Date: November 8 2024

Deleted: 2021

Unified Architecture Framework (UAF) Domain Metamodel

Version 1.3

OMG Document Number: Normative dtc/2024-11-04.

Standard document URL: http://www.omg.org/spec/UAF/1.2

Normative Machine Consumable File(s):

http://www.omg.org/spec/UAF/20241101/UAF.xmi

http://www.omg.org/spec/UAF/20241101/MeasurementsLibrary.xmi

Deleted: 2021

Deleted: 1

Deleted: 2

Deleted: 20211110

Deleted: 1

Field Code Changed

Copyright © 2017-202 <mark>4,</mark> IBM	 Deleted: 1
Copyright © 2017-2024, KDM Analytics	 Deleted: 1
Copyright © 2017-202 <mark>4,</mark> Mega	 Deleted: 1
Copyright © 2017-2024, Object Management Group, Inc.	 Deleted: 1
Copyright © 2017-2024, No Magic Inc. a Dassault Systemes Company	 Deleted: 1
Copyright © 2017-2024, PTC	 Deleted: 1
Copyright © 2017-2024, Sparx Systems	 Deleted: 1

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any

means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed only partially matching the applicable compliance points may claim only that the software was based on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

Table of Contents

PREFACE	1
1. SCOPE	3
1.1 Introduction	
1.2 UAF BACKGROUND	
1.3 INTENDED USAGE	
1.4 RELATED DOCUMENTS	
2. CONFORMANCE	
3. REFERENCES	
3.1 NORMATIVE REFERENCES	6
3.1.1 OMG Documents (Normative References)	6
3.2 Other Normative References	6
3.3 Informative References	6
4. TERMS AND DEFINITIONS	8
5. ACRONYMS	9
6. ADDITIONAL INFORMATION	11
6.1 CHANGES TO ADOPTED OMG SPECIFICATIONS	11
6.2 LANGUAGE ARCHITECTURE	11
6.3 PHILOSOPHY	11
6.4 CORE PRINCIPLES	11
7. UAF GRID	13
7.1 DESCRIPTIONS OF VIEWPOINTS AND ASPECTS	14
7.2 VIEWPOINT INTERRELATIONSHIPS	
7.3 DOMAIN METAMODEL DIAGRAM LEGEND	
8. DOMAIN METAMODEL DIAGRAMS	10
8.1 VIEW SPECIFICATIONS	
8.1.1 View Specifications::Architecture Management	18
8.1.2 View Specifications::Summary & Overview	
8.1.3 View Specifications::Strategic	
8.1.4 View Specifications::Operational	
8.1.5 View Specifications::Services	
8.1.7 View Specifications::Resources	
8.1.9 View Specifications::Projects	
8.1.10 View Specifications::Standards	
8.1.10 View Specifications::Standards	
8.1.11 View Specifications::Actual Resources	
8.1.12 View Specifications::Notivation	
8.1.13 View Specifications::Information	
8.1.15 View Specifications::Other	
9. DOMAIN METAMODEL (DMM) ELEMENTS	
9.1 DOMAIN METAMODEL	129

9.1.1	Domain MetaModel::Architecture Management	129
9.1.2	Domain MetaModel::Summary & Overview	147
9.1.3	Domain MetaModel::Strategic	153
9.1.4	Domain MetaModel::Operational	177
9.1.5	Domain MetaModel::Services	193
9.1.6	Domain MetaModel::Personnel	204
9.1.7	Domain MetaModel::Resources	211
9.1.8	Domain MetaModel::Security	232
9.1.9	Domain MetaModel::Projects	244
9.1.10	Domain MetaModel::Standards	250
9.1.11	Domain MetaModel::Actual Resources	252
9.1.12	Domain MetaModel::Parameters	259

```
Deleted: PREFACE→1¶
1.→ SCOPE→ 3¶
1.1→ INTRODUCTION→ 3\P
1.2→ UAF BACKGROUND→ 3¶
\textbf{1.3} \!\!\to\! \textbf{INTENDED USAGE} \!\!\to\! \textbf{4} \P
1.4→ RELATED DOCUMENTS→ 4¶
2.→ CONFORMANCE→ 5¶
3.→ REFERENCES→ 6¶
3.1→ NORMATIVE REFERENCES→ 6¶
3.1.1→ OMG Documents (Normative References)→ 6¶
3.2→ Other Normative References→ 6¶
3.3→ Informative References→ 6¶
4.→ TERMS AND DEFINITIONS→ 8¶
5.→ ACRONYMS→ 9¶
6.→ ADDITIONAL INFORMATION→ 11¶
6.1→ Changes to Adopted OMG Specifications \rightarrow 11¶
6.2→ LANGUAGE ARCHITECTURE→ 11¶
6.3→ PHILOSOPHY→ 11¶
6.4→ CORE PRINCIPLES→ 11¶
7.→ UAF GRID→ 13¶
7.1 \rightarrow Descriptions of Viewpoints and Aspects \rightarrow 14¶
7.2→ VIEWPOINT INTERRELATIONSHIPS→ 16¶
7.3→ DOMAIN METAMODEL DIAGRAM LEGEND→ 16¶
8.1→ VIEW SPECIFICATIONS→ 18¶
8.1.1→ View Specifications::Architecture Management→ 18¶
8.1.2→ View Specifications::Summary & Overview→ 23¶
8.1.3→ View Specifications::Strategic→ 24¶
8.1.4→ View Specifications::Operational→ 33¶
8.1.5 \rightarrow View Specifications::Services \rightarrow 43 \P
8.1.6→ View Specifications::Personnel→ 52¶
8.1.7→ View Specifications::Resources→ 66¶
8.1.8→ View Specifications::Security→ 78¶
8.1.9→ View Specifications::Projects→ 86¶
8.1.10\rightarrow View Specifications::Standards\rightarrow 92\P
8.1.11→ View Specifications::Actual Resources→ 95¶
8.1.12→ View Specifications::Motivation→ 98¶
8.1.13\rightarrow View Specifications::Information\rightarrow 99
8.1.14\rightarrow View Specifications::Parameters\rightarrow 100¶
8.1.15→ View Specifications::Other→ 104¶
9.-> DOMAIN METAMODEL (DMM) ELEMENTS-> 108 \P
9.1→ DOMAIN METAMODEL→ 108¶
9.1.1→ Domain MetaModel::Architecture Management→ 108¶
9.1.2→ Domain MetaModel::Summary & Overview→ 124¶
9.1.3→ Domain MetaModel::Strategic→ 129¶
9.1.4→ Domain MetaModel::Operational→ 149¶
9.1.5→ Domain MetaModel::Services→ 163¶
9.1.6 \rightarrow Domain MetaModel::Personnel \rightarrow 174¶
9.1.7→ Domain MetaModel::Resources→ 181¶
9.1.8→ Domain MetaModel::Security→ 199¶
9.1.9→ Domain MetaModel::Projects→ 210¶
9.1.10→ Domain MetaModel::Standards→ 216¶
9.1.11→ Domain MetaModel::Actual Resources→ 218¶
9.1.12→ Domain MetaModel::Parameters→ 225¶
```

TABLE OF FIGURES

Figure 7:1- UAF Grid	13
Figure 7:2 – Viewpoint Interrelationships	
Figure 7:3 - Legend of color codes for element types defined in UAF	
Figure 8:1 - Architecture Principles.	
Figure 8:2 - Architecture Views	
Figure 8:3 - Architecture References	
Figure 8:4 - Architecture Development Method	20
Figure 8:5 - Architecture Status	
Figure 8:6 - Dictionary	
Figure 8:7 - Architecture Parameters	21
Figure 8:8 - Architecture Constraints	22
Figure 8:9 - Architecture Roadmap	22
Figure 8:10 - Architecture Traceability	
Figure 8:11 - Summary & Overview	
Figure 8:12 - Strategic Motivation	
Figure 8:13 - Strategic Taxonomy	26
Figure 8:14 - Strategic Structure	
Figure 8:15 - Strategic Connectivity	
Figure 8:16 - Strategic Processes	
Figure 8:17 - Strategic States.	
Figure 8:18 - Strategic Information	
Figure 8:19 - Strategic Constraints	32
Figure 8:20 - Strategic Roadmap: Deployment	33
Figure 8:21 - Strategic Roadmap: Phasing	
Figure 8:22 - Strategic Traceability	35
Figure 8:23 - Operational Taxonomy	36
Figure 8:24 - Operational Structure	
Figure 8:25 - Operational Connectivity	
Figure 8:26 - Operational Processes	42
Figure 8:27 - Operational Processes BPMN Semantics	
Figure 8:28 - Operational States	
Figure 8:29 - Operational Sequences	49
Figure 8:30 - Operational Constraints	
Figure 8:31 - Operational Traceability	
Figure 8:32 - Services Taxonomy	52
Figure 8:33 - Services Structure	
Figure 8:34 - Services Connectivity	
Figure 8:35 - Services Processes.	5 <u>5</u>
Figure 8:36 - Services Processes BPMN Semantics	56
Figure 8:37 - Services States.	
Figure 8:38 - Services Sequences	
Figure 8:39 - Services Constraints	
Figure 8:40 - Services Roadmap.	
Figure 8:41 - Services Traceability	60

	<u>61</u>
Figure 8:43 - Personnel Structure	
Figure 8:44 - Personnel Connectivity	63
Figure 8:45 - Personnel Processes	67
Figure 8:46 - Personnel States	
Figure 8:47 - Personnel Sequences	
Figure 8:48 - Personnel Constraints: Competence	
Figure 8:49 - Personnel Constraints: Drivers.	
Figure 8:50 - Personnel Constraints: Performance	
Figure 8:51 - Personnel Roadmap: Availability	
Figure 8:52 - Personnel Roadmap: Evolution.	
Figure 8:53 - Personnel Roadmap: Forecast	
Figure 8:54 - Personnel Traceability	
Figure 8:55 - Resources Taxonomy	
Figure 8:56 - Resources Structure	
Figure 8:57 - Resources Connectivity	
Figure 8:58 - Resources Processes.	
Figure 8:59 - Resources Processes BPMN Semantics	88
Figure 8:60 - Resources States.	
Figure 8:61 - Resources Sequences	
Figure 8:62 - Resources Constraints	
Figure 8:63 - Resources Roadmap: Evolution	
Figure 8:64 - Resources Roadmap: Forecast	
Figure 8:65 - Resources Traceability	95
Figure 8:65 - Resources Traceability	95 96
Figure 8:65 - Resources Traceability	95 96 98
Figure 8:65 - Resources Traceability	95 96 98
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity	95 96 98 100
Figure 8:65 - Resources Traceability	
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints	
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability	95 96 98 100 101 103 105 106
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy	95 98 100 101 103 105 106 107
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure	95 98 100 101 103 105 106 107
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure Figure 8:75 - Project Connectivity	95 98 98 100 101 103 105 106 107 108
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure Figure 8:75 - Project Connectivity Figure 8:76 - Project Processes	95 98 98 100 101 103 105 106 107 108 109
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure Figure 8:75 - Project Connectivity Figure 8:77 - Project Roadmap	95 98 98 100 101 103 105 106 107 108 109 110
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure Figure 8:75 - Project Connectivity Figure 8:77 - Project Roadmap Figure 8:78 - Project Traceability	95 98 98 100 101 103 105 106 107 108 109 110 111
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:74 - Project Structure Figure 8:75 - Project Connectivity Figure 8:77 - Project Roadmap Figure 8:78 - Project Traceability Figure 8:79 - Standards Taxonomy	95 98 98 100 101 103 105 106 107 108 110 111 111 112
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls Figure 8:67 - Security Taxonomy Figure 8:68 - Security Structure Figure 8:69 - Security Connectivity Figure 8:70 - Security Processes Figure 8:71 - Security Constraints Figure 8:72 - Security Traceability Figure 8:73 - Project Taxonomy Figure 8:75 - Project Structure Figure 8:76 - Project Connectivity Figure 8:77 - Project Roadmap Figure 8:78 - Project Traceability Figure 8:79 - Standards Taxonomy Figure 8:79 - Standards Structure Figure 8:80 - Standards Structure	95 98 98 100 101 103 105 106 108 109 110 111 111 112
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 111 112 113
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 111 112 113 114 114
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 111 112 113 114 114 115
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 111 112 113 114 114 115 116
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 112 113 114 115 116 117
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 112 113 114 115 116 117 117
Figure 8:65 - Resources Traceability Figure 8:66 - Security Controls	95 98 98 100 101 103 105 106 109 110 111 111 112 113 114 115 116 117 118

Figure 8:89 - Parameters: Environment	121
Figure 8:90 - Parameters: Measurements	122
Figure 8:91 - Parameters: Risk	124
Figure 8:92 - BPMN	126
Figure 8:93 - IEPPV	127
Figure 8:94 - NIEM	
Figure 9:95 - ActualState	
Figure 9:96 - InteractionScenarioGeneralization	130
Figure 9:98 - ProcessGeneralization	
Figure 9:99 - PropertySetGeneralization	132
Figure 9:101 - Exchange	
Figure 9:102 - ExchangeItem	134
Figure 9:103 - Resource.	
Figure 9:104 - ActivityPerformableUnderCondition	135
Figure 9:105 - CapableElement	
Figure 9:106 - IsCapableToPerform	
Figure 9:107 - PerformsInContext	
Figure 9:108 - Process	
Figure 9:109 - Process	
Figure 9:110 - ProcessEdge	
Figure 9:111 - ProcessOperation	
Figure 9:112 - ProcessParameter	138
Figure 9:113 - ProcessUsage	
Figure 9:114 - StateDescription	
Figure 9:115 - InteractionRole	
Figure 9:116 - InteractionScenario	
Figure 9:117 - Alias	
Figure 9:119 - Definition	
Figure 9:120 - Information.	
Figure 9:121 - InformationModel	
Figure 9:122 - Metadata	
Figure 9:123 - SameAs	
Figure 9:124 - Rule	
Figure 9:125 - ArchitecturalReference	146
Figure 9:126 - ComparesTo	
Figure 9: 127 - Implements	
Figure 9:128 - Sequence	
Figure 9: 129 - ArchitecturalDescription	
Figure 9:130 - Architecture.	
Figure 9:131 - Concern	
Figure 9:132 - Phases	150
Figure 9:133 - Stakeholder	150
Figure 9:134 - UAFElement	152
Figure 9:135 - View	
Figure 9:136 - Viewpoint	
Figure 9:137 - Challenge	154
Figure 9:137 - Challenge	154

Figure 9:139 - Enables	155
Figure 9:140 - ImpactedBy	
Figure 9:141 - MotivatedBy	
Figure 9:142 - MotivationalElement.	
Figure 9:143 - Opportunity	157
Figure 9:144 - PresentedBy	157
Figure 9:145 - Capability	158
Figure 9:146 - CapabilityGeneralization	158
Figure 9:147 - EnterpriseGoal	159
Figure 9:148 - EnterpriseObjective	159
Figure 9:149 - Enterprise Vision.	
Figure 9:150 - OwnsValue.	
Figure 9:151 - PhaseableElement	
Figure 9:152- StrategicAsset.	162
Figure 9:154 - ValueItem.	
Figure 9:155 - VisionStatement	
Figure 9:156 - WholeLifeEnterprise	
Figure 9:157 - CapabilityRole	164
Figure 9:158 - StructuralPart	
Figure 9:159 - TemporalPart.	
Figure 9:160 - CapabilityDependency	165
Figure 9:161 - CapabilityRoleDependency	166
Figure 9:162 - StrategicExchange	166
Figure 9:163 - ActualEnduringTask	
Figure 9:164 - ActualEnterprisePhase	167
Figure 9:165 - ActualStrategicPhase	
Figure 9:166 - Creates	
Figure 9:168 - ValueStream	
Figure 9:169 - Achiever	
Figure 9:170 - Achieves	
Figure 9:171 - ActualEffect	
Figure 9:172 - ActualOutcome	
Figure 9:173 - Desirer	
Figure 9:174 - Desires.	
Figure 9:175 - Effect	
Figure 9:176 - MapsToGoal	174
Figure 9:177 - StrategicConstraint.	175
Figure 9:178 - SubjectOfStrategicConstraint.	175
Figure 9:179 - EvokedBy	
Figure 9:180 - Exhibits	
Figure 9:181 - MapsToCapability	176
Figure 9:182 - OrganizationInPhase	177
Figure 9:183 - ArbitraryConnector	
Figure 9:184 - ConceptItem	
Figure 9:185 - HighLevelOperationalConcept	
Figure 9:186 - KnownResource	
Figure 9:187 - Operational Agent	179

Figure 9:188 - Operational Architecture	
Figure 9:189 - OperationalMethod	
Figure 9:190 - OperationalParameter	181
Figure 9:191 - OperationalPerformer	181
Figure 9:192 - OperationalRole	182
Figure 9:193 - ProblemDomain	183
Figure 9:194 - OperationalConnector	183
Figure 9:195 - OperationalExchange	184
Figure 9:196 - OperationalExchangeItem	184
Figure 9:197 - OperationalInterface	185
Figure 9:198 - OperationalPort	185
Figure 9:199 - OperationalSignal	186
Figure 9:200 - Operational Activity	188
Figure 9:201 - Operational Activity Action	189
Figure 9:202 - OperationalActivityEdge	189
Figure 9:203 - StandardOperationalActivity	
Figure 9:204 - OperationalStateDescription	190
Figure 9:205 - OperationalInteractionScenario	191
Figure 9:206 - OperationalMessage	
Figure 9:207 - OperationalInformation.	
Figure 9:208 - OperationalConstraint	192
Figure 9:209 - SubjectOfOperationalConstraint	193
Figure 9:210 - Service	
Figure 9:211 - ServiceArchitecture	
Figure 9:212 - ServiceGeneralization	
Figure 9:213 - ServiceMethod	
Figure 9:214 - ServiceParameter	
Figure 9:215 - ServiceRole	
Figure 9:216 - ServiceConnector	
Figure 9:217 - ServiceExchange	
Figure 9:218 - ServiceExchangeItem	
Figure 9:219 - ServiceInterface	
Figure 9:220 - ServicePort	
Figure 9:221 - ServiceSignal	
Figure 9:222 - ServiceFunction	
Figure 9:223 - ServiceFunctionAction	
Figure 9:224 - ServiceFunctionEdge	201
Figure 9:225 - ServiceStateDescription	201
Figure 9:226 - ServiceInteractionScenario	
Figure 9:227 - ServiceMessage	
Figure 9:228 - ServiceContract	
Figure 9:229 - ServicePolicy	
Figure 9:230 - GovernedBy	
Figure 9:231 - Supports	
Figure 9:232 - Organization.	
Figure 9:233 - OrganizationalResource	
Figure 9:234 - Person	205

	2 <u>06</u>
Figure 9:236 - Responsibility	206
Figure 9:237 - PostRole	207
Figure 9:238 - SubOrganization.	207
Figure 9:239- Command	208
Figure 9:240 - Control	
Figure 9:241 - ResourceInteractionScenario	209
Figure 9:242 - Competence	
Figure 9:243 - CompetenceForRole.	209
Figure 9:244 - RequiresCompetence	
Figure 9:245 - FillsPost	
Figure 9:246 - CompetenceToConduct	
Figure 9:247 - CapabilityConfiguration.	
Figure 9:248 - NaturalResource	
Figure 9:249 - PhysicalResource	
Figure 9:250 - ResourceArchitecture	
Figure 9:251 - ResourceArtifact	
Figure 9:252 - ResourcePerformer.	
Figure 9:253 - ResourceService	
Figure 9:254 - Software	
Figure 9:255 - System	
Figure 9:256 - ResourceMethod	
Figure 9:257 - ResourceParameter	
Figure 9:258 - ResourcePort	
Figure 9:259 - ResourceRole	
Figure 9:260 - ResourceConnector	
Figure 9:261 - ResourceExchange	
Figure 9:262 - ResourceExchangeItem	
Figure 9:263- ResourceInterface	
Figure 9:264 - ResourceServiceInterface.	
Figure 9:265 - ResourceSignal	
Figure 9:266 - Function	224
Figure 9:267 - FunctionAction.	
Figure 9:268 - FunctionEdge	
Figure 9:269 - ResourceStateDescription	
Figure 9:270 - ResourceMessage	
Figure 9:271 - ResourceInformation.	
Figure 9:272 - ResourceConstraint	
Figure 9:273 - SubjectOfResourceConstraint	228
Figure 9:274 - Forecast	
Figure 9:275 - SubjectOfForecast	
Figure 9:276 - Technology.	
Figure 9:277 - VersionedElement	
Figure 9:278 - VersionOfConfiguration	
Figure 9:279 - VersionSuccession	
Figure 9:280 - WholeLifeConfiguration	
Figure 9:281 - ProtocolImplementation.	

rigare > 1202 Elimaneeaseeaning control	232
Figure 9:283 - Enhances	232
Figure 9:284 - Protects	233
Figure 9:285 - ProtectsInContext	
Figure 9:286 - SecurityControl	
Figure 9:289 - Operational Asset	236
Figure 9:290 - Operational Mitigation	236
Figure 9:291 - ResourceAsset	236
	237
Figure 9:293 - SecurityEnclave	
Figure 9:295 - OperationalInformationRole	
Figure 9:297 - SecurityProcess	
Figure 9:299 - Caveat	
Figure 9:300 - SecurityAvailability	240
	241
Figure 9:304 - SecurityConstraint	242
Figure 9:305 - SecurityIntegrity	242
rigure 7.303 Security integrity	242
Figure 9:306 - SecurityMeasurement	
Figure 9:306 - SecurityMeasurementFigure 9:307 - SecurityRisk	
Figure 9:306 - SecurityMeasurement Figure 9:307 - SecurityRisk Figure 9:308 - SubjectOfSecurityConstraint .	243 243
Figure 9:306 - SecurityMeasurement	
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245
Figure 9:306 - SecurityMeasurement	
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 245 245 245
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 245 245 245 246
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246
Figure 9:306 - SecurityMeasurement	243 243 244 244 244 245 245 246 246 247
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 248 248
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 248
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 247 248 248 249
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 247 248 248 248 249 250
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 248 248 249 250
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 248 248 249 250 250
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 247 247 248 248 248 249 250 250
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 247 247 247 248 248 248 250 250
Figure 9:306 - SecurityMeasurement	243 243 243 244 244 244 245 245 246 246 247 247 247 247 247 248 248 248 249 250 250

Figure 9:329 - ActualPerson	254
Figure 9:330 - ActualPost	255
Figure 9:331 - ActualResource	255
Figure 9:332 - ActualResourceRelationship	256
Figure 9:333 - ActualResponsibility	256
Figure 9:334 - ActualResponsibleResource.	
Figure 9:335 - FieldedCapability	257
Figure 9:336 - ActualService	258
Figure 9:337 - ProvidedServiceLevel	258
Figure 9:338 - ProvidesCompetence	258
Figure 9:339 - RequiredServiceLevel	259
Figure 9:340 - OwnsProcess	259
Figure 9:341 - ActualCondition	
Figure 9:342- ActualEnvironment	
Figure 9:343 - ActualLocation	
Figure 9:344 - ActualMeasurement	
Figure 9:345 - ActualMeasurementSet	
Figure 9:346 - ActualPropertySet	264
Figure 9:347 - ActualRisk	
Figure 9:348 - AffectableElement	
Figure 9:349 - Affects	265
Figure 9:350 - AffectsInContext	
Figure 9:351 - Condition	266
Figure 9:352 - Environment.	
Figure 9:354 - GeoPoliticalExtentType	
Figure 9:355 - Location	
Figure 9:356 - LocationHolder	
Figure 9:357 - MeasurableElement	
Figure 9:358 - Measurement	273
Figure 9:359 - MeasurementSet.	273
Figure 9:360 - Mitigates.	
Figure 9:361 - OwnsRisk	275
Figure 9:362 - OwnsRiskInContext	
Figure 9:363 - PropertySet	
Figure 9:364 - Risk	277

```
Deleted: Figure 7:1- UAF Grid→ 13¶
  Figure 7:2 - Viewpoint Interrelationships → 16¶
  Figure 7:3 - Legend of color codes for element types defined in
  UAF → 17¶
  Figure 8:1 - Architecture Principles→18¶
 Figure 8:2 - Architecture Views 19¶
Figure 8:3 - Architecture References 19¶
Figure 8:4 - Architecture Development Method 20¶
  Figure 8:5 - Architecture Status→20¶
  Figure 8:6 - Dictionary→21¶
Figure 8:6 - Dictionary 21¶
Figure 8:7 - Architecture Parameters 21¶
Figure 8:8 - Architecture Constraints 22¶
Figure 8:9 - Architecture Roadmap 22¶
Figure 8:10 - Architecture Traceability 23¶
 Figure 8:11 - Summary & Overview→ 24¶
Figure 8:12 - Strategic Motivation→ 25¶
 Figure 8:13 - Strategic Taxonomy→ 26¶
Figure 8:14 - Strategic Structure→ 26¶
Figure 8:15 - Strategic Connectivity 27¶
Figure 8:16 - Strategic Processes 27¶
Figure 8:17 - Strategic States 29¶
Figure 8:18 - Strategic Information 30¶
Figure 8:18 - Strategic Information + 30¶
Figure 8:19 - Strategic Constraints + 31¶
Figure 8:20 - Strategic Roadmap: Deployment + 31¶
Figure 8:20 - Strategic Roadmap: Phasing + 32¶
Figure 8:22 - Strategic Traceability + 33¶
Figure 8:23 - Operational Taxonomy + 34¶
Figure 8:24 - Operational Structure + 35¶
Figure 8:25 - Operational Connectivity + 36¶
Figure 8:26 - Operational Processes + 37¶
Figure 8:27 - Operational Processes BPMN Semantics + 39¶
Figure 8:29 - Operational States + 40¶
Figure 8:29 - Operational Sequences + 41¶
Figure 8:29 - Operational Constraints + 42¶
 Figure 8:30 - Operational Constraints→ 42¶
Figure 8:31 - Operational Traceability→ 43¶
 Figure 8:32 - Services Taxonomy→ 44¶
Figure 8:33 - Services Structure→ 45¶
 Figure 8:34 - Services Connectivity 46¶
Figure 8:35 - Services Processes 47¶
  Figure 8:36 - Services Processes BPMN Semantics→48¶
 Figure 8:37 - Services Flocesses 91 Mix
Figure 8:37 - Services States → 49¶
Figure 8:38 - Services Sequences → 50¶
Figure 8:39 - Services Constraints → 51¶
Figure 8:40 - Services Constantins 31¶
Figure 8:41 - Services Traceability 52¶
Figure 8:42 - Personnel Taxonomy 53¶
Figure 8:42 - Personnel Taxonomy 53¶
Figure 8:43 - Personnel Structure 54¶
Figure 8:44 - Personnel Connectivity 55¶
 Figure 8:45 - Personnel Processes > 56¶
Figure 8:46 - Personnel States > 57¶
 Figure 8:47 - Personnel Sequences→58¶
Figure 8:48 - Personnel Constraints: Competence→59¶
 Figure 8:49 - Personnel Constraints: Drivers > 60¶
Figure 8:50 - Personnel Constraints: Performance > 61¶
 Figure 8:51 - Personnel Roadmap: Availability→63¶
Figure 8:52 - Personnel Roadmap: Evolution→64¶
  Figure 8:53 - Personnel Roadmap: Forecast > 65¶
 Figure 8:55 - Personnel Roadmap: Forecas
Figure 8:54 - Personnel Traceability 66¶
Figure 8:55 - Resources Taxonomy 67¶
Figure 8:56 - Resources Structure 68¶
 Figure 8:57 - Resources Connectivity 69¶
Figure 8:58 - Resources Processes 71¶
  Figure 8:59 - Resources Processes BPMN Semantics→72¶
  Figure 8:60 - Resources States→73¶
Figure 8:61 - Resources Sequences 74¶
Figure 8:61 - Resources Sequences 74¶
Figure 8:62 - Resources Constraints 75¶
Figure 8:63 - Resources Roadmap: Evolution 76¶
Figure 8:64 - Resources Roadmap: Evolution 77¶
Figure 8:65 - Resources Traceability 78¶
```

Figure 8:66 - Security Controls→79

(... [1])

TABLE OF TABLES

Table 1:1 - Table of Related Documents	4
Table 5:1 - Description of acronyms used in this specification	9
Table 7:1 - Definitions for the Viewpoints	14
Table 7:2 - Definitions of the Aspects	

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies and academia. OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available from this URL: http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

- CORBA/IIOP
- Data Distribution Services
- Specialized CORBA IDL/Language Mapping Specifications

Modeling and Metadata Specifications

- UML, MOF, CWM, XMI
- UML Profile Specifications

Platform Independent Model (PIM) - Platform Specific Model (PSM) - Interface Specifications

- CORBAServices
- CORBAFacilities
- OMG Domain Specifications
- CORBA Embedded Intelligence Specifications
- CORBA Security Specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at: OMG Headquarters 109 Highland Avenue, Needham, MA 02494 USA Tel: +1-781-444-0404 Fax: +1-781-444-0320 Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in *italics* are defined in the glossary. Italic text also represents the name of a document, specification, or other publication.

Deleted: Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/create-new-issue).

1.Scope

1.1 Introduction

There are four parts to this specification, two are normative and two informative. The normative parts are:

- The UAF Domain Metamodel (DMM) (this document) that provides the definition of concepts, relationships and viewpoints for the framework. The UAF DMM is the basis for any implementation of UAF including non-UML/SysML implementations.
- 2. The UAF Modeling Language (UAFML) (see document dtc/2024-11-01) is a UML/SysML implementation of the UAF DMM

The informative parts are:

- The UAF Traceability, Annex A (see document dtc/2024-11-08), which details the mappings between the UAF and
 the various frameworks and languages that contribute to the UAF.
- 4. The UAF Example Model, Annex B (see document dtc/2024-11-09), which illustrates a practical usage of UAF.
- The UAF Enterprise Architecture Guide (EAG), Annex C (see document dtc/2024-11-10), which provides guidance
 on how to use the UAFML to model an architecture.

1.2 UAF Background

UAF evolved from the Unified Profile for DoDAF and MODAF (UPDM), version 2.1. UAF extends the scope of UPDM and generalizes it to make it applicable to commercial as well as military architectures. The intent of UAF is to provide a standard representation for describing enterprise architectures using a Model Based Systems Engineering (MBSE) approach.

The core concepts in the UAF are based upon the DoDAF 2.0.2 Domain Metamodel (DM2) and the MODAF ontological data exchange mechanism (MODEM), Security Views from Canada's Department of National Defense Architecture Framework (DNDAF) and the North Atlantic Treaty Organization (NATO) Architecture Framework (NAF) v 4.

UAF models describe a system¹ from a set of stakeholders' concerns such as security or information through a set of predefined viewpoints. Developed models can also reflect custom viewpoints or users can develop more formal extensions for new viewpoints.

The UAFML can be used to develop architectures compliant with:

- Department of Defense Architecture Framework (DoDAF) version 2.02
- Ministry of Defence Architecture Framework (MODAF) version 1.3
- North Atlantic Treaty Organization (NATO) Architecture Framework (NAF) version 3.1
- North Atlantic Treaty Organization (NATO) Architecture Framework (NAF) version 4

UAF v 1.2 supports the capability to:

- model architectures for a broad range of complex systems, which may include hardware, software, data, personnel, and facility elements;
- model consistent architectures for system-of-systems (SoS) down to lower levels of design and implementation;
- support the analysis, specification, design, and verification of complex systems; and
- improve the ability to exchange architecture information among related tools that are SysML based.

¹ The term system is used from: "Systems and software engineering -- Architecture description," http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Deleted: 2021 Deleted: 03

Deleted: 2021
Deleted: 07
Deleted: 2021

Deleted: 08

Deleted: 2021

Deleted: 09

3

1.3 Intended Usage

The UAF enables the modeling of strategic capabilities, operational scenarios, services, resources, personnel, security, projects, standards, measures and requirements; which supports best practices through, separation of concerns and abstractions. In addition, the UAF enables the modeling of related architecture concepts such as:

- System of Systems (SoS),
- information exchanges consistent with the National Information Exchange Model (NIEM),
- DoD's doctrine, organization, training material, leadership & education, personnel, and facilities (DOTMLPF)
- UK Ministry of Defence Lines of Development (DLOD) elements,
- Human Computer Interfaces (HCI).

Further, The UAF conforms to terms defined in the ISO/IEC/IEEE 42010 standard for architecture description, where the terms: architecture, architecture description (AD), architecture framework, architecture view, architecture viewpoint, concern, environment, model kind, stakeholder [ISO/IEC/IEEE 42010:2011] form correspondence rules specified as constraints on UAF.

1.4 Related Documents

The specification includes a metamodel and description as separate documents. Other appendices are also provided as separate documents. The table below provides a listing of these documents:

Table 1:1 - Table of Related Documents

dtc/ <u>2024</u> -11- <u>03</u>	The UAF Domain MetaModel (DMM)
dtc/ <u>2024</u> -11- <u>01</u>	The UAF Modeling Language (UAFML)
dtc/ <u>2024</u> -11- <u>08</u>	Appendix A that contains a separate traceability subsection from UAFML to
	each of the frameworks listed in Section 1.2 of this specification
dtc/2024-11-09	Appendix B: An example of how the language can be used to represent a
	UAFML architecture
dtc/2024-11-10	Appendix C: An Enterprise Architecture Guide (EAG)
dtc/2024-11-06	UAF XMI file
dtc/2024-11-07	UAF XMI Measurements library
dtc/2024-11-11	Attachments

Deleted: 2021 Deleted: 01 Deleted: 2021 Deleted: 03 Deleted: 2021 Deleted: 07 Deleted: 2021 Deleted: 08 Deleted: 2021 Deleted: 09 Deleted: 2021 Deleted: 10 Deleted: 2021 Deleted: 11 Deleted: 2021 Deleted: 06

2. Conformance

UAF specifies four types of conformance.

Type I Conformance: - UAF View specification conformance. A tool demonstrating view specification conformance shall implement a version of all the view specifications defined in the UAF Grid, with the exception of the view specifications in the Architecture Management Viewpoint. Optionally the tool vendor can implement other donor framework viewpoints, for instance DoDAF, MODAF or NAF based upon the mapping between them and UAF provided in Appendix A (dtc/2024-11-08)

Type 2 Conformance: - UAF Conceptual Syntax Conformance. A tool demonstrating conceptual syntax conformance is consistent with the concepts, relationships and constraints defined in the UAF DMM (this document). UAF Conceptual Syntax Conformance implies Type 1 Conformance.

Type 3 Conformance: - UAF Formal Syntax Conformance. A tool demonstrating formal syntax conformance:

- enables instances of concrete UAFML stereotypes defined in the UAFML (dtc/2024-11-01)
- complies with the constraints defined in the UAFML (dtc/2024-11-01)
- complies with the SysML version 1.6 Concrete Syntax Conformance (formal/19-11-01)
- UAF Formal Syntax Conformance implies Type 2 Conformance.

Type 4 Conformance: - UAF Model interchange conformance. A tool demonstrating model interchange conformance can import and export conformant XMI for all valid UAFML models. Model interchange conformance implies Type 3

Deleted: 2021
Deleted: 07

Deleted: 2021

Deleted: 03

Deleted: 2021

Deleted: 03

3. References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

3.1.1 OMG Documents (Normative References)

- Unified Modeling Language (UML), 2.5.1, December 2017, http://www.omg.org/spec/UML
- Object Constraint Language (OCL), 2.4, February 2014, http://www.omg.org/spec/OCL
- System Modeling Language (SysML),1.6, November 2019, http://www.omg.org/spec/SysML
- Diagram Definition (DD), 1.1, June 2015, http://www.omg.org/spec/DD
- UML Profile for the National Information Exchange Model (NIEM UML), 3.0, April 2017, http://www.omg.org/spec/NIEM-UML
- UML Profile for BPMN Processes, 1.0, July 2014, http://www.omg.org/spec/BPMNProfile
- Information Exchange Packaging Policy Vocabulary (IEPPV) 1.0, May 2015, http://www.omg.org/spec/IEPPV
- XML Metadata Interchange, 2.5.1, June 2015, https://www.omg.org/spec/XMI/2.5.1/About-XMI/
- Business Motivation Model (BMM), Version 1.3, http://www.omg.org/spec/BMM/1.3/

3.2 Other Normative References

- Department of Defense Architecture Framework (DoDAF), Version 2.02, August 2010, http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx
- The DM2 (DoDAF Meta-Model) Conceptual Data Model, http://dodcio.defense.gov/Library/DoDArchitectureFramework/dodaf20_conceptual.aspx
- DM2 Logical Data Model, http://dodcio.defense.gov/Library/DoDArchitectureFramework/dodaf20_logical.aspx
- DM2 Formal Ontology.
 - http://dodcio.defense.gov/Library/DoDArchitectureFramework/dodaf20_ontology1.aspx
- Department National Defence and Canadian Forces (DND/ CF) Architecture Framework (DNDAF), Version 1.8.1, 25 January 2013
- International Defence Enterprise Architecture Specification for Exchange (IDEAS) Group, https://en.wikipedia.org/wiki/IDEAS_Group
- ISO/IEC/IEEE 42010:2011, Systems and software engineering Architecture Description, http://www.iso.org/iso/catalogue detail.htm?csnumber=50508
- Ministry of Defence Architecture Framework (MODAF), https://www.gov.uk/mod-architecture-framework
- MODAF Ontological Data Exchange Mechanism (MODEM)
- https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/63980/20130117_MODAF_MODEM.pdf
- NATO Architecture Framework (NAF) Version 3, NATO C3 BOARD (AC/322-D(2007)0048), (no longer publicly available online as of 3 November 2015)
- $\bullet \quad NATO\ Architecture\ Framework\ v4.0, January\ 2021, https://www.nato.int/cps/en/natohq/topics_157575.htm$

3.3 Informative References

- _
- ISO 15704:2000, Industrial Automation Systems "Requirements for Enterprise-Reference Architectures and Methodologies," http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28777
- ISO 8601:2004 Data elements and interchange formats Information interchange Representation of dates and times,

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?ics1=01&ics2=140&ics3=30&csnum

- ISO/IEC 15288:2015, "Systems Engineering Systems Life Cycle Processes," http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63711
- Object Management Group (OMG), Metamodel Extension Facility, Initial submission, ad/12-02-01, http://www.omg.org/cgi-bin/doc?ad/12-02-01 (Requires OMG Member Access)
- OASIS SOA-RAF, Reference Architecture Foundation for Service Oriented Architecture Version 1.0, OASIS SOA Reference Model TC, 04 December 2012. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf (Authoritative)
- Object Management Group (OMG), Semantics of Business Vocabulary and Business Rules (SBVR), Version 1.5, December 2019, http://www.omg.org/spec/SBVR
- International Council On Systems Engineering (INCOSE), Systems Engineering Handbook V4, 2015, http://www.incose.org/ProductsPublications/sehandbook
- Unified Profile for DoDAF and MODAF (UPDM), 2.1, August 2013, http://www.omg.org/spec/UPDM
- Ontology Definition Metamodel (ODM), 1.1, September 2014, http://www.omg.org/spec/ODM

4. Terms and Definitions

No new terms and definitions have been required to create this specification. All terms are available in the normative references or bibliographic citations for detailed explanation. The modeling concepts specified in this standard e.g., MetaModel Elements, Viewpoints, Aspects, View Specifications, etc. are defined in the appropriate section for that concept. Additional terms are defined in Appendix C: Enterprise Architecture Guide (EAG).

5.Acronyms

For the purposes of this specification, the following List of acronyms used in this specification.

