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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal 
Specifications are available from this URL: 

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
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Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
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1 Scope

The objective of this specification is to define a UML Profile for designing advanced and integrated Telecommunication 
services. 

An advanced and integrated telecom service generally means a service that exploits the convergence of communication 
networks - landline, wireless and voice, and in the same time takes advantage of the plethora of facilities accessible from the 
World Wide Web. Sensibility to user context - like presence, localization, user preferences and use of communication means 
(like SMS or voice messaging) are some of typical ingredients that appear in innovative telecommunication services that 
operators or third party service providers would like to offer to end-users. Application of model-driven techniques for an agile 
development of this new kind of services will be facilitated by the definition of a domain specific UML profile. 

This specification standardizes firstly the UML representation of a selected set of service interfaces of typical 
telecommunication facilities (the TelcoML Enabler Library). Secondly, among different possibilities offered by UML to 
represent service logic, this specification selects one convention to represent service compositions (the TelcoML Composition 
profile). 

The UML Profile defined by this specification is defined as a specialization of the SoaML UML Profile (see normative 
references) and is named Telecommunication Modeling Library (TelcoML).

2 Conformance

An implementation that claims conformance to this specification needs to refer to one or two of the two conformance levels 
defined here: 

• TelcoML Editing: A UML tool that has pre-installed the model elements of the TelcoML profile: the interface 
definitions specified in the Enabler Library, the list of stereotypes of the Composition Profile. Such tool should provide 
means to edit state machines in line with TelcoML notation conventions defined by the Composition Profile. In 
addition such tool should provide export facility using either UML compliant XMI 2.1 or ALF representation.  

• TelcoML Execution: A UML tool that supports TelcoML Edition compliance level and that provides in addition means 
to execute or simulate service compositions specified using the TelcoML composition profile. This implies means to 
connect service interfaces in the Enabler Library to concrete implementations of these telecommunication facilities.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

3.1 List of normative references

1. Object Constraint Language (OCL) v2.3.1, OMG document number formal/2012-05-09.

2. Service oriented architecture Modeling Language (SoaML) v1.0, OMG document number formal/2012-05-01.

3. UML v2.4.1 Superstructure (UML), OMG document number formal/2012-05-07.
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4. Action Language for Foundational UML (ALF), OMG document number ptc/2010-10-05.

5. Meta Object Facility (MOF) Core v2.4.1, OMG document number formal/2011-08-07.

6. MOF/XMI Mapping v2.4.1, OMG document number formal/2011-08-09.

3.2 Normative parts of TelcoML

The following is included as part of this specification:

• XMI for TelcoML Library, OMG document number ptc/2012-09-21.

• XMI for TelcoML Composition Profile, OMG document number ptc/2012-09-22

4 Terms and Definitions

This specification does not introduce specific definitions and terms.

5 Symbols

UML: Unified Modeling Language

MOF: Meta Object Facility

SoaML: Service Oriented Modeling Language 

SMS : Short Message Service

MMS: Multimedia Message Service

6 Additional Information

6.1 Acknowledgments

The following persons were mainly responsible for the specification: 

Mariano Belaunde (Orange Labs), Irv Badr (IBM), Jenny Huang (AT&T), Huascar Espinoza (ESI),  Sumeet Malhotra 
(Unisys), Hendrik Berndt (DOCOMO Euro Labs)

The following companies submitted this specification:

• International Business Machines

• Unisys

The following companies supported this specification:

• France Telecom - Orange Labs
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• AT&T

• European Software Institute

• DoCoMo Communication Laboratory Europe GmbH

• SINTEF

• Telefonica
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7 TelcoML Overview

7.1 Introduction

This clause is normative except sub clause 7.3. This clause gives an overview of TelcoML, a UML profile for advanced and 
integrated telecommunication services built on top of SoaML language. 

SOA is an architectural paradigm for defining how people, organizations and systems provide and use services to achieve 
results. SoAML is a standard extension to UML 2 that facilitates these services modeling.  The TelcoML provides additional 
extension to SoAML with the consideration of real-time communication services and many of the existing communication 
services and architecture standards.

The value proposition of the TelcoML is to provide a common abstraction to all existing communication services standards so 
that tools can be built for the Communication Service Providers (CSP) to model variety of services in a consistent manner.

The TelcoML specification consists of the following normative constituents:

• The TelcoML Enabler Library: A set of SoaML interfaces representing telecom specific facilities. It comprises 
management interfaces for services and various interfaces for communication facilities (like SMS messaging, presence 
and so on). The interfaces included here are generally re-formulations of existing APIs already standardized in different 
telecom-oriented standardization bodies (mainly TMF, GSMA, OMA). 

• The TelcoML Service Composition Profile: a specialization of SoaML UML profiles to enable specifications of 
composite services with enhanced capacities like voice interaction support. UML State Machines are used here with 
some specific notational convention (transition centric notation, additional icons).

7.2 Relation with Other Standards

This specification has strong connection with the following standard coming from various standardization bodies:

• OASIS - OASIS SOA Reference Model provides the foundation for SoaML, so transitively it is also fundamental to 
TelcoML, especially for IT capabilities for Service Component definition and combination.

• TM Forum - The Software Enabled Services (SES) Management Interface (SMI) defines simple operations to manage 
service configuration and service execution. This interface will extend the TelcoML library (publication to be done in a 
separated document). Besides that TM Forum Frameworx defines an architecture for service management Along with 
SES Reference Architecture and other related work such as IPsphere for B2B interactions of service trading. The TM 
Forum spec. will help to complete the picture of service lifecycle management (LMM) from concept, design, deploy, 
operation to retirement.

• OMA - OMA is standardizing various telecom enablers (like Presence). In the future some of these interfaces could be 
reformulated in TelcoML formalism and integrated as extensions to the normative TelcoML libraryNotice however that 
TelcoML only retain functional aspects of enablers definitions (protocol aspects are skipped).

• GSMA - The One APIs from GSMA is the successor of Parlay/ParlayX APIs. The SMS, MMS and Location interfaces 
are good candidates for a future integration as extensions to the normative TelcoML library.

• W3C - The VoiceXML standard defines concepts and XML vocabulary for execution of voice based interaction. Some 
voice based concepts are present in TelcoML in the IVR Facility enabler and in the composition profile in Clause 9.4.2. 
VoiceXML represents an implementation technology to support voice features exposed by TelcoML.
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7.3 Service Delivery Environment

In this sub clause we recall architectural considerations of a service delivery environment, with service delivery platforms 
(SDPs) at its core. SDPs will typically provide a framework that consists out of capabilities for service creation, composition, 
execution and service control. SDPs will consist out of service enabler components that are either service independent, 
service specific or both. Examples of service delivery support functions that an SDP may offer are shown in Figure 7.1. The 
classification of supporting function follows TM Forum Solution Frameworks (Frameworx).

Figure 7.1 - Example service delivery supporting functions

Most of the service interfaces included in the TelcoML Enabler Library (Clause 8) fit in the first category: creation of new 
services. 

Note: In future releases of this specification other kind of interfaces could be incorporated, like interfaces for billing and 
for user data management which fits in the BSS category depicted in Figure 7.1.
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8 TelcoML Enabler Library

8.1 General

This clause is normative, with the exception of some sub clauses explicitly marked as non normative.

The TelcoML Enabler library defines a set of predefined service interfaces to facilitate the definition of composite 
services accessing well-known telecommunication facilities (called enablers) usually provided by telecom operators. 
These service definitions are provided in a sufficient technology agnostic way to enable independence in respect to the 
enabler provider and to the usage of a specific implementation technology.

The TelcoML enabler library presented in this document contains a limited set of interfaces serving as the starting 
foundation for the library. Extensions to this library will be typically defined in separated documents, especially to 
provide reformulations in TelcoML of pre-existing enabler interfaces defined by other standardization bodies.

Conventions

Each enabler is described using at least two sub-clauses:

• The “Overview” gives a short explanation of the purpose of the enabler.

• An optional “Context” provides additional information that may be of interest to understand the design of the interface. 
If present, this is non normative.

• The “Interface Definitions” gives the list of interfaces defined for the enabler.

For each service interface, there is a specific section, containing:

• The "Data Types" lists the data types in graphical form and with additional textual explanations.

• The "Operations" provides the details on each service operation:

• firstly a header providing in short the semantics of the operation,

• secondly the complete signature (with all multiplicities),

• then, if useful for the comprehension, an additional explanation of the purpose of the operation,

• finally three sections: parameters, outputs, and exceptions.

PackageStructure

Technically the TelcoML Enabler Library is defined by a UML Package containing a list of sub-packages corresponding 
to each sub clause ("Generic Messaging" and so on). The SoaML profile applies to this package. The ServiceInterface 
stereotype used in the enabler library is the stereotype defined by SoaML.

8.2 Generic Messaging

8.2.1 Overview

This enabler provides a simplified interface to send messages using different medias (SMS, SMS, EMAIL, Instant 
Messaging and Voice). In contrast with complete SMS and MMS facilities (see next sub clauses), this enabler only allows 
using individually one of the messaging methods with a limited set of parameters.
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8.2.2 Interface Definitions 

8.2.2.1 Messaging Interface

The Messaging interface provides one operation for each communication mode. 

