ConnectorEnd [0..*]
Derivation for ConnectableElement::/end : ConnectorEnd

body: ConnectorEnd.allInstances()->select(role = self)
11.8.9 ConnectableElementTemplateParameter [Class]

11.8.9.1 Description

A ConnectableElementTemplateParameter exposes a ConnectableElement as a formal parameter for a template.

228 Unified Modeling Language 2.5.1



11.8.9.2 Diagrams

Structured Classifiers

11.8.9.3 Generalizations
TemplateParameter
11.8.9.4 Association Ends

® parameteredElement : ConnectableElement [1..1]{redefines TemplateParameter::parameteredElement }

(opposite ConnectableElement::templateParameter)
The ConnectableElement for this ConnectableElementTemplateParameter.

11.8.10 Connector [Class]

11.8.10.1 Description

A Connector specifies links that enables communication between two or more instances. In contrast to Associations,
which specify links between any instance of the associated Classifiers, Connectors specify links between instances
playing the connected parts only.

11.8.10.2 Diagrams

Structured Classifiers, Messages, Information Flows

11.8.10.3 Generalizations

Feature

11.8.10.4 Attributes

¢ /kind : ConnectorKind [1..1]
Indicates the kind of Connector. This is derived: a Connector with one or more ends connected to a Port which
is not on a Part and which is not a behavior port is a delegation; otherwise it is an assembly.

11.8.10.5 Association Ends

® contract : Behavior [0..*] (opposite A_contract connector::connector)
The set of Behaviors that specify the valid interaction patterns across the Connector.

® ¢ ecnd: ConnectorEnd [2..*]{ordered, subsets Element::ownedElement} (opposite
A_end connector::connector)
A Connector has at least two ConnectorEnds, each representing the participation of instances of the Classifiers
typing the ConnectableElements attached to the end. The set of ConnectorEnds is ordered.

* redefinedConnector : Connector [0..*]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedConnector_connector::connector)
A Connector may be redefined when its containing Classifier is specialized. The redefining Connector may
have a type that specializes the type of the redefined Connector. The types of the ConnectorEnds of the
redefining Connector may specialize the types of the ConnectorEnds of the redefined Connector. The
properties of the ConnectorEnds of the redefining Connector may be replaced.

® type : Association [0..1] (opposite A_type connector::connector)
An optional Association that classifies links corresponding to this Connector.

Unified Modeling Language 2.5.1 229



11.8.10.6 Operations

® kind() : ConnectorKind
Derivation for Connector::/kind : ConnectorKind

body: if end->exists(
role.oclIsKindOf (Port)
and partWithPort->isEmpty()
and not role.oclAsType(Port).isBehavior)
then ConnectorKind::delegation
else ConnectorKind::assembly
endif

11.8.10.7 Constraints

* types
The types of the ConnectableElements that the ends of a Connector are attached to must conform to the types
of the ends of the Association that types the Connector, if any.

inv: type<>null implies

let noOfEnds : Integer = end->size() in

(type.memberEnd->size() = noOfEnds) and Sequence{l..noOfEnds}->forAll(i | end-
>at(i).role.type.conformsTo(type.memberEnd->at(i).type))

* roles
The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be owned or
inherited roles of the Classifier that owned the Connector, or they must be Ports of such roles.

inv: structuredClassifier <> null
and
end->forAll( e | structuredClassifier.allRoles()->includes(e.role)
or
e.role.oclIsKindOf (Port) and structuredClassifier.allRoles()->includes(e.partWithPort))

11.8.11  ConnectorEnd [Class]
11.8.11.1 Description
A ConnectorEnd is an endpoint of a Connector, which attaches the Connector to a ConnectableElement.
11.8.11.2 Diagrams
Encapsulated Classifiers, Structured Classifiers
11.8.11.3 Generalizations

MultiplicityElement

11.8.11.4 Association Ends
¢ /definingEnd : Property [0..1]{} (opposite A_definingEnd connectorEnd::connectorEnd)
A derived property referencing the corresponding end on the Association which types the Connector owing this

ConnectorEnd, if any. It is derived by selecting the end at the same place in the ordering of Association ends as
this ConnectorEnd.

®  partWithPort : Property [0..1] (opposite A_partWithPort connectorEnd::connectorEnd)
Indicates the role of the internal structure of a Classifier with the Port to which the ConnectorEnd is attached.

230 Unified Modeling Language 2.5.1



® role: ConnectableElement [1..1] (opposite ConnectableElement::end)
The ConnectableElement attached at this ConnectorEnd. When an instance of the containing Classifier is
created, a link may (depending on the multiplicities) be created to an instance of the Classifier that types this
ConnectableElement.

11.8.11.5 Operations

¢ definingEnd() : Property [0..1]
Derivation for ConnectorEnd::/definingEnd : Property

body: if connector.type = null
then
null
else
let index : Integer = connector.end->indexOf(self) in
connector.type.memberEnd->at (index)
endif

11.8.11.6 Constraints

* role and part with port
If a ConnectorEnd references a partWithPort, then the role must be a Port that is defined or inherited by the
type of the partWithPort.

inv: partWithPort->notEmpty() implies
(role.oclIsKindOf (Port) and partWithPort.type.oclAsType(Namespace).member->includes(role))

* part with port empty
If a ConnectorEnd is attached to a Port of the containing Classifier, partWithPort will be empty.

inv: (role.oclIsKindOf(Port) and role.owner = connector.owner) implies partWithPort-
>isEmpty ()

¢ multiplicity
The multiplicity of the ConnectorEnd may not be more general than the multiplicity of the corresponding end

of the Association typing the owning Connector, if any.

inv: self.compatibleWith(definingEnd)

* self part with port
The Property held in self.partWithPort must not be a Port.

inv: partWithPort->notEmpty() implies not partWithPort.oclIsKindOf (Port)
11.8.12 ConnectorKind [Enumeration]

11.8.12.1 Description

ConnectorKind is an enumeration that defines whether a Connector is an assembly or a delegation.

11.8.12.2 Diagrams

®  Structured Classifiers

Unified Modeling Language 2.5.1 231



11.8.12.3 Literals

e assembly
Indicates that the Connector is an assembly Connector.

¢ delegation
Indicates that the Connector is a delegation Connector.

11.8.13 EncapsulatedClassifier [Abstract Class]

11.8.13.1 Description

An EncapsulatedClassifier may own Ports to specify typed interaction points.

11.8.13.2 Diagrams

Encapsulated Classifiers, Classes

11.8.13.3 Generalizations
StructuredClassifier

11.8.13.4 Specializations
Class

11.8.13.5 Association Ends

® ¢ /ownedPort : Port [0..*]{subsets StructuredClassifier::ownedAttribute} (opposite
A_ownedPort_encapsulatedClassifier::encapsulatedClassifier)
The Ports owned by the EncapsulatedClassifier.

11.8.13.6 Operations

¢ ownedPort() : Port [0..*]{ordered}
Derivation for EncapsulatedClassifier::/ownedPort : Port

body: ownedAttribute->select(oclIsKindOf (Port))->collect(oclAsType(Port))->asOrderedSet()

11.8.14 Port [Class]

11.8.14.1 Description

A Port is a property of an EncapsulatedClassifier that specifies a distinct interaction point between that
EncapsulatedClassifier and its environment or between the (behavior of the) EncapsulatedClassifier and its internal
parts. Ports are connected to Properties of the EncapsulatedClassifier by Connectors through which requests can be
made to invoke BehavioralFeatures. A Port may specify the services an EncapsulatedClassifier provides (offers) to its
environment as well as the services that an EncapsulatedClassifier expects (requires) of its environment. A Port may
have an associated ProtocolStateMachine.

11.8.14.2 Diagrams

Encapsulated Classifiers, Events, Invocation Actions

232 Unified Modeling Language 2.5.1



11.8.14.3 Generalizations

Property

11.8.14.4 Attributes

isBehavior : Boolean [1..1] = false

Specifies whether requests arriving at this Port are sent to the classifier behavior of this EncapsulatedClassifier.
Such a Port is referred to as a behavior Port. Any invocation of a BehavioralFeature targeted at a behavior Port
will be handled by the instance of the owning EncapsulatedClassifier itself, rather than by any instances that it

may contain.

isConjugated : Boolean [1..1] = false
Specifies the way that the provided and required Interfaces are derived from the Port’s Type.

isService : Boolean [1..1] = true

If true, indicates that this Port is used to provide the published functionality of an EncapsulatedClassifier. If
false, this Port is used to implement the EncapsulatedClassifier but is not part of the essential externally-visible
functionality of the EncapsulatedClassifier and can, therefore, be altered or deleted along with the internal
implementation of the EncapsulatedClassifier and other properties that are considered part of its
implementation.

11.8.14.5 Association Ends

protocol : ProtocolStateMachine [0..1] (opposite A_protocol_port::port)
An optional ProtocolStateMachine which describes valid interactions at this interaction point.

/provided : Interface [0..*]{} (opposite A_provided port::port)

The Interfaces specifying the set of Operations and Receptions that the EncapsulatedClassifier offers to its
environment via this Port, and which it will handle either directly or by forwarding it to a part of its internal
structure. This association is derived according to the value of isConjugated. If isConjugated is false, provided
is derived as the union of the sets of Interfaces realized by the type of the port and its supertypes, or directly
from the type of the Port if the Port is typed by an Interface. If isConjugated is true, it is derived as the union of
the sets of Interfaces used by the type of the Port and its supertypes.

redefinedPort : Port [0..*]{subsets Property::redefinedProperty} (opposite A_redefinedPort port::port)

A Port may be redefined when its containing EncapsulatedClassifier is specialized. The redefining Port may
have additional Interfaces to those that are associated with the redefined Port or it may replace an Interface by
one of its subtypes.

/required : Interface [0..*]{} (opposite A_required port::port)

The Interfaces specifying the set of Operations and Receptions that the EncapsulatedCassifier expects its
environment to handle via this port. This association is derived according to the value of isConjugated. If
isConjugated is false, required is derived as the union of the sets of Interfaces used by the type of the Port and
its supertypes. If isConjugated is true, it is derived as the union of the sets of Interfaces realized by the type of
the Port and its supertypes, or directly from the type of the Port if the Port is typed by an Interface.

11.8.14.6 Operations

provided() : Interface [0..*]
Derivation for Port::/provided

body: if isConjugated then basicRequired() else basicProvided() endif

Unified Modeling Language 2.5.1 233



¢ required() : Interface [0..*]
Derivation for Port::/required

body: if isConjugated then basicProvided() else basicRequired() endif

® basicProvided() : Interface [0..*]
The union of the sets of Interfaces realized by the type of the Port and its supertypes, or directly the type of the
Port if the Port is typed by an Interface.

body: if type.oclIsKindOf (Interface)

then type.oclAsType(Interface)->asSet()

else type.oclAsType(Classifier).allRealizedInterfaces()
endif

® DbasicRequired() : Interface [0..*]
The union of the sets of Interfaces used by the type of the Port and its supertypes.

body: type.oclAsType(Classifier).allUsedInterfaces()

11.8.14.7 Constraints

* port aggregation
Port.aggregation must be composite.

inv: aggregation = AggregationKind::composite

*  default value
A defaultValue for port cannot be specified when the type of the Port is an Interface.

inv: type.oclIsKindOf (Interface) implies defaultValue->isEmpty()

* encapsulated owner
All Ports are owned by an EncapsulatedClassifier.

inv: owner = encapsulatedClassifier

11.8.15  StructuredClassifier [Abstract Class]

11.8.15.1 Description

StructuredClassifiers may contain an internal structure of connected elements each of which plays a role in the overall
Behavior modeled by the StructuredClassifier.

11.8.15.2 Diagrams

Encapsulated Classifiers, Structured Classifiers, Collaborations

11.8.15.3 Generalizations
Classifier
11.8.15.4 Specializations

Collaboration, EncapsulatedClassifier

234 Unified Modeling Language 2.5.1



11.8.15.5 Association Ends

* ¢ ownedAttribute : Property [0..*]{ordered, subsets Classifier::attribute, subsets StructuredClassifier::role,
subsets Namespace::ownedMember} (opposite A_ownedAttribute structuredClassifier::structuredClassifier)
The Properties owned by the StructuredClassifier.

® ¢ ownedConnector : Connector [0..*]{subsets Classifier::feature, subsets
A_redefinitionContext redefinableElement::redefinableElement, subsets Namespace::ownedMember }
(opposite A_ownedConnector_structuredClassifier::structuredClassifier)
The connectors owned by the StructuredClassifier.

® /part : Property [0..*]{} (opposite A_part_structuredClassifier::structuredClassifier)
The Properties specifying instances that the StructuredClassifier owns by composition. This collection is
derived, selecting those owned Properties where isComposite is true.

® /role : ConnectableElement [0..*]{union, subsets Namespace::member} (opposite
A role_ structuredClassifier::structuredClassifier)
The roles that instances may play in this StructuredClassifier.

11.8.15.6 Operations

® part() : Property [0..*]
Derivation for StructuredClassifier::/part

body: ownedAttribute->select(isComposite)

¢ allRoles() : ConnectableElement [0..*]
All features of type ConnectableElement, equivalent to all direct and inherited roles.

body: allFeatures()->select(oclIsKindOf (ConnectableElement))-
>collect (oclAsType(ConnectableElement) )->asSet()

11.9 Association Descriptions

11.9.1 A_collaborationRole_collaboration [Association]

11.9.1.1 Diagrams
Collaborations
11.9.1.2 Owned Ends

® collaboration : Collaboration [0..*]{subsets A_role structuredClassifier::structuredClassifier} (opposite
Collaboration::collaborationRole)

11.9.2 A_connectableElement_templateParameter_parameteredElement
[Association]

11.9.21 Diagrams

Structured Classifiers

Unified Modeling Language 2.5.1 235



11.9.2.2 Member Ends
® ConnectableElement::templateParameter
¢ ConnectableElementTemplateParameter::parameteredElement

11.9.3 A_contract_connector [Association]

11.9.3.1 Diagrams

Structured Classifiers

11.9.3.2 Owned Ends

® connector : Connector [0..*] (opposite Connector::contract)

11.94 A_definingEnd_connectorEnd [Association]

11.9.4.1 Diagrams

Structured Classifiers

11.9.4.2 Owned Ends

® connectorEnd : ConnectorEnd [0..*] (opposite ConnectorEnd::definingEnd)

11.9.5 A_endType_association [Association]

11.9.5.1 Diagrams
Associations
11.9.5.2 Owned Ends

® association : Association [0..*]{subsets A_relatedElement_relationship::relationship} (opposite
Association::endType)

11.9.6 A_end_connector [Association]

11.9.6.1 Diagrams

Structured Classifiers

11.9.6.2 Owned Ends

¢ connector : Connector [1..1]{subsets Element::owner} (opposite Connector::end)

11.9.7 A_end_role [Association]

11.9.71 Diagrams

Structured Classifiers

236 Unified Modeling Language 2.5.1



11.9.7.2 Member Ends

® (ConnectableElement::end

®*  ConnectorEnd::role

11.9.8 A_extension_metaclass [Association]

11.9.8.1 Diagrams

Classes, Profiles

11.9.8.2 Member Ends
¢ (lass::extension
* Extension::metaclass

11.9.9 A_memberEnd_association [Association]

11.9.9.1 Diagrams

Associations, Properties

11.9.9.2 Member Ends

®  Association::memberEnd

®  Property::association

11.9.10 A_navigableOwnedEnd_association [Association]

11.9.10.1 Diagrams

Associations

11.9.10.2 Owned Ends

® association : Association [0..1]{subsets Property::owningAssociation} (opposite
Association::navigableOwnedEnd)

11.9.11  A_nestedClassifier_nestingClass [Association]

11.9.11.1 Diagrams

Classes

11.9.11.2 Owned Ends

® nestingClass : Class [0..1]{subsets NamedElement::namespace, subsets
RedefinableElement::redefinitionContext} (opposite Class::nestedClassifier)

Unified Modeling Language 2.5.1 237



11.9.12 A_ownedAttribute_class [Association]
11.9.12.1 Diagrams
Classes, Properties

11.9.12.2 Member Ends

®  (lass::ownedAttribute

® Property::class

11.9.13 A_ownedAttribute_structuredClassifier [Association]

11.9.13.1 Diagrams

Structured Classifiers

11.9.13.2 Generalizations

A_role_structuredClassifier

11.9.13.3 Owned Ends

® structuredClassifier : StructuredClassifier [0..1]{subsets NamedElement::namespace, subsets
A_attribute classifier::classifier, redefines A_role structuredClassifier::structuredClassifier} (opposite
StructuredClassifier::ownedAttribute)

11.9.14 A_ownedConnector_structuredClassifier [Association]

11.9.14.1 Diagrams

Structured Classifiers

11.9.14.2 Owned Ends

¢ structuredClassifier : StructuredClassifier [0..1]{subsets Feature::featuringClassifier, subsets
NamedElement::namespace, subsets RedefinableElement::redefinitionContext} (opposite
StructuredClassifier::ownedConnector)

11.9.15 A_ownedEnd_owningAssociation [Association]

11.9.15.1 Diagrams

Associations, Properties

11.9.15.2 Member Ends

®  Association::ownedEnd

® Property::owningAssociation

238 Unified Modeling Language 2.5.1



11.9.16 A_ownedOperation_class [Association]

11.9.16.1 Diagrams
Classes, Operations

11.9.16.2 Member Ends
® (lass::ownedOperation
® QOperation::class

11.9.17 A_ownedPort_encapsulatedClassifier [Association]
11.9.17.1 Diagrams
Encapsulated Classifiers

11.9.17.2 Owned Ends

® encapsulatedClassifier : EncapsulatedClassifier [0..1]{subsets
A_ownedAttribute structuredClassifier::structuredClassifier} (opposite EncapsulatedClassifier::ownedPort)

11.9.18 A_ownedReception_class [Association]

11.9.18.1 Diagrams

Classes

11.9.18.2 Owned Ends

¢ class : Class [0..1]{subsets Feature::featuringClassifier, subsets NamedElement::namespace} (opposite
Class::ownedReception)

11.9.19 A_packagedElement_component [Association]
11.9.19.1 Diagrams

Components
11.9.19.2 Owned Ends

¢ component : Component [0..1]{subsets NamedElement::namespace} (opposite Component::packagedElement)

11.9.20 A_partWithPort_connectorEnd [Association]
11.9.20.1 Diagrams
Encapsulated Classifiers

11.9.20.2 Owned Ends

¢ connectorEnd : ConnectorEnd [0..*] (opposite ConnectorEnd::partWithPort)

Unified Modeling Language 2.5.1 239



11.9.21 A_part_structuredClassifier [Association]

11.9.21.1 Diagrams

Structured Classifiers

11.9.21.2 Owned Ends

¢ structuredClassifier : StructuredClassifier [0..1] (opposite StructuredClassifier::part)

11.9.22 A_protocol_port [Association]
11.9.22.1 Diagrams

Encapsulated Classifiers
11.9.22.2 Owned Ends

¢ port : Port [0..*] (opposite Port::protocol)

11.9.23 A_provided_component [Association]
11.9.23.1 Diagrams
Components

11.9.23.2 Owned Ends

® component : Component [0..*] (opposite Component::provided)

11.9.24 A_provided_port [Association]

11.9.24.1 Diagrams

Encapsulated Classifiers

11.9.24.2 Owned Ends
® port: Port [0..*] (opposite Port::provided)

11.9.25 A_realization_abstraction_component [Association]
11.9.25.1 Diagrams

Components
11.9.25.2 Member Ends

¢ Component::realization

* ComponentRealization::abstraction

240 Unified Modeling Language 2.5.1



11.9.26 A_realizingClassifier_componentRealization [Association]
11.9.26.1 Diagrams
Components

11.9.26.2 Owned Ends

® componentRealization : ComponentRealization [0..*]{subsets NamedElement::clientDependency} (opposite
ComponentRealization::realizingClassifier)

11.9.27 A_redefinedConnector_connector [Association]

11.9.27.1 Diagrams

Structured Classifiers

11.9.27.2 Owned Ends

¢ connector : Connector [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Connector::redefinedConnector)

11.9.28 A_redefinedPort_port [Association]
11.9.28.1 Diagrams
Encapsulated Classifiers

11.9.28.2 Owned Ends
® port: Port [0..*]{subsets A_redefinedProperty property::property} (opposite Port::redefinedPort)
11.9.29 A_required_component [Association]

11.9.29.1 Diagrams

Components
11.9.29.2 Owned Ends

¢ component : Component [0..*] (opposite Component::required)

11.9.30 A_required_port [Association]
11.9.30.1 Diagrams

Encapsulated Classifiers
11.9.30.2 Owned Ends

® port: Port [0..*] (opposite Port::required)

Unified Modeling Language 2.5.1 241



11.9.31 A_roleBinding_collaborationUse [Association]

11.9.31.1 Diagrams

Collaborations

11.9.31.2 Owned Ends

¢ collaborationUse : CollaborationUse [0..1]{subsets Element::owner} (opposite CollaborationUse::roleBinding)

11.9.32 A_role_structuredClassifier [Association]

11.9.32.1 Diagrams

Structured Classifiers

11.9.32.2 Specializations

A_ownedAttribute structuredClassifier

11.9.32.3 Owned Ends

¢ /structuredClassifier : StructuredClassifier [0..*]{union, subsets
A_member_memberNamespace::memberNamespace } (opposite StructuredClassifier::role)

11.9.33 A_superClass_class [Association]

11.9.33.1 Diagrams

Classes

11.9.33.2 Owned Ends
® class: Class [0..*]{subsets A_general classifier::classifier} (opposite Class::superClass)

11.9.34 A_type_collaborationUse [Association]

11.9.34.1 Diagrams

Collaborations

11.9.34.2 Owned Ends
® collaborationUse : CollaborationUse [0..*] (opposite CollaborationUse::type)

11.9.35 A_type_connector [Association]

11.9.35.1 Diagrams

Structured Classifiers

11.9.35.2 Owned Ends

¢ connector : Connector [0..*] (opposite Connector::type)

242 Unified Modeling Language 2.5.1



12 Packages

121  Summary

Packages provide the main generic structuring and organizing capability of UML. There are specializations for Models
and for Profiles which organize extensions to UML.

12.2 Packages

12.2.1 Summary

This sub clause provides the specification for Packages and Models.

12.2.2 Abstract Syntax

| TemplateableElement | | Namespace | | PackageableElement |
{subsets ownedMember}
*| + packagedElement
Package {subset§ namespace}
+ URI : String [0..1] @ 2/ningPackage |
0..1
{subsets owningPackage} {subsets packagedElement}
+ package + /ownedType
o =|| Type
0..1 *
| DirectedRelationship
{subsets packagedElement}
+ /nestedPackage {subsets source, {subsets ownedElement,
" subsets owner} subsets directedRelationship}
+ receivingPackage + packageMerge
o 9 9 P 9 i PackageMerge
1
0.1 ® {subsets target} {subsets directedRelationship}
+ mergedPackage + packageMerge
+ nestingPackage 1
{subsets owningPackage} *

Model
+ viewpoint : String [0..1]

Figure 12.1 Packages

12.2.3 Semantics

12.2.3.1 Package

A Package is a namespace for its members, which comprise those elements associated via packagedElement (which are
said to be owned or contained), and those imported.

A Package definition can extend the contents of other Packages through the merging of the contained elements.

Unified Modeling Language 2.5.1 243



A Package may be defined as a template and bound to other templates: see sub clause 7.3, Templates, for further
information.

The URI can be specified to provide a unique identifier for a Package. Within UML there is no predetermined usage for
this, with the exception of profiles (see sub clause 12.3.3). It may, for example, be used by model management facilities
for model identification. The URI should hence be unique and unchanged once assigned. There is no requirement that
the URI be dereferenceable (though this is of course permitted).

12.2.3.2 PackageMerge

A PackageMerge is a directed relationship between two Packages that indicates that the contents of the target
mergedPackage are combined into the source receivingPackage according to a set of rules defined below. It is very similar
to Generalization in the sense that the source element conceptually adds the characteristics of the target element to its
own characteristics resulting in an element that combines the characteristics of both. Just as a subclass is not normally
depicted with its inherited features, a receiving Package is not normally depicted with the merged elements from its
mergedPackages. In terms of model semantics, there is no difference between a model with explicit PackageMerges, and
a model in which all the merges have been performed. Likewise XMI files containing PackageMerge are semantically
equivalent to the same XMI files with the PackageMerges expanded.

Also, as with Generalization, a Package may not merge itself (directly or indirectly).

This capability is designed to be used when elements defined in different Packages have the same name and are intended
to represent the same concept. A given base concept may be merged for different purposes, with each purpose defined in
a separate receiving Package. By selecting different receiving packages, it is possible to obtain a custom definition of a
concept for a specific end.

Thus, any reference to a model element contained in the receiving Package implies a reference to the results of the
merge rather than to the increment that is contained in that Package. This is illustrated by the example in Figure 12.2 in
which Package P2 defines an increment of Class A originally defined in P1. Package P2 merges the contents of Package
P1, which implies the merging of P1::A into increment P2::A. Package P3 defines a subclass of P2::A called SubA. In
this case, element A in Package P2 (P2::A) represents the result of the merge of P1::A into P2::A and not just the
increment P2::A.

NOTE. If another package were to import P1, then a reference to A in the importing package would represent P1::A
rather than the A resulting from merge.

o ) N

«merge» «import»
A [Eemmmmmmmmmmnn o] A [ - A <+—— SubA

Figure 12.2 lllustration of the Meaning of Package Merge

A PackageMerge can be viewed as an operation (that is itself a set of transformations) whereby the contents of the
Package to be merged are combined with the contents of the receiving Package. In cases in which certain elements in
the two Packages match (according to defined rules), their contents are (conceptually) merged into a single resulting
element according to the formal rules of PackageMerge specified below. This operation is akin to “copying down” the
features of superclasses into a subclass: the fully expanded subclass is the equivalent to the resulting package.

To understand the rules of PackageMerge, it is necessary to clearly distinguish between three distinct entities: the
mergedPackage (e.g., P1 in Figure 12.2), the receivingPackage (e.g., P2), and the result of the merge transformations (also
P2). The receivingPackage also plays the role of resultingPackage. This dual interpretation of the same model element can
be confusing, so it is useful to introduce the following terminology that aids understanding:

*  merged package - the package that is to be merged into the receiving package (this is the package that is the
target of the merge arrow in the diagrams).

244 Unified Modeling Language 2.5.1



*  receiving package - the package that, conceptually, contains the results of the merge (and which is the source
of the merge arrow in the diagrams). However, this term is used to refer to the package and its contents before
the merge transformations have been performed.

* resulting package - the package that, conceptually, contains the results of the merge. In the model, this is, of
course, the same package as the receiving package, but this particular term is used to refer to the package and
its contents after the merge has been performed.

*  merged element - refers to a model element that exists in the merged package.

*  receiving element - is a model element in the receiving package. If the element has a matching (as defined
below) merged element, the two are combined to produce the resulting element (see below). This term is used
to refer to the element before the merge has been performed.

*  resulting element - is a model element in the resulting package after the merge was performed. For receiving
elements that have a matching merged element, this is the combined element affer the merge was performed.
For merged elements that have no matching receiving element, this is the same as the merged element. For
receiving elements that have no matching merged element, this is the same as the receiving element.

*  element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or
StructuralFeature.

*  element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

This terminology is based on a conceptual view of PackageMerge that is represented by the schematic diagram in
Figure 12.3 (NB: this is not a UML diagram). The packagedElements (direct and indirect) of Packages A and B are all
incorporated into the namespace of Package B'. However, it is important to emphasize that this view is merely a
convenience for describing the semantics of PackageMerge and is not reflected in the stored model, that is, the physical
model itself is not transformed in any way by the presence of PackageMerges.

merged receiving
package package

| r_esilala : * /

| package

A A B
,T\ <. 77
' b N s g /
|
| /
| package /S
amerges ! merge
: ebecomesx»
|
|
|
|
I
|

-

2

|
B l B'
I

Figure 12.3 Conceptual View of the Package Merge Semantics

The semantics of PackageMerge are defined by a set of constraints and transformations. The constraints specify the
preconditions for a valid PackageMerge, while the transformations describe its semantic effects (i.e., postconditions). If
any constraints are violated, the PackageMerge is ill-formed and the model that contains it is invalid. Different element
metatypes have different semantics, but the general principle is always the same: a resulting element will not be any less

Unified Modeling Language 2.5.1 245



capable than it was prior to the merge: meaning, for instance, that the resulting navigability, multiplicity, visibility, etc.
of a receiving model element will not be reduced as a result of a PackageMerge. One of the key consequences of this is
that model elements in the resulting Package are compatible extensions of the corresponding elements in the
(unmerged) receiving package.

In this specification, explicit merge transformations are only defined for certain general element metatypes found
mostly in metamodels (Packages, Classes, Associations, Properties, etc.), as the semantics of merging other kinds of
element metatypes (e.g., state machines, interactions) are complex and domain specific. Elements of all other kinds of
metatypes are transformed according to the default rule: they are simply deep copied into the resulting package. (This
rule can be superseded for specific metatypes through profiles or other kinds of language extensions.)

12.2.3.3 General Package Merge Rules

A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1 There can be no cycles in the «merge» directed graph.
2 A Package cannot merge a Package in which it is contained (via owningPackage — direct or indirect).
3 A Package cannot merge a Package that it contains (via packagedElement — direct or indirect).

4 A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association,
Operation, Constraint, Enumeration, or EnumerationLiteral cannot have a receiving element with the same
name and metatype unless that receiving element is an exact copy of the merged element (i.e., they are the
same).

5 A PackageMerge is valid if and only if all the constraints (in this clause) required to perform the merge are
satisfied.

6  Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are Classes
or Datatypes, a conforming type is either the same type or a common supertype. For all other cases,
conformance means that the types must be the same.

7  Areceiving element cannot have explicit references to any merged element.
8  Any redefinitions associated with matching RedefinableElements must not be conflicting.

TRANSFORMATIONS:

1 (The default rule) Merged or receiving elements for which there is no matching element are deep copied into
the resulting package.

2 The result of merging two elements with matching names and metatypes that are exact copies of each other is
the receiving element.

3 Matching elements are combined according to the transformation rules specific to their metatype and the
results included in the resulting Package.

4 All type references to typed elements that end up in the resulting package are transformed into references to the
corresponding resulting TypedElements (i.e., not to their respective increments).

5 For all matching elements: if both matching elements have private visibility, the resulting element will have
private visibility; otherwise, the resulting element will have public visibility.

246 Unified Modeling Language 2.5.1



6  For all matching Classifier elements: if both matching elements have isAbstract = true, the resulting element
has isAbstract = true; otherwise, the resulting element has isAbstract = false.

7  For all matching Classifier elements: if both matching elements has isFinalSpecialization = true, the resulting
element has isFinalSpecialization = true; otherwise, the resulting element has isFinalSpecialization = false.

8  For all matching elements: if both matching elements are not derived, the resulting element is also not derived;
otherwise, the resulting element is derived.

9  For all matching MultiplicityElements: the lower bound of the resulting element is the lesser of the lower bounds
of the matching elements.

10 For all matching MultiplicityElements: the upper bound of the resulting element is the greater of the upper
bounds of the matching elements.

11 Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

12 For matching RedefinableElements: different redefinitions of matching RedefinableElements are all applied to
the resulting element.

13 For matching RedefinableElements: if both matching elements have isLeaf = true, the resulting element also
has isLeaf = true; otherwise, the resulting element has isLeaf = false.

12.2.34 Package Rules
Elements that are kinds of Package match by name and metatype
CONSTRAINTS:

1 All Classifiers in the merged Package must have a non-empty qualifiedName and have isDistinguishableFrom() =
true in the merged Package.

2 All Classifiers in the receiving Package must have a non-empty qualifiedName and have isDistinguishableFrom() =
true in the receiving Package.

TRANSFORMATIONS:

1 A nestedPackage from the merged Package is transformed into a nestedPackage with the same name and contents
in the resulting Package, unless the receiving Package already contains a nestedPackage that matches. In the
latter case, the merged nestedPackage is recursively merged with the matching receiving nestedPackage.

2 An ElementImport which is an elementimport of the receiving Package is transformed into a corresponding
ElementImport in the resulting Package. Imported elements are not merged (unless there is also a
PackageMerge to the Package owning the imported element).

12.2.3.5 Class and DataType Rules
Elements that are kinds of Class or DataType match by name and metatype.
TRANSFORMATIONS:

1 All Properties that are ownedAttributes of the merged Classifier are merged with the receiving Classifier to
produce the resulting Classifier according to the Property transformation rules specified below.

Unified Modeling Language 2.5.1 247



2 nestedClassifiers are merged recursively according to the same rules.

12.2.3.6 Property Rules

Elements that are kinds of Property match by name and metatype.
CONSTRAINTS:

1 The value of isStatic of matching Properties must be the same.
2 The value of isUnique of matching Properties must be the same.
3 Any Constraints associated with matching Properties must not be conflicting.

TRANSFORMATIONS:

1 For merged Properties that do not have a matching receiving Property, the resulting Property is a Property in
the resulting Classifier that is the same as the merged Property.

2 For merged Properties that have a matching receiving Property, the resulting Property is a Property with the
same name and characteristics except where these characteristics are different. Where these characteristics are
different, the resulting Property characteristics are determined by application of the appropriate transformation
rules.

3 For matching Properties: if both Properties have isReadOnly = true, the resulting Property also has isReadOnly =
true; otherwise, the resulting Property has isReadOnly = false.

4 For matching Properties: if both Properties have isOrdered = false, then the resulting Property also has isOrdered
= false; otherwise, the resulting Property has isOrdered = true.

5  For matching Properties: if neither Property is designated as a subset of some derived union, then the resulting
Property will not be designated as a subset; otherwise, the resulting Property will be designated as a subset of
that derived union.

6  For matching Properties: different Constraints of matching Properties are all applied to the resulting Property.

7  For matching Properties: if either the merged and/or receiving elements have isUnique = false, the resulting
element has isUnique = false; otherwise, the resulting element has isUnique = true.

8  The value of type for the resulting Property is transformed to refer to the corresponding type in the resulting
Package.

12.2.3.7 Association Rules
Elements that are kinds of Association match by name and metatype.
CONSTRAINTS:

1 These rules only apply to binary Associations. (For merging n-ary associations the default rule is used)

2 The receiving association end must have aggregation = composite if the matching merged association end has
aggregation = composite.

3 The receiving association end must be owned by the Association if the matching merged association end is
owned by the Association.

248 Unified Modeling Language 2.5.1



TRANSFORMATIONS:

1 A merge of matching Associations is accomplished by merging the Association classifiers (using the merge
rules for Classifiers) and merging their corresponding ownedEnd Properties according to the rules for Properties
and the following rule for association ends.

2 For matching association ends: if neither association end is in ownedNavigableEnd, then the resulting association
end is also not in ownedNavigableEnd. In all other cases, the resulting association end is in ownedNavigableEnd.

12.2.3.8 Operation Rules

Elements that are kinds of Operation match by name, Parameter order, and Parameter types, not including any return
type.

CONSTRAINTS:

1 Operation Parameters and their types must conform to the same rules for type and multiplicity as were defined
for Properties.

2 The receiving Operation must have isQuery = true if the matching merged Operation has isQuery = true.

TRANSFORMATIONS:

1 For merged Operations that do not have a matching receiving Operation, the resulting Operation is an
Operation with the same name and signature in the resulting classifier.

2 For merged Operations that have a matching receiving Operation, the resulting Operation is the outcome of a
merge of the matching merged and receiving Operations, with Parameter transformations performed according
to the Property transformations defined above.

12.2.3.9 Enumeration Rules

Elements that are kinds of EnumerationLiteral match by owning Enumeration and Literal name.
CONSTRAINTS:

1  Matching EnumerationLiterals must be in the same order.

TRANSFORMATIONS:

1  Non-matching EnumerationLiterals from the merged Enumeration are included in the receiving Enumeration.

12.2.3.10 Constraint Rules

CONSTRAINTS:

1 Constraints must be mutually non-contradictory.

TRANSFORMATIONS:

1 The Constraints of the merged model elements are all added to the Constraints of the matching receiving
model elements.

12.2.3.11 Model

A Model is a description of a system, where ‘system’ is meant in the broadest sense and may include not only software
and hardware but organizations and processes. It describes the system from a certain viewpoint (or vantage point) for a

Unified Modeling Language 2.5.1 249



certain category of stakeholders (e.g., designers, users, or customers of the system) and at a certain level of abstraction.
A Model is complete in the sense that it covers the whole system, although only those aspects relevant to its purpose
(i.e., within the given level of abstraction and viewpoint) are represented in the Model.

As a Package, a Model has a set of members that together describe the system being modeled. The organization of these
elements varies by the modeling method being used. One approach is one or more composition hierarchies where a top-
most Package/Component represents the boundary of the system. A Model may also contain elements describing
relevant parts of the system’s environment. The environment is typically modeled by Actors and their Interfaces. As
these are external to the system, they reside outside the Package/Component hierarchy. They may be collected in a
separate Package, or owned directly by the Model as packagedElements.

Different Models can be defined for the same system, where typically the different Models are complementary and
defined from the perspectives (viewpoints) of different system stakeholders. With composition of Models, a container
model represents a comprehensive view of the system given by the different views defined by the contained Models.

Models can have Abstraction Dependencies between them: refinement (stereotyped by «Refine» from the Standard
Profile) or mapping ( for example stereotyped by «Trace» from the Standard Profile). These are typically represented in
more detail by Dependencies between the elements contained in the Models. Relationships between elements in
different Models generally no direct impact on the contents of the Models because each Model is meant to be complete.
However, they are useful for tracing refinements and for keeping track of cross-references between models.

12.2.4 Notation

A Package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle: collectively this represents a ‘folder icon.” The members of the Package may be shown within the large
rectangle. Members may also be shown by branching lines to member elements, drawn outside the package. A plus sign
(+) within a circle is drawn at the end attached to the Package.

Conformant tools may restrict the use of these notations to packagedElements. Optionally, elements that become
available for use in an importing Package through a Packagelmport or an ElementImport may have a distinct color or be
dimmed to indicate that they are not packagedElements.

¢ If the members of the Package are not shown within the large rectangle, then the name of the Package should be

placed within the large rectangle.

¢ If the members of the Package are shown within the large rectangle, then the name of the Package should be
placed within the tab.

The visibility of a packagedElement may be indicated by preceding the name by a visibility symbol (‘+° for public and °-’
for private). Packages may not have protected or package visibility.

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showing a Package
with members need not necessarily show all its members; it may show a subset of the members according to some
criterion.

The URI for a Package may be indicated with the text {uri = <uri>} following the Package name.

A PackageMerge is shown using a dashed line with an open arrowhead pointing from the receivingPackage (the source)
to the mergedPackage (the target). In addition, the keyword «merge» is shown near the dashed line.

250 Unified Modeling Language 2.5.1



Target =

"w-ﬂ_x_ﬂ«merge»

Source

Figure 12.4 Notation for Package Merge

A Model is notated using the ordinary Package symbol (a folder icon) with a small triangle in the upper right corner of
the large rectangle.

Optionally, especially if the members of the Model are shown within the large rectangle, the triangle may be drawn to
the right of the Model name in the tab.

A Model may also be notated as a Package, using the ordinary Package symbol with the keyword «model» placed above
the name of the Model.

12.2.5 Examples

There are three alternative representations of the same Package named Types in Figure 12.5. The one on the left just
shows the Package without revealing any of its members. The middle one shows some of the members within the borders
of the Package rectangle (and also its URI), and the one to the right shows some of the members using the alternative
ownership notation.