Table 5:1 - Description of acronyms used in this specification

Table 5:1 - De	scription of acronyms used in this specification		
AcV-*2	Acquisition View		
AD	Architecture Description		
AV-*	All View		
BMM	Business Motivation Model		
BPMN	Business Process Modeling Notation		
C4ISR	Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance		
CaT	Capability Team		
COI	Communities of Interest		
CV-*	Capability View		
DIV-*	Data and Information Views		
DLOD	Defence Lines of Development		
DM2	DoDAF Meta Model		
DMM	Domain Meta Model		
DNDAF	Department National Defence and Canadian Forces (DND/ CF) Architecture Framework		
DoD	United States Department of Defense		
DoDAF	Department of Defense Architecture Framework		
DOTMLP	Doctrine, Organization, Training, Material, Leadership, Personnel, Facilities		
EIE	Enterprise Information Environment		
IDEAS	International Defense Enterprise Architecture Specification for Exchange		
IDEF	Integrated DEFinition Methods		
INCOSE	International Council Of Systems Engineering		
JCIDS	Joint Capabilities Integration and Development System		
MISIG	Model Interchange Special Interest Group		
MOD	United Kingdom Ministry of Defence		
MODAF	Ministry of Defence Architecture Framework		
MODEM	MODAF Ontological Data Exchange Mechanism		
NAF	NATO Architecture Framework		
OASIS	Organization for the Advancement of Structured Information Standards		
OSLC	Open Services for Lifecycle Collaboration		
OV-*	Operational View		
PES	DoDAF Physical Exchange Specification		
POC	Proof of Concept		
PV-*	Project View		
RDF	Resource Description Framework		
SoaML	Service orientated architecture Modeling Language		
SoS	System of Systems		
SOV-*	Service Oriented View		

² * denotes a wildcard

StdV-*	Standards View in DoDAF 2.02 compare TV-* in UAF	
STV-*	Strategic View	
SV-*	System View	
SvcV-*	Service View	
TEPID	Training, Equipment, Personnel, Information, Concepts and Doctrine, Organisation, Infrastructure,	
OIL	Logistics	
TOGAF	The Open Group Architectural Framework©	
TPPU	Task, Post, Process, and Use	
TV-*	Technical View	
UAF	Unified Architecture Framework	
UAFML	Unified Architecture Framework Modeling Language	
UPDM	Unified Profile for DoDAF/MODAF	

6. Additional Information

6.1 Changes to Adopted OMG Specifications

This specification completely replaces Unified Architecture Framework (UAF), version 1.1 https://www.omg.org/spec/UAF/About-UAF/

6.2 Language Architecture

The UAF specification reuses a subset of UML 2.5.1 and SysML 1.6 and provides additional extensions needed to address requirements in the UPDM 3.0 RFP Mandatory Requirements. Those requirements form the basis for this specification. This specification documents the language architecture in terms of UML 2.5.1 and SysML 1.6 and specifies how to implement UAF. This clause explains design principles and how they are applied to define the UAF language architecture.

6.3 Philosophy

The UAF development uses a model-driven approach. A simple description of the work process is:

- A Domain Metamodel (DMM) uses UML Class models to represent individuals, types and tuples that maps the
 concepts defined in DoDAF, MODEM, NAF, and other frameworks.
- The aligned and renamed viewpoints from the various frameworks provide a common generic name for each
 viewpoint. It should be noted that the term viewpoint is in the context of ISO 42010 where a viewpoint is the
 specification of a view. The UAF viewpoints are mapped to the corresponding viewpoint in the relevant contributing
 framework. It is the viewpoints described in the DMM that provides the basis for the Unified Architecture
 Framework (UAF).
- The UAF provides an abstraction layer that separates the underlying UAF metamodel from the presentation layer. The results of this mapping are given in Appendix A (see document dtc/2024-11-08) and an overview of the viewpoints in a grid format are given in this document.
- The intent of the UAF is to provide a Domain MetaModel usable by non-UML/SysML tool vendors who may wish
 to implement the UAF within their own tool and metalanguage.
- The Unified Architecture Framework Modeling Language (UAFML) is the standard implementation of the UAF DMM. It was created by mapping the UAF concepts and relationships to corresponding stereotypes in the UAFML Profile
- The UAFML analysis and refactoring reflects language architecture, tool implementation, and reuse considerations.
- The specification is generated from the UML model used to describe the UAF DMM and UAFML. This approach
 allows the team to concentrate on architecture issues rather than documentation production. The UML tool
 automatically maintains consistency. The UML tool improves maintenance and enables traceability between the
 UAF and the UAFML where every stereotype is linkable to the UAF element using UML Abstraction relationship.

6.4 Core Principles

The fundamental design principles for UAF DMM are:

- Requirements-driven: UAF is intended to satisfy the requirements of the UPDM 3.0 RFP Mandatory
 Requirements
- Influence from donor Frameworks: The DMM was based upon an aggregation of concepts and relationships from
 the donor frameworks.
- IDEAS Ontology driven: The DMM was based upon a simplified version of the IDEAS ontology, see chapter 8.
- DMM Notation: The DMM was expressed using UML class diagram notation.
- Reusability of UML Metamodel concepts: The UAF DMM reuses a number of concepts from the UML
 Metamodel, such as Statemachines, Activities and Interactions. The explicit relationship to these concepts enables
 the UAF DMM to reuse UML semantics instead of reinventing its own semantics.

Deleted: 2021

Deleted: 07

•	Reusability of BPMN concepts: The UAF DMM reuses a number of concepts from BPMN, such as processes. The explicit relationship to these concepts enables the UAF DMM to reuse BPMN semantics instead of reinventing its own semantics.	
Uni	ified Architecture Framework (UAF) Domain Metamodel Version 1.2	

7.UAF Grid

Due to the complexity of managing the multiple viewpoints with overlapping concerns and metamodels, the standard viewpoints are refactored as described in the donor frameworks into a more manageable format. This decision led to the development of the UAF grid which is described below.

The grid is a way of showing how the various view specifications (cells) correspond to viewpoints (prev. known as domains) (horizontal rows) and the aspects (prev. known as model kinds) (the columns) that describe the view specification. The intent of the grid is not to be complete, but to capture the information that is present in the frameworks that contributes to the UAF, consequently, some gaps are evident.

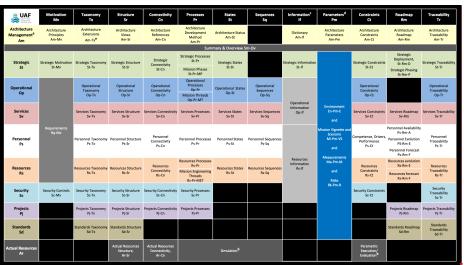
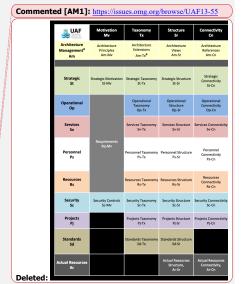



Figure 7:1- UAF Grid

Notes related to suffixes in the grid

- a. The view specifications in the Architecture Management viewpoint are architectural artifacts that contribute to the success in defining and developing an architecture.
- b. To be able to evaluate architecture behavior and constraints (i.e., non-functional requirements) it is necessary to define actual instances of the architectural elements. The expectation is that tool vendors intending to implement the UAF have capabilities native to their tools to enable behavioral simulation and the evaluation of measures and constraints through parametric diagrams or a proprietary equivalent.
- c. The information model is an aspect across the domains and can be defined in any of its forms, i.e., Conceptual, Logical or Physical. The expectation is that most developers of the information model will use the Conceptual or Logical forms of the data model when using an abstract modeling tool.
- d. The parameters column captures the measures, environments, and risks across the architecture in the different viewpoints.
- e. The Architecture Extensions view specification provides a means to extend the framework to other domains.

The detailed mapping between the view specifications of the UAF shown in the grid and the viewpoints from the donor frameworks is described in dtc/2024-11-08. A definition for each view specification in the grid is described in the following chapters.

Deleted: 2021

Deleted: 07

7.1 Descriptions of Viewpoints and Aspects

Table 7:1 - Definitions for the Viewpoints

bl <u>e 7:1 - Definitions f</u>		
Viewpoint	Acronym	Description
Architecture	Am	Identifies the metadata and views required to develop a suitable
Management	architecture that is fit for its purpose.	
Strategic	St	Capability management process. Describes the capability
		taxonomy, composition, dependencies and evolution.
Operational	Op	Illustrates the Logical Architecture of the enterprise. Describes
		the requirements, operational behavior, structure, and exchanges
		required to support (exhibit) capabilities. Defines all operational
		elements in an implementation/solution independent manner.
Services	Sv	The Service-Orientated View (SOV) is a description of services
		needed to directly support the operational domain as described in
		the Operational View. A service within
		MODAF is understood in its broadest sense, as a unit of work
		through which a provider provides a useful result to a consumer.
		DoDAF: The Service Views within the Services Viewpoint
		describe the design for service-based solutions to support
		operational development processes (JCIDS) and Defense
		Acquisition System or capability development within the Joint
		Capability Areas.
Personnel	Ps	Defines and explores organizational resource types. Shows the
		taxonomy of types of organizational resources as well as
		connections, interaction and growth over time.
Resources	Rs	Captures a solution architecture consisting of resources, e.g.,
		organizational, software, artifacts, capability configurations, and
		natural resources that implement the operational requirements.
		Further design of a resource is typically detailed in SysML or
		UML.
securi laws,		Security assets and security enclaves. Defines the hierarchy of
		security assets and asset owners, security constraints (policy,
		laws, and guidance) and details where they are located (security
		enclaves).
Projects Pj Describ		Describes projects and project milestones, how those projects
		deliver capabilities, the organizations contributing to the projects
		and dependencies between projects.
Standards	Sd	MODAF: Technical Standards Views are extended from the core
		DoDAF views to include non-technical standards such as
		operational doctrine, industry process standards, etc.
		DoDAF: The Standards Views within the Standards Viewpoint
		are the set of rules governing the arrangement, interaction, and
		interdependence of solution parts or elements.
Actual	Ar	The analysis, e.g., evaluation of different alternatives, what-if,
Resources		trade-offs, V&V on the actual resource configurations. Illustrates
		the expected or achieved actual resource configurations.

Table 7:2 - Definitions of the Aspects

Aspect	Acronym	Description
Motivation	Mv	Captures motivational elements e.g., challenges, opportunities, and concerns, that pertain to enterprise transformation efforts, and different types of requirements, e.g., operational, services, personnel, resources, or security controls.
Taxonomy	Tx	Presents all the elements as a standalone structure. Presents all the elements as a specialization hierarchy, provides a text definition for each one and references the source of the element
Structure	Sr	Describes the breakdown of structural elements e.g., logical performers, systems, projects, etc. into their smaller parts
Connectivity	Cn	Describes the connections, relationships, and interactions between the different elements.
Processes	Pr	Captures activity based behavior and flows. It describes activities, their Inputs/Outputs, activity actions and flows between them.
States	St	Captures state-based behavior of an element. It is a graphical representation of states of a structural element and how it responds to various events and actions.
Sequences	Sq	Expresses a time ordered examination of the exchanges as a result of a particular scenario. Provides a time-ordered examination of the exchanges between participating elements as a result of a particular scenario.
Information	If	Address the information perspective on operational, service, and resource architectures. Allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues.
Constraints	Ct	Details the measurements that set performance requirements constraining capabilities. Also defines the rules governing behavior and structure.
Roadmap	Rm	Addresses how elements in the architecture change over time.
Traceability	Tr	Describes the mapping between elements in the architecture. This can be between different viewpoints within domains as well as between domains. It can also be between structure and behaviors.

7.2 Viewpoint Interrelationships

Although the grid is the primary means of expressing the relationship between the Viewpoints, Aspects and View Specifications, because of its two-dimensional nature it is not adequate to explain the abstract interrelationships that exist between the viewpoints. The following diagram is an indication of the how the viewpoints are interrelated.

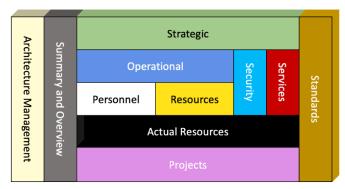


Figure 7:2 - Viewpoint Interrelationships

Where a Viewpoint is shown vertically the intent is to show that the Viewpoint is a cross cutting concern that goes across the levels of abstraction in the architecture.

Where a Viewpoint is shown horizontally the intent is to show that the Viewpoint exists in a layer of abstraction between the Viewpoints above and below it and there is an interrelationship with the Viewpoints either side of it.

7.3 Domain Metamodel Diagram Legend

Note that the diagrams rely on color to aid the reader in understanding the model. Please refer to the legend below to understand the diagrams.

The following is the legend of element colors used in the DMM and what they denote.

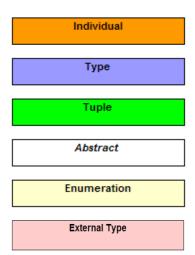


Figure 7:3 - Legend of color codes for element types defined in UAF

The meaning of the element types in the UAF are based upon concepts put forth in the International Defence Enterprise Architecture Specification (IDEAS).

- An Individual denotes a single instance of an element
- A Type denotes a set of Individuals
- A Tuple denotes a relationship that exists between elements
- An Abstract denotes that the element has no direct use but is a means of construction
- An Enumeration is a complete, ordered listing of all the items in a collection
- An External Type is an element that exists outside of the core DMM but is referenceable by elements in the DMM

8. Domain Metamodel Diagrams

Note that the diagrams rely on color to aid the reader in understanding the model. Please refer to the legend in the various diagrams to understand the specific definitions.

8.1 View Specifications

This section documents each of the view specifications of UAF.

8.1.1 View Specifications::Architecture Management

Stakeholders: Enterprise Architects, people who want to discover the architecture, Technical Managers.

Concerns: Captures meta-data relevant to the entire architecture

Definition: Provide information pertinent to the entire architecture. Present supporting information rather than architectural models.

View Specifications::Architecture Management::Motivation

Contains the diagrams that document the Architecture Management Motivation View Specification.

View Specifications::Architecture Management::Motivation::Architecture Principles

Stakeholders: Enterprise Architects, Enterprise Systems Engineers, Model Managers, System Architects.

Concerns: alignment of architecture with architecture heuristics, guidelines and principles.

Definition: identifies relevant architectural principles and other guidelines to be used in architecture development and evaluation.

Recommended Implementation: SysML Block Diagram, tabular format

Figure 8:1 - Architecture Principles

Elements

• <u>Driver</u>

View Specifications::Architecture Management::Structure

Contains the diagrams that document the Architecture Management Structure View Specification.

View Specifications::Architecture Management::Structure::Architecture Views

Stakeholders: Enterprise Architects, Model Managers, Modelers, Technical Managers.

Concerns: domains, viewpoints, aspects, model kinds, and view specifications that are used to describe the architecture. Definition: (i) lists predefined and custom domains, model kinds, viewpoints, aspects and view specifications (ii) and identify the key stakeholders and their perspectives and concerns.

Recommended Implementation: SysML Block Definition Diagram, SysML Package Diagram.

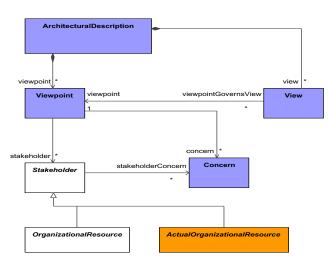


Figure 8:2 - Architecture Views

Elements

- ActualOrganizationalResource
- ArchitecturalDescription
- Concern
- OrganizationalResource
- <u>Stakeholder</u>
- View
- <u>Viewpoint</u>

View Specifications::Architecture Management::Connectivity

Contains the diagrams that document the Architecture Management Connectivity View Specification.

View Specifications::Architecture Management::Connectivity::Architecture References

Stakeholders: Enterprise Architects, people who want to understand relationships to related architectural descriptions, Technical Managers.

Concerns: high-level dependencies between architectural descriptions.

Definition: depicts and analyzes all relevant dependencies between architectural descriptions, e.g., reference architectures, as-is to to-be architectures, enterprise architecture to system architectures.

Recommended Implementation: SysML Block Definition Diagram, SysML Package Diagram, matrix format.

Figure 8:3 - Architecture References

Elements

ArchitecturalDescription

• ArchitecturalReference

View Specifications::Architecture Management::Processes

Contains the diagrams that document the Architecture Management Processes View Specification.

View Specifications::Architecture Management::Processes::Architecture Development Method

Stakeholders: Enterprise Architects, Model Managers, Modelers, Enterprise Systems Engineers.

Concerns: development sequence of models and views and how they are related to each other.

Definition: defines workflow or process steps used in managing the architecture development.

Recommended Implementation: SysML Activity Diagram, text.

Figure 8:4 - Architecture Development Method

Elements
• ArchitecturalDescription

View Specifications::Architecture Management::States

Contains the diagrams that document the Architecture Management States View Specification.

View Specifications::Architecture Management::States::Architecture Status

Stakeholders: Enterprise Architects, people who want to understand the architecture governance, Technical Managers. Concerns: architecture status.

Definition: captures version number and approval workflow of the architecture. Recommended Implementation: SysML State Machine Diagram, state table, text.

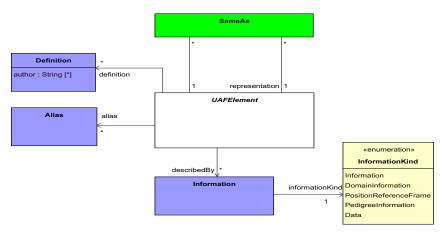
Figure 8:5 - Architecture Status

Elements

• ArchitecturalDescription

View Specifications::Architecture Management::Information

Contains the diagrams that document the Architecture Management Information View Specification.


View Specifications::Architecture Management::Information::Dictionary

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: provides a central reference for a given architecture's data and metadata. It enables the set of architecture description to stand alone, with minimal reference to outside resources.

Definition: contains definitions of terms used in the given architecture. It consists of textual definitions in the form of a glossary, their taxonomies, and their metadata (i.e., data about architecture data), including metadata for any custom-tailored views. Architects should use standard terms where possible (i.e., terms from existing, approved dictionaries, glossaries, and lexicons).

Recommended Implementation: text, table format.

Figure 8:6 - Dictionary

Elements

- Alias
- Definition
- <u>Information</u>
- SameAs
- <u>UAFElement</u>

View Specifications::Architecture Management::Parameters

Contains the diagrams that document the Architecture Management Parameters View Specification.

View Specifications::Architecture Management::Parameters::Architecture Parameters

Stakeholders: Enterprise Architects, Enterprise Systems Engineers, Model Managers, System Architects. Concerns: architecture parameters.

Definition: depicts and analyzes measures and measurements that are applicable to management of the architecture. Recommended Implementation: SysML Block Definiton Diagram, tabular format.

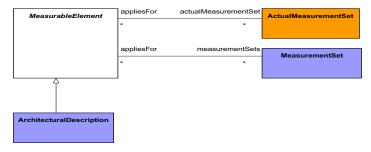


Figure 8:7 - Architecture Parameters

Elements

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

- <u>ActualMeasurementSet</u>
- ArchitecturalDescription
- MeasurableElement
- MeasurementSet

View Specifications::Architecture Management::Constraints

Contains the diagrams that document the Architecture Management Constraints View Specification.

View Specifications::Architecture Management::Constraints::Architecture Constraints

Stakeholders: Enterprise Architects, people who want to understand the architecture constraints, Technical Managers. Concerns: architecture assumptions and constraints.

Definition: depicts and analyzes assumptions, constraints, rules, policy and guidance that are applicable to aspects of the

Recommended Implementation: SysML Package Diagram, tabular format.

Figure 8:8 - Architecture Constraints

Elements

• ArchitecturalDescription

View Specifications::Architecture Management::Roadmap

Contains the diagrams that document the Architecture Management Roadmap View Specification.

View Specifications::Architecture Management::Roadmap::Architecture Roadmap

Stakeholders: Enterprise Architects, people who want to understand the architecture development plan, Technical Managers.

Concerns: architecture release schedule.

Definition: captures project timeline for the architecture. Recommended Implementation: timeline, text.

Figure 8:9 - Architecture Roadmap

Elements

• ArchitecturalDescription

View Specifications::Architecture Management::Traceability

Contains the diagrams that document the Architecture Management Traceability View Specification.

View Specifications::Architecture Management::Traceability::Architecture Traceability

Stakeholders: Enterprise Architects, people who want to understand impact of change across the architecture supporting assets, Technical Managers.

Concerns: reuse of architectures.

Definition: shows references to operational, services, and resource architectures, asset libraries, legacy architectures, and external sources, e.g., documents. Recommended Implementation: SysML Block Definition Diagram, SysML Package Diagram, tabular format

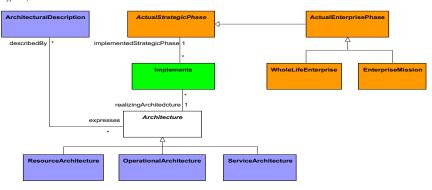


Figure 8:10 - Architecture Traceability

Elements

- <u>ActualEnterprisePhase</u>
- ActualStrategicPhase
- ArchitecturalDescription
- Architecture
- EnterpriseMission
- Implements
- OperationalArchitecture
- ResourceArchitecture
- ServiceArchitecture
- WholeLifeEnterprise

8.1.2 View Specifications::Summary & Overview

Stakeholders: Executives, PMs, Enterprise Architects.

Concerns: executive-level summary information in a consistent form.

Definition: provides executive-level summary information in a consistent form that allows quick reference and comparison between architectural descriptions. Includes assumptions, constraints, and limitations that may affect high-level decisions relating to an architecture-based work programme.

View Specifications::Summary & Overview::Summary & Overview

Stakeholders: Decision makers, Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: quick overview of an architecture description and summary of analysis. In the initial phases of architecture development, it serves as a planning guide. Upon completion of an architecture, it provides a summary of findings, and any conducted analysis.

Definition: provides executive-level summary information in a consistent form that allows quick reference and comparison among architectures. The Summary and Overview includes assumptions, constraints, and limitations that may affect high-level decision processes involving the architecture.

Recommended Implementation: text, free form diagram, table format.

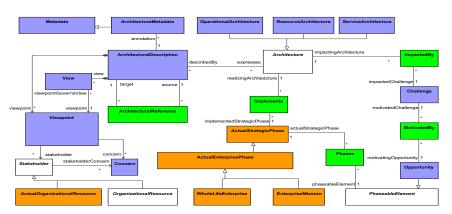


Figure 8:11 - Summary & Overview

- $\underline{Actual Enterprise Phase}$
- ActualOrganizationalResource
- ActualStrategicPhase
- ArchitecturalDescription
- ArchitecturalReference
- Architecture
- ArchitectureMetadata
- Challenge
- Concern
- EnterpriseMission
- ImpactedBy
 Implements
- $\underline{Metadata}$
- MotivatedBy
- <u>OperationalArchitecture</u>
- Opportunity
- OrganizationalResource
- PhaseableElement
- **Phases**
- ResourceArchitecture
- ServiceArchitecture
- Stakeholder
- View
- Viewpoint
- WholeLifeEnterprise

8.1.3 View Specifications::Strategic

Stakeholders: Capability Portfolio Managers.

Concerns: capability management process.

Definition: describe capability taxonomy, composition, dependencies and evolution.

View Specifications::Strategic::Motivation

Contains the diagrams that document the Strategic Motivation View Specification.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

View Specifications::Strategic::Motivation::Strategic Motivation

Stakeholders: Enterprise Architects, Portfolio Managers, Enterprise Systems Engineers, Program Managers.

Concerns: architecture drivers, challenges, opportunities, capabilities that address opportunities, phases and architectures that address challenges.

Definition: identifies and defines the drivers, challenges, and opportunities that are applicable to the architecture. defines the desired outcomes, goals and objectives that are motivated by the drivers, and the opportunities that enable the goals and objectives.

Recommended Implementation: SysML Block Definition Diagram, SysML Package Diagram, tabular format.

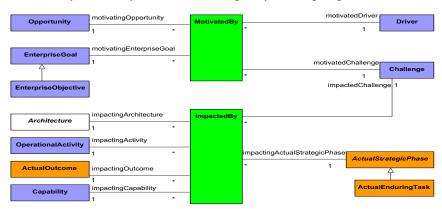


Figure 8:12 - Strategic Motivation

Elements

- ActualEnduringTask
- ActualOutcome
- ActualStrategicPhase
- Architecture
- <u>Capability</u>
- Challenge
- <u>Driver</u>
- EnterpriseGoal
- EnterpriseObjective
- ImpactedBy
- MotivatedBy
- Operational Activity
- <u>Opportunity</u>

View Specifications::Strategic::Taxonomy

Contains the diagrams that document the Strategic Taxonomy View Specification.

View Specifications::Strategic::Taxonomy::Strategic Taxonomy

 $Stakeholders:\ PMs,\ Enterprise\ Architects,\ Executives.$

Concerns: capability needs.

Definition: shows the taxonomy of capabilities.

Recommended Implementation: SysML Block Definition Diagram.

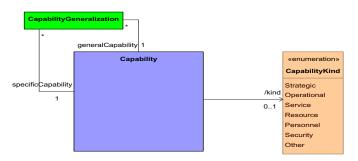


Figure 8:13 - Strategic Taxonomy

- Capability
- CapabilityGeneralization

View Specifications::Strategic::Structure

Contains the diagrams that document the Strategic Structure View Specification.

View Specifications::Strategic::Structure::Strategic Structure

Stakeholders: PMs, Enterprise Architects, Executives.

Concerns: capability needs.

Definition: shows the relationship between EnterprisePhases and the Capabilities that are intended to be developed during the enterprise phases, and the organizations involved in the enterprise.

Recommended Implementation: SysML Block Definition Diagram.

Figure 8:14 - Strategic Structure

Elements

- <u>Capability</u>
- CapabilityRole

View Specifications::Strategic::Connectivity

Contains the diagrams that document the Strategic Connectivity View Specification.

View Specifications::Strategic::Connectivity::Strategic Connectivity

Stakeholders: PMs, Executives, Enterprise Architects.

Concerns: capability dependencies.

Definition: describes the dependencies between planned capabilities.

Recommended Implementation: SysML Block Definition Diagram. SysML Internal Block Diagram.

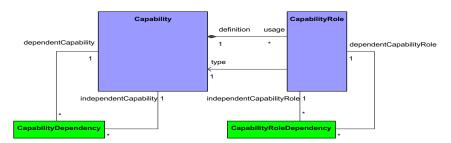


Figure 8:15 - Strategic Connectivity

- Capability
- CapabilityDependency
- CapabilityRole
 CapabilityRoleDependency

View Specifications::Strategic::Processes

Contains the diagrams that document the Strategic Processes View Specification.

View Specifications::Strategic::Processes::Strategic Processes

Stakeholders: Program/Project Managers, Portfolio Managers, Enterprise Architects, Executives.

Concerns: capability phasing.

Definition: shows the relationship between strategic phases and the Capabilities that are intended to be developed during the strategic phases, and the actual organizations involved.

Recommended Implementation: SysML Block Definition Diagram.

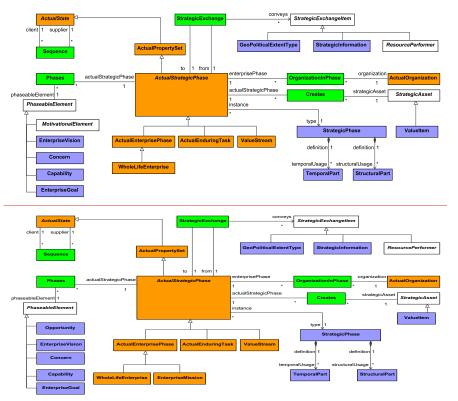


Figure 8:16 - Strategic Processes

- <u>ActualEnduringTask</u>
- <u>ActualEnterprisePhase</u>
- ActualOrganization
- ActualPropertySet
- ActualState
- <u>ActualStrategicPhase</u>
- Capability
- Concern
- Creates
- EnterpriseGoal
- EnterpriseVision
- GeoPoliticalExtentType
- MotivationalElement OrganizationInPhase
- PhaseableElement
- Phase
- ResourcePerformer

Commented [AM2]: https://issues.omg.org/browse/UAF13-55

Deleted: <#>EnterpriseMission¶

Commented [AM3]:

Commented [AM4]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold
Formatted: OMG Normal Paragraph

Deleted: <#>Opportunity¶

- <u>Sequence</u>
- StrategicAsset
- StrategicExchange
- <u>StrategicExchangeItem</u>
- StrategicInformation
- StrategicPhase
- <u>StructuralPart</u>
- <u>TemporalPart</u>
- <u>ValueItem</u>
- ValueStream
- WholeLifeEnterprise

View Specifications::Strategic::Processes::Strategic Processes: Mission Phases

Stakeholders: Program/Project Managers, Portfolio Managers, Enterprise Architects, Executives.

Concerns: capability phasing.

Definition: shows the relationship between strategic phases and the Capabilities that are intended to be developed during the strategic phases, and the actual organizations involved.

Recommended Implementation: SysML Block Definition Diagram.

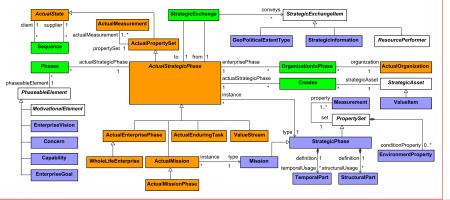


Figure 1:17 - Strategic Processes: Mission Phases

Elements

- ActualEnduringTask
- ActualEnterprisePhase
- ActualMeasurement
- ActualMission
- ActualMissionPhase
- ActualOrganization
- ActualPropertySet
- ActualState
- ActualStrategicPhase
- Capability
- Concern
- Creates
- EnterpriseGoal
- EnterpriseVision
- EnvironmentProperty

Commented [AM5]: https://issues.omg.org/browse/UAF13-55

- GeoPoliticalExtentType
- Measurement
- Mission
- MotivationalElement
- OrganizationInPhase
- PhaseableElement
- Phases
- PropertySet
- ResourcePerformer
- Sequence
- StrategicAsset
- StrategicExchange
- StrategicExchangeItem
- StrategicInformation
- StrategicPhase
- StructuralPart
- TemporalPart
- ValueItem
- ValueStream
- WholeLifeEnterprise

View Specifications::Strategic::States

Contains the diagrams that document the Strategic States View Specification.

View Specifications::Strategic::Strategic States

Stakeholders: PMs, Enterprise Architects.

Concerns: effects that the implementation(s) of capabilities are expected to deliver.

 $Definition: captures \ the \ relationships \ between \ capability (ies) \ and \ desired \ effect (s) \ that \ implementation (s) \ of \ capability (ies) \ should \ achieve.$

Recommended Implementation: SysML Block Definition Diagram.

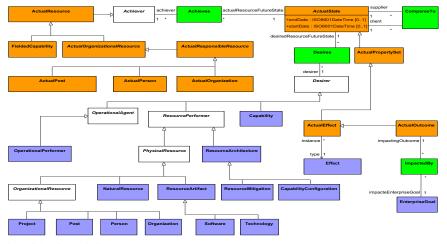


Figure 8:17 - Strategic States

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Formatted: Indent: Left: 0 cm, First line: 0 cm

- Achiever
- Achieves
- ActualEffect
- ActualOrganization ActualOrganizationalResource
- ActualOutcome
- ActualPerson
- ActualPost
- ActualPropertySet
- ActualResource ActualResponsibleResource
- ActualState
- Capability
- $\underline{Capability} \underline{Configuration}$
- **ComparesTo**
- Desirer
- Desires
- **Effect**
- EnterpriseGoal
- FieldedCapability
- <u>ImpactedBy</u>
- NaturalResource
- OperationalAgent
- OperationalPerformer
- Organization
- OrganizationalResource
- Person PhysicalResource
- **Post**
- **Project**
- ResourceArchitecture
- $\underline{ResourceArtifact}$
- ResourceMitigation
- ResourcePerformer
- Software
- **Technology**

View Specifications::Strategic::Information

Contains the diagrams that document the Strategic Information View Specification.

View Specifications::Strategic::Information::Strategic Information

Stakeholders: Enterprise Architects, Portfolio Managers, Enterprise Systems Engineers, Business Managers.

Concerns: information that can be considered to be an enterprise strategic asset that can influence achievement of enterprise goals.

Definition: identifies and defines strategic information elements and their relationships that are applicable to the architecture.

Recommended Implementation: SysML Block Definition Diagram, tabular format.

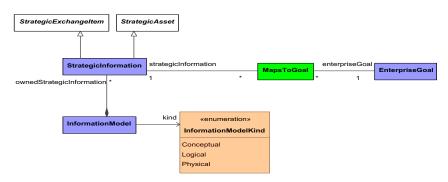


Figure 8:18 - Strategic Information

- EnterpriseGoal
- InformationModel
- MapsToGoal
- StrategicAsset
- <u>StrategicExchangeItem</u>
- StrategicInformation

View Specifications::Strategic::Constraints

Contains the diagrams that document the Strategic Constraints View Specification.

View Specifications::Strategic::Constraints::Strategic Constraints

Stakeholders: PMs, Enterprise Architects. Concerns: capability constraints. Definition: details the measurements that set performance requirements constraining capabilities. Recommended Implementation: tabular format, SysML Block Definition Diagram.

Figure 8:19 - Strategic Constraints

Elements

- <u>Capability</u>
- StrategicConstraint
- SubjectOfStrategicConstraint

View Specifications::Strategic::Roadmap

Contains the diagrams that document the Strategic Roadmap View Specification.

View Specifications::Strategic::Roadmap::Deployment::Strategic Roadmap: Deployment

Stakeholders: PMs, Executives, Enterprise Architects.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Concerns: capability deployment to organizations over time.

Definition: addresses the deployment of capability(ies) to actual organizations over time.

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

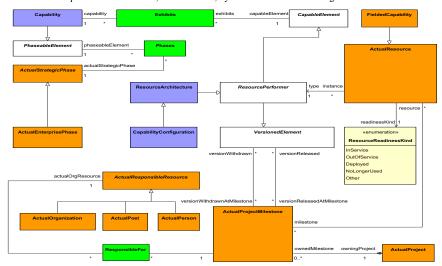


Figure 8:20 - Strategic Roadmap: Deployment

Elements

- $\underline{Actual Enterprise Phase}$
- ActualOrganization
- ActualPerson
- ActualPost
- ActualProject
- ActualProjectMilestone
- ActualResource ActualResponsibleResource
- ActualStrategicPhase
- Capability
- CapabilityConfiguration
- $\underline{CapableElement}$
- **Exhibits**
- FieldedCapability
 PhaseableElement
- Phases
- ResourceArchitecture
- ResourcePerformer
- ResponsibleFor
- VersionedElement

View Specifications::Strategic::Roadmap::Phasing::Strategic Roadmap: Phasing

Stakeholders: PMs, Executives, Enterprise Architects.

Concerns: capability(ies) achievement over time.

Definition: the planned achievement of capability(ies) at different points in time or during specific periods of time. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

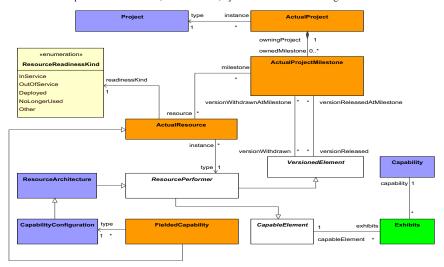


Figure 8:21 - Strategic Roadmap: Phasing

Elements

- ActualProject
- ActualProjectMilestone
- <u>ActualResource</u>
- <u>Capability</u>
- CapabilityConfiguration
- CapableElement
- <u>Exhibits</u>
- <u>FieldedCapability</u>
- Project
- ResourceArchitecture
- ResourcePerformer
- <u>VersionedElement</u>

View Specifications::Strategic::Traceability

Contains the diagrams that document the Strategic Traceability View Specification.

View Specifications::Strategic::Traceability::Strategic Traceability

Stakeholders: PMs, Enterprise Architects, Business Architects.

Concerns: traceability between capabilities and operational activities.

Definition: describes the mapping between the capabilities required by an Enterprise and the supporting operational activities.

Recommended Implementation: matrix format, SysML Block Definition Diagram.

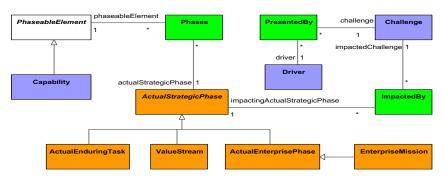


Figure 8:22 - Strategic Traceability

- ActualEnduringTask
- ActualEnterprisePhase
- ActualStrategicPhase
- Capability
- Challenge
- <u>Driver</u>
- EnterpriseMission
- ImpactedBy
- PhaseableElement
- <u>Phases</u>
- PresentedBy
- ValueStream

8.1.4 View Specifications::Operational

Stakeholders: Business Architects, Executives.

Concerns: illustrate the Logical Architecture of the enterprise.

Definition: describe the requirements, operational behavior, structure, and exchanges required to support (exhibit) capabilities. Defines all operational elements in an implementation/solution independent manner.

View Specifications::Operational::Taxonomy

Contains the diagrams that document the Operational Taxonomy View Specification.

View Specifications::Operational::Taxonomy::Operational Taxonomy

Stakeholders: Business Architects, Systems Engineers, Enterprise Architects, Owners responsible for Operational Agents.

Concerns: Operational Agent types.

Definition: shows the taxonomy of types of Operational Agents.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

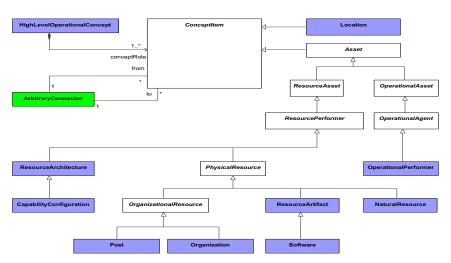


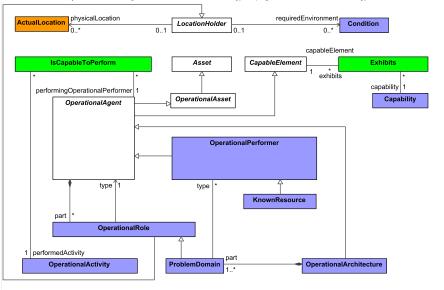
Figure 8:23 - Operational Taxonomy

- ArbitraryConnector
- Asset
- CapabilityConfiguration
- <u>ConceptItem</u>
- HighLevelOperationalConcept
- Location
- NaturalResource
- OperationalAgent
- OperationalAsset
- OperationalPerformer
- Organization
- OrganizationalResource
- PhysicalResource
- Post
- ResourceArchitecture
- ResourceArtifact
- ResourceAsset
- ResourcePerformer
- <u>Software</u>

View Specifications::Operational::Structure

Contains the diagrams that document the Operational Structure View Specification.

View Specifications::Operational::Structure::Operational Structure


 $Stakeholders:\ Business\ Architects,\ Systems\ Engineers,\ Enterprise\ Architects,\ Owners\ responsible\ for\ Operational\ Agents.$

Concerns: identifies the operational exchange requirements between nodes.

Definition: defines operational architecture and exchange requirements necessary to support a specific set of Capability(ies).

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

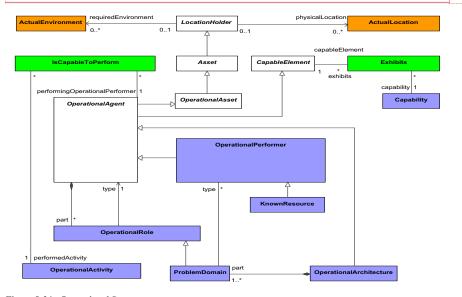


Figure 8:24 - Operational Structure

Elements

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM6]: https://issues.omg.org/browse/UAF13-55

- ActualLocation
- Asset
- Capability
- CapableElement
- Condition
- Exhibits
- IsCapableToPerform
- KnownResource
- <u>Knownkesource</u>
 <u>LocationHolder</u>
- Operational Activity
- OperationalAgent
- OperationalArchitecture
- OperationalAsset
- OperationalPerformer
- OperationalRole
- ProblemDomain

View Specifications::Operational::Connectivity

Contains the diagrams that document the Operational Connectivity View Specification.

