
Time Service Specification

Version 1.1
May 2002

Copyright 1995 AT&T Global Information Solutions Company
Copyright 1995 Digital Equipment Corporation
Copyright 1995 Expersoft Corporation
Copyright 1995 Groupe Bull
Copyright 1995 Hewlett-Packard
Copyright 1995 IBM (in collaboration with Taligent, Inc.)
Copyright 1995 International Computers Limited
Copyright 2000 Object Management Group, Inc.
Copyright 1995 Novell, Inc.
Copyright 1995 Siemens Nixdorf Informationssysteme AG
Copyright 1995 SunSoft, Inc.
Copyright 1995 Tandem Computer Inc. (in collaboration with Odyssey Research Assoc., Inc.)
Copyright 1995 Tivoli Systems, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013. The OMG
Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and IIOP® are
registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™, OMG
Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That’s Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™,
Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . iii

About the Object Management Group iii
What is CORBA?. iii

Associated OMG Documents . iv

Acknowledgments . iv

1. Service Description . 1-1
1.1 Overview . -1

1.1.1 Time Service Requirements 1-1
1.1.2 Representation of Time. 1-2
1.1.3 Source of Time . 1-2

1.2 General Object Model . 1-3
1.2.1 Conformance Points . 1-4

1.3 Basic Time Service . 1-4
1.3.1 Object Model . 1-4
1.3.2 Data Types . 1-5
1.3.3 Exceptions . 1-8
1.3.4 Universal Time Object (UTO) 1-8
1.3.5 Time Interval Object (TIO) 1-10

2. Time Service Interfaces . 2-1

2.1 Time Service Interface . 2-1
2.1.1 Operation universal_time 2-2
2.1.2 Operation secure_universal_time 2-2

2.2 Timer Event Service . 2-3
2.2.1 Object Model . 2-3
May 2002 Time Service, v1.1 i

2.2.2 Usage . 2-4
2.2.3 Data Types . 2-4
2.2.4 Exceptions . 2-5

2.3 Timer Event Handler . 2-5
2.3.1 Attribute status . 2-6

2.4 Timer Event Service . 2-6
2.4.1 Operation register . 2-7
2.4.2 Operation unregister . 2-7
2.4.3 Operation event_time . 2-7

2.5 Conformance . 2-7

Appendix A - Implementation Guidelines A-1

Appendix B - Administration of Time B-1

Appendix C - Consolidated OMG IDL C-1

Appendix D - Notes for Users . D-1

Appendix E - Extension Examples . E-1

Appendix F - References . F-1
ii Time Service, v1.1 May 2002

Preface
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specification and
later as a full CAE Specification. The collaboration between OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
May 2002 Time Service, v1.1 iii

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which consists
of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
iv Time Service, v1.1 May 2002

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.
May 2002 Time Service, v1.1 v

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201
Needham, MA 02494

USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).
vi Time Service, v1.1 May 2002

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfaces
to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components.

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
May 2002 Time Service, v1.1 vii

A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the event
channel can keep track of and manage multiple simultaneous clients. An event channel
as a collection of objects conspiring to manage multiple simultaneous consumer
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique within
its scope but should not make any other assumption.
viii Time Service, v1.1 May 2002

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a parameter
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of the Time Service
specification:

• AT&T Global Information Solutions Co.

• Digital Equipment Corporation

• Expersoft Corporation

• Groupe Bull

• Hewlett-Packard Company

• International Business Machines Corporation (in collaboration with Taligent, Inc.)

• International Computers Limited

• Novell, Inc.

• Siemens Nixdorf Informationssysteme AG
May 2002 Time Service, v1.1 ix

• SunSoft, Inc.

• Tandem Computers, Inc. (in collaboration with Odyssey Research Assoc., Inc.)

• Tivoli Systems, Inc.
x Time Service, v1.1 May 2002

Service Description 1
Note – Text in Red is from the resolution of Core RTF 12/2000 Issue 4468

Contents

This chapter contains the following topics.

1.1 Overview

1.1.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the user to
obtain current time together with an error estimate associated with it.

Additionally, the RFP suggests that the service also provide the following facilities:

• Ascertain the order in which “events” occurred.

• Generate time-based events based on timers and alarms.

• Compute the interval between two events.

Although the RFP mentions specification of a synchronization mechanism, the submitters
deemed it inappropriate to specify a single mechanism such as discussed in Sectio n1.1.3,
“Source of Time,” on page 1-2.

Topic Page

“Overview” 1-1

“General Object Model” 1-3

“Basic Time Service” 1-4
May 2002 Time Service, v1.1 1-1

1

1.1.2 Representation of Time

Time is represented many ways in programs. For example the X/Open DCE Time Service
[1] defines three binary representations of absolute time, while the UNIX SVID defines a
different representation of time. Other systems use time represented in myriads of
different ways. It is not a goal of the service defined in this submission to deal with all
these different representations of time or to propose a new unifying representation of
time.

