
An OMG Systems Modeling LanguageTM Publication

OMG Systems Modeling Language (OMG SysML™)

Version 1.6

(with changes)

OMG Document Number: formal/19-11-02

Release Date: October 2018

Normative Reference: http://www.omg.org/spec/SysML/1.6/

Machine Consumable File(s): http://www.omg.org/spec/SysML/20181001

Normative:

http://www.omg.org/spec/SysML/20181001/SysML.xmi

Non-normative:

http://www.omg.org/spec/SysML/20181001/SysMLDI.xmi

http://www.omg.org/spec/SysML/20181001/QUDV.xmi

http://www.omg.org/spec/SysML/20181001/ISO800000.xmi

Refer to the Roadmap located in the Preface for a list of documents that were generated as part of the
adoption, finalization, and revision process.

http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure

Copyright © 2003-2018, American Systems Corporation

Copyright © 2003-2018, PTC Inc.

Copyright © 2003-2018, BAE SYSTEMS

Copyright © 2003-2018, The Boeing Company

Copyright © 2003-2018, Ceira Technologies

Copyright © 2003-2018, Deere & Company

Copyright © 2003-2018, Airbus

Copyright © 2003-2018, EmbeddedPlus Engineering

Copyright © 2007-2018, European Aeronautic Defence and Space Company N.V.

Copyright © 2003-2018, Eurostep Group AB

Copyright © 2003-2018, Gentleware AG

Copyright © 2003-2018, I-Logix, Inc.

Copyright © 2003-2018, International Business Machines

Copyright © 2003-2018, International Council on Systems Engineering

Copyright © 2003-2018, Israel Aircraft Industries

Copyright © 2003-2018, Lockheed Martin Corporation

Copyright © 2003-2018, Mentor Graphics

Copyright © 2003-2018, Motorola, Inc.

Copyright © 2007-2018, National Aeronautics and Space Administration

Copyright © 2007-2018, No Magic, Inc.

Copyright © 2003-2018, Northrop Grumman

Copyright © 1997-2018 , Object Management Group

Copyright © 2003-2018, oose Innovative Informatik eG

Copyright © 2003-2018, PivotPoint Technology Corporation

Copyright © 2003-2018, Raytheon Company

Copyright © 2003-2018, Sparx Systems

Copyright © 2003-2018, Telelogic AB

Copyright © 2003-2018, THALES

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject
to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

OMG Systems Modeling Language, v1.6 3

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or

conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG Systems Modeling Language, v1.6 5

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

Table of Contents
1 Scope..1

2 Normative References..2

3 Additional Information...3
3.1 Relationships to Other Standards..3
3.2 How to Read this International Standard...3

3.2.1 Organization... 3

3.3 Acknowledgments...4

4 Language Architecture...7
4.1 General...7
4.2 Design Principle..9
4.3 Architecture...10
4.4 Extension Mechanisms...12
4.5 SysML Diagrams...12

5 Conformance..14
5.1 Overview...14
5.2 Conformance Types..14

6 Language Formalisms..16
6.1 Levels of Formalism..16
6.2 Clause Structure...16

6.2.1 Overview... 16
6.2.2 Diagram Elements..16
6.2.3 UML Extensions.. 16
6.2.4 Usage Examples...16

6.3 Conventions and Typography..17

7 Model Elements..20
7.1 Overview...20

7.1.1 View and Viewpoint...20

7.2 Diagram Elements...21
7.3 UML Extensions..25

7.3.1 Diagram Extensions..25
7.3.2 Stereotypes... 26

7.4 Usage Examples...32

8 Blocks...33
8.1 Overview...33
8.2 Diagram Elements...34

8.2.1 Block Definition Diagram...34
8.2.2 Internal Block Diagram..43

OMG Systems Modeling Language, v1.6 7

8.3 UML Extensions..45
8.3.1 Diagram Extensions..45
8.3.2 Stereotypes... 51
8.3.3 Model Libraries... 72

8.4 Usage Examples...75
8.4.1 Wheel Hub Assembly..75
8.4.2 Example Value Type Definitions..77
8.4.3 Design Configuration for SUV EPA Fuel Economy Test..77
8.4.4 Water Delivery.. 77
8.4.5 Constraining Decomposition...78
8.4.6 Units and Quantity Kinds..79
8.4.7 Property-Specific Types..81

9 Ports and Flows..84
9.1 Overview...84

9.1.1 Ports... 84
9.1.2 Flow Properties, Provided and Required Features, and Nested Ports..................................84
9.1.3 Proxy Ports and Full Ports..84
9.1.4 Item Flows.. 85
9.1.5 Deprecation of Flow Ports and Flow Specifications..85

9.2 Diagram Elements...86
9.2.1 Block Definition Diagram...86
9.2.2 Internal Block Diagram..89

9.3 UML Extensions..91
9.3.1 Diagram Extensions..91
9.3.2 Stereotypes... 93

9.4 Usage Examples...114
9.4.1 Ports with Required and Provided Features..114
9.4.2 Ports and Item Flows..115
9.4.3 Ports with Flow Properties...115
9.4.4 Proxy and Full Ports..115
9.4.5 Association and Port Decomposition...116
9.4.6 Item Flow Decomposition..119

10 Constraint Blocks...122
10.1 Overview...122
10.2 Diagram Elements...123

10.2.1 Block Definition Diagram...123
10.2.2 Parametric Diagram..123

10.3 UML Extensions..124
10.3.1 Diagram Extensions..124
10.3.2 Stereotypes...125

10.4 Usage Examples..126
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram..126
10.4.2 Usage of Constraint Blocks on a Parametric Diagram...126

11 Activities...131
11.1 Overview...131

11.1.1 Control as Data.. 131
11.1.2 Continuous Systems..131
11.1.3 Probability... 131
11.1.4 Activities as Blocks...132
11.1.5 Timelines... 132

11.2 Diagram Elements..132
11.2.1 Activity Diagram...132

11.3 UML Extensions..141
11.3.1 Diagram Extensions...141
11.3.2 Stereotypes.. 144
11.3.3 Model Libraries... 150

11.4 Usage Examples..150

12 Interactions...154
12.1 Overview...154
12.2 Diagram Elements...154

12.2.1 Sequence Diagram...154

12.3 UML Extensions...159
12.3.1 Diagram Extensions...159

12.4 Usage Examples...160
12.4.1 Sequence Diagrams...160

13 State Machines..162
13.1 Overview...162
13.2 Diagram Elements..162

13.2.1 State Machine Diagram..162

13.3 UML Extensions..167
13.3.1 Diagram Extensions...167

13.4 Usage Examples..168
13.4.1 State Machine Diagram..168

14 Use Cases..170
14.1 Overview...170
14.2 Diagram Elements...170

14.2.1 Use Case Diagram..170

14.3 UML Extensions..172
14.4 Usage Examples..172

15 Allocations..176
15.1 Overview...176
15.2 Diagram Elements...176

15.2.1 Representing Allocation on Diagrams..176

15.3 UML Extensions..178

OMG Systems Modeling Language, v1.6 9

15.3.1 Diagram Extensions..178
15.3.2 Stereotypes...179

15.4 Usage Examples...181
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks..182
15.4.2 Allocate Flow.. 182
15.4.3 Tabular Representation..184

16 Requirements...185
16.1 Overview...185
16.2 Diagram Elements...187

16.2.1 Requirement Diagram..187

16.3 UML Extensions..191
16.3.1 Diagram Extensions..191
16.3.2 Stereotypes...192

16.4 Usage Examples...199
16.4.1 Requirement Decomposition and Traceability...199
16.4.2 Requirements and Design Elements..200
16.4.3 Requirements Reuse..202
16.4.4 Verification Procedure (Test Case)...202

17 Profiles & Model Libraries..204
17.1 Overview...204
17.2 Diagram Elements..204

17.2.2 Stereotypes Used On Diagrams..207

17.3 UML Extensions..209
17.4 Usage Examples...210

17.4.1 Defining a Profile... 210
17.4.2 Adding Stereotypes to a Profile..211
17.4.3 Defining a Model Library that Uses a Profile...211
17.4.4 Guidance on Whether to Use a Stereotype or Class...211
17.4.5 Using a Profile.. 212
17.4.6 Using a Stereotype..213
17.4.7 Using a Model Library Element...213

Annex A: ..Diagrams
216

A.1 Overview...216
A.2 Guidelines...220

Annex B: ...SysML Diagram Interchange
222

B.1 Overview...222
B.2 Stereotypes...222

B.2.1 SysML Activity Diagram...224
B.2.2 SysML Behavior Diagram..224
B.2.3 SysMLBlockDefinitionDiagram...225

B.2.4 SysMLDiagram..225
B.2.5 SysMLDiagramElement...225
B.2.6 SysMLDiagramWithAssociations...226
B.2.7 SysMLInteractionDiagram...226
B.2.8 SysMLInternalBlockDiagram...226
B.2.9 SysMLPackageDiagram..226
B.2.10 SysMLParametricDiagram...227
B.2.11 SysMLRequirementDiagram..227
B.2.12 SysMLStateMachineDiagram..227
B.2.13 SysMLUseCaseDiagram...227

B.3 SysML DI Usage Notes...227
B.4 SysML Notation and DI Representation..228

Annex C: ...Deprecated Elements and Migration
231

C.1 Overview...231
C.1.1 Flow Ports...231
C1.2 Conjugated Ports..231

C.2 Diagram Elements...232
C.2.1 Block Definition Diagram...232
C.2.2 Internal Block Diagram..234

C.3 UML Extensions..235
C.3.1 Diagram Extensions..235
C.3.2 Stereotypes...236

C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative)................239
C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)...........239
C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)....240
C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6
conjugated InterfaceBlock (informative)..241

Annex D: ..Sample Problem
243

D.1 Purpose...243
D.2 Scope..243
D.3 Problem Summary...243
D.4 Diagrams...243

D.4.1 Package Overview (Structure of the Sample Model)...243
D.4.2 Setting the Context (Boundaries and Use Cases)...246
D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)...............................249
D.4.4 Establishing Requirements (Requirements Diagrams and Tables)............................251
D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams).....254
D.4.6 Defining Ports and Flows...258
D.4.6.1 Block Definition Diagram - ICE Flow Properties..258
D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views).....................260

17.4.8 D.4.8 Defining, Decomposing, and Allocating Activities...268

OMG Systems Modeling Language, v1.6 11

Annex E: ...Non-normative Extensions
275

E.1 Overview...275
E.2 Activity Diagram Extensions..275

E.2.1 Overview...275
E.2.2 Stereotypes...275
E.2.3 Stereotype Examples...277

E.3 Requirements Diagram Extensions...277
E.3.1 Overview...277
E.3.2 Stereotypes...277
E.3.3 Stereotype Examples...280

E.4 Parametric Diagram Extensions for Trade Studies..280
E.4.1 Overview...280
E.4.2 Stereotypes...281
E.4.3 Stereotype Examples...281

E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)......................282
E.5.1 Overview...282
E.5.2 Abstract Syntax..283
E.5.3 References..306
E.5.4 Usage Examples...307

E.6 Model Library of SysML Quantity Kinds and Units for ISO 8000...............................309
E.6.1 Overview...309
E.6.2 Units and Quantity Kinds...309
E.6.3 ISO 80000-1 Prefixes..312
E.6.4 ISO 80000-2 Mathematical Signs and Symbols...313
E.6.5 Summary of the covered parts of ISO 80000...313

E.7 Distribution Extensions..366
E.7.1 Overview...366
E.7.2 Stereotypes...367
E.7.3 Usage Example...368

E.8 Building Non-normative Extension for Property-based Requirements.......................368
E.8.1 Overview...368
E.8.2 An Example PBR Profile Based on ConstraintBlock..370
E.8.3 An Example PBR Profile Based on Constraint...372
E.8.4 An Example Property Based Requirement based on Block.......................................374

Annex F: ...Requirements Traceability
377

Annex G: ...Model Interchange
379

G.1 Overview...379
G.2 Context for Model Interchange..379
G.3 XMI Serialization of SysML...379
G.4 SysML Model Interchange Using AP233...380

G.4.1 Scope of AP233..380
G.4.2 STEP Architecture...381
G.4.3 EXPRESS... 381
G.4.4 SysML-AP233 Mapping...383

OMG Systems Modeling Language, v1.6 13

Table of Figures
Figure 4.1: Overview of SysML/UML Interrelationship...7
Figure 4.2: SysML Extension of UML...10
Figure 4.3: SysML Package Structure..11
Figure 4.4: Non-normative Package Structure...12
Figure 7.1: Stereotypes defined in package ModelElements..26
Figure 7.2: Rationale and Problem Example..32
Figure 8.1: Nested property reference...49
Figure 8.2: Abstract syntax extensions for SysML blocks...51
Figure 8.3: Abstract syntax extensions for SysML properties...51
Figure 8.4: Abstract syntax extensions for SysML value types...52
Figure 8.5: Abstract syntax extensions for SysML property paths..52
Figure 8.6: Abstract syntax extensions for SysML connector ends..53
Figure 8.7: Abstract syntax extensions for SysML property-specific types...53
Figure 8.8: Abstract syntax extensions for SysML bound references...53
Figure 8.9: Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

.. 54
Figure 8.10: Model library for primitive value types..72
Figure 8.11: Model library for Unit and QuantityKind..73
Figure 8.12: Block diagram for the Wheel Package...76
Figure 8.13: Internal Block Diagram for WheelHubAssembly...76
Figure 8.14: Defining Value Types with units of measure from the International System of Units (SI). .77
Figure 8.15: Vehicle Decomposition...78
Figure 8.16: Vehicle internal structure..78
Figure 8.17: Vehicle specialization...79
Figure 8.18: Example of Unit, QuantityKind and ValueType definitions..80
Figure 8.19: Instance-level view of the Unit, QuantityKind and Value Type definitions.........................80
Figure 8.20 - Example of equivalent Unit representations..80
Figure 8.21 - Instance-level representation of equivalent Unit definitions...81
Figure 8.22 Property-specific types in facility example...82
Figure 8.23 Changes in classification over time due to property-specific types....................................82
Figure 9.1 - Port Stereotypes...93
Figure 9.2 - Stereotypes for Actions on Nested Ports...94
Figure 9.3 - Stereotypes for Property Value Change Events..94
Figure 9.4 - Provided and Required Features..95
Figure 9.5 - Item Flow Stereotype..95
Figure 9.6 - Usage example of ports with provided and required features..114
Figure 9.7 - Usage example of proxy and full ports..116
Figure 9.8 - Water Delivery association block...116
Figure 9.9 - Internal structure of Water Delivery association block...116
Figure 9.10 - Two views of Water Delivery connector within House block..117
Figure 9.11 - Specializations of Water Client in house example...118
Figure 9.12 - Plumbing association block...118
Figure 9.13 - Internal structure of Plumbing association block...119
Figure 9.14 - Water Delivery association block with internal Plumbing connector..............................119
Figure 9.15 - Usage example of item flows in internal block diagrams...120
Figure 9.16 - Usage example of item flow decomposition..120
Figure 9.17 - Usage example of item flow decomposition..120
Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package..125
Figure 11.1 - Block definition diagram with activities as blocks...142