View Specifications::Operational::Connectivity::Operational Connectivity

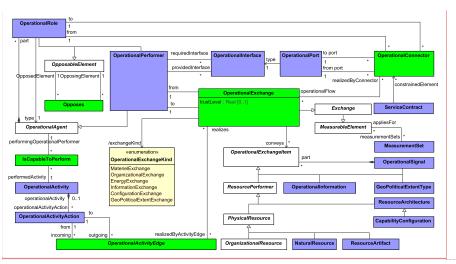
 $Stakeholders: Systems\ Engineers, Architects, Solution\ Providers.$

Concerns: capture the interfaces between OperationalPerformers.

Definition: summarizes logical exchanges between OperationalPerformers of information, systems, personnel, energy etc. and the logical activities that produce and consume them. Measurements can optionally be included.

Recommended Implementation: SysML Internal Block Diagram, tabular format.

Commented [AM7]:


Deleted: <#><u>ActualEnvironment</u>¶

Commented [AM8]:

Commented [AM9]:

Commented [AM10]:

Commented [AM11]: https://issues.omg.org/browse/UAF13-55

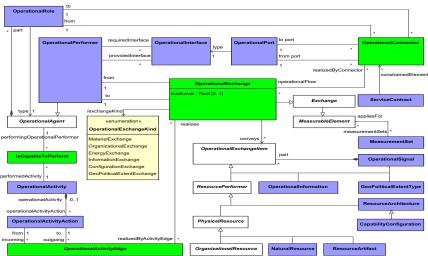


Figure 8:25 - Operational Connectivity

- <u>CapabilityConfiguration</u>
- Exchange
- GeoPoliticalExtentType
- <u>IsCapableToPerform</u>
- <u>MeasurableElement</u>
- MeasurementSet
- <u>NaturalResource</u>

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM12]: https://issues.omg.org/browse/UAF13-55

- OperationalActivity
- **Operational**ActivityAction
- $\underline{Operational Activity Edge}$
- **Operational Agent**
- OperationalConnector
- OperationalExchange
- OperationalExchangeItem
- OperationalInformation
- OperationalInterface
- OperationalPerformer
- **OperationalPort**
- **OperationalRole**
- OperationalSignal
- OpposableElement
- Opposes
- OrganizationalResource
- PhysicalResource
- ResourceArchitecture
- ResourceArtifact
- ResourcePerformer
- ServiceContract

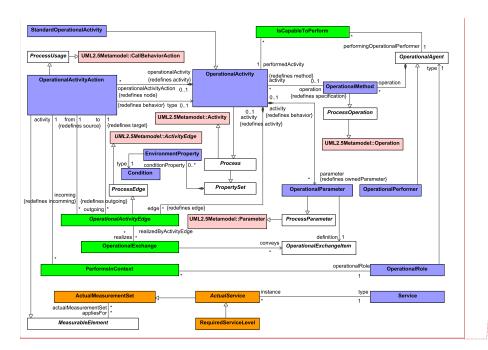
View Specifications::Operational::Processes

Contains the diagrams that document the Operational Processes View Specification.

View Specifications::Operational::Processes::Operational Processes

Stakeholders: Business Architect, Systems Engineers, Enterprise Architects

Concerns: captures activity based behavior and flows.


Definition: describes the activities that are normally conducted in the course of achieving business goals that support a capability. It describes operational activities, their Inputs/Outputs, operational activity actions and flows between them. Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

Formatted: Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0,63 cm + Indent at: 1,27 cm

Commented [AM13]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

Commented [AM14]: https://issues.omg.org/browse/UAF13-55

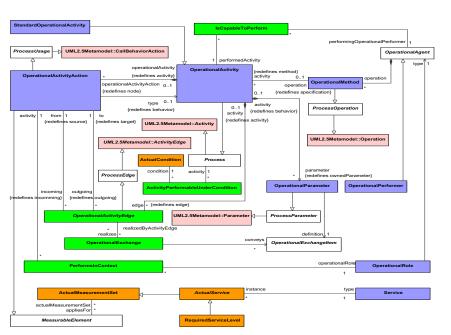


Figure 8:26 - Operational Processes

- ActualMeasurementSet
- ActualService
- Condition
- EnvironmentProperty
- <u>IsCapableToPerform</u>
- MeasurableElement
- OperationalActivity
- **Operational Activity Action**
- <u>OperationalActivityEdge</u>
- **Operational Agent**
- OperationalExchange
- $\underline{Operational Exchange Item}$
- OperationalMethod
- OperationalParameter
- OperationalPerformer
- **OperationalRole**
- PerformsInContext
- Process
- **ProcessEdge**
- ProcessOperation
- ProcessParameter
- ProcessUsage
- PropertySet

Deleted: <#>ActivityPerformableUnderCondition¶

Commented [AM15]:

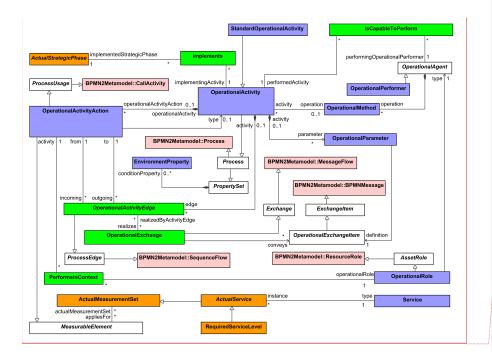
Commented [AM16]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

Commented [AM17]: https://issues.omg.org/browse/UAF13-55

- $\underline{RequiredServiceLevel}$
- Service
- StandardOperationalActivity
 UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction
- UML2.5Metamodel::Operation
 UML2.5Metamodel::Parameter


View Specifications::Operational::Processes::Operational Processes BPMN Semantics

Stakeholders: Business Architect, Enterprise Architects.

Concerns: captures activity based behavior and flows using BPMN notation.

Definition: describes the BPMN processes that are normally conducted in the course of achieving business goals that support a capability. It describes operational activities, their Inputs/Outputs, operational activity actions and flows between them using BPMN notation.

Recommended Implementation: BPMN Process Diagram.

Commented [AM18]: https://issues.omg.org/browse/UAF13-55

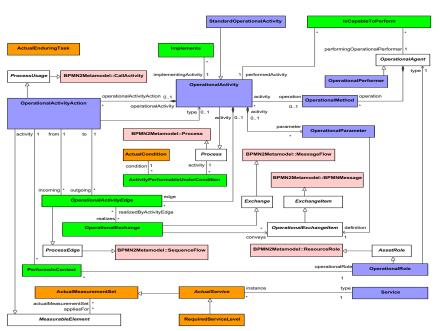


Figure 8:27 - Operational Processes BPMN Semantics

- ActualMeasurementSet
- ActualService
- ActualStrategicPhase
- AssetRole
- BPMN2Metamodel::BPMNMessage
- BPMN2Metamodel::CallActivity BPMN2Metamodel::MessageFlow
- BPMN2Metamodel::Process
- BPMN2Metamodel::ResourceRole
- BPMN2Metamodel::SequenceFlow
- EnvironmentProperty
- Exchange
- ExchangeItem
- **Implements**
- <u>IsCapableToPerform</u>
- MeasurableElement
- $\underline{Operational Activity}$
- <u>OperationalActivityAction</u> OperationalActivityEdge
- OperationalAgent
- OperationalExchange
- $\underline{Operational Exchange Item}$
- OperationalMethod

Deleted: 1

45

ActivityPerformableUnderCondition

ActualCondition

ActualEnduringTask

Commented [AM19]: https://issues.omg.org/browse/UAF13-55

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

- OperationalParameter
- OperationalPerformer
- OperationalRole
- PerformsInContext
- Process
- ProcessEdge
- ProcessUsage
- Processusage
 PropertySet
- RequiredServiceLevel
- Service
- StandardOperationalActivity

View Specifications::Operational::Processes::Operational Processes: Mission Threads

Stakeholders: Business Architect, Systems Engineers, Enterprise Architects

Concerns: captures activity based behavior and flows.

Definition: describes the activities that are normally conducted in the course of achieving business goals that support a capability. It describes operational activities, their Inputs/Outputs, operational activity actions and flows between them.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

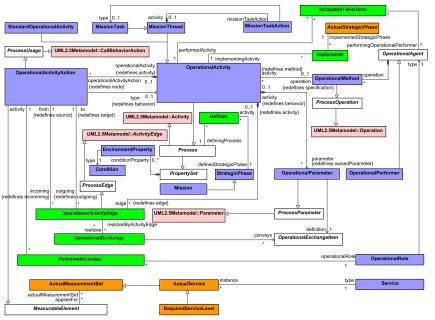


Figure 1:29 - Operational Processes: Mission Threads

Elements

- ActualMeasurementSet
- ActualService
- ActualStrategicPhase

Commented [AM20]: https://issues.omg.org/browse/UAF13-55

- Condition
- Defines
- EnvironmentProperty
- **Implements**
- IsCapableToPerform
- MeasurableElement
- Mission
- MissionTask
- MissionTaskAction
- MissionThread
- Operational Activity
- **Operational**ActivityAction
- **Operational**ActivityEdge
- **Operational Agent**
- OperationalExchange
- OperationalExchangeItem
- OperationalMethod
- OperationalParameter
- OperationalPerformer
- OperationalRole
- PerformsInContext
- Process
- ProcessEdge
- ProcessOperation
- ProcessParameter
- ProcessUsage
- PropertySet
- RequiredServiceLevel Service
- StandardOperationalActivity
- StrategicPhase
- UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction UML2.5Metamodel::Operation
- UML2.5Metamodel::Parameter

View Specifications::Operational::States

Contains the diagrams that document the Operational States View Specification.

View Specifications::Operational::States::Operational States

Stakeholders: Systems Engineers, Software Engineers.

Concerns: capture state-based behavior of an operational OperationalPerformer.

Definition: it is a graphical representation of states of an operational OperationalPerformer and how that operational OperationalPerformer responds to various events and actions.

Recommended Implementation: SysML State Machine Diagram.

Commented [AM21]: https://issues.omg.org/browse/UAF13-55

Formatted: Indent: Left: 0 cm, First line: 0 cm

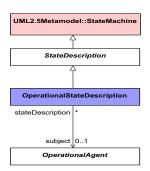


Figure 8:28 - Operational States

- OperationalAgent
- OperationalStateDescription
- StateDescription
- UML2.5Metamodel::StateMachine

View Specifications::Operational::Sequences

Contains the diagrams that document the Operational Sequences View Specification.

View Specifications::Operational::Sequences::Operational Sequences

Stakeholders: Systems Engineers, Business Architects.

Concerns: express a time ordered examination of the operational exchanges as a result of a particular operational scenario.

Definition: provides a time-ordered examination of the operational exchanges between participating nodes (OperationalPerformer roles) as a result of a particular operational scenario.

Recommended Implementation: SysML Sequence Diagram, BPMN Collaboration Diagram.

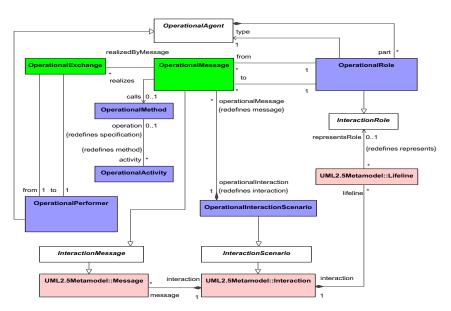
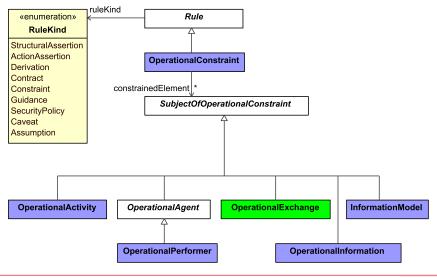


Figure 8:29 - Operational Sequences

- <u>InteractionMessage</u>
- InteractionRole
- InteractionScenario
- OperationalActivity
- OperationalAgent
- OperationalExchange
- OperationalInteractionScenario
- OperationalMessage
- OperationalMethod
- OperationalPerformer
- OperationalRole
- UML2.5Metamodel::Interaction
- UML2.5Metamodel::Lifeline
- UML2.5Metamodel::Message

View Specifications::Operational::Constraints

Contains the diagrams that document the Operational Constraints View Specification.


View Specifications::Operational::Constraints::Operational Constraints

Stakeholders: Systems Engineers, Architects, Program Sponsors

Concerns: define operational limitations, constraints and performance parameters for the enterprise.

Definition: specifies traditional textual operational or business rules that are constraints on the way that business is done in the enterprise. The addition of SysML parametrics provides a computational means of defining operational constraints across the enterprise or within a specific operational context.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Parametric Diagram.

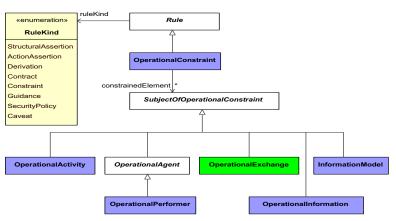


Figure 8:30 - Operational Constraints

Elements

- <u>InformationModel</u>
- Operational Activity
- OperationalAgent
- OperationalConstraint
- OperationalExchange
- OperationalInformation

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM22]: https://issues.omg.org/browse/UAF13-55

- OperationalPerformer
- Rule
- SubjectOfOperationalConstraint

View Specifications::Operational::Traceability

Contains the diagrams that document the Operational Traceability View Specification.

View Specifications::Operational::Traceability::Operational Traceability

Stakeholders: PMs, Enterprise Architects, Business Architects.

Concerns: traceability between capabilities and operational activities and capabilities and operational agents.

Definition: describes the mapping between the capabilities required by an Enterprise and the supporting operational activities and operational agents.

Recommended Implementation: matrix format, SysML Block Definition Diagram.

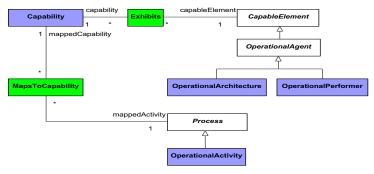


Figure 8:31 - Operational Traceability

Elements

- <u>Capability</u>
- CapableElement
- Exhibits
- MapsToCapability
- Operational Activity
- Operational Agent
- OperationalArchitecture
- OperationalPerformer
- Process

8.1.5 View Specifications::Services

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects.. Concerns: specifications of services required to exhibit a Capability.

Definition: shows Service Specifications and required and provided service levels of these specifications required to exhibit a Capability or to support an Operational Activity.

View Specifications::Services::Taxonomy

Contains the diagrams that document the Services Taxonomy View Specification.

View Specifications::Services::Taxonomy::Services Taxonomy

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Concerns: service specification types and required and provided service levels of these types.

Definition: shows the taxonomy of types of services and the level of service that they are expected to provide or are required to meet through the display of ActualMeasurements associated with the Provided and Required Service Level. Recommended Implementation: SysML Block Definition Diagram.

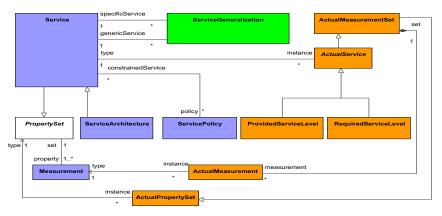


Figure 8:32 - Services Taxonomy

Elements

- ActualMeasurement
- ActualMeasurementSet
- ActualPropertySet
- ActualService
- Measurement
- <u>PropertySet</u>
- <u>ProvidedServiceLevel</u>
- RequiredServiceLevel
- <u>Service</u>
- ServiceArchitecture
- ServiceGeneralization
- ServicePolicy

View Specifications::Services::Structure

Contains the diagrams that document the Services Structure View Specification.

View Specifications::Services::Structure::Services Structure

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: combination of services required to exhibit a capability.

Definition: shows the composition of services and how services are combined into a higher level service required to exhibit a capability or support an operational activity.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

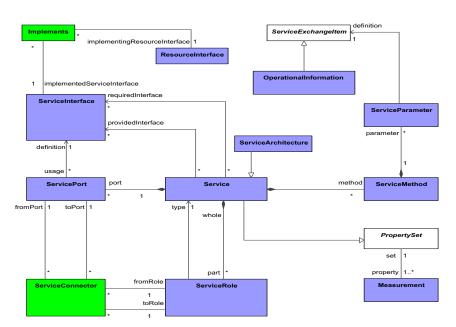


Figure 8:33 - Services Structure

- <u>Implements</u>
- Measurement
- OperationalInformation
- PropertySet
- ResourceInterface
- <u>Service</u>
- Service Architecture
- <u>ServiceConnector</u>
- <u>ServiceExchangeItem</u>
- <u>ServiceInterface</u>
- <u>ServiceMethod</u>
- <u>ServiceParameter</u>
- ServicePort
- ServiceRole

View Specifications::Services::Connectivity

Contains the diagrams that document the Services Connectivity View Specification.

View Specifications::Services::Connectivity::Services Connectivity

 $Stakeholders: Solution\ Providers,\ Systems\ Engineers,\ Software\ Architects,\ Business\ Architects.$

Concerns: interoperability among services

Definition: specifies service interfaces, e.g. provided and required service operations, to ensure compatibility and reusability of services.

Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram, tabular format.

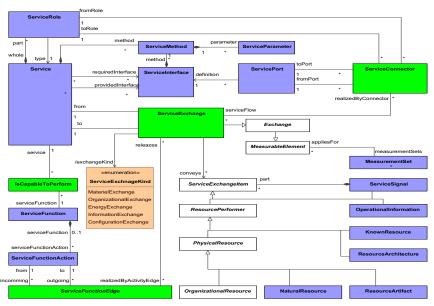


Figure 8:34 - Services Connectivity

Elements

- Exchange IsCapableToPerform
- KnownResource
- MeasurableElement
- $\underline{MeasurementSet}$
- NaturalResource
- OperationalInformation
- OrganizationalResource
- PhysicalResource
- ResourceArchitecture
- $\underline{ResourceArtifact}$
- $\underline{ResourcePerformer}$
- Service
- ServiceConnector
- ServiceExchange
- ServiceExchangeItem
- ServiceFunction
- ServiceFunctionAction
- $\underline{ServiceFunctionEdge}$
- ServiceInterface
- ServiceMethod
- ServiceParameter
- ServicePort
- ServiceRole

• ServiceSignal

View Specifications::Services::Processes

Contains the diagrams that document the Services Processes View Specification.

View Specifications::Services::Processes::Services Processes

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service in terms of the operational activities it is expected to support.

Definition: provides detailed information regarding the allocation of service functions to service specifications, and data flows between service functions.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

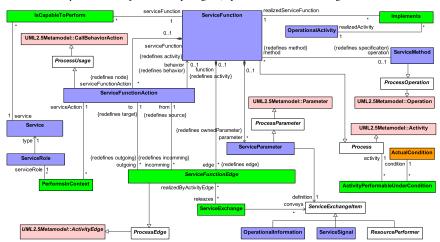


Figure 8:35 - Services Processes

Elements

- <u>ActivityPerformableUnderCondition</u>
- <u>ActualCondition</u>
- <u>Implements</u>
- IsCapableToPerform
- Operational Activity
- OperationalInformation
- PerformsInContext
- <u>Process</u>
- ProcessEdge
- ProcessOperation
- ProcessParameter
- <u>ProcessUsage</u>
- ResourcePerformer
- Service
- <u>ServiceExchange</u>
- ServiceExchangeItem
- <u>ServiceFunction</u>
- ServiceFunctionAction

- ServiceFunctionEdge
- ServiceMethod
- ServiceParameter
- ServiceRole
- ServiceSignal
- UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction
- UML2.5Metamodel::Operation
- UML2.5Metamodel::Parameter

View Specifications::Services::Processes::Services Processes BPMN Semantics

Stakeholders: Solution Providers, Software Architects, Business Architects.

Concerns: the behavior of a service in terms of the operational activities it is expected to support.

Definition: provides detailed information regarding the allocation of service functions to service specifications, and data flows between service functions using BPMN.

Recommended Implementation: BPMN Process Diagram, SysML Block Definition Diagram.

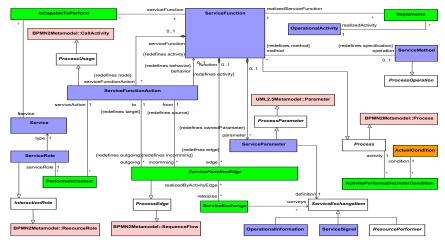


Figure 8:36 - Services Processes BPMN Semantics

Elements

- ActivityPerformableUnderCondition
- ActualCondition
- BPMN2Metamodel::CallActivity
- BPMN2Metamodel::Process
- BPMN2Metamodel::ResourceRole
- BPMN2Metamodel::SequenceFlow
- <u>Implements</u>
- InteractionRole
- IsCapableToPerform
- Operational Activity
- OperationalInformation
- PerformsInContext

- Process
- ProcessEdge
- ProcessOperation
- ProcessParameter
- ProcessUsage
- ResourcePerformer
- Service
- ServiceExchange
- <u>ServiceExchangeItem</u>
- ServiceFunction
- ServiceFunctionAction
- <u>ServiceFunctionEdge</u>
- ServiceMethod
- ServiceParameter
- ServiceRole
- ServiceSignal
- UML2.5Metamodel::Parameter

View Specifications::Services::States

Contains the diagrams that document the Services States View Specification.

View Specifications::Services::States::Services States

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service specification in terms of states and events causing transitions between states. Definition: specifies the possible states a service specification may have, and the possible transitions between those states

Recommended Implementation: SysML State Machine Diagram.

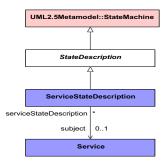


Figure 8:37 - Services States

Elements

- Service
- <u>ServiceStateDescription</u>
- <u>StateDescription</u>
- UML2.5Metamodel::StateMachine

View Specifications::Services::Sequences

Contains the diagrams that document the Services Sequences View Specification.

View Specifications::Services::Sequences::Services Sequences

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: the behavior of a service specification in terms of expected time-ordered examination of the interactions between service roles.

Definition: specifies how a service roles interact with each other, service providers and consumers, and the sequence and dependencies of those interactions.

Recommended Implementation: SysML Sequence Diagram.

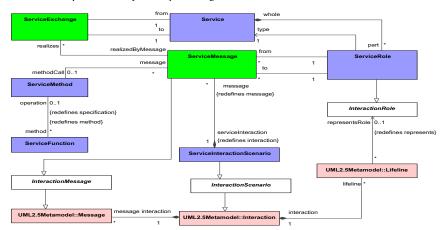


Figure 8:38 - Services Sequences

Elements

- InteractionMessage
- <u>InteractionRole</u>
- InteractionScenario
- Service
- <u>ServiceExchange</u>
- <u>ServiceFunction</u>
- <u>ServiceInteractionScenario</u>
- ServiceMessage
- ServiceMethod
- ServiceRole
- UML2.5Metamodel::Interaction
- UML2.5Metamodel::Lifeline
- UML2.5Metamodel::Message

View Specifications::Services::Constraints

Contains the diagrams that document the Services Constraints View Specification.

View Specifications::Services::Constraints::Services Constraints

 $Stakeholders: Solution\ Providers,\ Systems\ Engineers,\ Software\ Architects,\ Business\ Architects.$

Concerns: service policies that apply to implementations of service specifications.

Definition: specifies traditional textual service policies that are constraints on the way that service specifications are implemented within resources. The addition of SysML parametrics provide a computational means of defining service policies across the enterprise or within a specific service configuration.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Recommended Implementation: tabular format, SysML Parametric Diagram.

Figure 8:39 - Services Constraints

Elements

- OperationalConnector
- Rule
- Service
- ServiceContract
- <u>ServicePolicy</u>

View Specifications::Services::Roadmap

Contains the diagrams that document the Services Roadmap View Specification.

View Specifications::Services::Roadmap::Services Roadmap

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: service specification changes over time.

Definition: provides an overview of how a service specification changes over time. It shows the combination of several service specifications mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

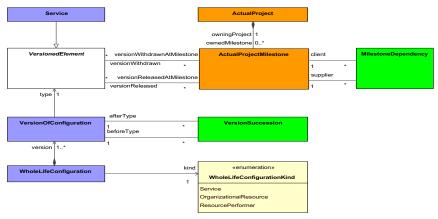


Figure 8:40 - Services Roadmap

Elements

ActualProject

- ActualProjectMilestone
- MilestoneDependency
- <u>Service</u>
- VersionedElement
- VersionOfConfiguration
- VersionSuccession
- WholeLifeConfiguration

View Specifications::Services::Traceability

Contains the diagrams that document the Services Traceability View Specification.

View Specifications::Services::Traceability::Services Traceability

Stakeholders: Solution Providers, Systems Engineers, Software Architects, Business Architects.

Concerns: traceability between operational activities and service specifications that support them.

Definition: depicts the mapping of service specifications to operational activities and how service specifications contribute to the achievement of a capability.

Recommended Implementation: tabular or matrix format.

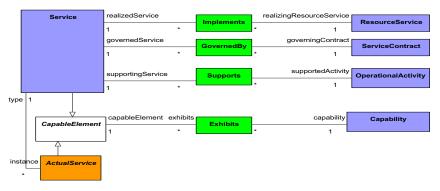


Figure 8:41 - Services Traceability

Elements

- <u>ActualService</u>
- Capability
- CapableElement
- Exhibits
- GovernedBy
- Implements
- Operational Activity
- ResourceService
- <u>Service</u>
- <u>ServiceContract</u>
- Supports

8.1.6 View Specifications::Personnel

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: human factors.

Definition: aims to clarify the role of Human Factors (HF) when creating architectures in order to facilitate both Human Factors Integration (HFI) and systems engineering (SE).

View Specifications::Personnel::Taxonomy

Contains the diagrams that document the Personnel Taxonomy View Specification.

View Specifications::Personnel::Taxonomy::Personnel Taxonomy

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: organizational resource types.

Definition: shows the taxonomy of types of organizational resources. Recommended Implementation: SysML Block Definition Diagram.

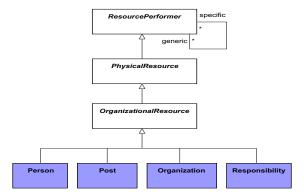


Figure 8:42 - Personnel Taxonomy

Elements

- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourcePerformer
- Responsibility

View Specifications::Personnel::Structure

Contains the diagrams that document the Personnel Structure View Specification.

View Specifications::Personnel::Structure::Personnel Structure

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: typical organizational structure used to support a capability(ies).

Definition: shows organizational structures and possible interactions between organizational resources. Recommended Implementation: SysML Block Definition Diagram, SysML Internal Block Diagram.

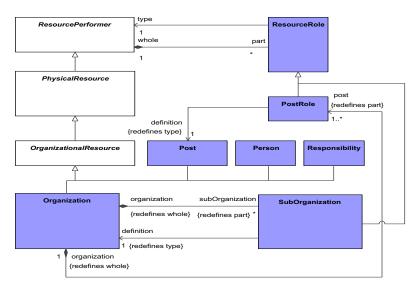


Figure 8:43 - Personnel Structure

- Organization OrganizationalResource
- Person
- PhysicalResource
- Post
- PostRole
- ResourcePerformer
- ResourceRole
- Responsibility
- SubOrganization

View Specifications::Personnel::Connectivity

Contains the diagrams that document the Personnel Connectivity View Specification.

View Specifications::Personnel::Connectivity::Personnel Connectivity

Stakeholders: Solution providers.

Concerns: interaction of organizational resources.

Definition: captures the possible interactions between organizational resources, including command and control relationships. Interactions typically illustrate the fundamental roles and management responsibilities.

Recommended Implementation: tabular format.

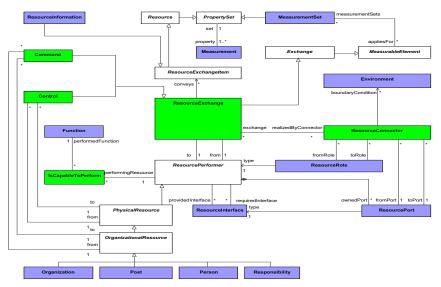
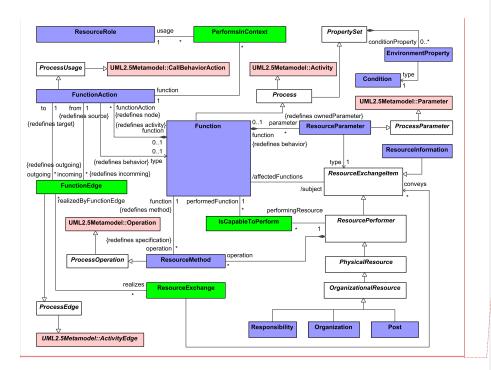


Figure 8:44 - Personnel Connectivity

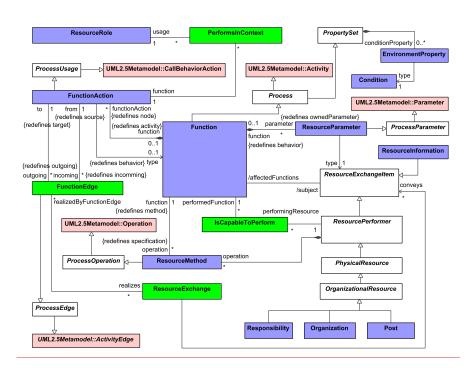
- Command Control
- **Environment**
- Exchange Function
- $\underline{IsCapableToPerform}$
- MeasurableElement
- Measurement
- $\underline{MeasurementSet}$
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- PropertySet
- Resource
- ResourceConnector
- $\underline{ResourceExchange}$
- ResourceExchangeItem ResourceInformation
- ResourceInterface
- ResourcePerformer
- $\underline{ResourcePort}$
- ResourceRole
- Responsibility

View Specifications::Personnel::Processes

Contains the diagrams that document the Personnel Processes View Specification.


View Specifications::Personnel::Processes::Personnel Processes

Stakeholders: Systems engineers, Solution providers.


Concerns: functions that have to be carried out by organizational resources.

Definition: specifies organizational resource functions in relation to resource definitions.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram, BPMN Process Diagram as described in the Resources Processes section.

Commented [AM23]: https://issues.omg.org/browse/UAF13-55

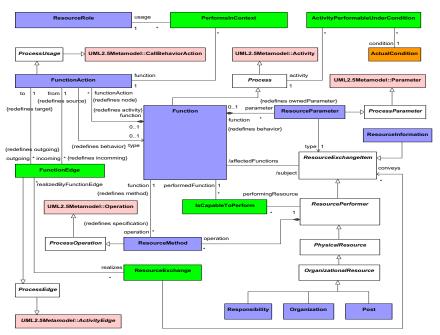


Figure 8:45 - Personnel Processes

- Condition
- EnvironmentProperty
- Function
- <u>FunctionAction</u>
- <u>FunctionEdge</u>
- $\bullet \quad \underline{Is Capable To Perform}$
- <u>Organization</u>
- OrganizationalResource
- PerformsInContext
- <u>PhysicalResource</u>
- Post
- Process
- <u>ProcessEdge</u>
- ProcessOperation
- ProcessParameter
- ProcessUsage
- PropertySet
- ResourceExchange
- ResourceExchangeItemResourceInformation
- ResourceMethod
- ResourceParameter
- Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM24]: https://issues.omg.org/browse/UAF13-55

Deleted: ActivityPerformableUnderCondition¶

Commented [AM25]: https://issues.omg.org/browse/UAF13-55

67

- ResourcePerformer
- ResourceRole
- Responsibility
- UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction
- UML2.5Metamodel::Operation
- UML2.5Metamodel::Parameter

View Specifications::Personnel::States

Contains the diagrams that document the Personnel States View Specification

View Specifications::Personnel::States::Personnel States

Stakeholders: Systems Engineers, Software Engineers.

Concerns: capture state-based behavior of an organizational resource.

Definition: it is a graphical representation of states of an organizational resource and how that organizational resource responds to various events and actions.

Recommended Implementation: SysML State Machine Diagram.

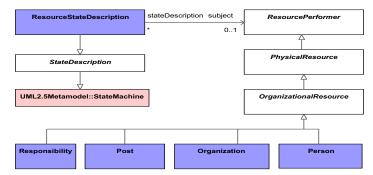


Figure 8:46 - Personnel States

Elements

- <u>Organization</u>
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourcePerformer
- ResourceStateDescription
- Responsibility
- StateDescription
- UML2.5Metamodel::StateMachine

View Specifications::Personnel::Sequences

Contains the diagrams that document the Personnel Sequences View Specification.

View Specifications::Personnel::Sequences::Personnel Sequences

Stakeholders: Software Engineers, Systems Engineers.

Concerns: interactions between organizational resources (roles).

Definition: provides a time-ordered examination of the interactions between organizational resources.

Recommended Implementation: SysML Sequence Diagram, BPMN Collaboration Diagram.

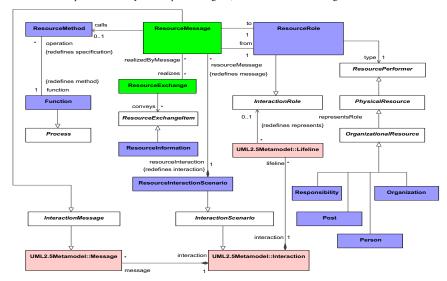


Figure 8:47 - Personnel Sequences

- <u>Function</u>
- InteractionMessage
- <u>InteractionRole</u>
- InteractionScenario
- <u>Organization</u>
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- <u>Process</u>
- ResourceExchange
- ResourceExchangeItem
- ResourceInformation
- ResourceInteractionScenario
- ResourceMessage
- ResourceMethod
- ResourcePerformer
- ResourceRole
- Responsibility
- UML2.5Metamodel::Interaction
- UML2.5Metamodel::Lifeline
- UML2.5Metamodel::Message

View Specifications::Personnel::Constraints

Contains the diagrams that document the Personnel Constraints View Specification.

View Specifications::Personnel::Constraints::Personnel Constraints: Competence

Stakeholders: Systems engineers, Solution providers.

Concerns: allocation of competencies to actual posts.

Definition: specifies requirements for actual organizational resources – by linking competencies and actual posts. Recommended Implementation: SysML Block Definition Diagram.

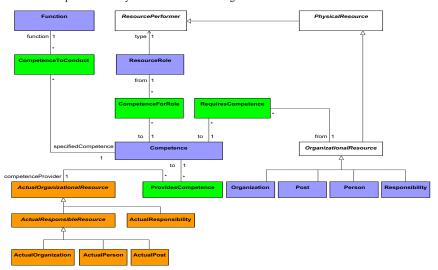
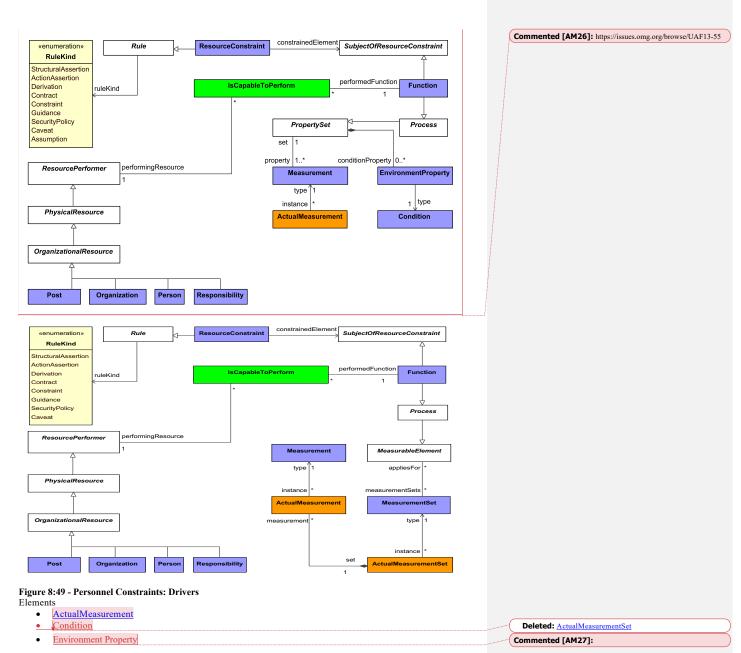


Figure 8:48 - Personnel Constraints: Competence

- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualResponsibility
- ActualResponsibleResource
- <u>Competence</u>
- <u>CompetenceForRole</u>
- CompetenceToConduct
- Function
- Organization
- OrganizationalResource
- Person
- <u>PhysicalResource</u>
- Post
- ProvidesCompetence
- RequiresCompetence
- ResourcePerformer
- ResourceRole

• Responsibility


View Specifications::Personnel::Constraints::Personnel Constraints: Drivers

Stakeholders: Systems engineers, Solution providers, Human resources.

Concerns: optimization of organizational resource behavior.

Definition: captures the factors that affect, constrain and characterize organizational resource behavior as the basis for performance predictions at the level of actual persons and actual organizations. It creates a bridge between static architectural definitions and behavior predictions through executable models.

Recommended Implementation: tabular format, SysML Parametric Diagram, SysML Block Definition Diagram.

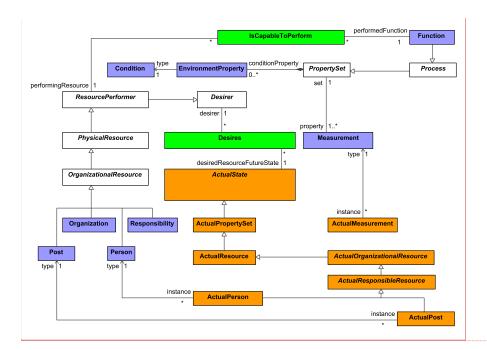
- Function
- IsCapableToPerform
- Measurement
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Process
- PropertySet
 ResourceConstraint
- ResourcePerformer
- Responsibility
- Rule
- SubjectOfResourceConstraint

View Specifications::Personnel::Constraints::Personnel Constraints: Performance

Stakeholders: Human resources, solution providers.

Concerns: how well an actual organizational resource matches the needs of the actual organization.

Definition: provides a repository for human-related measures (i.e. quality objectives and performance criteria (HFI values)), targets and competences.


Recommended Implementation: SysML Block Definition Diagram.

Deleted: <#>MeasurableElement

 $\textbf{Deleted:} < \# > \underline{MeasurementSet} \P$

Commented [AM28]: https://issues.omg.org/browse/UAF13-55

Commented [AM29]: https://issues.omg.org/browse/UAF13-55

Commented [AM30]: https://issues.omg.org/browse/UAF13-55

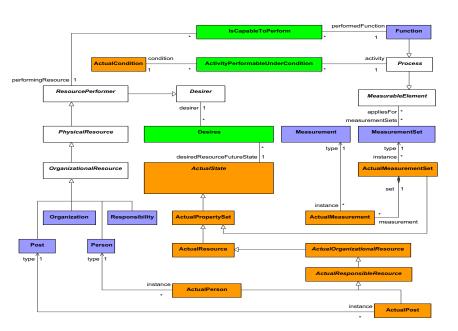


Figure 8:50 - Personnel Constraints: Performance

- ActualMeasurement
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualPropertySet
- $\underline{Actual Resource}$
- $\underline{Actual Responsible Resource}$
- ActualState
- Condition
- Desirer
- Desires
- **EnvironmentProperty** Function
- IsCapableToPerform
- Measurement Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Process
- PropertySet
- ResourcePerformer

Deleted: <#>ActivityPerformableUnderCondition¶

Commented [AM31]:

Commented [AM32]: https://issues.omg.org/browse/UAF13-55

Commented [AM33]: https://issues.omg.org/browse/UAF13-55

Commented [AM34]: https://issues.omg.org/browse/UAF13-55

Commented [AM35]: https://issues.omg.org/browse/UAF13-55 Deleted: <#>MeasurableElement

Deleted: <#>MeasurementSet

Commented [AM36]: https://issues.omg.org/browse/UAF13-55

• Responsibility

View Specifications::Personnel::Roadmap

Contains the diagrams that document the Personnel Roadmap View Specification.