To satisfy the set of requirements that are addressed, we have chosen to use only the
Universal Time Coordinated (UTC) representation from the X/Open DCE Time Service.
Global clock synchronization time sources, such as the UTC signals broadcast by the
WWV radio station of the National Bureau of Standards, deliver time, which is relatively
easy to handle in this representation. UTC time is defined as follows.

Time units 100 nanoseconds (10-7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

UTC time in this service specification always refers to time in Greenwich Time Zone.
The corresponding binary representations of relative time is the same one as for absolute
time, and hence with similar characteristics:

Time units 100 nanoseconds (10-7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration from them and
interoperation with them, care has been taken to ensure that the representation of time
used interoperates with X/Open DCE Time Service [1], and that the operation for getting
current time is easy to implement on X/Open DCE Time Service, NTP [2] (and for that
matter any other reasonable distributed time synchronization algorithm that one might
come up with. For example, ones presented in [3]) with appropriate values for
inaccuracies.

1.1.3 Source of Time

The services defined in this chapter depend on the availability of an underlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions are made
about the underlying time synchronization service:

• The Time Service is able to return current time with an associated error parameter.

• Within reasonable interpretation of the terms, the Time Service is available and
reliable. The time provided by the underlying service can be trusted to be within the
inaccuracy window provided by the underlying system.

• The time returned by the Time Service is from a monotonically increasing series.

Additionally, if the underlying Time Service meets the criteria to be followed for secure
time presented in Appendix A, Implementation Guidelines, then the Time Service object
is able to provide trusted time.
1-2 Time Service, v1.1 May 2002

1

No additional assumptions are made about how the underlying service obtains the time
that it delivers to this service. For example it could utilize a range of techniques whether
it be using a Cesium clock attached to each node or some hardware/software time
synchronization method. It is assumed that the underlying service may fail occasionally.
This is accounted for by providing an appropriate exception as part of the interface. The
availability and accuracy of trusted time depends on what is provided by the underlying
Time Service.

1.2 General Object Model

The general architectural pattern used is that a service object manages objects of a
specific category as shown in Figure 1-1.

Figure 1-1 General Object Model for Service

The service interface provides operations for creating the objects that the service
manages and, if appropriate, also provides operations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Objects
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventService interface.

Service

Service Interface

Instances managed by

Instance
Interface

Object

the Service Object
May 2002 Time Service: General Object Model 1-3

1

The underlying facility that delivers time is associated with the UniversalTime and
SecureUniversalTime operation of the TimeService interface as described in
Section 1.3, “Basic Time Service,” on page 1-4.

1.2.1 Conformance Points

There are two conformance points for this service.

• Basic Time Service. This service consists of all data types and interfaces defined in
the TimeBase and CosTime modules in Section 1.3, “Basic Time Service,” on
page 1-4. It provides operations for getting time and manipulating time. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation of the
CosTime module in which the universal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformance
point.

• Timer Event Service. This service consists of all data types and interfaces defined in
the CosTimerEvent module in Section 14.3, Timer Event Service. It provides
operations for managing time-triggered event handlers and the events that they
handle. A complete implementation of this module is necessary to conform to the
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Service.
To claim conformance to Timer Event Service, both Timer Event Service and Time
Service must be provided.

1.3 Basic Time Service

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module so that other services can
make use of these data structures without requiring the interface definitions. The
interface definitions and associated enums and exceptions are encapsulated in the
CosTime module.

1.3.1 Object Model

The object model of this service is depicted in Figure 1-2. The Time Service object
manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs). It does so by
providing methods for creating UTOs and TIOs. Each UTO represents a time, and each
TIO represents a time interval, and reference to each can be freely passed around, subject
to the caveats discussed in Appendix A, Implementation Guidelines.
1-4 Time Service, v1.1 May 2002

1

Figure 1-2 Object Model for Time Service

1.3.2 Data Types

A number of types and interfaces are defined and used by this service. All definitions of
data structures are placed in the TimeBase module. All interfaces, and associated enum
and exception declarations are placed in the CosTime module. This separation of basic
data type definitions from interface related definitions allows other services to use the
time data types without explicitly incorporating the interfaces, while allowing clients of
those services to use the interfaces provided by the Time Service to manipulate the data
used by those services.

module TimeBase {

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {

Time Service

TimeService interface

UTO interface

universal_time

new_universal_time

absolute _time
compare_time

secure_universal_time

interval
time
inaccuracy
tdf
utc_time

UTO

TIO

UTO

TIO

TIO interface
spans
time
overlap
time_interval

uto_from_utc
new_interval
May 2002 Time Service: Basic Time Service 1-5

1

TimeT lower_bound;
TimeT upper_bound;

};
};

1.3.2.1 Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the number of
100 nanoseconds that have passed since the base time. For absolute time the base is 15
October 1582 00:00 of the Gregorian Calendar. All absolute time shall be computed
using dates from the Gregorian Calendar.