) Types
] {uri=http://www.abc.com/models/Types} Types
Types Integer g
Time
Shape Point

Figure 12.5 Examples of a Package with Members

In Figure 12.6, packages P and Q are being merged by package R, while package S merges only package Q.

Unified Modeling Language 2.5.1 251



P Q
A A c
T 7

J
/| «merge» ;’:
B I
i/
I
!
]
R :
i i
«merges y S J «merge»
H“ ;
R || J D
L ]
A L‘
A B

Figure 12.6 Simple Example of Package Merge

The conceptually resulting packages R and S are shown in Figure 12.7. The expressions in square brackets indicate
which individual elements were merged to produce the final result, with the “@” character denoting the conceptual
merge ‘transformation’ as an operator, where X@Y signifies the resulting element from the merge transformation

applied to matching receiving element X and merged element Y.

NOTE. These expressions are not part of the standard notation, but are included here for explanatory purposes.

R S
D
[S::D]
A | ¢ B
[P-A@(Q-A@R:-A)] [Q:C]
\ c
’T [Q::C]
A
B [Q:A@S:ZA] 5
[P-B] [S:B]

Figure 12.7 Simple Example of Transformed Packages Following the Merges

In Figure 12.8, additional PackageMerges are introduced by having Package T, which has no packagedElements of its
own, merge Packages R and S defined previously.

252

Unified Modeling Language 2.5.1



R~~_  «merge»

-

“
=" amerge»

Figure 12.8 Introducing Additional Package Merges

In Figure 12.9, the conceptually resulting Package T is depicted. In this Package, the definitions of A, B, C, and D have
all been brought together.

NOTE. The types of the ends of the Associations that were originally in the packages Q and S have all been updated to
refer to the appropriate elements in Package T.

[5::D]

D

?

[(PrA@(Q:A@R:A))
@S:A]

A

[P:B@5S::B]

B

[Q::C]

Figure 12.9 Result of the Additional Package Merges

[ ]

[ 1

Client fier

VAN

Business

PAN

tier

1

Data tier

VAN

Figure 12.10 Three Models Representing Parts of a System

Unified Modeling Language 2.5.1

253



«model»
OrderEntry

VAN I\
Analysis Design
Model Model

Figure 12.11 Two Views of One System Collected in a Container Model

12.3  Profiles
12.3.1 Summary

The Profiles clause describes capabilities that allow metaclasses to be extended to adapt them for different purposes.
This includes the ability to tailor the UML metamodel for different platforms (such as J2EE or .NET) or domains (such
as real-time or Service Oriented Architecture). The Profiles clause is consistent with the OMG Meta Object Facility
(MOF).

12.3.1.1 Positioning Profiles versus Metamodels, MOF and UML

UML is reused at several meta-levels in various OMG specifications that deal with modeling. For example, MOF uses it
to provide the ability to model metamodels. This clause deals with use cases comparable to the MOF at the meta-meta-
level, which is one level higher than the rest of the superstructure specification. In order to allow this, the reference
metamodel must be defined as an instance of UML that corresponds to its definition using MOF. Thus when defining a
UML profile, the profile’s stereotypes are defined to extend the UML classes in the normative version of the UML
metamodel whose XMI serialization is referenced in Annex E.

Profiles are not a first-class extension capability (i.e., it does not allow for creating new metamodels). Rather, the
intention of Profiles is to give a straightforward mechanism for adapting an existing metamodel with constructs that are
specific to a particular domain, platform, or method. Each such adaptation is grouped in a Profile. It is not possible to
remove any of the Constraints that apply to UML using a Profile, but it is possible to add new Constraints that are
specific to the Profile. The only other restrictions are those inherent in this Profiles clause; there is nothing else that is
intended to limit the way in which a metamodel is customized.

First-class extensibility is handled through MOF, where there are no restrictions at the metamodel level: it is possible to
add subclasses and associations as necessary.

There are several reasons why you may want to extend UML:

*  Give a terminology that is adapted to a particular platform or domain (for example EJB terminology like
Home interfaces, Enterprise Java Beans, and Archives).

* Give a syntax for constructs that do not have a notation (such as in the case of Actions).

* Give a different notation for already existing symbols (such as being able to use a picture of a computer
instead of the ordinary Node symbol to represent a computer in a network).

*  Add additional semantics to UML or specific metaclasses.

*  Add types that do not exist in UML (such as defining a timer, clock, or continuous time).

254 Unified Modeling Language 2.5.1



* Add Constraints that restrict the way UML’s constructs are used (such as disallowing multiple

inheritance).

*  Add information that can be used when transforming a model to another model or code (such as defining
mapping rules between a model and Java code).

There is no simple answer for when to create a new metamodel, when to create a new profile, and when to create both
(one for UML tooling, the other for MOF-based tooling).

12.3.2

Abstract Syntax

DirectedRelationship

{subsets ownedElement, subsets
directedRelationship}

. T + profileApplicatior

+ isStrict : Boolean = false|

{subsets directedRelationship]

+ profileApplicatior | *

{subsets target}
+ appliedProfile\/1

{subsets source,
subsets owner}
+ applyingPackage

-

{readOnly}
+ /metaclass

{readOnly}

+ /extension J

l

Profile i
1 * + /isRequired : Boolean {readOnly}
{redefines owningPackage} ) {subsets owningAssociation]
+ owningPackage |1 1] * extension
{readOnly, srt;zssi epdasctlggidﬂeen'ept} {redefines ownedEnd}
typ {redefines type} 1|, + ownedEnd
+ /profile + stereotype r + type £
yPe  lo< |
<1 donly} * \ﬁﬁ‘ 1 + extensionEnd | + /lower : Integer [0..1] {redefines lower} |
readOnly
{subsets owner} {subsets typedElement}
{subsets subsets 0..1 | + stereotype
importingNamespace} importingNamespace}
+ profile 0.1 0.1 | + profile
{subsets ownedElement}
{subsets packageImport} {subsets elementImport} * + icon
+ metamodelReference ||, * *|, + metaclassReference Image
+ content : String [0..1]
[r t l Tmport | + format : String [0..1]
+ location : String [0..1]
Figure 12.12 Profiles
12.3.3 Semantics
12.3.3.1 Profiles

A Profile is a restricted form of metamodel that can be used to extend UML, as described below. The primary extension
construct is the Stereotype.

12.3.3.11 Restricting Availability of UML Elements

The metaclassReference ElementImports and metamodelReference Packagelmports may be used to specify the Profile’s
filtering rules. The filtering rules determine which UML elements are available when the Profile is applied and which
ones are hidden.

NOTE. Applying a Profile to a model does not change that model in any way; it merely defines a view of the
underlying model.

The effects of a metaclass being hidden (not available) are as follows:

Unified Modeling Language 2.5.1 255



* It is not possible to create new instances of that metaclass (or its subclasses).

* Existing instances of that metaclass (or its subclasses) can no longer be seen in diagrams or selected in lists,
including browser panes.

* Relationships with existing instances of that metaclass (or its subclasses) can no longer be seen in diagrams or
selected in lists, including browser panes.

Tools may vary in how they implement the above — for example they may hide the metaclass/instances completely in
selection lists or make them grayed out/unselectable .

In order for the filtering rules (described further below) on a Profile to be activated, the Profile must be applied in Strict
mode: specifically the isStrict attribute on the ProfileApplication must be set to true; otherwise the filtering rules are
ignored for this profile application.

The most common case is when a Profile imports UML itself using a metamodelReference. A conformant tool may
provide this as built-in behavior when the user creates a Profile. In that case, every UML metaclass is available.
Alternatively, specific metaclasses could be referenced through metaclassReferences and only those would then be
available. A further option is to use one or more metamodelReferences to Package(s) that contain ElementImports for a
subset of UML metaclasses. This allows the set to be reusable across many Profiles without having to specify individual
metaclassReferences each time.

The visibility and alias properties of ElementImports are ignored when it is used as a metaclassReference.

Where both a metaclassReference and a metamodelReference are present on a profile, the latter is ignored and only the
specific metaclasses are available.

In detail, the following rules are used to determine whether a model element is available after a Profile has been applied
in Strict mode. Metaclasses and their instances are available if they are:

1 referenced by an explicit metaclassReference, or

2 (in the absence of a metaclassReference) members (directly or transitively) of a Package that is referenced by an
explicit metamodelReference, or

3 extended by a Stereotype which is a member of the applied profile (even if the extended metaclass itself is not
available).

All other model elements are hidden (not available) when the Profile is applied in Strict mode.

This makes invalid the combination of applied profiles that specify non-overlapping (disjoint) sets of available
metaclasses.

If a Profile P1 imports another Profile P2, then all metaclassReference and metamodelReference associations will be
combined at the P1 level, and the filtering rules apply to this union. Stereotypes imported from another Profile using
ElementImport or PackageImport are added to the namespace members of the importing profile.Profile Contents.

A Profile can define or import Classes, Associations, DataTypes, PrimitiveTypes and Enumerations as well as
Stereotypes. More precisely all the constraints of a CMOF-compliant metamodel apply to a UML Profile. These are
defined in detail in Section 14.4 of the MOF Core Specification. The effect of these constraints is that, except for
Stereotypes and Extensions, all other Types defined or imported in a Profile must be exactly one of the Types explicitly
mentioned in the above subset and that no specialization outside this subset is allowed. The term Profile-defined Type
corresponds to a CMOF-compliant Class, Association, DataType, PrimitiveType or Enumeration defined or imported in
a Profile.

Profile-defined Types can only be used as the type of Properties in that Profile or as a general classifier of another
Profile-defined Type. They cannot be used as Types in models the Profile is applied to, such as the type of a
TypedElement, the classifier of an InstanceSpecification or the general or specific classifier in a Generalization

256 Unified Modeling Language 2.5.1



relationship. It is however possible to define these types in separate Packages and import them as needed in both
Profiles and model Packages in order to use them for both purposes.

Stereotypes can participate only in binary Associations. The opposite class can be another Stereotype, a non-Stereotype
Class that is a packagedElement of a Profile (directly or indirectly), or a UML metaclass. For these Associations there
must be an ownedAttribute Property typed by the opposite class. Where the opposite class is not a stereotype, the opposite
property must be an ownedMember of the Association itself rather than the other class/metaclass. The effect of these rules
is that Associations in a Profile are not required to involve a Stereotype but may not own both of their Ends. According
to CMOF-compliant metamodel constraints, Profile-defined binary Associations may have at most one end with
aggregation = AggregationKind::composite; other ends shall have aggregation = AggregationKind::none. Furthermore,
a Property of a Stereotype or Profile-defined Class can have composite aggregation if and only if its type is a Profile-
defined Class whereas a Property of a Stereotype or Profile-defined Class or DataType shall have aggregation =
AggregationKind::none if its type is a Profile-defined DataType, PrimitiveType, or Enumeration.

The most direct implementation of the Profile capability that a tool can provide is by having a metamodel based
implementation, similar to the Profile metamodel. However, this is not a requirement of the current standard, which
requires only the support of the specification, and the standard XMI based interchange capacities. The Profile capability
has been designed to be implementable by tools that do not have a metamodel-based implementation. Practically any
mechanism used to attach new values to model elements can serve as a valid profile implementation; however, creating
such values requires a limited metamodel-like capability for creating and referring to instances of Profile-defined
Classes and DataTypes as the values of Properties typed by such Classes or DataTypes and for referring to instances of
Profile-defined Classes for creating link instances of Profile-defined Associations. As an example, the UML1.4 profile
metamodel could be the basis for implementing a UML2-compliant profile tool.

12.3.3.1.2 Integrating and Extending Profiles

There is a number of ways to create, extend, and integrate Profiles. These are described briefly in this sub clause in
order to foster better profile integration and reuse.

The simplest form of Profile integration is to simply apply multiple Profiles to the same Package. This requires no
integration between the Profiles at all. Such Profiles might be designed to complement each other, addressing different
concerns.

It is also possible for one Profile to reuse all of or parts of another, and to extend other Profiles. Like any other Class,
Stereotypes can be defined in Packages or Profiles that can be factored for reuse. These Stereotypes can be directly
reused by being referenced or specialized in other Profiles. Normal rules apply as to whether a referenced Stereotype is
visible to users of the extending Profile.: a public import is needed to ensure that Stereotypes from other profiles are
visible after applying the extending one.

For example, the Unified Profile for DoDAF and MODAF (UPDM) Profile could integrate with the SysML Profile to
reuse Stereotypes such as Requirement and ViewPoint. UPDM could be designed to use ViewPoint in a manner that is
semantically consistent with SysML. However UPDM could extend ViewPoint with additional properties and
associations for its purposes. The UPDM specification could note to users that ViewPoint is a stereotype in UPDM that
represents a "placeholder” to ViewPoint in SysML. Users could then apply UPDM to a model, and get UPDM's
ViewPoint capabilities without any coupling with, or need for SysML. UPDM could then provide another compliance
point that merges with the SysML profile resulting in stereotypes Requirement and ViewPoint having the capabilities of
both profiles. The SysML::ViewPoint would be merged with the UPDM::ViewPoint allowing the shared semantics to be
supported without making any changes to the existing model. Users who want UPDM with SysML would then apply
this merged profile.

12.3.3.1.3 MOF-Equivalent Semantics

This sub clause specifies the semantics of Stereotypes and their instances using MOF. That does not mean that tools
need implement Profiles using MOF, but that a non-MOF-based implementation must do whatever is necessary under
the covers to ensure it behaves, in all observable ways, as if it were a MOF implementation.

The same mapping to MOF is used to determine how to serialize applied profiles using XMI. A Profile is an instance of
the UML2 metamodel, not a CMOF metamodel. Therefore the MOF to XMI mapping rules do not directly apply for
instances of a Profile. Figure 12.15 is an example of a mapping between a UML?2 Profile and an equivalent CMOF

Unified Modeling Language 2.5.1 257



model. This mapping is used as a means to explain and formally specify how Profiles are serialized and exchanged as
XMI. Using the following Profile to CMOF mapping rules, the XMI specification can be used to determine how
Profiles, and models with Profiles applied, are represented in XMI. In the mapping:

* A Profile maps to a CMOF Package.

* A Stereotype maps to a CMOF class with the same name and properties.

* A Metaclass is already a CMOF class so it maps to itself.

* An Extension maps to an Association as described in the Semantics sub clause of Extension.

*  Any other elements in the Profile (i.e., non-Stereotype Classes, DataTypes, PrimitiveTypes, Enumerations and
Associations) are treated as MOF elements.

* An instance of a Stereotype (created when the Stereotype is applied to an Element) maps to an instance of the
CMOF class representing the Stereotype. This stereotype instance is compositionally associated with the
Element to which it applies using a Link that is an instance of the composite Association to which the
Extension is mapped.

For a Profile the URI Property (inherited from Package) is used to determine the nsURI to be used to identify instances
of the Profile in XMI.

NOTE. By default the name attribute of the Profile is used for the nsPrefix in XMI but this can be overridden by the
CMOF tag org.omg.xmi.nsPrefix.

OMG normative Profiles, such as the UML Standard Profile, follow an OMG normative naming scheme for URIs. For
non-standard profiles a recommended convention is:

nsUri = http://<profileParentQualifiedName>/<version>/<profileName>.xmi
nsPrefix = <profileName>
where:

* <profileParentQualifiedName>is the qualified name of the Package containing the Profile (if any)
with / (forward slash) substituted for ::, and all other illegal XML QName characters removed.

e <version> isa version identifier.

NOTE. For OMG normative profiles this is a date in the format YYYYMMnn where nn is a serial number
within the month, and represents the version of the Profile XMI not that of the specification which might be re-
issued without affecting the XMI.

* <profileName> isthe name of the Profile.

A Profile can be exchanged just like any model, as an XMI file, and models that have a Profile applied can also be
interchanged.

Figure 12.19 shows a Stereotype named Home extending the Interface UML2 metaclass. Figure 12.15 illustrates the
MOF correspondence for that example, basically by introducing an Association from the Home MOF class to the
Interface MOF class. For illustration purposes, we add a Property “magic:String” to the Home Stereotype.

The first serialization below shows how the model in Figure 12.19 (definition of the Profile extending the UML2
metamodel) can be exchanged.

<?xml version="1.0" encoding="UTF-8"?>

258 Unified Modeling Language 2.5.1



<xmi:XMI xmlns:xmi=http://www.omg.org/spec/XMI/YYYYMMnn>
xmlns:mofext=http://www.omg.org/spec/MOF/YYYYMMnn xmlns:uml=http://www.omg.org/spec/UML/YYYYMMnn
<uml:Profile =xmi:id="id0" xmi:type="uml:Profile” name="HomeExample">
<metamodelReference xmi:type="uml:PackageImport” xmi:id="id2">
<importedPackage href="http://www.omg.org/spec/UMLYYYYMMnn/UML.xmi# 0" />
</metamodelReference >
<packagedElement xmi:type="uml:Stereotype" xmi:id="id3" name="Home">
<ownedAttribute xmi:type="uml:Property" xmi:id="id5" name="base Interface"
association="id6">
<type href="http://www.omg.org/spec/UML/YYYYMMnn/UML.xmi#Interface"/>
</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="id6" name="A Interface_Home"
memberEnd="id7 id5">
<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="id7" name="extension Home" type="id3"
aggregation="composite">
</ownedEnd>
</packagedElement>
</uml:Profile>
<mofext:Tag xmi:type="mofext:Tag” name="org.omg.xmi.nsPrefix" value="HomeExample"/>
<mofext:Tag xmi:type="mofext:Tag” name="org.omg.xmi.nsURI"
value="http://HomeExample/20120501/HomeExample.xmi" />
</xmi:XMI>

Figure 12.13 is an example model that includes an instance of Interface extended by the Home stereotype.

ChentPackaze

Home=
Client

—

Figure 12.13 Using the HomeExample Profile to Extend a Model

The XMI serialization of a model to which zero or more Profiles are applied is an XMI file organized in two
logical parts (which may be physically organized in any order within a file or in separate files):

1 the XMI serialization of the model,

2 the XMl serialization of the instances corresponding to each application of a Profile to the model or
some part of it.
Since deleting the application of Profiles applied to the model or some parts of it must not modify the XMI
serialization of the model itself, all XMI elements in Part (1) cannot have any XMI reference to any XMI
element in Part (2). Typically, the values of the applied Stereotype’s “base” properties and of properties typed
by metaclasses cause XMI elements corresponding to instances of Stereotypes in Part (2) to make reference
to XMI elements in Part (1). In general, Part (2) contains the following kinds of instances:

* Instances of Stereotypes (see the example in Figure 12.13).

* Optionally, instances of Extensions according to their MOF-equivalent mapping as composite
Associations.

* Instances of Profile-defined Classes and DataTypes. In particular, such instances should not be
confused, replaced, or substituted with InstanceSpecifications, which are a UML-based model
representation of instances but are not the same as, substitutable with or equivalent to the instances
that they represent.

* Optionally, instances of Profile-defined composite and non-composite Associations.

The XMI below shows how the model of Figure 12.13 is serialized in XMI. A tool importing that XMI file can filter out
the elements related to the HomeExample Profile, if the tool does not have this Profile definition.

<?xml version="1.0" encoding="UTF-8"?>

Unified Modeling Language 2.5.1 259



<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/YYYYMMnn"
xmlns:uml="http://www.omg.org/spec/UML/YYYYMMnn"
xmlns:HomeExample="http://HomeExample/20120501/HomeExample.xmi">
<uml:Package xmi:type="uml:Package” xmi:id="idl" name="ClientPackage">
<profileApplication xmi:type="uml:ProfileApplication” xmi:id="id3">
<appliedProfile href="http://HomeExample/20120501/HomeExample.xmi#id0" />
</profileApplication>
<packagedElement xmi:type="uml:Interface" xmi:id="id2" name="Client"/>
</uml:Package>
<!-- applied stereotypes -->
<HomeExample:Home xmi:id= "id4" base_Interface="id2"/>
</xmi:XMI>

12.3.3.2 Defining Profiles for Non-UML Metamodels

In theory the Profiles capability can be used to define extensions for metamodels other than UML, though this
capability has rarely, if at all, been used in practice. It would require any tooling implementing that metamodel to also
support some kind of profile application mechanism — that is outside the scope of this specification. The following
describes how the Profile definition mechanism may be used in this way.

In addition to UML, a Profile may be related to another MOF-compliant reference metamodel. In general a reference
metamodel typically consists of metaclasses that are either imported or locally owned. All metaclasses that are extended
by a profile have to be members (directly or indirectly) of the same reference metamodel. The metaclassReference
ElementImports and metamodelReference Packagelmports serve two purposes: (1) they identify the reference metamodel
elements that are imported by the profile and (2) they specify the Profile’s filtering rules. The filtering rules determine
which elements of the metamodel are available when the Profile is applied and which ones are Aidden.

NOTE. Applying a Profile does not change the underlying model in any way; it merely defines a view of the underlying
model.

In general, only model elements that are instances of imported reference metaclasses will be visible when the profile is
applied. Instances of all other metaclasses will be hidden and further instances may not be created. By default, model
elements whose metaclasses are owned by the reference metamodel are visible. This applies transitively to any
subpackages of the reference metamodel according to the default rules of package import. If any metaclass is imported
using a metaclassReference ElementImport, then model elements whose metaclasses are the same as that metaclass are
available. However, a metaclassReference blocks a metamodelReference whenever an element or Package of the referenced
metamodel is also referenced by a metaclass reference. In such cases, only the elements that are explicitly referenced by
the metaclassReference will be visible, while all other elements of the metamodel Package will be hidden.

The following rules are used to determine whether a model element is available or hidden after a Profile has been
applied. Model elements are available if they are instances of metaclasses that are:

1 referenced by an explicit metaclassReference, or

2 contained (directly or transitively) in a Package that is referenced by an explicit metamodelReference; unless
there are other elements of subpackages of that Package that are explicitly referenced by a MetaclassReference,
or

3 extended by a Stereotype owned by the applied profile (even if the extended metaclass itself is not visible).

All other model elements are hidden (not available) when the Profile is applied.

The most common case is when a Profile just imports an entire metamodel using a metamodelReference. In that case,
every element instantiating a metaclass in the metamodel is visible.

In the example in Figure 12.14, MyMetamodel is a metamodel containing two metaclasses: Metaclass1 and Metaclass2.
MyProfile is a profile that references MyMetamodel and Metaclass2. However, there is also an explicit metaclass
reference to Metaclass2, which overrides the metamodel reference. An application of MyProfile to some model based
on MyMetamodel will show instances of Metaclass2 (because it is referenced by an explicit metaclass reference). Also,
those instances of Metaclass| that are extended by an instance of MyStereotype will be visible. However, instances of
Metaclass] that are not extended by MyStereotype remain hidden.

260 Unified Modeling Language 2.5.1



1

wreferences | MyMetamodel

—— |

wprofiles MyProfile areferences

«Metaclassz
Metaclass2

«sterectypes
MyStereotype «Metaclasss
Metaclassi

\d

Figure 12.14 Specification of an Available Metaclass

If a Profile P1 imports another Profile P2, then all metaclassReference and metamodelReference associations will be
combined at the P2 level, and the filtering rules apply to this union.

The filtering rules defined at the Profile level are, in essence, merely a suggestion to modeling tools on what to do when
a profile is applied to a model.

The isStrict attribute on a ProfileApplication specifies that the filtering rules have to be applied strictly. If isStrict is true
on a ProfileApplication, then no other metaclasses than the accessible one defined by the profile shall be accessible
when the Profile is applied on a model. This prohibits the combination of applied profiles that specify different
accessible metaclasses.

12.3.3.3 ProfileApplication
A ProfileApplication is used to record which Profiles have been applied to a Package.

One or more Profiles that extend UML may be applied at will to a model Package. Applying a Profile means that it is
possible to apply the Stereotypes that are defined as part of the Profile. It is possible to apply multiple Profiles to a
Package, though this could make the Package invalid if they have conflicting Constraints. Applying a Profile means
recursively applying all its nested and imported Profiles. Stereotypes that are public members of a Profile may be applied
to applicable model elements in Packages to which the Profile has been applied.

When a Profile is applied, instances of the appropriate Stereotypes must be created for those elements that are instances
of metaclasses with ExtensionEnds which have isRequired = true. The model is not well-formed without these instances.

Once a Profile has been applied to a Package, it is allowed to remove the applied Profile at will. Removing a Profile
implies that all elements that are instances of Stereotypes defined in the Profile are deleted including the instances of
Profile-defined Classes they compositionally aggregate and the instances of Profile-defined composite Associations
linking them. Other instances that are not compositionally aggregated must also be deleted if their defining type is no
longer accessible from any other Profile applied to the same model. The removal of an applied Profile leaves the
instances of elements from the referenced metamodel intact. It is only the instances of the elements from the Profile that
are deleted. This means that for example a profiled UML model can always be interchanged with another tool that does
not support the profile and be interpreted as a pure UML model.

A Profile which is a packagedElement of another Profile can be applied individually. However, the nested Profile must
specify any required metaclass and/or metamodel references if it contains any Stereotypes and may use Packagelmport
to indicate other Profiles to be co-applied. Metaclass and/or metamodel references are not inherited from a containing
Profile.

12.3.3.4 Stereotypes

A Stereotype defines an extension for one or more metaclasses, and enables the use of specific terminology or notation
in place of, or in addition to, the ones used for the extended metaclasses. If a Stereotype extends several metaclasses, it
can only be applied to exactly one instance of one of those metaclasses at any point in time. It is, however, possible to
detach the Stereotype instance from an instance of one metaclass and attach it to an instance of another metaclass.

Unified Modeling Language 2.5.1 261



A Stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with
one of the metaclasses it extends. Each Stereotype may extend one or more metaclasses through association (Extension)
rather than generalization/specialization. Similarly, a metaclass may be extended by one or more Stereotypes. Relating
an instance “S” of Stereotype to a metaclass “C” from UML using an “Extension” (which is a specific kind of
Association) signifies that model elements of type “C” can be extended by an instance of “S” (see example in Figure
12.24 Defining a Stereotype). At the model level (such as in Figure 12.29) instances of “S” are related to “C” model
elements (instances of “C”) by links (occurrences of the Association/Extension from “S” to “C”).

Any metaclass referenced by a metaclassReference or contained in a Package referenced by metamodelReference of the
closest Profile directly or indirectly containing a Stereotype can be extended by the Stereotype. For example States,
Transitions, Activities, Use Cases, Components, Properties, Dependencies, etc. can all be extended with Stereotypes if
the metamodelReference is UML. A Stereotype may be contained in a Package in which case the metaclasses available for
extension are those referenced by the closest parent Profile containing the Package.

Just like a Class, a Stereotype may have Properties, which have traditionally been referred to as Tag Definitions. When
a Stereotype is applied to a model element, the values of the Properties have traditionally been referred to as tagged
values. Stereotype specializes Class and its Properties have the same meaning in Stereotypes as they do in Class. A
Stereotype Property can have composite aggregation; just like the value of a composite aggregation Property on a Class
is owned by an instance of that Class, the value of a composite aggregation Property on a Stereotype is owned by an
instance of that Stereotype. Since a profile can be unapplied without modifying the model it was originally applied to,
instances of metaclasses in the model cannot refer to instances of stereotypes or to values of their properties. The type
of a composite aggregation Stereotype Property cannot be a Stereotype (since Stereotypes are owned by their
Extensions) or a metaclass (since instances of metaclasses are owned by other instances of metaclasses); however, the
type of such Property can be a Class defined in the Profile or a DataType defined in the Profile or accessible via import
or via the Profile’s metamodel reference.Tool vendors may choose to support extensibility that includes owned
operations and behaviors, but are not required to do so. Tools must however support Stereotype ownedAttributes.

Its Profile or Package defines the namespace for the Stereotype. When Profiles are applied to a Package, the available
Stereotypes for use are defined by the applied Profiles, and these Stereotypes can be displayed using the fully qualified
name if needed in order to distinguish Stereotypes with the same name in different Profiles or Packages. Packagelmport
and ElementImport can be used to allow the use of unqualified names. Stereotypes directly owned by an applied Profile
(ownedStereotype) may be used without qualified names.

12.3.3.5 Images

The Image class provides the necessary information to display an Image in a diagram. Icons are typically handled
through the Image class.

Information such as physical placement or format is provided by the Image class. The Image class provides a generic
way of representing images in different formats. Although some predefined values are specified for format for
convenience and interoperability, the set of possible formats is open ended. However there is no requirement for a tool
to be able to interpret and display any specific format, including those predefined values.

The format property indicates the format of the content, which is how the string content should be interpreted. The
following values are reserved: SVG, GIF, PNG, JPG, WMF, EMF, BMP. In addition the prefix ‘MIME:’ is also
reserved: this must be followed by a valid MIME type as defined by RFC3023. This option can be used as an alternative
to express the reserved values above, for example “SVG” could instead be expressed “MIME: image/svg+xml.”

12.3.3.6 Extensions

An Extension is used to indicate that the properties of a metaclass are extended through a Stereotype, and gives the
ability to flexibly add (and later remove) stereotypes to classes.

Extension is a kind of Association. One end of the Extension is an ordinary Property and the other end is an
ExtensionEnd. The former ties the Extension to a (meta)Class, while the latter ties the Extension to a Stereotype that
extends the Class.

A required Extension (isRequired = true) means that an instance of this Stereotype must be linked to each instance of the
extended metaclass in the model to which the containing Profile has been applied (otherwise the model is not well-

262 Unified Modeling Language 2.5.1



formed). If the extending Stereotype has subclasses, then at most one instance of the Stereotype or one of its subclasses

is required.

A non-required Extension (isRequired = false) means that an instance of this Stereotype may be linked to an instance of

an extended metaclass at will, and also later deleted at will; however, there is no requirement that each instance of a
metaclass be stereotyped. However the same stereotype (or its subtypes) can never be applied twice to the same

element. An instance of a Stereotype is deleted when either the instance of the extended metaclass is deleted, or when

the Profile defining the stereotype is removed from the appliedProfiles of the Package.

The equivalence to a MOF construction for single metaclass extension is shown in Figure 12.15. This figure illustrates

the case shown in Figure 12.19, where the Stereotype named Home extends the Interface metaclass. In this figure,
Interface is an instance of the UML metaclass (a CMOF Class) and Home is an instance of a Stereotype (also

considered a CMOF Class for this purpose). The MOF construct equivalent to an Extension is a composition from the
extended metaclass to the extension Stereotype, owned by the extended metaclass. When the Extension is required, then

the multiplicity of the property typed by the extension Stereotype is 1.

The name of the Property typed by the extended metaclass is:

‘base_’ extendedMetaclassName

The name of the Property typed by the extension Stereotype (the ExtensionEnd) is:

‘extension_’ stereotypeName

Constraints are frequently added to Stereotypes. The above Properties may be used for expressing OCL navigations. For

example, the following OCL expression states that a Home Interface shall not have attributes:

self.base Interface.ownedAttributes->isEmpty()

Interface

base Interface

extension_Home

*

Figure 12.15 MOF Model Equivalent to Extending "Interface” by the "Home" Stereotype

An example for multiple metaclass extension is depicted in Figure 12.16. The Stereotype TestCase extends both

metaclass Operation and Behavior.

<<Metaclass>>
Operation

<<Metaclass>>
Behavior

NS

<<stereotypes>>
TestCase

0.1

Figure 12.16 Example of Multiple Metaclass Extension

The corresponding equivalence to a MOF construction for multiple metaclass extension is shown in Figure 12.17.

Unified Modeling Language 2.5.1

Home

263



base_Operation [0..1]
Operation o<

| extension_TestCase [0..1]

I xor TestCase

Behavior o<1 extension_TestCase [0..1]
base_Behavior [0..1]

Figure 12.17 MOF Model Equivalent to Multiple Metaclass Extension

12.3.3.7 ExtensionEnd

An ExtensionEnd is used to tie an Extension to a Stereotype when extending a metaclass: it is a navigableOwnedEnd of
the Extension, avoiding an extra ownedAttribute on the extended Class. It is always typed by a Stereotype and must
always have isComposite = true.

The default multiplicity of an ExtensionEnd is 0..1. It may be 1..1 if the Stereotype is required but the upperBound may
never be more than 1.

12.3.4 Notation

The notation for an Extension is an arrow pointing from a Stereotype to the extended Class, where the arrowhead is
shown as a filled triangle. An Extension may have the same adornments as an ordinary Association, but they are
typically elided and navigability arrows are never shown. If isRequired = true, the adornment {required} is shown near
the ExtensionEnd.

4—

Figure 12.18 The Notation for an Extension

It is possible to use the multiplicities 0..1 or 1 on the ExtensionEnd as an alternative to the adornment {required}. Due
to how isRequired is derived, the multiplicity 0..1 corresponds to isRequired = false.

A Profile uses the same notation as a Package, with the addition that the keyword «profile» is shown before or above
the name of the Package. Profile::metaclassReference and Profile::metamodelReference use the same notation as
Package::elementimport and Package::packagelmport, respectively but with the keyword «reference».

ProfileApplications are shown using a dashed arrow with an open arrowhead from the Package to each applied Profile.
Either the keyword «apply» is shown near the arrow, or the keyword «strict» - the latter if isStrict = true.

If multiple appliedProfiles have Stereotypes with the same name, it may be necessary to qualify the name of the
Stereotype (with the profile name).

A Stereotype uses the same notation as a Class, with the addition that the keyword «stereotype» is shown before or
above the name of the Class.

When a Stereotype is applied to a model element (an instance of a Stereotype is linked to an instance of a metaclass),
the name of the Stereotype is shown within a pair of guillemets above or before the name of the model element, or
where the name would appear if the name is omitted or not displayed. For model elements that are not NamedElements
but do have a graphical representation, unless specifically stated elsewhere, the stereotypes can be displayed within a
pair of guillemets near the upper right corner of the graphical representation. If multiple stereotypes are applied, the
names of the applied stereotypes are shown as a comma-separated list within a pair of guillemets. When the extended
model element has a keyword, then the stereotype name(s) will be displayed close to the keyword, within the same or
separate guillemets (example: «interface» «Clock» or «Clock, interface»).

Normally a Stereotype’s name starts with an upper-case letter, to follow the convention for naming Classes. However
Profiles may use different conventions. Matching between the names of Stereotype definitions and applications is case-
insensitive, so naming stereotype applications with lower-case letters where the stereotypes are defined using upper-

264 Unified Modeling Language 2.5.1



case letters is valid, although stylistically obsolete. For legacy reasons a tool may display stereotype names with the
initial letter in lower case even when defined in upper case.

A tool can choose whether it will display Stereotypes or not. In particular, tools can choose not to display required
stereotypes, but to display only the values of their ownedAttributes if any.

The values of the ownedAttributes of a Stereotype (or its generalizations) applied to a model element can be shown in one
of the following three ways:

1  As part of a comment symbol connected to the graphic node representing the model element.
2 In separate compartments of the graphic node representing that model element.
3 Above the name string within the graphic node or, else, before the name string.

In the case where a compartment or comment symbol is used, the stereotype name may be shown in guillemets before
the name string in addition to being included in the compartment or comment.
The values are displayed as name-value pairs:
<namestring> ‘=" <valuestring>
If a Stereotype Property is multi-valued, then the <valuestring> is displayed as a comma-separated list:
<valuestring> ::= <value> [*,” <value>]*
Certain values have special display rules:

*  Asan alternative to a name-value pair, when displaying the values of Boolean Properties, tools may
use the convention that if the <namestring> is displayed, then the value is true; otherwise, the value is
false.

¢ Ifthe value is the name of a NamedElement, then, optionally, the qualifiedName of that element can be
displayed.

If compartments are used to display Stereotype Property values, then an additional compartment is required for each
applied Stereotype whose Property values are to be displayed. Each such compartment is headed by the name of the
applied stereotype in guillemets. Such compartments are only applicable to elements for which compartments generally
may be used: specifically Classifiers and States.

Within a comment symbol, or, if displayed before or above the model element’s name, the Property values from a
specific Stereotype are optionally preceded with the name of the applied Stereotype within a pair of guillemets. This is
useful if values of more than one applied stereotype should be shown.

When displayed in compartments or in a comment symbol, at most one namestring-valuestring pair can appear on a
single line. When displayed above or before a model element’s name, the name-value pairs are separated by semicolons
and all pairs for a given stereotype are enclosed in braces.

12.3.4.1 Icon presentation

It is possible to attach Images to a Stereotype that can be used in lieu of, or in addition to, the normal notation of a
model element to which the Stereotype is applied.

When a Stereotype has a value for icon, the referenced Image can be graphically attached to the model elements to
which the Stereotype has been applied. Every model element that has a graphical presentation can have an attached
icon. When model elements are graphically expressed as:

* Boxes (see Figure 12.25): the box may be replaced by the Image, and the name of the model element
appears below the Image. This presentation option can be used only when a model element has one

Unified Modeling Language 2.5.1 265



single Stereotype applied and when Properties of the model element (e.g., ownedAttributes,
ownedOperations of a Class) are not presented. As another option, the Image may be presented in a
reduced size, inside and to the top of the box representing the model element. When several
Stereotypes are applied, several Images may be presented within the box.

* Lines: the Image may be placed close to the line.
¢  Textual notation: the Image may be presented to the left of the textual notation.

Several Images may be referenced by a Stereotype’s icon Property. The interpretation of the different attached Images in
that case is a semantic variation point. Some tools may use the different Images for different purposes: the icon
replacing the box, for the reduced-size icon inside the box, for icons within tree browsers, etc. Alternatively, depending
on the Image format, tools may choose to scale one single Image into different sizes for these different purposes.

Some model elements already use an icon for their default presentation. A typical example of this is the Actor model
element, which uses the “stickman” icon. When a Stereotype with an icon is applied to such a model element, the
Stereotype’s icon replaces the default presentation icon within diagrams.

12.3.5 Examples

In Figure 12.19, a simple example of using an Extension is shown, where the stereotype Home extends the metaclass
Interface.

«stereotype»
Interface o typ
Home

Figure 12.19 Example of Using an Extension

An instance of the stereotype Home can be added to and removed from an instance of the class Interface at will, which
provides for a flexible approach of dynamically adding (and removing) information specific to a Profile to a Package.

In Figure 12.20, each instance of metaclass Component in a model to which the Profile has been applied must have
applied an instance of the stereotype Bean, as the Extension has isRequired = true. (As the stereotype Bean is abstract,
this means that each instance of metaclass Component must be stereotyped by an instance of one of its concrete
subclasses.) The model is not well-formed unless such a Stereotype is applied. This provides a way to express
Extensions that should always be present for all instances of the base metaclass depending on which Profiles are
applied.

{required} ustereotype»

Component
P Bean

Figure 12.20 Example of a Required Extension

In Figure 12.21, a simple example of an EJB profile is shown.

266 Unified Modeling Language 2.5.1



aprofiles EJB
. aMetaclasss | asterectypes
uMetaclassy {requirad) asierectypes Artifact JAR
Component - Bean
A astereotypes
’—hr—‘ fl,--" Remaote
Metacd |k
aMetaclasss
aSiEreotypes xStSe pre.- Interface
Entity SSlon [¥-—__| asterectypes
state: Statekind Home
{A companent [, -
cannot be wenumerations TA bean must
generalized or StateKind realize exactly
specialized)} N one Home
5-3139“!'55 interface}
stateful

Figure 12.21 Defining a Simple EJB Profile

The Profile defines that the abstract stereotype Bean is required to be applied to metaclass Component, which means
that an instance of either of the concrete subclasses Entity and Session of Bean must be linked to each instance of
Component. The Constraints that are part of the Profile are evaluated when the Profile is applied to a Package, and these
Constraints need to be satisfied in order for the model to be well-formed.