Figure 8.1 - Generic Messaging Service Interface

This interface does not require the definition of specific data types (only primitive types are used). File represents a file 
location provided as a string.

8.2.2.1.1 Operations

Send an SMS

sendSMS(recipient: String, sender: String, body: String): String

Sends an SMS to a recipient (example: a phone number). Success return implies that the message was successfully 
precessed but actual delivery may occur at a future time.

Parameters:
recipient: The phone address that will receive the SMS.
sender: The sender indication  to be displayed by the receiving terminal.
body: The content of the short message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>’

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.

Send an MMS

sendMMS(recipient:String,sender:String,body:String,attachment:File):String

Sends an MMS to a recipient (example: a phone number).

Parameters:
recipient: The phone address that will receive the SMS.
sender: The sender indication to be displayed by the receiving terminal. 

Messaging
< <Ser v iceInterf ace> >

+ sendSMS(recipient: String, senderSt ring, body: St ring): Str ing
+ sendMMS(recipient : St ring, sender: Str ing,  body: Str ing,  att achment: F ile):  St ring
+ sendEmail(rec ipient:  Str ing,  sender : String, title: String, body: String, attac hment : F ile): Str ing
+ sendIM(rec ipient:  Str ing,  sender : String, body: String):  Str ing
+ sendVoic e(recipient: Str ing,  sender : St ring, body: St ring, audio:  F ile) : String
+ send(rec ipient:  Str ing,  sender : String, title: String, body: String, attac hment : F ile): Str ing
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body: The content of the short message.
attachment: The file reference (a URL) to include in the message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient: Raised if the recipient is not valid.
InvalidAttachment: Raised if the file cannot be read, and hence attached to the message. 

Send an Email

sendEmail(recipient:String,sender:String,title:String, 
          body:String, attachment:File): String

Sends an Email to the recipient (an email address).

Parameters:
recipient: The email address that will receive the message.
sender: The sender address of the message.
title: The subject of the email. 
body: The textual content of the message.
attachment: The file reference (a URL) to include in the message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient: Raised if the recipient is not valid.
InvalidAttachment: Raised if the file cannot be read, and hence attached to the message. 

Send an Instant Message

sendIM(recipient: String, sender: String, body: String): String

Sends an instant message to a recipient (typically an email address). The content is passed in the body parameter. The 
sender parameter indicates the sender address. 

Parameters:
recipient: The destination address that will receive the instant message.
sender: The address of the sender of the message. 
body: The content of the instant message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient : Raised if the recipient is not valid.
InvalidAttachment : Raised if the file cannot be read, and hence attached to the message. 

Send an Voice Message

sendVoice(recipient: String, sender: String,  
          body: String[0..1], audio: File[0..1]): String
UML Profile for Advanced & Integrated Telecommunication Services, v1.0        9



Deposit a voice message to the recipient (a phone number). Body is used to pass a text to synthesize (text to speech) or 
alternatively audio is a File path reference to the audio file. 

Parameters:
recipient: The destination phone number that will receive the voice message.
sender: An identifier for the sender of the message. 
body (optional): The text to be synthesized.
audio (optional): A reference to a audio file to be played as the message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient: Raised if the recipient is not valid.
InvalidAudioFile: Raised if the audio file cannot be read.

Send a message (generic) 

send(recipient: String, sender: String, title: String, subject: String,  
     body: String, attachment: File[0..1]): String

Send a message using a given media selected based on context information. The kind of message send depends on 
recipient format (a phone number? An email?). It may also depend on user preferences.

Parameters:
Recipient: The address that will receive the message.
sender: An address identifying the sender of the  message.
title: The subject of the message.
body: The textual content of the message.
attachment: The file reference (a URL) of an attachment included in the message.

Outputs:
A string status is returned: ‘OK: <message-id>’ or ‘FAILED: <message reason>.’

Exceptions:
InvalidRecipient: Raised if the recipient is not valid.
InvalidAttachment: Raised if the attachment file cannot be processed. 

8.3 Click To Call

8.3.1 Overview

The click-to-call service allows an application to establish calls between two telephones. Since there is a notification 
mechanism, two interfaces are defined as: a server side ClickToCall and a client side ClickToCallNotification. The latter 
is the service that needs to be implemented by a client of the ClickToCall service in order to receive the notification. 
Notice that generally the provider of the ClickToCall imposes the implementation technology for receiving the 
notification - typically it will send an HTTP “GET” request with appropriate parameters.
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Figure 8.2 - Interfaces for the ClickToCall enabler

Note: This interface is a reformulation in UML of Orange Partner click-to-call API implementation (see http://
api.orange.com/en/api/click-to-call-api/documentation).

8.3.2 Interface Definitions

8.3.2.1 Click To Call Interface

Note: For readability, optional multiplicities ([0..1]) in the arguments of service operations of this interface have been 
skipped in the diagram below. The details of signature can be found in the detailed service operation descriptions.

Figure 8.3 - Click to call service interface

This interface does not require the definition of specific data types (only primitive types are used).

8.3.2.1.1 Operations

Establishing a call

createCall(from:String,to:String,private:String[0..1], 
           max_duration:String[0..1],call_confirmation:String[0..1], 
           audio_url:String[0..1],notification_url:String[0..1]) : String

This is the server-side operation used by an application to establish calls and release calls between two phone numbers. A 
notification URL can provided to allow the enabler to send notifications regarding call status.

Parameters:

from : The phone number of the caller.

to : The phone number of the callee.

private (optional) : Indicates weather the phone numbers should be hidden. Possible values are ‘true,’ ‘false,’ ‘caller,’ 
and ‘callee.’

ClickToCa ll
<<Ser v iceInterf ace> >

ClickToCa llNo tif ica tion
<<Ser v iceInterf ace> >

< <uses>>

ClickToCall
<<ServiceInterface>>

+createCall(from: String,  to: St ring, private: String, max_duration: Integer, call_conf irmat ion: Boolean, audio_url:  String,  lang: String, notification_url: String): String
+releaseCall(call_id:  String): String
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max_duration (optional): Max duration of the call in seconds. May be restricted by proper limitations of the enabler.

call_confirmation (optional): Indicates whether the system should ask the caller for a confirmation.

lang (optional): The language for the confirmation message if any (examples: FR, EN,...).

audio_url (optional) The audio file to be read for the confirmation message (if confirmation activated) or during the 
waiting period before establishing the call (confirmation not activated).  
Note: The supported audio formats depends on the platform, hence they are not specified here.

notification_url (optional) Indicates the url for receiving the notification.

Outputs:
A call identifier of the new created call is returned. This identifier can be user to release the call.

Exceptions:
ForbiddenNumber: Either the caller or the callee number is forbidden or malformed. 
MissingNumber: Missing ‘number’ parameter

Releasing a call

releaseCall(call_id:String): String

Parameters:
call_id : identifier of the call to be terminated.

Outputs:
The call identifier of the terminated call is returned (the one passed as parameter).
This identifier can be used to release the call.

Exceptions:
InvalidCallIdentifier: The call identifier is not valid (possibly because the call terminated).

8.3.2.2 Click To Call Notification Interface

Figure 8.4 - Click to call notification interface

8.3.2.2.1 Operations

Receiving call status notification

notification(call_id: String, code: String, message: String,  
             call_start_date: String, call_end_date: String): String

This operation is invoked by the ClickToCall enabler to notify a client on the status of a call.

Click ToCa llNo tifica tio n
< < Serv ice Inter face> >

+ notifica tion(ca ll_ id:  Str ing,  code :  St ring, message :  St ring, c a ll_sta r t_da te :  St ring, c a ll_end_da te:  Str ing) : String
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Parameters:

call_id  : Id of the call (the ID returned by createCall).

code: Status of the call (see the code table below).

message : Message of the event associated to code (see the code table below).

call_start_date : Start date of the call (in ISO 8601 date format). Not sent if the call is not fully established. 

call_end_date : End date of the call  (in ISO 8601 date format). Not sent if the call is not completed.

We provide below the values for code and corresponding message:

• 110 Caller is ringing

• 120 Caller has answered

• 130 Callee is ringing

• 200 Call is established

• 310 Caller hung up

• 330 Callee hung up

• 350 API hung up (max duration reached)

• 410 Caller is busy

• 420 Callee is busy

• 430 Caller is unavailable

• 431 Caller rejected call

• 432 Caller cancelled during negotiation

• 440 Callee is unavailable

• 441 Callee rejected call

• 442 Callee cancelled during negotiation

• 450 API cancelled call (max duration reached)

• 460 Caller did not confirm call

• 500 Internal error

Outputs:
The call_id value is returned as an acknowledgment.

Exceptions:
None
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8.4 Synchronization

8.4.1 Overview

Synchronization Enabler role is to maintain user’s data coherence between his services and devices. Two interfaces are 
needed. Firstly, on the server side the capabilities offered by the synchronization facility (Synchronization interface) and 
secondly the interface that synchronizable services need to implement in order to exploit the synchronization facility 
(Syncable interface). The diagram below shows the usage dependency between these two interfaces (Synchronization 
relies on availability of Syncable interfaces).