1.3.2.2 Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100 nanoseconds. As
per the definition of the inaccuracy field in the X/Open DCE Time Service [1], 48 bits is
sufficient to hold this value.

1.3.2.3 Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form of
minutes of displacement from the Greenwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

1.3.2.4 Type UtcT

UtcT defines the structure of the time value that is used universally in this service. The
basic value of time is of type TimeT that is held in the time field. Whether a UtcT
structure is holding a relative or absolute time is determined by its history. There is no
explicit flag within the object holding that state information. The iacclo and inacchi fields
together hold a 48-bit estimate of inaccuracy in the time field. These two fields together
hold a value of type InaccuracyT packed into 48 bits. The tdf field holds time zone
information. Implementation must place the time displacement factor for the local time
zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able to
marshal it correctly, at least the types of fields need to be identified.

UtcT defines the structure of the time value that is used universally in this service. The
basic value of time is of type TimeT that is held in the time field. Whether a UtcT
structure is holding a relative time (that is, a duration) or an absolute time is determined
by context; there is no explicit flag within the object holding that state information. (Note
that, if a UtcT structure is used to hold a duration, its tdf must be set to zero.)

The iacclo and inacchi fields together hold a 48-bit estimate of inaccuracy in the time
field. These two fields together hold a value of type InaccuracyT packed into 48 bits.
The tdf field holds time zone information. Implementations must place the time
displacement factor for the local time zone in this field whenever they create a UTO that
expresses absolute time.
1-6 Time Service, v1.1 May 2002

1

The time field of a UtcT used to express absolute time holds UTC time, irrespective of
the local time zone. For example, to express the time 3:00pm in Germany (which is one
hour east of the Universal Time Zone), the time field must be set to 2:00pm on the given
date, and the tdf field must be set to 60. This means that, for any given UtcT value 'utc',
the local time can be computed as

utc.time + utc.tdf * 600,000,000

Note that it is possible to produce correct UtcT values by always setting the tdf field to
zero and only setting the time field to UTC time; however, implementations are
encouraged to include the local time zone information for the UtcT values they produce.

1.3.2.5 Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to the
lower and upper bound of the interval. An IntervalT structure containing a lower bound
greater than the upper bound is invalid. For the interval to be meaningful, the time base
used for the lower and upper bound must be the same, and the time base itself must not
be spanned by the interval.

module CosTime {
enum TimeComparison {

TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType {
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
};

1.3.2.6 Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envelope.
MidC comparison just compares the base times. A MidC comparison can never return
TCIndeterminate.
May 2002 Time Service: Basic Time Service 1-7

1

1.3.2.7 Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of
comparing two UTOs. The values are self-explanatory. In an IntervalC comparison,
TCIndeterminate value is returned if the error envelopes around the two times being
compared overlap. For this purpose the error envelope is assumed to be symmetrically
placed around the base time covering time-inaccuracy to time+inaccuracy. For IntervalC
comparison, two UTOs are deemed to contain the same time only if the Time attribute of
the two objects are equal and the Inaccuracy attributes of both the objects are zero.

1.3.2.8 Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 1-3
depicts the meaning of the four values of this enum. When interval A wholly contains
interval B, then it is an OTContainer of interval B and the overlap interval is the same as
the interval B. When interval B wholly contains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. When neither
interval is wholly contained in the other but they overlap, then the OTOverlap case
applies and the overlap region is the length of interval that overlaps. Finally, when the
two intervals do not overlap, the OTNoOverlap case applies.

Figure 1-3 Illustration of Interval Overlap

1.3.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to the
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

1.3.3.1 TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unable to
provide time that meets the required security assurance.

1.3.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following groups
of operations:

Interval A

Interval B
OTContainer OTContained OTOverlap OTNoOverlap
1-8 Time Service, v1.1 May 2002

1

• Construction of a UTO from piece parts, and extraction of piece parts from a UTO
(as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

Of these, the first operation is required for completeness, since in its absence it would be
difficult to provide a time input to the timer event handler, for example. The second
operation is required by the RFP, and the third is required for completeness and usability.

module CosTime {
interface TIO; // forward declaration
interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(
in ComparisonType comparison_type,
in UTO uto

);

TIO time_to_interval(
in UTO uto

);

TIO interval();
};

};

The UTO interface corresponds to an object that contains utc time, and is the means for
manipulating the time contained in the object. This interface has operations for getting a
UtcT type data structure containing the current value of time in the object, as well as
operations for getting the values of individual fields of utc time, getting absolute time
from relative time, and comparing and doing bounds operations on UTOs. The UTO
interface does not provide any operation for modifying the time in the object. It is
intended that UTOs are immutable.

1.3.4.1 Readonly attribute time

This is the time attribute of a UTO represented as a value of type TimeT.

1.3.4.2 Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type InaccuracyT.
May 2002 Time Service: Basic Time Service 1-9

1

1.3.4.3 Readonly attribute tdf

This is the time displacement factor attribute tdf of a UTO represented as a value of type
TdfT.