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype...142
Figure 11.3 - CallBehaviorAction notation.with action name...142
Figure 11.4 - Control flow notation..142
Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes,

variables, and parameter...143
Figure 11.6 - ObjectNode notation in activity diagrams..143
Figure 11.7 - ObjectNode notation in activity diagrams..144
Figure 11.8 - Abstract Syntax for SysML Activity Extensions..144
Figure 11.9 - Control values...150
Figure 11.10 - Continuous system example 1..151
Figure 11.11 - Continuous system example 2...151
Figure 11.12 - Continuous system example 3..152
Figure 11.13 - Example block definition diagram for activity decomposition.......................................152
Figure 11.14 - Example block definition diagram for object node types..153
Figure 12.1 - Block definition diagram with interactions as blocks associated with used interactions and

types of parameters...160
Figure 13.1 - Block definition diagram with state machines as blocks associated with submachines and

types of parameters...168
Figure 15.1 - Abstract syntax extensions for SysML Allocation..179
Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition...179
Figure 15.3 - Generic Allocation, including /from and /to association ends...181
Figure 15.4 - Behavior Allocation..182
Figure 15.5 - Example of flow allocation from ObjectFlow to Connector..183
Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow..183
Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty.......................................183
Figure 15.8 - Example of Structural Allocation..183
Figure 15.9 - Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example.....................184
Figure 16.1 - Abstract Syntax for Requirements Stereotypes...192
Figure 16.2 - Requirements Derivation...200
Figure 16.3 - Links between requirements and design...201
Figure 16.4 - Requirement satisfaction in an internal block diagram..201
Figure 16.5 - Use of the copy dependency to facilitate reuse...202
Figure 16.6 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

... 203
Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State

Diagram...203
Figure 17.1 - Defining a stereotype..207
Figure 17.2 - Using a stereotype..208
Figure 17.3 - Other notational forms for showing values..209
Figure 17.4 - Other notational forms for showing values..209
Figure 17.5 - Definition of a profile...210
Figure 17.6 - Profile Contents...211
Figure 17.7 - Two model libraries...211
Figure 17.8 - A model with applied profile and imported model library..212
Figure 17.9 - Using two stereotypes on a model element...213
Figure 17.10 - Using model library elements..213
Figure A.1: SysML Diagram Taxonomy..216
Figure A.2: Diagram Frame..218
Figure A.3: Diagram Usages..220
Figure A.4: Optional Form of Line Crossing...221
Figure B.1: SysML DI architecture..222

OMG Systems Modeling Language, v1.6 15

Figure B.2: Abstract Syntax Extension for SysMLDiagramElement..222
Figure B.3: Abstract syntax extensions for SysML diagrams (1)..223
Figure B.4: Abstract syntax extensions for SysML diagrams (2)..224
Figure C.1: Deprecated Stereotypes..236
Figure D.1: Establishing the User Model by importing and applying SysML Profile & Model Library

(Package Diagram)..244
Figure D.2: Defining value Types and units to be used in the Sample Problam..................................245
Figure D.3: Establishing Structure of the User Model using Packages and Views (Package Diagram)

... 246
Figure D.4: Establishing the Context of the Hybrid SUV System using a User-Defined Context

Diagram. (Internal Block Diagram) Completeness of Diagram Noted in Diagram
Description... 247

Figure D.5: Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)..................248
Figure D.6: Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)...........249
Figure D.7: Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

... 250
Figure D.8: Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)........251
Figure D.9: Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence

Diagram).. 251
Figure D.10: White Box Interaction for "StartVehicle" (Sequence Diagram).......................................251
Figure D.11: Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram) 252
Figure D.12: Establishing Derived Requirements and Rationale from Lowest Tier of Requirements

Hierarchy. (Requirements Diagram)...253
Figure D.13: Acceleration Requirement Relationships (Requirements Diagram)...............................253
Figure D.14: Requirements Relationships Expressed in Tabular Format (Table)................................254
Figure D.15: Defining the Automotive Domain (compare with Figure D.4) - (Block Definition Diagram)

... 255
Figure D.16: Defining Structure of the Hybrid SUV System (Block Definition Diagram).....................255
Figure D.17: Internal Structure of Hybrid SUV (Internal Block Diagram)..256
Figure D.18: Defining Structure of Power Subsystem (Block Definition Diagram)..............................256
Figure D.19: Internal Structure of the Power Subsystem (Internal Block Diagram)............................257
Figure D.20: Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)......................257
Figure D.21: Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition

Diagram).. 258
Figure D.22: Consolidating Connectors into the CAN Bus. (Internal Block Diagram).........................258
Figure D.23: Elaborating Definition of Fuel Flow. (Block Definition Diagram).....................................258
Figure D.24: Defining Fuel Flow Constraints (Parametric Diagram)...259
Figure D.25: Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram).........259
Figure D.26: Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

... 260
Figure D.27: Establishing a Performance View of the User Model (Package Diagram)......................261
Figure D.28: Defining Requirements and VnV viewpoints (Package Diagram)..................................262
Figure D.29: Requirements and VnV views exposing elements from the model (Package Diagram).263
Figure D.30: The Requirements and VnV views with supporting views (Package Diagram)..............264
Figure D.31: Defining Measures of Effectiveness and Key Relationships (Parametric Diagram).......265
Figure D.32: Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric

Diagram).. 265
Figure D.33: Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)..................266
Figure D.34: Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition

Diagram).. 267
Figure D.35: Results of Maximum Acceleration Analysis (Timing Diagram).......................................268

Figure D.36: Behavior Model for “Accelerate” Function (Activity Diagram)...269
Figure D.37: Decomposition of “Accelerate” Function (Block Definition diagram)..............................270
Figure D.38: Detailed Behavior Model for “Provide Power” (Activity Diagram) Note hierarchical

consistency with Figure D.36...271
Figure D.39: Flow Allocation to Power Subsystem (Internal Block Diagram)......................................271
Figure D.40: Tabular Representation of Allocation from “Accelerate” Behavior Model to Power

Subsystem (Table)...272
Figure D.41: Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial

numbers)... 273
Figure E.1: Example activity with «effbd» stereotype applied...277
Figure E.2: Example activity with «streaming» and «nonStreaming» stereotypes applied to

subactivities...277
Figure E.3: Example extensions to Requirement...280
Figure E.4: Example Parametric Diagram using Stereotypes for Measures of Effectiveness.............282
Figure E.5: QUDV Concepts Diagram..284
Figure E.6: QUDV Units Diagram...285
Figure E.7: QUDV QuantityKinds Diagram...285
Figure E.8: Base Unit and Quantity Kinds of the SI and ISQ respectively..307
Figure E.9: Example of a derived unit and derived quantity kind..308
Figure E.10: Spring Length Example..309
Figure E.11: Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000

parts 3,4,5,6,7,9,10 and 13..310
Figure E.12: Organization of the definitions of units and quantities from the normative parts of ISO

80000 covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6;
the subset of parts 7,9,10 corresponding to the content from SysML 1.3 and the subset of
part 13 pertaining to commonly used units of information. Parts 8,11 and 12 are not
covered because none of their units and quantities were referenced in previous versions
of SysML nor in the summary tables in ISO 80000-1...311

Figure E.13: Content relationships for the systems of units and quantities in from the different parts of
ISO 80000 in relation to ISO 80000 as a whole and to the International System of Units
(SI) and quantities (ISQ)..312

Figure E.14: Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities...........................312
Figure E.15: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special

names (1).. 312
Figure E.16: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special

names (2).. 312
Figure E.17: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special

names (3).. 312
Figure E.18: Table 3 (from the SI brochure) SI derived units with special names and symbols..........312
Figure E.19: Constant numbers used throughout the SysML ISO 80000 library................................313
Figure E.20: Example of value type definitions for a quantity and applicable units and prefixed units314
Figure E.21: Basic distribution stereotypes..367
Figure E.22: Distribution Example..368
Figure E.23: Example of Requirement in Graphical Form..370
Figure E.24: Example of a PBR Profile Based on ConstraintBlock...371
Figure E.25: Example of Requirement Evaluation Context Using PBR Based on Constraint Block. . .372
Figure E.26: Example of Parametric Diagram Using PBR based on Constraint Block.......................372
Figure E.27: Example of a PBR profile based on Constraints..373
Figure E.28: Example of PBR based on Constraint used in different contexts...................................373
Figure E.29: Establishing an Analysis Context for evaluating requirement compliance using PBR

based on Constraint...374

OMG Systems Modeling Language, v1.6 17

Figure E.30: PBR Example..374
Figure E.31: PBR... 375
Figure G.1: SysML/AP233 Data Overlaps..380

Table of Tables
Table 4.1: UML 2 metaclasses excluded from the UML4SysML subset...8
 Table 4.2: UML 2 metaclasses and datatypes included in the UML4SysML subset..............................8
Table 4.3: SysML stereotypes, blocks, valuetypes, and datatypes...9
Table 7.1: Graphical nodes defined by ModelElements package...21
Table 7.2: Graphical paths defined by ModelElements package..24
Table 8.1: Graphical nodes defined in Block Definition diagrams...34
Table 8.2: Graphical paths defined in Block Definition diagrams..39
Table 8.3: Graphical nodes defined in Internal Block diagrams..43
Table 8.4: Graphical paths defined in internal Block diagrams...44
Table 9.1: Graphical nodes defined in Block Definition diagram...86
Table 9.2: Graphical nodes defined in Internal Block diagrams..89
Table 10.1: Graphical nodes defined in Block Definition diagrams...123
Table 10.2: Graphical nodes defined in Parametric diagrams..124
Table 11.1: Graphical notation of activity diagrams..132
Table 11.2: Graphical paths included in activity diagrams..138
Table 11.3: Other graphical elements included in activity diagrams..140
Table 12.1: Graphical notation of sequence diagramsa..154
Table 12.2: Graphical paths included in sequence diagram...158
Table 12.3: Other graphical elements included in sequence diagram...159
Table 13.1: Graphical notation of state machine diagrams...162
Table 13.2: Graphical paths included in state machine diagrams...166
Table 13.3: Other graphical elements included in state machine diagram..167
Table 14.1: Graphical nodes included in Use Case diagrams..170
Table 14.2: Graphical paths included in Use Case diagrams...171
Table 15.1: Extension to graphical nodes included in diagrams...176
Table 16.1: Graphical nodes included in Requirement diagrams..187
Table 16.2: Graphical paths included in Requirement diagrams...188
Table 17.1: Graphical nodes used in profile definition..204
Table 17.2: Graphical paths used in profile definition...205
Table 17.3: Notations for Stereotype Use...207
Table B.1: SysML Diagram Elements...228
Table C.1: Graphical nodes defined in block definition diagrams..232
Table C.2: Graphical nodes defined in internal block diagrams..234
Table E.1: Addition stereotypes for EFFBDs..275
Table E.2: Streaming options for activities..276
Table E.3: Additional Requirement Stereotypes...278
Table E.4: Requirement property enumeration types...279
Table E.5: Stereotypes for Measures of Effectiveness...281
Table E.6: The decimal and binary prefixes in scope of the International System of Units (SI) which

uses the ISO 80000 system of units and its included systems of units such as ISO 80000-
13... 312

Table E.7: Normative units in ISO 80000-3 (1 of 2)..314
Table E.8: Normative units in ISO 80000-3 (2 of 2)..315
Table E.9: Normative quantity kinds in ISO 80000-3 (1 of 2)..316
Table E.10: Normative quantity kinds in ISO 80000-3 (2 of 2)..319

OMG Systems Modeling Language, v1.6 19

Table E.11: Normative units in ISO 80000-4 (1 of 2)..320
Table E.12: Normative units in ISO 80000-4 (2 of 2)..321
Table E.13: Normative quantity kinds in ISO 80000-4 (1 of 4)..322
Table E.14: Normative quantity kinds in ISO 80000-4 (2 of 4)..324
Table E.15: Normative quantity kinds in ISO 80000-4 (3 of 4)..326
Table E.16: Normative quantity kinds in ISO 80000-4 (4 of 4)..327
Table E.17: Normative units in ISO 80000-5 (1 of 2)..330
Table E.18: Normative units in ISO 80000-5 (2 of 2)..332
Table E.19: Normative quantity kinds in ISO 80000-5 (1 of 5)..333
Table E.20: Normative quantity kinds in ISO 80000-5 (2 of 5)..335
Table E.21: Normative quantity kinds in ISO 80000-5 (3 of 5)..337
Table E.22: Normative quantity kinds in ISO 80000-5 (4 of 5)..339
Table E.23: Normative quantity kinds in ISO 80000-5 (5 of 5)..341
Table E.24: Normative units in ISO 80000-6 (1 of 5)..342
Table E.25: Normative units in ISO 80000-6 (2 of 5)..344
Table E.26: Normative units in ISO 80000-6 (3 of 5)..347
Table E.27: Normative units in ISO 80000-6 (4 of 5)..349
Table E.28: Normative units in ISO 80000-6 (5 of 5)..351
Table E.29: Normative quantity kinds in ISO 80000-6 (1 of 4)..352
Table E.30: Normative quantity kinds in ISO 80000-6 (2 of 4)..356
Table E.31: Normative quantity kinds in ISO 80000-6 (3 of 4)..358
Table E.32: Normative quantity kinds in ISO 80000-6 (4 of 4)..361
Table E.33: Units in ISO 80000-7...363
Table E.34: Quantity kinds in ISO 80000-7...363
Table E.35: Units in ISO 80000-9...364
Table E.36: Quantity kinds in ISO 80000-9...364
Table E.37: Units in ISO 80000-10...365
Table E.38: Quantity kinds in ISO 80000-10...365
Table E.39: Units in ISO 80000-13...366
Table E.40: Quantity kinds in ISO 80000-13...366
Table E.41: Distribution Stereotypes..367
Table E.42: Example of Requirement in Tabular Form...369

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 21

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments. OMG’s specifications
include: UML® (Unified Modeling Language®); CORBA® (Common Object Request Broker Architecture);
CWM™ (Common Warehouse Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profiles

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

• CORBAServices

• CORBAFacilities

http://www.omg.org/spec
http://www.omg.org/

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the
Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is
necessary.

Times/Times New Roman/Liberation Serif – 10 pt.: Standard body text

Helvetica/Arial – 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier – 10 pt. Bold: Programming language elements.