Figure 8.5 - Interfaces related with the Synchronization enabler

8.4.2 Context

This sub clause is non-normative. It is provided to allow implementers and users to understand the design of this 
interface.

The role of the Synchronization Enabler is to maintain user's data coherence between his services and devices. The most 
noticeable expected properties of a synchronization facility are:

• independence from the data to be synchronized

• ability to detect change on a data source

• ability to declare new data sources through a generic and decentralized interface

The OMA-DS standard describes precise protocols for realizing the synchronization on top of the HTTP infrastructure. 
An implementation of the synchronization enabler interface described here will typically be built on top of a OMA-DS 
compliant synchronization facility; however other supporting technologies could also be used.

Figure 8.6 in the left shows a data model representing the set of synchronized services/devices of a user. This data model 
illustrates the notion of Synchronization Sphere that represents a synchronized content (e.g., user’s photos). A 
synchronization Sphere is composed of several data sources that are expressed as synchronization endpoints. Inner 
complexity is handled at the synchronization enabler level with the willingness to hide the complexity for end users and 
service developers. A Synchronization Endpoint Pattern represents synchronizable data source. When the system wants to 
add a new data source to a synchronization sphere, a synchronization endpoint is created taking a pattern as instantiation 
basis.

Synchroniza tion
<<Serv iceInt erfac e>>

Syncable
<<Serv ic eInter face>>

<<uses>>
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Figure 8.6 - Implementing the Synchronization Enabler: A data model and a possible internal architecture

As an enabler, the Synchronization Enabler exposes several interfaces:

• The first interface targets service developers and allows them to dig into Synchronization Enabler Data Model to 
display to users which services are part of their synchronization spheres.

• The second interface targets developers to allow users to extend their synchronization spheres with their services. This 
interface allow developers to enrich Synchronization Enabler scope by pushing new synchronizable data sources that 
can be reused by others actors.

Figure 8.6 on the right shows a typical architecture of the synchronization enabler in line with the data model. Implementers of 
the Synchronization enabler may select a different design. This is provided for helping understanding the underlying concepts.

In this architecture, we identify the following functional components:

• Synchronization Logic Manager (SLM) - This component is in charge of performing the actual synchronization 
process. To achieve this task the SLM relies on two major subcomponents:

•  The Synchronization Component: This component allows to provide connectors to new data sources (typically 
using REST).

•  The Synchronization Enabler provides also an OMA-DS layer that allows declaration of any OMA-DS compliant 
handset as element of a synchronization sphere.

• Synchronization Triggering Manager (STM) - this component is in charge of detecting if changes have occurred on a 
data source. 

• Synchronization Propagation Manager (SPM) - Computing and ordering synchronizations to be performed are under 
the responsibility of the Synchronization Propagation Manager. When a new device or service is added to a user’s 
synchronization sphere, the Synchronization Propagation Manager computes the new set of synchronization to be 

Synchronization Enabler

Synchronization
Logic Manager

Synchronization
Triggering
Manager

Synchronization
Propagation Manager

Synchronization
Component

OMA-DS 
Synchronization

Component

Synchronization
Sphere Manager

Synchronization Enabler

Synchronization
Logic Manager

Synchronization
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Manager

Synchronization
Propagation Manager

Synchronization
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OMA-DS 
Synchronization

Component

Synchronization
Sphere Manager

Synchronization Enabler

Synchronization
Logic Manager
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performed and how they shall be ordered. The idea is to put services that have the longer response time (mobile devices 
for instance) at the end of the synchronization chain.

• Synchronization Sphere Manager (SSM) - this component is in charge of:

•  Managing the topology of user’s devices and services that are to be synchronized. The SSM allows to create 
Synchronization Spheres for a user and to define the services that are part of them.

•  Managing the triggering of synchronization session by external actors.

8.4.3 Interface Definitions

8.4.3.1 Synchronization Interface

The Synchronization Enabler covers several aspects like:

•  access and configure user’s synchronization spheres

•  control the synchronization logic manager

•  manage new data sources

Figure 8.7 - Synchronization interface

8.4.3.1.1 Data Types

The specification of the Synchronization interface involves the definition of seven specific data types: Sphere, Endpoint, 
Capability, Source, Configuration, Pattern and SyncItem. The definition of Configuration in turn involves the definition of 
ConfigurationProperty. 

Synchronization
<<ServiceIn terface>>

+getUse rSpheres(use rId: String): Sphere[*]
+getUse rSphere(userId: String,  sphereId: String): Sphere
+getUse rSphereEndpoint(userId: S tring,  sphereId: String,  endpointId: String): Endpoint
+getSphereSyncs(userId: String,  sphereId: String): SyncItem[*]
+getPatterns(): Patte rn[*]
+getPattern(patternId: String): Pattern
+getEndpointConf ig(endpointId: String): Configuration
+getC apabilities(): Ca pability[*]
+getC apability Sources(capability: String): Source[*]
+addSphere(userId: String, capability: String, endpoints: Endpoints[*]): Sphere
+getLastSync(sphereId: String): SyncItem[*]
+startSync(sphereId: String): String
+syncIsOn(sphereId: String ): Boolean
+getElementUrls(userId: String,  sphereId: String, endpoint: String,  capability: String): String[* ]
+ inform(serviceName: String,  url: S tring,  logourl: String)
+addSource(userId: String,  sphereId: String,  endpointId: String): Source
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Figure 8.8 - Specific data types for the Synchronization interface

Sphere

A Sphere represents the sets of synchronized services and devices that are associated to a type of content (e.g., Photo 
content, Contacts, etc). The association between services is done by means of endpoints.

• sphereId: A unique identifier for the sphere within the synchronization framework. 

• name: An "human readable" name for the sphere.

• type: The type of content of the sphere. Types of spheres are user-defined.

• endpoints: Represents connections to services providing a given data that can be synchronized.

Endpoint

An Endpoint represents one side of a synchronisation association between two services. An endpoint includes 
Configuration data that characterizes the service.

• endpointId: A unique identifier for the endpoint within the synchronization framework. 

• name: A “human readable” name for the endpoint.

• configuration: The configuration data characterizing the connected service.

Configuration

A Configuration: represents the endpoint configuration as a whole. It includes a list of configuration properties 
characterizing the synchronized service.

• properties: list of configuration properties.

ConfigurationProperty

A ConfigurationProperty represents a given configuration property described with a key and a value.

• key: the key of the property

• value: the value of the property.

Sphere
<<datatype>>

+sphereId: String
+name: String
+type: String
+endpoints: Endpoint[*]

Endpoint
<<da tatype>>

+e ndpointId: String
+name: String
+conf igu rat ion: String

Sy ncItem
<<datatype>>

+id: String
+timesta mp: St ring
+url: String

Pa ttern
<<datatype >>

+patternId: String
+name: String
+contract: String
+descript ion: String
+capability: Capability
+accessP oint: String

Configuration
<<datatype>>

+propert ies: Conf igurat ionProperty[*]

Capability
<<datatype>>

+name: String

Source
<<datatype>>

+name: String

ConfigurationProperty
<<datatype>>

+key: String
+val: String
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Pattern

A Pattern is a generic representation of a synchronizable data source. When the system wants to add a new data source to 
a synchronization sphere, a synchronization endpoint is created taking a pattern as instantiation basis. A pattern refers to 
a capability.

• patternId: A unique identifier for the pattern within the synchronization framework.

• name: A “human readable” name for the pattern

• contract: A text describing informally the conditions to fulfil to apply the pattern.

• description:  A text providing a description of the pattern.

• capability: The capability supported by the pattern.

Capability

A Capability represents a given synchronization capability.

• name:  The name identifying the capability.

Source

A Source represents an application managing some data that a user may want to synchronize. A capability can be 
supported by multiple sources. 

• name: The name identifying the source.

SyncItem

A SyncItem represents a unit of synchronization. It is uniquely identified by a URL and has a timestamp.

• id: An identifier used by the synchronization system.

• timestamp: The time of the last synchronization.

• url: The URL of the unit of synchronization seen as a web resource.

8.4.3.1.2  Operations

Retrieving user's sphere list:  

getUserSpheres(userId: String): Sphere[*]

This operation retrieves all spheres connected to a user.

Parameters:
userId: The identifier of the user.

Outputs:
The list of spheres.

Exceptions:
UserInvalid: userId unknown to the system.
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Retrieving sphere details

getUserSphere(userId:String, sphereId: String): Sphere

Parameters:

• userId: The identifier of the user.

• sphereId: The identifier of a Sphere.

Outputs:
Returns a Sphere object containing all data associated to a sphere (including the list of endpoints) 

Exceptions:

• UserInvalid: userId unknown to the system.

• SphereInvalid: sphereId unknown to the system.

Retrieving endpoint details

getUserSphereEndpoint(userId:String, sphereId: String, endpointId: String): Endpoint

Parameters:

• userId: The identifier of the user.

• sphereId: The identifier of a Sphere.

• endpointId: The identifier of an endpoint.

Outputs:
The Endpoint details, including his configuration.

Exceptions:

• UserInvalid: userId unknown to the system.

• SphereInvalid: sphereId unknown to the system.

• EndpointInvalid: endpointId unknown to the system.