1.3.4.4 Readonly attribute utc_time

This attribute returns a properly populated UtcT structure with data corresponding to the
contents of the UTO.

1.3.4.5 Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to the relative
time in object. Absolute time = current time + time in the object. Raises the
CORBA::DATA_CONVERSION exception if the attempt to obtain absolute time
causes an overflow.

1.3.4.6 Operation compare_time

Compares the time contained in the object with the time given in the input parameter uto
using the comparison type specified in the in parameter comparison_type, and returns
the result. See the description of TimeComparison in Section 1.3.2, “Data Types,” on
page 1-5 for an explanation of the result. See the explanation of ComparisonType in

Section 14.2.2 for an explanation of comparison types. Note that the time in the object is
always used as the first parameter in the comparison. The time in the utc parameter is
used as the second parameter in the comparison.

1.3.4.7 Operation time_to_interval

Returns a TIO representing the time interval between the time in the object and the time
in the UTO passed in the parameter uto. The interval returned is the interval between the
midpoints of the two UTOs and the inaccuracies in the UTOs are not taken into
consideration. The result is meaningless if the time base used by the two UTOs are
different.

1.3.4.8 Operation interval

Returns a TIO representing the error interval around the time value in the UTO as a time
interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound =
UTO.time - UTO.inaccuracy.

1.3.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevant to time intervals.

module CosTime {
interface TIO {
1-10 Time Service, v1.1 May 2002

1

readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (
in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);

UTO time ();
}

}

1.3.5.1 Readonly attribute time_interval

This attribute returns an IntervalT structure with the values of its fields filled in with the
corresponding values from the TIO.

1.3.5.2 Operation spans

This operation returns a value of type OverlapType depending on how the interval in
the object and the time range represented by the parameter UTO overlap. See the
definition of OverlapType in Section 1.3.2, “Data Types,” on page 1-5. The interval in
the object is interval A and the interval in the parameter UTO is interval B. If
OverlapType is not OTNoOverlap, then the out parameter overlap contains the
overlap interval, otherwise the out parameter contains the gap between the two intervals.
The exception CORBA::BAD_PARAM is raised if the UTO passed in is invalid.

1.3.5.3 Operation overlaps

This operation returns a value of type OverlapType depending on how the interval in
the object and interval in the parameter TIO overlap. See the definition of OverlapType
in Section 1.3.2, “Data Types,” on page 1-5. The interval in the object is interval A and
the interval in the parameter TIO is interval B. If OverlapType is not OTNoOverlap,
then the out parameter overlap contains the overlap interval, otherwise the out parameter
contains the gap between the two intervals. The exception CORBA::BAD_PARAM is
raised if the TIO passed in is invalid.

1.3.5.4 Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the ITO
and time value is the midpoint of the interval.
May 2002 Time Service: Basic Time Service 1-11

1

1-12 Time Service, v1.1 May 2002

 Time Service Interfaces 2
Contents

This chapter contains the following topics.

2.1 Time Service Interface

The TimeService interface provides operations for obtaining the current time,
constructing a UTO with specified values for each attribute, and constructing a TIO with
specified upper and lower bounds.

module CosTime {
interface TimeService {

UTO universal_time()
raises(TimeUnavailable

);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

Topic Page

“Time Service Interface” 2-1

“Timer Event Service” 2-3

“Timer Event Handler” 2-5

“Timer Event Service” 2-6

“Conformance” 2-7
May 2002 Time Service, v1.1 2-1

2

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);

TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

2.1.1 Operation universal_time

The universal_time operation returns the current time and an estimate of inaccuracy in
a UTO. It raises TimeUnavailable exceptions to indicate failure of an underlying time
provider. The time returned in the UTO by this operation is not guaranteed to be secure
or trusted. If any time is available at all, that time is returned by this operation.

2.1.2 Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTO only if the
time can be guaranteed to have been obtained securely. In order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for secure
time, presented in Appendix A, Implementation Guidelines. If there is any uncertainty at
all about meeting any aspect of these criteria, then this operation must return the
TimeUnavailable exception. Thus, time obtained through this operation can always be
trusted.

2.1.2.1 Operation new_universal_time

The new_universal_time operation is used for constructing a new UTO. The
parameters passed in are the time of type TimeT and inaccuracy of type InaccuracyT.
This is the only way to create a UTO with an arbitrary time from its components. This is
expected to be used for building UTOs that can be passed as the various time arguments
to the Timer Event Service, for example. CORBA::BAD_PARAM is raised in the case
of an out-of-range parameter value for inaccuracy.

2.1.2.2 Operation uto_from_utc

The uto_from_utc operation is used to create a UTO given a time in the UtcT form.
This has a single in parameter UTC, which contains a time together with inaccuracy and
tdf. The UTO returned is initialized with the values from the UTC parameter. This
operation is used to convert a UTC received over the wire into a UTO.
2-2 Time Service, v1.1 May 2002

2

2.1.2.3 Operation new_interval

The new_interval operation is used to construct a new TIO. The parameters are lower
and upper, both of type TimeT, holding the lower and upper bounds of the interval. If the
value of the lower parameter is greater than the value of the upper parameter, then a
CORBA::BAD_PARAM exception is raised.