Helvetica/Arial – 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification via the report
form at:

http://issues.omg.org/issues/create-new-issue

OMG Systems Modeling Language, v1.6 23

http://issues.omg.org/issues/create-new-issue

SysML Roadmap
Requirements for SysML were originally specified by:

ad/2003-03-41 (UML for Systems Engineering RFP)

The source documents for this specification include:

Alpha: ad/2006-03-01 (submission)

ad/2006-04-07 (errata)

ad/2006-03-04 (glossary)

Associated Schema files: ad/2006-03-02 (XMI)

The Finalization Task Force (FTF) process generated the following documents:

Beta 1: ptc/2006-05-04 (a.k.a. Final Adopted Specification)

Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions

ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)

ptc/2007-02-05 (XMI)

ptc/2007-03-09 (Annex E - Requirements Traceability)

Version 1.0 Formal Specification: formal/2007-09-01

The SysML 1.1 Revision Task Force (RTF) process generated the following documents:

ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)

ptc/2008-05-18 (XMI)

Version 1.1 Formal Specification: formal/2008-11-01, formal/2008-11-02

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20090501/, include the
following files:

SysML-profile.xmi XMI 2.1 serialization of the SysML Profile

Activities-model.xmi XMI 2.1 serialization of the Activities model library

Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

UML4SysML-metamodel.xmi XMI 2.1 serialization of the merged UML4SysML subset of UML 2

(used to define the SysML Profile)

The SysML 1.2 Revision Task Force (RTF) process generated the following documents:

ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)

ptc/2008-05-18 (XMI)

Version 1.2 Formal Specification: formal/2010-06-01, formal/2010-06-02

Associated schema file for this specification, at http://www.omg.org/spec/SysML/20100301, include the
following files:

SysML-profile.uml XMI 2.1 serialization of the SysML Profile

UML4SysML-metamodel.uml XMI 2.1 serialization of the merged UML4SysML subset of UML 2

(used to define the SysML Profile)

Activities-model.xmi XMI 2.1 serialization of the Activities model library

Blocks-model.xmi XMI 2.1 serialization of the Blocks model library

The SysML 1.3 Revision Task Force (RTF) process generated the following documents:

ptc/2011-08-08 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2011-08-07 (Submission inventory document)

ptc/2011-08-09, ptc/2011-08-10 (Beta “convenience document,” with and without change bars)

ptc/2011-08-11, ptc/2011-08-12 (Normative and non-normative XMI)

ptc/2012-04-07, ptc/2012-04-08 (Normative and non-normative XMI)

Version 1.3 Formal Specification: formal/2012-06-01, formal/2012-06-02

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20120401/, include the
following files:

SysML.xmi (Normative)

ISO-80000-1-QUDV.xmi (Non-normative)

ISO-80000-1-SysML.xmi (Non-normative)

QUDV.xmi (Non-normative)

The SysML 1.4 Revision Task Force (RTF) process generated the following documents:

ptc/2013-12-08 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2013-12-10, ptc/2013-12-09 (Beta “convenience document,” with and without change bars)

ptc/2013-12-11, ptc/2013-12-12 (Normative and non-normative XMI)

Version 1.4 Formal Specification: formal/2015-06-03, formal/2015-06-04

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20131201/, include the
following files:

SysML.xmi (Normative)

OMG Systems Modeling Language, v1.6 25

SysMLDI.xmi (Normative)

ISO-80000-1-QUDV.xmi (Non-normative)

ISO-80000-1-SysML.xmi (Non-normative)

QUDV.xmi (Non-normative)

The SysML 1.5 Revision Task Force (RTF) process generated the following documents:

ptc/2016-11-01 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2016-11-02, ptc/2016-11-03 (Beta “convenience document,” with and without change bars)

ptc/2016-11-05, ptc/2016-11-06, ptc/16-11-07, ptc/16-11-08 (Normative and non-normative XMI)

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20161101/, include the
following files:

SysML.xmi (Normative)

SysMLDI.xmi (Normative)

ISO-80000-1-QUDV.xmi (Non-normative)

ISO-80000-1-SysML.xmi (Non-normative)

QUDV.xmi (Non-normative)

The SysML 1.6 Revision Task Force (RTF) process generated the following documents:

ptc/2018-10-01 (RTF Report - full record of RTF votes and issue resolutions)

ptc/2018-10-02, ptc/2018-10-03 (Beta “convenience document,” with and without change bars)

ptc/2018-10-04, ptc/2018-10-05, ptc/2018-10-06, ptc/2018-10-07, ptc/2018-10-08 (Normative and
non-normative XMI)

Associated schema files for this specification, at http://www.omg.org/spec/SysML/20161101/, include the
following files:

SysML.xmi (Normative)

ISO-80000-1-QUDV.xmi (Non-normative)

ISO-80000-1-SysML.xmi (Non-normative)

QUDV.xmi (Non-normative)

INTRODUCTION

This International Standard defines a general-purpose language for systems engineering applications, called the
OMG Systems Modeling Language (OMG SysMLTM). Throughout the rest of this International Standard the
language will be referred to as SysML.

SysML supports the specification, analysis, design, verification, and validation of a broad range of complex
systems. These systems may include hardware, software, information, processes, personnel, and facilities.

It is common practice for engineers to use a wide range of modeling languages, tools, and techniques on large
systems projects. SysML is intended to unify diverse modeling languages used by systems engineers and can be
used with a wide variety of discipline- and domain-specific modeling languages.

OMG Systems Modeling Language, v1.6 27

This page intentionally left blank.

xxviii OMG Systems Modeling Language, v1.6

1 Scope
The purpose of this International Standard is to specify the Systems Modeling Language (SysML), a general-purpose
modeling language for systems engineering. Its intent is to specify the language so that systems engineering modelers
may learn to apply and use SysML; modeling tool vendors may implement and support SysML; and both can provide
feedback to improve future versions. Note that a definition of “system” and “systems engineering” can be found inISO/
IEC 15288.

SysML reuses a subset of UML 2.5 and provides additional extensions to address the requirements in UML for SE.
SysML uses the UML 2.5 extension mechanisms as further elaborated in Clause 17 as the primary mechanism to
specify the extensions to UML 2.5. This revision of SysML relies on several new features incorporated into UML 2.5.
Any use of the term “UML 2” or “UML” in this specification, unless otherwise noted, will refer to UML 2.5 in general
and the UML 2.5 specification in particular.

Since SysML uses UML 2.5 as its foundation, systems engineers modeling with SysML and software engineers
modeling with UML 2.5 will be able to collaborate on models of software-intensive systems. This will improve
communication among the various stakeholders who participate in the systems development process and promote
interoperability among modeling tools. It is anticipated that SysML will be customized to model domain-specific
applications, such as automotive, aerospace, communication, and information systems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and methods
such as structured, object-oriented, and others, but each methodology may impose additional constraints on how a
construct or diagram kind may be used. This version of the language supports most, but not all, of the requirements of
the UML for Systems Engineering RFP, as shown in the Requirements Traceability referenced by Annex F. These gaps
are intended to be addressed in future versions of SysML as indicated in the matrix.

The following sub clauses provide background information about this International Standard. Instructions for both
systems engineers and tool vendors who read this International Standard are provided in “How to Read this
International Standard.” The main body of this International Standard describes the normative technical content. The
annexes include additional information to aid in understanding and implementation of this International Standard.

OMG Systems Modeling Language, v1.6 1

2 Normative References
The following normative documents contain provisions, which through reference in this text, constitute provisions of
this International Standard. Subsequent amendments to, or revisions of, any of these publications do not apply.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 7th Edition 2016

ISO/IEC 10303-233:2012, STEP AP233, Product data representation and exchange: application protocol: Systems
engineering

ISO/IEC IEEE 15288:2015, Systems and software engineering - System life cycle process

OMG Specification formal/2017-12-01, Unified Modeling Language, (UML) V2.5.1

(http://www.omg.org/spec/UML/2.5.1/)

OMG Specification formal/2014-02-03, Object Constraint Language (OCL), V2.4

(http://www.omg.org/spec/OCL/2.4/)

OMG Specification formal/2015-06-05, Meta Object Facility (MOF), V2.5

(http://www.omg.org/spec/MOF/2.5/)

OMG Specification formal/2015-06-01, Diagram Definition, V1.1

(http://www.omg.org/spec/DD/1.1/)

OMG Document ad/03-03-41, UML for Systems Engineering RFP

(http://www.omg.org/cgi-bin/doc?ad/2003-03-41)

OMG Document ormsc/2014-06-01, Model Driven Architecture (MDA) Guide rev. 2.0

(http://www.omg.org/cgi-bin/doc?ormsc/2014-06-01)

VIM Edition 3 (VIM3), “International vocabulary of metrology - Basic and general concepts and associated terms
(VIM)”, JCGM 200:2012 (JCGM 200:2008 with minor corrections)

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143

2 OMG Systems Modeling Language, v1.6

3 Additional Information

3.1 Relationships to Other Standards
SysML is defined as an extension of the OMG UML 2 standard. See Clause 2 for the current version of the UML 2
standard.

SysML is intended to be supported by two evolving interoperatility standards including the OMG XMI 2 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for systems
engineering tools. Overviews of the approach to model interchange and relevant references are included in Annex G.

SysML supports the OMG’s Model Driven Architecture (MDA) initiative by its reuse of UML and related standards.
See OMG MDA Guide rev 2.0.

3.2 How to Read this International Standard
This International Standard is intended to be read by systems engineers so they may learn and apply SysML, and by
modeling tool vendors so they may implement and support SysML.

Systems engineers should read the Overview, Diagram Elements, and Usage Examples sub clauses in each clause, and
explore the UML Extensions as they see fit. Modeling tool vendors should read all clauses. In addition, systems
engineers and vendors should read Annex D, “Sample Problem,” to understand how the language is applied to an
example, and the document referenced by Annex F, “Requirements Traceability,” to understand how the requirements in
the UML for SE RFP are satisfied by this International Standard.

Although the clauses are organized into logical groupings that can be read sequentially, this International Standard can
be used for reference and may be read in a non-sequential manner.

3.2.1 Organization

This International Standard is organized as follows:

Preface

INTRODUCTION

1 Scope

2 Normative References

3 Additional Information - includes Relationships to Other Standards, How to Read this International Standard, and
Acknowledgments

4 Language Architecture - General Information, Design Principles, Architecture, and SsyML Diagrams

5 Conformance - General Information and Conformance Types

6 Language Formalism -

• Levels of Formalism

• Clause Structure

• Conventions and Typography

STRUCTURAL CONSTRUCTS

7 Model Elements - Refactors the kernel package from UML 2 and includes some extensions to provide some
foundation capabilities for model management.

OMG Systems Modeling Language, v1.6 3

8 Blocks - Reuses and extends structured classes from UML 2 composite structures to provide the fundamental
capability for describing system decomposition and interconnection, and to define different types of system properties
including value properties with optional units of measure.

9 Ports and Flows - Provides the semantics for defining how blocks and parts interact through ports and how items flow
across connectors.

10 Constraint Blocks - Defines how blocks are extended to be used on parametric diagrams. Parametric diagrams model
a network of constraints on system properties to support engineering analysis, such as performance, reliability, and
mass properties analysis.

BEHAVIORAL CONSTRUCTS

11 Activities - Defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the slow of control and flow of
inputs and outputs among actions.

12 Interactions - Defines the constructs for describing message based behavior used in sequence diagrams.

13 State Machines - Describes the constructs used to specify state based behavior in terms of system states and their
transitions.

14 Use Cases - Describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral disgrams referred to above.

CROSSCUTTING CONSTRUCTS

15 Allocations

16 Requirements

17 Profiles & Model Libraries

ANNEXES

Annex A - Diagrams

Annex B - SysML Diagram Interchange

Annex C - Deprecated Elements

Annex D - Sample Problem

Annex E - Non-normative Extensions

Annex F - Requirements Traceability

Annex G - Model Interchange

3.3 Acknowledgments
The following companies and organizations submitted or supported parts of the original version of this International
Standard:

Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

4 OMG Systems Modeling Language, v1.6

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik GmbH

• PivotPoint Technology

• Raytheon

• THALES

US Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

Vendors

• ARTiSAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

Academia

• Georgia Institute of Technology

Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this International Standard: Vincent Arnould,
Laurent Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray
Cantor, Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery,
Hal Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar
Marimuthu, Alan Moore, Véronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald,
Joseph Skipper, Rick Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and
the quality of this International Standard: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian

OMG Systems Modeling Language, v1.6 5

Johnson, Jim Long, Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames, and the
Georgia Institute of Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak, and
Diego Tamburini. The SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio
stencil for UML 2 that was adapted for most of the figures throughout this International Standard.

Additional organizations and individuals have contributed to further revisions of this International Standard, as
completed by Finalization and Revision Task Forces listed under the OMG SysML Roadmap in the Preface above.
Besides those already acknowledged above for their contributions to the original International Standard, the following
additional persons have contributed to the Finalization or Revision Task Forces: Dave Banham,Yves Bernard, Graham
Bleakley, Fraser Chadburn, Chris Delp, Hans Peter de Koning, Sébastien Demathieu, Peter Denno, Huascar Espinoza,
Allison Barnard Feeney, Sébastien Gérard, Matthew Hause, Kenn Hussey, Nerijus Jankevicius, Steve Jenkins, Robert
Karban, Darren Kelly, Andreas Korff, Frédéric Mallet, Sam Mancarella, Julio Medina, Jishnu Mukerji, Chris Paredis,
Axel Reichwein, Pete Rivett, Nicolas Rouquette, George Sawyer, Andrius Strazdauskas, Kritsana Uttamang, John
Watson, Bernd Wenzel. Additional organizations who supported the work of contributors to the Finalization and
Revision Task Forces, not already listed for the original submission above, include 88solutions, Adaptive, Atego,
EADS, CEA LIST, European Southern Observatory, European Space Agency, Fachhochschule Vorarlberg, INRIA,
Mathworks, Tecnalia Research and Innovation, No Magic, and Universidad de Cantabria.

6 OMG Systems Modeling Language, v1.6

4 Language Architecture

4.1 General
SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This International Standard documents the language architecture in terms of the parts of
UML 2 that are reused and the extensions to UML 2. This clause explains design principles and how they are applied to
define the SysML language architecture.

To visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4.1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML reuses, called the UML4SysML subset. The region
marked “SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML that have
no counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not required
to implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1: Overview of SysML/UML Interrelationship

Table 4.1 lists the metaclasses excluded from the UML4SysML subset. Table 4.2 lists the metaclasses and datatypes
included in the UML4SysML subset. Table 4.3 lists the stereotypes, blocks, valuetypes, and datatypes included in
SysML.