Retrieving synchronizations attached to a sphere

getSphereSyncs(userId: String, sphereId: String): SyncItem[*]

Parameters:

• userId: The identifier of the user.

• sphereId: The identifier of a Sphere.

Outputs:
The output is the list of synchronization items of this sphere. 
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Exceptions:

• UserInvalid: userId unknown to the system.

• SphereInvalid: sphereId unknown to the system.

Retrieving supported patterns

getPatterns(): Pattern[*]

Parameters:
patternId: The identifier of the endpoint pattern.

Outputs:
The output is the list of endpoint patterns supported by the synchronization enabler. 

Exceptions:
PatternInvalid: patternId unknown to the system.

Retrieving pattern details

getPattern(patternId: String): Pattern

Parameters:
patternId: The identifier of the endpoint pattern.

Outputs:
The output is the endpoint pattern definition. 

Exceptions:
PatternInvalid: patternId unknown to the system.

Retrieving endpoint configuration

getEndpointConfig(endpointId: String): Configuration

Parameters:
endpointId: The identifier of the endpoint.

Outputs:
The output is the configuration object containing all configuration properties of this endpoint. 

Exceptions:
EndpointInvalid: endpointId unknown to the system.

Retrieving sync capabilities

getCapabilities(): Capability[*]

Parameters:
None

Outputs:
The output is the list of capabilities supported by the enabler.
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Exceptions:
None

Retrieving list of sources supporting a capability

getCapabilitySources(capability: String): Source[*]

Parameters:
capability: The name identifying the capability.

Outputs:
The list of sources supporting the capability.

Exceptions:
CapabilityNotSupported: The capability is not supported by the enabler.

Adding a new sphere to a user

addSphere(userId: String, capability: String, endpoints: Endpoint[]) : Sphere

Parameters:

• userId: The identifier of the user.

• capability: the name identifying the capability.

• endpoints: A list of endpoints objects. 

Outputs:
A sphere object representing the new Sphere.

Exceptions:

• UserInvalid: userId unknown to the system.

• CapabilityNotSupported: The capability is not supported by the enabler.

• InvalidEndpoint: One of the passed endpoints is invalid.

Retrieving last synchronization data for a sphere

getLastSync(sphereId: String): SyncItem[*]

Parameters:
sphereId: The identifier of the sphere.

Outputs:
The list of synchronization items (SyncItems objects) involved in the last synchronization.

Exceptions:

• SphereInvalid: sphereId unknown to the system.

• NotSynchronized: No synchronization has been done for this sphere
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Starting a synchronization

startSync(sphereId: String): String

Parameters:
sphereId: The identifier of the sphere.

Outputs:
Returns the sphereId if the synchronization start successfully, an empty string otherwise. 

Exceptions:

• SphereInvalid: sphereId unknown to the system.

• SynchonizationCannotStart: The synchronization could not start for any internal reason.

Retrieving synchronization process status

syncIsOn(sphereId:String): Boolean

Parameters:
sphereId: The identifier of the sphere.

Outputs:
A Boolean indicating if synchronization is in progress.

Exceptions:
SphereInvalid: sphereId unknown to the system.

Retrieving item list urls for a data source

getElementUrls(userId: String, sphereId: String, endpointId: String,  
               capability: String): String[*]

This operation gets the synchronization items of a data source, then collects and returns the URL fields.

Parameters:

• userId: The identifier of the user.

• sphereId: The identifier of the sphere.

• endpointId:: The identifier of the endpoint.

• capability:: The name of the capability.

Outputs:
The list of URLs of all synchronization items of a data source

Exceptions:

• UserInvalid: userId unknown to the system.

• SphereInvalid: sphereId unknown to the system.

• EndpointInvalid: endpointId unknown to the system
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Informing the Synchronization Enabler that a new syncable source is available

inform(serviceName: String, url: String, logourl: String)

Parameters:

• serviceName : Name of the service offering a SyncableInterface.

• url: The URL representing the service.

• logourl: The URL of the logo representing the service.

Outputs:
None

Exceptions:
ServiceNotReachable: The syncable interface cannot be accessed.

Creating/Adding a new syncable data source

addSource(userId: String, sphereId: String, endpointId: String): Source

Parameters:

• userId: The identifier of the user.

• sphereId: The identifier of the sphere.

• endpointId:: The identifier of the endpoint.

Outputs:
A source object representing the new source.

Exceptions:

• UserInvalid: userId unknown to the system.

• SphereInvalid: sphereId unknown to the system.

• EndpointInvalid: endpointId unknown to the system.

8.4.3.2 Syncable Interface

The user’s sphere can be enriched by declaring new data sources to be synchronized. This is done through the Syncable 
interface that a service may provide. This interface hides the complexity of implementation components (see Context sub 
clause).
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Figure 8.9 - Syncable interface

8.4.3.2.1 Data Types

The specification of the Syncable interface refers to the SyncItem data type (see definition in Synchronization interface) 
and involves the definition of a specific data type: Base64. 

Figure 8.10 - Specific data types for the Syncable interface

Base64

A Base64 data type represents a text encoded using base64 coding.

8.4.3.2.2 Operations

Retrieving service capabilities

getCapabilities(): String[*]

Parameters:
None

Outputs:
Returns the list of synchronization capabilities offered by the syncable service.

Exceptions:
None

 Retrieving item list for a capability

getDataList(capability: String): SyncItem[*]

Parameters:
capability : The capability to filter the synchronization items (SyncItems).

Outputs:
Returns the list of SyncItems that belong to the capability.
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Exceptions:
InvalidCapability : The capability is not known to the syncable service.

 Retrieving item's data

getData(capability: String, id: String): Base64

Parameters:

• capability: The capability of the synchronization item. 

• id: The identifier of the synchronization item (which is unique for a given capability).

Outputs:
The actual content of the item (for instance a JPEG image) encoded in base64. 

Exceptions:

• SyncItemInvalid: The synchronization item does not exists.

• ItemContentInvalid: The content of the item could not be accessed.

 Adding a new Item

addData(capability: String, id: String, content: Base64): SyncItem[*]

Parameters:

• capability: The capability of the synchronization item to add. 

• id: The identifier of the synchronization item (which is unique for a given capability).

• content: The content of the synchronization item in base64 encoding.

Outputs:
A list of synchronization items containing a unique SyncItem object representing the created item.

Exceptions:
InvalidDuplicatedIdentifier: The identifier passed is already used.

 Updating an item

updateData(capability: String, id: String, content: Base64): SyncItem[*]

Parameters:

• capability: The capability of the synchronization item to add. 

• id: The identifier of the synchronization item (which is unique for a given capability).

• content: The content of the synchronization item in base64 encoding.

Outputs:
A list of synchronization items containing a unique SyncItem object representing the updated item.

Exceptions:
SyncItemInvalid: The synchronization item does not exist.
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Removing an item

deleteData(capability: String, id: String)

Parameters:

• capability: The capability of the synchronization item to add. 

• id: The identifier of the synchronization item (which is unique for a given capability).

Outputs:
None

Exceptions:

• InvalidCapability : The capability is unknown to the system.

• InvalidItem: The synchronization item is unknown.

8.5 Voice Recognition and TTS

8.5.1 Overview

The available functions in the current version of the api allow any http client to pilot an Interactive Voice Response server 
(IVR), by requesting it to:

• Make or accept calls

• Say or play voice prompts

• Collect voice inputs (digit or speech recognition)

• Record

• Tear down (hang up or transfer)

8.5.2 Interface Definitions

8.5.2.1 Interactive Voice Response Facility Interface

The InteractiveVoiceResponseFacility service interface defines twelve simple operations exposing the basic functionality of a 
interactive voice response server. A specific data type named IVRResponse is defined in order to capture in a generic way the 
outputs of these operations. It includes a call identifier and a 'body' field to contain any response information. 

Note: This interface is a reformulation in UML of Orange Partner MRF (Media Resource Facility) API implementation (see 
http://www.orangepartner.com/).
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Figure 8.11 - IVR Facility service interface

8.5.2.1.1 Data Types

The specification of the IVRFacility interface involves the definition of one specific data type: the IVRResponse.

Figure 8.12 - Specific data types for the IVR Facility Interface

IVRResponse

IVRResponse is a generic data type defined to capture all responses of service operations of this enabler. It includes the 
following fields:

• call_id: A call identifier (unique in the system).

• body:  Any additional information in the response (like the matched items when recognizing speech).

8.5.2.1.2 Operations

Making a call

makeCall(to:String):IVRResponse

This function requests the IVR to dial a phone number. It returns when the connection is established or if an error occurs.

Parameters:
to : A valid phone number

Inte ra ctive Vo iceR e sponse Fa cilit y
< < Serv iceInt erface> >

+ makeC a ll(to:  Str ing) : IVR R esponse
+ wa itC a ll( from: Str ing[ 0..1] ): IVR R esponse
+ answerC a ll(ca ll_id:  St ring[0.. 1]):  IVR R esponse
+ hangUp( ca ll_ id: String):  IVRR espons e
+ transf e r(c a ll_id: St ring, to: String):  I VRR espons e
+ say Prompt(c a ll_ id: St ring, content:  St ring): IVR R esponse
+ playPr ompt (ca ll_ id: Str ing,  url: Str ing) : I VR Res ponse
+ collect Dt mf (ca ll_ id:  Str ing,  max : Integer [0.. 1], te rm[0..1] : St ring): IVR R esponse
+ recognizeSpeech(c a ll_ id: St ring, grammar : St ring, lang:  Str ing[0..1] ): IVR R esponse
+ sta rt R ecord(c a ll_ id: St ring, url: St ring): IVR R esponse
+ stopR ecord(ca ll_ id: String):  IVRR espons e
+ getVersion() : String

IVRResponse
<<datatype>>

+call_id: String
+body: String
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Outputs:
Returns a IVRResponse object with 'call_id' assigned with the identifier for the new call. The ‘body’ field is left 
empty.