Types
aenumerations
Color Javainteger
red
green
Diue:
«impoits alm;
aprofies Manuractursr /
Factory
1E’I:'E’i'ﬂ:li ' aDevicEs
‘ ’ = eappiys ™ —
Class author: 5iring ] - N wolume=10
coion, Coior channed: Javalnteger
wolume; Javainteger

Figure 12.22 Importing a Package from a Profile

In Figure 12.22, the Package named Types is imported by the Profile named Manufacturer. The Enumeration named
Color and the Class named Javalnteger are then used as the type of Properties of the Stereotype named Device as well
as the standard PrimitiveType String.

If the Profile Manufacturer is later applied to a Package, then the types from Types are not available for use in the
Package to which the Profile is applied unless package Types is explicitly imported. This means that the class
Javalnteger can be used as the type of a Stereotype Property (e.g., in Device) but not as an ordinary Property (as part
of the Class TV) unless Package Factory also imports Package Types (which it does).

NOTE. The value of the volume Property is displayed once the Stereotype Device has been applied to the Class TV.

Given the profiles Java and EJB, Figure 12.23shows how these may be applied to the Package WebShopping.

Unified Modeling Language 2.5.1 267



1
wprofiles
Java aprofiles
T EJB
wapplys', E
/" wapplys
1
WebShopping

Figure 12.23 Profiles Applied to a Package

In Figure 12.24, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class.

aMetaclasss

ustersotypes

Clock

Class

CiSVersion: String
startCperation: Operation
POSICompliant: Boolean

Figure 12.24 Defining a Stereotype

aClocks @
StopWatch StopWatch

«Creator, Clocks % '®
StopWatch StopWatch

o)

StopWatch

Figure 12.25 Presentation Options for an Extended Class

In Figure 12.26, an instance diagram of the example in Figure 12.24 is shown.

NOTE. The ExtensionEnd must be composite, and that the derived isRequired Property in this case is false.

Figure 12.26 shows the instances representing the definition of the Stereotype named Clock defined in Figure 12.24. In
this definition, the extended metaclass (:Class; “name = Class”) is defined in the UML2 metamodel (reference
metamodel). In a UML modeling tool this representation of the UML2 standard metamodel would typically be in a
“read only” form, or presented as proxies to the metaclass being extended.

(It is therefore still at the same meta-level as UML, and does not show the instance model of a model extended by the
stereotype. An example of this is provided in Figure 12.28 and Figure 12.29.) The Semantics sub clause of the
Extension concept explains the MOF equivalent, and how constraints can be attached to stereotypes.

Class

name = "Class”

tyoe

ownadAatricute

Property

:Extenslon

memberEnd

IsComposhe-false

isRequired-false

ownedEnd,

memberEnd|

Figure 12.26 An Instance Diagram when Defining a Stereotype

268

‘Sterectype :Property type :PrimiiveType
Name="Clock” name="0SVersipn® name="String"
type
Propery type Class
:ExtanslonEnd
name="starCoperation” name="Op2ration”
leCompaosite~true
Property type | EHDENETYDS

ownedatinbute

name="FOSIXComplant”

name="Boolean”

Unified Modeling Language 2.5.1



Figure 12.27 shows how the same Stereotype named Clock extends both the metaclass Component and the metaclass
Class (though each instance of the Stereotype can extend only one model element). It also shows how different
Stereotypes can extend the same metaclass.

esiereciypes
Cloak
albtaciasss.
Component " C3Version: Eiring
ssartOperation: Cperaton
PCaDCompliant: Boclean
alMetaciasss ST T
Creador
Clacc -
{required} | author: String
date: 2iring

Figure 12.27 Defining Multiple Stereotypes on Multiple Stereotypes

Figure 12.28 shows how the Stereotype Clock, as defined in Figure 12.27, is applied to a Class named StopWatch.

wClocks
StopWatch

Figure 12.28 Using a Stereotype

Figure 12.29 shows the underlying semantics for when the Stereotype named Clock is applied to a class called
StopWatch. The right-hand side uses instance diagram notation to show the MOF-equivalent instances that should be
used to understand the behavior and XMI serialization of the UML diagram on the left. The Extension between the
Stereotype and the metaclass Class results in a link between the instance of Stereotype Clock and the (user-defined)
Class named StopWatch.

-

eClocks P . -
stopWatoh Llss extension_Clock

base_Class

ogversion="332"
FOEIXCompllant=False

namz="StopWatch®

«Clocks
OEVersion="3.32"
startOperatione Clck

ewnedOperation

Qpsraton

stanCperation

name="CicE”

Figure 12.29 Showing Values of Stereotypes and a Simple Instance Specification

Next, two stereotypes, Clock and Creator, are applied to the same model element, as shown in Figure 12.30.

NOTE. The Property values of each of the applied Stereotypes are shown in a comment symbol attached to the model
element.

aClocks
aClock, Creators OSWersion="3.32"
StopWatch startOperation=Click
aCreators
Click(} name="Jones"
date="04-04-04"

Figure 12.30 Using Stereotypes and Showing Values

Finally, two more alternative notational forms are shown in Figure 12.31.

Unified Modeling Language 2.5.1 269



wClocks

AlarmClock
wClocks
Start() {POSIXCompliant}
AlarmClock
aClocks
OSVersion="1.1" Start()

stantOperation=5tart
POSLXCompliant=True

Figure 12.31 Other Notational Forms for Depicting Stereotype Values

Figure 12.32 shows an example of a profile with profile-defined classes and binary composite and noncomposite
associations.

«metaclass» + relatedElement —1 «import> «metamodel»
Element - IssuesProfile| " ) uml
*

A

* | + issueTag

«stereotype» IssueDetail + issueDetail + issueComment IssueComment
IssueTag : + number : Integer {isID=true} e + number : Integer {isID=true}
+ reviewed : Boolean = false + issueTag + aff By + url : String 1 * + text : String
. . + text : String
+ issueDetail
+ issueTag + issueDetail
> T .

1
+ duplicatesIssue *

Figure 12.32 Example of a Profile defining Classes and binary composite and non-composite Associations

The following shows the XMI serialization of the profile shown in Figure 12.32:

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/YYYYMMnn"
xmlns:uml="http://www.omg.org/spec/UML/YYYYMMnn"
xmlns:mofext="http://www.omg.org/spec/MOF/YYYYMMnn">
<uml:Profile xmi:type="uml:Profile"
URI="http://www.example.org/IssuesProfile"
xmi:id="1id0"
name="IssuesProfile"
metamodelReference="1d309">
<packageImport xmi:id="id309">
<importedPackage xmi:type="uml:Model"
href="http://www.omg.org/spec/UML/YYYYMMnn/UML.xmi# 0" />
</packageImport>
<packagedElement xmi:type="uml:Class"
xmi:id="id312"
name="IssueDetail">
<ownedAttribute xmi:id="id315" name="number">
<type xmi:type="uml:PrimitiveType"
href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#Integer" />
</ownedAttribute>
<ownedAttribute xmi:id="id318" name="url">
<type xmi:type="uml:PrimitiveType"
href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#String" />
</ownedAttribute>
<ownedAttribute xmi:id="1id321" name="text">
<type xmi:type="uml:PrimitiveType"
href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#String" />
</ownedAttribute>
<ownedAttribute xmi:id="id324"
name="issueComment"
type="1id343"
aggregation="composite"
association="1id352">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1d328"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1id331"/>
</ownedAttribute>

270 Unified Modeling Language 2.5.1



<ownedAttribute xmi:id="1id334"
name="duplicatesIssue"
type="1id312"
association="1id364">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="id337"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d340"/>
</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Class"
xmi:id="1id343"
name="IssueComment">
<ownedAttribute xmi:id="1id346" name="number">
<type xmi:type="uml:PrimitiveType"

href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#Integer" />

</ownedAttribute>
<ownedAttribute xmi:id="id349" name="text">
<type xmi:type="uml:PrimitiveType"

href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#String" />

</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="id352"
name="A_ issueDetail_ issueComment”
memberEnd="1id324 id355">
<ownedEnd xmi:id="id355"
name="issueDetail"
type="id312"
association="id352"/>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="id364"
name="A_issueDetail duplicatesIssue"
memberEnd="1id334 id367">
<ownedEnd xmi:id="id367"
name="issueDetail"
type="id312"
association="id364">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1id371"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d374"/>
</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Stereotype"
xmi:id="1id377"
name="IssueTag">
<ownedAttribute xmi:id="id380"
name="base_Element"
association="id418">
<type xmi:type="uml:Class"
href="http://www.omg.org/spec/UML/YYYYMMnn/UML.xmi#Element" />
</ownedAttribute>
<ownedAttribute xmi:id="id383" name="reviewed">
<type xmi:type="uml:PrimitiveType"

href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#Boolean" />

<defaultValue xmi:type="uml:LiteralBoolean" xmi:id="1id386"/>
</ownedAttribute>
<ownedAttribute xmi:id="1id389"
name="issueDetail"
type="1id312"
aggregation="composite"
association="id424">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1d393"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d396"/>
</ownedAttribute>
<ownedAttribute xmi:id="1id399"
name="affectedBy"
type="1id312"
association="1id436">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1d403"

Unified Modeling Language 2.5.1

271



value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d406"/>
</ownedAttribute>
<ownedAttribute xmi:id="id409"
name="relatedElement"
association="id448">
<type xmi:type="uml:Class"
href="http://www.omg.org/spec/UML/YYYYMMnn/UML.xmi#Element" />
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="id412"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d415"/>
</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Extension"
xmi:id="id418"
name="Element_ IssueTag"
memberEnd="1id421 id380">
<ownedEnd xmi:type="uml:ExtensionEnd"
xmi:id="1id421"
name="extension_IssueTag"
type="1id377"
aggregation="composite"
association="1id418"/>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="1id424"
name="A_ issueTag_ issueDetail"
memberEnd="id389 id427">
<ownedEnd xmi:id="id427"
name="issueTag"
type="1id377"
association="id424"/>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="1id436"
name="A_ issueTag_ affectedBy"
memberEnd="id399 id439">
<ownedEnd xmi:id="id439"
name="issueTag"
type="1id377"
association="1id436">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1id442"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1d445"/>
</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="1id448"
name="A_issueTag_relatedElement”
memberEnd="id409 id451">
<ownedEnd xmi:id="id451"
name="issueTag"
type="1id377"
association="id448">
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="1id454"
value="*"/>
<lowerValue value="0"
xmi:type="uml:LiteralInteger"
xmi:id="1id457"/>
</ownedEnd>
</packagedElement>
</uml:Profile>
<mofext:Tag xmi:type="mofext:Tag"
org.omg.xmi.nsURI="http://www.example.org/IssuesProfile"/>
<mofext:Tag xmi:type="mofext:Tag"
org.omg.xmi.nsPrefix="IssuesProfile"/>
</xmi :XMI>

Figure 12.33 shows an example of applying the profile shown in Figure 12.32.

272 Unified Modeling Language 2.5.1



IssueExample

«[ssueTag»

A <l

' «apply»

«[ssueTag»

1

B

IssuesProfile

«[ssueTag»
B

+ width
+ length

+ x : String
+y

Figure 12.33 Diagram example of applying a profile defining Classes and Associations and of creating instances
of such Classes. Tools can provide a notation similar to that of object diagrams for instances of Profile-defined

Classes, DataTypes and Associations

The following shows the XMI serialization of the example shown in Figure 12.33 without link instances of profile-

defined associations:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/YYYYMMnn"
xmlns:uml="http://www.omg.org/spec/UML/YYYYMMnn"
xmlns:IssuesProfile="http://www.example.org/IssuesProfile">

<uml:Package xmi:id="ex0"

name="IssueExample">

<packagedElement xmi:type="uml:Class" xmi:id="ex57" name="B">

<generalization xmi:id="ex60" general="ex65"/>
<ownedAttribute xmi:id="ex63"

name="x">

<type xmi:type="uml:PrimitiveType"

href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#String" />

</ownedAttribute>

<ownedAttribute xmi:id="ex64" name="y"/>

</packagedElement>

<packagedElement xmi:type="uml:Class" xmi:id="ex65" name="A">

<ownedAttribute xmi:id="ex69"

name="width"/>

<ownedAttribute xmi:id="ex70" name="length"/>

</packagedElement>

<profileApplication xmi:id="ex77">
<appliedProfile href="http://www.example.org/IssuesProfile#id0"/>

</profileApplication>
</uml:Package>

<IssuesProfile:IssueTag xmi:id="ex66"
base_Element="ex65"
relatedElement="ex69 ex70">

<issueDetail xmi:id="ex67"
number="1"

url="http://www.example.org/issues/1"
text="Some attributes lack a type.">

<issueComment xmi:id="ex68"
number="3"

text="Type should be string."/>

</issueDetail>
</IssuesProfile:IssueTag>

<IssuesProfile:IssueTag xmi:id="ex58"
base_Element="ex57"
affectedBy="ex66 ex61"
relatedElement="ex64">

<issueDetail xmi:id="ex59"
number="2"

url="http://www.example.org/issues/2"

text="Some attributes lack a type."

duplicatesIssue="ex67"/>

</IssuesProfile:IssueTag>

<IssuesProfile:IssueTag xmi:id="ex61" base_Element="ex60">

<issueDetail xmi:id="ex62"
number="4"

url="http://www.example.org/issues/4"

Unified Modeling Language 2.5.1

273



text="Why does B specialize A?"/>
</IssuesProfile:IssueTag>
</xmi:XMI>

The following shows the XMI serialization of the example shown in Figure 12.33 with link instances of profile-defined
associations serialized:

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/YYYYMMnn"
xmlns:uml="http://www.omg.org/spec/UML/YYYYMMnn"
xmlns:IssuesProfile="http://www.example.org/IssuesProfile">
<uml:Package xmi:id="ex0" name="IssueExample">
<packagedElement xmi:type="uml:Class" xmi:id="ex73" name="B">
<generalization xmi:id="ex76" general="ex81"/>
<ownedAttribute xmi:id="ex79" name="x">
<type xmi:type="uml:PrimitiveType"
href="http://www.omg.org/spec/UML/YYYYMMnn/PrimitiveTypes.xmi#String" />
</ownedAttribute>
<ownedAttribute xmi:id="ex80" name="y"/>
</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="ex81" name="A">
<ownedAttribute xmi:id="ex85" name="width"/>
<ownedAttribute xmi:id="ex86" name="length"/>
</packagedElement>
<packagedElement xmi:type="uml:Package"
xmi:id="ex87"
name="PrimitiveTypes" />
<profileApplication xmi:id="ex97">
<appliedProfile href="http://www.example.org/IssuesProfile#id0"/>
</profileApplication>
</uml:Package>
<IssuesProfile:IssueTag xmi:id="ex82"
base_Element="ex81"
relatedElement="ex85 ex86">
<issueDetail xmi:id="ex83"
number="1"
url="http://www.example.org/issues/1"
text="Some attributes lack a type.">
<issueComment xmi:id="ex84"
number="3"
text="Type should be string."/>
</issueDetail>
</IssuesProfile:IssueTag>
<IssuesProfile:A issueTag_issueDetail xmi:id="d1el09" issueTag="ex82" issueDetail="ex83"/>
<IssuesProfile:A issueDetail_ issueComment xmi:id="dlell0"
issueDetail="ex83"
issueComment="ex84"/>
<IssuesProfile:A issueTag relatedElement xmi:id="ex82ex85"
issueTag="ex82"
relatedElement="ex85" />
<IssuesProfile:A issueTag relatedElement xmi:id="ex82ex86"
issueTag="ex82"
relatedElement="ex86" />
<IssuesProfile:IssueTag xmi:id="ex74"
base_Element="ex73"
affectedBy="ex82 ex77"
relatedElement="ex80">
<issueDetail xmi:id="ex75"
number="2"
url="http://www.example.org/issues/2"
text="Some attributes lack a type."
duplicatesIssue="ex83"/>
</IssuesProfile:IssueTag>
<IssuesProfile:A issueTag issueDetail xmi:id="dlell2" issueTag="ex74" issueDetail="ex75"/>
<IssuesProfile:A issueDetail duplicatesIssue xmi:id="ex75ex83"
issueDetail="ex75"
duplicatesIssue="ex83"/>
<IssuesProfile:A issueTag_affectedBy xmi:id="ex74ex82" issueTag="ex74" affectedBy="ex82"/>
<IssuesProfile:A issueTag affectedBy xmi:id="ex74ex77" issueTag="ex74" affectedBy="ex77"/>
<IssuesProfile:A issueTag relatedElement xmi:id="ex74ex80"
issueTag="ex74"
relatedElement="ex80" />
<IssuesProfile:IssueTag xmi:id="ex77" base_Element="ex76">
<issueDetail xmi:id="ex78"
number="4"
url="http://www.example.org/issues/4"
text="Why does B specialize A?"/>
</IssuesProfile:IssueTag>
<IssuesProfile:A issueTag issueDetail xmi:id="dlell4" issueTag="ex77" issueDetail="ex78"/>
</xmi :XMI>

274 Unified Modeling Language 2.5.1



12.4  Classifier Descriptions

12.4.1 Extension [Class]

12411 Description

An extension is used to indicate that the properties of a metaclass are extended through a stereotype, and gives the
ability to flexibly add (and later remove) stereotypes to classes.

12.41.2 Diagrams
Profiles, Classes
12.41.3 Generalizations

Association

12.4.1.4 Attributes

¢ /isRequired : Boolean [1..1]
Indicates whether an instance of the extending stereotype must be created when an instance of the extended
class is created. The attribute value is derived from the value of the lower property of the ExtensionEnd
referenced by Extension::ownedEnd; a lower value of 1 means that isRequired is true, but otherwise it is false.
Since the default value of ExtensionEnd::lower is 0, the default value of isRequired is false.

12.41.5 Association Ends

®* /metaclass : Class [1..1]{} (opposite Class::extension)
References the Class that is extended through an Extension. The property is derived from the type of the
memberEnd that is not the ownedEnd.

* ¢ ownedEnd : ExtensionEnd [1..1]{redefines Association::ownedEnd} (opposite
A_ownedEnd extension::extension)
References the end of the extension that is typed by a Stereotype.

12.4.1.6 Operations

® isRequired() : Boolean
The query isRequired() is true if the owned end has a multiplicity with the lower bound of 1.

body: ownedEnd.lowerBound() = 1

®* metaclass() : Class
The query metaclass() returns the metaclass that is being extended (as opposed to the extending stereotype).

body: metaclassEnd().type.oclAsType(Class)

* metaclassEnd() : Property
The query metaclassEnd() returns the Property that is typed by a metaclass (as opposed to a stereotype).

body: memberEnd->reject(p | ownedEnd->includes(p.oclAsType(ExtensionEnd)))->any(true)

Unified Modeling Language 2.5.1 275



12.41.7 Constraints

* non_owned end
The non-owned end of an Extension is typed by a Class.

inv: metaclassEnd()->notEmpty() and metaclassEnd().type.oclIsKindOf (Class)

* is_binary
An Extension is binary, i.e., it has only two memberEnds.

inv: memberEnd->size() = 2

12.4.2 ExtensionEnd [Class]

12.4.21 Description

An extension end is used to tie an extension to a stereotype when extending a metaclass. The default multiplicity of an
extension end is 0..1.

12.4.2.2 Diagrams
Profiles
12.4.2.3 Generalizations

Property

12.4.2.4 Attributes

® /lower : Integer [0..1]
This redefinition changes the default multiplicity of association ends, since model elements are usually
extended by 0 or 1 instance of the extension stereotype.

12.4.2.5 Association Ends
® type: Stereotype [1..1]{redefines TypedElement::type} (opposite A_type extensionEnd::extensionEnd)

References the type of the ExtensionEnd. Note that this association restricts the possible types of an
ExtensionEnd to only be Stereotypes.

12.4.2.6 Operations

® lowerBound() : Integer [0..1] {redefines MultiplicityElement::lowerBound()}
The query lowerBound() returns the lower bound of the multiplicity as an Integer. This is a redefinition of the
default lower bound, which normally, for MultiplicityElements, evaluates to 1 if empty.

body: if lowerValue=null then 0 else lowerValue.integerValue() endif

12.4.2.7 Constraints

¢ multiplicity
The multiplicity of ExtensionEnd is 0..1 or 1.

inv: (lowerBound() = 0 or lowerBound() = 1) and upperBound() = 1

276 Unified Modeling Language 2.5.1



*  aggregation
The aggregation of an ExtensionEnd is composite.

inv: self.aggregation = AggregationKind::composite

12.4.3 Image [Class]
12.4.31 Description

Physical definition of a graphical image.
12.4.3.2 Diagrams

Profiles

12.4.3.3 Generalizations

Element

12.4.3.4 Attributes

® content : String [0..1]
This contains the serialization of the image according to the format. The value could represent a bitmap, image
such as a GIF file, or drawing 'instructions' using a standard such as Scalable Vector Graphic (SVG) (which is
XML based).

® format : String [0..1]
This indicates the format of the content, which is how the string content should be interpreted. The following
values are reserved: SVG, GIF, PNG, JPG, WMF, EMF, BMP. In addition the prefix 'MIME: ' is also reserved.
This option can be used as an alternative to express the reserved values above, for example "SVG" could
instead be expressed as "MIME: image/svg+xml".

® location : String [0..1]
This contains a location that can be used by a tool to locate the image as an alternative to embedding it in the
stereotype.

124.4 Model [Class]

12441 Description
A model captures a view of a physical system. It is an abstraction of the physical system, with a certain purpose. This
purpose determines what is to be included in the model and what is irrelevant. Thus the model completely describes
those aspects of the physical system that are relevant to the purpose of the model, at the appropriate level of detail.
12.4.4.2 Diagrams

Packages
12.4.4.3 Generalizations

Package

12.4.4.4 Attributes

® viewpoint : String [0..1]
The name of the viewpoint that is expressed by a model (this name may refer to a profile definition).

Unified Modeling Language 2.5.1 277



12.4.5 Package [Class]

12451 Description

A package can have one or more profile applications to indicate which profiles have been applied. Because a profile is a
package, it is possible to apply a profile not only to packages, but also to profiles. Package specializes
TemplateableElement and PackageableElement specializes ParameterableElement to specify that a package can be used
as a template and a PackageableElement as a template parameter. A package is used to group elements, and provides a
namespace for the grouped elements.

12.4.5.2 Diagrams

Packages, Profiles, Namespaces

12.4.5.3 Generalizations

PackageableElement, TemplateableElement, Namespace

12454 Specializations

Model, Profile

12.4.5.5 Attributes

¢ URI: String [0..1]
Provides an identifier for the package that can be used for many purposes. A URI is the universally unique
identification of the package following the IETF URI specification, RFC 2396
http://www.ietf.org/rfc/rfc2396.txt and it must comply with those syntax rules.

12.4.5.6 Association Ends

® ¢ /nestedPackage : Package [0..*]{subsets Package::packagedElement} (opposite Package::nestingPackage)
References the packaged elements that are Packages.

® nestingPackage : Package [0..1]{subsets A_packagedElement owningPackage::owningPackage} (opposite

Package::nestedPackage)
References the Package that owns this Package.

® ¢ /ownedStereotype : Stereotype [0..*]{subsets Package::packagedElement} (opposite

A _ownedStereotype owningPackage::owningPackage)
References the Stereotypes that are owned by the Package.

®* ¢ /ownedType : Type [0..*]{subsets Package::packagedElement} (opposite Type::package)
References the packaged elements that are Types.

* ¢ packageMerge : PackageMerge [0..*]{subsets Element::ownedElement, subsets
A_source_directedRelationship::directedRelationship} (opposite PackageMerge::receivingPackage)
References the PackageMerges that are owned by this Package.

® ¢ packagedElement : PackageableElement [0..*]{subsets Namespace::ownedMember} (opposite

A packagedElement owningPackage::owningPackage)
Specifies the packageable elements that are owned by this Package.

278 Unified Modeling Language 2.5.1



* ¢ profileApplication : ProfileApplication [0..*]{subsets Element::ownedElement, subsets
A_source_directedRelationship::directedRelationship} (opposite ProfileApplication::applyingPackage)
References the ProfileApplications that indicate which profiles have been applied to the Package.

12.4.5.7 Operations

® allApplicableStereotypes() : Stereotype [0..*]
The query allApplicableStereotypes() returns all the directly or indirectly owned stereotypes, including
stereotypes contained in sub-profiles.

body: let ownedPackages : Bag(Package) = ownedMember->select(oclIsKindOf (Package))-
>collect (oclAsType(Package)) in
ownedStereotype->union(ownedPackages.allApplicableStereotypes())->flatten()->asSet()

¢ containingProfile() : Profile [0..1]
The query containingProfile() returns the closest profile directly or indirectly containing this package (or this
package itself, if it is a profile).

body: if self.oclIsKindOf(Profile) then
self.oclAsType(Profile)
else
self.namespace.oclAsType (Package).containingProfile()
endif

®* makesVisible(el : NamedElement) : Boolean
The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no
visibility and elements with public visibility are made visible.

pre: member->includes(el)

body: ownedMember->includes(el) or

(elementImport->select(ei|ei.importedElement = VisibilityKind::public)-

>collect (importedElement.oclAsType (NamedElement))->includes(el)) or
(packageImport->select(visibility = VisibilityKind::public)->collect (importedPackage.member-
>includes(el))->notEmpty())

* mustBeOwned() : Boolean {redefines Element::mustBeOwned()}
The query mustBeOwned() indicates whether elements of this type must have an owner.

body: false

® nestedPackage() : Package [0..¥]
Derivation for Package::/nestedPackage

body: packagedElement->select(oclIsKindOf (Package))->collect(oclAsType(Package))->asSet()

® ownedStereotype() : Stereotype [0..*]
Derivation for Package::/ownedStereotype

body: packagedElement->select(oclIsKindOf (Stereotype))->collect(oclAsType(Stereotype))-
>asSet ()

* ownedType() : Type [0..¥]
Derivation for Package::/ownedType

body: packagedElement->select(oclIsKindOf (Type))->collect(oclAsType(Type))->asSet()

® visibleMembers() : PackageableElement [0..*]
The query visibleMembers() defines which members of a Package can be accessed outside it.

Unified Modeling Language 2.5.1 279



12.4.5.8

12.4.6

12.4.6.1

body: member->select( m | m.oclIsKindOf (PackageableElement) and self.makesVisible(m))-
>collect(oclAsType(PackageableElement) )->asSet()

Constraints

elements_public_or private
If an element that is owned by a package has visibility, it is public or private.

inv: packagedElement->forAll(e | e.visibility<> null implies e.visibility =
VisibilityKind::public or e.visibility = VisibilityKind::private)

PackageMerge [Class]

Description

A package merge defines how the contents of one package are extended by the contents of another package.

12.4.6.2

Diagrams

Packages

12.4.6.3 Generalizations

DirectedRelationship

12.4.6.4 Association Ends

12.4.7

12.4.71

mergedPackage : Package [1..1]{subsets DirectedRelationship::target} (opposite

A_mergedPackage packageMerge::packageMerge)
References the Package that is to be merged with the receiving package of the PackageMerge.

receivingPackage : Package [1..1]{subsets DirectedRelationship::source, subsets Element::owner} (opposite

Package::packageMerge)
References the Package that is being extended with the contents of the merged package of the PackageMerge.

Profile [Class]

Description

A profile defines limited extensions to a reference metamodel with the purpose of adapting the metamodel to a specific

platform

or domain.

12.4.7.2 Diagrams

Profiles

12.4.7.3 Generalizations

Package

12.4.7.4 Association Ends

280

¢ metaclassReference : Elementlmport [0..*]{subsets Namespace::elementImport} (opposite

A_metaclassReference profile::profile)
References a metaclass that may be extended.

Unified Modeling Language 2.5.1



® ¢ metamodelReference : Packagelmport [0..*]{subsets Namespace::packagelmport} (opposite
A_metamodelReference profile::profile)
References a package containing (directly or indirectly) metaclasses that may be extended.

12.4.7.5 Constraints

* metaclass_reference not specialized
An element imported as a metaclassReference is not specialized or generalized in a Profile.

inv: metaclassReference.importedElement->
select(c | c.oclIsKindOf(Classifier) and
(c.oclAsType(Classifier).allParents()->collect(namespace)->includes(self)))-
>isEmpty ()
and
packagedElement->
select (oclIsKindOf (Classifier))->collect(oclAsType(Classifier).allParents())->
intersection(metaclassReference.importedElement->select(oclIsKindOf (Classifier))-
>collect(oclAsType(Classifier)))->isEmpty()

* references_same metamodel
All elements imported either as metaclassReferences or through metamodelReferences are members of the
same base reference metamodel.

inv: metamodelReference.importedPackage.elementImport.importedElement.allOwningPackages()->
union(metaclassReference.importedElement.allOwningPackages() )->notEmpty()

12.4.8 ProfileApplication [Class]
12.4.8.1 Description
A profile application is used to show which profiles have been applied to a package.
12.4.8.2 Diagrams
Profiles
12.4.8.3 Generalizations

DirectedRelationship

12.4.8.4 Attributes

® isStrict : Boolean [1..1] = false
Specifies that the Profile filtering rules for the metaclasses of the referenced metamodel shall be strictly
applied.

12.4.8.5 Association Ends
® appliedProfile : Profile [1..1]{subsets DirectedRelationship::target} (opposite

A_appliedProfile profileApplication::profileApplication)
References the Profiles that are applied to a Package through this ProfileApplication.

® applyingPackage : Package [1..1]{subsets DirectedRelationship::source, subsets Element::owner} (opposite

Package::profileApplication)
The package that owns the profile application.

Unified Modeling Language 2.5.1 281



12.4.9 Stereotype [Class]

12491 Description

A stereotype defines how an existing metaclass may be extended, and enables the use of platform or domain specific
terminology or notation in place of, or in addition to, the ones used for the extended metaclass.

12.4.9.2 Diagrams
Profiles

12.4.9.3 Generalizations

Class

12.4.9.4 Association Ends

® ¢icon: Image [0..*]{subsets Element::ownedElement} (opposite A_icon_stereotype::stereotype)
Stereotype can change the graphical appearance of the extended model element by using attached icons. When
this association is not null, it references the location of the icon content to be displayed within diagrams
presenting the extended model elements.

® /profile : Profile [1..1]{} (opposite A_profile stercotype::stereotype)
The profile that directly or indirectly contains this stereotype.

12.49.5 Operations

® containingProfile() : Profile
The query containingProfile returns the closest profile directly or indirectly containing this stereotype.

body: self.namespace.oclAsType(Package).containingProfile()

® profile() : Profile
A stereotype must be contained, directly or indirectly, in a profile.

body: self.containingProfile()

12.4.9.6 Constraints

*  DbinaryAssociationsOnly
Stereotypes may only participate in binary associations.

inv: ownedAttribute.association->forAll (memberEnd->size()=2)

* generalize
A Stereotype may only generalize or specialize another Stereotype.

inv: allParents()->forAll(oclIsKindOf (Stereotype))
and Classifier.alllInstances()->forAll(c | c.allParents()->exists(oclIsKindOf (Stereotype))
implies c.oclIsKindOf (Stereotype))

* name not clash
Stereotype names should not clash with keyword names for the extended model element.

Cannot be expressed in OCL

282 Unified Modeling Language 2.5.1



* associationEndOwnership
Where a stereotype’s property is an association end for an association other than a kind of extension, and the
other end is not a stereotype, the other end must be owned by the association itself.

inv: ownedAttribute

->select(association->notEmpty() and not association.oclIsKindOf (Extension) and not
type.oclIsKindOf (Stereotype))

->forAll (opposite.owner = association)

* base_property upper bound
The upper bound of base-properties is exactly 1.

Cannot be expressed in OCL

* Dbase property multiplicity single extension
If a Stereotype extends only one metaclass, the multiplicity of the corresponding base-property shall be 1..1.

Cannot be expressed in OCL
* base_property multiplicity multiple extension

If a Stereotype extends more than one metaclass, the multiplicity of the corresponding base-properties shall be
[0..1]. At any point in time, only one of these base-properties can contain a metaclass instance during runtime.

Cannot be expressed in OCL

12.5 Association Descriptions

12.5.1 A_appliedProfile_profileApplication [Association]

12.5.1.1 Diagrams
Profiles
12.51.2 Owned Ends

® profileApplication : ProfileApplication [0..*]{subsets A_target directedRelationship::directedRelationship}
(opposite ProfileApplication::appliedProfile)

12.5.2 A_icon_stereotype [Association]

12.5.2.1 Diagrams
Profiles
12.5.2.2 Owned Ends

® stereotype : Stereotype [0..1]{subsets Element::owner} (opposite Stereotype::icon)

12.5.3 A_mergedPackage_packageMerge [Association]
12.5.3.1 Diagrams

Packages

Unified Modeling Language 2.5.1 283



12.5.3.2 Owned Ends

® packageMerge : PackageMerge [0..*]{subsets A_target directedRelationship::directedRelationship} (opposite
PackageMerge::mergedPackage)

12.5.4 A_metaclassReference_profile [Association]

12.5.4.1 Diagrams
Profiles
12.5.4.2 Owned Ends

® profile : Profile [0..1]{subsets ElementImport::importingNamespace} (opposite Profile::metaclassReference)

12.5.5 A_metamodelReference_profile [Association]

12.5.5.1 Diagrams
Profiles
12.5.5.2 Owned Ends

® profile : Profile [0..1]{subsets Packagelmport::importingNamespace} (opposite Profile::metamodelReference)

12.5.6 A_nestedPackage_nestingPackage [Association]
12.5.6.1 Diagrams

Packages

12.5.6.2 Member Ends
® Package::nestedPackage
® Package::nestingPackage

12.5.7 A_ownedEnd_extension [Association]

12.5.71 Diagrams
Profiles
12.5.7.2 Owned Ends

® cxtension : Extension [1..1]{subsets Property::owningAssociation} (opposite Extension::ownedEnd)

12.5.8 A_ownedStereotype_owningPackage [Association]

12.5.8.1 Diagrams

Profiles

284 Unified Modeling Language 2.5.1



12.5.8.2 Generalizations

A_packagedElement owningPackage

12.5.8.3 Owned Ends

* owningPackage : Package [1..1]{redefines A_packagedElement owningPackage::owningPackage} (opposite
Package::ownedStereotype)

12.5.9 A_ownedType_package [Association]
12.5.9.1 Diagrams

Packages

12.5.9.2 Member Ends
¢ Package::ownedType
® Type::package

12.5.10 A_packageMerge_receivingPackage [Association]
12.5.10.1 Diagrams

Packages

12.5.10.2 Member Ends
® Package::packageMerge
® PackageMerge::receivingPackage

12.5.11 A_packagedElement_owningPackage [Association]
12.5.11.1 Diagrams

Packages

12.5.11.2 Specializations

A_ownedStereotype owningPackage
12.5.11.3 Owned Ends

® owningPackage : Package [0..1]{subsets NamedElement::namespace} (opposite Package::packagedElement)

12.5.12 A_profileApplication_applyingPackage [Association]

12.5.12.1 Diagrams

Profiles

Unified Modeling Language 2.5.1 285



12.5.12.2 Member Ends
® Package::profileApplication
® ProfileApplication::applyingPackage

12.5.13 A_profile_stereotype [Association]

12.5.13.1 Diagrams

Profiles

12.5.13.2 Owned Ends
® stereotype : Stereotype [0..*] (opposite Stereotype::profile)

12.5.14 A_type_extensionEnd [Association]

12.5.14.1 Diagrams

Profiles

12.5.14.2 Owned Ends

¢ extensionEnd : ExtensionEnd [0..*]{subsets A_type typedElement::typedElement} (opposite

ExtensionEnd::type)

286

Unified Modeling Language 2.5.1



13 Common Behavior

13.1  Summary

This clause specifies the core concepts underlying all behavioral modeling in UML. Structural models of Classifiers in
UML define the allowable instances that may exist at any point in time, what values their StructuralFeatures may have
and how those instances may be related to each other. Behavioral modeling, on the other hand, models how these
instances may change over time.

UML provides Behavior, Event, and Trigger constructs to model the corresponding fundamental concepts of behavioral
modeling.

Behavior is the basic concept for modeling dynamic change. Behavior may be executed, either by direct invocation or
through the creation of an active object that hosts the behavior. Behavior may also be emergent, resulting from the
interaction of one or more participant objects that are themselves carrying out their own individual behaviors.

Dynamic behavior results in events of interest that occur at specific points in time. Such events may be implicit,
occurring on the change of some value or the passage of some interval of time. They may also be explicit, occurring
when an operation is called or an asynchronous signal is received.

The occurrence of an event may then trigger new behavior, or change the course of already executing behavior. Explicit
events thus provide the basic mechanism for communication between behaviors, in which an action carried out in one
behavior, such as calling an operation or sending a signal, can trigger a response in another behavior.

The remainder of this clause further details the fundamental UML modeling mechanisms of Behaviors, Events and
Triggers. These mechanisms then provide the framework for the specification in the following clauses of various
complete UML behavioral modeling constructs.

13.2 Behaviors
13.2.1 Summary

This sub clause introduces the framework for modeling behavior in UML. The concrete subtypes of Behavior, described
in subsequent clauses, then provide different mechanisms to specify behaviors.

A variety of behavioral specification mechanisms are supported by UML, including:
¢ StateMachines that model finite automata (see Clause 14)
¢ Activities defined using Petri-net-like graphs (see Clause 15)
* Interactions that model partially-ordered sequences of event occurrences (see Clause 17).

These behavioral specification mechanisms differ in their expressive power and domain of applicability. This means
that not all behaviors can be described by each of the mechanisms. Nevertheless, many behaviors can be described by
one or more of the mechanisms, in which case the choice of mechanism is one of convenience, or, alternatively,
multiple mechanisms can be used to provide different models of the same behavior.

Unified Modeling Language 2.5.1 287



13.2.2 Abstract Syntax

A
{readOnly, subsets {subsets
- » redefinitionContext} redefinableElement} -
BehavioredClassifier + Jcontext + behavior Behavior
+ isReentrant : Boolean = true
0..1 * {subsets context} {subsets ownedRule}
+ behavior + precondition
Constraint
{redefines ) 0.1 *
behavioredClassifier} {subsets ownedBehavior}
+ behavioredClassifier + classifierBehavior.
{subsets context} {subsets ownedRule}
0.1 0.1 + behavior + postcondition
0..1 _ *
{subsets namespace} {subsets ownedMember} + behavior
+ behavioredClassifier + ownedBehavior ¥ {subsets classifier}
* 0..1 *
*
+ specification + method
i ‘eature ||= pechicat + redefinedBehavior
0.1 * {subsets redefinedClassifier}
{ordered, subsets {subsets namespace}
ownedMember} {subsets namesiacg} + behavior * p povn
arameter . 0.1 + ownedParameterSet
T {subsets ownedMember}

OpaqueBehavior
+ body : String [*] {ordered, nonunique}
+ language : String [*] {ordered}
/\

FunctionBehavior

Figure 13.1 Behaviors

13.2.3 Semantics

13.2.3.1 Behaviors

A Behavior is a specification of events that may occur dynamically over time (see also sub clause 13.3 on the explicit
modeling of Events in UML). This specification may be prescriptive of specifically what events may occur in what
situations, descriptive of emergent behavior or illustrative of possible sequences of event occurrences. Every Behavior
defines at least one event, the event of its invocation. A Behavior may be invoked directly, via a BehavioralFeature that
it implements as a method or as the classifierBehavior of a BehavioredClassifier.