OMG Systems Modeling Language, v1.6 7

Table 4.1: UML 2 metaclasses excluded from the UML4SysML subset

UML 2 metaclasses excluded from the UML4SysML subset

Artifact, ClassifierTemplateParameter, Collaboration, CollaborationUse, CommunicationPath, Component,
ComponentRealization, ConnectableElementTemplateParameter, Deployment, DeploymentSpecification,
Device, ExceptionHandler, ExecutionEnvironment, ExpansionNode, ExpansionRegion, Manifestation, Node,
OperationTemplateParameter, ProtocolConformance, ProtocolStateMachine, ProtocolTransition,
QualifierValue, ReadLinkObjectEndQualifierAction, RedefinableTemplateSignature, StringExpression,
TemplateBinding, TemplateParameter, TemplateParameterSubstitution, TemplateSignature,
UMLActivityDiagram, UMLAssociationEndLabel, UMLAssociationOrConnectorOrLinkShape,
UMLAssociationOrConnectorOrLinkShapeKind, UMLBehaviorDiagram, UMLClassDiagram,
UMLClassifierShape, UMLCompartment, UMLCompartmentableShape, UMLComponentDiagram,
UMLCompositeStructureDiagram, UMLDeploymentDiagram, UMLDiagram, UMLDiagramElement,
UMLDiagramWithAssociations, UMLEdge, UMLInteractionDiagram, UMLInteractionDiagramKind,
UMLInteractionTableLabel, UMLKeywordLabel, UMLLabel, UMLMultiplicityLabel, UMLNameLabel,
UMLNavigabilityNotationKind, UMLObjectDiagram, UMLPackageDiagram, UMLProfileDiagram,
UMLRedefinesLabel, UMLShape, UMLStateMachineDiagram, UMLStateShape,
UMLStereotypePropertyValueLabel, UMLStructureDiagram, UMLStyle, UMLTypedElementLabel,
UMLUseCaseDiagram

 Table 4.2: UML 2 metaclasses and datatypes included in the UML4SysML subset

UML 2 metaclasses and datatypes included in the UML4SysML subset

Abstraction, AcceptCallAction, AcceptEventAction, Action, ActionExecutionSpecification, ActionInputPin,
Activity, ActivityEdge, ActivityFinalNode, ActivityGroup, ActivityNode, ActivityParameterNode,
ActivityPartition, Actor, AddStructuralFeatureValueAction, AddVariableValueAction, AggregationKind,
AnyReceiveEvent, Association, AssociationClass, Behavior, BehaviorExecutionSpecification,
BehavioralFeature, BehavioredClassifier, BroadcastSignalAction, CallAction, CallBehaviorAction,
CallConcurrencyKind, CallEvent, CallOperationAction, CentralBufferNode, ChangeEvent, Class, Classifier,
Clause, ClearAssociationAction, ClearStructuralFeatureAction, ClearVariableAction, CombinedFragment,
Comment, ConditionalNode, ConnectableElement, ConnectionPointReference, Connector, ConnectorEnd,
ConnectorKind, ConsiderIgnoreFragment, Constraint, Continuation, ControlFlow, ControlNode,
CreateLinkAction, CreateLinkObjectAction, CreateObjectAction, DataStoreNode, DataType, DecisionNode,
Dependency, DeployedArtifact, DeploymentTarget, DestroyLinkAction, DestroyObjectAction,
DestructionOccurrenceSpecification, DirectedRelationship, Duration, DurationConstraint, DurationInterval,
DurationObservation, Element, ElementImport, EncapsulatedClassifier, Enumeration, EnumerationLiteral,
Event, ExecutableNode, ExecutionOccurrenceSpecification, ExecutionSpecification, Expression, Extend,
Extension, ExtensionEnd, ExtensionPoint, Feature, FinalNode, FinalState, FlowFinalNode, ForkNode,
FunctionBehavior, Gate, GeneralOrdering, Generalization, GeneralizationSet, Image, Include,
InformationFlow, InformationItem, InitialNode, InputPin, InstanceSpecification, InstanceValue, Interaction,
InteractionConstraint, InteractionFragment, InteractionOperand, InteractionOperatorKind, InteractionUse,
Interface, InterfaceRealization, InterruptibleActivityRegion, Interval, IntervalConstraint, InvocationAction,
JoinNode, Lifeline, LinkAction, LinkEndCreationData, LinkEndData, LinkEndDestructionData,
LiteralBoolean, LiteralInteger, LiteralNull, LiteralReal, LiteralSpecification, LiteralString,
LiteralUnlimitedNatural, LoopNode, MergeNode, Message, MessageEnd, MessageEvent, MessageKind,
MessageOccurrenceSpecification, MessageSort, Model, MultiplicityElement, NamedElement, Namespace,
ObjectFlow, ObjectNode, ObjectNodeOrderingKind, Observation, OccurrenceSpecification, OpaqueAction,
OpaqueBehavior, OpaqueExpression, Operation, OutputPin, Package, PackageImport, PackageMerge,

8 OMG Systems Modeling Language, v1.6

PackageableElement, Parameter, ParameterDirectionKind, ParameterEffectKind, ParameterSet,
ParameterableElement, PartDecomposition, Pin, Port, PrimitiveType, PrimitiveTypes::Boolean,
PrimitiveTypes::Integer, PrimitiveTypes::Real, PrimitiveTypes::String, PrimitiveTypes::UnlimitedNatural,
PrimitiveValueTypes::Boolean, Profile, ProfileApplication, Property, Pseudostate, PseudostateKind,
RaiseExceptionAction, ReadExtentAction, ReadIsClassifiedObjectAction, ReadLinkAction,
ReadLinkObjectEndAction, ReadSelfAction, ReadStructuralFeatureAction, ReadVariableAction, Realization,
Reception, ReclassifyObjectAction, RedefinableElement, ReduceAction, Region, Relationship,
RemoveStructuralFeatureValueAction, RemoveVariableValueAction, ReplyAction, SendObjectAction,
SendSignalAction, SequenceNode, Signal, SignalEvent, Slot, StartClassifierBehaviorAction,
StartObjectBehaviorAction, State, StateInvariant, StateMachine, Stereotype, StructuralFeature,
StructuralFeatureAction, StructuredActivityNode, StructuredClassifier, Substitution, TestIdentityAction,
TimeConstraint, TimeEvent, TimeExpression, TimeInterval, TimeObservation, Transition, TransitionKind,
Type, TypedElement, UnmarshallAction, Usage, UseCase, ValuePin, ValueSpecification,
ValueSpecificationAction, Variable,VariableAction, Vertex, VisibilityKind, WriteLinkAction,
WriteStructuralFeatureAction, WriteVariableAction

Table 4.3: SysML stereotypes, blocks, valuetypes, and datatypes

Issue(s) : SYSML16-94

SysML stereotypes, blocks, valuetypes, and datatypes

AcceptChangeStructuralFeatureEventAction, AdjunctProperty, Allocate, AllocateActivityPartition,
BindingConnector, Block, BoundReference, ChangeStructuralFeatureEvent, ClassifierBehaviorProperty,
Conform, ConnectorProperty, ConstraintBlock, Continuous, ControlOperator, ControlValueKind, Copy,
DeriveReqt, DirectedFeature, DirectedRelationshipPropertyPath, Discrete, DistributedProperty,
ElementGroup, ElementPropertyPath, EndPathMultiplicity, Expose, FeatureDirectionKind, FlowProperty,
FullPort, InterfaceBlock, InvocationOnNestedPortAction, ItemFlow, NestedConnectorEnd, NoBuffer,
Optional, Overwrite, ParticipantProperty, PrimitiveValueTypes::Boolean, PrimitiveValueTypes::Complex,
PrimitiveValueTypes::Integer, PrimitiveValueTypes::Number, PrimitiveValueTypes::Real,
PrimitiveValueTypes::String, Probability, Problem, PropertySpecificType, ProxyPort, Rate, Rationale, Refine,
Requirement, Satisfy, Stakeholder, TestCase, Trace, TriggerOnNestedPort, ValueType, VerdictKind, Verify,
View, Viewpoint

4.2 Design Principle
The fundamental design principles for SysML are:

• Requirements-driven - SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse - SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when
modifications are required, they are done in a manner that strives to minimize changes to the underlying
language. Consequently, SysML is intended to be relatively easy to implement for vendors who support UML
2.

• UML extensions - SysML extends UML as needed to satisfy the requirements of the RFP. The primary
extension mechanism is the UML 2 profile mechanism as further refined in Clause 17, “Profiles & Model
Libraries.”

• Partitioning - The package is the basic unit of partitioning in this International Standard. The packages partition
the model elements into logical groupings that minimize circular dependencies among them.

• Layering - SysML packages are specified as an extension layer to the UML metamodel.

OMG Systems Modeling Language, v1.6 9

• Interoperability - SysML inherits the XMI interchange capability from UML. SysML is also intended to be
supported by the ISO 10303-233 data interchange standard to support interoperability among other engineering
tools.

SysML provides three model libraries:

• PrimitiveValueTypes, see 8.3.3.1

• UnitAndQuantityKind, see Erreur : source de la référence non trouvée

• ControlValues, see 11.3.3

4.3 Architecture
The relationship between SysML and UML 2 is shown in Figure 4.2. SysML extends UML 2’s StandardProfile (see
Clause 22 in the UML 2.5 specification) whose Trace and Refine stereotypes provide the basis for Requirement
traceability in SysML (see Clause 16, “Requirements” in this International Standard).

Although SysML indirectly imports the UML 2 PrimitiveTypes library (see Clause 21 in the UML 2.5 specification)
due to the transitivity of package import, SysML provides a PrimitiveValueTypes model library that systems engineers
can extend via SysML’s ValueType stereotype. In the remainder of this document, the unqualified references to
Boolean, Integer, Real, and String should be interpreted as follows:

In the context of the definition of a SysML Stereotype, the name refers to the definition of a UML::PrimitiveType in the
UML 2 PrimitiveTypes library.

• In the context of the definition of a SysML Stereotype, the name refers to the definition of a
UML::PrimitiveType in the UML 2 PrimitiveTypes library.

• Elsewhere, the name refers to the definition of a SysML::ValueType stereotype of UML::DataType in the
SysML PrimitiveValueTypes library.

Figure 4.2: SysML Extension of UML

10 OMG Systems Modeling Language, v1.6

Figure 4.3: SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended.

The SysML packages extend UML as follows:

Issue(s): SYSML16-203

• SysML::Model Elements extends Classification, Common Structure

• SysML::Blocks extends Classification, Structured Classifiers, Common Structure, Simple Classifiers

• SysML::ConstraintBlocks extends Structured Classifiers

• SysML::Ports and Flows extends Actions, Common Behavior, Classification

• SysML::Activities extends Activities.

• SysML::Allocations extends Common Structure, Activities

• SysML::Requirements extends Common Structure, Classification, Common Behavior,

• Structured Classifiers

• SysML::DeprecatedElements extends Common Structure, Simple Classifiers, Classification, Structured
Classifiers, Actions, and SysML Item Flows

Figure 4.4 shows non-normative packages in this International Standard that depend on SysML and UML. Note that the
QUDV and ISO-80000 libraries are described in non-normative annexes to this specification.

OMG Systems Modeling Language, v1.6 11

Figure 4.4: Non-normative Package Structure

4.4 Extension Mechanisms
This International Standard uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

• Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex E “Non-normative Extensions.”

The SysML user model is created by instantiating its metamodel and applying the stereotypes specified in the SysML
profile, and optionally referencing or subclassing the model elements in the SysML model library. Clause 17, “Profiles
& Model Libraries” describes how profiles and model libraries are applied and how they can be used to further extend
SysML.

4.5 SysML Diagrams
The SysML diagram taxonomy is shown in Figure A.1 in Annex A. The concrete syntax (notation) for the diagrams
along with the corresponding specification of the UML extensions is described in Parts II - IV. The Diagrams Annex
(Annex A) describes generalized features of diagrams, such as their frames and headings. A model of SysML diagrams
to support interchange is in SysML Diagram Interchange Annex (Annex B).

12 OMG Systems Modeling Language, v1.6

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 13

5 Conformance

5.1 Overview
Conformance with SysML requires that the subset of UML required for SysML is implemented, and that the SysML
extensions to this subset are implemented. SysML has three types of conformance, listed in 5.2, which shall all be
supported to fully conform to SysML. Conformance does not include DeprecatedElements.

5.2 Conformance Types
An implementation of SysML shall comply with both the subset of UML4SysML and the SysML extensions. The types
of SysML conformance extend corresponding types in UML as follows:

• Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/
or API that enables instances of concrete SysML stereotypes (which are applications of stereotypes to instances
of UML metaclasses) and model library elements to be created, read, updated, and deleted. The tool shall also
provide a way to validate the well-formedness of models that corresponds to the constraints defined in SysML.

• Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of SysML notation to be created, read, updated, and deleted. This includes
conformance to the notation defined in the “Diagram Elements” tables and diagrams extension sub clauses in
each clause of this International Standard. Note that a conforming tool may provide the ability to create, read,
update, and delete additional diagrams and notational elements that are not defined in SysML.

• Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SysML models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. See more information in Annex G.

14 OMG Systems Modeling Language, v1.6

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 15

6 Language Formalisms

6.1 Levels of Formalism
SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase
the precision of the language.

6.2 Clause Structure
The clauses are organized according to the SysML packages as described in the language architecture and selected
reusable portions of UML 2 packages. This sub clause provides information about how each clause is organized.

6.2.1 Overview

This sub clause provides an overview of the SysML modeling constructs defined in the subject package, which are
usually associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This sub clause provides tables that summarize the concrete syntax (notation) and abstract syntax references for the
graphic nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to
include all of the diagrammatic constructs used in SysML. However, they do not represent all the different
combinations in which they can be used. The reader should refer to the usage examples in the clauses and the sample
problem (Annex D) for typical usages of the concrete syntax. General diagram information on the use of diagram
frames and headings can be found in Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML.
As described in Clause 4, “Language Architecture,” SysML imports many entire packages from the UML metamodel,
which it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the
notations included in SysML.

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML clauses, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined
in this package.

6.2.3 UML Extensions

This sub clause specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions.
Diagram extensions are included when the concrete syntax uses notation other than the standard stereotype notation as
defined in the Profiles & Model Libraries clause. Semantic extensions consist of stereotype and model library
extensions. Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype
extends. Each stereotype includes a general description with a definition and semantics, along with stereotype
properties (attributes), and constraints. Each constraint consists of a textual description and may be followed by a
formal constraint expressed in Object Constraint Language (OCL). If there is any ambiguity between the two, the OCL
statement of the constraint takes precedence. The model libraries are defined as subclasses of existing metaclasses.

6.2.4 Usage Examples

This sub clause shows how the SysML modeling constructs can be applied to solve systems engineering problems and
is intended to reuse and/or elaborate the sample problem in Annex D.

16 OMG Systems Modeling Language, v1.6

6.3 Conventions and Typography
In the description of SysML, the following conventions have been used:

• When referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as
they appear in the model are used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a sub clause is not applicable, it is not included, except for the top-level sub clauses outlined in sub clause
6.2.

• Stereotype, metaclass, and metaassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference”).

• Boolean metaattribute names: always start with “is” (e.g., “isComposite”).

• Enumeration types: always end with “Kind” (e.g., “DependencyKind”).

OMG Systems Modeling Language, v1.6 17

STRUCTURAL CONSTRUCTS

18 OMG Systems Modeling Language, v1.6

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 19

7 Model Elements

7.1 Overview
The ModelElements package of SysML defines general-purpose constructs that may be shown on multiple
SysML diagram types. These include package, model, various types of dependencies (e.g., import, access,
refine, realization), constraints, and comments. The package diagram defined in this clause is used to organize
the model by partitioning model elements into packageable elements and establishing dependencies between the
packages and/or model elements within the package. The package defines a namespace for the packageable
elements. Model elements from one package can be imported and/or accessed by another package. This
organizational principle is intended to help establish unique naming of the model elements and avoid
overloading a particular model element name. Packages can also be shown on other diagrams such as the block
definition diagram, requirement diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be
represented on several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a
condition on a decision branch, or a mathematical expression. The constraint has been significantly enhanced in
SysML as specified in Clause 10, “Constraint Blocks” to enable it to be reused and parameterized to support
engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting
the model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in
capturing decisions. The rationale may be attached to any entity, such as a system element (block), or to any
relationship, such as the satisfy relationship between a design element and a requirement. In the latter case, it
may be used to capture the basis for the design decision and may reference an analysis report or trade study for
further elaboration of the decision. In addition, SysML includes an extension of a comment to reflect a problem
or issue that can be attached to any other model element.

7.1.1 View and Viewpoint

The concepts of viewpoint and view are articulated in ISO-42010 (formerly IEEE-1471). SysML viewpoint and
view constructs are consistent with the ISO-42010 standard. Typical examples may include an operational,
manufacturing, or security viewpoint and view.