Exceptions:

• Invalid_param: Parameter ‘to’ is not a valid phone number.

• Timeout: the IVR could not fulfill the request within the time limit.

• Hangup: Callee rejected the call.

• IVR_ERROR: Any other error encountered by the IVR. 

Waiting for a call

waitCall(from:String[0..1]):IVRResponse

This function requests the IVR to wait for a call for some duration (default value: 60s). It returns when the IVR receives 
an incoming call or when an error or timeout occurs.

Parameters:
from (optional): A phone number. If provided the operation waits for a call to this number.

Outputs:
Returns an IVRResponse object with ‘call_id’ of the incoming call. The ‘body’ field is left empty.

Exceptions:

• Invalid_param:from: Parameter from is not a valid phone number.

• Timeout: No call received before timeout.

• IVR_ERROR: Any other error encountered by the IVR. 

Answering to a call

answerCall(from:String[0..1]) : IVRResponse

This function requests the IVR to answer to an incoming call. It returns when the connection is established or if an error 
occurs.

Parameters:
from (optional): A phone number. If provided the operation answers a call to this number.

Outputs:
Returns an IVRResponse object with ‘call_id’ of the answered call. The ‘body’ field left is empty.

Exceptions:

• Invalid_param:call_id:    Parameter call_id is not a valid call identifier.

• Timeout: The IVR could not fulfill the request within the time limit.

• Hangup: Caller hung up the call.

• IVR_ERROR:   Any other error encountered by the IVR. 
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Disconnecting  a call

hangUp(call_id:String):IVRResponse

This function requests the IVR to hang-up the call identified by call_id. It returns when the connection has been closed or 
if an error occurs.

Parameters:
call_id: The call identifier.

Outputs:
The output - and IVRResponse object, repeats the passed call identifier parameter.

Exceptions:

• Invalid_param:call_id:   Parameter call_id is not a valid call identifier.

• Timeout:   The IVR could not fulfil the request within the time limit.

• IVR_ERROR:   Any other error encountered by the IVR.

Transferring a call

transfer(call_id:String,to:String): String

This function requests the IVR to transfer the call identified by call_id to another phone number. It returns when the 
connection between the two users has been established or if an error occurs. Once transferred, no more requests to the 
IVR can be made on the original call_id.

Parameters:

• call_id: The call identifier.

• to: A valid phone number.

Outputs:
Returns an IVRResponse object with ‘call_id’ of the new call. The ‘body’ field is left empty.

Exceptions:

• Invalid_param:call_id:   Parameter ‘call_id’ is not a valid call identifier.

• Invalid_param:to:   Parameter ‘to’ is not a valid phone number.

• Timeout: The IVR could not fulfill the request within the time limit.

• Transfer_failed:   Transfer could not complete. For example the callee rejected the call.

• IVR_ERROR:  Any other error encountered by the IVR. 

Playing a prompt message (text to speech)

sayPrompt(call_id:String,content:String): IVRResponse

This function requests the IVR to say a prompt to the user connected. It returns when the prompt has been played or if an 
error occurs.
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Parameters:

• call_id: The call identifier.

• content: A URL encoded string representing the prompt.

Outputs:
Returns an IVRResponse object. The ‘body’ contains data regarding the selected voice. The exact content of body is 
left unspecified to accommodate to different implemented policies.

Exceptions:

• Invalid_param:call_id:   Parameter call_id is not a valid call identifier.

• Timeout: The IVR could not fulfill the request within the time limit.

• IVR_ERROR: Any other error encountered by the IVR.

Playing a prompt message from a file

playPrompt(call_id:String,url:String): IVRResponse

This function requests the IVR to play a file to the user connected. It returns when the IVR begins to read the file or if an 
error occurs.

Parameters:

• call_id: The call identifier.

• url: The URL of the file to read.

Outputs:
Returns an IVRResponse object. The field ‘call_id’ contains the passed call identifier.

Exceptions:

• Invalid_param:call_id:   Parameter call_id is not a valid call identifier.

• Invalid_param:url:   Parameter URL is not a valid URL.

• File_error :  The file cannot be red. Possible causes: file not found, wrong format. 

• Timeout:   The IVR could not fulfill the request within the time limit.

• IVR_ERROR:   Any other error encountered by the IVR.

Retrieve DTMF input

collectDtmf(call_id:String,max:Integer[0..1],term:String[0..1]) : IVRResponse

This function requests the IVR to wait for specified number of digits from the connected user.  It returns when max digits 
or terminal digit are received or if an error occurs.

Parameters:

• call_id: The call identifier. 
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• max (optional): The maximum number of digits to retrieve from user input.

• term (optional): A terminal digit marking the end of the input. 

Outputs:
Returns an IVRResponse object. The field ‘call_id’ contains the passed call identifier and the field ‘body’ is a string 
consisting of recognized DTMF codes.

Exceptions:

• Invalid_param:call_id:  Parameter call_id is not a valid call identifier.

• Invalid_param:max,term:  Parameters max AND term are null.

• Timeout: the IVR could not fulfill the request within the time limit.

• IVR_ERROR: Any other error encountered by the IVR.

Retrieve and recognize speech  input

recognizeSpeech(call_id:String,grammar:String,lang:String[0..1]) : IVRResponse

This function requests the IVR to start Speech Recognition with a list of given recognizable items.  It returns when one 
of the items has been recognized or when an error or timeout occurs.

Parameters:

• call_id : The call identifier.

• grammar: The url-encoded list of recognizable items.

    Format: <item>item1</item><item>item2</item>…

• lang (optional) : Language for recognition. Default depends on the provider (example: fr-FR).

Output:
Returns an IVRResponse object. The field ‘call_id’ contains the passed call identifier and the field ‘body’ is a string 
containing the recognized item.

Exceptions:

• Invalid_param:call_id:  Parameter call_id is not a valid call identifier.

• Invalid_param:grammar: Parameter grammar is not valid.

• Timeout: the IVR could not fulfill the request within the time limit.

• IVR_ERROR: Any other error encountered by the IVR.

Start recording voice

startRecord(call_id:String,url:String) : IVRResponse

This function requests the IVR to start recording user’s speech. It returns when the recording has started or if an error 
occurs.
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Parameters:

• call_id: The call identifier.

• url: The location where the record will be stored.

Outputs:
Returns an IVRResponse object. The ‘call_id’ field copies the passed call identifier. The ‘body’ is a comma separated 
string containing the format used (for example ‘wav’ or ‘mpeg’) and information on rate quality.

Exceptions:

• Invalid_param:call_id: Parameter call_id is not a valid call identifier.

• Invalid_param:url: Parameter URL is not a valid URL.

• Timeout: The IVR could not fulfill the request within the time limit.

• IVR_ERROR: Any other error encountered by the IVR.

Stop recording voice

stopRecord(call_id:String): IVRResponse

This function requests the IVR to stop recording user’s speech. It returns when the recording has been stopped or if an 
error occurs.

Parameters:
call_id: The call identifier.

Outputs:
Returns an IVRResponse object. The ‘call_id’ field repeats the passed call identifier. The ‘body’ field is empty.

Exceptions:

• Invalid_param:call_id: Parameter call_id is not a valid call identifier.

• Timeout: The IVR could not fulfill the request within the time limit.

• IVR_ERROR: Any other error encountered by the IVR.

Retrieve the version of IVR facility

getVersion() : String

Returns the version of the IVR service.

Parameters:
None

Outputs:
A comma separated string delivering information on the service. It contains in order the following information:  a 
title, the service provider, and the version. 

Exceptions:
None
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8.6 Privacy

8.6.1 Overview

Two interfaces are defined here: the PrivacyResourceManager is used to validate a token to access a given functionality, 
and/or to access a set of attribute list. As an example the accessed functionality could be the user profile and the attribute 
list the list of fields such as phone number and address. On the other hand, the PrivacyPolicyManager provides CRUD 
operations (create/request,update,delete) to manage policy parameters in order to permit access to specific services. The 
detailed structure of policy is left opaque (Any datatype) to accommodate to different proprietary strategies. 

8.6.2 Interface Definitions

Two complementary interfaces are defined here: PrivacyResourceManager and PrivacyPolicyManager. 

8.6.2.1 Privacy Resource Manager Interface

Figure 8.13 - Privacy Resource Manager

8.6.2.1.1 Data Types

The specification of the PrivacyResourceManager interface involves the definition of two specific data types: 
AccessRequest and AttributeInfo. The latter implies the definition of an ActionKind enumeration.