View Specifications::Personnel::Roadmap::Personnel Roadmap: Availability

Stakeholders: Human Resources, Training, Logisticians, Solution Providers.

Concerns: the staffing and training of resources.

Definition: defines the requirements and functions to ensure that actual persons with the right competencies, and in the right numbers, are available to fulfill actual posts.

Recommended Implementation: Timeline, SysML Block Definition Diagram.

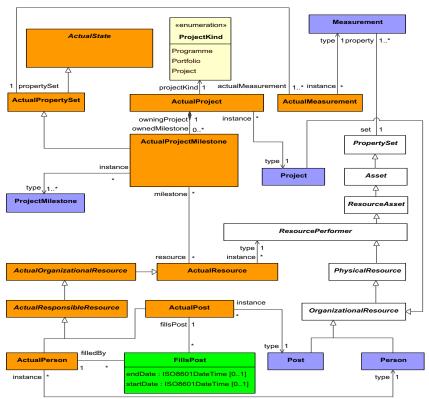


Figure 8:51 - Personnel Roadmap: Availability

- ActualMeasurement
- ActualOrganizationalResource
- ActualPerson
- ActualPost

- ActualProject
- ActualProjectMilestone
- ActualPropertySet
- ActualResource
- ActualResponsibleResource
- ActualState
- Asset
- FillsPost
- Measurement
- OrganizationalResource
- Person
- PhysicalResource
- Post
- Project
- ProjectMilestone
- <u>PropertySet</u>
- ResourceAsset
- ResourcePerformer

View Specifications::Personnel::Roadmap::Personnel Roadmap: Evolution

Stakeholders: Human resources, Solution Providers.

Concerns: organizational structure changes over time.

Definition: provides an overview of how an organizational structure changes over time. It shows the structure of several organizational structures mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

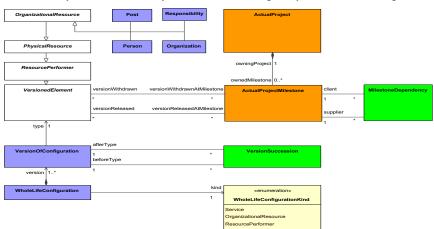


Figure 8:52 - Personnel Roadmap: Evolution

- <u>ActualProject</u>
- ActualProjectMilestone
- MilestoneDependency
- Organization
- OrganizationalResource

- Person
- PhysicalResource
- Post
- ResourcePerformer
- Responsibility
- VersionedElement
- VersionOfConfiguration
- VersionSuccession
- WholeLifeConfiguration

View Specifications::Personnel::Roadmap::Personnel Roadmap: Forecast

Stakeholders: Human resources, Logisticians, Solution Providers.

Concerns: competencies and skills forecast.

Definition: defines the underlying current and expected supporting competencies and skills of organizational resources. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

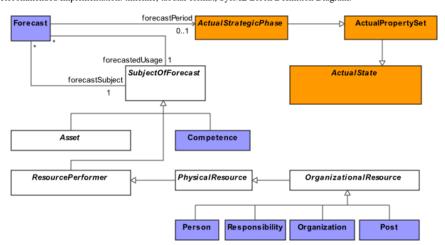


Figure 8:53 - Personnel Roadmap: Forecast

- ActualStrategicPhase
- ActualPropertySet
- ActualState
- Asset
- Competence
- Forecast
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourcePerformer
- Responsibility
- SubjectOfForecast

View Specifications::Personnel::Traceability

Contains the diagrams that document the Personnel Traceability View Specification.

View Specifications::Personnel::Traceability::Personnel Traceability

Stakeholders: Systems Engineers, Enterprise Architects, Solution Providers, Business Architects.

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions (performed by organizational resources) to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by an organizational resource or solution.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

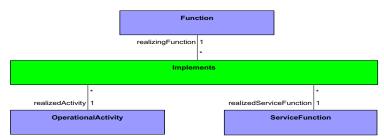


Figure 8:54 - Personnel Traceability

Elements

- Function
- Implements
- Operational Activity
- ServiceFunction

8.1.7 View Specifications::Resources

Stakeholders: Systems Engineers, Resource Owners, Implementers, Solution Providers, IT Architects.

Concerns: definition of solution architectures to implement operational requirements.

Definition: captures a solution architecture consisting of resources, e.g. organizational, software, artifacts, capability configurations, natural resources that implement the operational requirements. Further design of a resource is typically detailed in SysML or UML.

View Specifications::Resources::Taxonomy

Contains the diagrams that document the Resources Taxonomy View Specification.

View Specifications::Resources::Taxonomy::Resources Taxonomy

Stakeholders: Solution Providers, Systems Engineers, IT Architects, Implementers.

Concerns: resource types.

Definition: shows the taxonomy of types of resources.

Recommended Implementation: SysML Block Definition Diagram.

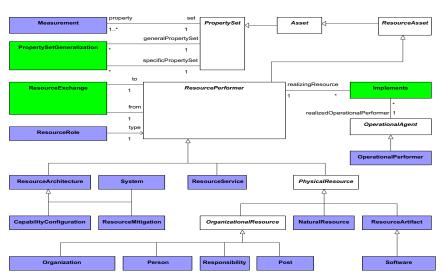


Figure 8:55 - Resources Taxonomy Elements

- CapabilityConfiguration
- Implements
- Measurement
- NaturalResource
- OperationalAgent
- $\underline{Operational Performer}$
- Organization
- $\underline{Organizational Resource}$
- Person
- $\underline{PhysicalResource}$
- Post
- PropertySet
- PropertySetGeneralization
- $\underline{Resource Architecture}$
- $\underline{ResourceArtifact}$
- $\underline{ResourceAsset}$
- $\underline{ResourceExchange}$
- ResourceMitigation
- ResourcePerformer
- $\underline{ResourceRole}$
- ResourceService
- Responsibility
- Software
- System

View Specifications::Resources::Structure

Contains the diagrams that document the Resources Structure View Specification.

View Specifications::Resources::Structure::Resources Structure

Stakeholders: Systems Engineers, Resource Owners, Implementers, Solution Providers.

Concerns: reference the resource structure, connectors and interfaces in a specific context.

Definition: defines the physical resources, e.g. capability configuration(s)/system(s) and interactions necessary to implement a specific set of OperationalPerformer(s). Can be used to represent communications networks and pathways that link communications resources and provides details regarding their configuration.

Recommended Implementation: SysML Internal Block Diagram, SysML Bock Definition Diagram.

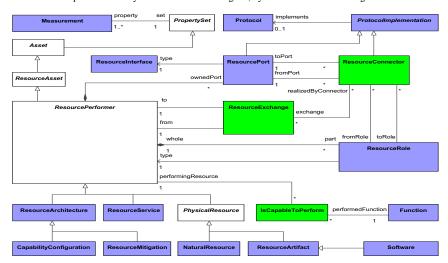


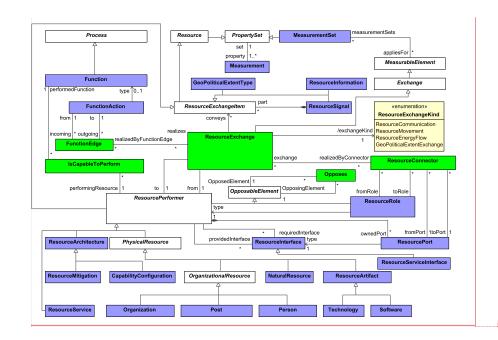
Figure 8:56 - Resources Structure

- Asset
- <u>CapabilityConfiguration</u>
- Function
- IsCapableToPerform
- Measurement
- NaturalResource
- **PhysicalResource**
- PropertySet
- Protocol
- <u>ProtocolImplementation</u>
- ResourceArchitecture
- ResourceArtifact
- ResourceAsset
- ResourceConnector
- ResourceExchange
- ResourceInterface
- ResourceMitigation
- ResourcePerformer

- ResourcePort
- ResourceRole
- ResourceService
- <u>Software</u>

View Specifications::Resources::Connectivity

Contains the diagrams that document the Resources Connectivity View Specification.


View Specifications::Resources::Connectivity::Resources Connectivity

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implementers.

Concerns: capture the interactions between resources.

Definition: summarizes interactions between resources of information, systems, personnel, natural resources etc. and the functions that produce and consume them. Measurements can optionally be included.

Recommended Implementation: SysML Internal Block Diagram, tabular format...

Commented [AM37]: https://issues.omg.org/browse/UAF13-55

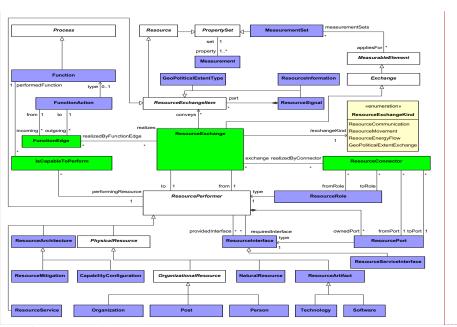


Figure 8:57 - Resources Connectivity

- CapabilityConfiguration
- Exchange
- **Function**
- **FunctionAction**
- <u>FunctionEdge</u>
- GeoPoliticalExtentType
- $\underline{IsCapableToPerform}$
- MeasurableElement
- Measurement
- MeasurementSet
- NaturalResource
- OpposableElement
- Opposes
- Organization
- OrganizationalResource
- Person
- PhysicalResource <u>Post</u>
- Process
- PropertySet
- Resource
- ResourceArchitecture
- ResourceArtifact
- ResourceConnector

Commented [AM38]: https://issues.omg.org/browse/UAF13-55

Formatted: Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0,63 cm + Indent at: 1,27 cm

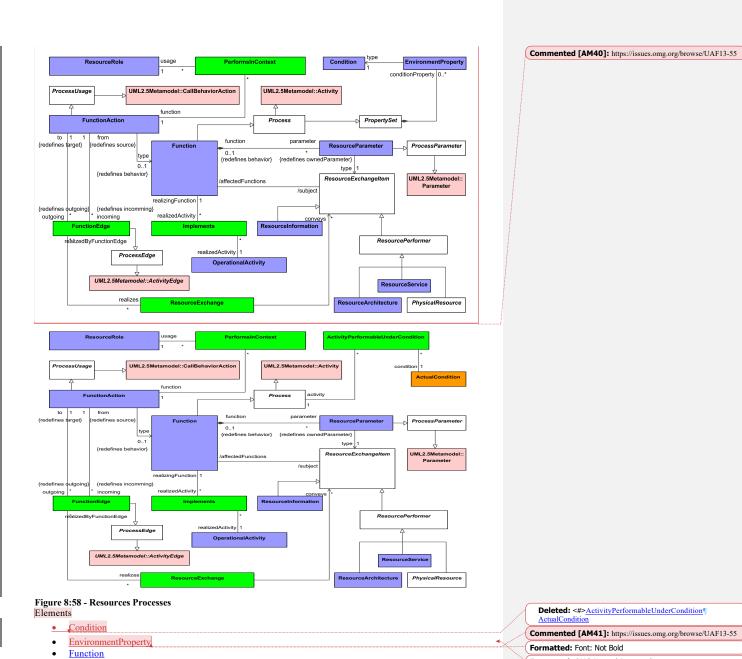
Commented [AM39]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

- $\underline{Resource Exchange}$
- ResourceExchangeItem
- ResourceInformation
- ResourceInterface
- ResourceMitigation
- ResourcePerformer
- ResourcePort
- ResourceRole
- ResourceService
- $\underline{Resource Service Interface}$
- ResourceSignal
- Software
- Technology

View Specifications::Resources::Processes


Contains the diagrams that document the Resources Processes View Specification.

View Specifications::Resources::Processes::Resources Processes

Stakeholders: Solution Providers, Systems Engineers, IT Architects.

Concerns: captures activity based behavior and flows.

Definition: describes the functions that are normally conducted in the course of implementing operational activity(ies) in support of capability(ies). It describes the functions, their Inputs/Outputs, function actions and flows between them. $Recommended\ Implementation:\ SysML\ Activity\ Diagram,\ SysML\ Block\ Definition\ Diagram.$

Formatted: OMG Normal Paragraph

- FunctionAction
- FunctionEdge
- Implements
- Operational Activity
- PerformsInContext
- PhysicalResource
- Process
- ProcessEdge
- ProcessParameter
- ProcessUsage
- PropertySet
- ResourceArchitecture
- ResourceExchange
- ResourceExchangeItem
- ResourceInformation
- ResourceParameter
- ResourcePerformer
- ResourceRole
- ResourceService
- UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction
- UML2.5Metamodel::Parameter

View Specifications::Resources::Processes::Resources Processes BPMN Semantics

Stakeholders: Solution Providers, IT Architects.

Concerns: captures activity based behavior and flows using BPMN.

Definition: describes the functions that are normally conducted in the course of implementing operational activity(ies) in support of capability(ies). It describes the functions, their Inputs/Outputs, function actions and flows between them using RPMN

Recommended Implementation: BPMN Process Diagram.

Commented [AM42]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

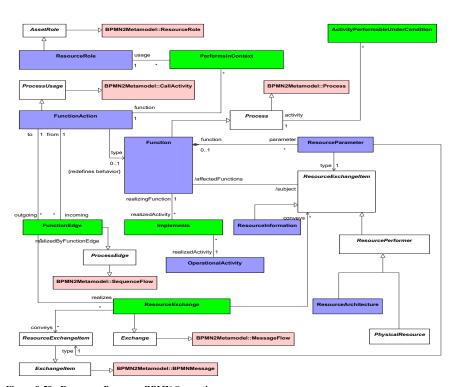


Figure 8:59 - Resources Processes BPMN Semantics

- ActivityPerformableUnderCondition
- AssetRole
- BPMN2Metamodel::BPMNMessage
- BPMN2Metamodel::CallActivity
- BPMN2Metamodel::MessageFlow
- BPMN2Metamodel::Process
- BPMN2 Metamodel:: Resource Role
- BPMN2Metamodel::SequenceFlow
- Exchange
- ExchangeItem
- Function
- <u>FunctionAction</u>
- FunctionEdge
- **Implements**
- OperationalActivity
- PerformsInContext
- PhysicalResource
- Process
- ProcessEdge

- ProcessUsage
- ResourceArchitecture
- ResourceExchange
- ResourceExchangeItem
- ResourceInformation
- ResourceParameter
- ResourcePerformer
- ResourceRole

View Specifications::Resources::Processes::Resources Processes: Mission Engineering Threads

Stakeholders: Solution Providers, Systems Engineers, IT Architects.

Concerns: captures activity based behavior and flows.

Definition: describes the functions that are normally conducted in the course of implementing operational activity(ies) in support of capability(ies). It describes the functions, their Inputs/Outputs, function actions and flows between them.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram.

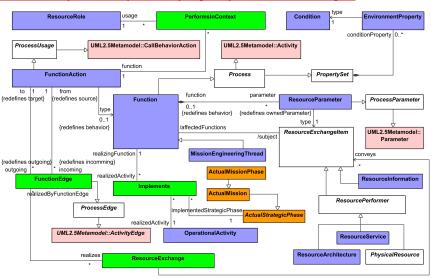


Figure 1:62 - Resources Processes: Mission Engineering Threads

- ActualMission
- ActualMissionPhase
- ActualStrategicPhase
- Condition
- <u>EnvironmentProperty</u>
- EnvironmFunction
- FunctionAction
- FunctionEdge
- Implements

- MissionEngineeringThread
- OperationalActivity
- PerformsInContext
- PhysicalResource
- Process
- ProcessEdge
- ProcessParameter
- ProcessUsage
- PropertySet
- ResourceArchitecture
- ResourceExchange
- ResourceExchangeItem
- ResourceInformation
- ResourceParameter ResourcePerformer
- ResourceRole
- ResourceService
- UML2.5Metamodel::Activity
- UML2.5Metamodel::ActivityEdge
- UML2.5Metamodel::CallBehaviorAction
- UML2.5Metamodel::Parameter

View Specifications::Resources::States

Contains the diagrams that document the Resources States View Specification.

View Specifications::Resources::States::Resources States

Stakeholders: Systems Engineers, Software Engineers.

Concerns: capture state-based behavior of a resource.

Definition: it is a graphical representation of states of a resource and how that resource responds to various events and

Recommended Implementation: SysML State Machine Diagram.

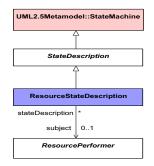


Figure 8:60 - Resources States

Elements

- $\underline{ResourcePerformer}$
- ResourceStateDescription
- StateDescription
- UML2.5Metamodel::StateMachine

Commented [AM43]: https://issues.omg.org/browse/UAF13-55

Formatted: OMG Bold Bullet KeepNext Paragraph, Indent: Left: 0,63 cm, Hanging: 0,63 cm, Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0,63 cm + Indent at: 1,27 cm

View Specifications::Resources::Sequences

Contains the diagrams that document the Resources Sequences View Specification.

View Specifications::Resources::Sequences::Resources Sequences

Stakeholders: Software Engineers, Systems Engineers.

Concerns: interactions between resources (roles).

Definition: provides a time-ordered examination of the interactions between resources.

Recommended Implementation: SysML Sequence Diagram.

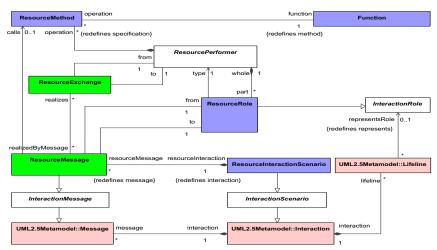


Figure 8:61 - Resources Sequences

Elements

- Function
- InteractionMessage
- <u>InteractionRole</u>
- InteractionScenario
- ResourceExchange
- ResourceInteractionScenario
- ResourceMessage
- ResourceMethod
- ResourcePerformer
- <u>ResourceRole</u>
- UML2.5Metamodel::Interaction
- UML2.5Metamodel::Lifeline
- UML2.5Metamodel::Message

View Specifications::Resources::Constraints

Contains the diagrams that document the Resources Constraints View Specification.

View Specifications::Resources::Constraints::Resources Constraints

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implementers.

Concerns: define limitations, constraints and performance parameters for resources, their interactions, performed functions, and data.

Definition: specifies traditional textual rules/non-functional requirements that are constraints on resources, their interactions, performed functions, and data. The addition of SysML parametrics provide a computational means of defining resource constraints within a specific context.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Parametric Diagram, OCL.

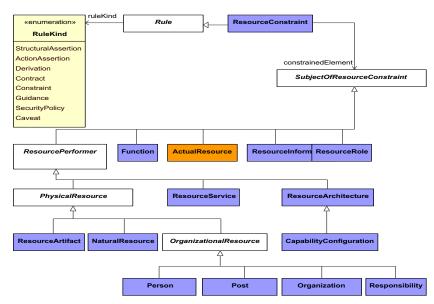


Figure 8:62 - Resources Constraints

- ActualResource
- CapabilityConfiguration
- Function
- NaturalResource
- Organization
- OrganizationalResource
- Person
- PhysicalResource
- Post
- ResourceArchitecture
- ResourceArtifact
- ResourceConstraint
- ResourceInformation
- ResourcePerformer
- ResourceRole
- ResourceService
- Responsibility
- Rule
- SubjectOfResourceConstraint

View Specifications::Resources::Roadmap

Contains the diagrams that document the Resources Roadmap View Specification.

View Specifications::Resources::Roadmap::Resources Roadmap: Evolution

Stakeholders: Systems Engineers, IT Architects, Solution Providers, Implements.

Concerns: resource structure changes over time.

Definition: provides an overview of how a resource structure changes over time. It shows the structure of several resources mapped against a timeline.

Recommended Implementation: timeline, SysML Block Definition Diagram, SysML Internal Block Diagram.

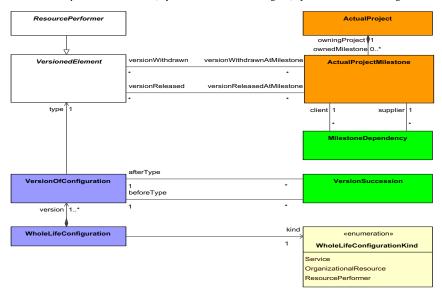


Figure 8:63 - Resources Roadmap: Evolution

Elements

- ActualProject
- <u>ActualProjectMilestone</u>
- MilestoneDependency
- ResourcePerformer
- VersionedElement
- VersionOfConfiguration
- VersionSuccession
- WholeLifeConfiguration

View Specifications::Resources::Roadmap::Resources Roadmap: Forecast

Stakeholders: Solution Providers, Systems Engineers, IT Architects.

Concerns: technology forecast.

Definition: defines the underlying current and expected supporting technologies. Expected supporting technologies are those that can be reasonably forecast given the current state of technology, and expected improvements / trends. Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

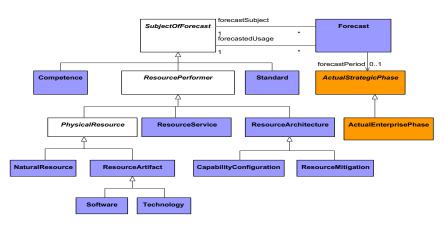


Figure 8:64 - Resources Roadmap: Forecast

- ActualEnterprisePhase
- ActualStrategicPhase
- <u>CapabilityConfiguration</u>
- Competence
- Forecast
- NaturalResource
- <u>PhysicalResource</u>
- ResourceArchitecture
- ResourceArtifact
- Resource Mitigation
 Resource Performer
- ResourcePerformer
- ResourceService
- SoftwareStandard
- SubjectOfForecast
- Technology

View Specifications::Resources::Traceability

Contains the diagrams that document the Resources Traceability View Specification.

View Specifications::Resources::Traceability::Resources Traceability

 $Stakeholders: \ Systems \ Engineers, \ Enterprise \ Architects, \ Solution \ Providers, \ Business \ Architects.$

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by a resource or solution.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

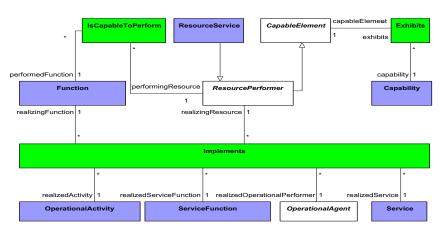


Figure 8:65 - Resources Traceability

- Capability
- CapableElement
- Exhibits
- Function
- Implements
- <u>IsCapableToPerform</u>
- Operational Activity
 Operational Accept
- OperationalAgent
- ResourcePerformerResourceService
- Service
- ServiceFunction

8.1.8 View Specifications::Security

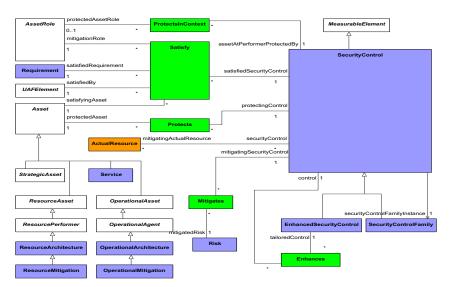
Stakeholders: Security Architects, Security Engineers. Systems Engineers, Operational Architects.

Concerns: addresses the security constraints and information assurance attributes that exist on exchanges between resources and OperationalPerformers

Definition: illustrates the security assets, security constraints, security controls, families, and measures required to address specific security concerns.

View Specifications::Security::Motivation

Contains the diagrams that document the Security Motivation View Specification.


View Specifications::Security::Motivation::Security Controls

Stakeholders: Security Architects, Security Engineers, Risk Analysts.

Concerns: security controls, security control families, and overlays.

Definition: identifies security controls to mitigate against the security risks.

Recommended Implementation: tabular or Matrix format, SysML Block Definition Diagram.

Figure 8:66 - Security Controls

Elements

- ActualResource
- Asset
- AssetRole
- **EnhancedSecurityControl**
- Enhances MeasurableElement
- Mitigates
- OperationalAgent
- OperationalArchitecture
- OperationalAsset
- **Operational Mitigation**
- Protects
- $\underline{ProtectsInContext}$
- Requirement
- $\underline{Resource Architecture}$
- $\underline{ResourceAsset}$
- ResourceMitigation
- ResourcePerformer
- Risk
- Satisfy
- SecurityControl
- $\underline{SecurityControlFamily}$
- Service
- StrategicAsset
- **UAFElement**

View Specifications::Security::Taxonomy

Contains the diagrams that document the Security Taxonomy View Specification.

View Specifications::Security::Taxonomy::Security Taxonomy

Stakeholders: Security Architects, Security Engineers. Concerns: Security assets and security enclaves.

Definition: Defines the hierarchy of security assets and asset owners that are available to implement security, security constraints (policy, guidance, laws and regulations) and details where they are located (security enclaves).

Recommended Implementation: tabular format, SysML Block Definition Diagram.

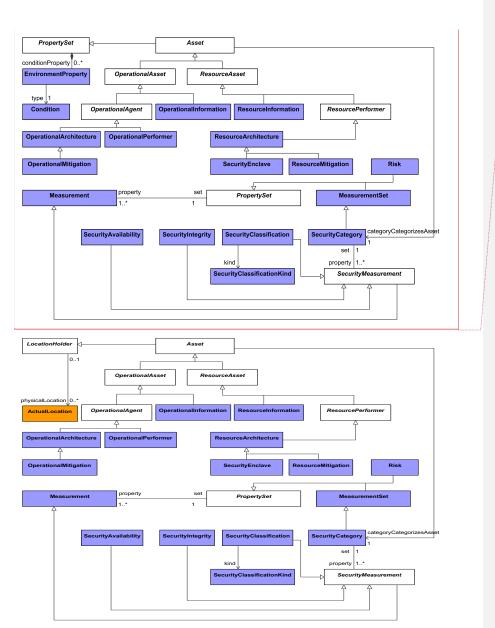


Figure 8:67 - Security Taxonomy

Commented [AM44]: https://issues.omg.org/browse/UAF13-55

- Condition
- EnvironmentProperty
- Measurement
- MeasurementSet
- OperationalAgent
- OperationalArchitecture
- OperationalAsset
- OperationalInformation
- OperationalMitigation
- **OperationalPerformer**
- **PropertySet**
- ResourceArchitecture
- ResourceAsset
- ResourceInformation
- ResourceMitigation
- ResourcePerformer
- Risk
- **Security Availability**
- SecurityCategory
- SecurityClassification
- SecurityClassificationKind
- SecurityEnclave
- **SecurityIntegrity**
- **SecurityMeasurement**

View Specifications::Security::Structure

Contains the diagrams that document the Security Structure View Specification.

View Specifications::Security::Structure::Security Structure

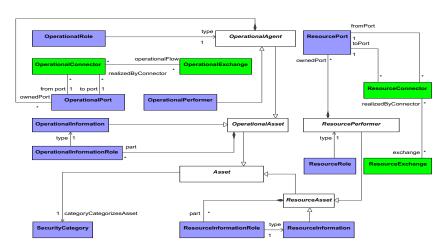
Stakeholders: Security Architects, Security Engineers.

Concerns: The structure of security information and where it is used at the operational and resource level.

Definition: Captures the allocation of assets (operational and resource, information and data) across the security enclaves, shows applicable security controls necessary to protect organizations, systems and information during processing, while in storage (bdd), and during transmission (flows on an ibd). This view also captures Asset Aggregation and allocates the usage of the aggregated information at a location through the use of the SecurityProperty.

Recommended Implementation: SysML Internal Block Diagram, SysML Block Definition Diagram.

Deleted: <#>ActualLocation¶


Formatted: Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0,63 cm + Indent at: 1,27 cm

Commented [AM45]: https://issues.omg.org/browse/UAF13-55

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

Deleted: <#>LocationHolder

Figure 8:68 - Security Structure

Elements

- Asset
- OperationalAgent
- OperationalAsset
- OperationalConnector
- OperationalExchange
- OperationalInformation
- OperationalInformationRole
- OperationalPerformer
- OperationalPort
- OperationalRole
- ResourceAsset
- <u>ResourceConnector</u><u>ResourceExchange</u>
- ResourceInformation
- ResourceInformationRole
- ResourcePerformer
- ResourcePort
- ResourceRole
- SecurityCategory

View Specifications::Security::Connectivity

Contains the diagrams that document the Security Connectivity View Specification.

View Specifications::Security::Connectivity::Security Connectivity

Stakeholders: Security Architects, Security Engineers.

Concerns: Addresses the security constraints and information assurance attributes that exist on exchanges across resources and across performers.

Definition: Lists security exchanges across security assets; the applicable security controls; and the security enclaves that house the producers and consumers of the exchanges. Measurements can optionally be included.

Recommended Implementation: SysML Internal Block Diagram, tabular format.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

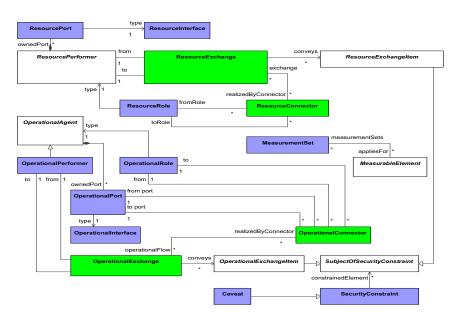
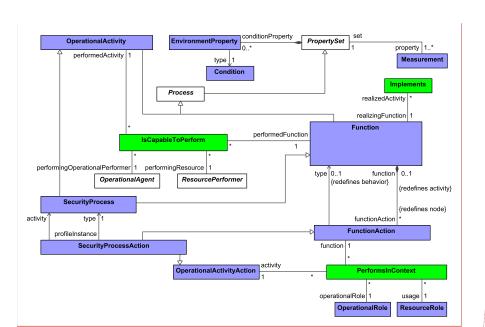


Figure 8:69 - Security Connectivity

- Caveat
- MeasurableElement
- $\underline{MeasurementSet}$
- **Operational Agent**
- OperationalConnector
- $\underline{Operational Exchange}$
- <u>OperationalExchangeItem</u>
- OperationalInterface
- OperationalPerformer
- **OperationalPort**
- **OperationalRole**
- ResourceConnector
- $\underline{ResourceExchange}$
- $\underline{Resource Exchange Item}$
- ResourceInterface
- ResourcePerformer
- ResourcePort ResourceRole
- SecurityConstraint SubjectOfSecurityConstraint

View Specifications::Security::Processes

Contains the diagrams that document the Security Processes View Specification.


View Specifications::Security::Processes::Security Processes

Stakeholders: Security Architects, Security Engineers.

Concerns: The specification of the Security Control families, security controls, and measures required to address a specific security baseline.

Definition: Provides a set of Security Controls and any possible enhancements as applicable to assets. The activity diagram describes operational or resource level processes that apply (operational level) or implement (resource level) security controls/enhancements to assets located in enclaves and across enclaves. This Security Process view can be instantiated either as a variant of an activity/flow diagram or as a hierarchical work breakdown structure.

Recommended Implementation: SysML Activity Diagram, SysML Block Definition Diagram, BPMN Process Diagram as described in Operational Processes and Resources Processes sections.

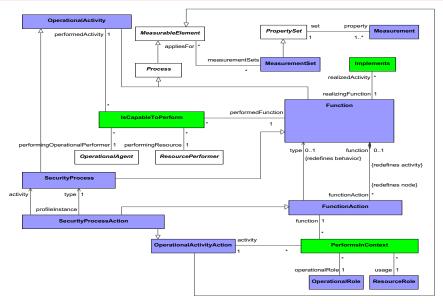


Figure 8:70 - Security Processes
Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM46]: https://issues.omg.org/browse/UAF13-55

- Condition
- EnvironmentProperty
- Function
- **FunctionAction**
- **Implements**
- IsCapableToPerform
- Measurement
- MeasurementSet
- OperationalActivity
- **Operational**ActivityAction
- OperationalAgent
- $\underline{Operational Role}$
- PerformsInContext
- Process
- **PropertySet**
- ResourcePerformer
- ResourceRole
- **SecurityProcess**
- SecurityProcessAction

View Specifications::Security::Constraints

Contains the diagrams that document the Security Constraints View Specification.

View Specifications::Security::Constraints::Security Constraints

Stakeholders: Security Architects, Security Engineers, Risk Analysts.

Concerns: (i) Security-related policy, guidance, laws and regulations as applicable to assets, (ii) threats, vulnerabilities, and risk assessments as applicable to assets.

Definition: (i) Specifies textual rules/non-functional requirements that are security constraints on resources, information and data (e.g. security-related in the form of rules (e.g. access control policy). A common way of representing access control policy is through the use of XACML (eXtensible Access Control Markup Language), it is expected that implementations of UAF allow users to link security constraints to external files represented in XACML. (ii) Identifies risks, specifies risk likelihood, impact, asset criticality, other measurements and enables risk assessment.

Recommended Implementation: tabular or Matrix format, SysML Block Definition Diagram, SysML Parametric Diagram, or OCL.

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

Commented [AM47]: https://issues.omg.org/browse/UAF13-55

Deleted:

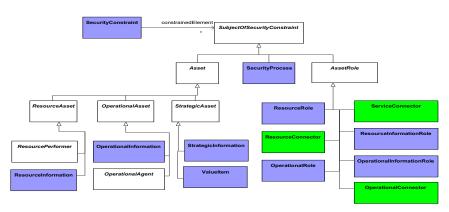


Figure 8:71 - Security Constraints

- Asset
- <u>AssetRole</u>
- OperationalAgent
- OperationalAsset
- OperationalConnector
- OperationalInformation
- OperationalInformationRole
- OperationalRole
- ResourceAsset
- ResourceConnector
- ResourceInformation
- ResourceInformationRole
- ResourcePerformer
- ResourceRole
- SecurityConstraint
- <u>SecurityProcess</u>
- <u>ServiceConnector</u>
- <u>StrategicAsset</u>
- <u>StrategicInformation</u>
- SubjectOfSecurityConstraint
- ValueItem

View Specifications::Security::Traceability

Contains the diagrams that document the Security Traceability View Specification.

View Specifications::Security::Traceability::Security Traceability

Stakeholders: Security Architects, Security Engineers, Risk Analysts.

Concerns: traceability between risk and risk owner, risk mitigations, and affected asset roles.

Definition: depicts the mapping of a risk to each of the following: risk owner, risk mitigations, and affected asset roles. Recommended Implementation: Matrix format, SysML Block Definition Diagram.

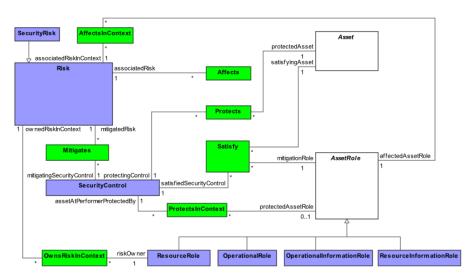


Figure 8:72 - Security Traceability

- Affects
- AffectsInContext
- Asset
- AssetRole
- <u>Mitigates</u>
- <u>OperationalInformationRole</u>
- OperationalRole
- OwnsRiskInContext
- Protects
- ProtectsInContext
- ResourceInformationRole
- ResourceRole
- Risk
- Satisfy
- <u>SecurityControl</u>

8.1.9 View Specifications::Projects

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: project portfolio, projects and project milestones.

Definition: describes projects and project milestones, how those projects deliver capabilities, the organizations contributing to the projects and dependencies between projects.

View Specifications::Projects::Taxonomy

Contains the diagrams that document the Project Taxonomy View Specification.

View Specifications::Projects::Taxonomy::Project Taxonomy

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects. Concerns: types of projects and project milestones. Definition: shows the taxonomy of types of projects and project milestones. Recommended Implementation: SysML Block Definition Diagram.

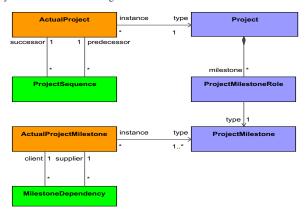


Figure 8:73 - Project Taxonomy

Elements

- ActualProject
- ActualProjectMilestone
- MilestoneDependency
- Project
- <u>ProjectMilestone</u>
- ProjectMilestoneRole
- <u>ProjectSequence</u>

View Specifications::Projects::Structure

Contains the diagrams that document the Project Structure View Specification.

View Specifications::Projects::Structure::Project Structure

Stakeholders: PMs.

Concerns: relationships between types of projects and project milestones.

Definition: provides a template for an actual project(s) road map(s) to be implemented.

Recommended Implementation: SysML Block Definition Diagram.

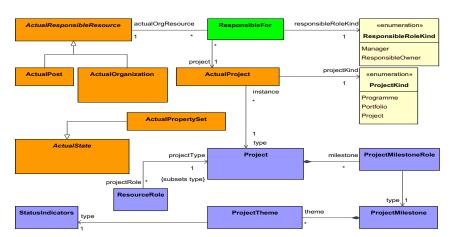


Figure 8:74 - Project Structure

- ActualOrganization
- ActualPost
- ActualProject
- ActualPropertySet
- $\underline{Actual Responsible Resource}$
- ActualState
- **Project**
- ProjectMilestone
 ProjectMilestoneRole
- ProjectTheme
- ResourceRole
- ResponsibleFor
- StatusIndicators

View Specifications::Projects::Connectivity

Contains the diagrams that document the Project Connectivity View Specification.

View Specifications::Projects::Connectivity::Project Connectivity

Stakeholders: PMs.

Concerns: relationships between projects and project milestones.

Definition: shows how projects and project milestones are related in sequence.

Recommended Implementation: SysML Block Definition Diagram.

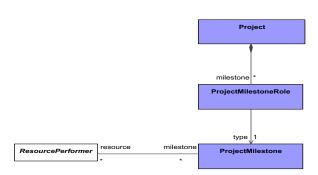
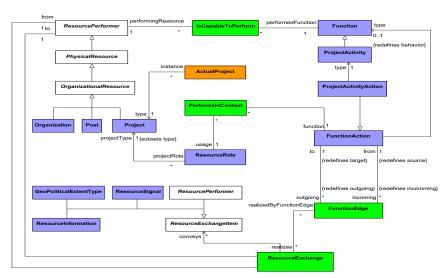


Figure 8:75 - Project Connectivity

- Project
- ProjectMilestone
- <u>ProjectMilestoneRole</u>
- ResourcePerformer

View Specifications::Projects::Processes

Contains the diagrams that document the Project Processes View Specification.


View Specifications::Projects::Processes::Project Processes

Stakeholders: PMs.

Concerns: captures project tasks (ProjectActivities) and flows between them.

Definition: describes the ProjectActivities that are normally conducted in the course of projects to support capability(ies) and implement resources. It describes the ProjectActivities, their Inputs/Outputs, ProjectActivityActions and flows

 $Recommended \ Implementation: \ SysML\ Activity\ Diagram,\ SysML\ Block\ Definition\ Diagram,\ BPMN\ Process\ Diagram\ as\ described\ in\ Resources\ Processes\ section.$

Figure 8:76 - Project Processes

Elements

- ActualProject
- Function
- FunctionAction
- FunctionEdge
- GeoPoliticalExtentType
- IsCapableToPerform
- <u>Organization</u>
- OrganizationalResource
- PerformsInContext
- PhysicalResource
- Post
- Project
- ProjectActivity
- <u>ProjectActivityAction</u>
- ResourceExchange
- ResourceExchangeItem
- ResourceInformation
- <u>ResourcePerformer</u><u>ResourceRole</u>
- ResourceSignal

View Specifications::Projects::Roadmap

Contains the diagrams that document the Project Roadmap View Specification.