Systems engineers use SysML to make models of systems-the result is the system model, which is what we
mean most of the time when we speak of “the model.” Along with that model, systems engineers may also use
SysML to make a model of the information to be presented to the stakeholders to address their concerns. The
result is the viewpoint and view model, which helps systems engineers assure that stakeholders get the
understanding they need from the system model.

The viewpoint and view model can also be thought of as a description model, which augments a system model.
A viewpoint and view model exposes elements of one or more system models. In particular, a viewpoint is a
specification of rules for constructing a view to address a set of stakeholder concerns. The view is intended to
represent the system from this viewpoint. This enables stakeholders to specify aspects of the system model that
are important to them from their viewpoint, and then represent those aspects of the system in a specific view.

The viewpoint describes the point of view of a set of stakeholders by framing the concerns of the stakeholders
along with the method for producing a view that addresses those concerns. The method describes the
expectation of what stakeholder(s) wish to see exposed from the model, how the stakeholder wishes the

information to be structured and presented, and in what kind of artifact the stakeholder wants to consume the
information. In other words, the method is the set of rules that describe how the view should express the
information from the model to address the stakeholder concerns. The method can be specified as a process and/
or a set of constraints for producing a view, which may include rules or instructions for analyzing or verifying
the view content.

The view is the modeling element that represents the artifact that is presented to the stakeholder. A view
conforms to only one viewpoint to ensure that only one method is applied to the view. The view shall be related
to the model that contains the information and the method that produces the view. The view is used by a
rendering application to generate the artifact, such as a document.

In summary, the viewpoint description specifies the following:

1 What kind of information the view should contain.

2 How the information should be expressed, i.e., what modeling language is required for the model that
will appear in the view. (Note: this is not to be confused with the language used for specifying the
viewpoint method).

3 The presentation format that specifies how the information should be presented in an artifact, e.g.,
specifying that data values should be plotted on a graph or a particular tabular style, or that both
English and Spanish text should be provided, or that photographs be shows in color with minimum
dimensions of 100 millimeters square.

4 The file format of the artifacts that are generated from the view (e.g., set of slides in ppt, a PDF, a
Word document, a web viewable format, ...).

It is important to understand that while the view is a SysML construct that exists within a SysML model,
artifacts generated from views potentially live outside of the modeling environment as the means to satisfy
stakeholder concerns. An artifact such as a movie or a PDF document is not directly incorporated in a SysML
model, while the view which represents the artifact does reside in the model as a specification of that artifact.
The relationship between the viewpoint and view model and the corresponding artifact is similar to the
relationship between the system model and the system that is the subject of the model.

7.2 Diagram Elements
Many of the diagram elements defined in this clause, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all
SysML diagram types, in addition to the diagram elements that are specific to each diagram type.

Issue(s): SYSML16-198

Table 7.1: Graphical nodes defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Comment UML4SysML::Comment

OMG Systems Modeling Language, v1.6 21

Element Name Concrete Syntax Example Abstract Syntax Reference

ConstraintNote UML4SysML::Constraint

ConstraintTextualNote UML4SysML::Constraint

ElementGroup SysML::ModelElements::Element
Group

Model UML4SysML::Model

Element Name Concrete Syntax Example Abstract Syntax Reference

PackageDiagram UML4SysML::Package

PackageWithNameInTab UML4SysML::Package

PackageWithNameInside UML4SysML::Package

Problem SysML::ModelElements::Problem

Rationale SysML::ModelElements::Rationale

OMG Systems Modeling Language, v1.6 23

Subpackage1

Subpackage2

Package1

«import»

 Package1
{uri=http://www.abc.com/models/Package1}

Element Name Concrete Syntax Example Abstract Syntax Reference

Stakeholder SysML::ModelElements::Stakeholder

View SysML::ModelElements::View

Viewpoint SysML::ModelElements::Viewpoint

Table 7.2: Graphical paths defined by ModelElements package

Element Name Concrete Syntax Example Abstract Syntax Reference

Conform UML4SysML::Conform

Element Name Concrete Syntax Example Abstract Syntax Reference

Expose SysML::ModelElements::Expose

Dependency UML4SysML::Dependency

PublicPackageImport UML4SysML::PackageImport
with
visibility = public

PrivatePackageImport UML4SysML::PackageImport
with visibility = private

PackageContainment UML4SysML::Package::ownedEl
ement

Realization UML4SysML::Realization

Refine UML4SysML::Refine

OMG Systems Modeling Language, v1.6 25

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 UML Diagram Elements not Included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is
not included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds
on, but SysML does not support this capability for user-level models.

NOTE: Combining packages that have the same named elements, resulting in merged definitions of the same
names, could cause confusion in user models and adds no inherent modeling capability, and so has been left out
of SysML.

7.3.2 Stereotypes

Package ModelElements

Figure 7.1: Stereotypes defined in package ModelElements

7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified
rules and conventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as
with other dependencies the arrow direction points from the (client/source) to the (supplier/target).

Association Ends

• base_Generalization : Generalization [1]

Constraints

Issue(s): SYSML16-274

• 1_general_is_viewpoint
The general classifier shall be an element stereotyped by Viewpoint

Viewpoint.allInstances()->exists(v | v.base_Class =
self.base_Generalization.general)

Issue(s): SYSML16-274

• 2_specific_is_view
The specific classifier shall be an element that is stereotyped by View

View.allInstances()->exists(v | v.base_Class =
self.base_Generalization.specific)

7.3.2.2 ElementGroup

Description

The ElementGroup stereotype provides a lightweight mechanism for grouping various and possibly
heterogeneous model elements by extending the capability of comments to refer to multiple annotated elements.
For example, it can group elements that are associated with a particular release of the model, have a certain risk
level, or are associated with a legacy design. The semantics of ElementGroup is modeler-defined. In particular,
the body text is not restricted. It can describe the grouped elements as well as elements or values related to the
grouped elements.

Element groups are named using the name property. The criterion for membership in an element group is
specified by the body of the comment the stereotype is applied to. By grouping elements, the modeler asserts
that the criterion of the group applies to the member. Optionally, members of an element group can be ordered
using its orderedMember property.

ElementGroups appear in diagrams as comments, and properties of the stereotype appear in the notation for
stereotype properties. Grouped elements are the annotated elements of the comment to which the stereotype is
applied. This has several implications:

 • Element groups do not own their elements and thus an element can participate in an unlimited number of
groups.
 • The elements in a group are identified by the modeler, as opposed to being the result of a query, as in views.
 • Element groups can be members of other element groups, but this does not imply that members of the first are
members of the second.

Elements related to the grouped elements are not included in the group, even though the body text can address
them. In particular, element groups annotating deeply nested properties or properties with bindings are grouping
only the properties, rather than their nesting or their bound properties.

Grouped elements are also limited to elements of models, rather than instances of values of those model
elements. In particular, element groups annotating blocks or properties are not grouping the instances of the
blocks or the values of the properties. However, since the semantics of ElementGroup is left to the modeler, the
body text can refer to related elements outside the group, such as instances and values of the grouped elements,
or to bound properties. The modeler is then responsible for writing body text that explains the implications for
the related elements. For instance:

 • A group with the criterion: "Authored by John" could annotate any model element added in the model by

OMG Systems Modeling Language, v1.6 27

John. This body text does not address any related elements. For example, if the annotated element is a property
bound to another property, the group would not imply authorship of the second property.
 • A group with the criterion: "Instances are manufactured in a foreign country" could annotate Blocks to
indicate that any instances of those Blocks are produced in a foreign country. This body text does not address
the Block itself, which is not necessarily "manufactured" in a foreign country.
 • A group with criterion: "Values are manufactured in a foreign country" could annotate properties, including
part properties, to indicate the values of the property are produced in a foreign country. This body text does not
address the property itself, which is not necessarily "manufactured" in a foreign country. Since the text is about
values of the property, it is also about values of other properties that might be bound to the annotated property,
because the values of bound properties are the same.

Attributes

• /criterion : String [0..1]
Specifies the rationale for being member of the group. Adding an element to the group asserts that the
criterion applies to this element. Derived from Comment::body.
(derived)

• /member : Element [0..*]
Set specifying the members of the group. Derived from Comment::annotatedElement.
(derived)

• name : String [1]
Name of the element group

Issue(s): SYSML16-275

• orderedMember : Element [0..*]
Organize member according to an arbitrary order. Optional.
(subsets: ElementGroup::member)

• /size : Integer [1]
Number of members in the group. Derived.
(derived)

Association Ends

• base_Comment : Comment [1]

Operations

• allGroups (in e : Element) : ElementGroup [0..*]
The query allGroups() returns the set of all the groups an element is member of.

• criterion () : String [0..1]
The query criterion() returns the text describing the criterion defining the group.

• member () : Element [0..*]
The query member() returns the set of all the members of the group.

• size () : Integer [1]
The query size() returns the number of elements which are members of the group.

7.3.2.3 Expose

Description

The expose relationship relates a view to one or more model elements. Each model element is an access point to
initiate the query. The view and the model elements related to the view are passed to the constructor when it is
invoked. The method describes how the exposed elements are navigated to extract the desired information.

Association Ends

• base_Dependency : Dependency [1]

Constraints

Issue(s): SYSML16-274

• 1_client_is_view
The client shall be an element stereotyped by View.

View.allInstances()->exists(v | v.base_Class = self.base_Dependency.client)

7.3.2.4 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement
or need, or other undesired outcome. It may be used to capture problems identified during analysis, design,
verification, or manufacture and associate the problem with the relevant model elements. Problem is a
stereotype of comment and may be attached to any other model element in the same manner as a comment.

Association Ends

• base_Comment : Comment [1]

7.3.2.5 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A
Rationale can be attached to any model element including relationships. It allows the user, for example, to
specify a rationale that may reference more detailed documentation such as a trade study or analysis report.
Rationale is a stereotype of comment and may be attached to any other model element in the same manner as a
comment.

Association Ends

• base_Comment : Comment [1]

7.3.2.6 Stakeholder

Description

A stakeholder represents a role, group, or individual who has concerns that will be addressed by the View of the
model.

Attributes

• /concern : String [0..*]
(derived)

• concernList : Comment [0..*]

OMG Systems Modeling Language, v1.6 29

Association Ends

• base_Classifier : Classifier [1]

Constraints

Issue(s): SYSML16-225, SYSML16-274

• 1_not_association
A Stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a
UML::Association.

self.base_Classifier.oclIsKindOf(UML::Actor)
or
(self.base_Classifier.oclIsKindOf(UML::Class)
and
not self.base_Classifier.oclIsKindOf(UML::Association))

• not_association
The stakeholder stereotype can only be applied to UML::Actor or UML::Class which are not a
UML::Association

(self.base_Classifier.oclIsKindOf(UML::Actor) or
self.base_Classifier.oclIsKindOf(UML::Class))
and not self.base_Classifier.oclIsKindOf(UML::Association)

7.3.2.7 View

Description

A View is a model element that represents a real world artifact that can be presented to stakeholders. The view is
the result of querying one or more models that are defined by a viewpoint method. The view shall conform to
the viewpoint in terms of the viewpoint stakeholders, concerns, method, language, and presentation
requirements.

It is sometimes desirable to construct views from other views, and to establish an order for presenting the views.
Views may include one or more views as properties, each of which conforms to their viewpoint. The order of
the referenced views is reflected in the property order.

The information may be presented to the stakeholder in any format specified by the viewpoint, which may
include figures, tables, plots, entire documents, presentation slides, or video.

Attributes

• /stakeholder : Stakeholder [0..*]
The list of stakeholders is derived from the viewpoint the view conforms to.
(derived)

• /viewpoint : Viewpoint [1]
The viewpoint for this View is derived from the conform relationship.
(derived)

Association Ends

• base_Class : Class [1]

Constraints

Issue(s): SYSML16-274

• 1_single_viewpoint
A view shall only conform to a single viewpoint

Conform.allInstances()->select(base_Generalization.specific =
self.base_Class)->size() = 1

Issue(s): SYSML16-274

• 2_viewpoint_derived_from_conform
The derived value of the viewpoint shall be the classifier stereotyped by Viewpoint that is the general
classifier of the generalization relationship stereotyped by Conform for which the View is the specific
classifier

self.viewpoint = Viewpoint.allInstances()->any(base_Class =
Conform.allInstances()->any(base_Generalization.specific =
self.base_Class).base_Generalization.general)

Issue(s): SYSML16-321,SYSML16-274

• 3_stakeholder_derived_from_conform
The derived values of the stakeholder attribute shall be the classifiers stereotyped by Stakeholder that
are the values of the stakeholder attribute of the general classifier of the generalization relationship
stereotyped by Conform for which the View is the specific classifier.

self.stakeholder = Viewpoint.allInstances()->any(base_Class =
Conform.allInstances()->any(base_Generalization.specific =
self.base_Class).base_Generalization.general).stakeholder

7.3.2.8 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference
languages and methods in another viewpoint. They specify the elements expected to be represented in the view,
and may be formally or informally defined. For example, the security viewpoint may require the security
requirements, security functional and physical architecture, and security test cases.

Attributes

• /concern : String [0..*]
The interest of the stakeholders displayed as the body of the comments from concernList.
(derived)

• concernList : Comment [0..*]
The interests of the stakeholders addressed by this viewpoint.

• language : String [0..*]
The languages used to express the models that represent content which is represented by the view. The
language specification such as its metamodel, profile, or other language specification is referred to by
its URI.

• /method : Behavior [0..*]
The behavior is derived from the method of the operation with the Create stereotype.
(derived)

• presentation : String [0..*]
The specifications prescribed for formatting and styling the view.

OMG Systems Modeling Language, v1.6 31

• purpose : String [1]
The purpose addresses the stakeholder concerns.

• stakeholder : Stakeholder [0..*]
Set of stakeholders whose concerns are to be addressed by the viewpoint.

Association Ends

• base_Class : Class [1]

Constraints

Issue(s): SYSML16-274

• 1_method_derived_from_create_operations
The derived values of the method attribute shall be the names of the methods of the operations
stereotyped by the UML Create stereotype on the classifier stereotyped by Viewpoint.

self.method = self.base_Class.allFeatures()->select(f |
f.oclIsKindOf(UML::Operation))->select(o |
Standard::Create.allInstances().base_BehavioralFeature-
>includes(o)).oclAsType(UML::Operation).method

Issue(s): SYSML16-274

• 2_create_view_operation
The property ownedOperation shall include at least one operation named "View" with the UML Create
stereotype applied.

self.base_Class.ownedOperation->exists(o | o.name='View' and
Standard::Create.allInstances().base_BehavioralFeature->includes(o))

7.4 Usage Examples
See Figure D.27 in Annex D for a View/Viewpoint example.

Figure 7.2 shows examples of Rationale and Problem elements.