Figure 8.14 - Specific data types for the Privacy Resource Manager Interface

AccessRequest

The AccessRequest data type contains the information to control access to a protected resource. It includes:

• calledFunc: the function for which an access is requested.

• token: the token passed to be validated to validate an access request.

P riv a c yR e so u rce M a n ag e r
<< Se rv ice I n te rf a ce>>

+ v a lida te Token ( re que st : A cc e ssR eque st) : A t tribute I n fo [* ]

AccessRequest
<<datat ype>>

+calledFunc:  Str ing
+token: Str ing
+recipient : String
+accessor : St ring
+attr ibut eLis t: A ttr ibut eInfo[*]

Att ributeInfo
<<datat ype>>

+owner:  Str ing
+at tributeName: String
+act ion:  Act ionKind

ActionKind
<<enumeration>>

+read
+write
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• recipient: an identity of the user that wishes to access the resource.

• accessor: an identity of the service being used to access the resource.

• attributeList: the list of attributes (AttributeInfo object) that will be accessed (for fine grained control).

AttributeInfo

The AttributeInfo data type contains the following fields:

• the owner of the attribute to be accessed (such as an Entity name or an Application name).

• attributeName: the name of the attribute.

• action: the action to be done (see ActtionKind).

ActionKind

The ActionKind enumeration defines the different kinds of actions that can be requested on an attribute. The two possible 
values are: read and write.

8.6.2.1.2  Operations

Token validation

validateToken(request: AccessRequest): AttributeInfo[*]

Return a list of personal attributes that can be accessed by the requestor with given token or null if the token is invalid. 
Within the AccessRequest parameter, the recipient field is the user identifier of the recipient who would like to access the 
attribute, the accessor field is an identifier of the service to be accessed. Each attribute in the attribute has a name, an 
owner (a user identifier) and permitted actions (read or write).

Parameters:
request: the request information provided by means of an AccessRequest object. This structure of a request is 
described above (see AccessRequest data type definition).  

Outputs:
The list of permitted attributes. The returned list may be a subset of the attributes requested in the request parameter. 
In that case authorization is partially provided. An empty list means that the access is not authorized at all.

Exceptions:
None
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8.6.2.2 Privacy Policy Manager Interface

Figure 8.15 - PrivacyPolicyManager interface

8.6.2.2.1 Data Types

The specification of the PrivacyResourceManager interface involves the definition of one specific data type: Policy.

Figure 8.16 - Specific data types for the Privacy Policy Manager interface

Policy

The Policy data type contains the specification of the policy. The formalism used to express the policy is left user defined. 

The Policy data type contains the following fields:

• policy: A string containing the specification of the policy.

• language: The formalism used to specify the policy.

8.6.2.2.2 Operations

Retrieve policy

get(clientId: String, serviceId: String): Policy

Returns the policy information for a given user and service.

Parameters:
clientId: The identifier of a registered user.
serviceId: The identifier of a registered service.

Outputs:
The Policy object for a given user an a given service.

Priv a cy Policy M ana ge r
<< Serv ice Int e rfa c e>>

+ ge t(clientId:  St ring, s e rv ice Id: Str ing) : Po licy
+ upda te (clientId:  St ring, s e rv ice Id : S tr ing,  po lic y : Po licy ):  Po lic y
+ crea te ( client Id : S tring, se rv ice I d: St ring, po licy : Po licy ) : Po licy
+ de le t e (client Id: Str ing,  se r v ice I d: String)

Policy
<<datatype>>

+policy: String
+language: String
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Exceptions:

• InvalidClient: The passed clientId is unknown to the system.

• InvalidService: The passed serviceId is unknown to the system. 

Update policy

update(clientId: String, serviceId: String, policy: Policy): Policy

Assign a new policy content for a given user and service.

Parameters:

• clientId: The identifier of a registered user.

• serviceId: The identifier of a registered service.

• policy: The policy data to be stored in replacement of the existing one.

Outputs:
The Policy object for a given user an a given service.

Exceptions:

• InvalidClient: The passed clientId is unknown to the system.

• InvalidService: The passed serviceId is unknown to the system.

• InvalidPolicy: The policy passed is not correct.

Create policy

create(clientId: String, serviceId: String, policy: Policy): Policy

Adds a new policy for a given user and service.

Parameters:

• clientId: The identifier of a registered user.

• serviceId:  The identifier of a registered service.

• policy: The policy data to be stored.

Outputs:
The Policy object for a given user an a given service.

Exceptions:

• InvalidClient: The passedclientId is unknown to the system.

• InvalidService: The passed serviceId is unknown to the system. 

• InvalidPolicy: The policy passed is not correct.

Delete policy

delete(clientId: String, serviceId: String)
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Deletes an existing policy for a given client and a given service.

Parameters:

• clientId: The identifier of a registered user.

• serviceId: The identifier of a registered service.

Outputs:
None.

Exceptions:

• InvalidClient: The passedclientId is unknown to the system.

• InvalidService: The passed serviceId is unknown to the system. 
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9 TelcoML Composition Profile

9.1 Overview

This Clause is normative, with the exception of some sub clauses explicitly marked as non-normative.

This clause specifies the “TelcoML Composition Profile” which, combined with the TelcoML Enabler Library form the 
TelcoML UML Profile. Technically it is defined as a UML profile specializing the SoaML UML profile. 

The TelcoML Composition profile is intended to facilitate the development of composite telecommunication services by 
combining building blocks originating from the telecommunication industry (the so-called communication enablers) along 
with software components obtained from the internet. Typical services to be developed with TelcoML are mobile 
applications, which are portable across various smartphone platforms, or service logic deployed in the network by 
telecommunication service providers (CSP) or third party service providers. The TelcoML Enabler Library (see Clause 8) 
provides a set of standardized UML interfaces that can be used in service compositions when dealing with 
telecommunication facilities.

9.1.1 Relationship to SoaML

The TelcoML profile specializes the SoaML profile allowing telecom service designers to potentially take advantage of 
all the features of SoaML. Service logic in SoaML can be specified using various behavioral formalisms, for example, 
activity diagrams, state machines, and sequence diagrams. While this freedom is appropriate for addressing many needs 
related to SOA modeling, when designers are interested in interchanging executable specifications related to service 
compositions, it is necessary to make some restrictive choices. The TelcoML Composition profile selects state machines 
as the primary execution paradigm and defines a list of conventions to ensure some homogeneity in the way to represent 
service logic. State Machines have been selected because there is a well known set of best practices using this formalism 
in the telecom community (inherited from ITU-T SDL experience) and also because it is very appropriate for representing 
interactive voice-based services.

When specifying service compositions using the TelcoML composition profile, the service designer need not represent 
SoaML participant components in order to define behavior. The behavior specification representing a service composition 
can be directly attached to the service operation owned by the service interface. 

9.1.2 Relationship to Voice Profile

The Voice UML Profile defines means to express the design of voice based interactive applications based on a state-
machine paradigm. All voice-oriented extensions defined in this profile have been re-introduced in the TelcoML profile to 
enable the definition of integrated services with multi-modal capacities. However TelcoML does not replace the Voice 
profile to deal with pure voice-interactive applications (because typical voice specifications are structured differently, 
where a dialog is the central structuring concept).

9.1.3 Relationship to CCXML and VoiceXML

The CCXML (Call Control eXtensible Markup Language) is designed to provide telephony call control support for dialog 
systems. It is connected to the VoiceXML standard. The TelcoML specification has no direct link with CCXML except 
that a CCXML implementation represents a natural candidate for supporting TelcoML state machines enhanced by voice 
and call control capacities.
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9.2 Main Concepts

Almost all concepts (except for Dialog) are specializations of the existing SoaML concept. However their usage in the 
TelcoML composition profile tends to be simpler since the focus is primarily the specification of composite services from 
an algorithmic point of view (rather than architectural point of view).

Technically, reuse of SoaML stereotypes - like ServiceInterface - is achieved by means of package import from the 
package defining the TelcoML Composition profile to the package defining SoaML. Instances of the imported stereotypes 
are not redefined by this profile.

9.2.1 Service Interface

A service interface in TelcoML (ServiceInterface concept from SoaML) consists basically of a list of service operations 
and, when relevant, the declaration of received and transmitted asynchronous events. The operations declare a signature 
with one or more input parameters and one output parameter. There are two possible styles to pass parameters and receive 
outputs: when message style is used (versus RPC style) the operation has a unique input parameter with a composite 
structure. 

A usage dependency may be defined between a “server-side” service interface and a “client-side” service interface: this is 
relevant in telecom enablers that allow applications to receive asynchronous notifications from the enabler. In this case 
the specification of the “client” interface is part of the specification of the enabler. An example of this is given by the 
“Click to call” enabler in TelcoML Enabler Library.

In the case of a composite service there will be one operation representing the entry point of the orchestration with an 
explicit behavior attached. In the more general case, service operations may or may not expose a behavior specification.

ServiceInterface is represented in the TelcoML profile by the stereotype <<ServiceInterface>> on classes (reuse of 
SoaML stereotype).  

9.2.1.1 Service Logic 

By service logic we mean the specification of the behavior of a service operation. By convention, in the following sub 
clauses “service logic” will be used as a shortcut of “logic of a service operation.”