View Specifications::Projects::Roadmap::Project Roadmap

Stakeholders: PMs, Capability Owners, Solution Providers, Enterprise Architects. Concerns: the product portfolio management; a planning of capability delivery.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Definition: provides a timeline perspective on programs or projects

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

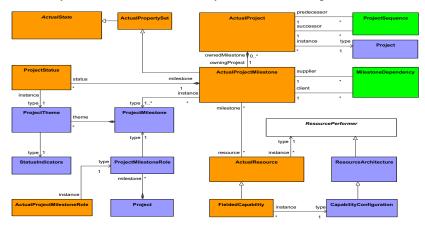


Figure 8:77 - Project Roadmap

Elements

- ActualProject
- ActualProjectMilestone
- ActualProjectMilestoneRole
- ActualPropertySet
- ActualResource
- ActualState
- CapabilityConfiguration
- FieldedCapability
- MilestoneDependency
- Project
- ProjectMilestone
- ProjectMilestoneRole
- <u>ProjectSequence</u>
- ProjectStatus
- ProjectTheme
- ResourceArchitecture
- ResourcePerformer
- StatusIndicators

View Specifications::Projects::Traceability

Contains the diagrams that document the Project Traceability View Specification.

View Specifications::Projects::Traceability::Project Traceability

Stakeholders: PMs, Project Portfolio Managers, Enterprise Architects.

Concerns: traceability between capabilities and projects that deliver them.

Definition: depicts the mapping of projects to capabilities and thus identifies the transformation of a capability(ies) into a purposeful implementation via projects.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

Figure 8:78 - Project Traceability

- ActualProject
- ActualProjectMilestone
- ActualResource
- Capability
- CapableElement
- Exhibits
- ResourcePerformer

8.1.10 View Specifications::Standards

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: technical and non-technical Standards applicable to the architecture.

Definition: shows the technical, operational, and business Standards applicable to the architecture. Defines the underlying current and expected Standards.

View Specifications::Standards::Taxonomy

Contains the diagrams that document the Standards Taxonomy View Specification.

View Specifications::Standards::Taxonomy::Standards Taxonomy

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects. Concerns: technical and non-technical standards, guidance and policy applicable to the architecture.

Definition: shows the taxonomy of types of technical, operational, and business standards, guidance and policy applicable to the architecture.

Recommended Implementation: SysML Block Definition Diagram.

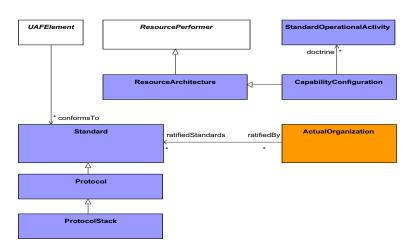


Figure 8:79 - Standards Taxonomy

- ActualOrganization
- CapabilityConfiguration
- <u>Protocol</u>
- ProtocolStack
- ResourceArchitecture
- ResourcePerformer
- <u>Standard</u>
- StandardOperationalActivity
- <u>UAFElement</u>

View Specifications::Standards::Structure

Contains the diagrams that document the Standards Structure View Specification.

View Specifications::Standards::Structure::Standards Structure

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects. Concerns: the specification of the protocol stack used in the architecture.

Definition: shows the composition of standards required to achieve the architecture's objectives. Recommended Implementation: SysML Internal Block Diagram.

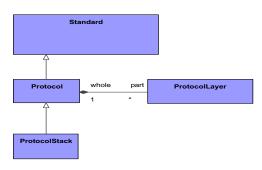
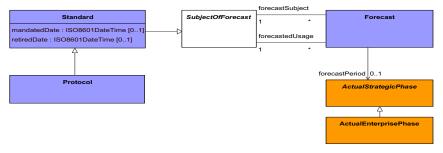


Figure 8:80 - Standards Structure

- Protocol
- ProtocolLayer
- ProtocolStack
- Standard

View Specifications::Standards::Roadmap


Contains the diagrams that document the Standards Roadmap View Specification.

View Specifications::Standards::Roadmap::Standards Roadmap

Stakeholders: Solution Providers, Systems Engineers, Systems Architects, Software Engineers, Business Architects. Concerns: expected changes in technology-related standards and conventions, operational standards, or business standards and conventions.

Definition: defines the underlying current and expected standards. Expected standards are those that can be reasonably forecast given the current state of technology, and expected improvements / trends.

Recommended Implementation: timeline, tabular format, SysML Block Definition Diagram.

Figure 8:81 - Standards Roadmap

Elements

- ActualEnterprisePhase
- ActualStrategicPhase
- Forecast
- Protocol
- Standard
- SubjectOfForecast

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

View Specifications::Standards::Traceability

Contains the diagrams that document the Standards Traceability View Specification.

View Specifications::Standards::Traceability::Standards Traceability

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: standards that need to be taken in account to ensure the interoperability of the implementation of architectural elements.

Definition: shows the applicability of standards to specific elements in the architecture.

Recommended Implementation: tabular format, matrix format, SysML Block Definition Diagram.

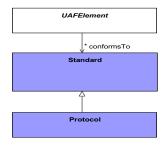


Figure 8:82 - Standards Traceability

Elements

- Protocol
- Standard
- UAFElement

8.1.11 View Specifications::Actual Resources

Stakeholders: Solution Providers, Systems Engineers, Business Architects, Human Resources.

Concerns: the analysis, e.g. evaluation of different alternatives, what-if, trade-offs, V&V on the actual resource configurations.

Definition: illustrates the expected or achieved actual resource configurations and actual relationships between them.

View Specifications::Actual Resources::Structure

Contains the diagrams that document the Actual Resources Structure View Specification.

View Specifications::Actual Resources::Structure::Actual Resources Structure

Stakeholders: Solution Providers, Systems Engineers, Business Architects.

Concerns: the analysis, e.g. evaluation of different alternatives, what-if, trade-offs, V&V on the actual resource configurations as it provides a means to capture different solution architectures. The detailed analysis (trade-off, what-if etc.) is carried out using the Resource Constraints view.

Definition: illustrates the expected or achieved actual resource configurations required to meet an operational need. Recommended Implementation: SysML Block Definition Diagram.

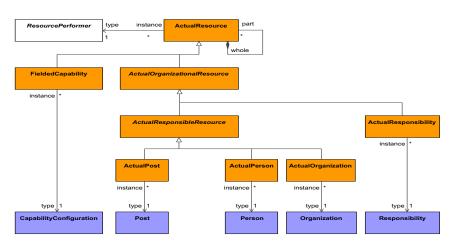


Figure 8:83 - Actual Resources Structure

- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- ActualResource
- ActualResponsibility
- ActualResponsibleResource
- <u>CapabilityConfiguration</u>
- <u>FieldedCapability</u>
- Organization
- Person
- Post
- ResourcePerformer
- Responsibility

View Specifications::Actual Resources::Connectivity

Contains the diagrams that document the Actual Resources Connectivity View Specification.

View Specifications::Actual Resources::Connectivity::Actual Resources Connectivity

Stakeholders: Solution Providers, Systems Engineers, Business Architects.

Concerns: the communication of actual resource.

Definition: illustrates the actual resource configurations and actual relationships between them.

Recommended Implementation: tabular format, SysML Block Definition Diagram, SysML Internal Block Diagram, SysML Sequence Diagram.



Figure 8:84 - Actual Resources Connectivity

- ActualOrganization
- ActualOrganizationalResource
- ActualPerson
- ActualPost
- <u>ActualResource</u>
- ActualResourceRelationship
- ActualResponsibility
- ActualResponsibleResource
- FieldedCapability

View Specifications::Actual Resources::Traceability

Contains the diagrams that document the Actual Resources Traceability View Specification.

View Specifications::Actual Resources::Traceability::Actual Resources Traceability

Stakeholders: Systems Engineers, Enterprise Architects, Solution Providers, Business Architects.

Concerns: traceability between operational activities and functions that implements them.

Definition: depicts the mapping of functions to operational activities and thus identifies the transformation of an operational need into a purposeful function performed by a resource or solution.

Recommended Implementation: Matrix format, SysML Block Definition Diagram.

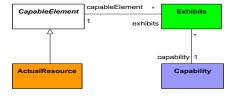


Figure 8:85 - Actual Resources Traceability

Elements

• ActualResource

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

- Capability
- CapableElement
- Exhibits

8.1.12 View Specifications::Motivation

Stakeholders: Enterprise Architects, Enterprise Systems Engineers, Model Managers, System Architects, Requirement Engineers, Solution Providers, Systems Engineers, Software Engineers, Business Architects, Portfolio Managers, Program Managers, Security Architects, Security Engineers, Risk Analysts.

Concerns: (i) architecture drivers, challenges, opportunities, capabilities that address opportunities, phases and architectures that address challenges; (ii) requirements, their relationship (via traceability) to more detailed requirements and the solution described by the architecture that will meet those requirements; (iii) security controls, security control families, and overlays.

Definition: Identifies and defines motivational elements e.g., challenges, opportunities, and concerns, that pertain to enterprise transformation efforts, and different types of requirements, e.g., operational, services, personnel, resources, or security controls.

Recommended Implementation: SysML Block Definition Diagram, SysML Package Diagram, tabular format.

View Specifications::Motivation::Motivation: Requirements

Stakeholders: Requirement Engineers, Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: provides a central reference for a set of stakeholder needs expressed as requirements, their relationship (via traceability) to more detailed requirements and the solution described by the architecture that will meet those requirements.

Definition: used to represent requirements, their properties, and relationships (trace, verify, satisfy, refine) between each other and to UAF architectural elements.

Recommended Implementation: SysML Requirement Diagram, tabular format, matrix format.

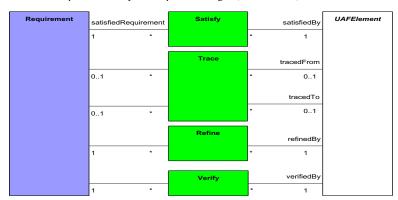


Figure 8:86 - Motivation: Requirements

Elements

- Refine
- Requirement
- Satisfy
- Trace
- <u>UAFElement</u>
- Verify

8.1.13 View Specifications::Information

Stakeholders: Data Modelers, Software Engineers, Systems Engineers

Concerns: address the information perspective on operational, service, and resource architectures.

Definition: allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues.

Recommended Implementation: SysML Block Definition Diagram.

View Specifications::Information::Information: Operational Information

Stakeholders: Data Modelers, Software Engineers, Systems Engineers, Operators and Users, Service Managers and Providers

Concerns: address the information perspective on operational and service architectures.

Definition: allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues.

Recommended Implementation: SysML Block Definition Diagram.

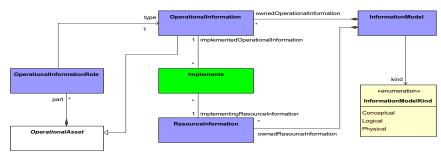


Figure 8:87 - Information: Operational Information

Elements

- <u>Implements</u>
- InformationModel
- OperationalAsset
- OperationalInformation
- OperationalInformationRole
- ResourceInformation

View Specifications::Information::Information: Resources Information

Stakeholders: Data Modelers, Software Engineers, Systems Engineers

Concerns: address the information perspective on operational, service, and resource architectures.

Definition: allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues.

Recommended Implementation: SysML Block Definition Diagram.

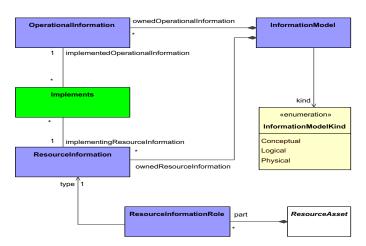


Figure 8:88 - Information: Resources Information

- Implements
- <u>InformationModel</u>
- OperationalInformation
- ResourceAsset
- ResourceInformation
- ResourceInformationRole

8.1.14 View Specifications::Parameters

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: identifies measurable properties that can be used to support engineering analysis and environment for the Capabilities

Definition: Shows the measurable properties of something in the physical world and elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

View Specifications::Parameters::Parameters: Environment

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: defines the environment for the capabilities.

Definition: shows the elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

Recommended Implementation: SysML Block Definition Diagram.

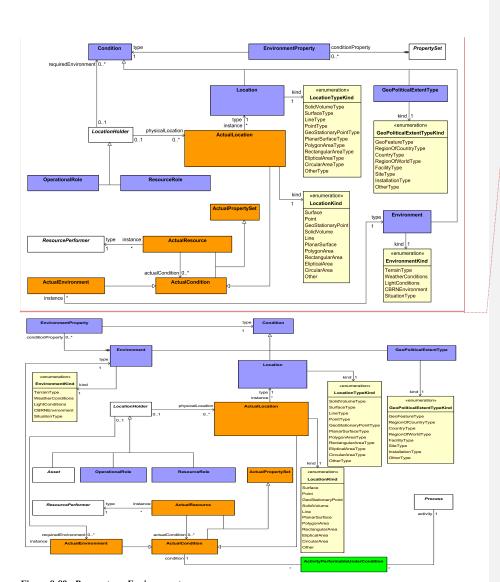


Figure 8:89 - Parameters: Environment

- ActualCondition
- ActualEnvironment
- ActualLocation
- ActualPropertySet

Commented [AM49]: https://issues.omg.org/browse/UAF13-55

Commented [AM48]: https://issues.omg.org/browse/UAF13-55

Deleted: <#>ActivityPerformableUnderCondition

- ActualResource
- Condition
- Environment
- EnvironmentProperty
- GeoPoliticalExtentType
- Location
- <u>LocationHolder</u>
- OperationalRole
- PropertySet
- ResourcePerformer
- ResourceRole

View Specifications::Parameters::Parameters: Measurements

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: identifies measurable properties that can be used to support analysis such as KPIs, MoEs, TPIs etc.

Definition: Shows the measurable properties of something in the physical world, expressed in amounts of a unit of measure that can be associated with any element in the architecture.

Recommended Implementation: SysML Block Definition Diagram.

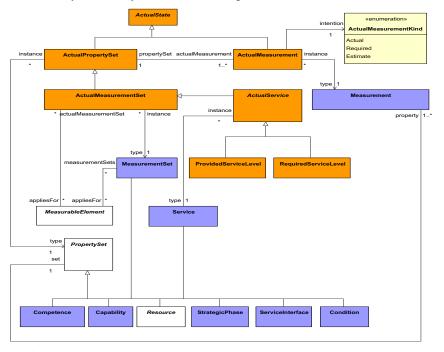


Figure 8:90 - Parameters: Measurements

Elements

- ActualMeasurement
- ActualMeasurementSet

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM50]: https://issues.omg.org/browse/UAF13-55

Deleted: <#>Asset

Formatted: Font: Not Bold

Formatted: OMG Normal Paragraph

Commented [AM51]: https://issues.omg.org/browse/UAF13-55

Deleted: <#>Process

- ActualPropertySet
- ActualService
- ActualState
- Capability
- Competence
- Condition
- MeasurableElement
- Measurement
- MeasurementSet
- PropertySet
- <u>ProvidedServiceLevel</u>
- RequiredServiceLevel
- Resource
- <u>Service</u>
- ServiceInterface
- <u>StrategicPhase</u>

View Specifications::Parameters::Parameters: Mission Vignette and Scenario

Stakeholders: Capability owners, Systems Engineers, Solution Providers.

Concerns: defines the environment for the capabilities.

Definition: shows the elements and relationships that are involved in defining the environments applicable to capability, operational concept or set of systems.

Recommended Implementation: SysML Block Definition Diagram.

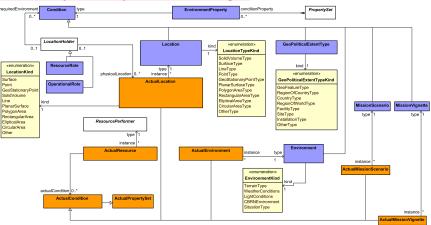


Figure 1:94 - Parameters: Mission Vignette and Scenario

Elements

- ActualCondition
- ActualEnvironment
- ActualLocation
- ActualMissionScenario
- ActualMissionVignette
- ActualPropertySet
- ActualResource

- Condition
- Environment
- EnvironmentProperty
- GeoPoliticalExtentType
- Location
- LocationHolder
- MissionScenario
- MissionVignette
- OperationalRole
- PropertySet
- ResourcePerformer
- ResourceRole

View Specifications::Parameters::Parameters: Risk

Stakeholders: Capability Owners, Systems Engineers, Solution Providers, Program Managers.

Concerns: identifies potential adverse conditions and situations that can inhibit achievement of goals.

Definition: Shows the relevant risks along with associated measures like likelihood of occurence and potential negative consequences.

Recommended Implementation: SysML Block Definition Diagram, matrix format.

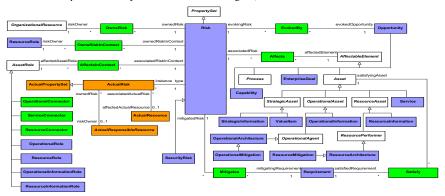


Figure 8:91 - Parameters: Risk

Elements

- ActualPropertySet ActualResource
- ActualResponsibleResource
- ActualRisk
- AffectableElement
- Affects
- AffectsInContext
- Asset
- <u>AssetRole</u>
- Capability
- EnterpriseGoal
- $\underline{EvokedBy}$
- **Mitigates**
- OperationalAgent
- OperationalArchitecture

Commented [AM52]: https://issues.omg.org/browse/UAF13-55

Formatted: Indent: Left: 0 cm, First line: 0 cm

- OperationalAsset
- OperationalConnector
- OperationalInformation
- <u>OperationalInformationRole</u>
- OperationalMitigation
- OperationalRole
- Opportunity
- OrganizationalResource
- OwnsRisk
- OwnsRiskInContext
- Process
- <u>PropertySet</u>
- Requirement
- ResourceArchitecture
- ResourceAsset
- ResourceConnector
- ResourceInformation
- $\bullet \quad \underline{ResourceInformationRole}$
- ResourceMitigation
- ResourcePerformer
- ResourceRole
- Risk
- Satisfy
- <u>SecurityRisk</u>
- Service
- ServiceConnector
- StrategicAsset
- <u>StrategicInformation</u>
- <u>ValueItem</u>

8.1.15 View Specifications::Other

Contains the diagrams that document the use of BPMN, NIEM, IEPPV in the context of UAF.

View Specifications::Other::BPMN

Stakeholders: Business Architects, Enterprise Architects

Concerns: captures activity based behavior and flows.

Definition: describes the activities that are normally conducted in the course of achieving business goals that support a capability. It describes operational activities, their Inputs/Outputs, operational activity actions and flows between them using BPMN.

Recommended Implementation: BPMN Process Diagram.

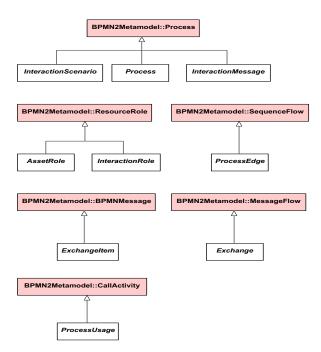


Figure 8:92 - BPMN

- <u>AssetRole</u>
- BPMN2Metamodel::BPMNMessage
- BPMN2Metamodel::CallActivity
- BPMN2Metamodel::MessageFlow
- BPMN2Metamodel::ProcessBPMN2Metamodel::ResourceRole
- BPMN2Metamodel::SequenceFlow
- Exchange
- ExchangeItem
- InteractionMessage
- <u>InteractionRole</u>
- InteractionScenario
- Process
- <u>ProcessEdge</u>
- ProcessUsage

View Specifications::Other::IEPPV

Stakeholders: Data Modelers, Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects, information architects.

Concerns: information exchanges, information interfaces, information interoperability, information sharing and safeguarding.

Definition: UAFP supports information modeling and traceability to IEPPV model elements using the IEPPV-defined elements: Message, SemanticElement, and FilteredSemanticElement, used to represent data, properties/attributes, structure, format, and relationships. The IEPPV profile enables the specification of the policies, rules and constraints governing the packaging (assembly, transformation, marking, redaction) of data elements conforming to information sharing and safeguarding requirements. The IEPPV profile also governs the processing (parsing, transformation, and marshalling) received information and data element.

Recommended Implementation: UML Class Diagram, SysML Block Diagram.

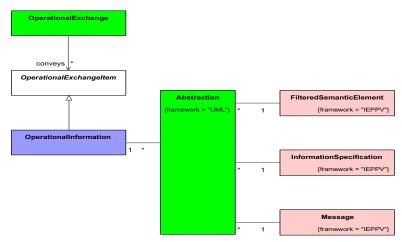
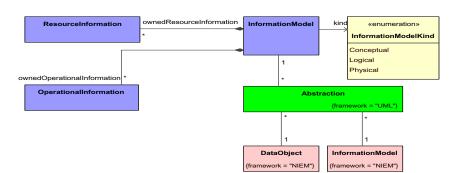


Figure 8:93 - IEPPV

Elements

- Abstraction
- FilteredSemanticElement
- InformationSpecification
- Message
- OperationalExchange
- OperationalExchangeItem
- OperationalInformation


View Specifications::Other::NIEM

Stakeholders: Data Modelers, Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: information exchanges, information interoperability, data schema.

Definition: A specification representing the structure, semantics, and relationships of data objects that satisfy an information exchange requirement. Used for organizing and packaging Model Package Descriptions (MPDs) and Information Exchange Package Documentation (IEPD) as defined by the National Information Exchange Model (NIEM). An IEPD is a type of MPD. The NIEM MPD defines an Enterprise Information Exchange Model (EIEM) as an MPD that contains NIEM-conforming schemas that define and declare data components to be consistently reused in the IEPDs of an enterprise. An EIEM is a collection of schemas organized into a collection of subset schemas and one or more extension schemas. An information sharing enterprise creates and maintains an EIEM.

Recommended Implementation: UML Class Diagram, SysML Block Diagram.

Figure 8:94 - NIEM Elements

- Abstraction
- DataObject
- $\underline{InformationModel}$
- InformationModel
- OperationalInformation
 ResourceInformation

9. Domain MetaModel (DMM) Elements

9.1 Domain MetaModel

This package contains the elements of the DMM.

9.1.1 Domain MetaModel::Architecture Management

Stakeholders: Enterprise Architects, people who want to discover the architecture, Technical Managers.

Concerns: Captures meta-data relevant to the entire architecture

Definition: Provide information pertinent to the entire architecture. Present supporting information rather than

Domain MetaModel::Architecture Management::Taxonomy

ActualState

Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

Abstract element that applies temporal extent to a set of elements realized as Instance Specifications.

DesignationKind

Package: Taxonomy

isAbstract: No

Generalization: MeasurableElement

Description

An enumerated type that defines the kind of structural element with respect to purpose, intent and capabilities of that

Figure :2 - DesignationKind

Commented [AM53]: https://issues.omg.org/browse/UAF13-55

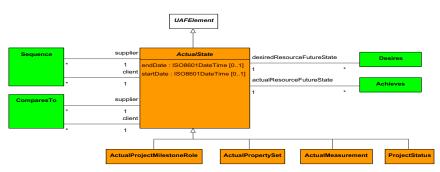


Figure 9:95 - ActualState

Attributes

endDate: ISO8601DateTime[0..1] End time for all individual elements. startDate: ISO8601DateTime[0..1] Start time for all individual elements.

InteractionScenarioGeneralization

Package: Taxonomy isAbstract: No

Generalization: UML2.5Metamodel::Generalization, MeasurableElement

Description

A InteractionScenarioGeneralization is a taxonomic relationship between a more general InteractionScenario and a more specific InteractionScenario.

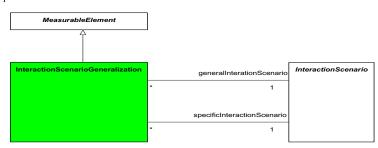


Figure 9:96 - InteractionScenarioGeneralization

ISO8601DateTime

Package: Parameters is Abstract: No

Generalization: <u>UAFElement</u>

Description

A date and time specified in the ISO8601 date-time format including timezone designator (TZD): YYYY-MM-DDThh:mm:ssTZD.

Figure 9:97 - ISO8601DateTime

OpposableElement

Package: Taxonomy

isAbstract: Yes

Generalization: UAFElement

Description

A type of element that is categorized to allow for it to have an Opposes relationship to some other opposable element.

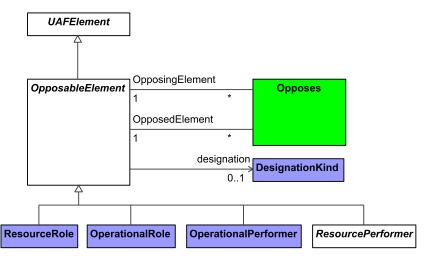


Figure :5 - OpposableElement

ProcessGeneralization

Package: Taxonomy

isAbstract: No

Generalization: UML2.5Metamodel::Generalization, MeasurableElement

Description

A ProcessGeneralization is a taxonomic relationship between a more general Process and a more specific Process.

Commented [AM54]: https://issues.omg.org/browse/UAF13-55

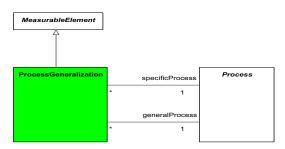


Figure 9:98 - ProcessGeneralization

PropertySetGeneralization

Package: Taxonomy

isAbstract: No

Generalization: UML2.5Metamodel::Generalization, MeasurableElement

Description

A PropertySetGeneralization is a taxonomic relationship between a more general PropertySet and a more specific PropertySet.

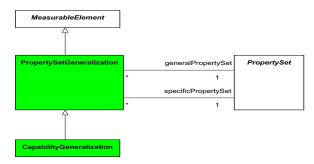


Figure 9:99 - PropertySetGeneralization

StateDescriptionGeneralization

Package: Taxonomy isAbstract: No

Generalization: UML2.5Metamodel::Generalization, MeasurableElement

Description

A StateDescriptionGeneralization is a taxonomic relationship between a more general StateDescription and a more specific StateDescription.

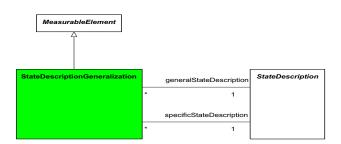


Figure 9:100 - StateDescriptionGeneralization

Domain MetaModel::Architecture Management::Connectivity

Exchange

Package: Connectivity is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{MeasurableElement}}, BPMN2Metamodel:: MessageFlow, \underline{\textbf{SubjectOfSecurityConstraint}}$

Description

Abstract tuple, grouping OperationalExchanges and ResourceExchanges that exchange Resources.

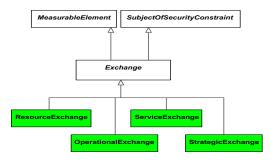


Figure 9:101 - Exchange

ExchangeItem

Package: Connectivity is Abstract: Yes

Generalization: BPMN2Metamodel::BPMNMessage

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between Assets and conveyed by an Exchange.

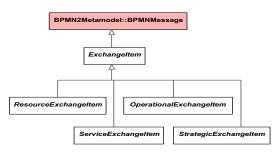


Figure 9:102 - ExchangeItem

Resource

Package: Connectivity is Abstract: Yes

Generalization: PropertySet

Description

Abstract type grouping all elements that can be conveyed by an Exchange.

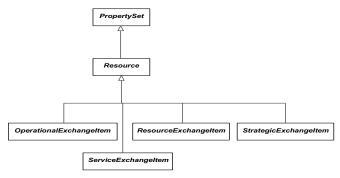


Figure 9:103 - Resource

Domain MetaModel::Architecture Management::Processes

${\bf Activity Performable Under Condition}$

Package: Processes is Abstract: No

Generalization: MeasurableElement

Description

The ActualCondition under which an Activity is performed.

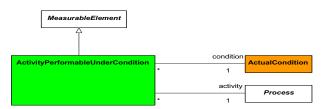


Figure 9:104 - ActivityPerformableUnderCondition

CapableElement

Package: Traceability is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type that represents a structural element that can exhibit capabilities.

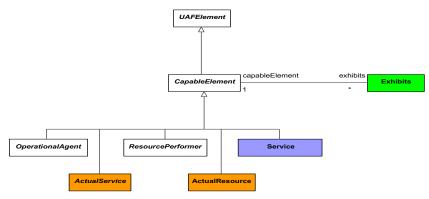


Figure 9:105 - CapableElement

IsCapableToPerform

Package: Processes is Abstract: No

 ${\bf Generalization:}\ \underline{{\bf Measurable Element}}$

Description

A tuple defining the traceability between the structural elements to the Activities that they can perform.

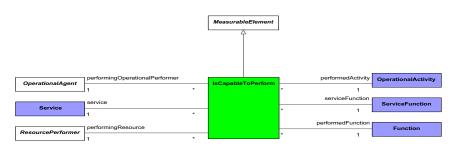


Figure 9:106 - IsCapableToPerform

PerformsInContext

Package: Processes is Abstract: No

Generalization: MeasurableElement

Description

A tuple that relates an OperationalAction to a OperationalRole, or a FunctionAction to a ResourceRole. It indicates that the action can be carried out by the role when used in a specific context or configuration.

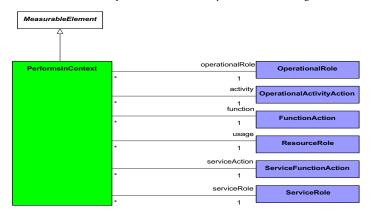
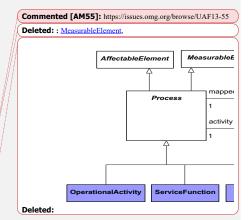


Figure 9:107 - PerformsInContext

Process

Package: Processes is Abstract: Yes


Generalization: UML2.5Metamodel::Activity, BPMN2Metamodel::Process, AffectableElement, PropertySet

Description

An abstract type that represents a behavior or process (i.e. a Function or Operational Activity) that can be performed by a Performer.

Figure 9:108 - Process

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

136

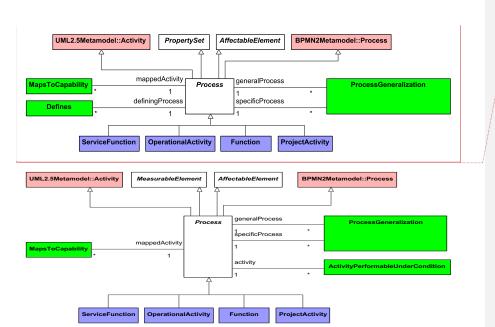


Figure 9:109 - Process

ProcessEdge

Package: Processes is Abstract: Yes

Generalization: MeasurableElement, UML2.5Metamodel::Activity, UML2.5Metamodel::ActivityEdge,

BPMN2 Metamodel :: Sequence Flow

Description

An abstract type that represents a behavior or process (i.e. a Function or Operational Activity) that can be performed by a Performer.

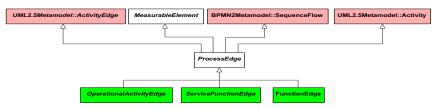


Figure 9:110 - ProcessEdge

ProcessOperation

Package: Processes is Abstract: Yes

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM56]: https://issues.omg.org/browse/UAF13-55

 $\textbf{Generalization:} \ \underline{\textbf{Measurable Element}}, \textbf{UML2.5} \\ \textbf{Metamodel::} \\ \textbf{Activity, UML2.5} \\ \textbf{Metamodel::} \\ \textbf{Operation}$

Description

An abstract type that represents a behavior or process (i.e. a Function or Operational Activity) that can be performed by a Performer.

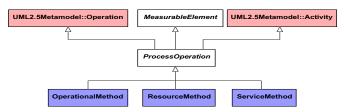


Figure 9:111 - ProcessOperation

ProcessParameter

Package: Processes

isAbstract: Yes

Generalization: MeasurableElement, UML2.5Metamodel::Activity, UML2.5Metamodel::CallBehaviorAction,

UML2.5Metamodel::Parameter

Description

An abstract type that represents a behavior or process (i.e. a Function or Operational Activity) that can be performed by a Performer.

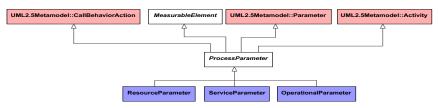


Figure 9:112 - ProcessParameter

ProcessUsage

Package: Processes is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{Measurable Element}}, \textbf{UML2.5} \\ \textbf{Metamodel::} \\ \textbf{Activity, UML2.5} \\ \textbf{Metamodel::} \\ \textbf{CallBehaviorAction,} \\ \textbf{Activity, UML2.5} \\ \textbf{Metamodel::} \\ \textbf{CallBehaviorAction,} \\ \textbf{Metamodel::} \\ \textbf{Me$

BPMN2Metamodel::CallActivity

Description

An abstract type that represents a behavior or process (i.e. a Function or OperationalActivity) that can be performed by a Performer.

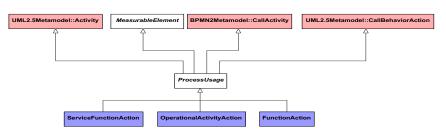


Figure 9:113 - ProcessUsage

Domain MetaModel::Architecture Management::States

StateDescription

Package: States isAbstract: Yes

Generalization: UML2.5Metamodel::StateMachine

Description

An abstract type that represents a state machine (i.e. an OperationalStateDescription or ResourceStateDescription), depicting how the Asset responds to various events and the actions.

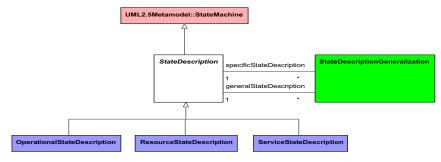


Figure 9:114 - StateDescription

Domain MetaModel::Architecture Management::Sequences

InteractionMessage

Package: Sequences isAbstract: Yes

 $\label{lem:decomposition:measurable} \textbf{Generalization:} \ \, \underline{\textbf{MeasurableElement}}, \ \, \underline{\textbf{UML2.5}} \\ \textbf{Metamodel::Interaction,} \ \, \underline{\textbf{UML2.5}} \\ \textbf{Metamodel::Interaction,} \ \, \underline{\textbf{UML2.5}} \\ \textbf{Metamodel::Metamodel::Message} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{5} \\ \textbf{4} \\ \textbf{5} \\ \textbf{4} \\ \textbf{6} \\ \textbf{5} \\ \textbf{6} \\ \textbf{6} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{6} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{7} \\ \textbf{6} \\ \textbf{7} \\ \textbf{7$

An abstract type that groups several types of messages used in the InteractionScenario.

InteractionRole

Package: Sequences

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

isAbstract: Yes

 $\textbf{Generalization:} \ BPMN2Metamodel:: Resource Role$

Description

An abstract type that represents an individual participant in the InteractionScenario.

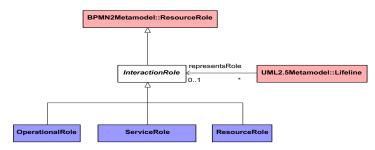


Figure 9:115 - InteractionRole

InteractionScenario

Package: Sequences is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{Measurable Element}}, \ \underline{\textbf{UML2.5} \\ \textbf{Metamodel::} Activity, \ \underline{\textbf{BPMN2}} \\ \textbf{Metamodel::} Process, \\ \textbf{Total Constraints}, \ \underline{\textbf{Metamodel::}} \\ \underline{\textbf{Metamo$

UML2.5Metamodel::Interaction

Description

An abstract type that specifies interactions between Assets, like ResourcePerformers, and Services.

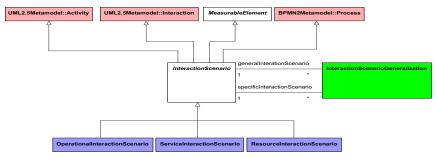


Figure 9:116 - InteractionScenario

Domain MetaModel::Architecture Management::Information

Alias

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

A metamodel Artifact used to define an alternative name for an element.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

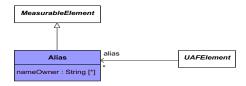


Figure 9:117 - Alias

Attributes

nameOwner: Someone or something that uses this alternative name.

ArchitectureMetadata

Package: Taxonomy isAbstract: No

Generalization: Metadata

Description

Information associated with an ArchitecturalDescription, that supplements the standard set of tags used to summarize the Architecture. It states things like what methodology was used, notation, etc.

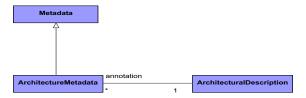


Figure 9:118 - ArchitectureMetadataDefinition

Package: Information is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{MeasurableElement}}$

Description

A comment containing a description of an element in the architecture.

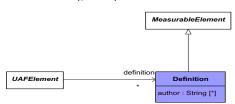


Figure 9:119 - Definition

Attributes

author: The original or current person (architect) responsible for the Definition.

ConflictsWith

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

An annotation that indicates UAF elements acting against or in opposition to each other. This means that there are elements in the model that disagree about something important or are incompatible with each other in some way.

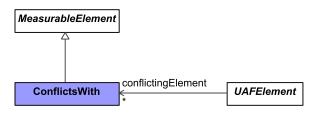


Figure :25 - ConflictsWith

Information

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

A comment that describes the state of an item of interest in any medium or form -- and is communicated or received.

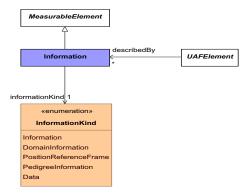


Figure 9:120 - Information

InformationModel

Package: Information is Abstract: No

 $\textbf{Generalization:} \ \underline{Subject Of Operational Constraint}, \ \underline{Subject Of Resource Constraint}$

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM57]: https://issues.omg.org/browse/UAF13-55

Formatted: OMG Bold Centered Figure Caption, Indent: Left: 0 cm, First line: 0 cm, Space After: 0 pt

Description

A structural specification of data types, showing relationships between them. The type of information captured in the InformationModel is described using the enumeration InformationModelKind (Conceptual, Logical, and Physical).

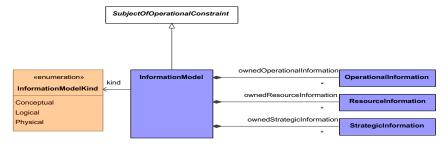


Figure 9:121 - InformationModel

Metadata

Package: Taxonomy isAbstract: No

Generalization: MeasurableElement

Description

A comment that can be applied to any element in the architecture. The attributes associated with this element details the relationship between the element and its related dublinCoreElement, metaDataScheme, category and name. This allows the element to be referenced using the Semantic Web.

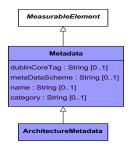


Figure 9:122 - Metadata

Attributes

category : String[0..1] Defines the category of a Metadata element example:

http://purl.org/dc/terms/abstract.

 $dublinCoreTag: String[0..1] \qquad A \ metadata \ category \ that \ is \ a \ DublinCore \ tag.$

 $metaDataScheme: String[0..1] \hspace{0.5cm} A \hspace{0.1cm} representation scheme that defines a set of Metadata. \\ name: String[0..1] \hspace{0.1cm} The \hspace{0.1cm} name \hspace{0.1cm} of \hspace{0.1cm} the \hspace{0.1cm} Metadata. \hspace{0.1cm} The \hspace{0.1cm} name \hspace{0.1cm} of \hspace{0.1cm} the \hspace{0.1cm} Metadata.$

Opposes

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

A tuple that indicates an open clash between two opposing groups (or individuals). This means that elements in the model are fighting against each other or are providing strong resistance to progress towards some goals. Note to entry: By individual this does not indicate instances in the model.

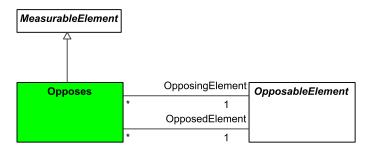


Figure :30 - Opposes

SameAs

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

A tuple that asserts that two elements refer to the same real-world thing.