2.2 Timer Event Service

The module CosTimerEvent encapsulates all data type and interface definitions
pertaining to the Timer Event Service.

2.2.1 Object Model

The TimerEventService object manages Timer Event Handlers represented by Timer
Event Handler objects as shown in Figure 2-1. Each Timer Event Handler is immutably
associated with a specific event channel at the time of its creation. The Timer Event
Handler can be passed around as any other object. It can be used to program the time and
content of the events that will be generated on the channel associated with it. The user of
a Timer Event Handler is expected to notify the Timer Event Service when it has no
further use for the handler.

Figure 2-1 Object Model of Timer Event Service

Timer Event Service

Timer Event Service Interface

Timer Event Handler Objects

Timer Event Handler

register
unregister

Interface
set_timer
cancel_timer
set_data
status
time_set

event_time

Timer Events
May 2002 Time Service: Timer Event Service 2-3

2

2.2.2 Usage

In a typical usage scenario of this service, the user must first create an event channel of
the “push” type (see the Event Service Specification). The user must then register this
event channel as the sink for events generated by the timer event handler that is returned
by the registration operation. The user can then use the timer event handler object to set
up timer events as desired. The service will cause events to be pushed through the event
channel within a reasonable interval around the requested event time. The implementor
of the service will document what the expected interval is for their implementation. The
data associated with the event includes a timestamp of the actual event time with the
error envelope including the requested event time.

2.2.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent
module.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT{
TimeBase::UtcT utc;
any event_data;

};
};

2.2.3.1 Enum TimeType

TimeType is used to specify whether a time is TTRelative, TTAbsolute, or TTPeriodic
in operations for setting timer intervals for the event-triggering mechanism. The
TTRelative value is used to specify that the time provided is relative to current time,
TTAbsolute is used to specify that the time provided is absolute, and TTPeriodic is used
to specify that the time provided is a period (and hence a relative time) between
successive events. If TTPeriodic is used, then the same event continues to be triggered
repeatedly at the completion of the time interval specified, until the timer is reset.
2-4 Time Service, v1.1 May 2002

2

2.2.3.2 Enum EventStatus

EventStatus defines the state of a TimerEventHandler object. The state ESTimeSet
means that the event has been set with a time in the future, and will be triggered when
that time arrives. ESTimeCleared means that the event is not set to go off, and the time
was cleared before the previously set triggering time arrived. ESTriggered means that the
event has already triggered and the appropriate data has been sent the event channel.
ESFailedTrigger means that the event did trigger, but data could not be delivered over the
event channel.

In case of TTPeriodic events, the status ESTriggered never occurs. Upon successful
triggering of a TTPeriodic event, the status is set to ESTimeSet.

2.2.3.3 Type TimerEventT

This is the structure that is returned to the event requester by the time-driven event-
triggering mechanism. It has two fields. The first field, utc, contains the actual time at
which the event was triggered. This value is set in the time field of utc. The inaccuracy
fields inacclo and inacchi of utc are set to the difference between the requested event
time and the actual event time.

The second field, event_data, contains the data that the requester of the event had
asked to be sent when the event was triggered.

2.2.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL for
the service. It does not have any service-specific exceptions.

2.3 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be triggered at a
specific time and action that is to be taken when the event is triggered. It provides
operations for setting, resetting, and canceling the timer event associated with it, as well
as for changing the event data that is sent back as a part of a TimeEventT structure on the
event channel upon the triggering of the event. The only thing that cannot be changed is
the event channel associated with that event handler. An attribute named status holds the
current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void set_timer(

in TimeType time_type,
in CosTime::UTO trigger_time
May 2002 Time Service: Timer Event Handler 2-5

2

);
boolean cancel_timer();
void set_data(

in any event_data
);
};

};

2.3.1 Attribute status

status is a readonly attribute that reflects the current state of the TimerEventHandler.
See the definition of EventStatus enumerator in Section 2.2.1, “Object Model,” on
page 2-3 for details.

2.3.1.1 Operation time_set

Returns TRUE if the time has been set for an event that is yet to be triggered, FALSE
otherwise. In addition, it always returns the current value of the timer in the event handler
as the out uto parameter.

2.3.1.2 Operation set_timer

Sets the triggering time for the event to the time specified by the uto parameter, which
may contain TTRelative, TTAbsolute or TTPeriodic time. The time_type parameter
specifies what type of time is contained in the uto parameter. The previous trigger, if any,
is canceled and a new trigger is enabled at the time specified if absolute, or at current
time + time specified if relative. If a relative time value of zero is specified (i.e., the time
attribute of utc = 0LL), then the last relative time that was specified is reused. If no
relative time was previously specified, then a CORBA::BAD_PARAM exception is
raised. If a periodic time is specified (time_type == periodic), then the time parameter is
interpreted as a relative time and the time trigger is set at the periodicity defined by the
time (i.e., at current time + time or current time + 2 * time).