Figure 7.2: Rationale and Problem Example

8 Blocks

8.1 Overview
 Blocks are modular units of system description. Each block defines a collection of features to describe a system
or other element of interest. These may include both structural and behavioral features, such as properties and
operations, to represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific
kinds of components, the kinds of connections between them, and the way these elements combine to define the
total system can all be selected according to the goals of a particular system model. SysML blocks can be used
throughout all phases of system specification and design, and can be applied to many different kinds of systems.
These include modeling either the logical or physical decomposition of a system, and the specification of
software, hardware, or human elements. Parts in these systems may interact by many different means, such as
software operations, discrete state transitions, flows of inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and
operations, and relationships such as a system hierarchy or a system classification tree. The Internal Block
Diagram in SysML captures the internal structure of a block in terms of properties and connectors between
properties. A block can include properties to specify its values, parts, and references to other blocks. Ports are a
special class of property used to specify allowable types of interactions between blocks, and are described in
Clause 9, “Ports and Flows.” Constraint Properties are a special class of property used to constrain other
properties of blocks, and are described in Clause 10 “Constraint Blocks.” Various notations for properties are
available to distinguish these specialized kinds of properties on an internal block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies
its definition. A part belonging to a block, for example, may be typed by another block. The part defines a local
usage of its defining block within the specific context to which the part belongs. For example, a block that
represents the definition of a wheel can be used in different ways. The front wheel and rear wheel can represent
different usages of the same wheel definition. SysML also allows each usage to define context-specific values
and constraints associated with the individual usage, such as 25 psi for the front tires and 30 psi for the rear
tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for
operations, this clause deals strictly with the definition of properties to describe the state of a system at any
given point in time, including relations between elements that define its structure. Clause 9, “Ports and Flows”
specifies specific forms of interactions between blocks, and the Behavioral Constructs including activities,
interactions, and state machines can be applied to blocks to specify their behavior. Clause 15, “Allocations”
describes ways to allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available
for UML classes, such as more specialized forms of associations, have been excluded from SysML blocks to
simplify the language. SysML blocks always include an ability to define internal connectors, regardless of
whether this capability is needed for a particular block. SysML Blocks also extend the capabilities of UML
classes and connectors with reusable forms of constraints, multi-level nesting of connector ends, participant
properties for composite association classes, and connector properties. SysML blocks include several notational
extensions as specified in this clause.

OMG Systems Modeling Language, v1.6 33

8.2 Diagram Elements

8.2.1 Block Definition Diagram

Issues(s): SYSML16-76, SYSML16-191, SYSML16-198

Table 8.1: Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

BlockDefinition
Diagram

SysML::Blocks::Block

UML4SysML::Package

Block SysML::Blocks::Block

Element Name Concrete Syntax Example Abstract Syntax Reference

Actor UML4SysML::Actor

ValueType SysML::Blocks::ValueType

Enumeration UML4SysML::Enumeration

PropertySpecificType SysML::Blocks::
PropertySpecificType

AbstractDefinition UML4SysML::Classifier with
isAbstract equal true

OMG Systems Modeling Language, v1.6 35

«actor»
ActorNam e

ActorNam e

«valueType»
unit = UnitName

«valueType»
ValueType1

operations

operation1(p1: Type1): Type2
operation2(q1: Type1): Type3 {redefines operation2}
op3(q1: Type1): Type2 {redefines ValueType0::op3}

property1: Type3
property2: Type4 {subsets property0}
prop3: Type5 {redefines ValueType0::property00}
/prop6: Type6 {union}
^prop7: Type7

properties

literalName1
literalName2

«enumeration»
Enum eration1

Name

{abs tract}
Name

Name
{abs tract}

Element Name Concrete Syntax Example Abstract Syntax Reference

StereotypeProperty
Compartment

UML4SysML::Stereotype

Behavior
Compartment

SysML::Blocks::Block

Namespace
Compartment

SysML::Blocks::Blocks

Structure
Compartment

SysML::Blocks::Blocks

BoundReference SysML::Blocks::Blocks,

SysML::Blocks::BoundReference,

SysML::Blocks::EndPathMultiplicity

«stereotype1»
property1 = value

«stereotype1»
Block1

owned behaviors
MySM2 (p1 : P2)
«activity» myActivity_1 (in x : Integer)

classifier behavior
«stateMachine» MySM1 ()

Block1

Element Name Concrete Syntax Example Abstract Syntax Reference

Unit UML4SysML::InstanceSpecification

QuantityKind UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

OMG Systems Modeling Language, v1.6 37

Element Name Concrete Syntax Example Abstract Syntax Reference

InstanceSpecification UML4SysML::InstanceSpecification

Namespace
Compartment

SysML::Blocks::Blocks

Structure
Compartment

SysML::Blocks::Blocks

BoundReference SysML::Blocks::Blocks,

SysML::Blocks::BoundReference,

SysML::Blocks::EndPathMultiplicity

Unit UML4SysML::InstanceSpecification

Element Name Concrete Syntax Example Abstract Syntax Reference

QuantityKind UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

InstanceSpecification UML4SysML::InstanceSpecification

OMG Systems Modeling Language, v1.6 39

Table 8.2: Graphical paths defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

Dependency UML4SysML::Dependency

Reference
Association

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

OMG Systems Modeling Language, v1.6 41

PartAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*

property2

1

association1 property1

0..*

property2

{ordered,
subsets Block0::property0}

{ordered}{redefines property0}

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*

/property2

1

association1 property1

0..*{ordered}

property2

{ordered,
subsets property0}

{redefines property0}

{union}

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

MultibranchPart
Associations

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared
Associations

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization UML4SysML::Generalization

Multibranch
Generalization

UML4SysML:Generalization

GeneralizationSet

{disjoint}
{overlapping}

UML4SysML::
GeneralizationSet

Element Name Concrete Syntax Example Abstract syntax Reference

association2

association2

Element Name Concrete Syntax Example Abstract Syntax Reference

BlockNamespace
Containment

UML4SysML::Class::nestedClassifier

ParticipantProperty UML4SysML:: Property,
UML4SysML:: AssociationClass

ConnectorProperty UML4SysML:: Property,
UML4SysML:: Connector

8.2.2 Internal Block Diagram

Issue(s): SYSML16-389, SYSML16-76, SYSML16-198

Table 8.3: Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

InternalBlockDiagram SysML::Blocks::Block

Property UML4SysML::Property

ActorPart SysML::Blocks::PartProperty typed
by UML4SysML::Actor

OMG Systems Modeling Language, v1.6 43

Element Name Concrete Syntax Example Abstract Syntax Reference

PropertySpecificType SysML::Blocks::
PropertySpecificType

BoundReference SysML::Blocks::BoundReference

Issue(s): SYSML16-389, SYSML16-395

Table 8.4: Graphical paths defined in internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

InternalBlockDiagram UML4SysML::Dependency

BindingConnector UML4SysML::Connector

BidirectionalConnector UML4SysML::Connector

UnidirectionalConnector UML4SysML::Connector

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by
SysML.

8.3.1.1.1 Block and Value Type Definitions
A SysML Block defines a collection of features to describe a system or other element of interest. A SysML
ValueType defines values that may be used within a model. SysML blocks are based on UML classes, as
extended by UML composite structures. SysML value types are based on UML data types. Diagram extensions
for SysML blocks and value types are described by other subheadings of this sub clause.

8.3.1.1.2 Default «block» stereotype on unlabeled box
If no stereotype keyword appears within a definition box on a block definition diagram (including any
stereotype property compartments), then the definition is assumed to be a SysML block, exactly as if the
«block» keyword had appeared before the name in the top compartment of the definition.

8.3.1.1.3 Labeled compartments
SysML allows blocks to have multiple compartments, each optionally identified with its own compartment
name. The compartments may partition the features shown according to various criteria. Some standard
compartments are defined by SysML itself, and others can be defined by the user using tool-specific facilities.
Compartments may appear in any order. SysML defines two additional compartments, namespace and structure
compartments, which may contain graphical nodes rather than textual constraint or feature definitions. See
separate sub clauses for a description of these compartments.

Issue(s): SYSML16-67

Compartment names shall comply with the following notation:
Shown in italics, where permitted by the font in use.

1) Centered
2) All lower case
3) Words separated by spaces

8.3.1.1.4 Behavior compartment
A compartment with the label “classifier behavior” or “owned behaviors” may appear as part of a block
definition to list the classifier behavior or owned behaviors, respectively. This compartment may contain text
representations of any kind of behavior.
Behaviors represented in this compartment are shown as a text string of the form:

Issue(s): SYSML16-199

<name> ‘(’ [<parameter-list>] ‘)’ [‘:’ [<return-type-list>]] [<behavior-constraint>]
where:

OMG Systems Modeling Language, v1.6 45

• <name> is the name of the Behavior.

• <parameter-list> is a list of Parameters of the Behavior in the format defined in UML.

• <return-type-list> is list of types, multiplicities, and other properties of parameters with return direction

<return-type-list> ::= <return-type-mult-prop> [‘,‘ <return-type-mult-prop>] *

<return-type-mult-prop> :=

<return-type> [‘[‘ <multiplicity-range> ‘]’] [‘{‘ <param-prop-list> ‘}’]]

(see UML for definition of <multiplicity-range>)

<param -prop-list> ::= <param -prop> [‘,’ <param -prop>]*

<param -prop> ::= ‘ordered’ | ‘unordered’ | ‘unique’ | ‘nonunique’ | ‘seq’ | ‘sequence’

• <behavior-constraint> is a constraint that applies to the behavior.

Other syntax defined by UML can be included, such as for applied stereotypes or the behavior's metaclass as a
keyword before the name (for example «stateMachine»).

8.3.1.1.5 Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more
constraints owned by the block. A constraint owned by the block may be shown in this compartment using the
standard text-based notation for a constraint, consisting of a string enclosed in brace characters. The use of a
compartment to show constraints is optional. The note-based notation, with a constraint shown in a note box
outside the block and linked to it by a dashed line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A
constraint property is a property of the block that is typed by a ConstraintBlock, as defined in Clause 10. Only
the declaration of the constraint property may be shown within the compartment, not the details of its
parameters or binding connectors that link them to other properties.

8.3.1.1.6 Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks that are
defined in the namespace of a containing block. This compartment may contain any of the graphical elements of
a block definition diagram. All blocks or other named elements defined in this compartment belong to the
namespace of the containing block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be
useful to show this compartment as part of a separate definition box than a box that shows only feature
compartments. Both namespace and structure compartments, which may both need a wide compartment to hold
graphical elements, could also be shown within a common definition box.

8.3.1.1.7 Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other
internal structure elements for the block being defined. This compartment may contain any of the graphical
elements of an internal block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature
definitions may be useful. Since the same block can appear more than once in the same diagram, it may be

useful to show this compartment as part of a separate definition box than a box that shows only feature
compartments. Both namespace and structure compartments, which may both need a wide compartment to hold
graphical elements, could also be shown within a common definition box.

8.3.1.1.8 BoundReference compartment

A compartment with the label “bound references” may appear as part of a block definition to show properties
with the BoundReference stereotype applied. The properties omit the “«boundReference»” prefix.

Issue(s): SYSML16-191

8.3.1.1.9 Receptions compartment

A compartment with the label “receptions” may appear as part of a block definition to show signal receptions.
The “«signal»” keyword is optional in this compartment

8.3.1.1.10 Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared
association has a default multiplicity of [0..1] on the black or white diamond end. A unidirectional association
has a default multiplicity of 1 on its target end. These multiplicities may be assumed if not shown on a diagram.
To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.1.11 Property-specific type

Issue(s): SYSML16-76

The notation for properties typed by a property-specific type shows the name of the most specific generalization
of the property-specific type that is not a property-specific type (or nothing if there is no generalization)
between parentheses after the name of the property-specific type (or after the colon if the property-specific type
has no name).

The keyword for PropertySpecificType is «pst».

8.3.1.1.12 Unit Notation

Units on value properties

Value properties can optionally display the unit’s symbol in parentheses if value type has a unit defined.

If no unit symbol is defined, then the unit name can optionally be displayed.

<vpname> ":" <valueTypename> [" (" <unitSymbol | unitName> ")"]

e.g., distance:Length (m)

8.3.1.1.13 Units on values

Any ValueSpecification can optionally display the unit's symbol if it has a type which is a ValueType.

If ValueSpecification has no type and it is used as a value of a slot, then it takes the unit from defining feature
type.

If ValueSpecification has no type and it is used as a default value of a value property, it takes the unit from that
property type.

If no unit symbol is defined, then the unit name may be displayed.

OMG Systems Modeling Language, v1.6 47

<value> [" " <unitSymbol | unitName>]

e.g., distance:Length = 10 m

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as
defined by SysML.

8.3.1.2.1 Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See 8.3.2.4 for definitions of these property types.) A part or value property is always
shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline
box, consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in
Clause 9, “Ports and Flows.” Constraint properties and their parameters also have their own notations as defined
in Clause 10, “Constraint Blocks.”

8.3.1.2.2 Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand
corner of the diagram frame) shall identify the name of a SysML block as its modelElementName. (See Annex
A for the definition of a diagram heading name including the modelElementName component.) All the
properties and connectors that appear inside the internal block diagram belong to the block that is named in the
diagram heading name.

8.3.1.2.3 Compartments on internal properties

Issue(s): SYSML16-76

SysML permits any property shown on an internal block diagram to also show compartments within the
property box. These compartments may be given standard or user-customized labels just as on block definitions.
All features shown within these compartments shall match those of the block or value type that types the
property. An unlabeled compartment on an internal property box is by default a structure compartment. A
behavior compartment label and content shall match the corresponding behavior compartment of the block that
types the part. A compartment with the label “classifier behavior” or “owned behaviors” may contain the
classifier behavior or owned behaviors of the block that types the part which will then appear as specified in
8.3.1.1.4, Behavior compartment.

The label of any compartment shown on the property box that displays contents belonging to the type of the
property is shown with a colon character (“:”) preceding the compartment label. The compartment name is
otherwise the same as it would appear on the type on a block definition diagram.

8.3.1.2.4 Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block
diagram. These compartments shall always follow an initial compartment that always shows the internal
structure of a referenced block. These compartments may have all the same contents as could be shown on a
block definition diagram for the block defined at the top level of the diagram frame.

8.3.1.2.5 Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form
of name references a nested property accessible through a sequence of intermediate properties from a
referencing context. The name of the referenced property is built by a string of names separated by “.”, resulting
in a form of path name that identifies the property in its local context. A colon and the type name for the
property may optionally be shown following the dotted name string. If any of the properties named in the path
name string identifies a reference property, the property box is shown with a dashed-outline box, just as for any
reference property on an internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of
nested property boxes, with the names in the dotted string taken from the name that would appear at each level
of nesting. In other words, the internal property shown with a path name in the left-hand side of Figure 8.1 is
equivalent to the innermost nested box shown at the right.

If the property has no name, the property’s type name can be used instead.

e.g., car:Engine:Cylinder:Piston.length

car.e.c.p.length

Figure 8.1: Nested property reference

8.3.1.2.6 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them.
The connector is owned by the most immediate block that owns both ends of the connector. A
NestedConnectorEnd stereotype of a UML ConnectorEnd is automatically applied to any connector end that is
nested more than one level deep within a containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties
that a connector line may cross. The need for nested connector ends can be avoided if additional properties can
be added to the block at each containing level. Nested connector ends are available for cases where the
introduction of these intermediate properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of
decomposition be shown on the same diagram.