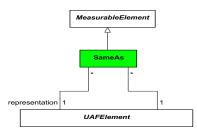


Figure 9:123 - SameAs

Domain MetaModel::Architecture Management::Constraints

Rule

Package: Constraints is Abstract: Yes

Generalization: MeasurableElement

Description

An abstract type for all types of constraint (i.e. an OperationalConstraint could detail the rules of accountancy best practice)

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM58]: https://issues.omg.org/browse/UAF13-55

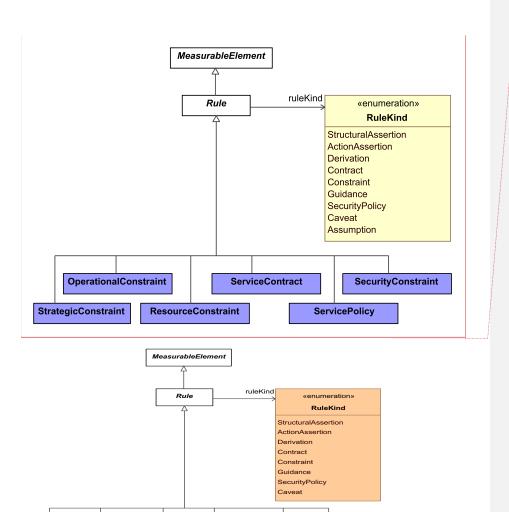


Figure 9:124 - Rule

StrategicConstraint

Domain MetaModel::Architecture Management::Traceability

ResourceConstraint

ServiceContract

SecurityConstraint

ServicePolicy

ArchitecturalReference

OperationalConstraint

Package: Traceability

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM59]: https://issues.omg.org/browse/UAF13-55

isAbstract: No

Generalization: MeasurableElement

Description

A tuple that specifies that one architectural description refers to another.

Figure 9:125 - ArchitecturalReference

ComparesTo

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple used to relate the effect that is achieved with the originally expected DesiredEffect. Providing a means of comparison, between the expectation of the desirer and the actual result.

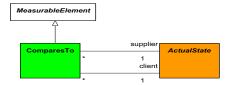


Figure 9:126 - ComparesTo

Implements

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple that defines how an element in the upper layer of abstraction is implemented by a semantically equivalent element (for example tracing the Functions to the OperationalActivities) in the lower level of abstraction.

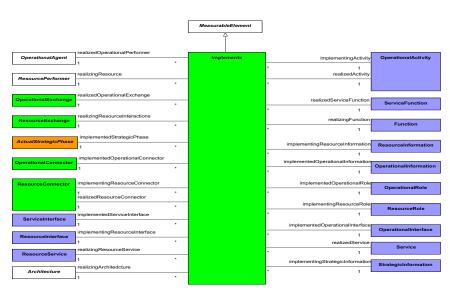


Figure 9: 127 - Implements

Sequence

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple that asserts one Individual's temporal extent is completely before the temporal extent of another.

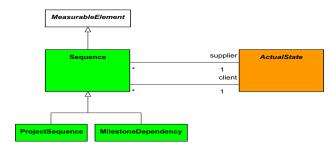


Figure 9:128 - Sequence

9.1.2 Domain MetaModel::Summary & Overview

ArchitecturalDescription

Package: Summary & Overview

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

isAbstract: No

Generalization: MeasurableElement

Description

An Architecture Description is a work product used to express the Architecture of some System Of Interest.

It provides executive-level summary information about the architecture description in a consistent form to allow quick reference and comparison between architecture descriptions -- It includes assumptions, constraints, and limitations that may affect high-level decisions relating to an architecture-based work program.

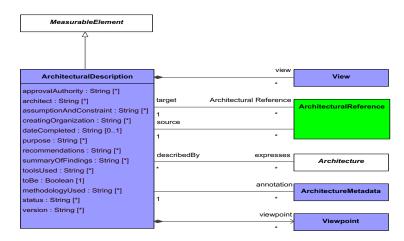


Figure 9: 129 - ArchitecturalDescription

Attributes

approvalAuthority: String[*] Someone or something that has the authority to approve the

ArchitecturalDescription.

 $architect: String[*] \\ Someone \ responsible \ for \ the \ creation \ of \ Architectural Description.$

assumptionAndConstraint: String[*] Any assumptions, constraints, and limitations contained in the

ArchitecturalDescription, including those affecting deployment,

communications performance, information assurance environments, etc. The organization responsible for creating the ArchitecturalDescription.

creatingOrganization: String[*] The organization responsible for creating the Architect dateCompleted: String[0..1] Date that the ArchitecturalDescription was completed.

methodologyUsed: String[*] Name of the documented methodology that will be or has been used in

describing the architecture.

purpose : String[*] Explains the need for the Architecture, what it will demonstrate, the types of

analyses that will be applied to it, who is expected to perform the analyses, what decisions are expected to be made on the basis of each form of analysis, who is expected to make those decisions, and what actions are expected to

result.

recommendations: String[*] States the recommendations that have been developed based on the

architecture effort. Examples include recommended system implementations,

and opportunities for technology insertion.

status : String[*] State of the architecture description in terms of its development, baselining,

activity (e.g., active or inactive), or some other factor of importance.

summaryOfFindings : String[*] Summarizes the findings that have been developed so far. This may be

updated several times during the development of the ArchitecturalDescription. Indicates whether the ArchitecturalDescription represents an Architecture that

exists or will exist in the future.

 $toolsUsed: String[*] \\ Identifies any tools used to develop the Architectural Description as well as$

file names and formats if appropriate.

version : String[*] Identifier that indicates the particular edition or revision of the architecture

description.

Architecture

toBe: Boolean[1]

Package: Summary & Overview

isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type that represents a generic architecture. Subtypes are OperationalArchitecture, Service Architecture, and ResourceArchitecture.

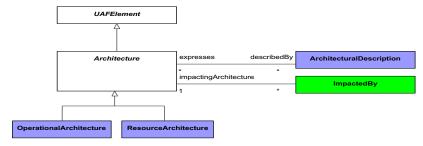


Figure 9:130 - Architecture

Concern

Package: Summary & Overview

isAbstract: No

Generalization: PropertySet, PhaseableElement

Description

A matter of relevance or importance to a stakeholder regarding an entity of interest.

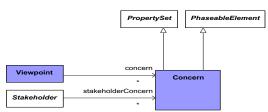


Figure 9:131 - Concern

Phases

Package: Summary & Overview

isAbstract: No

Generalization: MeasurableElement

Description

A tuple that exists between a PhaseableElement and an ActualStrategicPhase that it is assigned to.

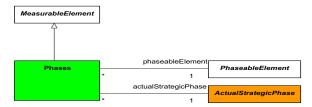


Figure 9:132 - Phases

Stakeholder

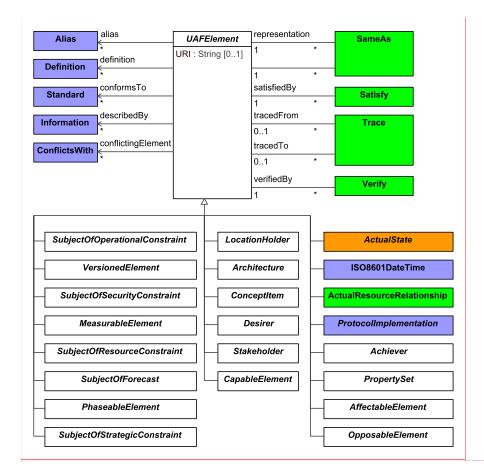
Package: Summary & Overview

isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An individual organizational resource, or a type of organizational resource (both internal and external to the enterprise) who has an interest in, or is affected by, outcomes or intermediate effects generated or influenced by the enterprise].


Figure 9:133 - Stakeholder

UAFElement

Package: Summary & Overview

isAbstract: Yes Description

Abstract super type for all of the UAF elements. It provides a way for all of the UAF elements to have a common set of properties.

Commented [AM60]: https://issues.omg.org/browse/UAF13-55

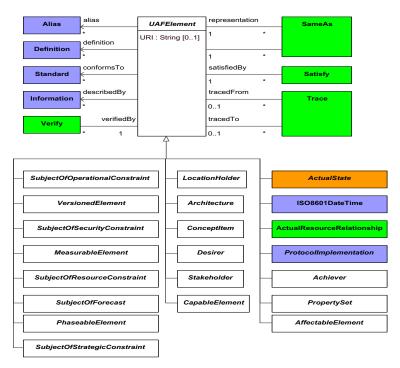


Figure 9:134 - UAFElement

Attributes

URI : String[0..1] Captures Unique identifier for the element.

View

Package: Summary & Overview

isAbstract: No

Generalization: PropertySet

Description

An information item, governed by an architecture viewpoint, comprising part of an architecture description that communicates some aspect of an architecture.

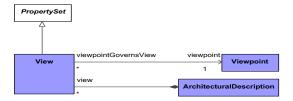


Figure 9:135 - View

Viewpoint

Package: Summary & Overview

isAbstract: No

Generalization: PropertySet

Description

Conventions for the creation, interpretation and use of an architecture view to frame one or more concerns that governs the creation of views.

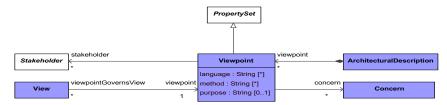


Figure 9:136 - Viewpoint

Attributes

language: String[*] The languages used to express the Viewpoint.

method: String[*] The methods employed in the development of the Viewpoint.

 $purpose: \ String[0..1] \quad The \ purpose \ of \ the \ Viewpoint.$

9.1.3 Domain MetaModel::Strategic

Domain MetaModel::Strategic::Motivation

Challenge

Package: Motivation is Abstract: No

Generalization: MotivationalElement

Description

An existing or potential difficulty, circumstance, or obstacle which will require effort and determination from an enterprise to overcome in achieving its goals.

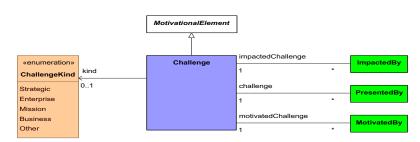


Figure 9:137 - Challenge

Driver

Package: Motivation is Abstract: No

Generalization: MotivationalElement

Description

A factor which will have a significant impact on the activities, and goals of an enterprise

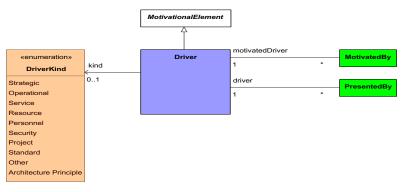


Figure 9:138 - Driver

Enables

Package: Motivation

isAbstract: No

Generalization: MeasurableElement

Description

A tuple used to denote that an Opportunity provides the means for achieving an EnterpriseGoal or Objective.A dependency relationship denoting that an Opportunity provides the means for achieving an EnterpriseGoal or Objective.

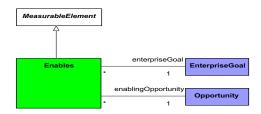


Figure 9:139 - Enables

ImpactedBy

Package: Motivation is Abstract: No

Generalization: MeasurableElement

Description

A tuple used to denote that a Capability is affected by an Opportunity.

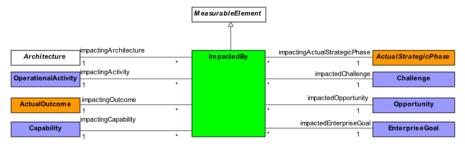


Figure 9:140 - ImpactedBy

MotivatedBy

Package: Motivation is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple denoting the reason or reasons one has for acting or behaving in a particular way

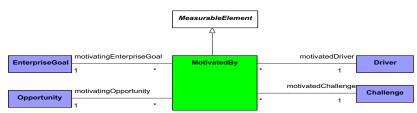


Figure 9:141 - MotivatedBy

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

MotivationalElement

Package: Motivation is Abstract: Yes

Generalization: PropertySet, PhaseableElement

Description

An abstract kind of element in the model that provides the reason or reasons one has for acting or behaving in a particular

PropertySet PhaseableElement

MotivationalElement

Opportunity Effect

PropertySet

MotivationalElement

Opportunity Effect

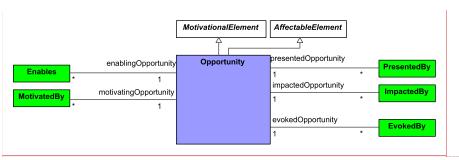
Figure 9:142 - MotivationalElement

Opportunity

Package: Motivation is Abstract: No

Generalization: MotivationalElement, AffectableElement

Description


An existing or potential favorable circumstance or combination of circumstances which can be advantageous for addressing enterprise Challenges.

Commented [AM61]: https://issues.omg.org/browse/UAF13-55

Commented [AM62]: https://issues.omg.org/browse/UAF13-55

Commented [AM63]: https://issues.omg.org/browse/UAF13-55

Deleted: , PhaseableElement

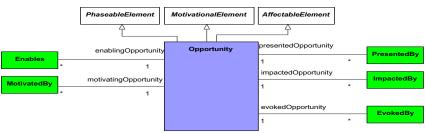


Figure 9:143 - Opportunity

PresentedBy

Package: Motivation is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple denoting that a Challenge must be overcome for addressing a Driver.

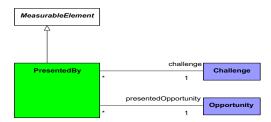


Figure 9:144 - PresentedBy

Domain MetaModel::Strategic::Taxonomy

Capability

Package: Taxonomy isAbstract: No

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM64]: https://issues.omg.org/browse/UAF13-55

$\textbf{Generalization:} \ \underline{PropertySet}, \ \underline{Desirer}, \ \underline{PhaseableElement}, \ \underline{AffectableElement}, \ \underline{SubjectOfStrategicConstraint}$

Description

An enterprise's ability to Achieve a desired effect realized through a combination of ways and means (e.g. CapabilityConfigurations) along with specified measures.

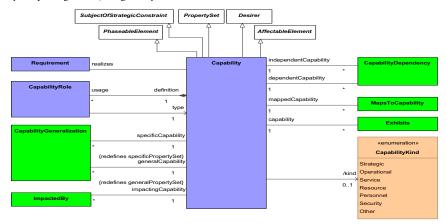


Figure 9:145 - Capability

CapabilityGeneralization

Package: Taxonomy isAbstract: No

Generalization: PropertySetGeneralization

Description

A CapabilityGeneralization is a taxonomic relationship between a more general Capability and a more specific Capability.

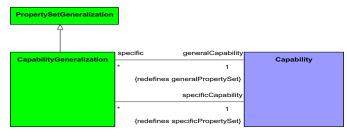


Figure 9:146 - CapabilityGeneralization

EnterpriseGoal

Package: Structure isAbstract: No

Generalization: PropertySet, PhaseableElement, AffectableElement, Requirement

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Description

A statement about a state or condition of the enterprise to be brought about or sustained through appropriate Means. An EnterpriseGoal amplifies an EnterpriseVision that is, it indicates what must be satisfied on a continuing basis to effectively attain the EnterpriseVision. BMM: OMG dtc-13-08-24.

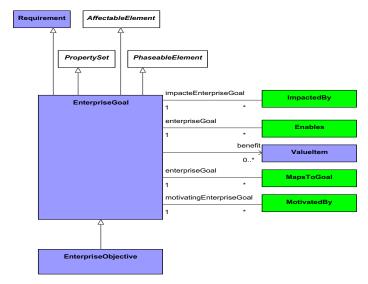


Figure 9:147 - EnterpriseGoal

EnterpriseObjective

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{EnterpriseGoal}$

Description

A statement of an attainable, time-targeted, and measurable target that the enterprise seeks to meet in order to achieve its Goals. http://www.omg.org/spec/BMM/1.3/

Figure 9:148 - EnterpriseObjective

EnterpriseVision

Package: Structure is Abstract: No

Generalization: PropertySet, PhaseableElement

Description

A Vision describes the future state of the enterprise, without regard to how it is to be achieved. BMM: OMG dtc-13-08-24.

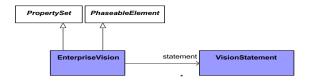
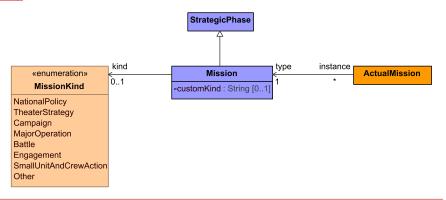


Figure 9:149 - EnterpriseVision

Mission


Package: Taxonomy

isAbstract: No

Generalization: StrategicPhase

Description

The task, together with the purpose, that clearly indicates the action to be taken and the reasoning behind the mission. (JP 1-02)

Figure :58 - Mission

Attributes

customKind: String [0..1]

Identification of a special kind of Mission that is different from one of the predefined enumerated kinds.

160

OwnsValue

Package: Taxonomy isAbstract: No

Generalization: MeasurableElement

Description

An tuple denoting that an ActualOrganizationalResource owns a ValueItem.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM65]: https://issues.omg.org/browse/UAF13-55

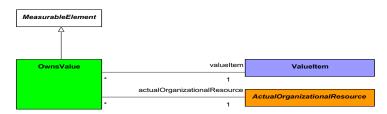
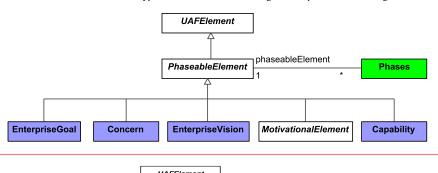


Figure 9:150 - OwnsValue


PhaseableElement

Package: Taxonomy isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract element that indicates the types of elements that can be assigned to a specific ActualStrategicPhase.

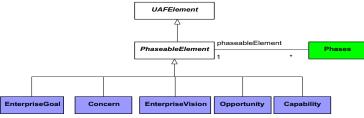


Figure 9:151 - PhaseableElement

StrategicAsset

Package: Taxonomy isAbstract: Yes
Generalization: Asset

Description

An abstract element that indicates the types of strategic elements that can be affected by Risk.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM66]: https://issues.omg.org/browse/UAF13-55

Figure 9:152- StrategicAsset

StrategicPhase

Package: Structure isAbstract: No

 $Generalization: \underline{PropertySet}$

Description

A type of a current or future state of the enterprise, mission, ValueStream, or EnduringTask.

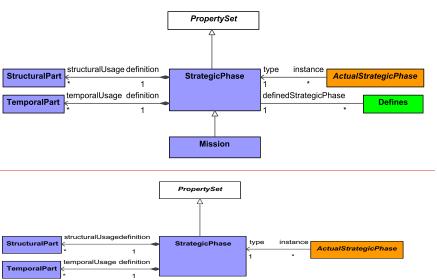


Figure 9:153 - StrategicPhase

Valueltem

Package: Taxonomy isAbstract: No

Generalization: MeasurementSet, StrategicAsset

Description

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Deleted: -

162

An ideal, custom, or institution that an enterprise promotes or agrees with. It may be positive or negative, depending on point of view.

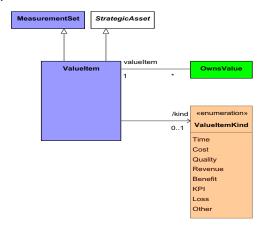


Figure 9:154 - ValueItem

VisionStatement

Package: Taxonomy isAbstract: No

Generalization: MeasurableElement

Description

A type of comment that describes the future state of the enterprise, without regard to how it is to be achieved. BMM: OMG dtc-13-08-24.



Figure 9:155 - VisionStatement

WholeLifeEnterprise

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Enterprise Phase}}$

Description

A WholeLifeEnterprise is a purposeful endeavor of any size involving people, organizations and supporting systems. It is made up of TemporalParts and StructuralParts.

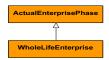


Figure 9:156 - WholeLifeEnterprise

Domain MetaModel::Strategic::Structure

CapabilityRole

Package: Structure isAbstract: No

 $\textbf{Generalization:} \ \underline{PropertySet}, \ \underline{Desirer}, \ \underline{MeasurableElement}$

Description

A high level specification of the enterprise's ability to execute a specified course of action.

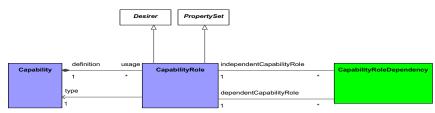


Figure 9:157 - CapabilityRole

StructuralPart

Package: Structure is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

Usage of a StrategicPhase in the context of another StrategicPhase. It asserts that one StrategicPhase is a spatial part of another. Creates a whole-part relationship that represents the structure of the StrategicPhase.

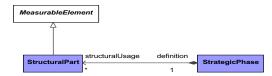


Figure 9:158 - StructuralPart

TemporalPart

Package: Structure isAbstract: No

$\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

Usage of an StrategicPhase in the context of another StrategicPhase. It asserts that one StrategicPhase is a spatial part of another. Creates a whole-part relationship that represents the temporal structure of the StrategicPhase.

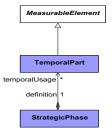


Figure 9:159 - TemporalPart

Domain MetaModel::Strategic::Connectivity

CapabilityDependency

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} \underline{\textbf{Element}}}$

Description

A tuple that asserts that one CapabilityDependency is dependent from another.

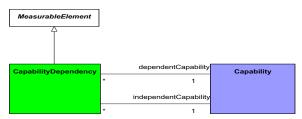
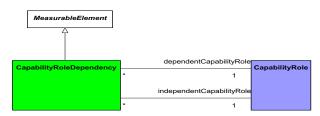


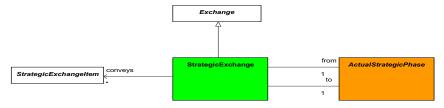
Figure 9:160 - CapabilityDependency

CapabilityRoleDependency

Package: Connectivity is Abstract: No

Generalization: MeasurableElement




Figure 9:161 - CapabilityRoleDependency

StrategicExchange

Package: Connectivity is Abstract: No Generalization: Exchange

Description

Asserts that a flow can exist between ActualStrategicPhases (i.e. flows of information, people, materiel, or energy).

Figure~9:162-Strategic Exchange

StrategicExchangeItem

Package: Connectivity is Abstract: Yes

 ${\bf Generalization:} \ \underline{Resource}, \ \underline{ExchangeItem}$

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between ActualStrategicPhases and conveyed by a StrategicExchange.

Domain MetaModel::Strategic::Processes

ActualEnduringTask

Package: Processes is Abstract: No

Generalization: ActualStrategicPhase

Description

An actual undertaking recognized by an enterprise as being essential to achieving its goals - i.e. a strategic specification of what the enterprise does.

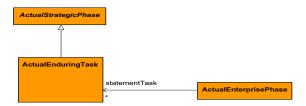
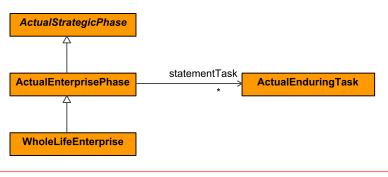


Figure 9:163 - ActualEnduringTask


ActualEnterprisePhase

Package: Processes is Abstract: No

Generalization: ActualStrategicPhase

Description

A time period within which a set of Capabilities are deployed.

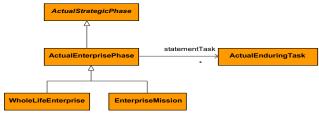


Figure 9:164 - ActualEnterprisePhase

ActualMission

Package: Processes is Abstract: No

Generalization: ActualStrategicPhase

Commented [AM67]: https://issues.omg.org/browse/UAF13-55

Description

A particular mission to accomplish assigned mission objectives

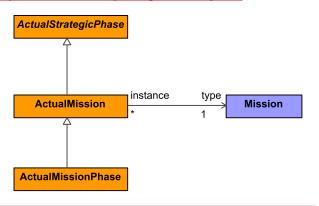


Figure :74 - ActualMission

ActualMissionPhase

Package: Processes

isAbstract: No

Generalization: ActualMission

Description

A particular phase in the accomplishment of an overall actual mission.

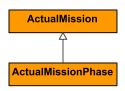


Figure :75 - ActualMissionPhase

ActualStrategicPhase

Package: Processes is Abstract: Yes

Generalization: Achiever, ActualPropertySet

Description

 $A\ phase\ of\ an\ actual\ enterprise,\ mission,\ ValueStream\ or\ EnduringTask\ endeavor.$

Commented [AM68]: https://issues.omg.org/browse/UAF13-55

Formatted: OMG Bold Centered Figure Caption, Indent: Left: 0 cm, First line: 0 cm, Space After: 0 pt

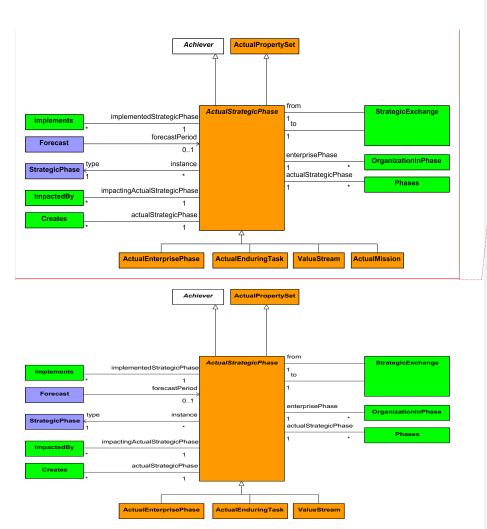


Figure 9:165 - ActualStrategicPhase

Creates

Package: Processes is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple used to denote that an ActualStrategicPhase brings into existence a StrategicAsset.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

169

Commented [AM69]: https://issues.omg.org/browse/UAF13-55

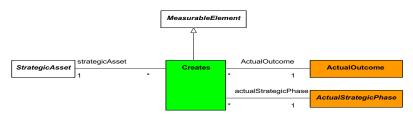


Figure 9:166 - Creates

Defines

Package: Processes

isAbstract: No

Generalization: MeasurableElement

Description

A tuple that links the StrategicPhase and the Activity that implements it.

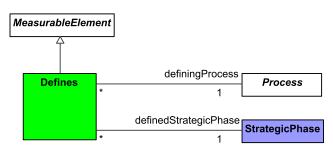


Figure :78 - Defines

ValueStream

Package: Processes is Abstract: No

Generalization: ActualStrategicPhase

Description

An end-to-end collection of activities that create a result for a customer, who may be the ultimate customer or an internal end-user of the value stream. Value stream nested within another value stream may represent Value Stream Stage - a distinct, identifiable phase or step within a value stream [The Business Architecture Metamodel Guide, 2020]

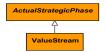


Figure 9:168 - ValueStream

Commented [AM70]: https://issues.omg.org/browse/UAF13-55

Deleted: EnterpriseMission*

Formatted: OMG Bold Centered Figure Caption, Indent: Left: 0 cm, First line: 0 cm, Space After: 0 pt

Deleted: Package: Processes*
isAbstract: No *
Generalization: ActualEnterprisePhase*
Description*
Mission captures at a high level what you will do to realize your vision. *

Figure 9:167 - EnterpriseMission

Domain MetaModel::Strategic::States

Achiever

Package: States isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An ActualResource, ActualProject or ActualStrategicPhase that can deliver a desired effect.

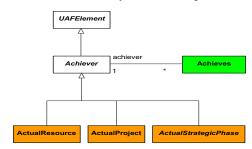


Figure 9:169 - Achiever

Achieves

Package: States is Abstract: No

Generalization: MeasurableElement

Description

A tuple that exists between an ActualState (e.g., observed/measured during testing) of an element that attempts to achieve a desired effect and an Achiever.

Figure 9:170 - Achieves

ActualEffect

Package: States is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Property Set}}$

Description

A real world phenomenon that follows and is caused by some previous phenomenon.

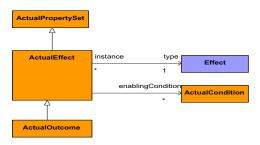


Figure 9:171 - ActualEffect

ActualOutcome

Package: States is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{ActualEffect}}$

Description

An individual that describes something that happens or is produced as the final consequence or product and is related to one of the goals for the business or enterprise. Outcome is a special kind of effect, one that is usually at the end of a chain of effects, i.e. an "end effect".

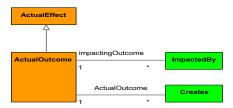


Figure 9:172 - ActualOutcome

Desirer

Package: States isAbstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

Abstract type used to group architecture elements that might desire a particular effect.

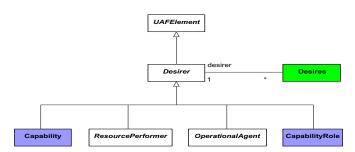


Figure 9:173 - Desirer

Desires

Package: States is Abstract: No

Generalization: MeasurableElement

Description

A tuple relating the Desirer (a Capability or OrganizationalResource) to an ActualState.

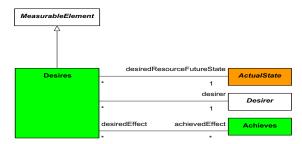


Figure 9:174 - Desires

Effect

Package: States is Abstract: No

Generalization: MotivationalElement

Description

A kind of phenomenon that follows and is caused by some previous phenomenon that could lead to downstream effects or to one or more desired outcomes.

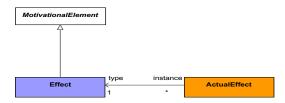


Figure 9:175 - Effect

Domain MetaModel::Strategic::Information

MapsToGoal

Package: Information is Abstract: No

Generalization: MeasurableElement

Description

 $A \ tuple \ denoting \ that \ some \ Strategic Information \ contributes \ to \ achieving \ an \ Enterprise Goal \ or \ Objective.$

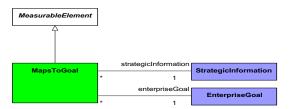


Figure 9:176 - MapsToGoal

StrategicInformation

Package: Information is Abstract: No

 $\textbf{Generalization:} \ \underline{Strategic Exchange Item}, \underline{Strategic Asset}$

Description

Knowledge communicated or received concerning a particular fact or circumstance that is strategic in nature that is important or essential in relation to a plan of action

Domain MetaModel::Strategic::Constraints

StrategicConstraint

Package: Constraints is Abstract: No Generalization: Rule Description

A Rule governing a Capability.

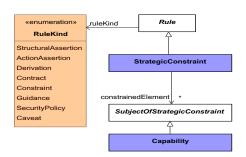


Figure 9:177 - StrategicConstraint

SubjectOfStrategicConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract grouping of elements that can be the subject of a StrategicConstraint.

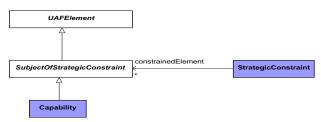


Figure 9:178 - SubjectOfStrategicConstraint

Domain MetaModel::Strategic::Traceability

EvokedBy

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple used to denote that a Risk is drawn out by an Opportunity.

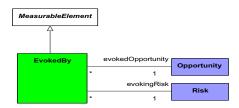


Figure 9:179 - EvokedBy

Exhibits

Package: Traceability is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple that exists between a CapableElement and a Capability that it meets under specific environmental conditions.

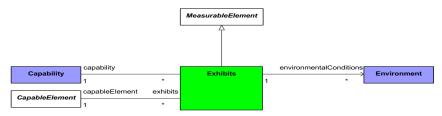


Figure 9:180 - Exhibits

MapsToCapability

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple denoting that an Activity contributes to providing a Capability.

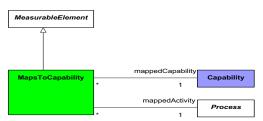


Figure 9:181 - MapsToCapability

OrganizationInPhase

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

An abstraction relationship relating an ActualOrganization to an ActualStrategicPhase to denote that the ActualOrganization plays a role or is a stakeholder in an ActualStrategicPhase.

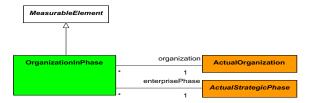


Figure 9:182 - OrganizationInPhase

9.1.4 Domain MetaModel::Operational

Domain MetaModel::Operational::Taxonomy

ArbitraryConnector

Package: Taxonomy isAbstract: No

Generalization: MeasurableElement

Description

Represents a visual indication of a connection used in high level operational concept diagrams.

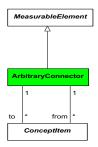


Figure 9:183 - ArbitraryConnector

ConceptItem

Package: Taxonomy isAbstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

An abstract type which represents some part played by an asset or location in a HighLevelOperationalConcept.

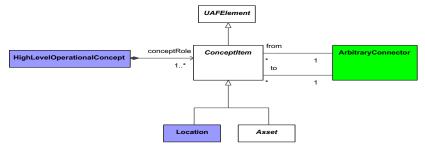


Figure 9:184 - ConceptItem

HighLevelOperationalConcept

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{PropertySet}$

Description

Describes the Resources and Locations required to meet an operational scenario from an integrated systems point of view. It is used to communicate overall quantitative and qualitative system characteristics to stakeholders.

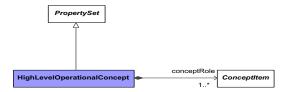


Figure 9:185 - HighLevelOperationalConcept

Domain MetaModel::Operational::Structure

KnownResource

Package: Structure isAbstract: No

Generalization: OperationalPerformer, ResourcePerformer

Description

Asserts that a known ResourcePerformer constrains the implementation of the OperationalPerformer that plays the role in the OperationalArchitecture.

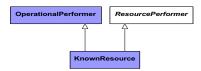


Figure 9:186 - KnownResource

OperationalAgent

Package: Structure is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{SubjectOfOperationalConstraint}}, \underline{\textbf{CapableElement}}, \underline{\textbf{OperationalAsset}}, \underline{\textbf{Desirer}}$

Description

An abstract type grouping OperationalArchitecture and OperationalPerformer.

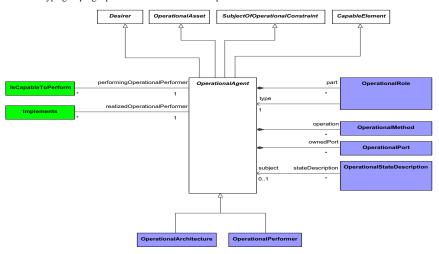


Figure 9:187 - Operational Agent

OperationalArchitecture

Package: Structure is Abstract: No

Generalization: Operational Agent, Architecture

Description

A type used to denote a model of the Architecture, described from the Operational perspective.

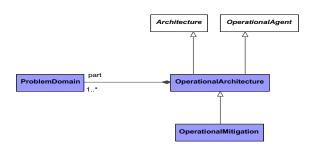


Figure 9:188 - Operational Architecture

OperationalMethod

Package: Structure is Abstract: No

 $\textbf{Generalization:} \ \underline{\underline{ProcessOperation}}$

Description

A behavioral feature of an Operational Agent whose behavior is specified in an Operational Activity.

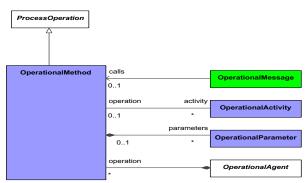


Figure 9:189 - OperationalMethod

OperationalParameter

Package: Structure isAbstract: No

Generalization: ProcessParameter

Description

A type that represents inputs and outputs of an OperationalActivity. It is typed by an OperationalExchangeItem.

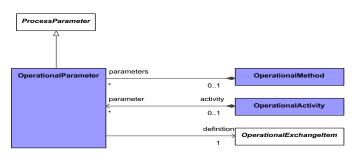


Figure 9:190 - OperationalParameter

OperationalPerformer

Package: Structure is Abstract: No

Generalization: Operational Agent

Description

 $A\ logical\ entity\ that\ Is Capable To Perform\ Operational Activities\ which\ produce,\ consume\ and\ process\ Resources.$

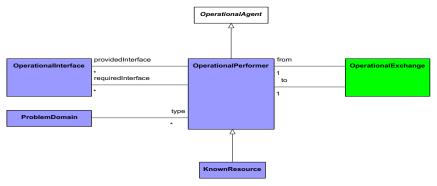


Figure 9:191 - OperationalPerformer

OperationalRole

Package: Structure is Abstract: No

Generalization: LocationHolder, AssetRole, InteractionRole, OpposableElement

Description

Usage of a OperationalPerformer or OperationalArchitecture in the context of another OperationalPerformer or OperationalArchitecture. Creates a whole-part relationship.

Commented [AM71]: https://issues.omg.org/browse/UAF13-55

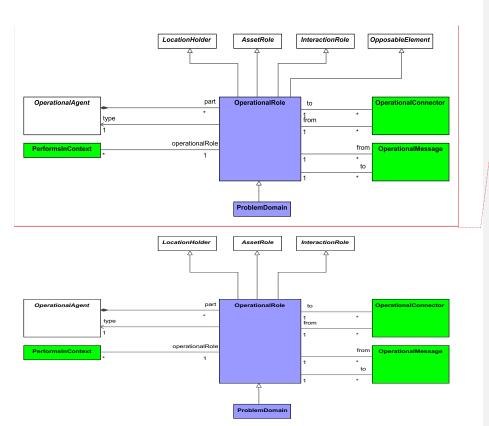


Figure 9:192 - OperationalRole

ProblemDomain

Package: Structure isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Operational Role}}$

Description

A property associated with an Operational Architecture, used to specify the scope of the problem.

Commented [AM72]: https://issues.omg.org/browse/UAF13-55

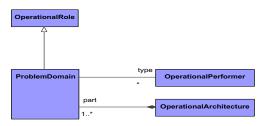


Figure 9:193 - ProblemDomain

Domain MetaModel::Operational::Connectivity

OperationalConnector

Package: Connectivity is Abstract: No

Generalization: AssetRole

Description

A Connector that goes between OperationalRoles representing a need to exchange Resources. It can carry a number of OperationalExchanges.

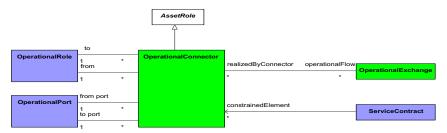


Figure 9:194 - OperationalConnector

OperationalExchange

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{Exchange}, \ \underline{SubjectOfOperationalConstraint}$

Description

Asserts that a flow can exist between OperationalPerformers (i.e. flows of information, people, materiel, or energy).

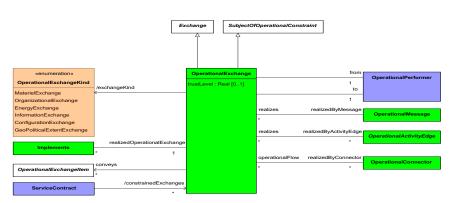


Figure 9:195 - OperationalExchange

Attributes

 $\label{lem:conditional} trustLevel: Real [0..1] \quad Captures the directional arbitrary level of trust related to an Operational Exchange between two Operational Performers.$

OperationalExchangeItem

Package: Connectivity is Abstract: Yes

Generalization: Resource, SubjectOfSecurityConstraint, ExchangeItem

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between OperationalPerformers and conveyed by an OperationalExchange.

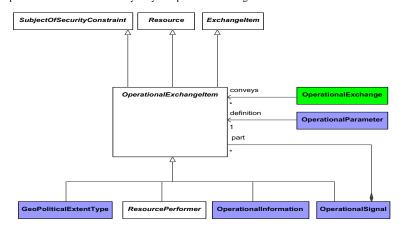


Figure 9:196 - OperationalExchangeItem

OperationalInterface

Package: Connectivity is Abstract: No

Generalization: PropertySet

Description

A declaration that specifies a contract between the OperationalPerformer it is related to, and any other OperationalPerformers it can interact with.

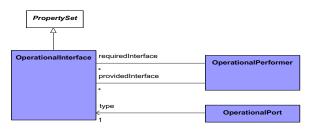


Figure 9:197 - OperationalInterface

OperationalPort

Package: Connectivity is Abstract: No

Generalization: MeasurableElement

Description

An interaction point for an OperationalAgent through which it can interact with the outside environment and which is defined by an OperationalInterface.