On each invocation, the subsequent actual sequence of event occurrences due to the invocation, consistent with the
specification of the Behavior, is called an execution trace for the Behavior. An execution trace always begins with the
invocation of the Behavior and may continue indefinitely (if the Behavior does not terminate), or it may end in the
occurrence of a termination event for the Behavior, in which case the execution of the Behavior is said to have
completed. A Behavior may either complete normally, or it may complete as a result of the raising of an exception, in
which case, if the Behavior was invoked synchronously (see below), the exception is propagated to the caller (see also
the discussion of exceptions in sub clause 15.5.3). Event occurrences during an execution trace include both
occurrences caused by the Behavior, such as attribute value changes, creation and destruction of objects and invocation
of other Behaviors, and occurrences that trigger responses within the Behavior, such as the changing of a monitored
value or the receipt of a Signal instance.

Behaviors in UML are kinds of Classes, which means that they may be instantiated as objects. An object that is an
instance of a Behavior is known as a behavior execution. Invoking the Behavior corresponds to instantiating the
Behavior, and there is a specific execution trace corresponding to each Behavior execution.

288 Unified Modeling Language 2.5.1



Since a Behavior is a Class, it may be specialized and may also itself own StructuralFeatures and BehavioralFeatures.
These features may be referenced in the specification of the Behavior. An execution of the Behavior may then access
these features, such as reading and modifying attributes of the Behavior. Public features of a Behavior may also be
referenced from outside of the Behavior, as usual for the features of any Class.

A Behavior may be invoked many times. A reentrant Behavior (i.e., one with its isReentrant property equal to true) may
be invoked again before a previous invocation has completed (this is the default). On the other hand, a non-reentrant
Behavior (i.e, one with its isReentrant property equal to false) shall not be invoked again if a previous invocation has not
completed. A reentrant Behavior may have many ongoing executions at any one time, but a non-reentrant Behavior shall
have at most one uncompleted execution at any time. If an invoking Behavior attempts to invoke a non-reentrant
Behavior that already has an uncompleted execution, then the invoker shall block until the existing execution completes
(or indefinitely, if the execution never completes).

A Behavior may be invoked synchronously or asynchronously. Synchronous invocation means that an invoking
Behavior retains a reference to the invoked Behavior execution and waits for the execution to complete. Asynchronous
invocation, on the other hand, means that the invoked Behavior execution proceeds concurrently with the invoking
Behavior.

The preconditions for a Behavior define conditions that shall be true when the Behavior is invoked. These preconditions
may be assumed in the detailed specification of the Behavior. The semantics of an invocation of a Behavior when a
precondition is not satisfied are intentionally undefined.

The postconditions for a Behavior define conditions that will be true when the invocation of the Behavior completes
successfully, assuming the preconditions were satisfied. These postconditions shall be satisfied in the detailed specification
of the Behavior.

13.2.3.2 Behavior Parameters

A Behavior may have Parameters (see sub clause 9.4) that provide the ability to pass values into and out of Behavior
executions.

When a Behavior is invoked, argument values may be provided corresponding to Parameters with direction “in” or
“inout”, as constrained by the multiplicity of those Parameters. If such an input Parameter has a defaultValue, and no
explicit argument value is given for it, then the defaultValue is evaluated to provide argument values for the Parameter
(even if the Parameter has a multiplicity lower bound of 0, so having no value would be valid for it). Argument values
are available to affect the course of the invoked Behavior execution.

When a Behavior execution completes, it may produce result values corresponding to Parameters with direction “inout,”
“out,” and “return,” as constrained by the multiplicity of those Parameters. If such an output Parameter has a
defaultValue, and no explicit result value is given for it, then the defaultValue is evaluated to provide result values for the
Parameter (even if the Parameter has a multiplicity lower bound of 0, so having no value would be valid for it). If the
Behavior was invoked synchronously, then result values are returned to the invoker. However, if the Behavior was
invoked asynchronously, then any result values are lost when the Behavior execution completes.

Parameters may also be marked as streaming (i.e., have the isStreaming property be true). Such Parameters allow values
to be passed into and out of a Behavior execution any time during its course, rather than just on invocation and
completion.

If an input Parameter is streaming, then argument values may be provided for the Parameter during the course of a
Behavior execution rather than just at invocation. One or more argument values may be posted to a streaming input
Parameter at or any time after the invocation of a Behavior and before its completion. These argument values are then
available to affect the further course of the Behavior execution from that time forward.

If an output Parameter is streaming, then a Behavior execution may provide result values for the Parameter during its
course rather than just at completion. One or more result values may be posted to a streaming output Parameter any time
after the invocation of a Behavior up to or at its completion. These result values are then available to affect the further
course of the execution of the invoking Behavior from that time forward.

Unified Modeling Language 2.5.1 289



NOTE. In order for an invoker to be able to obtain posted values from streaming output Parameters, the invoked
Behavior has to be invoked synchronously, even though streamed outputs could potentially trigger asynchronous
responses in the invoker. (See sub clause 16.3.3 on the semantics of CallActions in the case of streaming Parameters,
including the effect of the multiplicity of such Parameters.)

A reentrant Behavior shall not have streaming Parameters, because there are potentially multiple executions of the
Behavior going at the same time, and it would be ambiguous which execution would be receiving or producing
streamed values.

A Behavior may have one or more output Parameters marked as isException=true. In this case, when an execution of the
Behavior completes, either none of these Parameters shall have values or exactly one shall have a value and no other
parameters (exception or otherwise) shall have any values.

NOTE. Returning a value in an exception Parameter is not considered to be “raising an exception” in the sense
described in sub clause 15.5.3.

A Behavior with input ParameterSets can only accept inputs from Parameters in one of the sets per execution. A
Behavior with output ParameterSets can only post outputs to the Parameters in one of the sets per execution. The
semantics of conditions of input and output ParameterSets are the same as Behavior preconditions and postconditions,
respectively, but apply only to the set of Parameters specified.

13.2.3.3 Opaque and Function Behaviors

An OpaqueBehavior is a Behavior whose specification is given in a textual language other than UML.

An OpaqueBehavior has a body that consists of a sequence of text Strings representing alternative means of specifying
the required behavior. A corresponding sequence of language Strings may be used to specify the languages in which each
of the body Strings is to be interpreted. Languages are matched to body Strings by order. The UML specification does not
define how body Strings are interpreted relative to any language, though other specifications may define specific
language Strings to be used to indicate interpretation with respect to those specifications (e.g., “OCL” for expressions to
be interpreted according to the OCL specification).

NOTE. It is not required to specify the languages. If they are unspecified, then the interpretation of any body Strings
shall be determined implicitly from the form of the bodies or the context of use of the OpaqueBehavior.

If an OpaqueBehavior has more than one body String, then any one of the bodies can be used to determine the behavior
of the OpaqueBehavior. The UML specification does not determine how this choice is made.

A FunctionBehavior is an OpaqueBehavior that does not access or modify any objects or other external data. During the
execution of a FunctionBehavior, no communication or interaction with anything external to the FunctionBehavior is
allowed. The amount of time to compute its results is undefined. A FunctionBehavior may raise exceptions for certain
input values, in which case the computation is abandoned.

FunctionBehaviors thus represent functions that transform a set of input argument values (given by the input Parameters
of the FunctionBehavior) to a set of output result values (given by the output Parameters of the FunctionBehavior). The
execution of a FunctionBehavior depends only on the argument values and has no other effect than to compute result
values. Examples of functions that might be modeled as FunctionBehaviors include primitive arithmetic, Boolean, and
String functions.

13.2.34 Behaviored Classifiers

A BehavioredClassifier is a Classifier that may have ownedBehaviors, at most one of which may be considered to specify
the behavior of the BehavioredClassifier itself. Conversely, a Behavior that is the ownedBehavior of a
BehavioredClassifier has that BehavioredClassifier as its context. The specification of such a Behavior may reference
features of the context BehavioredClassifier as well as any other elements visible to the context BehavioredClassifier.

A Behavior that is not directly an ownedBehavior of a BehavioredClassifier may nevertheless still have a context. To
determine the context of a Behavior that is not directly an ownedBehavior, find the first BehavioredClassifier reached by
following the chain of ownership relationships from the Behavior, if any. If there is such a BehavioredClassifier, then it

290 Unified Modeling Language 2.5.1



is the context, unless it is itself a Behavior with a non-empty context, in which case this is also the context for the original
Behavior. For example, the context of an entry Behavior (see sub clause 14.2) in a StateMachine owned by a
BehavioredClassifier is the classifier that owns the StateMachine, not the StateMachine.

A Behavior that is owned directly by a Class as a nestedClassifier (see sub clause 11.4), rather than as an ownedBehavior,
does not have the Class as its context. The nestedClassifiers of a Class are simply nested in the Class considered as a
Namespace. As a nestedClassifier, a Behavior has visibility of elements defined within the owning Class and other
elements visible to that Class, and it may itself be visible outside the Class, depending on its declared visibility. But its
semantics as a “stand-alone” Behavior are not otherwise affected by being nested in the Class.

If a Behavior has a context, then an execution of the Behavior always has an associated context object that is an instance
of the context BehavioredClassifier (as long as that BehavioredClassifier is instantiable). A Behavior without a context
BehavioredClassifier may still be invoked as a “stand-alone” Behavior. In this case, the Behavior execution serves as its
own context object. The Behavior execution also serves as its own context object in the case that the context
BehavioredClassifier is not instantiable, that is, if it is a Component with isIndirectlyinstantiated=true (see sub clause 11.6)
or a Collaboration (see sub clause 11.7). Thus, a Behavior execution always has a context object, whether or not the
Behavior has an explicit, instantiable context BehavioredClassifier.

A BehavioredClassifier may have a distinguished ownedBehavior called its classifierBehavior. A classifierBehavior describes
the behavior an instance of the owning Classifier may undergo in the course of its lifetime. The classifierBehavior of a
BehavioredClassifier is considered to be invoked when an instance of the owning BehavioredClassifier is created and
the resulting execution has the new instance as its context object. The execution is terminated if the instance is
destroyed.

The precise semantics of a classifierBehavior depend on the kind of BehavioredClassifier that owns it. For example, the
classifierBehavior of a Collaboration (see sub clause 11.7) represents emergent behavior of all the parts, whereas the
classifierBehavior of a Class (see sub clause 11.4) is just the behavior of instances of the Class separated from the
behaviors of any of its parts. However, a passive Class (with isActive=false) shall not have a classifierBehavior.

13.2.3.5 Behavioral Features and Methods

There are two kinds of BehavioralFeatures: Operations (see sub clause 9.6) and Receptions (see sub clause 10.3). Of the
different kinds of BehavioredClassifiers in UML, only Classes may have BehavioralFeatures and only active Classes
may have Receptions (see sub clause 11.4). Calling an Operation on or sending a Signal instance to an object of a Class
is a request for the object to carry out an identified BehavioralFeature. An Operation call identifies a specific operation
to be invoked. The receipt of an instance of a Signal, on the other hand, is considered to be a request for any Reception
of the receiving object that references that Signal or any direct or indirect generalization of it.

A BehavioralFeature of a Class may be implemented by one or more method Behaviors. Such a BehavioralFeature
specifies that instances of the owning Class will respond to a request for the BehavioralFeature by invoking one of the
feature’s implementing methods. A Behavior shall be the method for no more than one BehavioralFeature, called its
specification. The specification of a Behavior shall be an owned or inherited member of the Class of which the Behavior is
an ownedBehavior. It is possible to have more than one method associated with a single BehavioralFeature, but there shall
be at most one Behavior for a particular pairing of a Class (as owner of the Behavior) and a BehavioralFeature (as the
specification for the Behavior). This means that a single BehavioralFeature may have methods both in its owning Class
and any direct or indirect subclass of that Class, but with no more than one method per Class.

The receiving object becomes the context object for the execution of any invoked methods.

NOTE. Methods of a Reception are always invoked asynchronously, while the methods of an Operation may be invoked
either synchronously or asynchronously, depending on how the Operation is called.

The method resolution process shall be based on the BehavioralFeature being requested, the object receiving the request
and any data values associated with the request (i.e., Operation input parameter values or Signal attribute values).
However, the UML specification does not mandate that a conforming UML tool support any particular resolution
process. In general, the resolution process may be complicated, to include such mechanisms as before-after methods,
delegation, etc. In some of these variations, multiple Behaviors may be executed as a result of a single call. If no
methods are identified by the resolution process, then it is undefined what happens.

Unified Modeling Language 2.5.1 291


mailto:%23UML_11_4

The following is a simple object-oriented resolution process for a CallEvent that always results in at most one method
being identified:

If the Class of the receiving object owns a method for the Operation identified in the CallEvent, then that
method is the result of the resolution. Otherwise, the superclass of the Class of the receiving object is examined
for a method for the Operation, and so on up the generalization hierarchy until a method is found or the root of
the hierarchy is reached. If a Class has multiple superclasses, then all of them are examined for a method. If no
method is found, or a method is found in more than one ancestor Class along different paths, then the model is
ill-formed for this resolution process and it results in no method.

A method of an Operation shall have Parameters corresponding to the Parameters of the Operation. Similarly, a method of
a Reception shall have Parameters corresponding to the attributes of the Signal referenced by the Reception, which are
considered as effective “in” Parameters of the Reception. The data values associated with a request — input Operation
parameter values or Signal attribute values — are then passed to a method invoked due to the request via the method
parameters. For a synchronous Operation call, output Parameter values from the method execution are also passed back

to the Operation caller via the corresponding Operation output Parameters.

However, no specific approach is defined for matching the Parameters of the method to the Parameters of the
BehavioralFeature. Possible approaches include exact match (i.e., the type of the corresponding Parameters, in order,
must be the same), co-variant match (the type of a Parameter of the method may be a subtype of the type of the Parameter
of the BehavioralFeature), contra-variant match (the type of a Parameter of the method may be a supertype of the type of
the Parameter of the BehavioralFeature), or a combination thereof.

13.2.4 Notation

The notation for various subclasses of Behavior are defined in subsequent clauses.
The notation for Signals and Receptions is covered under Simple Classifiers in sub clause 10.3.4.

The notation for active Classes is covered under Structured Classifiers in sub clause 11.4.4.

13.2.5 Examples

None.

13.3 Events

13.3.1 Summary

An Event is a something that may occur at a specific instant in time. One Event may have many occurrences, which
may happen at different times. In this sense, an Event can be considered a classification of its occurrences, though
Events are not actually Classifiers in UML.

Of particular importance are Events that trigger a response within a Behavior. Such Events that may be explicitly
modeled within UML include TimeEvents that occur at a specified time or after a duration, ChangeEvents that occur
when a specified Boolean value becomes true and MessageEvents that occur on the receipt of a message, which is a
communication from one Behavior to another requesting an Operation call or Signal reception.

292 Unified Modeling Language 2.5.1



13.3.2 Abstract Syntax

NamedElement PackageableElement

Port + port + trigger | Trigger | +trigger  +event Event
* * * 1 T
MessageEvent ChangeEvent TimeEvent
+ isRelative : Boolean = false
{subsets owner} {subsets owner}
0..1 | + changeEvent 0..1 | + timeEvent
{subsets ownedElement} {subsets ownedElement}
1| + changeExpression + when
AnyReceiveEvent SignalEvent CallEvent

ValueSpecification

TimeExpression

+ signalEvent | * * | + callEvent

1 |+ operation

+ signahj/1
Signal Operation

Figure 13.2 Events

13.3.3 Semantics

13.3.3.1 Event Dispatching

An Event is the specification of some occurrence that may potentially trigger behavioral effects. A Trigger specifies a
specific point in the definition of a Behavior at which an Event occurrence may have such an effect. Event is a
PackageableElement, allowing Events to be modeled independently of their use. A Trigger, however, always appears as
a part of some larger behavioral specification (e.g., on a StateMachine Transition or in an AcceptEventAction). A single
Event may be used in several different Triggers.

As discussed in sub clause 13.2.3, a Behavior execution always has an associated context object (which may be the
execution itself). A context object mediates the handling of Event occurrences for all of its associated Behavior
executions. When an Event occurrence is recognized by a context object, it may have an immediate effect or it may be
saved for later triggered effect. An immediate effect is manifested by direct invocation of a Behavior as determined by
the Event, such as the invocation of the method of a BehavioralFeature (see sub clause 13.2.3). A triggered effect is
manifested by the storage of the occurrence in the event pool of the object and the later consumption of the occurrence
by an ongoing Behavior execution that reaches a Trigger that matches the Event corresponding to the occurrence in the
pool.

In general, when a Behavior execution comes to a wait point where it needs a Trigger to continue, the event pool of its
context object is examined for an event that satisfies the outstanding Trigger (or Triggers). If the pool contains an event
occurrence that satisfies one of the Triggers, the occurrence is removed from the pool and dispatched to the Behavior,
which continues its execution as specified. Any data associated with the Event occurrence are made available to the
triggered Behavior during its further execution.

NOTE. All Behaviors with the same context object share the event pool of that object, but any Event occurrence in the
pool can be consumed by only one Behavior.

There is no requirement for a specific order in which Event occurrences in an event pool are examined or dispatched. If
an event pool contains an occurrence that satisfies no Triggers at a wait point, then the general semantics of

Unified Modeling Language 2.5.1 293



BehavioredClassifiers do not specify what happens to it. (However, see the specific semantics for the dispatching and
deferring of event occurrences for StateMachines in sub clause 14.2.)

13.3.3.2 Message Events

A message is a communication in which a sender makes a request for either an Operation call or Signal reception by a
receiver. This communication involves two events: the event of sending the message and the event of receiving the
message. Sending events, however, are not modeled as explicit model elements in UML, though they are implicit in the
execution of InvocationActions (see sub clause 16.3) and occurrences of such events can be modeled in Interactions
(see sub clause 17.5). A MessageEvent, on the other hand, is an explicit model of the receipt of a message, in order to be
able to specify a Trigger that responds to occurrences of that event.

A message contains:

* Data associated with the request being made (arguments for Operation parameters or values for Signal
attributes).

* Information about the nature of the request (i.e., the BehavioralFeature invoked).
* For a synchronous invocation, sufficient information to enable the return of a reply from the invoked Behavior.

While each message is targeted at exactly one receiver object and caused by exactly one sending object, an occurrence
of a sending event may result in a number of messages being generated (as in SignalBroadcastAction, see sub clause
16.3). The receiver of a message may be the same as the sender, it may be local (i.e., an object held in a slot of the
currently executing Behavior or its context object) or it may be remote. The manner of transmitting the message, the
amount of time required to transmit it, the order in which the transmissions reach their receiver object and the path for
reaching the receiver object are undefined.

The receipt of a message is manifested as a MessageEvent occurrence. A CallEvent is a MessageEvent for messages
requesting that a specific Operation be called. A SignalEvent is a MessageEvent for messages requesting the reception
of an instance of a specific Signal. An AnyReceiveEvent is a MessageEvent for any message that is not explicitly
handled by any other related Trigger.

In the case of a CallEvent for an Operation or a SignalEvent for a Signal that matches a Reception on the receiver, if the
Operation or Reception has one or more methods, then the method resolution process described for Behavioral Features
and Methods in sub clause 13.2.3 shall be carried out to determine a method to be used to handle a MessageEvent
occurrence. If a method is so identified, it is invoked to respond to the message request. Otherwise, the MessageEvent
occurrence is saved in the event pool of the receiving object. When a MessageEvent occurrence is dispatched from the
event pool and matches a Trigger defined in the Behavior specification for the receiver, it causes the execution of a
response within the Behavior.

A Trigger for an AnyReceiveEvent may be triggered by the receipt of any message (Signal send or Operation call).
However, if there is a relevant SignalEvent or CallEvent Trigger that specifically matches the message, then the
AnyReceiveEvent Trigger is not triggered by the message. Which other Triggers are related to an AnyReceiveEvent
Trigger depends on the context of the Trigger (in particular, see sub clause 14.2 on Transitions and sub clause 16.10 on
AcceptEventActions). An AnyReceiveEvent may also be triggered by the receipt of a message containing an object
other than a Signallnstance, as may be sent by a SendObjectAction (see sub clause 16.3.3).

A Trigger may also specify one or more ports, in which case the event of the Trigger shall be a MessageEvent. In this
case the Trigger only matches event occurrences for messages received through one of the specified Ports (see also sub
clause 11.3 on EncapsulatedClassifiers and Ports).

13.3.3.3 Change Events
A ChangeEvent occurs when a Boolean changeExpression becomes true. For example, this could be as a result of a

change in the value of some Attribute or a change in the value referenced by a link corresponding to an Association. A
ChangeEvent occurs implicitly and is not the result of any explicit action.

294 Unified Modeling Language 2.5.1



An occurrence is considered to be generated any time the value of the changeExpression changes from false to true.
However, it is not defined specifically when a changeExpression is evaluated or whether a ChangeEvent occurrence
remains available for detection even if the associated changeExpression value changes back to false before the occurrence
is consumed.

13.3.3.4 Time Events

A TimeEvent specifies an instant in time at which it occurs. The instant is specified using a TimeExpression (see sub
clause 8.4). If the TimeEvent is absolute, then the time resulting from the evaluation of the TimeExpression is the
absolute time at which the TimeEvent occurs. If the TimeEvent is relative, then the TimeEvent shall be used in the
context of a Trigger, and the time of occurrence is relative to a starting time determined for the Trigger.

As discussed above under “Event Dispatching”, a Behavior may come to a wait point at which it has one or more
Triggers available to which event occurrences may be dispatched. If such an outstanding Trigger has a relative
TimeEvent, then the starting time for that TimeEvent is the time at which the Behavior came to the wait point.

13.3.4 Notation

There is no notation for Events outside of the context of their use in Triggers. A Trigger is denoted textually based on
the kind of Event it is for:

<trigger> ::= <call-event> | <signal-event> | <any-receive-event> | <time-event> | <change-event>
where:

* A CallEvent is denoted by the name of the triggering Operation, optionally followed by an assignment

specification:

<call-event> ::= <name> [‘(‘ [<assignment-specification>] )’]
<assignment-specification> ::= <assigned-name> [ ‘,’ <assigned-name>]*
where:

<assigned-name> is an implicit assignment of the argument value for the corresponding Parameter of the
Operation to a Property or Variable of the context object for the triggered Behavior.

<assignment-specification™> is optional and may be omitted even if the Operation has Parameters. No standard
mapping is defined from an assignment specification to the UML abstract syntax. A conforming tool is not
required to support this notation. If it does, it may provide a mapping to standard UML abstract syntax, e.g., by
implicitly inserting Actions to carry out the behavior implied by the notation.

* A SignalEvent is denoted by name of the triggering Signal, optionally followed by an assignment specification:

<signal-event> ::= <name> [ ‘(" [<assignment-specification>] °)’]
<assignment-specification> ::= <attr-name> [, '<attr-name>] *

where <assignment-specification> is defined as for CallEvent above.
*  Any AnyReceiveEvent is denoted by “all”:
<any-receive-event> ::= ‘all’
* A ChangeEvent is denoted by “when” followed by a Boolean ValueSpecification:
<change-event> ::= ‘when’ <value-specification>
See Clause 8 for the notation for various kinds of ValueSpecifications.

* Arelative TimeEvent is denoted with “after” followed by a TimeExpression, such as “after 5 seconds.” An
absolute TimeEvent is specified with “at” followed by a TimeExpression, such as “at Jan. 1, 2000, Noon”.

Unified Modeling Language 2.5.1 295



<time-event> ::= <relative-time-event> | <absolute-time-event>
<relative-time-event> ::= ‘after’ <time-expression>
<absolute-time-event> ::= ‘at’ <time-expression>

See also sub clause 8.4.4 on the notation for TimeExpressions.

13.3.5 Examples

None.

13.4  Classifier Descriptions

13.4.1 AnyReceiveEvent [Class]

13411 Description

A trigger for an AnyReceiveEvent is triggered by the receipt of any message that is not explicitly handled by any related
trigger.

13.41.2 Diagrams
Events
13.4.1.3 Generalizations
MessageEvent
13.4.2 Behavior [Abstract Class]

13.4.21 Description

Behavior is a specification of how its context BehavioredClassifier changes state over time. This specification may be
either a definition of possible behavior execution or emergent behavior, or a selective illustration of an interesting subset
of possible executions. The latter form is typically used for capturing examples, such as a trace of a particular execution.

13.4.2.2 Diagrams

Behaviors, Object Nodes, Activities, Control Nodes, Expressions, Structured Classifiers, Behavior State

13.4.2.3 Generalizations

Class

13.4.2.4 Specializations

OpaqueBehavior, Activity, StateMachine, Interaction

13.4.2.5 Attributes

® isReentrant : Boolean [1..1] = true
Tells whether the Behavior can be invoked while it is still executing from a previous invocation.

296 Unified Modeling Language 2.5.1



13.4.2.6 Association Ends

13.4.2.7

/context : BehavioredClassifier [0..1]{subsets RedefinableElement::redefinitionContext} (opposite

A_context _behavior::behavior)

The BehavioredClassifier that is the context for the execution of the Behavior. A Behavior that is directly
owned as a nestedClassifier does not have a context. Otherwise, to determine the context of a Behavior, find
the first BehavioredClassifier reached by following the chain of owner relationships from the Behavior, if any.
If there is such a BehavioredClassifier, then it is the context, unless it is itself a Behavior with a non-empty
context, in which case that is also the context for the original Behavior. For example, following this algorithm,
the context of an entry Behavior in a StateMachine is the BehavioredClassifier that owns the StateMachine.
The features of the context BehavioredClassifier as well as the Elements visible to the context Classifier are
visible to the Behavior.

¢ ownedParameter : Parameter [0..*]{ordered, subsets Namespace::ownedMember} (opposite
A_ownedParameter_behavior::behavior)

References a list of Parameters to the Behavior which describes the order and type of arguments that can be
given when the Behavior is invoked and of the values which will be returned when the Behavior completes its
execution.

¢ ownedParameterSet : ParameterSet [0..*]{subsets Namespace::ownedMember} (opposite
A_ownedParameterSet behavior::behavior)
The ParameterSets owned by this Behavior.

4 postcondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_postcondition behavior::behavior)

An optional set of Constraints specifying what is fulfilled after the execution of the Behavior is completed, if
its precondition was fulfilled before its invocation.

+ precondition : Constraint [0..*]{subsets Namespace::ownedRule} (opposite

A_precondition_behavior::behavior)
An optional set of Constraints specifying what must be fulfilled before the Behavior is invoked.

specification : BehavioralFeature [0..1] (opposite BehavioralFeature::method)

Designates a BehavioralFeature that the Behavior implements. The BehavioralFeature must be owned by the
BehavioredClassifier that owns the Behavior or be inherited by it. The Parameters of the BehavioralFeature
and the implementing Behavior must match. A Behavior does not need to have a specification, in which case it
either is the classifierBehavior of a BehavioredClassifier or it can only be invoked by another Behavior of the
Classifier.

redefinedBehavior : Behavior [0..*]{subsets Classifier::redefinedClassifier} (opposite
A_redefinedBehavior_behavior::behavior)

References the Behavior that this Behavior redefines. A subtype of Behavior may redefine any other subtype of
Behavior. If the Behavior implements a BehavioralFeature, it replaces the redefined Behavior. If the Behavior
is a classifierBehavior, it extends the redefined Behavior.

Operations

context() : BehavioredClassifier [0..1]

A Behavior that is directly owned as a nestedClassifier does not have a context. Otherwise, to determine the
context of a Behavior, find the first BehavioredClassifier reached by following the chain of owner relationships
from the Behavior, if any. If there is such a BehavioredClassifier, then it is the context, unless it is itself a
Behavior with a non-empty context, in which case that is also the context for the original Behavior.

Unified Modeling Language 2.5.1 297



body: if nestingClass <> null then
null
else
let b:BehavioredClassifier = self.behavioredClassifier(self.owner) in
if b.oclIsKindOf(Behavior) and b.oclAsType(Behavior). 'context' <> null then
b.oclAsType(Behavior). 'context'
else
b
endif
endif

® DbehavioredClassifier(from : Element) : BehavioredClassifier [0..1]
The first BehavioredClassifier reached by following the chain of owner relationships from the Behavior, if any.

body: if from.oclIsKindOf (BehavioredClassifier) then
from.oclAsType(BehavioredClassifier)

else if from.owner = null then
null

else
self.behavioredClassifier (from.owner)

endif

endif

® inputParameters() : Parameter [0..*]{ordered}
The in and inout ownedParameters of the Behavior.

body: ownedParameter->select(direction=ParameterDirectionKind:: 'in' or
direction=ParameterDirectionKind::inout)

¢ outputParameters() : Parameter [0..*]{ordered}
The out, inout and return ownedParameters.

body: ownedParameter->select(direction=ParameterDirectionKind::out or
direction=ParameterDirectionKind: :inout or direction=ParameterDirectionKind::return)

13.4.2.8 Constraints

* most_one behavior
There may be at most one Behavior for a given pairing of BehavioredClassifier (as owner of the Behavior) and
BehavioralFeature (as specification of the Behavior).

inv: specification <> null implies 'context'.ownedBehavior-

>select(specification=self.specification)->size() =1

*  parameters match
If a Behavior has a specification BehavioralFeature, then it must have the same number of ownedParameters as
its specification. The Behavior Parameters must also "match" the BehavioralParameter Parameters, but the
exact requirements for this matching are not formalized.

inv: specification <> null implies ownedParameter->size() = specification.ownedParameter-
>size()

* feature of context classifier

The specification BehavioralFeature must be a feature (possibly inherited) of the context BehavioredClassifier
of the Behavior.

inv: _'context'.feature->includes(specification)

298 Unified Modeling Language 2.5.1



13.4.3 CallEvent [Class]

13.4.31 Description

A CallEvent models the receipt by an object of a message invoking a call of an Operation.

13.4.3.2 Diagrams

Events
13.4.3.3 Generalizations

MessageEvent
13.4.3.4 Association Ends

® operation : Operation [1..1] (opposite A_operation callEvent::callEvent)
Designates the Operation whose invocation raised the CalEvent.

13.4.4 ChangeEvent [Class]

13.4.41 Description
A ChangeEvent models a change in the system configuration that makes a condition true.
13.4.4.2 Diagrams
Events
13.44.3 Generalizations
Event

13.4.4.4 Association Ends

® ¢ changeExpression : ValueSpecification [1..1]{subsets Element::ownedElement} (opposite

A_changeExpression_changeEvent::changeEvent)
A Boolean-valued ValueSpecification that will result in a ChangeEvent whenever its value changes from false

to true.

13.4.5 Event [Abstract Class]

13.4.5.1 Description

An Event is the specification of some occurrence that may potentially trigger effects by an object.

13.4.5.2 Diagrams

Events
13.4.5.3 Generalizations

PackageableElement

13.4.5.4 Specializations

ChangeEvent, MessageEvent, TimeEvent

Unified Modeling Language 2.5.1 299



13.4.6 FunctionBehavior [Class]

13.4.6.1 Description

A FunctionBehavior is an OpaqueBehavior that does not access or modify any objects or other external data.

13.4.6.2 Diagrams
Behaviors
13.4.6.3 Generalizations

OpaqueBehavior

13.4.6.4 Operations

® hasAllDataTypeAttributes(d : DataType) : Boolean
The hasAllDataTypeAttributes query tests whether the types of the attributes of the given DataType are all
DataTypes, and similarly for all those DataTypes.

body: d.ownedAttribute->forAll(a |
a.type.oclIsKindOf (DataType) and
hasAllDataTypeAttributes(a.type.oclAsType(DataType)))

13.4.6.5 Constraints

* one output parameter
A FunctionBehavior has at least one output Parameter.

inv: self.ownedParameter->
select(p | p.direction = ParameterDirectionKind::out or p.direction=
ParameterDirectionKind: :inout or p.direction= ParameterDirectionKind::return)->size() >= 1

* types_of parameters
The types of the ownedParameters are all DataTypes, which may not nest anything but other DataTypes.

inv: ownedParameter->forAll(p | p.type <> null and
p.type.oclIsTypeOf (DataType) and hasAllDataTypeAttributes(p.type.oclAsType(DataType)))

13.4.7 MessageEvent [Abstract Class]

13.4.71 Description

A MessageEvent specifies the receipt by an object of either an Operation call or a Signal instance.

13.4.7.2 Diagrams
Events

13.4.7.3 Generalizations
Event

13.4.74 Specializations

AnyReceiveEvent, CallEvent, SignalEvent

300 Unified Modeling Language 2.5.1



13.4.8 OpaqueBehavior [Class]

13.4.8.1 Description

An OpaqueBehavior is a Behavior whose specification is given in a textual language other than UML.

13.4.8.2 Diagrams

Behaviors

13.4.8.3 Generalizations

Behavior

13.4.8.4 Specializations

FunctionBehavior

13.4.8.5 Attributes

® Dbody : String [0..¥]
Specifies the behavior in one or more languages.

* language : String [0..*]
Languages the body strings use in the same order as the body strings.

13.4.9 SignalEvent [Class]

13.4.9.1 Description

A SignalEvent represents the receipt of an asynchronous Signal instance.

13.4.9.2 Diagrams

Events
13.4.9.3 Generalizations

MessageEvent

13.49.4 Association Ends

® signal : Signal [1..1] (opposite A_signal signalEvent::signalEvent)
The specific Signal that is associated with this SignalEvent.

13.4.10 TimeEvent [Class]

13.4.10.1 Description

A TimeEvent is an Event that occurs at a specific point in time.

13.4.10.2 Diagrams

Events

Unified Modeling Language 2.5.1

301



13.4.10.3 Generalizations

Event

13.4.10.4 Attributes

* isRelative : Boolean [1..1] = false
Specifies whether the TimeEvent is specified as an absolute or relative time.

13.4.10.5 Association Ends

® ¢ when : TimeExpression [1..1]{subsets Element::ownedElement} (opposite A_when timeEvent::timeEvent)
Specifies the time of the TimeEvent.

13.4.10.6 Constraints

* when non negative
The ValueSpecification when must return a non-negative Integer.

inv: when.integervValue() >= 0

13.4.11 Trigger [Class]

13.4.11.1 Description

A Trigger specifies a specific point at which an Event occurrence may trigger an effect in a Behavior. A Trigger may be
qualified by the Port on which the Event occurred.

13.4.11.2 Diagrams

Events, Behavior State Machines, Accept Event Actions
13.4.11.3 Generalizations

NamedElement

13.4.11.4 Association Ends

* cvent: Event [1..1] (opposite A_event trigger::trigger)
The Event that detected by the Trigger.

® port: Port [0..*] (opposite A_port trigger::trigger)
A optional Port of through which the given effect is detected.

13.4.11.5 Constraints

* trigger with ports
If a Trigger specifies one or more ports, the event of the Trigger must be a MessageEvent.

inv: port->notEmpty() implies event.oclIsKindOf(MessageEvent)

302 Unified Modeling Language 2.5.1



13.5 Association Descriptions

13.5.1 A_changeExpression_changeEvent [Association]

13.5.1.1 Diagrams

Events

13.5.1.2 Owned Ends

® changeEvent : ChangeEvent [0..1]{subsets Element::owner} (opposite ChangeEvent::changeExpression)

13.5.2 A_context_behavior [Association]

13.5.2.1 Diagrams
Behaviors
13.5.2.2 Owned Ends

® behavior : Behavior [0..*]{subsets A_redefinitionContext redefinableElement::redefinableElement} (opposite

Behavior::context)

13.5.3 A_event_trigger [Association]

13.5.3.1 Diagrams

Events

13.5.3.2 Owned Ends
* trigger : Trigger [0..*] (opposite Trigger::event)

13.5.4 A_operation_callEvent [Association]

13.5.4.1 Diagrams

Events

13.5.4.2 Owned Ends

¢ callEvent : CallEvent [0..*] (opposite CallEvent::operation)

13.5.5 A_ownedParameterSet_behavior [Association]

13.5.5.1 Diagrams
Behaviors
13.5.5.2 Owned Ends

® behavior : Behavior [0..1]{subsets NamedElement::namespace} (opposite Behavior::ownedParameterSet)

Unified Modeling Language 2.5.1

303



13.5.6 A_ownedParameter_behavior [Association]

13.5.6.1 Diagrams
Behaviors
13.5.6.2 Owned Ends

® behavior : Behavior [0..1]{subsets NamedElement::namespace} (opposite Behavior::ownedParameter)

13.5.7 A_port_trigger [Association]

13.5.71 Diagrams

Events

13.5.7.2 Owned Ends
® trigger : Trigger [0..*] (opposite Trigger::port)

13.5.8 A_postcondition_behavior [Association]

13.5.8.1 Diagrams

Behaviors

13.5.8.2 Owned Ends

® behavior : Behavior [0..1]{subsets Constraint::context} (opposite Behavior::postcondition)

13.5.9 A_precondition_behavior [Association]

13.5.9.1 Diagrams

Behaviors

13.5.9.2 Owned Ends

® Dbehavior : Behavior [0..1]{subsets Constraint::context} (opposite Behavior::precondition)

13.5.10 A_redefinedBehavior_behavior [Association]

13.5.10.1 Diagrams

Behaviors

13.5.10.2 Owned Ends

® behavior : Behavior [0..*]{subsets A_redefinedClassifier classifier::classifier} (opposite
Behavior::redefinedBehavior)

304 Unified Modeling Language 2.5.1



13.5.11  A_signal_signalEvent [Association]

13.5.11.1 Diagrams

Events

13.5.11.2 Owned Ends
* signalEvent : SignalEvent [0..*] (opposite SignalEvent::signal)

13.5.12 A_when_timeEvent [Association]

13.5.12.1 Diagrams

Events

13.5.12.2 Owned Ends

¢ timeEvent : TimeEvent [0..1]{subsets Element::owner} (opposite TimeEvent::when)

Unified Modeling Language 2.5.1 305






14 StateMachines

14.1 Summary

The StateMachines package defines a set of concepts that can be used for modeling discrete event-driven Behaviors
using a finite state-machine formalism. In addition to expressing the Behavior of parts of a system (e.g., the Behavior of
Classifier instances), state machines can also be used to express the valid interaction sequences, called protocols, for
parts of a system. These two kinds of StateMachines are referred to as behavior state machines and protocol state
machines respectively.

The specific form of finite state automata used in UML is based on an object-oriented variant of David Harel’s
statecharts formalism. (However, readers who are familiar with that formalism should note that there is a small number
of semantic differences that distinguish the UML version from the original.)

14.2 Behavior StateMachines

14.2.1 Summary

Behavior StateMachines can be used to specify any of the following:
*  The classifierBehavior of an active Class.
*  An ownedBehavior of a BehavioredClassifier that is not the classifierBehavior of that BehavioredClassifier.
* A stand-alone Behavior, that is, one that does not have a corresponding BehavioredClassifier.

* A method corresponding to a BehavioralFeature (i.e., an Operation or a Reception).