OMG Systems Modeling Language, v1.6 49

8.3.1.2.7 Property-specific type

Issue(s): SYSML16-76

The notation for properties typed by a property-specific type shows the name of the most specific generalization
of the property-specific type that is not a property-specific type (or nothing if there is no generalization)
between parentheses after the name of the property-specific type (or after the colon if the property-specific type
has no name).

8.3.1.2.8 Initial values compartment

A compartment with a label of “initialValues” may be used to show values of properties belonging to a
containing block. These values override any default values that may have been previously specified on these
properties on their originally defining block. Initial value compartments may be specified within nested
properties, which then apply only in the particular usage context defined by the outermost containing block.

Values are specified in an initialValues compartment by lines in the form <property-name> = <value-
specification> or <property-name> : <type> = <value-specification>, each line of which specifies the initial
value for one property owned either by the block that types the property or by any of its supertypes. This
portion of concrete syntax is the same as may be shown for values within the UML instance specification
notation, but this is the only element of UML InstanceSpecification notation that may be shown in an initial
values compartment. See 8.3.2.4 for details of how values within initialValues compartments are represented in
the SysML metamodel.

8.3.1.2.9 Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not
shown on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a
diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

Issue(s): SYSML16-299, SYSML16-300

The supported variety of notations for associations and association annotations has been reduced to simplify the
burden of teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and
metamodel support for n-ary associations and qualified associations has been excluded from SysML. The use
of navigation arrowheads on an association has been simplified by excluding the case of arrowheads on both
ends, and requiring that such an association always be shown without arrowheads on either end. An “X” on a
single end of an association to indicate that an end is not navigable has similarly been dropped, as has the use of
a small filled dot at the end of an association to indicate that the end is owned by the associated classifier.

Issue(s): SYSML16-154

UML allows representing owned attributes using an association-like notation (see UML 2.5 Figure 9-12). This
notation does not show any multiplicity on the opposite end since there is no corresponding property. In such a
case, the multiplicity on the opposite side of the association-like notation is the less constrained possible. That
is: "0..1" if the attribute has a composite aggregation and "0..*" otherwise. However, it is a common practice for
modelers to assume that, when not shown, the multiplicity of an association end is the default multiplicity (i.e.
"1..1"). This might create ambiguity because there is no practical way to distinguish between the association-
like notation and a "true" association. The association-like notation is excluded from SysML to avoid it.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType
specialization of UML DataType) is not supported. Whether or not a value type definition has internal structure
can be determined from the value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this clause.
Other SysML clauses add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes

8.3.2.1 Package Blocks

Figure 8.2: Abstract syntax extensions for SysML blocks

Figure 8.3: Abstract syntax extensions for SysML properties

OMG Systems Modeling Language, v1.6 51

Figure 8.4: Abstract syntax extensions for SysML value types

Figure 8.5: Abstract syntax extensions for SysML property paths

«metaclass»
UML4SysML::Element

«stereotype»
ElementPropertyPath

«metaclass»
UML4SysML::Property

1..**

propertyPath
{ordered, nonunique}

«metaclass»
UML4SysML::

DirectedRelationship

«stereotype»
DirectedRelationshipPropertyPath

0..*

*

sourcePropertyPath
{ordered, nonunique}

0..*

*

targetPropertyPath
{ordered, nonunique}

«metaclass»
UML4SysML::Classifier

0..1*

sourceContext

0..1*

targetContext

Figure 8.6: Abstract syntax extensions for SysML connector ends

Figure 8.7: Abstract syntax extensions for SysML property-specific types

Figure 8.8: Abstract syntax extensions for SysML bound references

OMG Systems Modeling Language, v1.6 53

«metaclass»
UML4SysML::Property

lower : Integer [0..1] = 0
upper : UnlimitedNatural [0..1] = unlimited

«stereotype»
EndPathMultiplicity

boundEnd : ConnectorEnd
/bindingPath : Property [1..*] {ordered, nonunique}

«stereotype»
BoundReference

Figure 8.9: Abstract syntax extensions for SysML adjunct properties and classifier behavior properties

8.3.2.2 AdjunctProperty

Description

The AdjunctProperty stereotype can be applied to properties to constrain their values to the values of connectors
typed by association blocks, call actions, object nodes, variables, parameters, interaction uses, and submachine
states. The values of connectors typed by association blocks are the instances of the association block typing a
connector in the block having the stereotyped property. The values of call actions are the executions of
behaviors invoked by the behavior having the call action and the stereotyped property (see 11.3.1.1 , Notation
for more about this use of the stereotype). The values of object nodes are the values of tokens in the object
nodes of the behavior having the stereotyped property (see 11.3.1.4.1 , Notation for more about this use of the
stereotype). The values of variables are those assigned by executions of activities that have the stereotyped
property. The values of parameters are those assigned by executions of behaviors that have the stereotyped
property. The keyword «adjunct» before a property name indicates the property is stereotyped by
AdjunctProperty.

Association Ends

• base_Property : Property [1]

Issue(s): SYSML16-180

• principal : Element [1]
Gives the element that determines the values of the property.

Constraints

Issue(s): SYSML16-274

• 10_multiplicity_same_or_less_restrictive
Properties with AdjunctProperty applied that have a Variable or Parameter as principal shall have a
lower multiplicity the same as or lower than the lower multiplicity of their principal, and an upper
multiplicity the same as or higher than the upper multiplicity of their principal

 self.principal.oclIsKindOf(UML::MultiplicityElement) implies
self.base_Property.lower <=
self.principal.oclAsType(UML::MultiplicityElement).lower and
self.base_Property.upper >=
self.principal.oclAsType(UML::MultiplicityElement).upper

Issue(s): SYSML16-274

• 11_submachine_and_interactionuse_composite_and _compatible_type
Properties with AdjunctProperty applied that have an InteractionUse or submachine State as principal
shall be composite and be typed by the interaction or state machine invoked by the interaction use or
submachine State or one of their generalizations.

 self.principal.oclIsKindOf(UML::InteractionUse) or
self.principal.oclIsKindOf(UML::State) implies let behavior: UML::Behavior =
if self.principal.oclIsKindOf(UML::InteractionUse) then
self.principal.oclAsType(UML::InteractionUse).refersTo else
self.principal.oclAsType(UML::State).submachine endif in if
behavior.oclIsUndefined() then self.base_Property.type->isEmpty() else
self.base_Property.type->notEmpty() and behavior->closure(generalization)-
>including(behavior)->includes(self.base_Property.type) endif

Issue(s): SYSML16-274

• 1_principal_kind
The principal of an applied AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable,
Parameter, submachine State, or InteractionUse.

self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::CallAction) or
self.principal.oclIsKindOf(UML::ObjectNode) or
self.principal.oclIsKindOf(UML::Variable) or
self.principal.oclIsKindOf(UML::Parameter) or
self.principal.oclIsKindOf(UML::InteractionUse) or
(self.principal.oclIsKindOf(UML::State) and
self.principal.oclAsType(UML::State).isSubmachineState)

Issue(s): SYSML16-180, SYSML16-274

• 2_same_name
Properties to which AdjunctProperty applied shall have the same name as the principal, if the principal
is a NamedElement.

 self.principal.oclIsKindOf(UML::NamedElement) implies self.base_Property.name
= self.principal.oclAsType(UML::NamedElement).name

Issue(s): SYSML16-274

• 3_connector_and_callaction_composite
Properties with AdjunctProperty applied that have a Connector or CallAction as principal shall be
composite.

 self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::CallAction) implies
self.base_Property.isComposite()

Issue(s): SYSML16-274

• 4_same_owner
Properties with AdjunctProperty applied shall be owned by an element that owns the principal, at least
indirectly, or one of that element's specializations.

let owners: Set(UML::Element) = self.principal->closure(owner) in let
specializations: Set(UML::Element) = UML::Classifier.allInstances()->select(c
| c->closure(general)->intersection(owners)->notEmpty()) in owners-
>union(specializations)->includes(self.base_Property.owner)

OMG Systems Modeling Language, v1.6 55

Issue(s): SYSML16-274

• 5_compatible_type
Properties with AdjunctProperty applied that have as principal a Connector, ObjectNode, Variable, or
Parameter shall have the same type as the principal or one of that type's generalizations.

 self.principal.oclIsKindOf(UML::Connector) or
self.principal.oclIsKindOf(UML::Variable) or
self.principal.oclIsKindOf(UML::Parameter) implies let principal_type:
UML::Classifier = if self.principal.oclIsKindOf(UML::Connector) then
self.principal.oclAsType(UML::Connector).type else
self.principal.oclAsType(UML::TypedElement).type.oclAsType(UML::Classifier)
endif in principal_type->closure(general)->including(principal_type)-
>includes(self.base_Property.type)

Issue(s): SYSML16-274

• 6_connector_principal_associationblock
Connectors that are principals of an applied AdjunctProperty shall have association blocks as types

 self.principal.oclIsKindOf(UML::Connector) implies let type: UML::Association
= self.principal.oclAsType(UML::Connector).type in
Block.allInstances().base_Class->includes(type)

Issue(s): SYSML16-274

• 7_adjunctproperty_connectorproperty_consistent
AdjunctProperty and ConnectorProperty applied to the same property shall have the same values for
principal and connector, respectively.

 AdjunctProperty.allInstances()->forAll(ap | let cp: ConnectorProperty =
ConnectorProperty.allInstances()->any(base_Property=ap.base_Property) in (not
cp.oclIsUndefined()) implies cp.connector = ap.principal)

Issue(s): SYSML16-274

• 8_callAction_composite_and_consitent_type
Properties with AdjunctProperty applied that have a CallAction as principal shall be composite and be
typed by the behavior invoked by the call action or one of that behavior's generalizations (for
CallOperationActions, this shall generalize all behaviors that might be dispatched), and an upper
multiplicity of one if the CallAction invokes a nonreentrant behavior.

self.principal.oclIsKindOf(UML::CallAction) implies if
self.principal.oclIsKindOf(UML::CallOperationAction) then let called:
Set(UML::Behavior) =
self.principal.oclAsType(UML::CallOperationAction).operation.method in if
called->isEmpty() then self.base_Property.type->isEmpty() else
self.base_Property.type->notEmpty() and called->forAll(b | b.general-
>including(b)->includes(self.base_Property.type)) endif else let called:
UML::Behavior = if self.principal.oclIsKindOf(UML::CallBehaviorAction) then
self.principal.oclAsType(UML::CallBehaviorAction).behavior else
self.principal.oclAsType(UML::StartObjectBehaviorAction).behavior() endif in
if called.oclIsUndefined() then self.base_Property.type.oclIsUndefined() else
let behaviors: Set(UML::Behavior) = called-
>closure(generalization).oclAsType(UML::Behavior)->including(called)->asSet()
in self.base_Property.type->notEmpty() and behaviors-
>includes(self.base_Property.type) endif endif

Issue(s): SYSML16-274

• 9_objectnode_multiplicity
Properties with AdjunctProperty applied that have an ObjectNode as principal shall have a lower

multiplicity of zero and an upper multiplicity the same as or higher than the upperBound of the
ObjectNode.

self.principal.oclIsKindOf(UML::ObjectNode) implies self.base_Property.lower =
0 and self.base_Property.upper >=
self.principal.oclAsType(UML::ObjectNode).upperBound.unlimitedValue()

8.3.2.3 BindingConnector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal
values. If the properties at the ends of a binding connector are typed by a ValueType, the connector specifies
that the instances of the properties shall hold equal values, recursively through any nested properties within the
connected properties. If the properties at the ends of a binding connector are typed by a Block, the connector
specifies that the instances of the properties shall refer to the same block instance. As with any connector owned
by a SysML Block, the ends of a binding connector may be nested within a multi-level path of properties
accessible from the owning block. The NestedConnectorEnd stereotype is used to represent such nested ends
just as for nested ends of other SysML connectors.

Association Ends

• base_Connector : Connector [1]

Constraints

Issue(s): SYSML16-274

• 1_compatible_types
The two ends of a binding connector shall have either the same type or types that are compatible so
that equality of their values can be defined.

self.base_Connector.end->at(1).role.type.conformsTo(self.base_Connector.end-
>at(2).role.type) or self.base_Connector.end-
>at(2).role.type.conformsTo(self.base_Connector.end->at(1).role.type)

8.3.2.4 Block

Description

Issue(s): SYSML16-185

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that
the system may exhibit. Some of these properties may hold parts of a system, which can also be described by
blocks that type the properties. Properties without types do not restrict the instances that can be values of the
properties, as if they had the most general type possible. A block may include a structure of connectors between
its properties to indicate how its parts or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the
ability to represent a system hierarchy, in which a system at one level is composed of systems at a more basic
level. They can describe not only the connectivity relationships between the systems at any level, but also
quantitative values or other information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable
form of description that may be applied to a system or a set of system characteristics may be described by a
block. Such reusable descriptions, for example, may be applied to purely conceptual aspects of a system design,
such as relationships that hold between parts or properties of a system.

OMG Systems Modeling Language, v1.6 57

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of
the same containing block. Connectors can be typed by associations, which can specify more detail about the
links between parts or other properties of a system, along with the types of the connected properties.
Associations can also be blocks, and when used to type connectors give relationships their own interconnected
parts and other properties. Connectors without types do not restrict the way the connected properties are linked
together, as if they had the most general type possible. Connectors have both structural and behavioral
functions, which can be used together or separately. Connectors as structure specify links between parts or other
properties of a system. Connectors as behavior specify communication and item flow between parts or other
properties. Connected properties can be linked without specifying communication and item flow, or can specify
communication and item flow without specifying a particular kind of link, or both.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the
association. In SysML, navigation is equivalent to a named property owned directly by a block. The only form
of an association end that SysML allows an association to own directly is an unnamed end used to carry an
inverse multiplicity of a reference property. This unnamed end provides a metamodel element to record an
inverse multiplicity, to cover the specific case of a unidirectional reference that defines no named property for
navigation in the inverse direction. SysML enforces its equivalence of navigation and ownership by means of
constraints that the block stereotype enforces on the existing UML metamodel.

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property
typed by a SysML Block that has composite aggregation is classified as a part property, except for the special
case of a constraint property. Constraint properties are further defined in clause 10 . A port is another category
of property, as further defined in Section 9 . A property typed by a Block that does not have composite
aggregation is classified as a reference property. A property typed by a SysML ValueType is classified as a value
property, and always has composite aggregation. Part, reference, value, and constraint properties may be shown
in block definition compartments with the labels "parts," "references," "values," and "constraints" respectively.
Properties of any type may be shown in a "properties" compartment or in additional compartments with user-
defined labels.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in
UML, an instance of a block may be included in at most one instance of a block at a time, though possibly as a
value of more than one part property of the containing block. A part property holds instances that belong to a
larger whole. Typically, a part- whole relationship means that certain operations that apply to the whole also
apply to each of the parts. For example, if a whole represents a physical object, a change in position of the
whole could also change the position of each of the parts. A property of the whole such as its mass could also be
implied by its parts. Operations and relationships that apply to parts typically apply transitively across all parts
of these parts, through any number of levels. A particular application domain may establish its own
interpretation of part-whole relationships across the blocks defined in a particular model, including the
definition of operations that apply to the parts along with the whole. For software objects, a typical
interpretation is that delete, copy, and move operations apply across all parts of a composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an
association. Like UML, SysML defines no specific semantics or constraints for properties with shared
aggregation, but particular models or tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an
optional "=" <value-specification> string following the rest of a property definition), SysML supports an
additional form of value specification for properties using initialValue compartments on an internal block
diagram (see Internal Block Diagram on page 46). An entire tree of context-specific values can be specified on a
containing block to carry values of nested properties as shown on an internal block diagram.