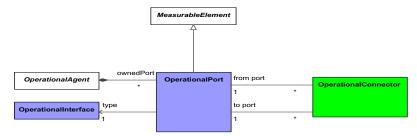


Figure 9:198 - OperationalPort

OperationalSignal

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{SubjectOfOperationalConstraint}, \underline{OperationalExchangeItem}$

Description

An item of information that flows between OperationalPerformers and is produced and consumed by the OperationalActivities that the OperationalPerformers are capable of performing (see IsCapableToPerform).

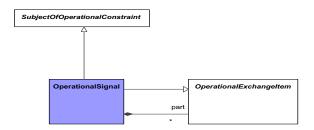


Figure 9:199 - OperationalSignal

MissionTask

Package: Processes

isAbstract: No

Generalization: MissionThread

Description

A clearly defined activity specifically to be assigned to system, person, or organization that must be completed

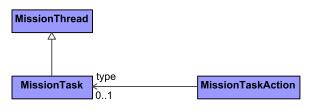


Figure :111 - MissionTask

MissionTaskAction

Package: Processes

isAbstract: No

Generalization: Operational Activity Action

Description

The usage of a MissionTask within a MissionThread

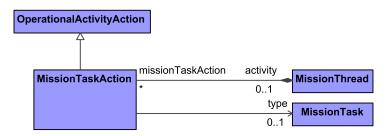


Figure: 112 - MissionTaskAction

MissionThread

Package: Processes

isAbstract: No

Generalization: Operational Activity

Description

A sequence of end-to-end mission tasks, activities, and events presented as a series of steps to achieve a mission. (OUSD(R&E))

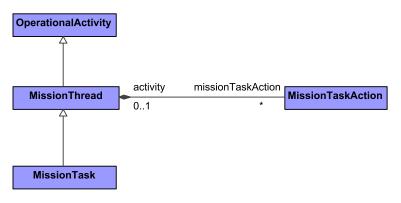


Figure:113 - MissionThread

Domain MetaModel::Operational::Processes

OperationalActivity

Package: Processes is Abstract: No

Generalization: <u>SubjectOfOperationalConstraint</u>, <u>Process</u>

Description

An Activity that captures a logical process, specified independently of how the process is carried out.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM73]: https://issues.omg.org/browse/UAF13-55

Formatted: OMG Bold Centered Figure Caption

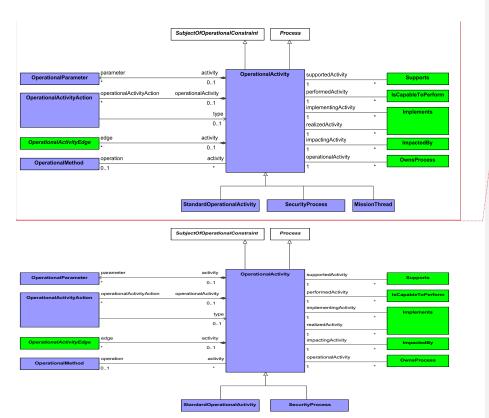
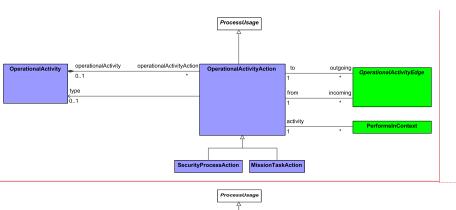


Figure 9:200 - Operational Activity

OperationalActivityAction


Package: Processes is Abstract: No

 $\textbf{Generalization:} \ \underline{ProcessUsage}, \underline{MeasurableElement}$

Description

A call of an Operational Activity in the context of another Operational Activity.

Commented [AM74]: https://issues.omg.org/browse/UAF13-55

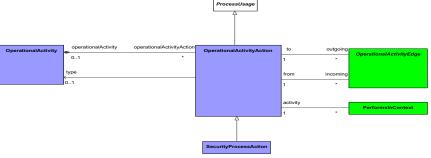


Figure 9:201 - Operational Activity Action

OperationalActivityEdge

Package: Processes is Abstract: Yes

 $\textbf{Generalization:} \ \underline{ProcessEdge}$

Description

 $A \ tuple \ that \ shows \ the \ flow \ of \ Resources \ (objects/information) \ between \ Operational Activity Actions.$

Figure~9:202-Operational Activity Edge

StandardOperationalActivity

Package: Processes

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM75]: https://issues.omg.org/browse/UAF13-55

isAbstract: No

Generalization: Operational Activity

Description

A sub-type of Operational Activity that is a standard operating procedure.

Figure 9:203 - StandardOperationalActivity

Domain MetaModel::Operational::States

OperationalStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement, StateDescription

Description

A state machine describing the behavior of a OperationalPerformer, depicting how the OperationalPerformer responds to various events and the actions.

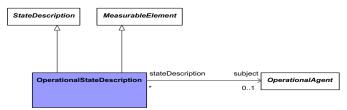


Figure 9:204 - Operational State Description

Domain MetaModel::Operational::Sequences

OperationalInteractionScenario

Package: Sequences is Abstract: No

Generalization: InteractionScenario

Description

A specification of the interactions between OperationalPerformers in an OperationalArchitecture.

Figure 9:205 - OperationalInteractionScenario

OperationalMessage

Package: Sequences is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Interaction} \underline{\textbf{Message}}}$

Description

Message for use in an OperationalInteractionScenario which carries any of the subtypes of OperationalExchange.

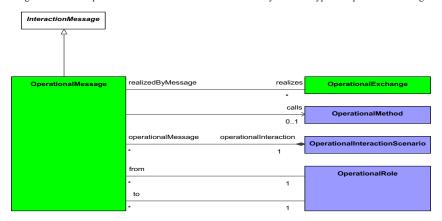


Figure 9:206 - Operational Message

Domain MetaModel::Operational::Information

OperationalInformation

Package: Information is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{SubjectOfOperationalConstraint, \underline{OperationalAsset, \underline{OperationalExchangeItem}}, \underline{\textbf{ServiceExchangeItem}}$

Description

An item of information that flows between OperationalPerformers and is produced and consumed by the OperationalActivities that the OperationalPerformers are capable to perform (see IsCapableToPerform).

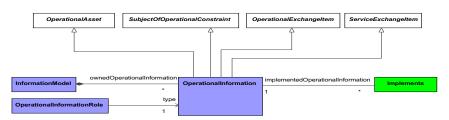


Figure 9:207 - OperationalInformation

Domain MetaModel::Operational::Constraints

OperationalConstraint

Package: Constraints is Abstract: No Generalization: Rule Description

A Rule governing an operational architecture element i.e. OperationalPerformer, OperationalActivity, OperationalInformation etc.

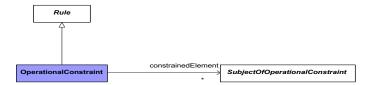


Figure 9:208 - OperationalConstraint

SubjectOfOperationalConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type grouping elements that can be the subject of an OperationalConstraint.

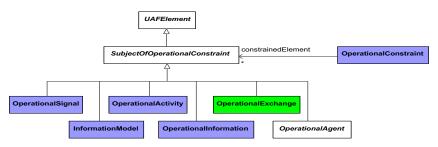


Figure 9:209 - SubjectOfOperationalConstraint

9.1.5 Domain MetaModel::Services

Stakeholders: Enterprise Architects, Solution Providers, Systems Engineers, Software Architects, Business Architects..

Concerns: specifications of services required to exhibit a Capability.

Definition: shows Services and required and provided service levels of these services needed to exhibit a Capability or to support an Operational Activity.

Domain MetaModel::Services::Taxonomy

Service

Package: Taxonomy isAbstract: No

Generalization: PropertySet, VersionedElement, CapableElement, Asset

Description

A mechanism to enable access to one or more capabilities, where the access is provided using a prescribed service interface and is exercised consistent with service constraints and policies.

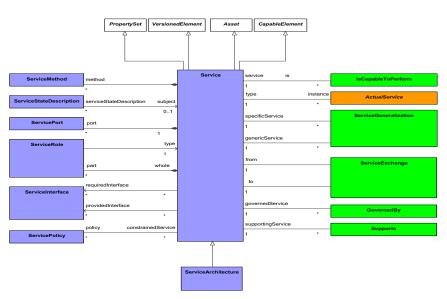


Figure 9:210 - Service

ServiceArchitecture

Package: Taxonomy isAbstract: No

Generalization: Service, Architecture

Description

An element used to denote a model of the Architecture, described from the Services perspective.

Figure 9:211 - ServiceArchitecture

ServiceGeneralization

Package: Taxonomy isAbstract: No

Generalization: PropertySetGeneralization

Description

A ServiceGeneralization is a taxonomic relationship between a more general Service and a more specific Service.

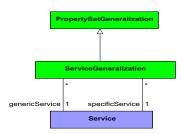


Figure 9:212 - ServiceGeneralization

Domain MetaModel::Services::Structure

ServiceMethod

Package: Structure isAbstract: No

Generalization: ProcessOperation

Description

A behavioral feature of a Service whose behavior is specified in a ServiceFunction.

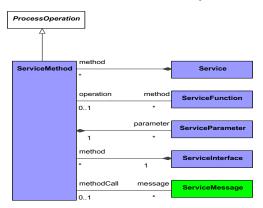


Figure 9:213 - ServiceMethod

ServiceParameter

Package: Structure is Abstract: No

Generalization: ProcessParameter

Description

A type that represents inputs and outputs of a ServiceFunction, represents inputs and outputs of a Service.

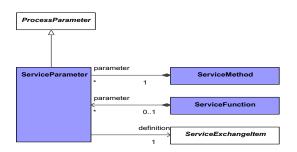


Figure 9:214 - ServiceParameter

ServiceRole

Package: Structure isAbstract: No

Generalization: MeasurableElement, InteractionRole

Description

A behavioral feature of a Service whose behavior is specified in a ServiceFunction.

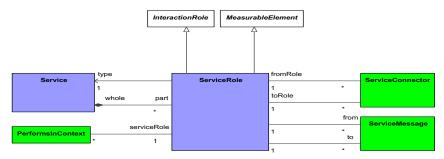


Figure 9:215 - ServiceRole

Domain MetaModel::Services::Connectivity

ServiceConnector

Package: Structure isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{AssetRole}}$

Description

A channel for exchange between two Service. Where one acts as the consumer of the other.

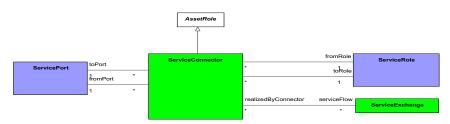


Figure 9:216 - ServiceConnector

ServiceExchange

Package: Connectivity is Abstract: No

Generalization: Exchange

Description

Asserts that a flow can exist between Services (i.e. flows of information, people, materiel, or energy).

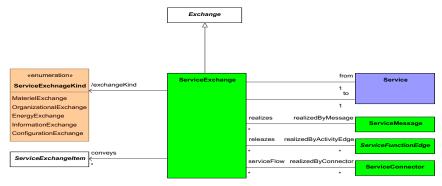


Figure 9:217 - ServiceExchange

ServiceExchangeItem

Package: Connectivity is Abstract: Yes

 $\textbf{Generalization:} \ \underline{Resource}, \underline{ExchangeItem}$

Description

An abstract grouping for elements that defines the types of elements that can be exchanged between Services and conveyed by a ServiceExchange.

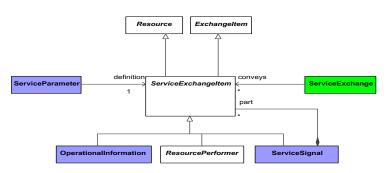


Figure 9:218 - ServiceExchangeItem

ServiceInterface

Package: Connectivity is Abstract: No

 $Generalization: \underline{PropertySet}$

Description

A contract that defines the ServiceMethods and ServiceSignals that the Service realizes.

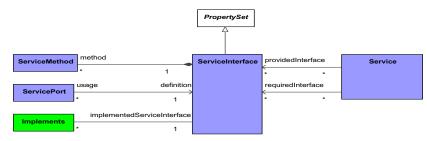


Figure 9:219 - ServiceInterface

ServicePort

Package: Connectivity is Abstract: No

Generalization: MeasurableElement

Description

An interaction point for a Service through which it can interact with the outside environment and which is defined by a ServiceInterface.

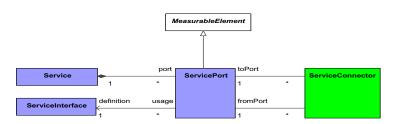


Figure 9:220 - ServicePort

ServiceSignal

Package: Connectivity is Abstract: No

Generalization: ServiceExchangeItem

Description

A specification of a kind of communication between Services in which a reaction is asynchronously triggered in the receiver without a reply.

Figure 9:221 - ServiceSignal

ServiceSignalProperty

Package: Connectivity is Abstract: No Description

A property of a ServiceSignal typed by ServiceExchangeItem. It enables ServiceExchangeItem e.g.

OperationalInformation to be passed as arguments of the ServiceSignal.

Domain MetaModel::Services::Processes

ServiceFunction

Package: Processes isAbstract: No Generalization: Process

Description

Description

An Activity that describes the abstract behavior of Service, regardless of the actual implementation.

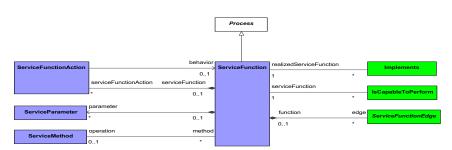


Figure 9:222 - ServiceFunction

ServiceFunctionAction

Package: Processes is Abstract: No

Generalization: ProcessUsage

Description

A call of a ServiceFunction in the context of another ServiceFunction.

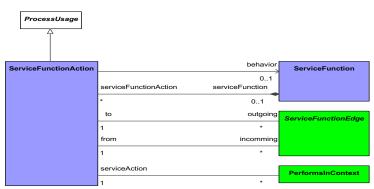


Figure 9:223 - ServiceFunctionAction

ServiceFunctionEdge

Package: Processes is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\underline{ProcessEdge}}$

Description

A tuple that shows the flow of Resources (objects/information) between Operational Activity Actions.

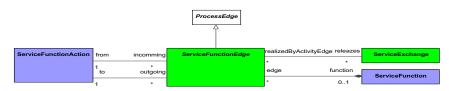


Figure 9:224 - ServiceFunctionEdge

Domain MetaModel::Services::States

ServiceStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement, StateDescription

Description

A state machine describing the behavior of a Service, depicting how the Service responds to various events and the actions.

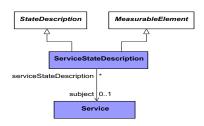


Figure 9:225 - ServiceStateDescription

Domain MetaModel::Services::Sequences

ServiceInteractionScenario

Package: Sequences is Abstract: No

Generalization: InteractionScenario

Description

A specification of the interactions between Service.

Figure 9:226 - ServiceInteractionScenario

ServiceMessage

Package: Sequences is Abstract: No

Generalization: InteractionMessage

Description

Message for use in a services interaction scenario which carries any of the subtypes of ServiceExchange.

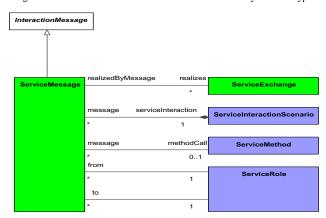


Figure 9:227 - ServiceMessage

Domain MetaModel::Services::Constraints

ServiceContract

Package: Constraints is Abstract: No Generalization: Rule Description

A constraint governing the use of one or more Services.

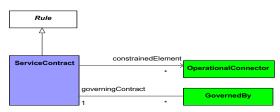


Figure 9:228 - ServiceContract

ServicePolicy

Package: Constraints is Abstract: No

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Generalization: Rule

Description

A constraint governing the use of one or more Service.

Figure 9:229 - ServicePolicy

Domain MetaModel::Services::Traceability

GovernedBy

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple that exists between the ServiceContract and the Service that it governs.

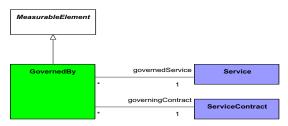


Figure 9:230 - GovernedBy

Supports

Package: Traceability is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple that asserts that asserts that a service in someway contributes or assists in the execution of an

Operational Activity.

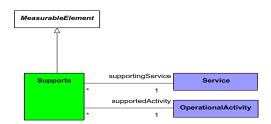


Figure 9:231 - Supports

9.1.6 Domain MetaModel::Personnel

Stakeholders: Human resources, Solution Providers, PMs.

Concerns: human factors.

Definition: aims to clarify the role of Human Factors (HF) when creating architectures in order to facilitate both Human Factors Integration (HFI) and systems engineering (SE).

Domain MetaModel::Personnel::Taxonomy

Organization

Package: Taxonomy isAbstract: No

Generalization: OrganizationalResource

Description

A group of OrganizationalResources (Persons, Posts, Organizations and Responsibilities) associated for a particular numose

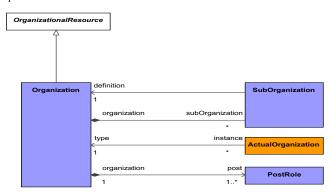


Figure 9:232 - Organization

OrganizationalResource

Package: Taxonomy isAbstract: Yes

Generalization: PhysicalResource, Stakeholder

Description

An abstract type for Organization, Person, Post and Responsibility.

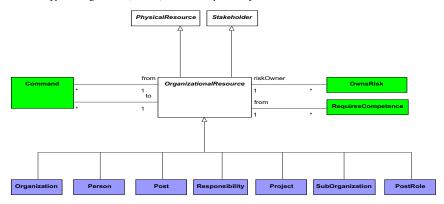


Figure 9:233 - OrganizationalResource

Person

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Organizational Resource}}$

Description

A type of a human being used to define the characteristics that need to be described for ActualPersons (e.g. properties such as address, telephone number, nationality, etc).

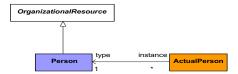


Figure 9:234 - Person

Post

Package: Taxonomy isAbstract: No

Generalization: OrganizationalResource

Description

A type of job title or position that a person can fill (e.g. Lawyer, Solution Architect, Machine Operator or Chief Executive Officer).

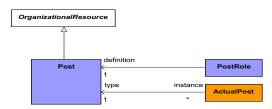


Figure 9:235 - Post

Responsibility

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Organizational Resource}}$

Description

The type of duty required of a Person or Organization.

Figure 9:236 - Responsibility

Domain MetaModel::Personnel::Structure

PostRole

Package: Structure isAbstract: No

Generalization: OrganizationalResource, ResourceRole

Description

A usage of a post in the context of another OrganizationalResource. Creates a whole-part relationship.

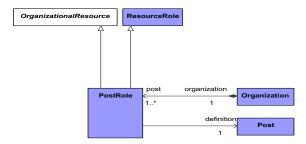


Figure 9:237 - PostRole

SubOrganization

Package: Structure

isAbstract: No

Generalization: OrganizationalResource, ResourceRole

Description

A type of a human being used to define the characteristics that need to be described for ActualPersons (e.g. properties such as address, telephone number, nationality, etc).

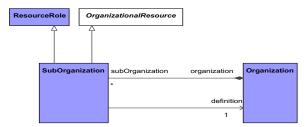


Figure 9:238 - SubOrganization

Domain MetaModel::Personnel::Connectivity

Command

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Resource} Exchange}$

Description

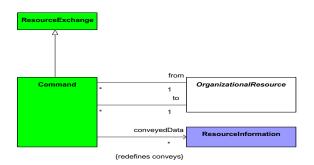


Figure 9:239- Command

Control

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{Resource Exchange}$

Description

A type of ResourceExchange that asserts that one PhysicalResource controls another PhysicalResource (i.e. the driver of a vehicle controlling the vehicle speed or direction).

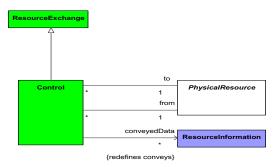


Figure 9:240 - Control

Domain MetaModel::Personnel::Sequences

ResourceInteractionScenario

Package: Sequences is Abstract: No

 ${\bf Generalization:} \ \underline{\bf Interaction Scenario}$

Description

A specification of the interactions between ResourcePerformers in a ResourceArchitecture.

Figure 9:241 - ResourceInteractionScenario

Domain MetaModel::Personnel::Constraints

Competence

Package: Constraints is Abstract: No

Generalization: PropertySet, SubjectOfForecast

Description

A specific set of abilities defined by knowledge, skills and aptitude.

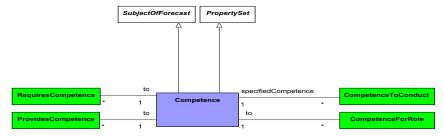


Figure 9:242 - Competence

CompetenceForRole

Package: Constraints is Abstract: No

 ${\bf Generalization:} \ \underline{{\bf Measurable Element}}$

Description

A tuple used to associate an organizational role with a specific set of required competencies.

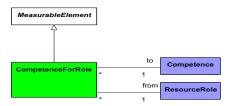


Figure 9:243 - CompetenceForRole

RequiresCompetence

Package: Constraints isAbstract: No

Generalization: MeasurableElement

Description

A tuple that asserts that an ActualOrganizationalResource is required to have a specific set of Competencies.

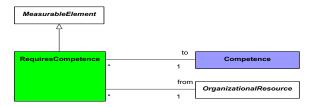


Figure 9:244 - RequiresCompetence

Domain MetaModel::Personnel::Roadmap

FillsPost

Package: Roadmap isAbstract: No

Generalization: MeasurableElement

Description

A tuple that asserts that an ActualPerson fills an ActualPost.

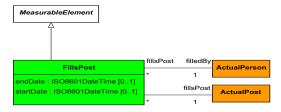


Figure 9:245 - FillsPost

Attributes

End time for all individual elements. endDate: startDate: Start time for all individual elements.

Domain MetaModel::Personnel::Traceability

CompetenceToConduct

Package: Traceability isAbstract: No

Generalization: MeasurableElement

A tuple used to associate a Function with a specific set of Competencies needed to conduct the Function.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

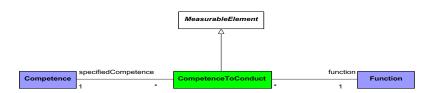


Figure 9:246 - CompetenceToConduct

9.1.7 Domain MetaModel::Resources

Domain MetaModel::Resources::Taxonomy

CapabilityConfiguration

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Resource} \textbf{Architecture}}$

Description

A composite structure representing the physical and human resources (and their interactions) in an enterprise, assembled to meet a capability.

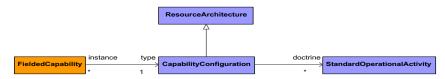


Figure 9:247 - CapabilityConfiguration

NaturalResource

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{Physical Resource}$

Description

Type of physical resource that occurs in nature such as oil, water, gas or coal.

Figure 9:248 - NaturalResource

PhysicalResource

Package: Taxonomy isAbstract: Yes

Generalization: ResourcePerformer

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Description

An abstract type defining physical resources (i.e. OrganizationalResource, ResourceArtifact and NaturalResource).

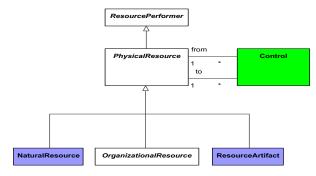


Figure 9:249 - PhysicalResource

ResourceArchitecture

Package: Taxonomy isAbstract: No

Generalization: ResourcePerformer, Architecture

Description

A type used to denote a model of the Architecture, described from the ResourcePerformer perspective.

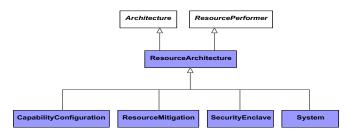


Figure 9:250 - ResourceArchitecture

ResourceArtifact

Package: Taxonomy isAbstract: No

Generalization: PhysicalResource

Description

A type of man-made object that contains no human beings (i.e. satellite, radio, petrol, gasoline, etc.).

Figure 9:251 - ResourceArtifact

ResourcePerformer

Package: Taxonomy isAbstract: Yes

 $\textbf{Generalization:} \ \underline{ResourceExchangeItem}, \underline{SubjectOfResourceConstraint}, \underline{OperationalExchangeItem}, \underline{SubjectOfForecast}, \\$ CapableElement, Desirer, VersionedElement, ResourceAsset, ServiceExchangeItem, StrategicExchangeItem,

OpposableElement
Description

An abstract grouping of elements that can perform Functions.

Commented [AM76]: https://issues.omg.org/browse/UAF13-55

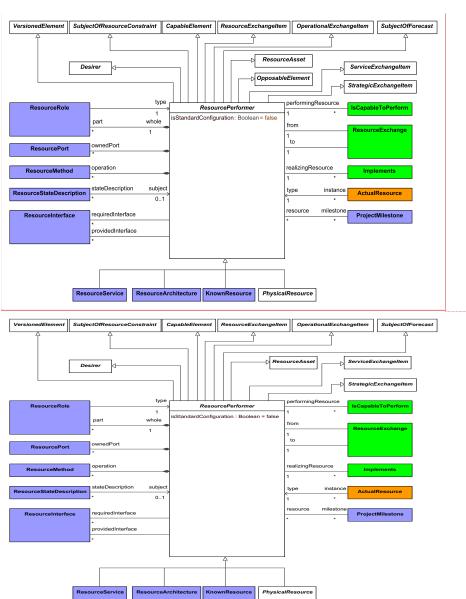


Figure 9:252 - ResourcePerformer Attributes

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

214

Commented [AM77]: https://issues.omg.org/browse/UAF13-55

 $is Standard Configuration: \ Boolean [] \quad Indicates \ if \ the \ Resource Performer \ is \ Standard Configuration, \ default=false.$

ResourceService

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{ResourcePerformer}}$

Description

A services that a ResourcePerformer provides to support higher level Services or OperationalActivities. Employee provisioning, backup and recovery, storage, self-service help desk are examples of ResourceServices.

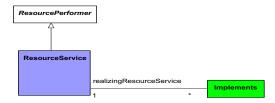


Figure 9:253 - ResourceService

Software

Package: Taxonomy isAbstract: No

Generalization: ResourceArtifact

Description

A sub-type of ResourceArtifact that specifies an executable computer program.

Figure 9:254 - Software

System

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Resource} \textbf{Architecture}}$

Description

An integrated set of elements, subsystems, or assemblies that accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, information, techniques, facilities, services, and other support elements (INCOSE SE Handbook V4, 2015).

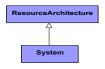


Figure 9:255 - System

Domain MetaModel::Resources::Structure

ResourceMethod

Package: Structure is Abstract: No

Generalization: ProcessOperation

Description

A behavioral feature of a ResourcePerformer whose behavior is specified in a Function.

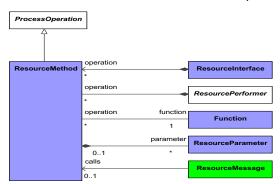


Figure 9:256 - ResourceMethod

ResourceParameter

Package: Structure is Abstract: No

Generalization: ProcessParameter

Description

A type that represents inputs and outputs of a Function. It is typed by a ResourceInteractionItem.

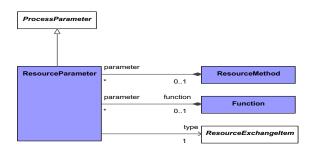


Figure 9:257 - ResourceParameter

ResourcePort

Package: Structure isAbstract: No

Generalization: ProtocolImplementation, MeasurableElement

Description

An interaction point for a ResourcePerformer through which it can interact with the outside environment and which is defined by a ResourceInterface.

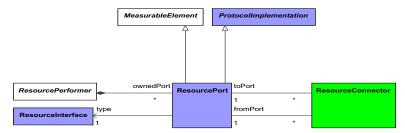
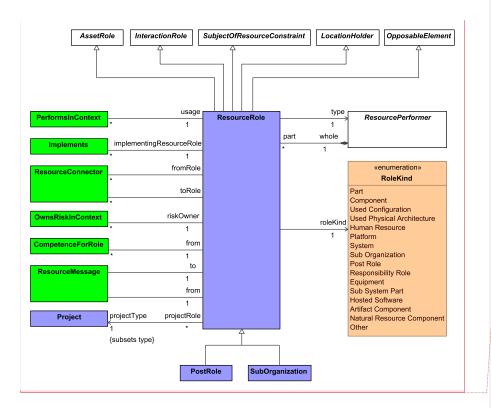


Figure 9:258 - ResourcePort

ResourceRole


Package: Structure is Abstract: No

Generalization: SubjectOfResourceConstraint, LocationHolder, AssetRole, InteractionRole, OpposableElement

Description

Usage of a ResourcePerformer in the context of another ResourcePerformer. Creates a whole-part relationship.

Commented [AM78]: https://issues.omg.org/browse/UAF13-55

Commented [AM79]: https://issues.omg.org/browse/UAF13-55

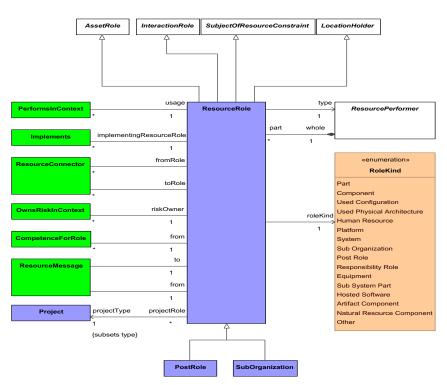


Figure 9:259 - ResourceRole

Domain MetaModel::Resources::Connectivity

ResourceConnector

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{ProtocolImplementation}, \underline{AssetRole}$

Description

A channel for exchange between two ResourceRoles.

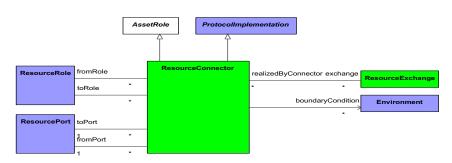


Figure 9:260 - ResourceConnector

ResourceExchange

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{Exchange}$

Description

Asserts that a flow can exist between ResourcePerformers (i.e. flows of data, people, material, or energy).

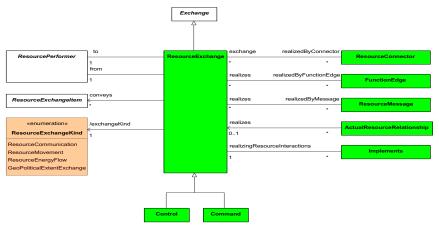


Figure 9:261 - ResourceExchange

ResourceExchangeItem

Package: Connectivity is Abstract: Yes

Generalization: Resource, SubjectOfSecurityConstraint, ExchangeItem

Description

An abstract type grouping elements that defines the types of elements that can be exchanged between ResourcePerformers and conveyed by a ResourceExchange.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

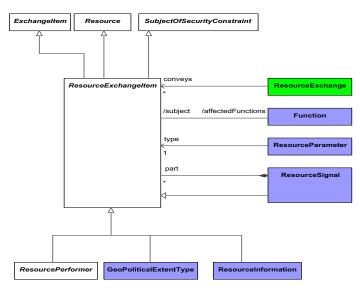


Figure 9:262 - ResourceExchangeItem

ResourceInterface

Package: Connectivity is Abstract: No

Generalization: PropertySet

Description

A declaration that specifies a contract between the ResourcePerformers it is related to and any other ResourcePerformers it can interact with. It is also intended to be an implementation of a specification of an Interface in the Business and/or Service layer.

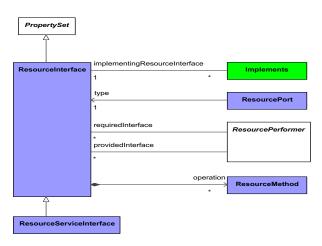


Figure 9:263- ResourceInterface

ResourceServiceInterface

Package: Structure is Abstract: No

Generalization: ResourceInterface

Description

A contract that defines the ResourceMethods and ResourceSignal receptions that the ResourceServices realize.

Figure 9:264 - ResourceServiceInterface

ResourceSignal

Package: Connectivity is Abstract: No

 $\textbf{Generalization:} \ \underline{Resource Exchange Item}$

Description

A property of an element representing something in the physical world, expressed in amounts of a unit of measure.

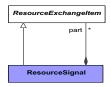


Figure 9:265 - ResourceSignal

Domain MetaModel::Resources::Processes

Function

Package: Processes is Abstract: No

 $\textbf{Generalization:} \ \underline{SubjectOfResourceConstraint}, \underline{Process}$

Description

An Activity which is specified in the context to the ResourcePerformer (human or machine) that IsCapableToPerform it.

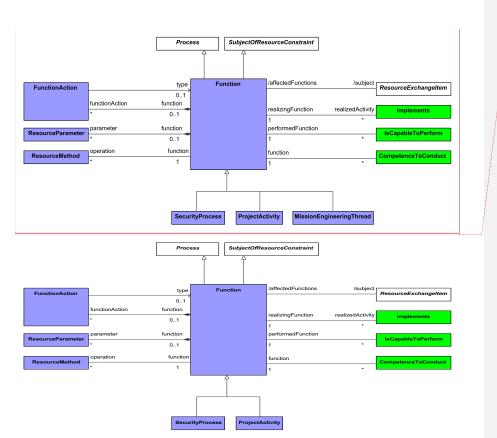


Figure 9:266 - Function

FunctionAction

Package: Processes is Abstract: No

 $\textbf{Generalization:} \ \underline{ProcessUsage}$

Description

A call of a Function indicating that the Function is performed by a ResourceRole in a specific context.

Commented [AM80]: https://issues.omg.org/browse/UAF13-55

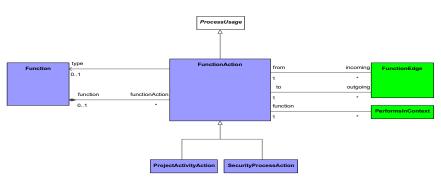


Figure 9:267 - FunctionAction

FunctionEdge

Package: Processes is Abstract: No

Generalization: ProcessEdge

Description

A tuple that shows the flow of Resources (objects/data) between FunctionActions.

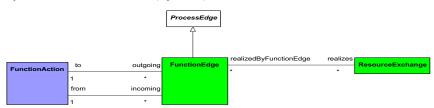


Figure 9:268 - FunctionEdge

MissionEngineeringThread

Package: Processes

isAbstract: No

Generalization: Function

Description

A sequence of end-to-end mission-related functions, actions, and events presented as a series of steps that implements a mission thread.

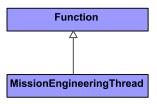


Figure: 183 - MissionEngineeringThread

Commented [AM81]: https://issues.omg.org/browse/UAF13-55

Domain MetaModel::Resources::States

ResourceStateDescription

Package: States is Abstract: No

Generalization: MeasurableElement, StateDescription

Description

A state machine describing the behavior of a ResourcePerformer, depicting how the ResourcePerformer responds to various events and the actions.

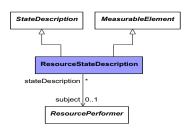


Figure 9:269 - ResourceStateDescription

Domain MetaModel::Resources::Sequences

ResourceMessage

Package: Sequences is Abstract: No

Generalization: InteractionMessage

Description

Message for use in a Resource Event-Trace which carries any of the subtypes of ResourceExchange.

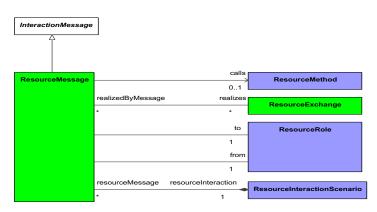


Figure 9:270 - ResourceMessage

Domain MetaModel::Resources::Information

ResourceInformation

Package: Information is Abstract: No

 $\textbf{Generalization:} \ \underline{SubjectOfResourceConstraint, ResourceAsset, ResourceExchangeItem}$

Description

A formalized representation of information that is managed by or exchanged between systems.

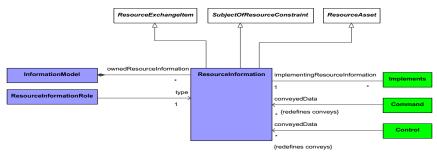


Figure 9:271 - ResourceInformation

Domain MetaModel::Resources::Constraints

ResourceConstraint

Package: Constraints is Abstract: No Generalization: Rule Description

A rule governing the structural or functional aspects of an implementation.

Figure 9:272 - ResourceConstraint

SubjectOfResourceConstraint

Package: Constraints is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type grouping elements that can be the subject of a ResourceConstraint.

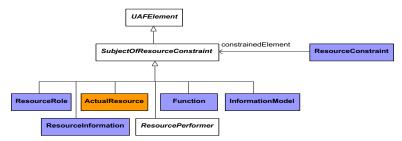


Figure 9:273 - SubjectOfResourceConstraint

Domain MetaModel::Resources::Roadmap

Forecast

Package: Roadmap isAbstract: No

Generalization: MeasurableElement

Description

A tuple that specifies a transition from one Resource Performer, Standard, Competence to another future one. It is related to an ActualStrategicPhase to give it a temporal context.

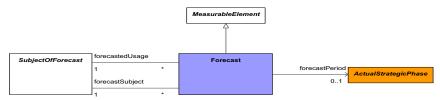


Figure 9:274 - Forecast

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

SubjectOfForecast

Package: Roadmap isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type grouping elements that can be the subject of a Forecast.

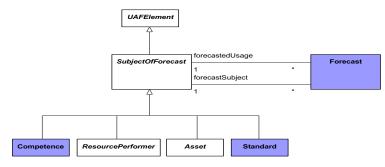


Figure 9:275 - SubjectOfForecast

Technology

Package: Roadmap isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{ResourceArtifact}}$

Description

A sub type of ResourceArtifact that indicates a technology domain, i.e. nuclear, mechanical, electronic, mobile telephony etc.

Figure 9:276 - Technology

VersionedElement

Package: Roadmap isAbstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type grouping ResourcePerformer and Service that allows VersionOfConfiguration to be related to ActualProjectMilestones.

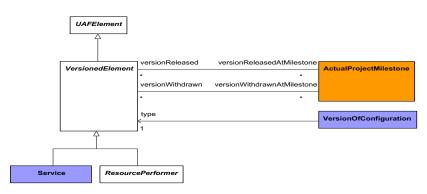


Figure 9:277 - VersionedElement

VersionOfConfiguration

Package: Roadmap isAbstract: No

Generalization: MeasurableElement

Description

A property of a WholeLifeConfiguration, used in version control of a VersionedElement. It asserts that a VersionedElement is a version of a WholeLifeConfiguration.

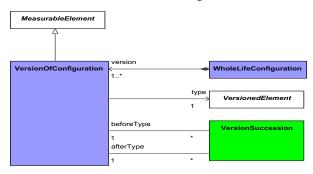


Figure 9:278 - VersionOfConfiguration

VersionSuccession

Package: Roadmap isAbstract: No

Generalization: MeasurableElement

Description

 $A \ tuple \ between \ two \ \ Version Of Configurations \ that \ denotes \ that \ one \ \ Version Of Configuration \ follows \ from \ another.$

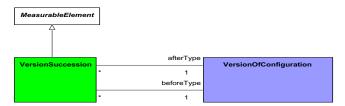


Figure 9:279 - VersionSuccession

WholeLifeConfiguration

Package: Roadmap isAbstract: No

 $Generalization: \underline{PropertySet}$

Description

A set of VersionedElements, e.g., Services for a service provider or ResourcePerformers deployed for implementation.

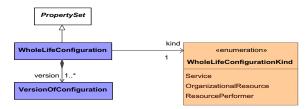


Figure 9:280 - WholeLifeConfiguration

Domain MetaModel::Resources::Traceability

ProtocolImplementation

Package: Traceability is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

An abstract type grouping architectural elements that can implement Protocols.