2.3.1.3 Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. Returns TRUE if an
event is actually canceled, FALSE otherwise.

2.3.1.4 Operation set_data

The data that will be passed back through the event channel in a TimerEventT structure
for all future triggering of the event handler is set to event_data.

2.4 Timer Event Service

The Timer Event Service provides operations for registering and unregistering events.
2-6 Time Service, v1.1 May 2002

2

module CosTimerEvent {
interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventhandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};

2.4.1 Operation register

The register operation registers the event handler specified by the data and the
event_interface parameters. When the event handler is triggered, the data is delivered
using the push operation (of the PushConsumer interface in the Event Service
Specification, CosEventComm Module) specified in the event_interface parameter.
Only the Push Model is supported for timer event delivery. Note that the event handler
needs to be primed with a triggering time using the set_time operation of the
TimerEventHandler interface in order for an actual event to be triggered. At
initialization, the time in the handler is set to current time and its state is set to
ESTimeCleared, and no event is scheduled. Raises CORBA::NO_RESOURCE
exception if lack of resources causes it to fail to register the event handler.

2.4.2 Operation unregister

The unregister operation notifies the service that the timer_event_handler will not be
used any more and all resources associated with it can be destroyed. Subsequent attempts
to use that object reference will raise CORBA::INV_OBJREF.

2.4.3 Operation event_time

The event_time operation returns a UTO containing the time at which the event
contained in the timer_event structure was triggered.

2.5 Conformance

It is sufficient to provide just the Time Service (module TimeBase and CosTime) to
claim conformance with the Time Service object. To claim conformance with the Timer
Event Service, both Time Service and Timer Event Service (module CosTimerEvent)
must be provided.
May 2002 Time Service: Conformance 2-7

2

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictly adhered to. In order to return a
valid time from this operation, the vendor must provide a statement about how the
security assurance criteria specified in Appendix A, Implementation Guidelines, are met
in their product. To conform to the object Time Service, in all other cases (i.e., when the
security assurance criteria are not satisfied, the secure_universal_time operation
must raise the TimeUnavailable exception).
2-8 Time Service, v1.1 May 2002

Implementation Guidelines A
This appendix contains advice to implementors. Appropriate documented handling of
the criteria presented here is mandatory for conformance to the Basic Time Service
conformance point.

A.1 Criteria to Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by the
secure_universal_time operation is in fact secure time. If these criteria are not
satisfactorily addressed in an ORB, then it must return the TimeUnavailable
exception upon invocation of the secure_universal_time operation of the
TimeService interface.
May 2002 Time Service, v1.1 A-1

A-2 Time Service, v1.1 May 2002

Administration of Time B
Only administrators authorized by the system security policy may set the time and
specify the source of time for time synchronization purposes.

B.1 Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invocation.
They must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty interval
of generated timestamps

B.1.1 Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an
opportunity for unauthorized tampering with time, which must be adequately guarded
against. Time Service implementors must state how time values used for time
synchronization are protected while they are in transit over the network.

Time Service implementors must state whether or not their implementation is secure.
Implementors of secure time services must state how their system is secured against
threats documented in the Security Service Specification. They must also document
how the issues mentioned in this section are addressed adequately.
May 2002 Time Service, v1.1 B-1

B.2 Proxies and Time Uncertainty

The Time Service object returns a timestamp, which contains both a time and an
associated uncertainty interval. These values are considered valid at the instant they are
returned by the Time Service object; however, if these values are not delivered to the
caller immediately, they may no longer be reliable by the time the caller receives them.

In a CORBA system, the use of proxy objects can render time values unreliable by
introducing unpredictable and uncorrected latency between the time the time server
object generates a timestamp and the time the caller’s time server proxy receives the
timestamp and returns it to the caller.

Figure B-1 Time Service and Proxies

Implementors of the Time Service must prevent this problem from occurring. Two
possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e., require a Time Service
implementation in every address space that will need to make Time Service calls).

• Create a special time server proxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and adjusts
the interval value before returning the timestamp to the caller.

Other approaches probably exist; the two above are intended as examples only.

Caller

Time
Service
Proxy

Time
Service

get time Time=x;interval=3sec
(delivered at time x)

Time=x;interval=3sec
(delivered at time x+y -- y may be greater than 3sec)
B-2 Time Service, v1.1 May 2002

Consolidated OMG IDL C
Note – Text in Blue is from the editorial resolution of Issue 4979.

This appendix contains a summary of the OMG IDL defined in this document.