Unified Modeling Language 2.5.1 307



14.2.2 Abstract Syntax

I TransitionKind il
internal deepHistory
local shallowHistory
+ submachine [ stateMachine external join
0.1 fork
" junction
{subsets namespace} choice
+ stateMachine entryPoint
0.1 exitPoint
- terminate

i
0..1Y ;- stateMachine

{subsets namespace}
{subsets ownedMember}
+ region |1..%
{subsets namespace} {subsets namespace}
+ container Region + container
:
0.1
o {subsets ownedMember}
*| + region
{subsets ownedMember} {subsets ownedMember} |
* | + subvertex (re/adomy) + transition
+ target + /incoming
Vertex T = Transition @‘E;fg:ig‘gr:‘e’}
+kind : = external |
{readOnly} g
+ source + foutgoing 0.1
1 *
{subsets owner} {subsets context}
+ transition |0..1 0..1 | + transition

{subsets ownedElement} 0.1 {SUUS%IS ownedRule}
+ connectionPointReference + trigger,| * 1], + guar

ConnectionPointReference

0.1 Trigger Constraint
) {subsets ownedRule}
+ connectionPointReference {subsets ownedElement} 0..17|" + stateInvariant
0.1 + deferrableTrigger | *
+ connection | *
{subsets ownedMember} {subsets
nameip:;et}e o A {subsets ownedElement}
{subsets ownedMember} . . {subsets namespace} + state | 0..1 " 0.1 + effect
+ connectionPoint | * wentry x| +exit {subsets owner}
+ state
{subsets ownedMember} State 0.1 Behavior
Pseudostate + connectionPoint 0.1 I /isComposite : Boolean {readOnly}
+ kind © = initia * +state | + /isOrthogonal : Boolean {readOnly} {subsets context}
{subsets namespace} | + /isSimple : Boolean {readOnly} + owningState
+ fisSubmachineState : Boolean {readOnly} &
{subsets owner}  {subsets ownedElement}
+ submachineState + state + entry
I~ 0.1
0.1 "
* ..
{subsets owner} ~{subsets ownedElement}
+ state + exit
0.1 0.1
{subsets owner} ~{subsets ownedElement}
+ state + doActivi
-
N 0.1 0.1

——1

Figure 14.1 Behavior StateMachines

14.2.3 Semantics

14.2.3.1 StateMachine

A behavior StateMachine comprises one or more Regions, each Region containing a graph (possibly hierarchical)
comprising a set of Vertices interconnected by arcs representing Transitions. State machine execution is triggered by
appropriate Event occurrences. A particular execution of a StateMachine is represented by a set of valid path traversals
through one or more Region graphs, triggered by the dispatching of an Event occurrence that match active Triggers in
these graphs. The rules for matching Triggers are described below. In the course of such a traversal, a StateMachine
instance may execute a potentially complex sequence of Behaviors associated with the particular elements of the graphs
that are being traversed (transition effects, state entry and state exit Behaviors, etc.)

If the StateMachine has a kind of BehavioredClassifier context, then that Classifier defines which Signal and CallEvent
triggers are applicable to that StateMachine, and which Features are available to the Behaviors owned by the
StateMachine. Signal Triggers and CallEvent Triggers for the StateMachine are defined according to the Receptions and
Operations of this Classifier respectively. These Features may be used to define message event Triggers of the
StateMachine.

If the StateMachine has no BehavioredClassifier context (i.e., it is a stand-alone Behavior), then its Triggers do not need
to be tied to any Receptions or Operations of some Classifier. For example, such a StateMachine might be defined as a

308 Unified Modeling Language 2.5.1



Template with its Triggers defined as TemplateParameters. Such a StateMachine can then be reused with different
context Classifiers by binding appropriate CallEvent or SignalEvent Triggers to these TemplateParameters.

In situations where a StateMachine specifies the method of a BehavioralFeature (Operation or Reception), the
Parameters of the StateMachine shall match the Parameters of the BehavioralFeature (see sub clause 13.2.3). This is the
means by which the StateMachine execution accesses the Parameters of the BehavioralFeature. Otherwise, the method
by which an executing StateMachine instance accesses the dispatched Event occurrence and its associated data is not
defined (see Clause 13).

By definition, invocations of StateMachine executions result in triggered effects (see sub clause 13.3.3) and, hence,
there is an associated event pool with such an execution. The event pool for a StateMachine execution belongs to either
its context Classifier object or, if the StateMachine defines a method of a BehavioralFeature, to the instance of the
Classifier owning the BehavioralFeature.

Due to its event-driven nature, a StateMachine execution is either in transit or in state, alternating between the two. It is
in transit when an event is dispatched that matches at least one of its associated Triggers. While in transit, it may
execute a number of Behaviors associated with the paths it is taking.

NOTE. A StateMachine execution may be executing Behaviors even when it has settled in a stable state configuration,
in cases where there are doActivity Behaviors associated with its active state configuration.

14.2.3.2 Regions

A Region denotes a behavior fragment that may execute concurrently with its orthogonal Regions. Two or more
Regions are orthogonal to each other if they are either owned by the same State or, at the topmost level, by the same
StateMachine. A Region becomes active (i.e., it begins executing) either when its owning State is entered or, if it is
directly owned by a StateMachine (i.e., it is a top level Region), when its owning StateMachine starts executing. Each
Region owns a set of Vertices and Transitions, which determine the behavioral flow within that Region. It may have its
own initial Pseudostate as well as its own FinalState.

A default activation of a Region occurs if the Region is entered implicitly, that is, it is not entered through an incoming
Transition that terminates on one of its component Vertices (e.g., a State or a history Pseudostate), but either

* through a (local or external) Transition that terminates on the containing State or,
* in case of a top level Region, when the StateMachine starts executing.

Default activation means that execution starts with the Transition originating from the initial Pseudostate of the Region,
if one is defined. However, no specific approach is defined if there is no initial Pseudostate that exists within the
Region. One possible approach is to deem the model ill defined. An alternative is that the Region remains inactive,
although the State that contains it is active. In other words, the containing composite State is treated as a simple (leaf)
State.

Conversely, an explicit activation occurs when a Region is entered by a Transition terminating on one of the Region’s
contained Vertices. When one Region of an orthogonal State is activated explicitly, this will result in the default
activation of all of its orthogonal Regions, unless those Regions are also entered explicitly (multiple orthogonal Regions
can be entered explicitly in parallel through Transitions originating from the same fork Pseudostate).

14.2.3.3 Vertices

Vertex is an abstract class that captures the common characteristics for a variety of different concrete kinds of nodes in
the StateMachine graph (States, Pseudostates, or ConnectionPointReferences). With certain exceptions described below,
a Vertex can be the source and/or target of any number of Transitions. The semantics of a Vertex depend on the concrete
kind of node it represents. In general, Pseudostates and ConnectionPointReferences are transitive, in the sense that a
compound transition execution simply passes through them, arriving on an incoming Transition and leaving on an
outgoing Transition without pause. State and FinalState, however, represent stable Vertices, such that, when a
StateMachine execution enters them it remains in them until either some Event occurs that triggers a transition that
moves it to a different State or the StateMachine is terminated.

Unified Modeling Language 2.5.1 309



The semantics of individual types of Vertices are described below.

14.2.3.4 States

A State models a situation in the execution of a StateMachine Behavior during which some invariant condition holds. In
most cases this condition is not explicitly defined, but is implied, usually through the name associated with the State.
For example, in Figure 14.36, which models the behavior of a telephone unit, the states “Idle” and “Active” represent
situations where the telephone is and is not being used, respectively. This example also illustrates the fact that a State
need not necessarily represent a fully static situation, as there is clearly some detailed activity occurring in the context
of the “Active” state. However, throughout all that activity the telephone remains in use (i.e., “active”).

14.2.3.4.1 Kinds of States
The following kinds of States are distinguished:
*  simple State (isSimple = true)
*  composite State (isComposite = true)
*  submachine State (isSubmachineState = true)

A simple State has no internal Vertices or Transitions. A composite State contains at least one Region, whereas a
submachine State refers to an entire StateMachine, which is, conceptually, deemed to be “nested” within the State. A
composite State can be either a simple composite State with exactly one Region or an orthogonal State with multiple
Regions (isOrthogonal = true). For example, in Figure 14.9, State “CourseAttempt” is an example of a composite State
with a single Region, whereas State “Studying” is a composite State that contains three Regions.

Any State enclosed within a Region of a composite State is called a substate of that composite State. It is called a direct
substate when it is not contained in any other State; otherwise, it is referred to as an indirect substate.

14.2.3.4.2 State configurations

In general, a StateMachine can have multiple Regions, each of which may contain States of its own, some of which may
be composites with their own multiple Regions, etc. Consequently, a particular “state” of an executing StateMachine
instance is represented by one or more hierarchies of States, starting with the topmost Regions of the StateMachine and
down through the composition hierarchy to the simple, or leaf, States. Similarly, we can talk about such a hierarchy of
substates within a composite State. This complex hierarchy of States is referred to as a state configuration (of a State or
a StateMachine). For example, one valid state configuration for an execution of the StateMachine depicted in Figure
14.9 is: <CourseAttempt - Studying — (Studying::Lab2, Studying::TermProject, Studying::FinalTest)>. An executing StateMachine
instance can only be in exactly one state configuration at a time, which is referred to as its active state configuration.
StateMachine execution is represented by transitions from one active state configuration to another in response to Event
occurrences that match the Triggers of the StateMachine.

A State is said to be active if it is part of the active state configuration.
A state configuration is said to be stable when:
* no further Transitions from that state configuration are enabled and

¢ all the entry Behaviors of that configuration, if present, have completed (but not necessarily the doActivity
Behaviors of that configuration, which, if defined, may continue executing).

After it has been created and completed its initial Transition, a StateMachine is always “in” some state configuration.
However, because States can be hierarchical and because there can be Behaviors associated with both Transitions and
States, “entering” a hierarchical state configuration involves a dynamic process that terminates only after a stable state
configuration (as defined above) is reached. This creates some potential ambiguity as to precisely when a StateMachine
is “in” a particular state within a state configuration. The rules for when a StateMachine is deemed to be “in” a State
and when it is deemed to have “left” a State are described below in the sections “Entering a State” and “Exiting a State
respectively.

310 Unified Modeling Language 2.5.1



A configuration is deemed stable even if there are deferred, completion, or any other types of Event occurrences
pending in the event pool of that StateMachine

14.2.3.4.3 State entry, exit, and doActivity Behaviors

A State may have an associated entry Behavior. This Behavior, if defined, is executed whenever the State is entered
through an external Transition. In addition, a State may also have an associated exit Behavior, which, if defined, is
executed whenever the State is exited.

A State may also have an associated doActivity Behavior. This Behavior commences execution when the State is entered
(but only after the State entry Behavior has completed) and executes concurrently with any other Behaviors that may be
associated with the State, until:

e it completes (in which case a completion event is generated) or
¢ the State is exited, in which case execution of the doActivity Behavior is aborted.

The execution of a doActivity Behavior of a State is not affected by the firing of an internal Transition of that State.

14.2.3.4.4 State history

The concept of State Aistory was introduced by David Harel in the original statechart formalism. It is a convenience
concept associated with Regions of composite States whereby a Region keeps track of the state configuration it was in
when it was last exited. This allows easy return to that same state configuration, if desired, the next time the Region
becomes active (e.g., after returning from handling an interrupt), or if there is a local Transition that returns to its
history. This is achieved simply by terminating a Transition on the desired type of history Pseudostate inside the Region.
The advantage provided by this facility is that it eliminates the need for users to explicitly keep track of history in cases
where this type of behavior is desired, which can result in significantly simpler state machine models.

Two types of history Pseudostates are provided. Deep history (deepHistory) represents the full state configuration of the
most recent visit to the containing Region. The effect is the same as if the Transition terminating on the deepHistory
Pseudostate had, instead, terminated on the innermost State of the preserved state configuration, including execution of
all entry Behaviors encountered along the way. Shallow history (shallowHistory) represents a return to only the fopmost
substate of the most recent state configuration, which is entered using the default entry rule.

In cases where a Transition terminates on a history Pseudostate when the State has not been entered before (i.e., no prior
history) or it had reached its FinalState, there is an option to force a transition to a specific substate, using the default
history mechanism. This is a Transition that originates in the history Pseudostate and terminates on a specific Vertex (the
default history state) of the Region containing the history Pseudostate. This Transition is only taken if execution leads to
the history Pseudostate and the State had never been active before. Otherwise, the appropriate history entry into the
Region is executed (see above). If no default history Transition is defined, then standard default entry of the Region is
performed as explained below.

Deferred Events

A State may specify a set of Event types that may be deferred in that State. This means that Event occurrences of those
types will not be dispatched as long as that State remains active. Instead, these Event occurrences remain in the event
pool until:

* astate configuration is reached where these Event types are no longer deferred or,

¢ ifadeferred Event type is used explicitly in a Trigger of a Transition whose source is the deferring State (i.e., a
kind of override option).

An Event may be deferred by a composite State or submachine States, in which case it remains deferred as long as the
composite State remains in the active configuration.

14.2.3.4.5 Entering a State

The semantics of entering a State depend on the type of State and the manner in which it is entered. However, in all
cases, the entry Behavior of the State is executed (if defined) upon entry, but only after any effect Behavior associated

Unified Modeling Language 2.5.1 31



with the incoming Transition is completed. Also, if a doActivity Behavior is defined for the State, this Behavior
commences execution immediately after the entry Behavior is executed. It executes concurrently with any subsequent
Behaviors associated with entering the State, such as the entry Behaviors of substates entered as part of the same
compound transition.

The above description fully covers the case of simple States. For composite States with a single Region the following
alternatives exist:

*  Default entry: This situation occurs when the composite State is the direct target of a Transition (graphically,
this is indicated by an incoming Transition that terminates on the outside edge of the composite State). After
executing the entry Behavior and forking a possible doActivity Behavior execution, if an initial Pseudostate is
defined, State entry continues from that Vertex via its outgoing Transition (known as the default Transition of
the State). If no initial Pseudostate is defined, there is no single approach defined. One alternative is to treat
such a model as ill formed. A second alternative is to treat the composite State as a simple State, terminating
the traversal on that State despite its internal parts.

*  FExplicit entry: If the incoming Transition or its continuations terminate on a directly contained substate of the
composite State, then that substate becomes active and its entry Behavior is executed after the execution of the
entry Behavior of the containing composite State. This rule applies recursively if the Transition terminates on
an indirect (deeply nested) substate.

*  Shallow history entry: If the incoming Transition terminates on a shallowHistory Pseudostate of a Region of the
composite State, the active substate becomes the substate that was most recently active prior to this entry,
unless:

o the most recently active substate is the FinalState, or
o this is the first entry into this State.

o In the latter two cases, if a default shallow history Transition is defined originating from the
shallowHistory Pseudostate, it will be taken. Otherwise, default State entry is applied.

*  Deep history entry: The rule for this case is the same as for shallow history except that the target Pseudostate is
of type deepHistory and the rule is applied recursively to all levels in the active state configuration below this
one.

*  FEntry point entry: If a Transition enters a composite State through an entryPoint Pseudostate, then the effect
Behavior associated with the outgoing Transition originating from the entry point and penetrating into the State
(but after the entry Behavior of the composite State has been executed).

If the composite State is also an orthogonal State with multiple Regions, each of its Regions is also entered, either by
default or explicitly. If the Transition terminates on the edge of the composite State (i.e., without entering the State),
then all the Regions are entered using the default entry rule above. If the Transition explicitly enters one or more
Regions (in case of a fork), these Regions are entered explicitly and the others by default.

Regardless of how a State is entered, the StateMachine is deemed to be “in” that State even before any entry Behavior or
effect Behavior (if defined) of that State start executing.

14.2.3.4.6 Exiting a State

When exiting a State, regardless of whether it is simple or composite, the final step involved in the exit, after all other
Behaviors associated with the exit are completed, is the execution of the exit Behavior of that State. If the State has a
doActivity Behavior that is still executing when the State is exited, that Behavior is aborted before the exit Behavior
commences execution.

When exiting from a composite State, exit commences with the innermost State in the active state configuration. This
means that exit Behaviors are executed in sequence starting with the innermost active State. If the exit occurs through an
exitPoint Pseudostate, then the exit Behavior of the State is executed after the effect Behavior of the Transition
terminating on the exit point.

312 Unified Modeling Language 2.5.1



When exiting from an orthogonal State, each of its Regions is exited. After that, the exit Behavior of the State is
executed.

Regardless of how a State is exited, the StateMachine is deemed to have “left” that State only after the exit Behavior (if
defined) of that State has completed execution.

Encapsulated composite States

In some modeling situations, it is useful to encapsulate a composite State, by not allowing Transitions to penetrate
directly into the State to terminate on one of its internal Vertices. (One common use case for this is when the internals of
a State in an abstract Classifier are intended to be specified differently in different subtype refinements of the abstract
Classifier.) Despite the encapsulation, it is often necessary to bind the internal elements of the composite State with
incoming and outgoing Transitions. This is done by means of entry and exit points, which are realized via the entryPoint
and exitPoint Pseudostates.

Entry points represent termination points (sources) for incoming Transitions and origination points (targets) for
Transitions that terminate on some internal Vertex of the composite State. In effect, the latter is a continuation of the
external incoming Transition, with the proviso that the execution of the entry Behavior of the composite State (if
defined) occurs between the effect Behavior of the incoming Transition and the effect Behavior of the outgoing
Transition. If there is no outgoing Transition inside the composite State, then the incoming Transition simply performs a
default State entry.

Exit points are the inverse of entry points. That is, Transitions originating from a Vertex within the composite State can
terminate on the exit point. In a well-formed model, such a Transition should have a corresponding external Transition
outgoing from the same exit point, representing a continuation of the terminating Transition. If the composite State has
an exit Behavior defined, it is executed after any effect Behavior of the incoming inside Transition and before any effect
Behavior of the outgoing external Transition.

14.2.3.4.7 Submachine States and submachines

Submachines are a means by which a single StateMachine specification can be reused multiple times. They are similar
to encapsulated composite States in that they need to bind incoming and outgoing Transitions to their internal Vertices.
However, whereas encapsulated composite States and their internals are contained within the StateMachine in which
they are defined, submachines are, like programming language macros, distinct Behavior specifications, which may be
defined in a different context than the one where they are used (invoked). Consequently, they require a more complex
binding. This is achieved through the concept of submachine State (i.e., States with isSubmachineState = true), which
represent references to corresponding submachine StateMachines. The concept of ConnectionPointReference is
provided to support binding between the submachine State and the referenced StateMachine. A
ConnectionPointReference represents a point on the submachine State at which a Transition either terminates or
originates. That is, they serve as targets for incoming Transitions to submachine States, as well as sources for outgoing
Transitions from submachine States. Each ConnectionPointReference is matched by a corresponding entry or exit point
in the referenced submachine StateMachine. This provides the necessary binding mechanism between the submachine
invocation and its specification.

A submachine State implies a macro-like insertion of the specification of the corresponding submachine StateMachine.
It is, therefore, semantically equivalent to a composite State. The Regions of the submachine StateMachine are the
Regions of the composite State. The entry, exit, and effect Behaviors and internal Transitions are defined as contained in
the submachine State.

NOTE. Each submachine State represents a distinct instantiation of a submachine, even when two or more submachine
States reference the same submachine.

A submachine StateMachine can be entered via its default (initial) Pseudostate or via any of its entry points (i.e., it may
imply entering a non-orthogonal or an orthogonal composite State with Regions). Entering via the initial Pseudostate has
the same meaning as for ordinary composite States. An entry point is equivalent to a junction Pseudostate (fork in cases
where the composite State is orthogonal): Entering via an entry point implies that the entry Behavior of the composite
state is executed, followed by the Transition from the entry point to the target Vertex within the composite State. Any
guards associated with these entry point Transitions must evaluate to true in order for the specification to be well
formed.

Unified Modeling Language 2.5.1 313



Similarly, a submachine Statemachine can be exited as a result of:
* reaching its FinalState,
* triggering of a group Transition originating from a submachine State, or
* via any of its exit points.

Exiting via a FinalState or by a group Transition has the same meaning as for ordinary composite States.

14.2.3.5 ConnectionPointReference

As noted above, a connection point reference represents a usage (as part of a submachine State) of an entry/exit point
defined in the StateMachine referenced by the submachine State. Connection point references of a submachine State can
be used as sources/targets of Transitions. They represent entries into or exits out of the submachine StateMachine
referenced by the submachine State.

Connection point references are sources/targets of Transitions implying exits out of/entries into the submachine
StateMachine referenced by a submachine State.

An entry point connection point reference as the target of a Transition implies that the target of the Transition is the
entryPoint Pseudostate as defined in the submachine of the submachine State. As a result, the Regions of the
submachine StateMachine are entered through the corresponding entryPoint Pseudostates.

An exit point connection point reference as the source of a Transition implies that the source of the Transition is the exit
point Pseudostate as defined in the submachine of the submachine State that has the exit point connection point defined.
When a Region of the submachine StateMachine reaches the corresponding exit point, the submachine state is exited
via this exit point.

14.2.3.6 FinalState

FinalState is a special kind of State signifying that the enclosing Region has completed. Thus, a Transition to a
FinalState represents the completion of the behaviors of the Region containing the FinalState.

14.2.3.7 Pseudostate and PseudostateKind

A Pseudostate is an abstraction that encompasses different types of transient Vertices in the StateMachine graph.
Pseudostates are generally used to chain multiple Transitions into more complex compound transitions (see below). For
example, by combining a Transition entering a fork Pseudostate with a set of Transitions exiting that Pseudostate, we get
a compound Transition that can enter a set of orthogonal Regions.

The specific semantics of a Pseudostate depend on the kind of Pseudostate, which is defined by its kind attribute of type
PseudostateKind. The following describes the different kinds and their semantics:

* initial - An initial Pseudostate represents a starting point for a Region; that is, it is the point from which
execution of its contained behavior commences when the Region is entered via default activation. It is the
source for at most one Transition, which may have an associated effect Behavior, but not an associated trigger or
guard. There can be at most one initial Vertex in a Region.

+ deepHistory — This type of Pseudostate is a kind of variable that represents the most recent active state
configuration of its owning Region. As explained above, a Transition terminating on this Pseudostate implies
restoring the Region to that same state configuration, but with all the semantics of entering a State (see the sub
clause describing State entry). The entry Behaviors of all States in the restored state configuration are
performed in the appropriate order starting with the outermost State. A deepHistory Pseudostate can only be
defined for composite States and, at most one such Pseudostate can be contained in a Region of a composite
State.

+ shallowHistory — As explained above, this type of Pseudostate is a kind of variable that represents the most
recent active substate of its containing Region, but not the substates of that substate. A Transition terminating
on this Pseudostate implies restoring the Region to that substate with all the semantics of entering a State. A

314 Unified Modeling Language 2.5.1



single outgoing Transition from this Pseudostate may be defined terminating on a substate of the composite
State. This substate is the default shallow history state of the composite State. A shallowHistory Pseudostate
can only be defined for composite States and, at most one such Pseudostate can be included in a Region of a
composite State.

* join — This type of Pseudostate serves as a common target Vertex for two or more Transitions originating from
Vertices in different orthogonal Regions. Transitions terminating on a join Pseudostate cannot have a guard or a
trigger. Similar to junction points in Petri nets, join Pseudostates perform a synchronization function, whereby
all incoming Transitions have to complete before execution can continue through an outgoing Transition.

+ fork —fork Pseudostates serve to split an incoming Transition into two or more Transitions terminating on
Vertices in orthogonal Regions of a composite State. The Transitions outgoing from a fork Pseudostate cannot
have a guard or a trigger.

* junction — This type of Pseudostate is used to connect multiple Transitions into compound paths between
States. For example, a junction Pseudostate can be used to merge multiple incoming Transitions into a single
outgoing Transition representing a shared continuation path. Or, it can be used to split an incoming Transition
into multiple outgoing Transition segments with different guard Constraints.

NOTE. Such guard Constraints are evaluated before any compound transition containing this Pseudostate is
executed, which is why this is referred to as a static conditional branch.

It may happen that, for a particular compound transition, the configuration of Transition paths and guard values
is such that the compound transition is prevented from reaching a valid state configuration. In those cases, the
entire compound transition is disabled even though its Triggers are enabled. (As a way of avoiding this
situation in some cases, it is possible to associate a predefined guard denoted as “else” with at most one
outgoing Transition. This Transition is enabled if all the guards attached to the other Transitions evaluate to
false). If more than one guard evaluates to true, one of these is chosen. The algorithm for making this selection
is not defined.

*  choice — This type of Pseudostate is similar to a junction Pseudostate (see above) and serves similar purposes,
with the difference that the guard Constraints on all outgoing Transitions are evaluated dynamically, when the
compound transition traversal reaches this Pseudostate. Consequently, choice is used to realize a dynamic
conditional branch. It allows splitting of compound transitions into multiple alternative paths such that the
decision on which path to take may depend on the results of Behavior executions performed in the same
compound transition prior to reaching the choice point. If more than one guard evaluates to true, one of the
corresponding Transitions is selected. The algorithm for making this selection is not defined. If none of the
guards evaluates to true, then the model is considered ill formed. To avoid this, it is recommended to define one
outgoing Transition with the predefined “else” guard for every choice Pseudostate.

*  entryPoint — An entryPoint Pseudostate represents an entry point for a StateMachine or a composite State that
provides encapsulation of the insides of the State or StateMachine. In each Region of the StateMachine or
composite State owning the entryPoint, there is at most a single Transition from the entry point to a Vertex
within that Region.

NOTE. If the owning State has an associated entry Behavior, this Behavior is executed before any behavior
associated with the outgoing Transition. If multiple Regions are involved, the entry point acts as a fork
Pseudostate.

*  exitPoint — An exitPoint Pseudostate is an exit point of a StateMachine or composite State that provides
encapsulation of the insides of the State or StateMachine. Transitions terminating on an exit point within any
Region of the composite State or a StateMachine referenced by a submachine State implies exiting of this
composite State or submachine State (with execution of its associated exit Behavior). If multiple Transitions
from orthogonal Regions within the State terminate on this Pseudostate, then it acts like a join Pseudostate.

* terminate — Entering a terminate Pseudostate implies that the execution of the StateMachine is terminated
immediately. The StateMachine does not exit any States nor does it perform any exit Behaviors. Any executing
doActivity Behaviors are automatically aborted. Entering a terminate Pseudostate is equivalent to invoking a
DestroyObjectAction.

Unified Modeling Language 2.5.1 315



14.2.3.8 Transitions

A Transition is a single directed arc originating from a single source Vertex and terminating on a single target Vertex (the
source and target may be the same Vertex), which specifies a valid fragment of a StateMachine Behavior. It may have an
associated effect Behavior, which is executed when the Transition is traversed (executed).

NOTE. The duration of a Transition traversal is undefined, allowing for different semantic interpretations, including
both “zero” and non-“zero” time.

Transitions are executed as part of a more complex compound transition that takes a StateMachine execution from one
stable state configuration to another. The semantics of compound transitions are described below.

In the course of execution, a Transition instance is said to be:

*  reached, when execution of its StateMachine execution has reached its source Vertex (i.e., its source State is in
the active state configuration);

* traversed, when it is being executed (along with any associated effect Behavior); and
*  completed, after it has reached its target Vertex.

A Transition may own a set of Triggers, each of which specifies an Event whose occurrence, when dispatched, may
trigger traversal of the Transition. A Transition trigger is said to be enabled if the dispatched Event occurrence matches
its Event type. When multiple triggers are defined for a Transition, they are logically disjunctive, that is, if any of them
are enabled, the Transition will be triggered.

14.2.3.8.1 Transition kinds relative to source

The semantics of a Transition depend on its relationship to its source Vertex. Three different possibilities are defined,
depending on the value of the Transition’s kind attribute:

* kind = external means that the Transition exits its source Vertex. If the Vertex is a State, then executing this
Transition will result in the execution of any associated exit Behavior of that State.

* kind = local is the opposite of external, meaning that the Transition does not exit its containing State (and,
hence, the exit Behavior of the containing State will not be executed). However, for local Transitions the target
Vertex must be different from its source Vertex. A local Transition can only exist within a composite State.

* kind = internal is a special case of a local Transition that is a self-transition (i.e., with the same source and
target States), such that the State is never exited (and, thus, not re-entered), which means that no exit or entry
Behaviors are executed when this Transition is executed. This kind of Transition can only be defined if the
source Vertex is a State.

14.2.3.8.2 High-level (group) Transitions

Transitions whose source Vertex is a composite States are called high-level or group Transitions. If they are external,
group Transitions result in the exiting of all substates of the composite State, executing any defined exit Behaviors
starting with the innermost States in the active state configuration. In case of local Transitions, the exit Behaviors of the
source State and the entry Behaviors of the target State will be executed, but not those of the containing State.

14.2.3.8.3 Completion Transitions and completion events

A special kind of Transition is a completion Transition, which has an implicit trigger. The event that enables this trigger
is called a completion event and it signifies that all Behaviors associated with the source State of the completion
Transition have completed execution. In case of simple States, a completion event is generated when the associated entry
and doActivity Behaviors have completed executing. If no such Behaviors are defined, the completion event is generated
upon entry into the State. For composite or submachine States, a completion event is generated under the following
circumstances:

¢ All internal activities (e.g., entry and doActivity Behaviors) have completed execution, and

316 Unified Modeling Language 2.5.1



* if the State is a composite State, all its orthogonal Regions have reached a FinalState, or
* if'the State is a submachine State, the submachine StateMachine execution has reached a FinalState.

Completion events have dispatching priority. That is, they are dispatched ahead of any pending Event occurrences in the
event pool. If two or more completion events corresponding to multiple orthogonal Regions occur simultaneously (i.e.,
as a result of the same Event occurrence), the order in which such completion occurrences are processed is not defined.
Completion of all top level Regions in a StateMachine corresponds to a completion of the Behavior of the StateMachine
and results in its termination.

Transition guards

A Transition may have an associated guard Constraint. Transitions that have a guard which evaluates to false are
disabled. Guards are evaluated before the compound transition that contains them is enabled, unless they are on
Transitions that originate from a choice Pseudostate. In the latter case, the guards are evaluated when the choice point is
reached. A Transition that does not have an associated guard is treated as if it has a guard that is always true.

NOTE. A completion Transition may also have a guard.

A guard constraint may involve tests of orthogonal States of the current StateMachine, or explicitly designated States of
some reachable object (for example, “in Statel” or “not in State2”). State names may be fully qualified by the nested
States and Regions that contain them, yielding pathnames of the form “RegionA::Statel::Region]::State2::State3”. This
may be used in case the same State name occurs in different composite State Regions.

14.2.3.8.4 Compound transitions

As noted earlier, when an Event occurrence triggers an enabled Transition or a StateMachine execution is created, this
can initiate traversal of a set of connected and nested Transitions and Vertices until a stable state configuration is
reached. In the general case, a trace of this traversal, known as a compound transition, can be represented by an
acyclical directed graph. The root (source) of this graph can be one of the following:

* A Transition with one or more Triggers defined.
* A completion Transition.

*  Aset of Transitions (including, possibly, completion Transitions) originating from different orthogonal Regions
that converge on a common join Pseudostate.

* A Transition originating from an initial Pseudostate of the topmost Region (i.c., a Region owned by the
StateMachine); this variant applies only to cases when the StateMachine instance is created.

Branching in a compound transition execution occurs whenever an executing Transition performs a default entry into a
State with multiple orthogonal Regions, with a separate branch created for each Region, or when a fork Pseudostate is
encountered. The overall behavior that results from the execution of a compound transition is a partially ordered set of
executions of Behaviors associated with the traversed elements, determined by the order in which the elements (Vertices
and Transitions) are encountered. For example, if a Transition entering a compound State terminates on a substate of
that State, then the effect Behavior of the Transition would be executed before the execution of the entry Behavior of the
compound State, followed by the entry Behavior of the substate. If a fork Pseudostate is encountered in the traversal,
then the effect Behaviors of the individual outgoing branches are, at least conceptually, executed concurrently with each
other.

If a choice or join point is reached with multiple outgoing Transitions with guards, a Transition whose guard evaluates to
true will be taken. If more than one guard evaluates to true, one of these Transitions is chosen for continuing the
traversal. The algorithm for making this selection is undefined. In case of Transitions originating from a choice
Pseudostate, if no guards evaluate to true when the Pseudostate is reached, the model is ill formed.

Unified Modeling Language 2.5.1 317



14.2.3.8.5 Transition ownership

The owner of a Transition is not explicitly constrained, though the Region in which it is contained must be owned
directly or indirectly by the owning StateMachine. A suggested owner of a Transition is the innermost Region that
contains both its source and target Vertices.

14.2.3.9 Event Processing for StateMachines

14.2.3.9.1 The run-to-completion paradigm

The processing of Event occurrences by a StateMachine execution conforms to the general semantics defined in Clause
13. Upon creation, a StateMachine will perform its initialization during which it executes an initial compound transition
prompted by the creation, after which it enters a wait point. In case of StateMachine Behaviors, a wait point is
represented by a stable state configuration. It remains thus until an Event stored in its event pool is dispatched. This
Event is evaluated and, if it matches a valid Trigger of the StateMachine and there is at least one enabled Transition that
can be triggered by that Event occurrence, a single StateMachine step is executed. A step involves executing a
compound transition and terminating on a stable state configuration (i.e., the next wait point). This cycle then repeats
until either the StateMachine completes its Behavior or until it is asynchronously terminated by some external agent.

StateMachines can respond to any of the Event types described in Clause 13 as well as to completion events (see
above).

NOTE. As explained above, completion events have priority and will be dispatched ahead of any pending Event
occurrences in the event pool.

Event occurrences are detected, dispatched, and processed by the StateMachine execution, one at a time.
NOTE. The order of event dispatching is left undefined, allowing for varied scheduling algorithms.

This cycle is referred to as the run-to-completion paradigm, and the corresponding StateMachine step is called a run-to-
completion step. Run-to-completion means that, in the absence of exceptions or asynchronous destruction of the context
Classifier object or the StateMachine execution, a pending Event occurrence is dispatched only after the processing of
the previous occurrence is completed and a stable state configuration has been reached. That is, an Event occurrence
will never be dispatched while the StateMachine execution is busy processing the previous one. This behavioral
paradigm was chosen to avoid complications arising from concurrency conflicts that may arise when a StateMachine
tries to respond to multiple concurrent or overlapping events.

When an Event occurrence is detected and dispatched, it may result in one or more Transitions being enabled for firing.
If no Transition is enabled and the corresponding Event type is not in any of the deferrableTriggers lists of the active state
configuration, the dispatched Event occurrence is discarded and the run-to-completion step is completed trivially.

Due to the presence of orthogonal Regions, it is possible that multiple Transitions (in different Regions) can be
triggered by the same Event occurrence. The order in which these Transitions are executed is left undefined. Each
orthogonal Region in the active state configuration that does not contain nested orthogonal Regions (i.e., a “bottom-
level” Region) can fire at most one Transition as a result of the current Event occurrence. When all orthogonal Regions
have finished executing the Transition, the current Event occurrence is fully consumed, and the run-to-completion step
is completed.

As mentioned above, it is possible for multiple mutually exclusive Transitions in a given Region to be enabled for firing
by the same Event occurrence. In those cases, only one is selected and executed. Which of the enabled Transitions is
chosen is determined by the Transition selection algorithm described below.

During a Transition, a number of actions Behaviors may be executed. If such a Behavior includes a synchronous
invocation call on another object executing a StateMachine, then the Transition step is not completed until the invoked
object method completes its run-to-completion step.

Run-to-completion may be implemented in various ways. For active Classes, it may be realized by an event-loop
running in its own thread, and that reads event occurrences from a pool. For passive Classes it may be implemented
using a monitor.

318 Unified Modeling Language 2.5.1



IMPLEMENTATION NOTE. Run-to-completion is often mistakenly interpreted as implying that an executing
StateMachine cannot be interrupted, which, of course would lead to priority inversion issues in some time-sensitive
systems. However, this is not the case; in a given implementation a thread executing a StateMachine step can be
suspended, allowing higher-priority threads to run, and, once it is allocated processor time again by the underlying
thread scheduler, it can safely resume its execution and complete its event processing.

14.2.3.9.2 Enabled Transitions
A Transition is enabled if and only if:
+ All of its source States are in the active state configuration.

* At least one of the triggers of the Transition has an Event that is matched by the Event type of the dispatched
Event occurrence. In case of Signal Events, any occurrence of the same or compatible type as specified in the
Trigger will match. If one of the Triggers is for an AnyReceiveEvent, then either a Signal or CallEvent satisfies
this Trigger, provided that there is no other Signal or CallEvent Trigger for the same Transition or any other
Transition having the same source Vertex as the Transition with the AnyReceiveEvent trigger (see also 13.3.1).

+ Ifthere exists at least one full path from the source state configuration to either the target state configuration or
to a dynamic choice Pseudostate in which all guard conditions are true (Transitions without guards are treated as
if their guards are always true).

As more than one Transition may be enabled by the same Event occurrence, being enabled is a necessary but not
sufficient condition for the firing of a Transition.

14.2.3.9.3 Conflicting Transitions

It is possible for more than one Transition to be enabled within a StateMachine. If that happens, then such Transitions
may be in conflict with each other. For example, consider the case of two Transitions originating from the same State,
triggered by the same event, but with different guards. If that event occurs and both guard conditions are true, then at
most one of those Transitions can fire in a given run-to-completion step.

Two Transitions are said to conflict if they both exit the same State, or, more precisely, that the intersection of the set of
States they exit is non-empty. Only Transitions that occur in mutually orthogonal Regions may be fired simultaneously.
This constraint guarantees that the new active state configuration resulting from executing the set of Transitions is well

formed.

An internal Transition in a State conflicts only with Transitions that cause an exit from that State.

14.2.3.9.4 Firing priorities

In situations where there are conflicting Transitions, the selection of which Transitions will fire is based in part on an
implicit priority. These priorities resolve some but not all Transition conflicts, as they only define a partial ordering. The
priorities of conflicting Transitions are based on their relative position in the state hierarchy. By definition, a Transition
originating from a substate has higher priority than a conflicting Transition originating from any of its containing States.

The priority of a Transition is defined based on its source State. The priority of Transitions chained in a compound
transition is based on the priority of the Transition with the most deeply nested source State.

In general, if t1 is a Transition whose source State is s1, and t2 has source s2, then:
» Ifsl is a direct or indirectly nested substate of s2, then t1 has higher priority than t2.

+ Ifsl and s2 are not in the same state configuration, then there is no priority difference between t1 and t2.

14.2.3.9.5 Transition selection algorithm

The set of Transitions that will fire are the Transitions in the Regions of the current state configuration that satisfy the
following conditions:

e All Transitions in the set are enabled.

Unified Modeling Language 2.5.1 319



*  There are no conflicting Transitions within the set.

*  There is no Transition outside the set that has higher priority than a Transition in the set (that is, enabled
Transitions with highest priorities are in the set while conflicting Transitions with lower priorities are left out).

This can be implemented by a greedy selection algorithm, with a straightforward traversal of the active state
configuration. States in the active state configuration are traversed starting with the innermost nested simple States and
working outwards. For each State at a given level, all originating Transitions are evaluated to determine if they are
enabled. This traversal guarantees that the priority principle is not violated. The only non-trivial issue is resolving
Transition conflicts across orthogonal States on all levels. This is resolved by terminating the search in each orthogonal
State once a Transition inside any one of its components is fired.

14.2.3.9.6 Transition execution sequence

Every Transition, except for internal and local Transitions, causes exiting of a source State, and entering of the target
State. These two States, which may be composite, are designated as the main source and the main target of a Transition
respectively.

The main source is a direct substate of the Region that contains the source States, and the main target is the substate of
the Region that contains the target States.

NOTE. A Transition from one Region to another in the same immediate enclosing composite State is not allowed.
Once a Transition is enabled and is selected to fire, the following steps are carried out in order:

1  Starting with the main source State, the States that contain the main source State are exited according to the
rules of State exit (or, composite State exit if the main source State is nested) as described earlier.