 ${\bf Figure~9:281-ProtocolImplementation}$

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

9.1.8 Domain MetaModel::Security

Stakeholders: Security Architects, Security Engineers. Systems Engineers, Operational Architects. **Concerns:** addresses the security constraints and information assurance attributes that exist on exchanges between resources and OperationalPerformers

Definition: illustrates the security assets, security constraints, security controls, families, and measures required to address specific security concerns.

Domain MetaModel::Security::Motivation

EnhancedSecurityControl

Package: Motivation is Abstract: No

Generalization: SecurityControl

Generalization
Description

Statement of security capability to: (i) build in additional but related, functionality to a basic control; and/or (ii)increase the strength of a basic control.

Figure 9:282 - EnhancedSecurityControl

Enhances

Package: Motivation is Abstract: No

Generalization: MeasurableElement

Description

A tuple relating the EnhancedSecurityControl to a SecurityControl.

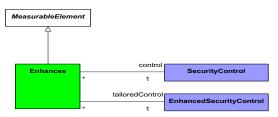


Figure 9:283 - Enhances

Protects

Package: Motivation is Abstract: No

Generalization: MeasurableElement

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Description

A tuple that asserts that a SecurityControl is required to protect an Asset.

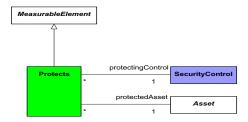


Figure 9:284 - Protects

ProtectsInContext

Package: Motivation is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{MeasurableElement}}$

Description

A tuple that relates a SecurityControlAction to a OperationalRole, or a ResourceRole. It indicates that SecurityControl is required to protect an Asset in a specific context or configuration.

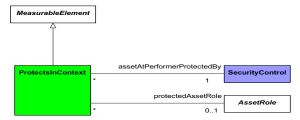


Figure 9:285 - ProtectsInContext

SecurityControl

Package: Motivation is Abstract: No

Generalization: MeasurableElement

Description

The management, operational, and technical control (i.e., safeguard or countermeasure) prescribed for an information system to protect the confidentiality, integrity, and availability of the system and its information [NIST SP 800-53].

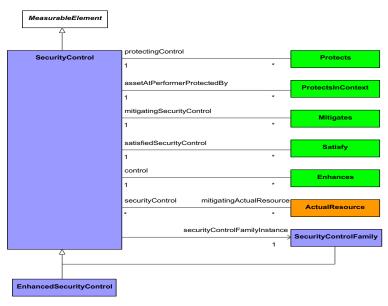


Figure 9:286 - SecurityControl

SecurityControlFamily

Package: Motivation is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{SecurityControl}}$

Description

An element that organizes security controls into a family. Each Security Control Family contains security controls related to the general security topic of the family.

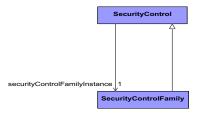


Figure 9:287 - SecurityControlFamily

Domain MetaModel::Security::Taxonomy

Asset

Package: Taxonomy isAbstract: Yes

Generalization: SubjectOfForecast, ConceptItem, PropertySet, SubjectOfSecurityConstraint, AffectableElement

Description

An abstract element that indicates the types of elements that can be affected by Risk. Asset as applied to Security views is an abstract element that indicates the types of elements that can be considered as a subject for security analysis

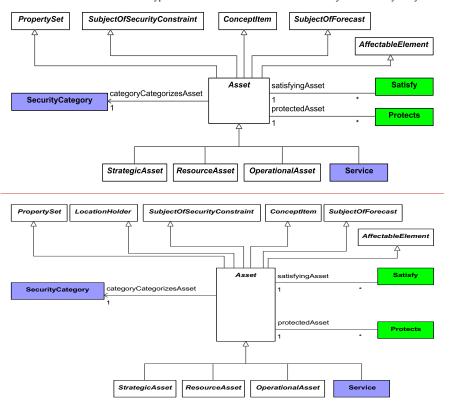


Figure 9:288 - Asset

OperationalAsset

Package: Taxonomy isAbstract: Yes
Generalization: Asset Description

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM82]: https://issues.omg.org/browse/UAF13-55

Deleted: , LocationHolder

An abstract element used to group the elements of OperationalAgent and OperationalInformation allowing them to own OperationalInformationRoles.

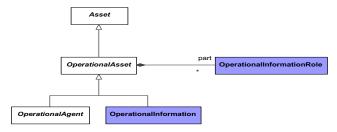


Figure 9:289 - Operational Asset

OperationalMitigation

Package: Taxonomy isAbstract: No

Generalization: Operational Architecture

Description

A set of OperationalPerformers intended to address against specific operational risks.

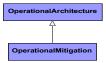


Figure 9:290 - Operational Mitigation

ResourceAsset

Package: Taxonomy isAbstract: Yes
Generalization: Asset
Description

An abstract element used to group the elements of ResourcePerformer and ResourceInformation allowing them to own ResourceInformationRoles

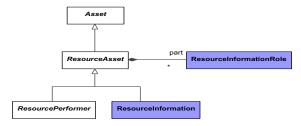


Figure 9:291 - ResourceAsset

ResourceMitigation

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Resource} \textbf{Architecture}}$

Description

A set of ResourcePerformers intended to address against specific risks.

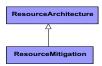


Figure 9:292 - ResourceMitigation

SecurityEnclave

Package: Taxonomy isAbstract: No

Generalization: ResourceArchitecture

Description

Collection of information systems connected by one or more internal networks under the control of a single authority and security policy. The systems may be structured by physical proximity or by function, independent of location.

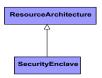


Figure 9:293 - SecurityEnclave

Domain MetaModel::Security::Structure

AssetRole

Package: Structure is Abstract: Yes

 $\textbf{Generalization:} \ BPMN2Metamodel:: Resource Role, \underline{Subject Of Security Constraint}, \underline{Measurable Element}$

Description

An abstract element that indicates the types of elements that can be affected by Risk in the particular context. AssetRole as applied to Security views, is an abstract element that indicates the type of elements that can be considered as a subject for security analysis in the particular context.

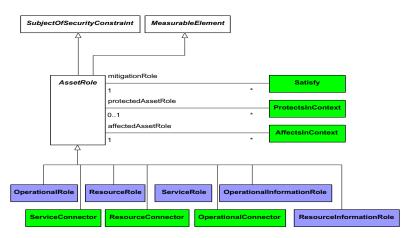


Figure 9:294 - AssetRole

OperationalInformationRole

Package: Structure isAbstract: No

Generalization: AssetRole

Description

A usage of Operational Information that exists in the context of an Operational Asset. It also allows the representation of the whole-part aggregation of Operational Information.

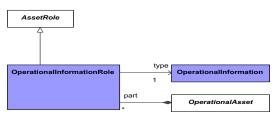
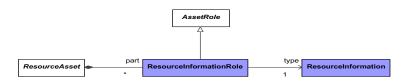


Figure 9:295 - OperationalInformationRole


ResourceInformationRole

Package: Information is Abstract: No

Generalization: AssetRole

Description

A usage of ResourceInformation that exists in the context of a ResourceAsset. It also allows the representation of the whole-part aggregation of ResourceInformation elements.

Figure~9:296-ResourceInformationRole

Domain MetaModel::Security::Processes

SecurityProcess

Package: Processes is Abstract: No

Generalization: Operational Activity, Function, Subject Of Security Constraint

Description

The security-related procedure that satisfies the security control requirement.

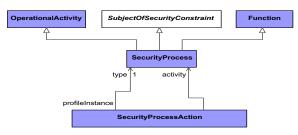


Figure 9:297 - SecurityProcess

SecurityProcessAction

Package: Processes is Abstract: No

 $\textbf{Generalization:} \ \underline{Operational Activity Action}, \underline{Function Action}$

Description

 $\label{eq:Acall of a Security Process} A \ call \ of \ a \ Security Process.$

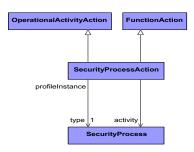


Figure 9:298 - SecurityProcessAction

Domain MetaModel::Security::Constraints

Caveat

Package: Constraints is Abstract: No

Generalization: SecurityConstraint

Description

A statement that details alternate conditions under which the rule is not valid.

Figure 9:299 - Caveat

SecurityAvailability

Package: Constraints

isAbstract: No

Generalization: SecurityMeasurement

Description

Details the potential impact on organization or individuals if the information is not available to those who need to access it.

Figure 9:300 - SecurityAvailability

SecurityCategory

Package: Constraints

isAbstract: No

Generalization: MeasurementSet

Description

The security categories that have been determined for each type of information processed, stored, or transmitted by those information systems. The generalized format for expressing the security category (SC) of an information system is: SC information system = {(confidentiality, impact), (integrity, impact), (availability, impact)}.

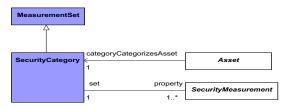


Figure 9:301 - SecurityCategory

SecurityClassification

Package: Constraints is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Security} \textbf{Measurement}}$

Description

Details a classification for the exchange.

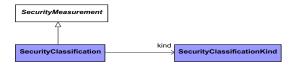


Figure 9:302 - SecurityClassification

SecurityClassificationKind

Package: Constraints

isAbstract: No

Generalization: MeasurableElement

Description

A type that defines acceptable values for the security category (SC) of an information system, where the acceptable values for potential impact are low, moderate, or high.

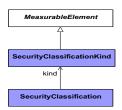


Figure 9:303 - SecurityClassificationKind

SecurityConstraint

Package: Constraints is Abstract: No Generalization: Rule Description

A type of rule that captures a formal statement to define access control policy language.

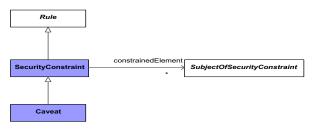


Figure 9:304 - SecurityConstraint

SecurityIntegrity

Package: Constraints is Abstract: No

Generalization: SecurityMeasurement

Description

Details the potential impact on organization or individuals due to modification or destruction of information, and includes ensuring information non-repudiation and authenticity.

Figure 9:305 - SecurityIntegrity

SecurityMeasurement

Package: Constraints is Abstract: Yes

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Generalization: Measurement

Description

An abstract type grouping all types of security measurements (e.g. SecurityIntegrity, SecurityAvailability).

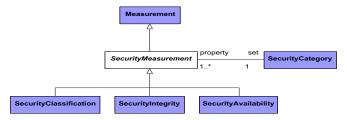


Figure 9:306 - SecurityMeasurement

SecurityRisk

Package: Constraints is Abstract: No
Generalization: Risk

The level of impact on enterprise operations, assets, or individuals resulting from the operation of an information system given the potential impact of a threat and the likelihood of that threat occurring [NIST SP 800-65].

Figure 9:307 - SecurityRisk

SubjectOfSecurityConstraint

Package: Constraints is Abstract: Yes

$\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

An abstract type grouping elements that can be the subject of a SecurityConstraint.

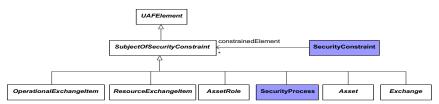


Figure 9:308 - SubjectOfSecurityConstraint

9.1.9 Domain MetaModel::Projects

Domain MetaModel::Projects::Taxonomy

Project

Package: Taxonomy isAbstract: No

Generalization: OrganizationalResource

Description

A type that represents a planned endeavor executed by an ActualOrganization responsible for developing, deploying or decommissioning ResourcePerformers in accordance with ActualProjectMilestones.

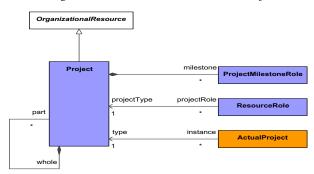


Figure 9:309 - Project

ProjectMilestone

Package: Taxonomy isAbstract: No

Generalization: PropertySet

Description

A type of event in a Project by which progress is measured.

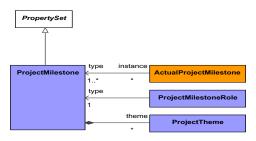


Figure 9:310 - ProjectMilestone

Domain MetaModel::Projects::Structure

ActualProjectMilestoneRole

Package: Structure isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual State}}$

Description

An ActualProjectMilestone that is applied to a ProjectMilestoneRole.

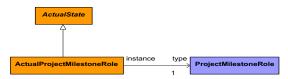
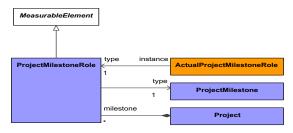


Figure 9:311 - ActualProjectMilestoneRole


ProjectMilestoneRole

Package: Structure isAbstract: No

Generalization: MeasurableElement

Description

The role played by a ProjectMilestone in the context of a Project.

Figure~9:312-Project Milestone Role

ProjectStatus

Package: Structure isAbstract: No

Generalization: ActualState

Description

The status (i.e. level of progress) of a ProjectTheme for an ActualProject at the time of the ActualProjectMilestone.

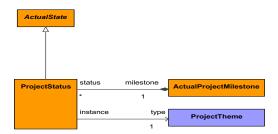


Figure 9:313 - ProjectStatus

ProjectTheme

Package: Structure is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A property of a ProjectMilestone that captures an aspect by which the progress of ActualProjects may be measured.

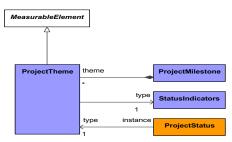


Figure 9:314 - ProjectTheme

StatusIndicators

Package: Structure is Abstract: No

Generalization: MeasurableElement

Description

An enumerated type that specifies a status for a ProjectTheme.

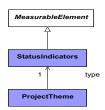


Figure 9:315 - StatusIndicators

Domain MetaModel::Projects::Connectivity

MilestoneDependency

Package: Connectivity is Abstract: No

Generalization: Sequence

Description

 $A \ tuple \ between \ two \ Actual Project Milestones \ that \ denotes \ one \ Actual Project Milestone \ follows \ from \ another.$

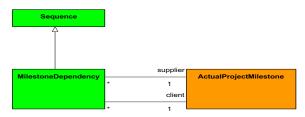


Figure 9:316 - MilestoneDependency

ProjectSequence

Package: Connectivity is Abstract: No

Generalization: Sequence

Description

A tuple between two ActualProjects that denotes one ActualProject cannot start before the previous ActualProject is finished.

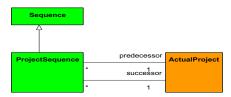


Figure 9:317 - ProjectSequence

Domain MetaModel::Projects::Processes

ProjectActivity

Package: Processes is Abstract: No

Generalization: <u>Function</u>, <u>Process</u>

Description

An activity carried out during a project.

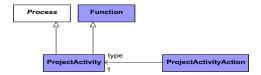


Figure 9:318 - ProjectActivity

ProjectActivityAction

Package: Processes is Abstract: No

Generalization: FunctionAction

Description

The ProjectActivityAction is defined as a call behavior action that invokes the activity that needs to be preformed.

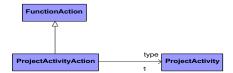


Figure 9:319 - ProjectActivityAction

Domain MetaModel::Projects::Roadmap

ActualProject

Package: Roadmap isAbstract: No

 ${\bf Generalization:} \ \underline{{\bf Actual Organization al Resource}}, \ \underline{{\bf Achiever}}$

Description

A time-limited planned endeavor executed by an ActualOrganization responsible for developing, deploying or decommissioning ResourcePerformers in accordance with ActualProjectMilestones.

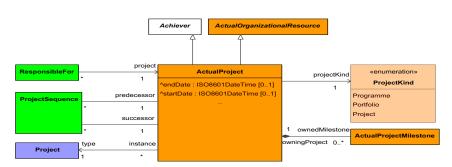


Figure 9:320 - ActualProject

ActualProjectMilestone

Package: Roadmap isAbstract: No

Generalization: ActualPropertySet

Description

An event with a start date in a ActualProject from which progress is measured.

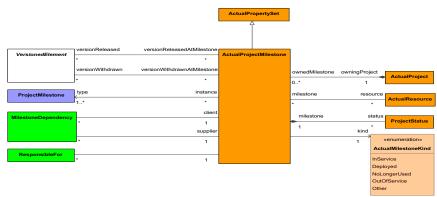


Figure 9:321 - ActualProjectMilestone

Constraints

[1] unnamed1 startTime=endTime

Domain MetaModel::Projects::Traceability

ResponsibleFor

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

 $A \ tuple \ between \ an \ Actual Responsible Resource \ and \ an \ Actual Responsibility \ or \ Actual Project. \ It \ defines \ the \ duties \ that \ the \ Actual Responsible Resource is \ Responsible For.$

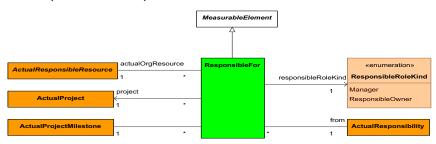


Figure 9:322 - ResponsibleFor

9.1.10 Domain MetaModel::Standards

Stakeholders: Solution Providers, Systems Engineers, Software Engineers, Systems Architects, Business Architects.

Concerns: technical and non-technical Standards applicable to the architecture.

Definition: shows the technical, operational, and business Standards applicable to the architecture. Defines the underlying current and expected Standards.

Domain MetaModel::Standards::Taxonomy

Protocol

Package: Taxonomy isAbstract: No

Generalization: Standard

Description

 $A \ Standard \ for communication \ over \ a \ network. \ Protocols \ may \ be \ composite, \ represented \ as \ a \ ProtocolStack \ made \ up \ of \ ProtocolLayers.$

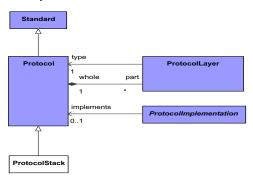


Figure 9:323 - Protocol

ProtocolStack

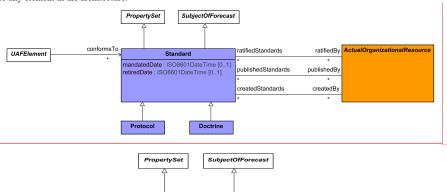
Package: Taxonomy isAbstract: No

Generalization: Protocol

Description

A sub type of Protocol that contains the ProtocolLayers, defining a complete stack.

Figure 9:324 - ProtocolStack


Standard

Package: Taxonomy isAbstract: No

Generalization: SubjectOfForecast, PropertySet

Description

A ratified and peer-reviewed specification that is used to guide or constrain the architecture. A Standard may be applied to any element in the architecture.

nandatedDate : ISO8601DateTime [0..1] etiredDate : ISO8601DateTime [0..1]

Protocol

Figure 9:325 - Standard

Attributes

UAFEI

mandatedDate: The date when this version of the Standard was published. retiredDate: The date when this version of the Standard was retired.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM83]: https://issues.omg.org/browse/UAF13-55

251

Domain MetaModel::Standards::Structure

ProtocolLayer

Package: Structure isAbstract: No

Generalization: MeasurableElement

Description

Usage of a Protocol in the context of another Protocol. Creates a whole-part relationship.

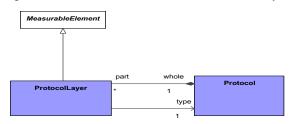


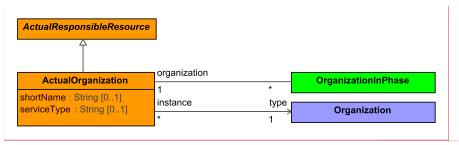
Figure 9:326 - ProtocolLayer

9.1.11 Domain MetaModel::Actual Resources

Stakeholders: Solution Providers, Systems Engineers, Business Architects, Human Resources. **Concerns:** the analysis, e.g. evaluation of different alternatives, what-if, trade-offs, V&V on the actual resource configurations.

Definition: illustrates the expected or achieved actual resource configurations and actual relationships between them.

Domain MetaModel::Actual Resources::Taxonomy


ActualOrganization

Package: Taxonomy isAbstract: No

Generalization: ActualResponsibleResource

Description

An actual formal or informal organizational unit, e.g. "Driving and Vehicle Licensing Agency", "UAF team Alpha".

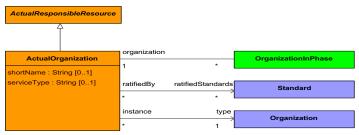


Figure 9:327 - ActualOrganization

Attributes

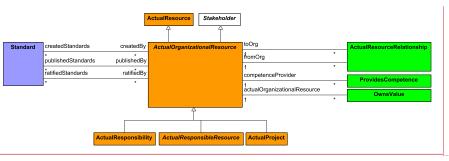
serviceType: String [0..1] Service office code or symbol

shortName: String [0..1] String providing a simplified means of identifying an ActualOrganization, i.e.

SoftWareGroup could use SWG as the shortName.

ActualOrganizationalResource

Package: Taxonomy isAbstract: Yes


Generalization: ActualResource, Stakeholder

Description

Abstract element for an ActualOrganization, ActualPerson or ActualPost.

Commented [AM84]: https://issues.omg.org/browse/UAF13-55

Commented [AM85]: https://issues.omg.org/browse/UAF13-55

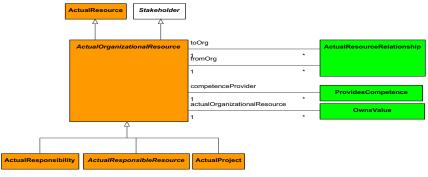


Figure 9:328 - ActualOrganizationalResource

ActualPerson

Package: Taxonomy isAbstract: No

Generalization: ActualResponsibleResource

Description

An individual human being.

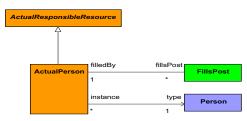


Figure 9:329 - ActualPerson

Commented [AM86]: https://issues.omg.org/browse/UAF13-55

ActualPost

Package: Taxonomy isAbstract: No

Generalization: ActualResponsibleResource

Description

An actual, specific post, an instance of a Post "type" - e.g., "President of the United States of America." where the Post would be president.

Figure 9:330 - ActualPost

ActualResource

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{Actual Property Set}, \underline{Subject Of Resource Constraint}, \underline{Achiever}, \underline{Capable Element}$

Description

An instance of a ResourcePerformer in the real world.

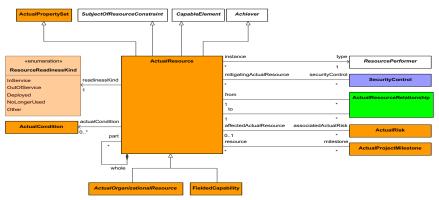


Figure 9:331 - ActualResource

ActualResourceRelationship

Package: Taxonomy isAbstract: No

Generalization: <u>UAFElement</u>

Description

An abstract element that details the ActualOrganizationalResources that are able to carry out an ActualResponsibility.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

255

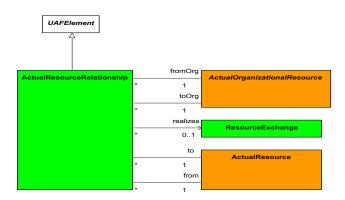


Figure 9:332 - ActualResourceRelationship

ActualResponsibility

Package: Taxonomy isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Organization al Resource}}$

Description

An actual duty required of a Person or Organization.

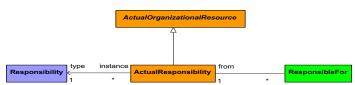


Figure 9:333 - ActualResponsibility

ActualResponsibleResource

Package: Taxonomy isAbstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{Actual Organizational Resource}}$

Description

An abstract type grouping responsible OrganizationalResources.

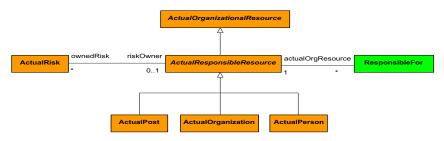


Figure 9:334 - ActualResponsibleResource

FieldedCapability

Package: Taxonomy isAbstract: No

Generalization: ActualResource

Description

An individual, fully-realized capability.

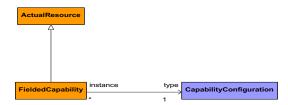


Figure 9:335 - FieldedCapability

Domain MetaModel::Actual Resources::Constraints

ActualService

Package: Constraints is Abstract: Yes

Generalization: ActualMeasurementSet, CapableElement

Description

An individual Service.

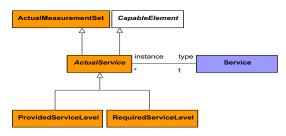


Figure 9:336 - ActualService

ProvidedServiceLevel

Package: Constraints is Abstract: No

Generalization: ActualService

Description

A sub type of ActualService that details a specific service level delivered by the provider.

Figure 9:337 - ProvidedServiceLevel

ProvidesCompetence

Package: Constraints is Abstract: No

Generalization: MeasurableElement

Description

A tuple that asserts that an ActualOrganizationalResource provides a specific set of Competencies.

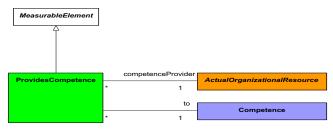


Figure 9:338 - ProvidesCompetence

RequiredServiceLevel

Package: Constraints

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Service}}$

Description

A sub type of ActualService that details a specific service level required of the provider.

Figure 9:339 - RequiredServiceLevel

Domain MetaModel::Actual Resources::Traceability

OwnsProcess

Package: Traceability is Abstract: No

Generalization: MeasurableElement

Description

A tuple denoting that an ActualOrganizationResource owns an OperationalActivity.

Figure 9:340 - OwnsProcess

9.1.12 Domain MetaModel::Parameters


ActualCondition

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Property Set}}$

Description

An individual describing an actual situation with respect to circumstances under which an Operational Activity, Function or Service Function can be performed.

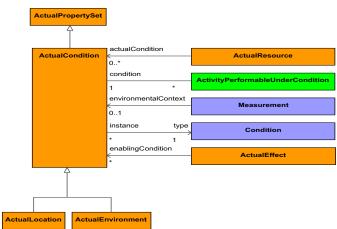
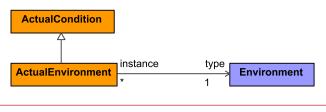


Figure 9:341 - ActualCondition

ActualEnvironment

Package: Parameters is Abstract: No


Generalization: ActualCondition

Description

An individual that describes the circumstances of an Environment.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM87]: https://issues.omg.org/browse/UAF13-55

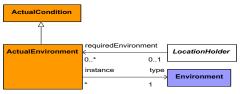
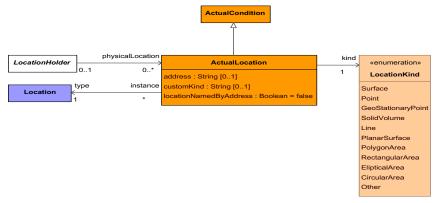


Figure 9:342- ActualEnvironment


ActualLocation

Package: Parameters is Abstract: No

Generalization: ActualCondition

Description

An individual that describes a physical location, for example using text to provide an address, Geo-coordinates, etc.

Figure 9:343 - ActualLocation

Attributes

address: String describing the address of the ActualLocation, i.e. "1600 Pennsylvania avenue",

"The White House"

customKind: String describing a location kind that is not in the LocationKind enumerated list

 $location Named By Address: \quad Boolean \ that \ indicates \ if \ the \ Actual Location \ address \ is \ embedded \ in \ the \ Actual Location$

name. By default = false.

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

ActualMeasurement

Package: Parameters is Abstract: No

Generalization: ActualState

Description

An actual value that is applied to a Measurement.

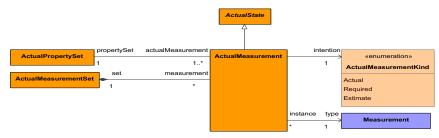


Figure 9:344 - ActualMeasurement

ActualMeasurementSet

Package: Parameters is Abstract: No

Generalization: ActualPropertySet

Description

A set of ActualMeasurements.

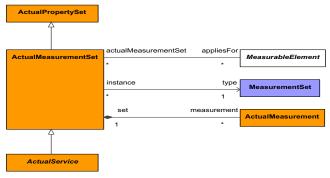


Figure 9:345 - ActualMeasurementSet

ActualMissionScenario

Package: Parameters

isAbstract: No

Generalization: ActualCondition

Description

A particular Mission Scenario within which an Actual Mission is to be accomplished.

Figure: 262 - ActualMissionScenario

ActualMissionVignette

Package: Parameters
isAbstract: No

Generalization: ActualCondition

Description

A particular Mission Vignette within which an Actual Mission is to be accomplished

Figure: 263 - ActualMissionVignette

ActualPropertySet

Package: Parameters isAbstract: No

Generalization: ActualState

Description

A set or collection of Actual properties.

Commented [AM89]: https://issues.omg.org/browse/UAF13-55

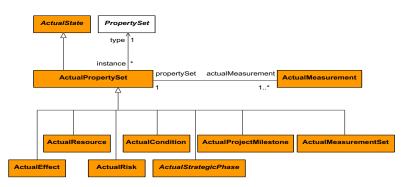


Figure 9:346 - ActualPropertySet

ActualRisk

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Actual Property Set}}$

Description

An instance of a Risk. A value holder for Risk Measurements.

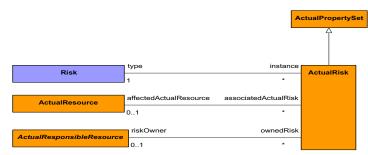


Figure 9:347 - ActualRisk

AffectableElement

Package: Parameters is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

An abstract grouping of elements that can be affected by Risk.



Figure 9:348 - AffectableElement

Affects

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple that asserts that a Risk is applicable to an Asset.

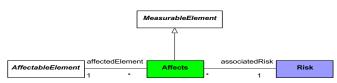


Figure 9:349 - Affects

AffectsInContext

Package: Parameters is Abstract: No

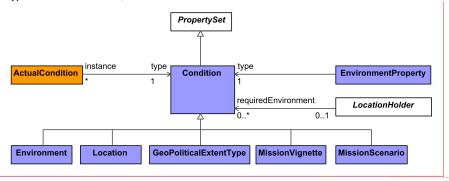
 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A tuple that asserts that a Risk is applicable to an AssetRole in the specific context or configuration.

Figure 9:350 - AffectsInContext

Condition


Package: Parameters is Abstract: No

Generalization: PropertySet

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Description

A type that defines the Location, Environment and/or GeoPoliticalExtent.

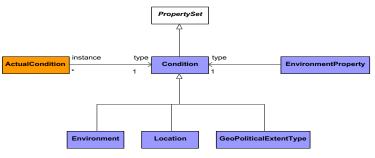


Figure 9:351 - Condition

Environment

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Condition}}$

Description

A definition of the environmental factors in which something exists or functions. The definition of an Environment element can be further defined using EnvironmentKind.

Commented [AM90]: https://issues.omg.org/browse/UAF13-55

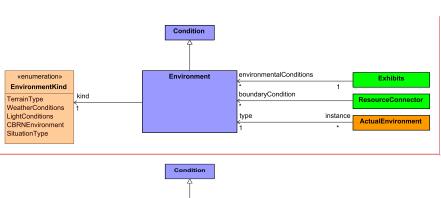


Figure 9:352 - Environment

EnvironmentProperty

Package: Structure isAbstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} Element}$

Description

A property of an Environment that is typed by a Condition. The kinds of Condition that can be represented are Location, GeoPoliticalExtentType and Environment.

Commented [AM91]: https://issues.omg.org/browse/UAF13-55

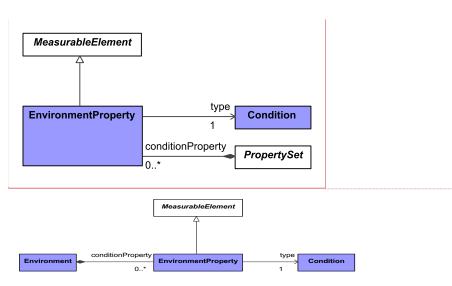


Figure 9:353 - EnvironmentProperty

GeoPoliticalExtentType

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{Condition}, \ \underline{Operational Exchange Item}, \ \underline{Resource Exchange Item}, \ \underline{Strategic Exchange Item}$

Description

A type of geospatial extent whose boundaries are defined by declaration or agreement by political parties.

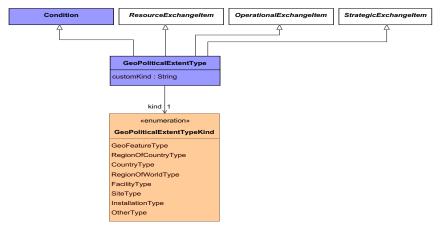


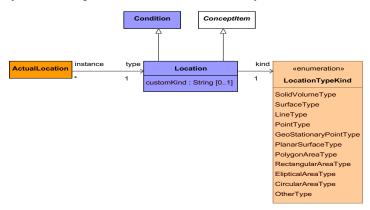
Figure 9:354 - GeoPoliticalExtentType

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM92]: https://issues.omg.org/browse/UAF13-55

Attributes

 $custom Kind: \quad Captures \ the \ kind \ of \ Geopolitical Extent Type.$


Location

Package: Parameters is Abstract: No

Generalization: ConceptItem, Condition

Description

A specification of the generic area in which a LocationHolder is required to be located.

Figure 9:355 - Location

Attributes

 $custom Kind: \quad Captures \ the \ kind \ of \ Location \ if \ the \ Location Type Kind \ has \ been \ set \ to \ "Other Type".$

LocationHolder

Package: Parameters is Abstract: Yes

 $\textbf{Generalization:} \ \underline{\textbf{UAFElement}}$

Description

Abstract type, used to group elements that are allowed to be associated with a Location.

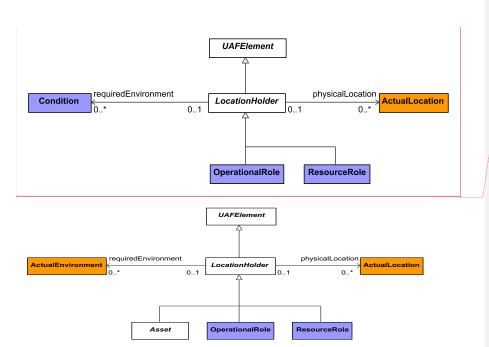
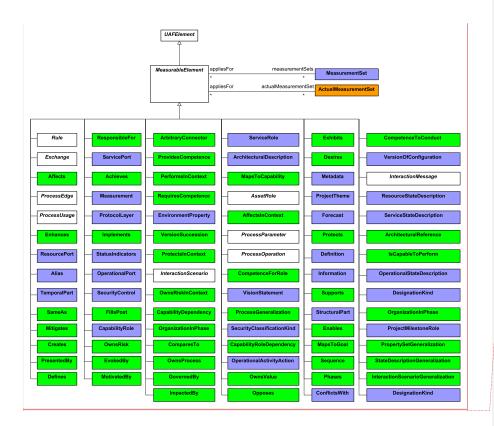


Figure 9:356 - LocationHolder

MeasurableElement


Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

Abstract type, grouping elements that can be measured by applying MeasurementSets to them.

Commented [AM93]: https://issues.omg.org/browse/UAF13-55

Commented [AM94]: https://issues.omg.org/browse/UAF13-55

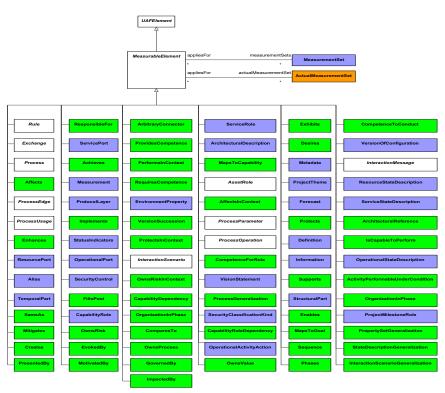


Figure 9:357 - MeasurableElement

Measurement

Package: Parameters is Abstract: No

 $\textbf{Generalization:} \ \underline{\textbf{Measurable} \underline{\textbf{Element}}}$

Description

A property of an element representing something in the physical world, expressed in amounts of a unit of measure.



Figure 9:358 - Measurement

MeasurementSet

Package: Parameters is Abstract: No

Generalization: PropertySet

Description

A collection of Measurements.

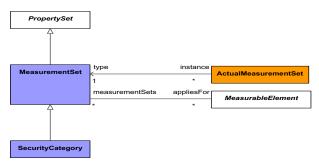


Figure 9:359 - MeasurementSet

MissionScenario

Package: Parameters

isAbstract: No

Generalization: Condition

Description

Description of the geographical location and time frame of the overall conflict. A scenario includes information such as threat and friendly politico-military contexts and backgrounds, assumptions, constraints, limitations, strategic objectives, and other planning considerations. (OUSD(R&E))

Figure: 278 - MissionScenario

MissionVignette

Package: Parameters

isAbstract: No

Generalization: Condition

Description

Description of the geographical location and time frame of the overall conflict. A vignette includes information such as threat and friendly politico-military contexts and backgrounds, assumptions, constraints, limitations, strategic objectives, and other planning considerations. It can represent small, ideally self-contained parts of a scenario. (OUSD(R&E))

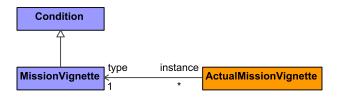


Figure :279 - MissionVignette

Mitigates

Package: Parameters is Abstract: No

Generalization: MeasurableElement

Description

A tuple relating a Security Control to a Risk. Mitigation is established to manage risk and could be represented as an overall strategy or through techniques (mitigation configurations) and procedures (SecurityProcesses).

Figure 9:360 - Mitigates

Unified Architecture Framework (UAF) Domain Metamodel Version 1.2

Commented [AM95]: https://issues.omg.org/browse/UAF13-55

OwnsRisk

Package: Parameters is Abstract: No

Generalization: MeasurableElement

Description

A tuple relating a Risk to an organizational resource that is responsible for executing the risk mitigation.

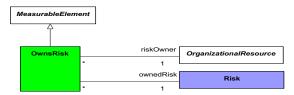


Figure 9:361 - OwnsRisk

OwnsRiskInContext

Package: Parameters is Abstract: No

Generalization: MeasurableElement

Description

A tuple relating a Risk to an organizational role that is responsible for executing the risk mitigation in the specific context or configuration.

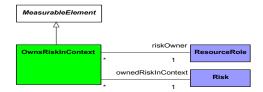


Figure 9:362 - OwnsRiskInContext

PropertySet

Package: Parameters is Abstract: Yes

Generalization: <u>UAFElement</u>

Description

An abstract type grouping architectural elements that can own Measurements.

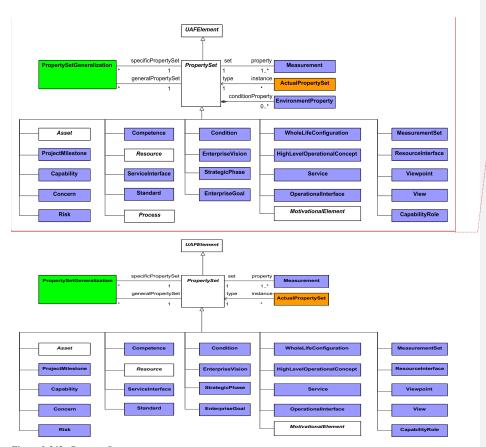


Figure 9:363 - PropertySet

Risk

Package: Parameters isAbstract: No

Generalization: PropertySet

Description

A type that represents a situation involving exposure to danger of AffectableElements (e.g. Assets, Processes, Capabilities, Opportunities, or Enterprise Goals) where the effects of such exposure can be characterized in terms of the likelihood of occurrence of a given threat and the potential adverse consequences of that threat's occurrence.

Commented [AM96]: https://issues.omg.org/browse/UAF13-55

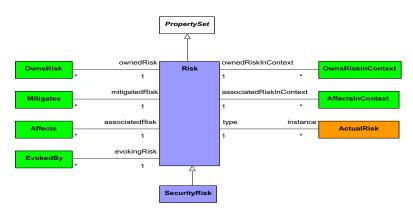


Figure 9:364 - Risk