The service logic may be “simple:” a sequence of actions with no parallelism and no asynchronous event reception, or 
“complex,” and in which case it is provided by a state machine. Conceptually, the first case can be treated as a 
“degenerate” case of the second case.

Use of the state machine paradigm potentially poses the possibility of representing arbitrary complex behaviors. Within a 
state machine we can refer to asynchronous events (accepting or transmitting events) that can be defined as part of the 
service interface.

The graphical rendering for state machines in TelcoML uses the transition-oriented notation specified by the UML 
specification (see UML2 Superstructure specification, Figure 15.44). When this notation is used the accepted events and 
actions to be executed when firing the transition are rendered by specific UML action icons. 

Note: Tools providing no support or insufficient support on the transition-oriented notation can exploit activity diagrams 
to render state machines in transition-oriented manner. In TelcoML this is a notation variation point. However, TelcoML 
compliant tools exploiting this flexibility should have the ability to generate in XMI the same representation as if 
transition-oriented state machines were used. 

ServiceLogic is represented in the TelcoML profile by the stereotype <<ServiceLogic>> of StateMachine.  
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Note: In TelcoML the notion of Participant (imported from SoaML) that exposes the internal structure of a component 
that realizes a service interface is out of focus. Service designers are free to provide such a view of the service by using 
full-fledged SoaML diagrams. However the interpretation of such view is not part of the TelcoML specification and a 
TelcoML execution tool (claiming the TelcoML Execution Conformance level) is not requested to support it.

9.2.1.2 Multi-modal Dialogs

In the telecommunication world services may be designed as muti-modal (for example, accepting voice in combination 
with graphical interface inputs). TelcoML incorporates primitives of the Voice UML OMG standard in order to allow 
expressing interactions that imply voice recognition and synthesis. This is done by enhancing the list of actions and 
events that can be specified in state machine transitions, such as Play action, Inactivity, Utterance, and Reject event types. 
In TelcoML dialogs are specific operations used to retrieve information from a user utilizing some form of interaction - 
for example voice or a graphical interface. These operations may be invoked explicitly from service logic.

9.3 Most Commonly Used Stereotypes from SoaML

TelcoML adds a list of specific stereotypes. Potentially all stereotypes from SoaML can be used but the ones below play 
a distinctive role in TelcoML composition specifications.

• ServiceInterface: Defines the interface and responsibilities of a participant to provide or consume a service. 

• Attachment: A part of a Message that is attached to rather than contained in the message.

• Property: Augments the standard UML Property with the ability to be distinguished as an identifying property.

• MessageType: The specification of information exchanged between service consumers and providers.

9.3.1 Annotating service interfaces

TelcoML provides some basic mechanisms to classify different annotations that may enrich a model element involved in 
the definition of a service interface, for instance a service operation or a given parameter or the complete service 
interface. Three kinds of annotations are supported: 

1. annotations to provide semantic information (typically through links to pre-existing ontologies), 

2. annotation to provide non functional property information on the service, and

3. annotation to guide automatic generation of GUIs from the service specification. 

The details of these annotations are generally opaque (unspecified) to allow service designers use their preferred 
formalism. Also they serve as placeholders for future use of new formalisms.

9.3.2 Using graphical or textual notation

TelcoML defines a UML profile to allow service designer to take advantage of standardized UML conventions. However 
in some cases it may be useful to use alternative textual notations. TelcoML which exploits state machines can take 
benefit of ALF textual notation, as described in Executable UML specification from OMG, to represent behavior. 
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9.4 TelcoML Specific Stereotypes

In this sub clause we provide the definition of specific TelcoML stereotypes.

9.4.1 Service logic related stereotypes

This sub clause specifies the list of stereotypes dealing with service logic description.

Figure 9.1 - Service Logic related concepts

In the following the semantics of the above stereotypes are defined and, when relevant, the specific notation is also 
covered. The information that can be derived from the provided diagram (such as the base metaclass) is not repeated.

9.4.1.1 ServiceLogic

A Service Logic defines the specification of the behavior of a service operation in the form of a state machine or an 
opaque definition. Both forms may coexist (useful in iterative development). A service logic is owned by a service 
operation.

Usage of  <<ServiceLogic>> notation is not mandatory in a state machine diagram.

9.4.1.2 ServiceCall

A Service Call represents a call to a service operation within a service logic. From the point of view of the caller the call 
is always synchronous (it blocks until a response is received). However the effect of the call may be asynchronous. For 
example invoking “sendSMS” returns immediately but the SMS may take some time to arrive to the target phone.

Note: Calls to operations that are not service operations use the “regular” rectangle box representing actions in transition-
oriented UML state machines. 

A specific icon is used to notate a ServiceCall. It is similar to a “send event action,” except that the left side border has a 
triangle. Depending on tool presentation options and preferences, the call action text specification may be placed outside 
the box or inside the box. Also the <<ServiceCall>> stereotype indication may not appear in the icon. Another 
presentation option is use of the “regular” rectangle for action representation rather than the icon. However in such case 
the stereotype indication is mandatory. Figure 9.2 depicts various presentation options.
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Figure 9.2 - Notations for service calls

9.4.1.3 Wait

A wait state is a state containing at least one outgoing transition triggered by the reception of an event. 

A Wait state is notated as a regular state with <<Wait>> stereotype indication.

9.4.1.4 InformalCondition

An informal condition is a condition in a choice state specified informally, for instance by using natural language. An 
InformalCondition is a kind of OpaqueExpression. 

An informal condition is notated as a regular Choice vertex with stereotype indication <<InformalCondition>>.

9.4.1.5 InformalAction

An informal action is an action definition specified informally, for instance by using natural language. An InformalAction 
is a kind of OpaqueAction. 

An InformalAction is notated as a regular action (a rectangle box) with stereotype indication <<InformalAction>>.

9.4.2 Voice and multi-modal interaction related stereotypes

This sub clause specifies the list of stereotypes related to voice and other means of interaction.

Figure 9.3 - Voice and multi-modality related concepts

<<ServiceCall>>

ret = proxy.myOperation() ret = proxy.myOperation()

<<ServiceCall>>
ret = proxy.myOperation()
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In the sub clauses below we provide the semantics of the stereotypes and, when necessary the specific notation is also 
provided. The information that can be derived from the accompanying diagram is not repeated.

9.4.2.1 Dialog

A dialog represents an operation used to retrieve information from an end user, possibly using alternate methods 
(graphical interface, voice conversation, and so on). 

Attributes

     modality: String 

Modality indicates the interaction mode. The attribute modality has two predefined values: “gui” and “voice.” Other 
values may be used. 

The stereotype to be used is <<Dialog>>.

9.4.2.2 PlayAction

A play action represents the action of issuing an audio message to a user (text to speech or audio playing). This message 
can be interrupted by the user (bargin mode is active).

The stereotype to be used is <<Play>>.

9.4.2.3 PlayAllAction

A play all action represents the action of issuing an audio message to a user (text to speech or audio playing). This 
message cannot be interrupted by the user (bargin mode is active).

The stereotype to be used is <<PlayAll>>.

9.4.2.4 UtteranceEvent

An utterance event is an event definition representing the acceptance and recognition of voice input from the user. 

The stereotype to be used is <<UtteranceEvent>>.

9.4.2.5 RejectEvent

A reject event is an event definition representing rejection - a recognition failure - of voice input from the user. 

The stereotype to be used is <<RejectEvent>>.

9.4.2.6 InactivityEvent

An inactivity event is an event definition representing the absence of input from the user.

The stereotype to be used is <<InactivityEvent>>.

9.4.2.7 GuiEvent

A GUI event is an event generated by a graphical interface.

The stereotype to be used to denote this concept is <<GuiEvent>>.
44                 UML Profile for Advanced & Integrated Telecommunication Services, v1.0



9.4.3 Annotations for service interface elements

This sub clause defines specific concepts to annotate model elements used in service interface descriptions with some 
useful information: non functional properties, semantic annotations, and GUI annotations. 

Figure 9.4 - Annotation facilities

In the following text we provide the semantics of the three stereotypes and, when relevant the specific notation. We do not 
repeat information that can be derived from the diagram.

9.4.3.1 SemanticTag

A semantic tag annotates an element within a service description (such as a service interface or a service operation) with 
some semantic information. Semantic annotations are typically realized by attaching references to concepts predefined in 
ontologies. Attaching semantic information to service descriptions is often useful for automatic service discovery.

Attributes

     kind: String 

Indicates to which kind the semantic annotation belongs. Pre-defined (normative) kinds are: goal, effect, precondition, 
postcondition, and semantictype. Other non-normative values for the ‘kind’ attribute may be defined by the user. 

A goal semantic annotation applies only to service interfaces or a given service operation. 

preconditions and postconditions annotations apply to service operations.

An effect annotation applies to service operations: it can be used to represent side-effect semantics.

A semantictype annotation applies to a parameter. It typically references a concept in an ontology. Example: a ‘lang’ 
parameter may technically have String datatype but can be connected to the ‘Language’ concept defined by an ontology.

     url: String

 Gives the address of a concept defined in an ontology.

A Semantig tag is technically defined as a kind of Constraint. The value specification (inherited from Constraint 
metaclass) may be used to give details on preconditions and post-conditions. 