2 The series of State exits continues until the first Region that contains, directly or indirectly, both the main
source and main target states is reached. The Region that contains both the main source and main target states
is called their least common ancestor. At that point, the effect Behavior of the Transition that connects the sub-
configuration of source States to the sub-configuration of target States is executed. (A “sub-configuration” here
refers to that subset of a full state configuration contained within the least common ancestor Region.)

3 The configuration of States containing the main target State is entered, starting with the outermost State in the
least common ancestor Region that contains the main target State. The execution of Behaviors follows the rules
of State entry (or composite State entry) described earlier.

This transition execution algorithm is illustrated by the StateMachine example in Figure 14.2. In this case, when event
“sig” is dispatched while the StateMachine is in State “S11” (the main source), the following sequence of actions will
be executed:

xS11; tl; xS1; t2; eT1; eT11; t3; eT111

- : N
The Region of State S i
/ T1 \ the least common
ancestor of S11 and T111
entry/eT1
/ s1 \ 4
/
/
exit/xS1 T11 Vi

entry/eT11 //

S11

exit/xS11

sig/t1

f2 T111

entry/eT111

\

o

Figure 14.2 Compound transition example

320 Unified Modeling Language 2.5.1



14.2.4 Notation

14.2.4.1 StateMachine Diagrams

StateMachine diagrams specify StateMachines. This Clause outlines the graphic elements that may be shown in
StateMachine diagrams, and provides cross references where detailed information about the semantics and concrete
notation for each element can be found. It also furnishes examples that illustrate how the graphic elements can be
assembled into diagrams.

A StateMachine diagram is a graph that represents a StateMachine. States and various other types of Vertices in the
StateMachine graph are rendered by appropriate State and Pseudostate symbols, while Transitions are generally
rendered by directed arcs that connect them, or by control symbols representing the actions of the Behavior on the
Transition.

14.2.4.2 StateMachine

When depicting StateMachine redefinition in a class diagram, the default rectangle notation for Classifier can be used,
with the keyword «statemachine» inside the name compartment above or before the name of the StateMachine.

The association between a StateMachine and its context Classifier or BehavioralFeatures does not have a special
graphical representation.

14.2.4.3 Region

A composite State or StateMachine with Regions is shown by tiling the graph Region of the State/StateMachine using
dashed lines to divide it into Regions (Figure 14.3). Each Region may have an optional name and contains the nested
disjoint States and the Transitions between these. The text compartments of the entire State are separated from the
orthogonal Regions by a solid line.

A composite State or StateMachine with just one Region is shown by showing a nested state diagram within the graph
Region.

Figure 14.3 Notation for a composite State with Regions

14.2.4.4 State

State is shown as a rectangle with rounded corners, with the State name shown within (Figure 14.4).

Ty ping
F asswom

A

Figure 14.4 State notation

Unified Modeling Language 2.5.1 321



Optionally, it may have an attached name tab (Figure 14.5). The name tab is a rectangle, usually resting on the outside
of the top side of a State and it contains the name of that State. It is normally used to keep the name of a composite State
that has orthogonal Regions, but may be used in other cases as well.

TypingPassword

Figure 14.5 State with a name tab

A State may be subdivided into multiple compartments separated from each other by a horizontal line (Figure 14.6).

f TypingPassword \

entry/setEcholnvisible()
exit/setEchoNormal()
character/handleCharacter()
help/displayHelp()

Figure 14.6 State with compartments

The compartments of a State are:
* name compartment
* internal Behaviors compartment
* internal Transitions compartment.
A composite State also has a:
*  decomposition compartment.
Each of these compartments is described below.
*  Name compartment

This compartment holds the (optional) name of the State, as a string. States without names are anonymous and
are all distinct. It is undesirable to show the same named State twice in the same diagram, as confusion may
ensue, unless control icons are used to show a Transition-oriented view of the StateMachine. Name
compartments should not be used if a name tab is used and vice versa.

In case of a submachine State, the name of the referenced StateMachine is shown as a string following ‘:” after
the name of the State.

* Internal activities Behaviors compartment

This compartment holds a list of internal Behaviors associated with a State. Each entry has the following
format:

<behavior-type-label> ['/' <behavior-expression> ]

The <behavior-type-label> identifies the circumstances under which the Behavior specified by the <behavior-
expression> will be invoked and can be one of the following:

o entry — This label identifies a Behavior, specified by the corresponding expression, which is
performed upon entry to the State (entry Behavior).

322 Unified Modeling Language 2.5.1



o exit — This label identifies a Behavior, specified by the corresponding expression, that is performed
upon exit from the State (exit Behavior).

o do — This label identifies an ongoing Behavior (doActivity Behavior) that is performed as long as the
modeled element is in the State or until the computation specified by the expression is completed.

The optional <behavior-expression> is an expression in some textual surface language, which may be either a
vendor-specific or some standard language (see sub clause 16.1).

+ Internal Transition compartment
This compartment contains a list of internal Transitions, where each item has the following syntax:
{<trigger>}* ['[' <guard>']'] [/<behavior-expression>]

Where <trigger> is the notation for Triggers (see sub clause 13.3.4), <guard> is a Boolean expression for a
guard, and the optional <behavior-expression> is the specification of the effect Behavior to be executed if the
Event occurrence matches the trigger and guard of the internal Transition. It is an expression written in some
textual surface language, which may be either a vendor-specific or some standard language (see sub clause
16.1).

Alternatively, in place of a textual behavior expression, the various Behaviors associated with a State or internal
Transition can be expressed using the appropriate graphical representation in a separate diagram (e.g., an activity
diagram).

14.2.4.41 Composite State
* decomposition compartment

This compartment shows its composition structure in terms of Regions, States, and Transition. In addition to the
(optional) name and internal Transition compartments, the State may have an additional compartment that contains a
nested diagram. For convenience and appearance, the text compartments may be shrunk horizontally within the graphic
Region.

In some cases, it is convenient to hide the decomposition of a composite State. For example, there may be a large
number of States nested inside a composite State and they may simply not fit in the graphical space available for the
diagram. In that case, the composite State may be represented by a simple State graphic with a special “composite”
icon, usually in the lower right-hand corner (see Figure 14.8). This icon, consisting of two horizontally placed and
connected States, is an optional visual cue that the State has a decomposition that is not shown in this particular
diagram. Instead, the contents of the composite State are shown in a separate diagram.

NOTE. The “hiding” here is purely a matter of graphical convenience and has no semantic significance in terms of
access restrictions.

A composite State may have one or more entry and exit points on its outside border or in close proximity of that border
(inside or outside).

Unified Modeling Language 2.5.1 323



/ Dialing \

( stat )99t ( PartialDial ) [number.isValid(]
entry/ start dial tone entry/number.append(n)
exit/ stop dial tone - J
- S
digit(n)

- /

Figure 14.7 Composite State with two States

( HiddenComposite w

entry / start dial tone
exit f stop dial tone

o0

Figure 14.8 Composite State with a hidden decomposition indicator icon

CourseAttempt \

Studying \

Term Project project done >©

Final Test pass ©
o ] _/

\ fail { Failed ] [ P;Esedy

Figure 14.9 Composite State with Regions

324 Unified Modeling Language 2.5.1



/ LightOn \

entry/ turn on main light
do/ flash secondary light
exit/ turn off main light; turn off secondary light

reset/

Initial Initial
go/
Running [Runningj [ Wait ]
stop/ stop/ M

pause/

\_ /

Figure 14.10 Composite State with two Regions and entry, exit, and do Behaviors

14.2.4.4.2 Submachine State
The submachine State is depicted as a normal State where the string in the name compartment has the following syntax:

‘

<state-name> ‘:’ <name-of-referenced-StateMachine>

The submachine State symbol may contain the references to one or more entry points and to one or more exit points. The
notation for these connection point references comprises entry/exit Pseudostates on the border of the submachine State.
The names are the names of the corresponding entry/exit points defined within the referenced StateMachine (see
ConnectionPointReference).

If the submachine StateMachine is entered through its default initial Pseudostate or if it is exited as a result of the
completion of the submachine, it is not necessary to use the entry/exit point notation. Similarly, an exit point is not
required if the exit occurs through an explicit group Transition that originates from the boundary of the submachine
State (implying that it applies to all the substates of the submachine).

Submachine States invoking the same submachine may occur multiple times in the same state diagram with the entry
and exit points being part of different Transitions.

The diagram in Figure 14.11 shows a fragment from a StateMachine diagram in which a submachine State (the
FailureSubmachine) is referenced. The actual submachine StateMachine is defined in some enclosing or imported
namespace.

Unified Modeling Language 2.5.1 325



~

HandleFailure:
FailureSubmachine

errori/

\% sub1 /

error3/ bEnd
subEn o0
\ R _/

fixedi

Figure 14.11 Submachine State example

In the above example, the Transition triggered by Event “errorl” will terminate on entry point “sub1” of the
FailureSubmachine StateMachine. The “error3” Transition implies taking the default Transition of the
FailureSubmachine.

The Transition originating from the “subEnd” exit point of the submachine will execute the “fixed1” Behavior in
addition to what is executed within the HandleFailure StateMachine. This Transition must have been triggered within
the HandleFailure StateMachine. Finally, the Transition originating from the edge of the submachine State is taken as a
result of the completion event generated when the FailureSubmachine reaches its FinalState.

NOTE. The same notation would apply to composite States with the exception that there would be no reference to a
StateMachine in the State name.

Figure 14.12 is an example of a StateMachine defined with two exit points. Entry and exit points may be shown on the
frame or within the state graph. Figure 14.12 is an example of a StateMachine defined with an exit point shown within
the state graph. Figure 14.13 shows the same StateMachine using a notation shown on the frame of the StateMachine.

326 Unified Modeling Language 2.5.1



ReadAmountSH )

abort

I
[ selectAmount

amount

ok

otherAmount

enterAmoun]%@

aborted

Figure 14.12 StateMachine with an exit point as part of the StateMachine graph

ReadAmountSM)

abort

?

amount

selectAmount otherAmount

abort
. enterAmount
ok aborted

Figure 14.13 StateMachine with an exit point on the border

In Figure 14.14 the StateMachine shown in Figure 14.13 is referenced in a submachine State, and the presentation
option with the exit points on the State symbol is shown.

Unified Modeling Language 2.5.1

327



ATM

verifyCard

accceptCard/
-
readAmount :  aPored
ReadAmountSM

outOf Service! \L

outOfService

releaseCard/

)L CardReIeasedJ

[ verifyTransaction |

Figure 14.14 Submachine Sate that uses an exit point

An example of the notation for entry and exit points for composite States is shown in Figure 14.23.

14.2.4.4.3 State list notation
State lists provide a graphical shortcut for certain situations that sometimes occur in practice.

NOTE. These are purely notational forms with no corresponding abstract syntax representation. They are interchanged
with UML DI, see Annex B.4.4.

Multiple effect-free Transitions with the same Trigger values originating on different States but all either (a) targeting a
common junction Vertex with a single outgoing Transition or (b) terminating on the same target State, may be
represented by a Single Transition-like arc originating from a State-like graphic element, labeled with a list of the names
of the originating States. This arc terminates on the joint target State. Figure 14.15 shows both possibilities and Figure
14.16 shows the equivalent diagram without using statelists.

§1,S2 }

a b

Figure 14.15 State list notation option

328 Unified Modeling Language 2.5.1



.

a b
a b

Figure 14.16 Diagram equivalent to Figure 14.15 without using statelists

14.2.4.5 FinalState

A FinalState is shown as a circle surrounding a small solid filled circle (see Figure 14.17). The corresponding
completion Transition on the enclosing State has as notation an unlabeled Transition.

Figure 14.17 FinalState notation

Figure 14.7 has an example of a FinalState (the right-most of the States within the composite State).

14.2.4.6 Pseudostate

An initial Pseudostate is shown as a small solid filled circle (see Figure 14.18). In a Region of a ClassifierBehavior
StateMachine, the Transition from an initial Pseudostate may be labeled with the Event type of the occurrence that
creates the object; otherwise, it must be unlabeled. If it is unlabeled, it represents any Transition from the enclosing
State.

Figure 14.18 initial Pseudostate

A shallowHistory Pseudostate is indicated by a small circle containing an ‘H’ (see Figure 14.19). It applies to the State
Region that directly encloses it.

(®
N
Figure 14.19 shallowHistory Pseudostate

A deepHistory Pseudostate is indicated by a small circle containing an ‘H*’ (see Figure 14.20). It applies to the State
Region that directly encloses it.

=)

Figure 14.20 deepHistory Pseudostate

Unified Modeling Language 2.5.1 329



An entry point is shown as a small circle on the border of the StateMachine diagram or composite State, with the name
associated with it (see Figure 14.21).

agah1<:)

Figure 14.21 entryPoint Pseudostate

Optionally it may be placed both within the StateMachine diagram and outside the border of the StateMachine diagram
or composite State.

An exit point is shown as a small circle with a cross on the border of the StateMachine diagram or composite State, with
the name associated with it (see Figure 14.22).

aboned

&

Figure 14.22 exitPoint Pseudostate

Optionally, an exit point symbol may be placed both within the StateMachine diagram or composite State and outside
the border of the StateMachine diagram or composite State. Figure 14.23 illustrates the notation for depicting entry and
exit points of composite States.

- h -
Ve \_ N
' Scomp , |

4 ™
| sin
I R
/- ™,
&.UBI

/
o TEAS
I‘s\ Y /
[/ ExitA, J exitB
Figure 14.23 entryPoint and exitPoints on a composite State

Alternatively, the “bracket” notation shown in Figure 14.30 and Figure 14.31 can also be used for the transition-oriented
notation.

A junction is represented by a small filled circle (see Figure 14.24).

330 Unified Modeling Language 2.5.1



//,-” e
= ~ - ~
State? State3 | Stated |
N

Figure 14.24 junction Pseudostate with incoming and outgoing Transitions

A choice Pseudostate is shown as a diamond-shaped symbol as exemplified shown by the left-hand diagram in Figure
14.25.

<>

[==10] [<10] [id =>=10] [id <10]

Figure 14.25 choice Pseudostates

NOTE. In cases when all guards associated with triggers of Transitions leaving a choice Pseudostate are binary
expressions that share a common left operand, then the notation for choice Pseudostate may be simplified. The left
operand may be placed inside the diamond-shaped symbol and the rest of the Guard expressions placed on the outgoing
Transitions. This is illustrated by the right-hand diagram in Figure 14.25.

A terminate Pscudostate is shown as a cross, see Figure 14.26.

>

Figure 14.26 terminate Pseudostate
The notation for a fork and join is a short heavy bar (Figure 14.27). The bar may have one or more arrows from source

States to the bar (when representing a join). The bar may have one or more arrows from the bar to States (when
representing a fork). A Transition string may be shown near the bar.

Unified Modeling Language 2.5.1 331



Process

L e A Cleanup

Figure 14.27 fork and join Pseudostates

14.2.4.7 ConnectionPointReference

A connection point reference to an entry point has the same notation as an entry Pseudostate. The circle is placed on the
border of the State symbol of a submachine State.

ReadAmount :
ReadAmountSM

'
Ny

again

Figure 14.28 Entry point ConnectionPointReference notation

A connection point reference to an exit point has the same notation as an exit Pseudostate. The encircled cross is placed
on the border of the State symbol of a submachine State.

ReadAmount :
ReadAmountSM

&

abort

Figure 14.29 Exit point ConnectionPointReference notation

Alternatively, a connection point reference to an entry point can also be visualized using a “bracketed space” symbol as
shown in Figure 14.30. The text inside the symbol shall contain ‘via’ followed by the name of the connection point. This
notation may only be used if the Transition ending with the connection point is defined using the graphical Transition
notation, such as the one shown in Figure 14.32.

332 Unified Modeling Language 2.5.1



~ -
K via again )
|

ReadAmount:
ReadAmountSM

Figure 14.30 Alternative entry point ConnectionPointReference notation

A connection point reference to an exit point can also be visualized using a “bracketed space” symbol as shown in
Figure 14.31. The text inside the symbol shall contain ‘via’ followed by the name of the connection point. This notation
may only be used if the Transition associated with the connection point is defined using the graphical Transition
notation such as the one shown in Figure 14.32.

ReadAmount:
ReadAmountSM

( via aborted )

Figure 14.31 Alternative exit point ConnectionPointReference notation

14.2.4.8 Transition
The default textual notation for a Transition is defined by the following BNF expression:
[<trigger> [’ <trigger>]* [‘[* <guard>’]’] [/’ <behavior-expression>]]

Where <trigger> is the standard notation for Triggers (see sub clause 13.3.4), <guard> is a Boolean expression for a
guard, and the optional <behavior-expression> is an expression specifying the effect Behavior written in some vendor-
specific or standard textual surface language (see sub clause 16.1). The trigger may be any of the standard trigger types.
SignalEvent triggers and CallEvent triggers are not distinguishable by syntax and must be discriminated by their
declaration elsewhere.

As an alternative, in cases where the effect Behavior can be described as a control-flow based sequence of Actions, there
is a graphical representation for Transitions and compound transitions which is similar to the notation used for
Activities.

NOTE. Although this alternative notation contains graphical elements reminiscent of the notation used for Activities, it
is a distinct form applicable only to StateMachines, and its elements map to appropriate StateMachine concepts.

This notation is in the form of a directed graph, which consists of one or more graphical symbols interconnected by
directed arcs that represent control flow (see Figure 14.32). In all cases except for the Transition originating from the
initial Pseudostate, the starting symbol, which has the form of the standard simple State notation, represents the source
State of the Transition. If this Transition has a Signal-based Trigger, then the source state symbol is connected by an arc

Unified Modeling Language 2.5.1 333



pointing to a special Signal receipt symbol described below. If there are multiple Triggers for the Transition, they are all
listed in the same symbol as explained below.

If the Transition originates from the initial Pseudostate, the starting symbol is the initial symbol, which is the same as
used for the initial Pseudostate: a filled black circle. In that case, there is no Signal receipt symbol immediately
following the starting symbol.

Except for end symbols that terminate the paths, any of the following symbols can appear in the chain as appropriate:
*  an action symbol
* achoice point symbol
* aSignal send symbol
* amerge symbol

The terminating symbol in these directed graphs is always either a State-like symbol representing the target State of the
transition or a final state symbol (which is the same as the symbol for a FinalState).

14.2.4.8.1 Action symbols

Each action symbol is represented by a rectangle with an optional textual specification of the action. It maps either to an
OpaqueAction or to a SequenceNode containing one or more Actions executed in sequence (see sub clause 16.11.3) and
which are part of the Activity specifying the effect Behavior of the appropriate Transition in the compound transition.

14.2.4.8.2 Signal receipt symbol

The Signal receipt symbol is shown as a five-pointed polygon that looks like a rectangle with a triangular notch in one
of its sides (either one). It maps to the trigger of the Transition and does not map to an Action of the Activity that
specifies the effect Behavior. The names of the Signals of the Trigger as well as any guard are contained within the
symbol as follows:

<trigger> [’ <trigger>]* [[* <guard> ‘]’]

Where <trigger> is specified as described in sub clause 13.3.4 with the restriction that only Signal and change Event
types are allowed. The trigger symbol is always first in the path of symbols and a compound transition can only have at
most one such symbol.

14.2.4.8.3 Signal send symbol

This represents the special action of sending a signal and maps directly to a SendSignalAction that is part of the Activity
that describes the effect Behavior of the corresponding Transition. The notation corresponds to the notation for the
SendSignalAction (see sub clause 16.3.4).

14.2.4.8.4 Choice point symbol
This symbol maps directly to a choice Pseudostate and uses the same notation.

NOTE. It is not part of any Activity.

14.2.4.8.5 Merge symbol

A merge symbol is used to join multiple control-flow arcs and maps directly to a junction Pseudostate and uses the same
notation. It is not part of any Activity.

Figure 14.32 shows a compound transition consisting of four connected Transitions: one from the Idle State to the
choice symbol, one for each of the branches of the choice through the junction symbol, and one from the junction
Pseudostate to the Busy State.

334 Unified Modeling Language 2.5.1



~
A

Idle ‘
l /

Feg(ld)
[ld = 10]

[ld <= 10]

Major(ld)

MinorHeq = Id; MajorReq = Id;

4 ™
Busy
\ J

Figure 14.32 Symbols for Signal reception, Sending, and Actions on a Transition

14.2.4.8.6 Deferred triggers

A deferrable trigger is shown by listing it within the State followed by a slash and the label “defer”. An example of this
notation is shown in Figure 14.33. In this example, handling of the “request” event occurrence is deferred in States
“Initializing” and “Primed”. However, it will be handled once the “Operational” State is reached.

Unified Modeling Language 2.5.1 335



Initializing
request/defer

initDone/

Primed
request/defer

start/

Operational

request/handleReq()
Figure 14.33 Deferred Trigger notation

14.2.4.9 TransitionKind
*  Transitions of the kind internal are not shown explicitly in diagrams.

»  Transitions of the kind local can originate from the border of the containing composite State, or one of its entry
points, or from a Vertex within the composite State. (Alternatively, a Transition of kind local can be shown as a
Transition leaving a State symbol containing the text “*.” The Transition is then considered to belong to the
enclosing composite State.) Transitions of this kind can only terminate on the border of the composite State, or
one of its exit points, or on a Vertex within the composite State. All of the Transitions in Figure 14.34 are local.

*  Transitions of kind external can target any Vertex contained within or external to the source Vertex. The part of
the external Transition closest to the source must be drawn outside of the source Vertex border. In the case of an
external self Transition where the source is a State or exit point on the State, it may target the State itself or an
entry point on the State and it will be drawn completely outside of the State border. All of the Transitions in
Figure 14.35 are external.

336 Unified Modeling Language 2.5.1



I

)

N — —

Figure 14.34 Local Transitions

s0

N

]I

|
'a

Figure 14.35 External Transitions

14.2.5 Examples

Figure 14.36 is an example StateMachine diagram for the StateMachine for simple telephone. In addition to an initial
Pseudostate, the StateMachine has an entry point called “activeEntry”. Also, in addition to the FinalState, it has an exit

point called “aborted.”

Unified Modeling Language 2.5.1 337



activeEntry
e .
O—

lift
receiver

Active

DialTone

Time-out

do/ play message

after (15 sec.)

after (15 sec.)

dial digit(n)

do/ play dial tone

i

dial digit(n)
[incomplete]

7

dial digit(n)[invalid]

dial digit(n)[valid]

],g, \|/ fconnect
Ldoo" play messageJ | Conn@

/get dial tone

Idle I"—.

Invalid

busy connected
-
callee do/ play busy
callee hangs up tone
caller answers
hangs up .
fdisconnect ~ Ringing
l Talking ) callee answers do/ play ringing
fenable speech tone
abort terminate
aborted

Figure 14.36 StateMachine diagram representing a telephone

An example of submachine usage is shown in Figure 14.12 and Figure 14.13.

14.3 StateMachine Redefinition

14.3.1 Summary

StateMachines are used for the definition of Behavior (for example, Classes that are generalizable). As part of the
specialization of a Class it may be required to specialize its Behavior definitions. This is achieved by defining the
Behavior of the specialized Classifier as an extension of the Behavior of the general Classifier using redefinition.

338 Unified Modeling Language 2.5.1



14.3.2

Abstract Syntax

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

RedefinableElement

Classifier

{readOnly, redefines

{subsets redefinableElement}

Reqi +region
redefinitionContext} = 0
+ /redefinitionContext 0.*
1 +region
{subsets 0..1
redefinableElement} +extendedRegion

{readOnly, redefines

{subsets redefinedElement}

redefinitionContext} {subsets redefinableElement}
+/redefinitionContext +vertex
1 0.*

{readOnly, redefines

Vertex

{subsets redefinableElement}
+vertex

0.

0.1

+redefinedVertex
{subsets redefinedElement}

redefinitionContext} {subsets redefinableElement}
+/redefinitionContext +ransition
1 0.*

StateMachine

{subsets behavior}
+stateMachine

0.*

+extendedStateMachine |0..*

{redefines redefinedBehavior}

Figure 14.37 StateMachine redefinition

14.3.3

14.3.3.1

Semantics

StateMachine Extension

{subsets redefinableElement}
+ransition

0.*

0.1

+redefinedTransition
{subsets redefinedElement}

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

Unified Modeling Language 2.5.1

339



| 14.3.3.1.1 State redefinition

A StateMachine can redefine one or more other StateMachines. in which case it is an extension of the redefined

StateMachines. A region_of an extension StateMachine can redefine one or more regions_of its extendedStateMachines.
The baseline behavior of the extension StateMachine is as if it contained the union of the regions of the extension
StateMachine and of all non-redefined regions of all its extendedStateMachines. An extension StateMachine may also add
new connectionPoint Pseudostates or redefine connectionPoints_from any of its extendedStateMachines.

If a StateMachine has a context BehavioredClassifier (see sub clause 13.2.3.4). then this BehavioredClassifier is also its
redefinitionContext (see sub clause 9.2.3.3). This includes the cases of a StateMachine that is a classifierBehavior_of the

enecral BehavioredClassifer or a StateMachine used to specify a method of a BehavioralFeature of the general
BehavioredClassifier. When the context BehavioredClassifier is specialized. an associated StateMachine can then be
extended by a corresponding StateMachine in the context of the specialized BehavioredClassifier.

14.3.3.2 Region Redefinition

A Region that is a region of an extension StateMachine can redefine a Region that is a region of an
extendedStateMachine of that StateMachine. A Region that is a region of a redefining State in an extension
StateMachine (see sub clause 14.3.3.3) can redefine a Region that is a region of the redefined State in an
extendedStateMachine of that StateMachine. In either case, the redefining Region is called an extension of the redefined
Region. The baseline behavior of the extension Region is as if it contained the union of the Vertices and Transitions
contained in the extension Region and of all the non-redefined Vertices and Transitions contained in its extended
Region.

14.3.3.3 Vertex Redefinition

A Vertex defined in an extension Region can redefine a Vertex of the same kind in the extended Region of the extension
Region.

A State can only be redefined by a State. If a redefining State specifies an entry, exit and/or doActivity Behavior, then
that is what applies for the redefining State, regardless of whether the redefined State specifies a similar such Behavior.
However, if the redefining State does not specify an entry, exit and/or doActivity Behavior, but there is a corresponding
Behavior applicable to the redefined State. then the redefined State Behavior also applies to the redefining State. Any
deferrableTriggers applicable to the redefined State also apply to the redefining State, and the redefining state can also add
new deferrableTriggers.

340 Unified Modeling Language 2.5.1



If the redefined State is not a submachine State, then the redefining State can also

e Redefine Regions of the redefined State (if it is a composite State),

*  Add Regions to the redefined State,
*  Redefine connectionPoint Pseudostates of the redefined State (if it is a composite State),

¢ Add connectionPoint Pseudostates to the redefined State.

A submachine State can only be redefined by a submachine State whose submachine is an extension of the submachine
of the redefined State. The redefining State can:

¢ Redefine connection ConnectionPointReferences of the redefined State

¢  Add connection ConnectionPointReferences to the redefined State.

A FinalState can only be redefined by a FinalState.

A Pseudostate can only be redefined by a Pseudostate of the same kind. If the redefined Pseudostate is owned as a

connectionPoint of a State, then the redefining Pseudostate must be a connectionPoint_of a redefinition of the owning
State of its redefined Pseudostate.

A ConnectionPointReference can only be redefined by a ConnectionPointReference whose state is a redefinition of the
state of the redefined ConnectionPointReference.

14.3.34 Transition Redefinition

A Transition defined in an extension Region can redefine a Transition defined in the extended Region of the extension
Region. The source Vertex of the redefining Transition must be a redefinition of the source Vertex of the redefined
Transition. The target Vertex of the redefining Transition can be either a redefinition of the target Vertex of the redefined
Transition or an added Vertex. Any triggers_applicable to the redefined Transition also apply to the redefining Transition,
and the redefining Transition can add new triggers. If a redefining Transition specifies a guard Constraint and/or effect
Behavior, then that is what applies to the redefining Transition. However, if the redefining Transition does not specify a
guard Constraint and/or effect behavior, but there is a guard Constraint and/or effect Behavior that applies to the redefined
Transition, then the guard and/or effect from the redefined Transition also applies to the redefining Transition.

14.3.4 Notation

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

An extension StateMachine is shown with the keyword «extended» after the name of the StateMachine on a diagram for
it (e.g.. see Figure 14.39 and Figure 14.40). Similarly. the keyword «extended» can optionally be added after the name of
an extens1on Reglon ora redeﬁmng Vertex or Transition. Redeﬁmng Vertlces and Transitions are drawn w1th either

not redefined in an extension StateMachme may also be shown on a diagram of the extension StateMachine drawn with
either dashed or light- toned lines. Finally, if a Region, Vertex or Transition has isLeaf = true, the keyword «final» may

optionally be added following the name of the element.

Unified Modeling Language 2.5.1 341



14.3.5 Examples

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

As an example of StateMachine extension, the States VerifyCard and OutOfService in the ATM StateMachine in Figure

14.38 have been designated as final, which means that they cannot be redefined in extensions of ATM. All other States
can be redefined. The VerifyTransaction to ReleaseCard Transition has also been specified as final, so it also cannot be
redefined in extensions of ATM.

stm ATM[ 1
VerifyCard
«final»
acceptCard
f ReadAmount )

amount

VerifyTransaction Rel Card

«final» releaseCard /
«final»

Figure 14.38 A general StateMachine

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

In Figure 14.39, an extended ATM is defined that redefines the composite State ReadAmount to add the State
EnterAmount, so that users can enter a desired amount, along with two new Transitions, one into and one out of the new
State. The State Selected Amount and the FinalState from ReadAmount are redefined in order to act as the source or
target for a new Transition. In addition, the State VerifyTransaction is redefined in order to act as the source of a new
Transition with the new State EnterAmount as its target.

342 Unified Modeling Language 2.5.1



stm ATM «extended» [ =) y

ReadAmount «extended»

SelectAmount otherAmount
«extended»

«extended»

rejectTransaction

VerifyTransaction
«extended»

Figure 14.39 An extended StateMachine

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| Figure 14.40

Figure 14.39

stm ATM «extended» [ y

ReadAmount «extended»

SelectAmount abort
«extended» N

EnterAmount abort
«extended»

ReleaseCard
«extended»

Figure 14.40 Adding Transitions

Unified Modeling Language 2.5.1

343



144 ProtocolStateMachines

14.4.1 Summary

ProtocolStateMachines are used to express usage protocols. ProtocolStateMachines express the legal sequences of
Event occurrences to which the Behaviors of an associated BehavioredClassifier must conform. The StateMachine
notation is a convenient way to define the order of invocations of the behavioral features of a Classifier.
ProtocolStateMachines can be associated with Classifiers, Interfaces, and Ports.

14.4.2 Abstract Syntax

StateMachine

{subsets source, {subsets ownedElement,
subsets owner} subsets directedRelationship}
ProtocolStateMachine + specificMachine + conformance ProtocolConformance

*

1

{subsets target} {subsets directedRelationship}

+ generalMachine + protocolConformance
1 *
/\

{redefines transition} {subsets guard}

P + protocolTransition + preCondition

ProtocolTransition 0.1 0.1 Constraint

{subsets context} {subsets ownedRule}

+ owningTransition + postCondition

- g P
0..1 0..1

+ protocolTransition | *

{readOnly}
+ [referred | *

Operation

Figure 14.41 ProtocolStateMachines

14.4.3 Semantics

14.4.3.1 ProtocolStateMachine

A ProtocolStateMachine is always defined in the context of a Classifier. It specifies which BehavioralFeatures of that
Classifier can be invoked in a given protocol state and under what conditions, thereby specifying allowed invocation
sequences. In this manner, a specification of the lifecycle of an instance of the Classifier is defined from an external
perspective.

ProtocolStateMachines help define the order in which BehavioralFeatures of a Classifier are invoked by specifying:
+ the behavioral context (i.e., which states and pre-conditions) in which they can be validly invoked,
+ the valid orderings of invocations,

+ the expected outcomes (post-conditions) of invocations.

344 Unified Modeling Language 2.5.1



ProtocolStateMachine present an external view of the owning Classifier as perceived by its collaborators. This extends
beyond what can be captured via pre- and post-conditions on individual BehavioralFeatures, as ProtocolStateMachines
also specify the valid orderings of invocations of the different features. This is achieved by a state machine specification
in which the transition triggers are feature invocations and the guards of the transitions (ProtocolTransitions) specify the
pre-condition that must apply for the invocation to be valid. The states (ProtocolStates) of this state machine, being a
consequence of past invocation sequences, capture the state of the protocol and are also a form of pre-condition.

NOTE. Because ProtocolStateMachines provide a “black box” view of the behavior of a Classifier, their States may not
necessarily correspond to the States of internal behavioral StateMachines.

ProtocolStateMachine interpretation can vary from:

1 Declarative ProtocolStateMachines, which specify the legal Transitions for BehavioralFeature invocations.
The effects of a BehavioralFeature invocation is not specified. This type of specification only provides a
contract for the user of the context Classifier.

2 Executable (run time) ProtocolStateMachines, which specify all Event occurrences that an object may receive
and handle, together with the Transitions that these trigger. In this case, the legal Transitions for
BehavioralFeature invocations must match exactly the triggered Transitions or a run-time exception occurs.
The invocation results in the execution of the method associated with the invoked BehavioralFeatures.

The specifications for both interpretations is the same, the only difference being the direct dynamic implication that the
latter interpretation provides.

The more sophisticated forms of modeling encountered in behavioral StateMachines such as compound Transitions,
submachine StateMachines, composite States, and concurrent orthogonal Regions, can also be used for
ProtocolStateMachines. For example, concurrent Regions make it possible to express protocols where an instance can
have several active States simultaneously. Submachine StateMachines and compound transitions can be used for
factorizing complex ProtocolStateMachines.

A Classifier may have several ProtocolStateMachines. This can be used, for example, when a Classifier has multiple
parents, each having its own ProtocolStateMachine, and the protocols are orthogonal. An alternative to this is to simply
have one ProtocolStateMachine, with distinct StateMachines in concurrent Regions.

State in ProtocolStateMachines

The States of ProtocolStateMachines are exposed to the users of their context Classifiers. A protocol State represents an
exposed stable situation of its context Classifier: When an instance of the Classifier classifier is not processing any
BehavioralFeature invocation, users of this instance can always know its state configuration.

The States of a ProtocolStateMachine cannot have defined entry, exit, or doActivity Behaviors.

14.4.3.2 ProtocolTransition

A ProtocolTransition specifies a legal Transition for an invocation of a BehavioralFeature of the context Classifier.
ProtocolTransitions have the following features:

* apre-condition (preCondition), which specializes the guard attribute of Transition,
* atrigger,
* apost-condition (postCondition).

The protocol Transition specifies that (a) the associated (referred) feature can be invoked on an instance of the context
Classifier, if it is in the origin State and the guard condition holds, and that (b) upon completion of the Transition, the
instance will be in the target State in which the post-condition will hold.

ProtocolTransitions do not have an associated effect Behavior. The consequence of a Protocol Transition executed as a
result of a BehavioralFeature invocation is implicit: it is the execution of the method corresponding to the invoked
BehavioralFeature. In case of other types of Triggers, the consequences are unspecified except that a Transition will
lead to another State under a specific post-condition, regardless of any Behaviors associated with this Transition.

Unified Modeling Language 2.5.1 345



14.4.3.21 Unexpected trigger reception

The interpretation of the reception of an Event occurrence that does not match a valid trigger for the current State, state
invariant, or pre-condition is not defined (e.g., it can be ignored, rejected, or deferred; an exception can be raised; or the
application can stop on an error). It corresponds semantically to a pre-condition violation, for which no predefined
Behavior is defined in UML.

14.4.3.2.2 Unexpected Behavior

The interpretation of an unexpected Behavior, that is an unexpected result of a Transition (wrong FinalState or
FinalState invariant, or post-condition) is also not defined. However, this should be interpreted as an error of the
implementation of the ProtocolStateMachine.

14.4.3.2.3 Equivalences to pre- and post-conditions of operations

A protocol Transition can be semantically interpreted in terms of pre- and post-conditions on the associated operation.
For example, the Transition in Figure 14.42 can be interpreted in the following way:

1 The operation “m1” can be called on an instance when it is in the ProtocolState “S1” under the condition “C1.”

2 When “m1” is called in the ProtocolState “S1”” under the condition “C1,” then the ProtocolState “S2” must be
reached under the condition “C2.”

) [Ctimi[ez]
51 J 52

Figure 14.42 An example of a ProtocolTransition associated with the operation "m1"

Operations referred by several Transitions
1 [C1] m1f [C2]

S1
|

— [C3mi[cd ()
53 ){ 54

Figure 14.43 Example of several ProtocolTransitions associated with the same operation (m1)

In a ProtocolStateMachine, several Transitions can refer to the same operation as illustrated in Figure 14.43. In that
case, all pre-and post-conditions will be combined in the operation pre-condition as shown below.

Operation ml()

Pre: in state S1 and condition C1
or
in state S3 and condition C3
Post: if the initial condition was “in state S1 and condition Cl1”

then in S2 and C2
else
if the initial condition was “in state S3 and condition C3”
then in S4 and C4

A ProtocolStateMachine specifies all the legal ProtocolTransition for each BehavioralFeature referred by its Transitions.
Unreferred Operations

If a BehavioralFeature is not referred by any ProtocolTransition, then the operation can be called for any State of the
ProtocolStateMachine, and will not change the current State or pre- and post-conditions.

346 Unified Modeling Language 2.5.1



14.4.3.2.4 Using other types of Events in ProtocolStateMachines

Apart from invocations of BehavioralFeatures, other Events may be used for expressing the behavior of
ProtocolStateMachines. A Trigger that is not a BehavioralFeature invocation can be specified for a protocol Transition.
In that case, this specification is a requirement for the environment external to the ProtocolStateMachine. That is, it is
legal to send an Event occurrence of this type to an instance of the context Classifier only under the conditions specified
by the ProtocolStateMachine. The precise semantic interpretation of this is not defined.

14.4.3.3 ProtocolConformance

ProtocolStateMachines can be refined into more specific ProtocolStateMachines. Protocol conformance declares that
the specific ProtocolStateMachine specifies a protocol that conforms to that specified by the general
ProtocolStateMachine.

A ProtocolStateMachine is owned by a Classifier. The Classifiers owning a general StateMachine and an associated
specific StateMachine are generally also connected by a Generalization or a Realization.

Protocol conformance represents a declaration that every rule and constraint specified for the general
ProtocolStateMachine (state invariants, pre- and post-conditions for the operations referred by the
ProtocolStateMachine) apply to the specific ProtocolStateMachine.

14.4.4 Notation

14.4.41 ProtocolStateMachine

The notation for ProtocolStateMachine is very similar to the one for behavioral StateMachines. The keyword «protocol»
placed close to the name of the StateMachine differentiates graphically ProtocolStateMachine diagrams.

Door «protocol» )

create
™ open / Ve
opened closed
J [ doorway - > isEmpty()] close>\
lock / unlock /
lock

Figure 14.44 ProtocolStateMachine example

Unified Modeling Language 2.5.1 347



The textual expression of an invariant associated with a State in a ProtocolStateMachine is represented by placing it
after or under the name of the State, enclosed in square brackets (Figure 14.45).