C.1 Time Service

This section contains the OMG IDL definitions pertaining to the Time Service, which
is encapsulated in the TimeBase and CosTime modules. The TimeBase module
contains the basic data type declarations that can be used by others without pulling in
the Time Service interfaces. The Time Service interface and associated enums and
exceptions are declared in the CosTime module.

module TimeBase {
typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};
May 2002 Time Service, v1.1 C-1

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType{
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};

exception TimeUnavailable {};
interface TIO; // forward declaration

interface UTO {

readonly attribute TimeBase::TimeTtime;
readonly attribute TimeBase::InaccuracyTinaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;
UTO absolute_time();
TimeComparison compare_time(

in ComparisonTypecomparison_type,
in UTO uto

);
TIO time_to_interval(

in UTO uto
);
TIO interval();

};

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
OverlapType spans (

in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);
UTO time ();
C-2 Time Service, v1.1 May 2002

};

interface TimeService {
UTO universal_time()

raises(TimeUnavailable
);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

C.2 Timer Event Service

This section contains all the OMG IDL definitions pertaining to the Timer Event
Service, which are encapsulated in the CosTimerEvent module. This module depends
on TimeBase, CosTime, CosEventComm, and CORBA.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT {
TimeBase::UtcT utc;
any event_data;

};

 interface TimerEventHandler {
May 2002 Time Service: Timer Event Service C-3

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);

void SetTimer(
in TimeType time_type,
in CosTime::UTO trigger_time

);
 boolean cancel_timer();
 void set_data(

in any event_data
);
};

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventHandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
C-4 Time Service, v1.1 May 2002

Notes for Users D
This appendix contains notes covering the following matters:

• Guarding against proxy-related inaccuracies in time contained in UTO.

• How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

D.1 Proxies and Time

As explained in Appendix C, Consolidated OMG IDL, indiscriminate use of remote
proxies to obtain value of current time can lead to obtaining values of time in which
the inaccuracy is incorrect due to transmission delays. Consequently, care should be
taken to ensure that the local Time Service is used to obtain the value of current time.

D.2 Sending Time Across the Network

When passing small objects such as UTO and TIO from one location to another, one
should be aware that each time the passed object reference is used by the recipient it
causes an object invocation to take place across the network and is inherently
inefficient. The preferred way of dealing with this problem is to pass small objects by
value instead of by reference. Unfortunately, due to various reasons, OMG IDL does
not allow specification of passing of object parameters by value. Consequently, the
user has to explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to explicitly
send the value of time, and time interval across from one location to another and then
reconstruct the appropriate object at the receiving end. This is done as follows:

• The signature of the operation that passes time or time interval as a parameter
across the network should specify that time is passed as the data type and not as an
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);
May 2002 Time Service, v1.1 D-1

should be used instead of

void foo(in CosTime::UTO);

• The invoker should use the data attribute of the UTO as the in parameter. In pseudo-
code, something such as the following should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);

• At the server end, the time data received can be converted to a UTO as follows:

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

.....

};

It would be nice to say in the definition of the foo operation something such as:

foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described above. However,
there are difficult model- and paradigm-related issues that need resolution before such
a change can be coherently proposed.
D-2 Time Service, v1.1 May 2002

Extension Examples E
The process of constructing the contents of a TimeBase::TimeT value can be quite
tedious, involving many 64-bit multiplications and additions. The CORBA Facility for
Time Representation is going to provide user-friendly ways of creating TimeT data
and displaying them. However, if one is planning to use only the Time Service, it will
be necessary to construct some rudimentary facility to build TimeT things. This
appendix shows one way of doing this as an example of how to extend this service in
useful ways.

E.1 Object Model

Following the design pattern used in the rest of this service definition, the basic
extension is to define a TimeI object corresponding to the TimeT structure, and extend
TimeService to provide an operation for creating such objects. The TimeI object has
attributes corresponding to the user-friendly representation of time such as year,
month, day, hour, minute, second and microsecond.

E.2 Summary of Extensions

The additions are encapsulated in the FriendlyTime module. The changes are as
follows:

• Data type declaration for components of time.

• Definition of the TimeI interface, consisting mostly of attributes.

• Definition of the FriendlyTime::TimeService interface derived from the
CosTime::TimeService interface, for adding the operation to create TimeI
objects.
May 2002 Time Service, v1.1 E-1

E.3 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data
types.

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; // 1 - 31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

}

E.4 Exceptions

No exceptions are defined in this module.

E.5 Friendly Time Object

The time object provides a friendly interface to the various components usually used to
represent time in normal human discourse. The set of attributes used in this example
are by no means exhaustive, and is used only for illustrative purposes.

module FriendlyTime {
interface TimeI {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;
attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

};
};

The TimeI object can be viewed as a representation conversion object. The general
technique for using it is to create one using the operation
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended Time
Service. This creates a TimeI object with time set to zero in it. Then the _set operation
can be used to set the values of the various attributes. Finally, the attribute time can be
used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the year,
month, etc. from the appropriate attributes.
E-2 Time Service, v1.1 May 2002

The reset operation facilitates reuse of time objects.