A semantic tag is notated by a Note rectangle with <<SemanticTag>> stereotype indication.
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9.4.3.2 NonFunctionalTag

A non functional tag annotates an element of a service description (such as interfaces or operations) with information 
concerning non functional features like Quality of Service, cost, availability, and so on.

Attributes

     category: String 

Indicates to which category the non functional tag belongs. 

The classification is user-defined, to accommodate to different preferences and future standardization. 

       url: String

 Gives the address of a concept representing the non functional feature (typically as part of an ontology).

A non functional tag is technically defined as a kind of Constraint. The value specification (inherited from Constraint 
metaclass) may be used to give details on the described features (like cost conditions).

A non functional tag is notated by a Note rectangle with <<NonFunctionalTag>> stereotype indication.

9.4.3.3 GuiTag

A GUI tag represents information to guide GUI generation from the service interface definition. For example, a ‘text’ 
parameter may be annotated as “combo-box” to render it as a combo-box. The detailed classification ans structure is of 
these tags are left unspecified in TelcoML to allow service designer to adopt their own strategies based on the kind of 
GUI they want to generate.

Attributes

     kind: String 

Allows the classification of GUI information. This classification is user-defined. 

     url: String

 Allows to refer to a GUI type (for instance a URL that identifies a widget type, such as a Combo-box in a  
 pre-existing GUI library).

9.4.4 Additional presentation options

TelcoML notation defines two optional notational short-hands: one related to junctions pseudo-states and the other related 
to action sequences.

9.4.4.1 Junction pseudo-states

The regular UML notation for a Junction pseudo-state is an unnamed small black-filled circle. When there is a unique 
outgoing transition from a junction node, a TelcoML tool may propose the ability to assign a name to the junction pseudo-
state: this is interpreted as a short-hand notation for a transition originating from the junction vertex to the state denoted 
by the junction name. The short-hand is only applicable if there is no name conflict. 

This short-hand can be used to improve the readability of a service logic diagram (avoiding excessive amount of arrows 
in loops). Figure 9.5 illustrates the use of this shorthand.
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Figure 9.5 - Shorthand for junctions

9.4.4.2 Action sequences

State Machine UML notation allows using a single rectangle to denote an ordered sequence of actions. In complement to 
this, TelcoML allows the following shorthand: the text content of the rectangle representing an action sequence may start 
with a slash symbol ('/'). In such case the rectangle is connected to a UML note containing the detail of the actions. 

This short-hand can be used to limit the size of diagrams. An example of use of this notation is presented below.

Figure 9.6 - Shorthand for Action Sequences

9.5 Examples

This sub clause is non-normative.

9.5.1 “Send by SMS weather in Paris translated in English”

The service “Send by SMS weather in Paris translated in English” is a very simple composite service that aggregates one 
telecom enabler (messaging) and two capabilities from internet (weather broadcast and translation). This example does 
not require managing asynchronous events, hence the state machine representing the behavior can be replaced by a simple 
sequence of actions.

Sleep ing

Sleeping

Sleeping Sleep ing

Sleeping

Sleeping

 

v ar v :S tring

v  :=  localC omputa t ions()

someMoreWork(v )

/P rep a ra t ion

v ar  v :  S t r ing ;
v  :=  loc a lCo mpu t at io n s();
s o me Mo re W o rk(v );
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First we provide the list of composed service interfaces and then the composite service itself. The SMS sent uses the 
“Generic messaging” capability from the TelcoML library, hence this capability is not explained here.

The two used interfaces (besides the Messaging service) are “Meteo France” and “Translator.”

Figure 9.7 - Interface of the composed services

The interface of the composite service inquires the time of weather information (today, tomorrow, next week?) and the 
telephone number destination where the weather summary will be sent.

Figure 9.8 - Interface of the composite service

Finally we specify the sequencing of service calls. In this case no intermediate computation is needed. The three service 
invocations can be done immediately after retrieving service proxies in an initialization step.
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Figure 9.9 - Composite Service Logic

9.5.2 The Dinner Planning Example

This is an example of an integrated composite service that combines telco enablers and IT facilities. The composite 
service is designed using the TelcoML composition profile.

The E-tourism dinner planning scenario is as follows:

• An End User is on travel in a city. Because he does not want to waste time trying to find a good restaurant for his dinner 
he will delegate this task to a specialized dinner planning service. In the morning, he sends an SMS to the Service 
dinner planning requesting a search for “best recommended” restaurant at 20:00 near the location where he plans to be 
at that time, and respecting some criteria (such as the type of food).

• At dinner time (20:00), the Service locates suitable restaurants based on the end user geographic position.

• The Service sends a message to the End User containing the list of restaurants located in the surrounding area including 
the contact information for dinner reservation.

• The End User activates a call to the restaurant of choice using the restaurant contact point information.

The components that need to be in place for this scenario are:

• A Personal Agenda, to store from the user his willingness to be notified at dinner time.

• A Localization service, which will find the user’s location based on GSM network information.

• An SMS or Instant Messaging enabler to notify the user when the list of restaurants is available.

• A Yellow Pages service to find the restaurants near the location of the user.

• A Third Party Call component to activate the call to the selected restaurant.
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Figure 9.10 - Dinner planning scenario

From the point of view of the orchestrator, the scenario has three temporal phases: 

• The orchestration engine receives the user request (1-1) and registers the event in the personal agenda (1-2).

• At dinner time, the orchestrator receives the reminder from the personal agenda (2.1) and subsequently invokes the 
localization services (2.2) to obtain the location information for the traveler. Then it requests the points of interest in the 
yellow pages services (2.3), collects the responses, and sends the results to the traveler (2.4).

Finally, if the user selects a restaurant, the orchestrator receives the request (3.1) and invokes the 3rd party call service to 
establish the communication.

Design of the composite service - the following steps need to be accomplished by a third party service provider:

• Declaring the interfaces for all the invoked components (Agenda, Localization, Yellow Pages, 3rd Party Call),

• Declaring the composite component - with a single ‘orchestrate’ operation - and defining the logic of this operation 
through a state machine.

Figure 9.11 shows the interface of the Agenda component which abstracts and simplifies a piece of functionality common 
to various online calendar tools.

Agenda

Traveller

LocalizationLocalization

Interest Points

3rd Party Call

Orchestration
Engine

1-21-2

2-12-1

2-22-2

2-32-3

3-23-2

1-1
Add event "find restaurant at 20:00"

1-1
Add event "find restaurant at 20:00"Add event "find restaurant at 20:00"

3-1

Call the selected restaurant

3-1

Call the selected restaurant

2-4

Restaurant List

2-4

Restaurant List

2-4

Restaurant List
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Figure 9.11 - Interface of an invoked component

Figure 9.12 shows an excerpt of the model of the service logic of the orchestration operation where three threads of 
execution are observed. 

Note: Interface definitions are not detailed here as well as the declaration of some of the variables being used. 

Figure 9.12 - Logic of the dinner planning composite service

                                  <<ServiceInterface>> 
                                    PersonalAgenda

<<fires>>+AlarmSignal

+addEvent(anEvent:AgendaEvent, remindURL:String):String
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On the left branch of the diagram, user's initial request is received, while on the right branch, processing of the event 
triggered at dinner time is performed and in the middle branch the final phone call is placed. Note that this state machine 
uses the UML2 transition centric view in which the actions executed during the triggering of a transition are explicitly 
represented as rectangles. In this diagram a specific icon is used to denote a remote service invocation, similar to an 
asynchronous signal sending symbol in UML. 
52                 UML Profile for Advanced & Integrated Telecommunication Services, v1.0


	Preface
	1 Scope
	2 Conformance
	3 Normative References
	3.1 List of normative references
	3.2 Normative parts of TelcoML

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 TelcoML Overview
	7.1 Introduction
	7.2 Relation with Other Standards
	7.3 Service Delivery Environment

	8 TelcoML Enabler Library
	8.1 General
	8.2 Generic Messaging
	8.2.1 Overview
	8.2.2 Interface Definitions

	8.3 Click To Call
	8.3.1 Overview
	8.3.2 Interface Definitions

	8.4 Synchronization
	8.4.1 Overview
	8.4.2 Context
	8.4.3 Interface Definitions

	8.5 Voice Recognition and TTS
	8.5.1 Overview
	8.5.2 Interface Definitions

	8.6 Privacy
	8.6.1 Overview
	8.6.2 Interface Definitions


	9 TelcoML Composition Profile
	9.1 Overview
	9.1.1 Relationship to SoaML
	9.1.2 Relationship to Voice Profile
	9.1.3 Relationship to CCXML and VoiceXML

	9.2 Main Concepts
	9.2.1 Service Interface

	9.3 Most Commonly Used Stereotypes from SoaML
	9.3.1 Annotating service interfaces
	9.3.2 Using graphical or textual notation

	9.4 TelcoML Specific Stereotypes
	9.4.1 Service logic related stereotypes
	9.4.2 Voice and multi-modal interaction related stereotypes
	9.4.3 Annotations for service interface elements
	9.4.4 Additional presentation options

	9.5 Examples
	9.5.1 “Send by SMS weather in Paris translated in English”
	9.5.2 The Dinner Planning Example