' ™
TypingPassword
[invariant expr]

._\_ _/I
Figure 14.45 Notation for a State with an invariant

14.4.4.2 ProtocolTransition
The usual StateMachine notation applies. The difference is that no effect Behaviors are specified for

ProtocolTransitions, and that post-conditions can exist. Post-conditions have the same syntax as guard conditions, but
appear at the end of the Transition syntax.

[precondition] event / [postcondition]

>

Figure 14.46 ProtocolTransition notation

14.5 Classifier Descriptions

14.5.1 ConnectionPointReference [Class]

14.51.1 Description

A ConnectionPointReference represents a usage (as part of a submachine State) of an entry/exit point Pseudostate
defined in the StateMachine referenced by the submachine State.

14.51.2 Diagrams

Behavior State Machines

14.51.3 Generalizations

Vertex

14514 Association Ends

® entry : Pseudostate [0..*] (opposite A_entry connectionPointReference::connectionPointReference)
The entryPoint Pseudostates corresponding to this connection point.

® exit : Pseudostate [0..*] (opposite A_exit_connectionPointReference::connectionPointReference)
The exitPoints kind Pseudostates corresponding to this connection point.

¢ state : State [0..1]{subsets NamedElement::namespace} (opposite State::connection)
The State in which the ConnectionPointReference is defined.

348 Unified Modeling Language 2.5.1



| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| 14.5.1.5 Operations

e isConsistentWith(redefiningElement: RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith }
The query isConsistentWith() specifies a ConnectionPointReference can only be redefined by a
ConnectionPointReference.

body: redefiningElement.oclIsKindOf (ConnectionPointReference)

‘ pre: redefiningFElement.isRedefinitionContextValid(self)

| 14.5.1.6 Constraints

* exit_pseudostates
The exit Pseudostates must be Pseudostates with kind exitPoint.

inv: exit->forAll(kind = PseudostateKind::exitPoint)

* entry_pseudostates
The entry Pseudostates must be Pseudostates with kind entryPoint.

inv: entry->forAll(kind = PseudostateKind::entryPoint)

14.5.2 FinalState [Class]

14.5.2.1 Description

A special kind of State, which, when entered, signifies that the enclosing Region has completed. If the enclosing Region
is directly contained in a StateMachine and all other Regions in that StateMachine also are completed, then it means
that the entire StateMachine behavior is completed.

14.5.2.2 Diagrams

Behavior State Machines

14.5.2.3 Generalizations

State

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| 14.5.2.4 Operations

¢ isConsistentWith(redefiningElement: RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith }
The query isConsistentWith() specifies that a FinalState can only be redefined by a FinalState.

pre: redefiningElement.isRedefinitionContextValid(self)
body: redefiningFElement.oclIsKindOf (FinalState)

| 14.5.2.5 Constraints

* no_exit _behavior
A FinalState has no exit Behavior.

inv: exit->isEmpty()

Unified Modeling Language 2.5.1 349



* no_outgoing_transitions
A FinalState cannot have any outgoing Transitions.

inv: outgoing->size() = 0

* no_regions
A FinalState cannot have Regions.

inv: region->size() = 0

* cannot_reference submachine
A FinalState cannot reference a submachine.

inv: submachine->isEmpty()

* no_entry behavior
A FinalState has no entry Behavior.

inv: entry->isEmpty()

* no_state behavior
A FinalState has no state (doActivity) Behavior.

inv: doActivity->isEmpty()

14.5.3 ProtocolConformance [Class]

14.5.3.1 Description

A ProtocolStateMachine can be redefined into a more specific ProtocolStateMachine or into behavioral StateMachine.
ProtocolConformance declares that the specific ProtocolStateMachine specifies a protocol that conforms to the general
ProtocolStateMachine or that the specific behavioral StateMachine abides by the protocol of the general
ProtocolStateMachine.

14.5.3.2 Diagrams

Protocol State Machines

14.5.3.3 Generalizations

DirectedRelationship

14.5.3.4 Association Ends

¢ generalMachine : ProtocolStateMachine [1..1]{subsets DirectedRelationship::target} (opposite

A_generalMachine protocolConformance::protocolConformance)
Specifies the ProtocolStateMachine to which the specific ProtocolStateMachine conforms.

® gpecificMachine : ProtocolStateMachine [1..1]{subsets DirectedRelationship::source, subsets Element::owner}
(opposite ProtocolStateMachine::conformance)
Specifies the ProtocolStateMachine which conforms to the general ProtocolStateMachine.

350 Unified Modeling Language 2.5.1



14.5.4 ProtocolStateMachine [Class]

14.5.4.1 Description

A ProtocolStateMachine is always defined in the context of a Classifier. It specifies which BehavioralFeatures of the
Classifier can be called in which State and under which conditions, thus specifying the allowed invocation sequences on
the Classifier's BehavioralFeatures. A ProtocolStateMachine specifies the possible and permitted Transitions on the
instances of its context Classifier, together with the BehavioralFeatures that carry the Transitions. In this manner, an
instance lifecycle can be specified for a Classifier, by defining the order in which the BehavioralFeatures can be
activated and the States through which an instance progresses during its existence.

14.5.4.2 Diagrams

Protocol State Machines, Encapsulated Classifiers, Interfaces

14.5.4.3 Generalizations

StateMachine

14.5.4.4 Association Ends

® ¢ conformance : ProtocolConformance [0..*]{subsets Element::ownedElement, subsets

A_source directedRelationship::directedRelationship} (opposite ProtocolConformance::specificMachine)
Conformance between ProtocolStateMachine

14.5.4.5 Constraints

* classifier context
A ProtocolStateMachine must only have a Classifier context, not a BehavioralFeature context.

inv: _'context' <> null and specification = null

* deep or shallow history
ProtocolStateMachines cannot have deep or shallow history Pseudostates.

inv: region->forAll (r | r.subvertex->forAll (v | v.oclIsKindOf (Pseudostate) implies
((v.oclAsType(Pseudostate).kind <> PseudostateKind::deepHistory) and
(v.oclAsType(Pseudostate).kind <> PseudostateKind::shallowHistory))))

* entry exit do
The states of a ProtocolStateMachine cannot have entry, exit, or do activity Behaviors.

inv: region->forAll(r | r.subvertex->forAll(v | v.oclIsKindOf(State) implies
(v.oclAsType(State).entry->isEmpty() and v.oclAsType(State).exit->isEmpty() and
v.oclAsType(State) .doActivity->isEmpty())))

* protocol transitions
All Transitions of a ProtocolStateMachine must be ProtocolTransitions.

inv: region->forAll(r | r.transition->forAll(t | t.oclIsTypeOf(ProtocolTransition)))

Unified Modeling Language 2.5.1 351



14.5.5 ProtocolTransition [Class]

14.5.5.1 Description

A ProtocolTransition specifies a legal Transition for an Operation. Transitions of ProtocolStateMachines have the
following information: a pre-condition (guard), a Trigger, and a post-condition. Every ProtocolTransition is associated
with at most one BehavioralFeature belonging to the context Classifier of the ProtocolStateMachine.

14.5.5.2 Diagrams
Protocol State Machines

14.5.5.3 Generalizations
Transition

14.5.5.4 Association Ends

® ¢ postCondition : Constraint [0..1]{subsets Namespace::ownedRule} (opposite
A_postCondition_owningTransition::owningTransition)
Specifies the post condition of the Transition which is the Condition that should be obtained once the
Transition is triggered. This post condition is part of the post condition of the Operation connected to the
Transition.

¢ ¢ preCondition : Constraint [0..1]{subsets Transition::guard} (opposite
A_preCondition_protocolTransition::protocolTransition)
Specifies the precondition of the Transition. It specifies the Condition that should be verified before triggering
the Transition. This guard condition added to the source State will be evaluated as part of the precondition of
the Operation referred by the Transition if any.

® /referred : Operation [0..*]{} (opposite A_referred protocolTransition::protocolTransition)
This association refers to the associated Operation. It is derived from the Operation of the CallEvent Trigger

when applicable.
14.5.5.5 Operations

® referred() : Operation [0..*]
Derivation for ProtocolTransition::/referred

body: trigger->collect(event)->select(oclIsKindOf(CallEvent))-
>collect (oclAsType(CallEvent).operation)->asSet ()

14.5.5.6 Constraints

e refers_to operation
If a ProtocolTransition refers to an Operation (i.e., has a CallEvent trigger corresponding to an Operation), then
that Operation should apply to the context Classifier of the StateMachine of the ProtocolTransition.

inv: if (referred()->notEmpty() and containingStateMachine()._ 'context'->notEmpty()) then
containingStateMachine()._'context'.oclAsType(BehavioredClassifier).allFeatures()-

>includesAll (referred())

else true endif

* associated actions
A ProtocolTransition never has associated Behaviors.

352 Unified Modeling Language 2.5.1



inv: effect = null

* belongs to psm
A ProtocolTransition always belongs to a ProtocolStateMachine.

inv: container.belongsToPSM()

14.5.6 Pseudostate [Class]

14.5.6.1 Description

A Pseudostate is an abstraction that encompasses different types of transient Vertices in the StateMachine graph. A
StateMachine instance never comes to rest in a Pseudostate, instead, it will exit and enter the Pseudostate within a single
run-to-completion step.

14.5.6.2 Diagrams
Behavior State Machines

14.5.6.3 Generalizations
Vertex

14.5.6.4 Attributes
® kind : PseudostateKind [1..1] = initial

Determines the precise type of the Pseudostate and can be one of: entryPoint, exitPoint, initial, deepHistory,
shallowHistory, join, fork, junction, terminate or choice.

14.5.6.5 Association Ends

® state : State [0..1]{subsets NamedElement::namespace} (opposite State::connectionPoint)
The State that owns this Pseudostate and in which it appears.

¢ stateMachine : StateMachine [0..1]{subsets NamedElement::namespace} (opposite
StateMachine::connectionPoint)
The StateMachine in which this Pseudostate is defined. This only applies to Pseudostates of the kind
entryPoint or exitPoint.

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| 14.5.6.6 Operations

¢ isConsistentWith(redefiningElement: RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith }
The query isConsistentWith() specifies that a Pseudostate can only be redefined by a Pseudostate of the same

kind.

| 14.5.6.7 Constraints

* transitions_outgoing
All transitions outgoing a fork vertex must target states in different regions of an orthogonal state.

Unified Modeling Language 2.5.1 353



354

inv: (kind = PseudostateKind::fork) implies

-- for any pair of outgoing transitions there exists an orthogonal state which contains the
targets of these transitions
-- such that these targets belong to different regions of that orthogonal state

outgoing->forAll(tl:Transition, t2:Transition | let contState:State =
containingStateMachine().LCAState(tl.target, t2.target) in
((contState <> null) and (contState.region

->exists(rl:Region, r2: Region | (rl <> r2) and tl.target.isContainedInRegion(rl)
and t2.target.isContainedInRegion(r2)))))

choice_vertex
In a complete statemachine, a choice Vertex must have at least one incoming and one outgoing Transition.

inv: (kind = PseudostateKind::choice) implies (incoming->size() >= 1 and outgoing->size() >=
1)

outgoing from initial
The outgoing Transition from an initial vertex may have a behavior, but not a trigger or a guard.

inv: (kind = PseudostateKind::initial) implies (outgoing.guard = null and outgoing.trigger-
>isEmpty())

join_vertex
In a complete StateMachine, a join Vertex must have at least two incoming Transitions and exactly one
outgoing Transition.

inv: (kind = PseudostateKind::join) implies (outgoing->size() = 1 and incoming->size() >= 2)

junction_vertex
In a complete StateMachine, a junction Vertex must have at least one incoming and one outgoing Transition.

inv: (kind = PseudostateKind::junction) implies (incoming->size() >= 1 and outgoing->size()
>= 1)

history_vertices
History Vertices can have at most one outgoing Transition.

inv: ((kind = PseudostateKind::deepHistory) or (kind = PseudostateKind::shallowHistory))
implies (outgoing->size() <= 1)

initial vertex
An initial Vertex can have at most one outgoing Transition.

inv: (kind = PseudostateKind::initial) implies (outgoing->size() <= 1)

fork vertex

In a complete StateMachine, a fork Vertex must have at least two outgoing Transitions and exactly one
incoming Transition.

inv: (kind = PseudostateKind::fork) implies (incoming->size() = 1 and outgoing->size() >= 2)

transitions_incoming
All Transitions incoming a join Vertex must originate in different Regions of an orthogonal State.

inv: (kind = PseudostateKind::join) implies

Unified Modeling Language 2.5.1



-- for any pair of incoming transitions there exists an orthogonal state which contains the
source vetices of these transitions
-- such that these source vertices belong to different regions of that orthogonal state
incoming->forAll(tl:Transition, t2:Transition | let contState:State =
containingStateMachine().LCAState(tl.source, t2.source) in

((contState <> null) and (contState.region

->exists(rl:Region, r2: Region | (rl <> r2) and tl.source.isContainedInRegion(rl)

and t2.source.isContainedInRegion(r2)))))

14.5.7 PseudostateKind [Enumeration]

14.5.7.1 Description

PseudostateKind is an Enumeration type that is used to differentiate various kinds of Pseudostates.

14.5.7.2 Diagrams

®* Behavior State Machines

14.5.7.3 Literals
e initial
*  deepHistory

* shallowHistory

* join

¢ fork

* junction
* choice

* entryPoint
e exitPoint

e terminate

14.5.8 Region [Class]

14.5.8.1 Description

A Region is a top-level part of a StateMachine or a composite State, that serves as a container for the Vertices and
Transitions of the StateMachine. A StateMachine or composite State may contain multiple Regions representing
behaviors that may occur in parallel.

14.5.8.2 Diagrams

Behavior State Machines, State Machine Redefinition

Unified Modeling Language 2.5.1 355



14.5.8.3 Generalizations

Namespace, RedefinableElement

14.5.8.4 Association Ends

* extendedRegion : Region [0..1]{subsets RedefinableElement::redefinedElement} (opposite

A_extendedRegion region::region)
The region of which this region is an extension.

¢ /redefinitionContext : Classifier [1..1]{redefines RedefinableElement::redefinitionContext} (opposite
A_redefinitionContext region::region)
References the Classifier in which context this element may be redefined.

® state : State [0..1]{subsets NamedElement::namespace} (opposite State::region)
The State that owns the Region. If a Region is owned by a State, then it cannot also be owned by a
StateMachine.

® stateMachine : StateMachine [0..1]{subsets NamedElement::namespace} (opposite StateMachine::region)
The StateMachine that owns the Region. If a Region is owned by a StateMachine, then it cannot also be owned
by a State.

® ¢ subvertex : Vertex [0..*]{subsets Namespace::ownedMember} (opposite Vertex::container)
The set of Vertices that are owned by this Region.

® ¢ transition : Transition [0..*]{subsets Namespace::ownedMember} (opposite Transition::container)
The set of Transitions owned by the Region.

14.5.8.5 Operations

® belongsToPSM() : Boolean
The operation belongsToPSM () checks if the Region belongs to a ProtocolStateMachine.

body: if stateMachine <> null

then

stateMachine.oclIsKindOf (ProtocolStateMachine)
else

state <> null implies state.container.belongsToPSM()
endif

® containingStateMachine() : StateMachine
The operation containingStateMachine() returns the StateMachine in which this Region is defined.

body: if stateMachine = null
then
state.containingStateMachine()
else
stateMachine
endif

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

‘ * isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines

RedefinableElement::isConsistentWith() }

A

356 Unified Modeling Language 2.5.1



query isConsistentWith specifies that a Region can be redefined by any Region for which the redefinition
context is valid (see the isRedefinitionContextValid operation). Note that consistency requirements for the
redefinition of Vertices and Transitions within a redefining Region are specified by the isConsistentWith and
isRedefinitionContextValid operations for Vertex (and its subclasses) and Transition.

pre: redefiningElement.isRedefinitionContextvalid(self)
body: he ! ! erely it
this—econstraintwill be speeified by profiles

truetrue

isRedefinitionContextValid(redefinedElement : RedefinableElement) : Boolean {redefines

RedefinableElement::isRedefinitionContextValid() }

The query isRedefinitionContextValid() specifies whether the redefinition contexts of a Region are properly
related to the redefinition contexts of the specified Region to allow this element to redefine the other. The
containing StateMachine or State of a redefining Region must Redefine the containing StateMachine or State
of the redefined Region.

body: if redefinedElement.oclIsKindOf(Region) then
let redefinedRegion : Region = redefinedElement.oclAsType(Region) in
if stateMachine->isEmpty() then
-- the Region is owned by a State
(state.redefinedState->notEmpty() and state.redefinedState.region-
>includes (redefinedRegion))
else -- the region is owned by a StateMachine
(stateMachine.extendedStateMachine->notEmpty() and
stateMachine.extendedStateMachine->exists(sm : StateMachine |
sm.region->includes(redefinedRegion)))
endif
else
false
endif

redefinitionContext() : Classifier
The redefinition context of a Region is the nearest containing StateMachine.

UMLR-685: StateMachine Vertex.needs to be made a kind .of RedefinabIeEIement instead of State

body: let -sm s+ StateMachine = containingStateMachine( ) in
if sm. 'context' = null or sm.general->notEmpty() then
—sm

~sm. ‘context"

endifcontainingStateMachine()

14.5.8.6 Constraints

deep_history vertex
A Region can have at most one deep history Vertex.

inv: self.subvertex->select (oclIsKindOf (Pseudostate))->collect(oclAsType(Pseudostate))->
select(kind = PseudostateKind::deepHistory)->size() <=1

shallow_history vertex
A Region can have at most one shallow history Vertex.

inv: subvertex->select(oclIsKindOf (Pseudostate))->collect(oclAsType(Pseudostate))->
select(kind = PseudostateKind::shallowHistory)->size() <=1

owned
If a Region is owned by a StateMachine, then it cannot also be owned by a State and vice versa.

inv: (stateMachine <> null implies state = null) and (state <> null implies stateMachine =
null)

Unified Modeling Language 2.5.1 357



* initial vertex
A Region can have at most one initial Vertex.

inv: self.subvertex->select (oclIsKindOf (Pseudostate))->collect(oclAsType(Pseudostate))->
select(kind = PseudostateKind::initial)->size() <=1

14.5.9 State [Class]
14.5.9.1 Description
A State models a situation during which some (usually implicit) invariant condition holds.
14.5.9.2 Diagrams
Behavior State Machines, State Machine Redefinition, Object Nodes

14.5.9.3 Generalizations

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State
RedefinableElement-Namespace, Vertex

14.5.9.4 Specializations

FinalState

14.5.9.5 Attributes

¢ /isComposite : Boolean [1..1]
A state with isComposite=true is said to be a composite State. A composite State is a State that contains at least
one Region.

¢ /isOrthogonal : Boolean [1..1]
A State with isOrthogonal=true is said to be an orthogonal composite State. An orthogonal composite State
contains two or more Regions.

¢ /isSimple : Boolean [1..1]
A State with isSimple=true is said to be a simple State. A simple State does not have any Regions and it does
not refer to any submachine StateMachine.

¢ /isSubmachineState : Boolean [1..1]
A State with isSubmachineState=true is said to be a submachine State. Such a State refers to another
StateMachine(submachine).

14.5.9.6 Association Ends

® ¢ connection : ConnectionPointReference [0..*]{subsets Namespace::ownedMember} (opposite
ConnectionPointReference::state)
The entry and exit connection points used in conjunction with this (submachine) State, i.e., as targets and
sources, respectively, in the Region with the submachine State. A connection point reference references the
corresponding definition of a connection point Pseudostate in the StateMachine referenced by the submachine
State.

358 Unified Modeling Language 2.5.1



¢ connectionPoint : Pseudostate [0..*]{subsets Namespace::ownedMember} (opposite Pseudostate::state)
The entry and exit Pseudostates of a composite State. These can only be entry or exit Pseudostates, and they
must have different names. They can only be defined for composite States.

¢ deferrableTrigger : Trigger [0..*]{subsets Element::ownedElement} (opposite

A_deferrableTrigger state::state)

A list of Triggers that are candidates to be retained by the StateMachine if they trigger no Transitions out of the
State (not consumed). A deferred Trigger is retained until the StateMachine reaches a State configuration where
it is no longer deferred.

¢ doActivity : Behavior [0..1]{subsets Element::ownedElement} (opposite A_doActivity state::state)
An optional Behavior that is executed while being in the State. The execution starts when this State is entered,
and ceases either by itself when done, or when the State is exited, whichever comes first.

¢ entry : Behavior [0..1]{subsets Element::ownedElement} (opposite A_entry_state::state)

An optional Behavior that is executed whenever this State is entered regardless of the Transition taken to reach
the State. If defined, entry Behaviors are always executed to completion prior to any internal Behavior or
Transitions performed within the State.

¢ exit : Behavior [0..1]{subsets Element::ownedElement} (opposite A_exit state::state)

An optional Behavior that is executed whenever this State is exited regardless of which Transition was taken
out of the State. If defined, exit Behaviors are always executed to completion only after all internal and
transition Behaviors have completed execution.

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of
State

¢ region : Region [0..*]{subsets Namespace::ownedMember} (opposite Region::state)
The Regions owned directly by the State.

¢ statelnvariant : Constraint [0..1]{subsets Namespace::ownedRule} (opposite

A_statelnvariant owningState::owningState)

Specifies conditions that are always true when this State is the current State. In ProtocolStateMachines state
invariants are additional conditions to the preconditions of the outgoing Transitions, and to the postcondition of
the incoming Transitions.

submachine : StateMachine [0..1] (opposite StateMachine::submachineState)
The StateMachine that is to be inserted in place of the (submachine) State.

14.5.9.7 Operations

containingStateMachine() : StateMachine {redefines Vertex::containingStateMachine() }
The query containingStateMachine() returns the StateMachine that contains the State either directly or
transitively.

Unified Modeling Language 2.5.1 359



360

body: container.containingStateMachine()

isComposite() : Boolean
A composite State is a State with at least one Region.

body: region->notEmpty()

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of
State

isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines

RedefinableElement::isConsistentWith() }

replace-entry;exitand-doAetivity Behaviors-The query isConsistentWith specifies that a non-final State can
only be redefined by a non-final State (this is overridden by FinalState to allow a FinalState to be redefined by
a FinalState) and, if the redefined State is a submachine State, then the redefining State must be a submachine

state whose submachine is a redefinition of the submachine of the redefined State. Note that consistency
requirements for the redefinition of Regions and connectionPoint Pseudostates within a composite State and
connection ConnectionPoints of a submachine State are specified by the isConsistentWith and
isRedefinitionContextValid operations for Region and Vertex (and its subclasses, Pseudostate and
ConnectionPointReference).

pre: redefinin
boqy: he

y . 111 (find ] 3
trueredefiningElement.oclIsTypeOf (State) and
let redefiningState : State = redefiningElement.oclAsType(State) in

submachine <> null implies (redefiningState.submachine <> null and

redefiningState.submachine.extendedStateMachine->includes (submachine))

isOrthogonal() : Boolean
An orthogonal State is a composite state with at least 2 regions.

body: region->size () > 1

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of
State

isSimple() : Boolean
A simple State is a State without any regions.

Unified Modeling Language 2.5.1



body: (region->isEmpty()) and not isSubmachineState()

¢ isSubmachineState() : Boolean
Only submachine State references another StateMachine.

body: submachine <> null

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

——sm
else
. .
. endif
14.5.9.8 Constraints

* entry or exit
Only entry or exit Pseudostates can serve as connection points.

inv: connectionPoint->forAll(kind = PseudostateKind::entryPoint or kind =
PseudostateKind: :exitPoint)

* submachine states
Only submachine States can have connection point references.

inv: isSubmachineState implies connection->notEmpty( )

* composite_states
Only composite States can have entry or exit Pseudostates defined.

inv: connectionPoint->notEmpty() implies isComposite

* destinations_or_sources_of transitions
The connection point references used as destinations/sources of Transitions associated with a submachine State
must be defined as entry/exit points in the submachine StateMachine.

inv: self.isSubmachineState implies (self.connection->forAll (cp |
cp.entry->forAll (ps | ps.stateMachine = self.submachine) and
cp.exit->forAll (ps | ps.stateMachine = self.submachine)))

* submachine or regions
A State is not allowed to have both a submachine and Regions.

inv: isComposite implies not isSubmachineState
14.5.10 StateMachine [Class]

14.5.10.1 Description

StateMachines can be used to express event-driven behaviors of parts of a system. Behavior is modeled as a traversal of
a graph of Vertices interconnected by one or more joined Transition arcs that are triggered by the dispatching of

Unified Modeling Language 2.5.1 361



successive Event occurrences. During this traversal, the StateMachine may execute a sequence of Behaviors associated
with various elements of the StateMachine.

14.5.10.2 Diagrams

Behavior State Machines, State Machine Redefinition, Protocol State Machines

14.5.10.3 Generalizations

Behavior

14.5.10.4 Specializations

ProtocolStateMachine

14.5.10.5 Association Ends

® ¢ connectionPoint : Pseudostate [0..*]{subsets Namespace::ownedMember} (opposite
Pseudostate::stateMachine)
The connection points defined for this StateMachine. They represent the interface of the StateMachine when
used as part of submachine State.

* extendedStateMachine : StateMachine [0..*]{redefines Behavior::redefinedBehavior} (opposite
A_extendedStateMachine stateMachine::stateMachine)
The StateMachines of which this is an extension.

® ¢ region : Region [1..*]{subsets Namespace::ownedMember} (opposite Region::stateMachine)
The Regions owned directly by the StateMachine.

® submachineState : State [0..*] (opposite State::submachine)
References the submachine(s) in case of a submachine State. Multiple machines are referenced in case of a
concurrent State.

14.5.10.6 Operations

® LCAC(s] : Vertex, s2 : Vertex) : Region
The operation LCA(s1,s2) returns the Region that is the least common ancestor of Vertices s1 and s2, based on
the StateMachine containment hierarchy.

body: if ancestor(sl, s2) then
s2.container
else
if ancestor(s2, sl) then
sl.container
else
LCA(sl.container.state, s2.container.state)
endif
endif

® ancestor(sl : Vertex, s2 : Vertex) : Boolean
The query ancestor(s1, s2) checks whether Vertex s2 is an ancestor of Vertex sl.

body: if (s2 = sl) then
true
else
if sl.container.stateMachine->notEmpty() then
true
else
if s2.container.stateMachine->notEmpty() then

362 Unified Modeling Language 2.5.1



false
else
ancestor(sl, s2.container.state)
endif
endif
endif

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

* isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines

RedeﬁnableElement 1sCons1stentW1th1 )}

ef—t-he—fedeﬁﬁed—S{-&teM&elﬁne—The query 1sC0n51stentW1th spec1ﬁes that a StateMachme can be redeﬁned by

any other StateMachine for which the redefinition context is valid (see the isRedefinitionContextValid
operation). Note that consistency requirements for the redefinition of Regions and connectionPoint

Pseudostates owned by a StateMachine are specified by the isConsistentWith and isRedefinitionContextValid
operations for Region and Vertex (and its subclass Pseudostate).

truepre: redefiningElement.isRedefinitionContextValid(self)

body: true

® isRedefinitionContextValid(redefinedElement : RedefinableElement) : Boolean {redefines

RedeﬁnableElement 1sRedeﬁn1t1onC0ntextVa11d! )}

a er-o d o N hina 1 edefineth o er-o ha

St-&teM—aehlﬁe-The query 1sRedeﬁn1t10nContextVahd spec1ﬁes whether the redeﬁnltlon context of a
StateMachine is properly related to the redefinition contexts of a StateMachine it redefines. The requirement is

that the context BehavioredClassifier of a redefining StateMachine must specialize the context Classifier of the
redefined StateMachine. If the redefining StateMachine does not have a context BehavioredClassifier, then

then the redefining StateMachine also must not have a context BehavioredClassifier but must, instead
specialize the redefining StateMachine.

body: redefinedElement.oclIsKindOf (StateMachine) and
let parentContext : BehavioredClassifier =
redefinedElement.oclAsType(StateMachine).context in
if context = null then
parentContext = null and self.allParents()-»includes(redefinedElement)
else
parentContext <> null and context.allParents()->includes(parentContext)

endlf&égredeé&nedEiemeﬁ%Aeei;sK&nd@é{s%a%eMaeh&ne+4%hen

* LCAState(vl : Vertex, v2 : Vertex) : State
This utility function is like the LCA, except that it returns the nearest composite State that contains both input
Vertices.

body: if v2.oclIsTypeOf(State) and ancestor(vl, v2) then
v2.0clAsType(State)

else if vl.oclIsTypeOf(State) and ancestor(v2, vl) then
v1l.oclAsType(State)

else if (vl.container.state->isEmpty() or v2.container.state->isEmpty()) then
null.oclAsType(State)

else LCAState(vl.container.state, v2.container.state)

Unified Modeling Language 2.5.1 363



endif endif endif

14.5.10.7 Constraints

*  connection_points
The connection points of a StateMachine are Pseudostates of kind entry point or exit point.

inv: connectionPoint->forAll (kind = PseudostateKind::entryPoint or kind =
PseudostateKind: :exitPoint)

¢ classifier context
The Classifier context of a StateMachine cannot be an Interface.

inv: _'context' <> null implies not _'context'.oclIsKindOf(Interface)

* method
A StateMachine as the method for a BehavioralFeature cannot have entry/exit connection points.

inv: specification <> null implies connectionPoint->isEmpty()

* context classifier
The context Classifier of the method StateMachine of a BehavioralFeature must be the Classifier that owns the
BehavioralFeature.

inv: specification <> null implies ( _'context' <> null and
specification.featuringClassifier->exists(c | ¢ = 'context'))

14.5.11 Transition [Class]

14.5.11.1 Description

A Transition represents an arc between exactly one source Vertex and exactly one Target vertex (the source and targets
may be the same Vertex). It may form part of a compound transition, which takes the StateMachine from one steady
State configuration to another, representing the full response of the StateMachine to an occurrence of an Event that
triggered it.

14.5.11.2 Diagrams

Behavior State Machines, State Machine Redefinition, Protocol State Machines
14.5.11.3 Generalizations

Namespace, RedefinableElement

14.5.11.4 Specializations

ProtocolTransition

14.5.11.5 Attributes

® kind : TransitionKind [1..1] = external
Indicates the precise type of the Transition.

364 Unified Modeling Language 2.5.1



14.5.11.6 Association Ends

® container : Region [1..1]{subsets NamedElement::namespace} (opposite Region::transition)
Designates the Region that owns this Transition.

® ¢ cffect : Behavior [0..1]{subsets Element::ownedElement} (opposite A_effect transition::transition)
Specifies an optional behavior to be performed when the Transition fires.

® ¢ guard : Constraint [0..1]{subsets Namespace::ownedRule} (opposite A_guard transition::transition)
A guard is a Constraint that provides a fine-grained control over the firing of the Transition. The guard is
evaluated when an Event occurrence is dispatched by the StateMachine. If the guard is true at that time, the
Transition may be enabled, otherwise, it is disabled. Guards should be pure expressions without side effects.
Guard expressions with side effects are ill formed.

® redefinedTransition : Transition [0..1]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedTransition_transition::transition)
The Transition that is redefined by this Transition.

¢ /redefinitionContext : Classifier [1..1]{redefines RedefinableElement::redefinitionContext} (opposite
A_redefinitionContext_transition::transition)
References the Classifier in which context this element may be redefined.

® source : Vertex [1..1] (opposite Vertex::outgoing)
Designates the originating Vertex (State or Pseudostate) of the Transition.

® target : Vertex [1..1] (opposite Vertex::incoming)
Designates the target Vertex that is reached when the Transition is taken.

® e trigger : Trigger [0..*]{subsets Element::ownedElement} (opposite A_trigger transition::transition)
Specifies the Triggers that may fire the transition.

14.5.11.7 Operations

® containingStateMachine() : StateMachine
The query containingStateMachine() returns the StateMachine that contains the Transition either directly or
transitively.

body: container.containingStateMachine()

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

‘ * isConsistentWith(redefiningElement : RedefinableElement) : Boolean {redefines

RedefinableElement::isConsistentWith() }

Frigger-The query isConsistentWith specifies that a redefining Transition is consistent with a redefined
Transition provided that the source Vertex of the redefining Transition redefines the source Vertex of the
redefined Transition.

pre: redefiningElement.isRedefinitionContextvalid(self)
body: redefiningElement.oclIsKindOf (Transition) and

Unified Modeling Language 2.5.1 365



redefiningElement.oclAsType (Transition).source.redefinedTransition = source——the—

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

redefinitionContext() : Classifier
The redefinition context of a Transition is the nearest containing StateMachine.

body: containingStateMachine()let—sm—+StateMachine = containingStateMachine)—in
%PS%H—G@H—E@%FC—HH&GH&H—%GHQ—PH%@%EW — ! = -

14.5.11.8 Constraints

366

state is_external
A Transition with kind external can source any Vertex except entry points.

inv: (kind = TransitionKind::external) implies
not (source.oclIsKindOf (Pseudostate) and source.oclAsType(Pseudostate).kind =
PseudostateKind: :entryPoint)

join_segment guards
A join segment must not have Guards or Triggers.

inv: (target.oclIsKindOf (Pseudostate) and target.oclAsType(Pseudostate).kind =
PseudostateKind::join) implies (guard = null and trigger->isEmpty())

state is_internal
A Transition with kind internal must have a State as its source, and its source and target must be equal.

inv: (kind = TransitionKind::internal) implies
(source.oclIskindOf (State) and source = target)

outgoing_pseudostates
Transitions outgoing Pseudostates may not have a Trigger.

inv: source.oclIsKindOf (Pseudostate) and (source.oclAsType(Pseudostate).kind <>
PseudostateKind::initial) implies trigger->isEmpty()

join_segment state
A join segment must always originate from a State.

inv: (target.oclIsKindOf (Pseudostate) and target.oclAsType(Pseudostate).kind =
PseudostateKind::join) implies (source.oclIsKindOf(State))

fork segment state
A fork segment must always target a State.

inv: (source.oclIsKindOf (Pseudostate) and source.oclAsType(Pseudostate).kind
PseudostateKind::fork) implies (target.oclIsKindOf(State))

state is local
A Transition with kind local must have a composite State or an entry point as its source.

Unified Modeling Language 2.5.1



inv: (kind = TransitionKind::local) implies
((source.oclIsKindOf (State) and source.oclAsType(State).isComposite) or
(source.oclIskindOf (Pseudostate) and source.oclAsType(Pseudostate).kind =
PseudostateKind: :entryPoint))

* initial transition
An initial Transition at the topmost level Region of a StateMachine that has no Trigger.

inv: (source.oclIsKindOf (Pseudostate) and container.stateMachine->notEmpty()) implies
trigger->isEmpty ()

e fork segment guards
A fork segment must not have Guards or Triggers.

inv: (source.oclIsKindOf (Pseudostate) and source.oclAsType(Pseudostate).kind =
PseudostateKind::fork) implies (guard = null and trigger->isEmpty())

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

e transition_vertices
The source and target Vertices of a Transition must be contained in the same StateMachine as the Transition.

inv: let stateMachine

self.containingStateMachine() in

Machine and

\ 14.5.12 TransitionKind [Enumeration]

14.5.12.1 Description

TransitionKind is an Enumeration type used to differentiate the various kinds of Transitions.

14.5.12.2 Diagrams

®* Behavior State Machines

14.5.12.3 Literals

* internal
Implies that the Transition, if triggered, occurs without exiting or entering the source State (i.e., it does not
cause a state change). This means that the entry or exit condition of the source State will not be invoked. An
internal Transition can be taken even if the SateMachine is in one or more Regions nested within the associated
State.

* local
Implies that the Transition, if triggered, will not exit the composite (source) State, but it will exit and re-enter
any state within the composite State that is in the current state configuration.

*  external
Implies that the Transition, if triggered, will exit the composite (source) State.

14.5.13 Vertex [Abstract Class]

14.5.13.1 Description

A Vertex is an abstraction of a node in a StateMachine graph. It can be the source or destination of any number of
Transitions.

Unified Modeling Language 2.5.1 367



14.5.13.2 Diagrams

Behavior State Machines

14.5.13.3 Generalizations
| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

‘ NamedElement. RedefinableElement

14.5.13.4 Specializations

ConnectionPointReference, Pseudostate, State

14.5.13.5 Association Ends

® container : Region [0..1]{subsets NamedElement::namespace} (opposite Region::subvertex)
The Region that contains this Vertex.

® /incoming : Transition [0..*]{} (opposite Transition::target)
Specifies the Transitions entering this Vertex.

® /outgoing : Transition [0..*]{} (opposite Transition::source)
‘ Specifies the Transitions departing from this Vertex.

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

® redefinedVertex : Vertex [0..1]{subsets RedefinableElement::redefinedElement} (opposite
A_redefinedVertex vertex::vertex)

The Vertex of which this Vertex is a redefinition.

®  /redefinitionContext : Classifier
A_redefinitionContext vertex::vertex)
References the Classifier in which context this element may be redefined.