E.6 Extended Time Service

CosTime::TimeService is extended by derivation to provide an operation for
creating TimeI objects.

module FriendlyTime {
interface TimeService : CosTime::TimeService {

TimeI time();
};

};

E.7 Epilogue

The extension provided in this appendix makes the Time Service defined in the
normative part of the document more easily usable. This leads one to wonder why this
extension is not part of the main body of this specification. The reason is that there is
no agreement on what the most useful representative components of time are, and the
feeling that in general this should be dealt with at the Common Facilities level in
general. We still felt that it would be useful to illustrate how easy it is to extend the
basic service to provide this ease-of-use facility, thus this appendix.
May 2002 Time Service: Extended Time Service E-3

E-4 Time Service, v1.1 May 2002

References F
• X/Open DCE Time Service, X/Open CAE Specification C310, November 1994.

• RFC 1119 Network Time Protocol, D. Mills, September 1989.

• Probabilistic Clock Synchronization, Flaviu Cristian, Distributed Computing (1989)
3: Pg. 146-158.

• OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-31,
March 31 1995 revision, Chapter 4, Event Service Specification, Section 4.2
Pg. 4-6.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10-1,
October 1996 revison, Chapter 15, Security Service Specification.
May 2002 Time Service, v1.1 F-1

F-2 Time Service, v1.1 May 2002

Index
A
absolute_time 1-10
Attribute status 2-6

B
Basic Time Service 1-4

C
callback interface

described viii
cancel_timer 2-6
common facilities iv
compare_time 1-10
compound objec tvii
concepts of vi
CORBA vi

contributors ix
documentation set v

CosTime 1-4, 1-5

E
Enum ComparisonType 1-7
Enum EventStatus 2-5
Enum OverlapType 1-8
Enum TimeComparison 1-8
Enum TimeType 2-4
event channel vii, viii
event_time 2-7
EventChannel interfac evii
exceptions

described ix
Extended Time Service E-3

F
Friendly Time Object E-2

G
global identifie rviii

I
interface inheritance.see subtyping
interval 1-10

N
new_interval 2-3
new_universal_time 2-2

O
Object Management Group iii

address of vi
object model v
object request broker iv, v
object service

context iv
specification defined v

OMG IDL v, vii
overlaps 1-11

P
proxies and Time D-1

PullSupplier interface vii
PushConsumer interface vii

Q
quality of service vii

R
Readonly attribute inaccuracy 1-9
Readonly attribute tdf 1-10
Readonly attribute time 1-9
Readonly attribute time_interval 1-11
Readonly attribute utc_time 1-10
reference model iv
register 2-7
representation of Tim e1-2

S
Secure Time A-1
secure_universal_time 2-2, 2-8
SecureUniversalTime 1-4
sending Time across the network D-1
set_data 2-6
set_timer 2-6
source of Time 1-2
spans 1-11
subtyping vi, ix
synchronization of Tim eB-1

T
time 1-11
Time Interval Object (TIO) 1-10
Time Interval Objects (TIOs) 1-3
Time Service interface 2-1
Time Service Requirements 1-1
Time Service requirements 1-1
time_set 2-6
time_to_interval 1-10
TimeBase 1-4, 1-5
Timer Event Handler 1-3, 2-5
Timer Event Service 1-3, 1-4, 2-3, 2-6, C-3
TimeUnavailable 1-4, 1-8
Type InaccuracyT 1-6
Type IntervalT 1-7
Type TdfT 1-6
Type TimerEventT 2-5
Type TimeT 1-6
Type UtcT 1-6

U
Universal Time Coordinated (UTC) 1-2
Universal Time Object (UTO) 1-8
Universal Time Objects (UTOs) 1-3
universal_time 1-4, 2-2
UniversalTime 1-4
unregister 2-7
uto_from_utc 2-2

X
X/Open iv
May 2002 Time Service, v1.1 Index-1

Index
Index-2 Time Service, v1.1 May 2002

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.1.1 Time Service Requirements
	1.1.2 Representation of Time
	1.1.3 Source of Time

	1.2 General Object Model
	1.2.1 Conformance Points

	1.3 Basic Time Service
	1.3.1 Object Model
	1.3.2 Data Types
	1.3.3 Exceptions
	1.3.4 Universal Time Object (UTO)
	1.3.5 Time Interval Object (TIO)

	2. Time Service Interfaces
	2.1 Time Service Interface
	2.1.1 Operation universal_time
	2.1.2 Operation secure_universal_time

	2.2 Timer Event Service
	2.2.1 Object Model
	2.2.2 Usage
	2.2.3 Data Types
	2.2.4 Exceptions

	2.3 Timer Event Handler
	2.3.1 Attribute status

	2.4 Timer Event Service
	2.4.1 Operation register
	2.4.2 Operation unregister
	2.4.3 Operation event_time

	2.5 Conformance

	Appendix A - Implementation Guidelines
	Appendix B - Administration of Time
	Appendix C - Consolidated OMG IDL
	Appendix D - Notes for Users
	Appendix E - Extension Examples
	Appendix F - References
	Index