14.5.13.6 Operations

® containingStateMachine() : StateMachine
The operation containingStateMachine() returns the StateMachine in which this Vertex is defined.

body: if container <> null
then
-- the container is a region
container.containingStateMachine()
else
if (self.oclIsKindOf (Pseudostate)) and ((self.oclAsType(Pseudostate).kind =
PseudostateKind::entryPoint) or (self.oclAsType(Pseudostate).kind =
PseudostateKind::exitPoint)) then
self.oclAsType(Pseudostate).stateMachine
else
if (self.oclIsKindOf (ConnectionPointReference)) then
self.oclAsType(ConnectionPointReference).state.containingStateMachine() -- no
other valid cases possible
else
null
endif
endif
endif

368 Unified Modeling Language 2.5.1



incoming() : Transition [0..*]
Derivation for Vertex::/incoming.

body: Transition.allInstances()->select(target=self)

outgoing() : Transition [0..*]
Derivation for Vertex::/outgoing

body: Transition.allInstances()->select(source=self)

isContainedInState(s : State) : Boolean
This utility operation returns true if the Vertex is contained in the State s (input argument).

body: if not s.isComposite() or container->isEmpty() then

false
else
if container.state = s then
true
else
container.state.isContainedInState(s)
endif
endif

isContainedInRegion(r : Region) : Boolean
This utility query returns true if the Vertex is contained in the Region r (input argument).

body: if (container = r) then

true
else
if (r.state->isEmpty()) then
false
else
container.state.isContainedInRegion(r)
endif
endif

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

\
' 14.6

14.6.1

14.6.1.1

1sConsistentWith(redefiningElement: RedefinableElement) : Boolean {redefines
RedefinableElement::isConsistentWith }
The query isRedefinitionContextValid specifies that the redefinition context of a redefining Vertex is properly

related to the redefinition context of the redefined Vertex if the owner of the redefining Vertex is a redefinition
of the owner of the redefined Vertex. Note that the owner of a Vertex may be a Region, a StateMachine (for a

connectionPoint Pseudostate), or a State (for a connectionPoint Pseudostate or a connection
ConnectionPointReference). all of which are RedefinableElements.

body: redefinedElement.oclIsKindOf (Vertex) and
owner.oclAsType (RedefinableElement) .redefinedElement->includes (redefinedElement.owner)

redefinitionContext() : Classifier
The redefinition context of a Vertex is the nearest containing StateMachine.

body: containingStateMachine()
Association Descriptions

A_conformance_specificMachine [Association]

Diagrams

Protocol State Machines

Unified Modeling Language 2.5.1 369



14.6.1.2 Member Ends

®  ProtocolStateMachine::conformance

®  ProtocolConformance::specificMachine

14.6.2 A_connectionPoint_state [Association]

14.6.2.1 Diagrams

Behavior State Machines

14.6.2.2 Member Ends
®  State::connectionPoint
® Pseudostate::state

14.6.3 A_connectionPoint_stateMachine [Association]

14.6.3.1 Diagrams

Behavior State Machines

14.6.3.2 Member Ends

® StateMachine::connectionPoint
® Pseudostate::stateMachine

14.6.4 A_connection_state [Association]

14.6.4.1 Diagrams

Behavior State Machines

14.6.4.2 Member Ends
®  State::connection

®  ConnectionPointReference::state

14.6.5 A_deferrableTrigger_state [Association]

14.6.5.1 Diagrams

Behavior State Machines

14.6.5.2 Owned Ends

® state : State [0..1]{subsets Element::owner} (opposite State::deferrableTrigger)

370 Unified Modeling Language 2.5.1



14.6.6 A_doActivity_state [Association]

14.6.6.1 Diagrams

Behavior State Machines

14.6.6.2 Owned Ends

¢ state : State [0..1]{subsets Element::owner} (opposite State::doActivity)

14.6.7 A_effect_transition [Association]

14.6.7.1 Diagrams

Behavior State Machines

14.6.7.2 Owned Ends
® transition : Transition [0..1]{subsets Element::owner} (opposite Transition::effect)

14.6.8 A_entry_connectionPointReference [Association]

14.6.8.1 Diagrams

Behavior State Machines

14.6.8.2 Owned Ends

® connectionPointReference : ConnectionPointReference [0..1] (opposite ConnectionPointReference::entry)

14.6.9 A_entry_state [Association]

14.6.9.1 Diagrams

Behavior State Machines

14.6.9.2 Owned Ends
® state : State [0..1]{subsets Element::owner} (opposite State::entry)

14.6.10 A_exit_connectionPointReference [Association]

14.6.10.1 Diagrams

Behavior State Machines

14.6.10.2 Owned Ends

¢ connectionPointReference : ConnectionPointReference [0..1] (opposite ConnectionPointReference::exit)

Unified Modeling Language 2.5.1 371



14.6.11  A_exit_state [Association]

14.6.11.1 Diagrams

Behavior State Machines

14.6.11.2 Owned Ends

¢ state : State [0..1]{subsets Element::owner} (opposite State::exit)

14.6.12 A_extendedRegion_region [Association]

14.6.12.1 Diagrams

State Machine Redefinition

14.6.12.2 Owned Ends

® region : Region [0..*]{subsets A_redefinedElement redefinableElement::redefinableElement} (opposite
Region::extendedRegion)

14.6.13 A_extendedStateMachine_stateMachine [Association]

14.6.13.1 Diagrams

State Machine Redefinition

14.6.13.2 Owned Ends

® stateMachine : StateMachine [0..*]{subsets A_redefinedBehavior_behavior::behavior} (opposite
StateMachine::extendedStateMachine)

14.6.14 A_generalMachine_protocolConformance [Association]

14.6.14.1 Diagrams

Protocol State Machines

14.6.14.2 Owned Ends

¢ protocolConformance : ProtocolConformance [0..*]{subsets
A target directedRelationship::directedRelationship} (opposite ProtocolConformance::generalMachine)

14.6.15 A_guard_transition [Association]

14.6.15.1 Diagrams

Behavior State Machines
14.6.15.2 Specializations

A_preCondition _protocolTransition

372 Unified Modeling Language 2.5.1



14.6.15.3 Owned Ends

® transition : Transition [0..1]{subsets Constraint::context} (opposite Transition::guard)

14.6.16 A_incoming_target_vertex [Association]

14.6.16.1 Diagrams

Behavior State Machines

14.6.16.2 Member Ends
®  Vertex::incoming
® Transition::target

14.6.17 A_outgoing_source_vertex [Association]

14.6.17.1 Diagrams

Behavior State Machines

14.6.17.2 Member Ends
®  Vertex::outgoing

® Transition::source

14.6.18 A_postCondition_owningTransition [Association]

14.6.18.1 Diagrams

Protocol State Machines

14.6.18.2 Owned Ends

® owningTransition : ProtocolTransition [0..1]{subsets Constraint::context} (opposite
ProtocolTransition::postCondition)

14.6.19 A_preCondition_protocolTransition [Association]

14.6.19.1 Diagrams
Protocol State Machines
14.6.19.2 Generalizations

A_guard_transition
14.6.19.3 Owned Ends

® protocolTransition : ProtocolTransition [0..1]{redefines A_guard_transition::transition} (opposite
ProtocolTransition::preCondition)

Unified Modeling Language 2.5.1 373



| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| 14.6.20 A_redefinedState_state [Association]

| 14.6.20.1 Diagrams
‘ E . ; [’ ] F I ~ e,

| 14.6.20.2  Owned Ends

sets A 71. 35‘ fﬁﬂ a i 55 Eﬂtifedffﬁﬂ'ﬂ ble e Eﬂt::ffd Eﬁ fab eI ement % ( )‘]qﬁ l,fl.tf

SttesredeRted e

\ 14.6.21 A_redefinedTransition_transition [Association]

14.6.21.1 Diagrams

State Machine Redefinition

14.6.21.2 Owned Ends

® transition : Transition [0..*]{subsets A_redefinedElement_redefinableElement::redefinableElement} (opposite
Transition::redefined Transition)

| UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

| 14.6.22 A_redefinedVertex_vertex [Association]

| 14.6.22.1 Diagrams

‘ State Machine Redefinition

| 14.6.22.2 Owned Ends

»  vertex : Vertex [0..*] {subsets A redefinedElement redefinableElement::redefinableElement} (opposite
Vertex::redefined Vertex)

\ 14.6.23 A_redefinitionContext_region [Association]

14.6.23.1 Diagrams

State Machine Redefinition

14.6.23.2 Generalizations

A_redefinitionContext redefinableElement

14.6.23.3 Owned Ends

® region : Region [0..*]{subsets A_redefinitionContext redefinableElement::redefinableElement} (opposite
Region::redefinitionContext)

374 Unified Modeling Language 2.5.1



UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

14.6.24 A _redefinitionContext_state [Association]

14.6.24.1 Diagrams
State Machine Redefiniti

14.6.24.2 Generalizations

14.6.24.3 Owned Ends

14.6.25 A_redefinitionContext_transition [Association]

14.6.25.1 Diagrams

State Machine Redefinition

14.6.25.2 Generalizations

A_redefinitionContext redefinableElement

14.6.25.3 Owned Ends

® transition : Transition [0..*]{subsets A_redefinitionContext redefinableElement::redefinableElement}
(opposite Transition::redefinitionContext)

UMLR-685: StateMachine Vertex needs to be made a kind of RedefinableElement instead of State

14.6.26 A_redefinitionContext_vertex [Association]

14.6.26.1 Diagrams

State Machine Redefinition

14.6.26.2 Generalizations

A_redefinitionContext redefinableElement

14.6.26.3 Owned Ends

*  vertex : Vertex [0..*]{subsets A_redefinitionContext redefinableElement::redefinableElement}

(opposite Vertex::redefinitionContext)

14.6.27 A_referred_protocolTransition [Association]

14.6.27.1 Diagrams

Protocol State Machines

Unified Modeling Language 2.5.1



14.6.27.2 Owned Ends
® protocolTransition : ProtocolTransition [0..*] (opposite ProtocolTransition::referred)

14.6.28 A_region_state [Association]

14.6.28.1 Diagrams

Behavior State Machines

14.6.28.2 Member Ends
® State::region
® Region::state

14.6.29 A_region_stateMachine [Association]

14.6.29.1 Diagrams

Behavior State Machines

14.6.29.2 Member Ends

® StateMachine::region

® Region::stateMachine

14.6.30 A_statelnvariant_owningState [Association]

14.6.30.1 Diagrams

Behavior State Machines

14.6.30.2 Owned Ends
® owningState : State [0..1]{subsets Constraint::context} (opposite State::statelnvariant)

14.6.31 A_submachineState_submachine [Association]

14.6.31.1 Diagrams

Behavior State Machines

14.6.31.2 Member Ends

® StateMachine::submachineState

®  State::submachine

376 Unified Modeling Language 2.5.1



14.6.32 A_subvertex_container [Association]

14.6.32.1 Diagrams

Behavior State Machines
14.6.32.2 Member Ends
® Region::subvertex
®  Vertex::container

14.6.33 A_transition_container [Association]

14.6.33.1 Diagrams

Behavior State Machines

14.6.33.2 Member Ends
® Region::transition
® Transition::container

14.6.34 A_trigger_transition [Association]

14.6.34.1 Diagrams

Behavior State Machines

14.6.34.2 Owned Ends

® transition : Transition [0..1]{subsets Element::owner} (opposite Transition::trigger)

Unified Modeling Language 2.5.1

377






15 Activities

151  Summary

An Activity is a kind of Behavior (see sub clause 13.2) that is specified as a graph of nodes interconnected by edges. A
subset of the nodes are executable nodes that embody lower-level steps in the overall Activity. Object nodes hold data
that is input to and output from executable nodes, and moves across object flow edges. Control nodes specify
sequencing of executable nodes via control flow edges. Activities are essentially what are commonly called “control and
data flow” models. Such models of computation are inherently concurrent, as any sequencing of activity node execution
is modeled explicitly by activity edges, and no ordering is mandated for any computation not explicitly sequenced.

Activities may describe procedural computation, forming hierarchies of Activities invoking other Activities, or, in an
object-oriented model, they may be invoked indirectly as methods bound to Operations that are directly invoked.
Activities may be applied to organizational modeling for business process engineering and workflow. In this context,
events often originate from inside the system, such as the finishing of a task, but also from outside the system, such as a
customer call. Activities can also be used for information system modeling to specify system level processes.

The remainder of this clause describes how activity models are structured and various kinds of object and control nodes.
The only kind of executable nodes in UML are Actions, which are fully described in Clause 16. Actions are required for
any significant capabilities of Activities. Actions invoke other Behaviors and Operations (see above), access and modify
objects, as well as link them together, and perform more advanced coordination of other Actions (Structured Actions).
They are central to the “data flow” aspects of Activities, introducing a specialized form of object node (Pins) for object
flows to get and provide data to Actions. Most of the examples of Activity data flow appear in Clause 16. The concrete
syntax for Actions is a subset of the concrete syntax for Activities (Action notation only appears in Activity diagrams),
and some concrete syntax for Actions is specified in this clause. This clause uses executable nodes to provide some
independence from Actions but must still be read in conjunction with Clause 16.

15.2 Activities

15.2.1 Summary

An Activity is a Behavior specified as sequencing of subordinate units, using a control and data flow model.
Subordinate behaviors coordinated by these models may be initiated because other behaviors in the model finish
executing, because objects and data become available or because events occur externally to the flow. The flow of
execution is modeled as ActivityNodes connected by ActivityEdges. An ExecutableNode can be the execution of a
subordinate behavior, such as an arithmetic computation, a call to an operation, or manipulation of object contents (see
Clause 16 on Actions for details). ActivityNodes also include flow-of-control constructs, such as synchronization,
decision, and concurrency control.

This sub clause describes the basic structure and flow semantics of an activity model as a graph of nodes and edges.
Subsequent sub clauses then describe the various kinds of ActivityNodes that an Activity may contain and how those
nodes may be grouped within the Activity.

Unified Modeling Language 2.5.1 379



15.2.2 Abstract Syntax

ConnectableElement | | MultiplicityElement
JAN

—— {subsets namespace} {subsets ownedMember}
. Activity + activityScope + variable Variable
+ !sR_eadOnly : E?oolgan = false 0.1 *
+ isSingleExecution : Boolean = false
0.1 0.1
edefinableEl 7/ + activity + activity
RedefinableElement {subsets owner}  {subsets owner} RedefinableElement
+ activityNode
ty * {subsets ownedElement} {subsets ownedElement} *
{subsets redefinedElement} + node + ed
ge
- ActivityNode + target + incoming ActivityEdge {subsets redefinableElement}
1 * + activityEdge
+ source + outgoing *
* 1 *
. {subsets ownedElement} {subsets owner} *
F+ redefinedNode P—— + guard + activityEdge
U ATH 1
{subsets redefinableElement} P 0.1 0..1 + redefinedEdge
0..1 0..1 {subsets redefinedElement}
+ weight + activityEdge
{subsets ownedElement} {subsets owner}

+ transformation + objectFlow

0.1 % | + isMulticast : Boolean = false

+ isMultireceive : Boolean = false

+ selection + objectFlow

Figure 15.1 Activities

15.2.3 Semantics

15.2.3.1 Activities

The execution of one ActivityNode within an Activity may affect, and may be affected by, the execution of other
ActivityNodes in the Activity. Such edges are represented by ActivityEdges that interconnect the ActivityNodes. The
effect of one ActivityNode on another is specified by the flow of fokens over the ActivityEdges between the
ActivityNodes.

Tokens are not explicitly modeled in an Activity, but are used for describing the execution of an Activity. An object
token is a container for a value that flows over ObjectFlow edges (some object tokens can flow over ControlFlow edges,
as specified by the modeler, see isControlType for ObjectNodes in sub clause 15.4). An object token with no value in it is
called a null token. A control token affects execution of ActivityNodes, but does not carry any data, and flows only over
ControlFlow edges. Each token is distinct from any other, even if it contains the same value as another.

ActivityEdges are directed, with tokens flowing from the source ActivityNode to the target ActivityNode. However,
tokens offered to an ActivityEdge by the source ActivityNode may not immediately flow along the edge. Instead, the
tokens only move when the offer is accepted by the ActivityEdge, which requires at least the target ActivityNode to
accept them also, which in turn might depend on acceptance of cascading offers of the same tokens to edges and nodes
further downstream of the target. As described below, object tokens shall only be accepted by ObjectNodes while control
tokens shall only be accepted by ExecutableNodes (with a modeler-specified exception for some object tokens accepted
by ExecutableNodes, see isControlType for ObjectNodes in sub clause 15.4). ControlNodes are used to control the routing
of offers through a network of ActivityEdges, controlling the flow of accepted tokens.

ActivityNodes and ActivityEdges may be named, however, the nodes and edges of an Activity are not required to have
unique names within that Activity. This allows, for example, similar nodes within an Activity (such as multiple
invocations of other Behavior) to be given the same name. Even though an Activity is a Namespace (a Behavior is a
Class, which is a Classifier, which is a Namespace), and the members of a Namespace are required to be distinguishable

380 Unified Modeling Language 2.5.1



(see sub clause 7.4), this constraint does not affect the naming of Activity nodes and edges because the nodes and edges
of an Activity are ownedElements but not ownedMembers of the Activity.

NOTE. Activities are Classes (see sub clause 13.2) and may support Properties, such as how long the process has been
executing or how much it costs; Associations specifying links to objects, such as the performer of the execution, who to
report completion to, or resources being used; Operations for managing execution of their instances, such as starting,
stopping, aborting, and so on; and StateMachines specifying states of execution such as started, suspended, and so on.
Profiles may include class libraries with standard Classes that are used as root classes for activities in the user model
and vendors may define their own libraries, or support user defined features on Activity Classes.

15.2.3.2 Activity Nodes
ActivityNodes are used to model the individual steps in the behavior specified by an Activity.

An ActivityNode is enabled to begin execution when specified conditions are satisfied on the tokens offered to it on
incoming ActivityEdges; the conditions depend on the kind of node. When an ActivityNode begins execution, tokens are
accepted from some or all of its incoming ActivityEdges and a token is placed on the node. When a node completes
execution, a token is removed from the node and tokens are offered to some or all of its outgoing ActivityEdges. The
actual effect of the node execution depends on the kind of the node, as detailed in subsequent sub clauses.

All restrictions on the relative execution order of two or more ActivityNodes are explicitly constrained by ActivityEdge
relationships. If two ActivityNodes are not ordered by ActivityEdge relationships (directly or indirectly, e.g., by being
separately contained in ordered StructuredActivityNodes; see sub clause 16.11), they may execute concurrently.

NOTE. As used here, concurrent execution simply means that there is no required order in which the nodes must be
executed; a conforming execution of the Activity may execute the nodes sequentially in either order or may execute
them in parallel.

As an ActivityNode may be the source for multiple ActivityEdges, the same token can be offered to multiple targets.
However, the same token can only be accepted at one target at a time (unless it is copied, whereupon it is not the same
token, see ForkNodes in sub clause 15.3 and ExecutableNodes in sub clause 15.5). If a token is offered to multiple
ActivityNodes at the same time, it shall be accepted by at most one of them, but exactly which one is not completely
determined by the Activity flow semantics. This means that an Activity model in which non-determinacy occurs may be
subject to timing issues and race conditions. It is the responsibility of the modeler to avoid such conditions in the
construction of the Activity model, if they are not desired.

There are three kinds of ActivityNodes:

1 ControlNodes act as “traffic switches” managing the flow of tokens across ActivityEdges. Tokens cannot “rest” at
ControlNodes (with exceptions for InitialNodes and ForkNodes, see sub clause 15.3).

2 ObjectNodes hold object tokens accepted from incoming ObjectFlows and may subsequently offer them to outgoing
ObjectFlows (with a modeler-specified exception for ControlFlows, see isControlType for ObjectNodes in sub clause
15.4).

3 ExecutableNodes actually carry out the desired behavior of an Activity. If an ExecutableNode has incoming
ControlFlows, then there must be tokens offered on all these flows that it accepts before beginning execution.
While executing, an ExecutableNode is considered to hold a single control token indicating it is executing. When it
completes execution, it offers control tokens on all outgoing ControlFlows. All incoming and outgoing ActivityEdges
of an ExecutableNode must be ControlFlows. (Actions, which are the only kind of ExecutableNode, use special
attached ObjectNodes called Pins to accept input and produce output object tokens; see Clause 16.)

Each of these kinds of ActivityNodes are described further in subsequent sub clauses.

15.2.3.3 Activity Edges

An ActivityEdge is a directed connection between two ActivityNodes along which tokens may flow, from the source
ActivityNode to the target ActivityNode.

Unified Modeling Language 2.5.1 381



Tokens are offered to an ActivityEdge by the source ActivityNode of the edge. Offers propagate through ActivityEdges
and ControlNodes, according to the rules associated with ActivityEdges (see below) and each kind of ControlNode (see
sub clause 15.3) until they reach an ObjectNode (for object tokens) or an ExecutableNode (for control tokens and some
object tokens as specified by modelers, see ObjectNodes in sub clause 15.4). Each kind of ObjectNode (see sub clause
15.4) and ExecutableNode (see sub clause 15.5 and Clause 16 on Actions) has rules for when offered tokens may be
accepted. 1f an ObjectNode or ExecutableNode accepts an offered token, then that token flows from its original offering
ActivityNode to the accepting ActivityNode. As described above, there may be contention between multiple nodes to
which a token is offered — the concept of offers defines the semantics for managing such contention.

An ActivityEdge may have a guard, which is a ValueSpecification that is evaluated for each token offered to the edge.
An offer shall only pass along an ActivityEdge if the guard for the edge evaluates to true for the offered token. An
ActivityEdge without a guard is equivalent to one with a guard that evaluates to true for every token. (Guards are
commonly used with DecisionNodes, as described in sub clause 15.3, but they are allowed on any ActivityEdge.)

Any number of tokens can pass along an ActivityEdge, in groups at one time, or individually at different times. The
weight property dictates the minimum number of tokens that must traverse the edge at the same time. It is a
ValueSpecification that is evaluated every time a new token is offered by the source ActivityNode. It must evaluate to a
positive LiteralUnlimitedNatural and may be a constant. Once the minimum number of tokens are offered, all the tokens
offered by the source are offered to the target all at once. The minimum number of tokens must then be accepted before
any tokens shall traverse the edge. If the ActivityEdge has a guard, the guard must evaluate to true for each token offered
to the edge that counts towards the minimum. If the guard fails for any of the tokens, and this reduces the number of
tokens that can be offered to the target to less than the weight, then all the tokens fail to be offered. An unlimited weight
means that all the tokens offered by the source must be accepted before any of them shall traverse the edge. (This can be
combined with a JoinNode to take all of the tokens at the source when certain conditions hold; see examples in Figure
15.21 and Figure 15.59). If a weight is not specified for an ActivityEdge, this is equivalent to specifying a weight of 1.

NOTE. A weaker but simpler alternative to weight is to group information into larger objects so that a single token
carries all necessary data.

There are two kinds of ActivityEdges:

1 A ControlFlow is an ActivityEdge that only passes control tokens (and some object tokens as specified by
modelers, see isControlType for ObjectNodes in sub clause 15.4). ControlFlows are used to explicitly sequence
execution of ActivityNodes, as the target ActivityNode cannot receive a control token and start execution until the
source ActivityNode completes execution and produces the token.

2 An ObjectFlow is an ActivityEdge that can have object tokens passing along it. ObjectFlows model the flow of
values between ObjectNodes. Tokens are offered to the target ActivityNode in the same order as they are offered
from the source. If multiple tokens are offered at the same time, then the tokens are offered in the same order as if
they had been offered one at a time from the source. If the source is an ObjectNode with an ordering specified, then
tokens from the source are offered to the ObjectFlow in that order and, consequently, are offered from the
ObjectFlow to the target in the same order. (See also sub clause 15.4 on the offering of tokens from an ObjectNode.)

Unlike ControlFlows, ObjectFlows also provide additional support for multicast/receive, token selection from
ObjectNodes and transformation of tokens, as described below.

15.2.3.4 Object Flows

Object tokens pass over ObjectFlows, carrying data through an Activity via their values, or carrying no data (null
tokens). A null token can still be passed along an ObjectFlow and used like any other token. For example, an Action can
output a null token to explicitly indicate that it did not produce an optional value, and a downstream DecisionNode (see
sub clause 15.3) can test for this and branch accordingly.

An ObjectFlow may have a transformation Behavior that has a single input Parameter and a single output Parameter. If a
transformation Behavior is specified, then the Behavior is invoked for each object token offered to the ObjectFlow, with
the value in the token passed to the Behavior as input (for a null token, the behavior is invoked but no value is passed).
The output of the Behavior is put in an object token that is offered to the target ActivityNode instead of the original
object token. If the output parameter of the Behavior has a multiplicity upper bound greater than 1, and the Behavior

382 Unified Modeling Language 2.5.1



produces multiple values, then each value is put in a separate object token, all of which are passed to the target
ActivityNode (if the output Parameter is ordered, this ordering is preserved in the sequencing of the tokens). If the
output Parameter has a multiplicity lower bound of 0 and the Behavior produces no value, then a null token is offered to
the target ActivityNode.

An ObjectFlow may have a selection Behavior that has a single input Parameter and a single output Parameter. The input
Parameter of the Behavior must be unordered, nonunique and have a multiplicity of 0..* (a “bag”), and the output
Parameter must have a multiplicity upper bound of 1. If a selection Behavior is specified, then it is used to offer a token
from a source ObjectNode to the ObjectFlow, rather than using the ObjectNode’s ordering. Whenever a new token is
offered to the ObjectFlow, or an offer is withdrawn, the selection Behavior is invoked with the values from all the object
tokens currently being offered to the ObjectFlow passed to the Behavior input Parameter. The selection Behavior should
then select one of the input values and produce it as output. This output value is put in an object token and passed to the
target ActivityNode. If the selection Behavior does not produce an output, then a null token is passed to the target
ActivityNode.

If an ObjectFlow has both a transformation and a selection Behavior, then the transformation Behavior is invoked first when
a new token is offered to the ObjectFlow and the resulting value is used in the invocation of the selection behavior.

Because a transformation or selection Behavior is used while offering tokens to the target node, it may be run many times
on the same token before the token is accepted by the target node. This means the Behavior cannot have side effects. It
shall not modify objects, but transformations may for example, navigate from one object to another, get an attribute
value from an object, or replace a data value with another.

Multicasting and multireceiving are used in conjunction with ActivityPartitions (see sub clause 15.6) to model flows
between Behaviors that are the responsibility of objects determined by a publish and subscribe facility. However, the
particular publish/subscribe semantics used are not specified in this standard. (To support execution, a model must,
therefore, be refined to specify the particular publish/subscribe facility employed.) This is illustrated in Figure 15.7 in
sub clause 15.2.5.

15.2.3.5 Variables

ObjectFlows provide the primary means for moving data within an Activity. Variables provide an alternate means for
passing data indirectly.

During the execution of an Activity, each of the Variables of the Activity may hold one or more values. There are
Actions to write values to Variables and to subsequently read values from those Variables (as described in sub clause
16.9). The Variables of an Activity are ownedMembers of the Activity considered as a Namespace, but they are local to
the Activity and are not visible outside it.

The use of a Variable effectively provides indirect data flow paths from the point at which a value is written to the
Variable to all the points at which the value is read from the Variable. Because there is no predefined relationship
between the Actions within an Activity that read from and write to Variables, these actions must be sequenced by
control flows to prevent race conditions that may occur between Actions that read or write the same Variable.

A Variable is a kind of ConnectableElement (see sub clause 11.2) and, as such, is a TypedElement (see sub clause 7.5).
Any values held by a Variable must conform to the Type of the Variable.

A Variable is also a MultiplicityElement (see sub clause 7.5). If the upper bound on a Variable is 1, then that Variable
may only hold a single value. If the upper bound on a Variable is greater than 1, then it may hold multiple values up to
the maximum number given by the upper bound (or an unbounded number, if the upper bound is “*”). If the lower bound
on a Variable is anything other than 0, then the Variable should nominally always hold at least as many values as given
by the lower bound. However, as the only way to write values into a Variable is through Actions within the Activity, it is
not always possible to enforce such a multiplicity lower bound. (For further discussion of the semantics of Variable
multiplicity, see the description of the Actions used to read from and write to Variables, in sub clause 16.9.)

NOTE. Variables are introduced to simplify translation of common programming languages into activity models for
those applications that do not require object flow information to be readily accessible. However, source programs that
set variables only once can be easily translated to use object flows from the action that determines the values to the
actions that use them. Source programs that set variables more than once can be translated to object flows by

Unified Modeling Language 2.5.1 383



introducing a local object containing properties for the variables, or one object per variable combined with data store
nodes.

15.2.3.6 Activity Execution

An Activity may have precondition and postcondition Constraints, as inherited from Behavior (see sub clause 13.2). These
apply globally to all invocations of the Activity. (Actions within an Activity may also have local pre- and
postconditions, see sub clause 16.2.)

As a Behavior, an Activity may have Parameters (see sub clause 13.2). For each such Parameter, the Activity has a
corresponding ActivityParameterNode (two in the case of an inout Parameter, one for input and one for output). An
ActivityParameterNode is an ObjectNode that makes Parameter values accessible within the Activity. (See sub clause
15.4 for a full discussion of ActivityParameterNodes.)

When an Activity is invoked, any values passed to its input Parameters are put in object tokens and placed on the
corresponding input ActivityParameterNodes for the Activity (if an input parameter has no value, a null token is placed
on the corresponding ActivityParameterNode). These ActivityParameterNodes then offer their tokens to outgoing
ActivityEdges.

When an Activity is first invoked, none of its nodes other than input ActivityParameterNodes will initially hold any
tokens. However, nodes that do not have incoming edges and require no input data to execute are immediately enabled.
A single control token is placed on each enabled node and they begin executing concurrently. Such nodes include
ExecutableNodes (see sub clause 15.5) with no incoming ControlFlows and no mandatory input data and InitialNodes
(see sub clause 15.3).

On each subsequent invocation of the Activity, the isSingleExecution property indicates whether the same execution of the
Activity handles tokens for all invocations, or a separate execution of the Activity is created for each invocation. For
example, an Activity that models a manufacturing plant might have a parameter for an order to fill. Each time the
activity is invoked, a new order enters the flow. As there is only one plant, one execution of the Activity handles all
orders. This applies even if the Activity is an Operation method (see sub clause 13.2), for example, on each order.

If a single execution of the Activity is used for all invocations, the modeler must consider the interactions between the
multiple streams of tokens moving through the ActivityNodes and ActivityEdges. Tokens may reach bottlenecks waiting
for other tokens ahead of them to move downstream, they may overtake each other due to variations in the execution
time of invoked behaviors, and most importantly, may abort each other with constructs such as ActivityFinalNodes (see
sub clause 15.3).

If a separate execution of the Activity is used for each invocation (this is the default), tokens from the various
invocations do not interact. For example, an Activity that is a classifierBehavior is invoked when the Classifier is
instantiated (see sub clause 13.2), and the modeler will usually want a separate execution of the Activity for each
instance of the classifier. The same is true for modeling methods in common programming languages, which have
separate stack frames for each method call.

However, if an Activity has streaming Parameters (see sub clause 13.2), then additional tokens may flow into and out of
the Activity (via the corresponding ActivityParameterNodes) even during the course of a single execution. This may
result in the same sorts of token interaction issues that result from using a single execution.

The execution of an Activity with no streaming Parameters completes when it has no nodes executing and no nodes
enabled for execution, or when it is explicitly terminated using an ActivityFinalNode (see sub clause 15.3). The
execution of an Activity with streaming input Parameters shall not terminate until the cumulative number of values
posted to each of those input Parameters (by the invoker of the Activity) is at least equal to the Parameter multiplicity
lower bound. The execution of an Activity with streaming output Parameters shall not terminate until the cumulative
number of values posted to each of those output Parameters (by the Activity itself) is at least equal to the Parameter
multiplicity lower bound.

When the execution of an Activity completes, all ActivityParameterNodes corresponding to non-streaming output
Parameters shall hold at least as many non-null object tokens as given by the corresponding Parameter multiplicity
lower bound. The values associated with the object tokens of each output ActivityParameterNode are then passed out of
the Activity on the corresponding output Parameter and made available to the invoker of the Activity.

384 Unified Modeling Language 2.5.1



An output Parameter may also be identified as an exception Parameter by having isException=true (see sub clause 9.4).
An output posted to an exception Parameter precludes outputs from being posted to other output Parameters of a
Behavior. If an object token arrives at an output ActivityParameterNode associated with an exception Parameter, then
the execution of the Activity is immediately terminated. The value on the token is then passed to the exception
Parameter as usual, but any tokens on other output ActivityParameterNodes associated with non-streaming Parameters
are lost and their values are not passed to the associated Parameters. Values posted to streaming output Parameters
before the termination of the Activity are not affected.

Use exception Parameters on Activities only if it is desired to abort all flows in the Activity. For example, if the same
execution of an activity is being used for all its invocations (i.e., isSingleExecution=true), then multiple streams of tokens
will be flowing through the same Activity. In this case, it is probably not desired to abort all flows just because one
reaches an exception output. Arrange for separate invocations of the Activity to use separate executions of the Activity
(i.e., isSingleExecution=false) when employing exception Parameters, so flows from separate executions will not affect
each other.

15.2.3.7 Activity Generalization

An Activity is a Classifier and, as such, may participate in Generalization relationships. A specialized Activity inherits
the nodes and edges of its general Activities. ActivityNodes and ActivityEdges are RedefinableElements (see sub clause
9.2) that may be redefined in a specialized Activity.

An ActivityNode in a specialized Activity that redefines an ActivityNode from a general Activity is considered to
replace the redefined ActivityNode for any inherited ActivityEdges that had the redefined ActivityNode as a source or
target. Similarly, an ActivityEdge that redefines an ActivityEdge from a general Activity is considered to replace the
redefined ActivityEdge for any inherited ActivityNode that had the redefined ActivityEdge as an incoming or outgoing
edge. If the redefined ActivityEdge is an incoming or outgoing edge for any ActivityNode that is not inherited but is
itself redefined, then the ActivityEdge is replaced for the redefining ActivityNode.

The effective sets of nodes and edges used in executing a specialized Activity consists of the unions of the inherited
nodes and edges (which do not include redefined nodes and edges) and any additional nodes and edges defined in the
specialized Activity (including any redefining nodes and edges). The execution of the specialized Activity then proceeds
as usual, but using a graph of nodes and edges constructed from the union sets.

15.2.4 Notation

This sub clause specifies a graphical notation for Activities. This notation is optional in that a conforming tool may use
a textual concrete syntax instead. However, the notation given in this and subsequent notation sub clauses within this
clause is the only graphical notation for Activities conformant with this specification.

The notation for an Activity is a combination of the notations of the ActivityNodes and ActivityEdges it contains, plus a
border and name displayed in the upper left corner. ActivityParameterNodes are displayed on the border (see also the
notation for ActivityParameterNode in sub clause 15.4). Pre- and post-condition constraints, inherited from Behavior,
are shown as textual expressions with the keywords «precondition» and «postconditiony, respectively. The keyword
«singleExecution» is used for Activities isSingleExecution=true.

activity name «precondition» constraint N\
parameter name: Type  «posteonditiony» constraint

Figure 15.2 Activity notation

Unified Modeling Language 2.5.1 385



The round-cornered border of Figure 15.2 may be replaced with the frame notation described in Annex A.
ActivityParameterNodes are displayed on the frame. The round-cornered border or frame may also be omitted
completely, in which case ActivityParameterNodes may appear anywhere on the diagram.

The notation for Classes can be used for diagramming the features of an Activity as shown in Figure 15.3, with the
keyword «activity». They can be shown in class diagrams with associations.

«activity»
Activity Name

attribute : type
attribute : type

operation (parameters)
operation (parameters)

Figure 15.3 Activity class notation

The notations for ActivityNodes are illustrated below. This notation is discussed in more detail in the following sub
clauses (and in Clause 16 for Actions).

() 0| e @@

Action node Object node Control nodes

Figure 15.4 ActivityNode notation

An ActivityEdge (whether a ControlFlow or ObjectFlow) is notated by an open arrowhead line connecting two
ActivityNodes. If the edge has a name, it is notated near the arrow. Guards are shown as text in square brackets near tail
of the line.

{weight=n}

{weight="} . ) ) ‘
Activity edge for interruptible regions

With edge weight
(where n is a value specification)

name
——

Regular activity edge Activity edge with name

Figure 15.5 ActivityEdge notation

An ActivityEdge may also be notated using a connector, which is a small circle with the name of the edge in it. This is
purely notational. It does not affect the underlying model. The circles and lines involved map to a single ActivityEdge in
the model. Every connector with a given label must be paired with exactly one other with the same label on the same
Activity diagram. One connector must have exactly one incoming edge and the other exactly one outgoing edge, each
with the same type of flow, object or control.

_— @ P (where, n is connector name)

Figure 15.6 ActivityEdge connector notation

The weight of an ActivityEdge may be shown in curly braces using the notation:

weight-annotation :: ={* ‘weight’ ‘="value-specification ‘}’

386 Unified Modeling Language 2.5.1



The weight is a value specification, which may be a constant, that evaluates to a non-zero unlimited natural value. An
unlimited weight is notated as “*”. (See also the notation for ValueSpecifications in Clause 8.)

An interruptingEdge of an InterruptibleRegion can be notated with a lightning-bolt (see also the alternative notation for
interruptingEdges in sub clause 15.6).

{weight=n}

{weight=*} o ) i )
Aectivity edge for interruptible regions

With edge weight
(where n is a value specification)

Figure 15.7 ActivityEdge notation

A control flow is notated by an arrowed line connecting two actions.

- .~

Control flow Control flow edge linking
(without actions) two actions

Figure 15.8 ControlFlow notation

An object flow is notated by an arrowed line. In Figure 15.9, upper right, the two object flow arrows denote a single
object flow edge between two pins in the underlying model, as shown in the lower middle of the figure. (See other Pin
notations in sub clause 16.2. The specific notational variant used shall be preserved when the diagram is interchanged,
see Annex B.)

— ()

Object flow arrow Two object flow arrows linking
(without activity nodes) object nodes and actions

()

An object flow arrow linking
two object node pins.

Figure 15.9 ObjectFlow notations

A selection Behavior is specified with the keyword «selection» placed in a note symbol and attached to the appropriate
ObjectFlow symbol as illustrated in the figure below. A transformation Behavior is similarly specified using the
keyword «transformation». The body of the note symbol may either contain a textual representation of the Behavior
(e.g., the body of an OpaqueBehavior) or the name of a Behavior that is not represented textually.

- «selection»
«selection» selection
selection specification
specification

S e et e

Figure 15.10 Specifying selection behavior on an ObjectFlow

To reduce clutter in complex diagrams, Pins may be elided. The names of the Actions can suggest their Pins. Tools may
support hyperlinking from the ObjectFlow lines to show the data flowing along them, and show a small square above

Unified Modeling Language 2.5.1 387



the line to indicate that Pins are elided, as illustrated in the figure below. Any adornments that would normally be near
the Pin, like effect, can be displayed at the ends of the flow lines.

CF—H ) (=

With explicit pins With pins elided

Figure 15.11 Eliding objects flowing on the edge

Multicast and multireceive are specified by annotating an ObjectFlow with «multicast» or «multireceive», respectively,
see sub clause 15.2.5 for examples.

15.2.5 Examples

Figure 15.12 illustrates the following kinds of ActivityNodes: ExecutableNodes (e.g., Receive Order, Fill Order),
ObjectNodes (Invoice), and ControlNodes (the InitialNode before Receive Order, the DecisionNode after Receive
Order, and the ForkNode and JoinNode around Ship Order, the MergeNode before Close Order and the
ActivityFinalNode after Close Order).

[order
rejected]

Close
Order

Receive
Order

[order
accepted]

Send
Tnvoice

Invoice

Make Accept
Payment Payment

Figure 15.12 Activity node example (where the arrowed lines are the only non-activity node symbols)

In Figure 15.13, the arrowed line connecting Fill Order to Ship Order is a ControlFlow edge. This means that when the
Fill Order behavior is completed, control is passed to the Ship Order. Below it, the same ControlFlow is shown with an
edge name. The one at the bottom left employs connectors, instead of a continuous line. On the upper right, the arrowed
lines starting from Send Invoice and ending at Make Payment (with the Invoice object node in between) are ObjectFlow
edges (at least in notation, see discussion of Figure 15.14). This indicates that the flow of Invoice objects goes from
Send Invoice to Make Payment.

Order Order
Send Make
e P Nt

Invoic

Fill Filled Ship \ /
Order Order Invoice
Fill Ship . . Fill Shi
e e is equivalent o Order Ordle)r

Figure 15.13 ActivityEdge examples

aymer

388 Unified Modeling Language 2.5.1



Both examples in Figure 15.14 indicate that order objects flow from Fill Order to Ship Order. The example on the left
has two arrowed lines, one from Fill Order and the other to Ship Order. The example on the right has one arrowed line
starting from a Fill Order OutputPin (an ObjectNode) and ends at a Ship Order InputPin. The underlying model of these
examples is the same, with one object flow in the model shown as two arrows on the left, assuming the Order rectangle
on the left does not represent a CentralBufferNode (see sub clause 15.4).

— Order Order
1 Ao Ship shi
=] Order a[ Fill Ship

Figure 15.14 ObjectFlow example

The example on the left in Figure 15.15 shows that the Pick Materials activity provides an order along with its
associated materials for assembly. On the right, the ObjectFlow has been simplified through eliding the ObjectFlow
details.

Order Order,
Pick Pick
Materials As;)fg;?le Materials Asse-iint?le
for Order for Order, Order
Materials Materials

With explicit pins With elided pins

Figure 15.15 Eliding objects flowing on the edge

Figure 15.16 illustrates examples of selection and transformation Behaviors. The example on the left indicates that the
orders are to be shipped based on order priority—and those with the same priority should be filled on a first-in/first-out
(FIFO) basis. The example on the right indicates that the result of Close Order produces closed order objects, but Send
Customer Notice requires a customer object. The transformation specifies the invocation of a query operation that takes
an Order and produces the associate