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of
UML ValueSpecification. Selected slots of UML instance specifications referenced by these instance values
carry the individual values shown in initialValue compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its
type, then the default value of that property shall be a UML InstanceValue element. This element shall reference
a UML InstanceSpecification element created to hold the initial values of the individual properties within its
usage context.

Selected slots of the referenced instance specification shall contain value specifications for the individual
property values specified in a corresponding initialValues compartment. If a value of a property is shown by a
nested property box with its own initialValues compartment, then the slot of the instance specification for the
containing property shall hold a new InstanceValue element. Selected slots of the instance specification
referenced by this value shall contain value specifications for any nested initial values, recursively through any
number of levels of nesting. A tree of instance values referencing instance specifications, each of which may in
turn hold slots carrying instance values, shall exist until self- contained value specifications are reached at the
leaf level.

Attributes

• isEncapsulated : Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only be connected
via its ports or directly to its outer boundary. If false, or if a value is not present, then connections can
be established to elements of its internal structure via deep-nested connector ends.

Association Ends

• base_Class : Class [1]

Constraints

Issue(s): SYSML16-274

• 1_associations_binary
For an association in which both ends are typed by blocks, the number of ends shall be exactly two

UML::Association.allInstances()->select(a| a.memberEnd->forAll(e| e.type-
>notEmpty() and Block.allInstances().base_Class->includes(e.type)))->forAll(a
| a.memberEnd->size()=2)

Issue(s): SYSML16-274

• 2_connectors_binary
The number of ends of a connector owned by a block shall be exactly two. (In SysML, a binding
connector is not typed by an association, so this constraint is not implied entirely by the preceding
constraint.)

self.base_Class.ownedConnector->forAll(c | c.end->size()=2)

Issue(s): SYSML16-274, SYSML16-154, SYSML16-295, SYSML16-303

• 5_uml_connector_constraint_removed
The following constraint under 11.8, "Connector" in the UML 2 standard is removed by SysML: "The
ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of
the Classifier that owned the Connector, or they must be ports of such roles

-- Cannot be expressed in OCL

OMG Systems Modeling Language, v1.6 59

Issue(s): SYSML16-274

• 6_valueproperties_composite
If a property owned by a SysML Block or SysML ValueType is typed by a SysML ValueType, then the
aggregation attribute of the property shall be "composite."

self.base_Class.ownedAttribute->select(a|
ValueType.allInstances().base_DataType->includes(a.type))->forAll(a|
a.isComposite())

Issue(s): SYSML16-274

• 7_composition_acyclic
Within an instance of a SysML Block, the values of any property with composite aggregation
(aggregation = composite) shall not contain the block in any of its own properties that also have
composite aggregation, or within any unbroken chain of properties that all have composite
aggregation. (Within an instance of a SysML Block, the instances of properties with composite
aggregation shall form an acyclic graph.)

self.base_Class->closure(part->select(p|
p.type.oclIsKindOf(UML::Class)).type.oclAsType(UML::Class))-
>excludes(self.base_Class)

Issue(s): SYSML16-274

• 8_specializations_are_blocks
Any classifier that specializes a Block shall also have the Block stereotype or one of its specializations
applied.

UML::Classifier.allInstances()->select(c | c.general-
>includes(self.base_Class))->forAll(c | Block.allInstances()->includes(c))

Issue(s): SYSML16-274, SYSML16-295, SYSML16-303

• 9_uml constraint_removed
The following constraint under 11.8,"ConnectorEnd" in the UML 2 standard is removed by SysML:
"[3] The property held in self.partWithPort must not be a Port."

-- cannot be expressed in OCL

8.3.2.5 BoundReference

Generalizations

 EndPathMultiplicity (from Blocks)

Attributes

• /bindingPath : Property [1..*]
Gives the propertyPath of the NestedConnectorEnd applied, if any, to the boundEnd, appended to the
role of the boundEnd.
(derived)

• boundEnd : ConnectorEnd [1]
 Gives a connector end of a binding connector opposite to the end linked to the stereotyped property, or
linked to a property that generalizes the stereotyped one through redefinition.

Constraints

Issue(s): SYSML16-274

• 1_bindingconnector_end
Properties to which BoundReference is applied shall be the role of a connector end of at least one
binding connector, or generalized by such a property through redefinition

BindingConnector.allInstances().base_Connector.end.role->exists(r |
r=self.base_Property or self.base_Property->closure(redefinedElement)-
>includes(r))

Issue(s): SYSML16-274

• 2_opposite_bindingconnector_end
The value of boundEnd shall be a connector end of a binding connector, as identified in constraint 1,
opposite the property, as identified in constraint 1.

let opposite: UML::ConnectorEnd =
BindingConnector.allInstances().base_Connector.end->any(e |
e.role=self.base_Property or self.base_Property->closure(redefinedElement)-
>includes(e.role)) in self.boundEnd =
opposite.owner.oclAsType(UML::Connector).end->any(e | e<>opposite)

Issue(s): SYSML16-274

• 3_navigable
The role of boundEnd shall be a property accessible by navigation from instances of the block owning
the property to which BoundReference is applied, but shall not be the property to which
BoundReference is applied, or one that it is related to by redefinition.

self.base_Property.association->notEmpty() and self.boundEnd.definingEnd-
>notEmpty() and self.base_Property.association.navigableOwnedEnd-
>includes(self.boundEnd.definingEnd)

Issue(s): SYSML16-274

• 4_propertypath_consistency
The last value of bindingPath shall be the role of boundEnd, and the other values shall be the
propertyPath of the NestedConnectorEnd applied to boundEnd, if any.

self.boundEnd = self.bindingPath->last() and (let nce: NestedConnectorEnd =
NestedConnectorEnd.allInstances()->any(n| n.base_ConnectorEnd=self.boundEnd)
in nce->oclIsUndefined() or self.bindingPath->subSequence(1, self.bindingPath-
>size()-1) = nce.propertyPath)

Issue(s): SYSML16-274

• 5_reference_or_valueproperty
Properties to which BoundReference is applied shall either be reference properties or value properties.

ValueType.allInstances().base_DataType->includes(self.base_Property.type) or
not self.base_Property.isComposite()

Issue(s): SYSML16-274

• 6_ordered_nonunique
Properties with BoundReference applied that have an upper multiplicity greater than one shall be
ordered and non-unique.

self.base_Property.upper > 1 implies self.base_Property.isOrdered and not
self.base_Property.isUnique

OMG Systems Modeling Language, v1.6 61

Issue(s): SYSML16-274

• 7_cannot_redefine_boundreference
BoundReferences shall not be applied to properties that are related by redefinition to other properties
with BoundReference applied.

self.base_Property.redefinedElement->notEmpty() implies
BoundReference.allInstances().base_Property-
>excludesAll(self.base_Property.redefinedElement)

Issue(s): SYSML16-274

• 8_notbounded_to_itslef
The binding connector identified in constraint 1 shall not have the same property on both ends, or
properties related by redefinition.

let e1: UML::ConnectorEnd = self.boundEnd.owner.oclAsType(UML::Connector).end-
>at(1) in let e2: UML::ConnectorEnd =
self.boundEnd.owner.oclAsType(UML::Connector).end->at(2) in e1.role <> e2.role
and (e1.role.oclIsKindOf(UML::Property) and e2.role.oclIsKindOf(UML::Property)
implies e1.role.oclAsType(UML::Property).redefinedElement->excludes(e2.role)
and e2.role.oclAsType(UML::Property).redefinedElement->excludes(e1.role))

8.3.2.6 ClassifierBehaviorProperty

Description

The ClassifierBehaviorProperty stereotype can be applied to properties to constrain their values to be the
executions of classifier behaviors. The value of properties with ClassifierBehaviorProperty applied are the
executions of classifier behaviors invoked by instantiation of the block that owns the stereotyped property or
one of its specializations.

Association Ends

• base_Property : Property [1]

Constraints

Issue(s): SYSML16-274

• 1_owner_classifierbehavior
ClassifierBehaviorProperty shall only be applied to properties owned (not inherited) by blocks that
have classifier behaviors.

Block.allInstances().base_Class->exists(c | c.ownedAttribute-
>includes(self.base_Property) and c.classifierBehavior->notEmpty())

Issue(s): SYSML16-274

• 2_composite
Properties to which ClassifierBehaviorProperty is applied shall be composite

self.base_Property.isComposite

Issue(s): SYSML16-274

• 3_typed_by_classifierbehavior
Properties to which ClassifierBehaviorProperty applied shall be typed by the classifier behavior of
their owning block or a generalization of the classifier behavior.

let clBehavior: UML::Behavior =
self.base_Property.owner.oclAsType(UML::Class).classifierBehavior in
self.base_Property.type->notEmpty() and clBehavior->closure(general)-
>including(clBehavior)->includes(self.base_Property.type)

8.3.2.7 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see
ParticipantProperty on page 60). These connectors specify instances of the association block created within the
instances of the block that owns the connector. The values of a connector property are instances of the
association block created due to the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the
connector line to a rectangle notating the connector property. The keyword «connector» before a property name
indicates the property is stereotyped by ConnectorProperty.

Attributes

• connector : Connector [1]
A connector of the block owning the property on which the stereotype is applied.

Association Ends

• base_Property : Property [1]

Constraints

• 1_block_property
ConnectorProperty shall only be applied to properties of classes stereotyped by Block.

Block.allInstances().base_Class->exists(c | c.ownedAttribute-
>includes(self.base_Property))

• 2_owned_or_inherited
The connector attribute of the applied stereotype shall refer to a connector owned or inherited by a
block owning the property on which the stereotype is applied.

let owner: UML::Class = Block.allInstances().base_Class->any(c |
c.ownedAttribute->includes(self.base_Property)) in owner->closure(general)-
>select(oclIsKindOf(UML::Class)).oclAsType(UML::Class).ownedConnector-
>flatten()->includes(self.connector)

• 3_composite
The aggregation of a property stereotyped by ConnectorProperty shall be composite.

self.base_Property.isComposite

• 4_typed_by_associationblock
The type of the connector referred to by a connector attribute shall be an association class stereotyped
by Block.

Block.allInstances().base_Class->exists(c |
c.oclIsKindOf(UML::AssociationClass) and self.connector.type = c)

• 5_same_name
A property stereotyped by ConnectorProperty shall have the same name and type as the connector
referred to by the connector attribute.

self.base_Property.name = self.connector.name

8.3.2.8 DirectedRelationshipPropertyPath

Description

The DirectedRelationshipPropertyPath stereotype based on UML DirectedRelationship enables directed
relationships to identify their sources and targets by a multi-level path of properties accessible from context

OMG Systems Modeling Language, v1.6 63

blocks for the sources and targets. Context blocks are typically the owner of the first property in the path of
properties, but can be specializations of the owner to limit the scope of the relationship.

Association Ends

• base_DirectedRelationship : DirectedRelationship [1]

• sourceContext : Classifier [0..1]
Gives the context for sourcePropertyPath to begin from.

• sourcePropertyPath : Property [0..*]
A series of properties that identifies the source of the directed relationship in the context of the block
specified by the sourceContext property. The ordering of properties is from a property of the
sourceContext block, through a property of each intermediate block that types the preceding property,
ending in a property with a type that owns or inherits the source of the directed relationship. The
source is not included in the propertyPath list. The same property might appear more than once
because a block can own a property with the same or specialized block as a type.

• targetContext : Classifier [0..1]
Gives the context for targetPropertyPath to begin from.

• targetPropertyPath : Property [0..*]
A series of properties that identifies the target of the directed relationship in the context of the block
specified by the targetContext property. The ordering of properties is from a property of the
targetContext block, through a property of each intermediate block that types the preceding property,
ending in a property with a type that owns or inherits the target of the directed relationship. The target
is not included in the propertyPath list. The same property might appear more than once because a
block can own a property with the same or specialized block as a type.

Constraints

Issue(s): SYSML16-274

• 1_sourcecontext_iif_property
sourceContext shall have a value when source is a property, otherwise it shall not have a value

self.base_DirectedRelationship.source->exists(s |
s.oclIsKindOf(UML::Property)) xor self.sourceContext->isEmpty()

Issue(s): SYSML16-274

• 2_targetcontext_iif_property
targetContext shall have a value when target is a property, otherwise it shall not have a value.

self.base_DirectedRelationship.source->exists(s |
s.oclIsKindOf(UML::Property)) xor self.sourceContext->isEmpty()

Issue(s): SYSML16-274

• 3_sourcepropertypath_implies_property
source shall be a property when sourcePropertyPath has a value.

self.sourcePropertyPath->notEmpty() implies
self.base_DirectedRelationship.source->forAll(s |
s.oclIsKindOf(UML::Property))

Issue(s): SYSML16-274

• 4_targetpropertypath_implies_property
target shall be a property when targetPropertyPath has a value.

self.targetPropertyPath->notEmpty() implies
self.base_DirectedRelationship.target->forAll(s |
s.oclIsKindOf(UML::Property))

Issue(s): SYSML16-274

• 5_sourcecontext_owns_sourcepath_first
The property in the first position of the sourcePropertyPath list, if any, shall be owned by the
sourceContext or one of its generalizations

self.sourcePropertyPath->notEmpty() implies
self.sourceContext.allAttributes()->includes(self.sourcePropertyPath->first())

Issue(s): SYSML16-274

• 6_targetcontext_owns_targetpath_first
The property in the first position of the targetPropertyPath list, if any, shall be owned by the
targetContext or one of its generalizations.

self.targetPropertyPath->notEmpty() implies
self.targetContext.allAttributes()->includes(self.targetPropertyPath->first())

Issue(s): SYSML16-274

• 7_path_and_owners_consistency
The property at each successive position of the sourcePropertyPath and targetPropertyPath, following
the first position, shall be owned by the Block or ValueType that types the property at the immediately
preceding position, or a generalization of the Block or ValueType.

(self.sourcePropertyPath->size() >1 implies self.sourcePropertyPath-
>subSequence(2, self.sourcePropertyPath->size())->forAll(p | let pp:
UML::Property = self.sourcePropertyPath->at(self.sourcePropertyPath-
>indexOf(p)-1) in let owners: Set(UML::Classifier) =
pp.type.oclAsType(UML::Classifier)-
>including(pp.type.oclAsType(UML::Classifier)) in owners->includes(p.owner)))
and (self.targetPropertyPath->size() >1 implies self.targetPropertyPath-
>subSequence(2, self.targetPropertyPath->size())->forAll(p | let pp:
UML::Property = self.targetPropertyPath->at(self.targetPropertyPath-
>indexOf(p)-1) in let owners: Set(UML::Classifier) =
pp.type.oclAsType(UML::Classifier)-
>including(pp.type.oclAsType(UML::Classifier)) in owners->includes(p.owner)))

Issue(s): SYSML16-274

• 8_sourcepath_last_type_owns_source
The type of the property at the last position of the sourcePropertyPath list shall own or inherit the
source of the stereotyped directed relationship.

self.sourcePropertyPath->notEmpty() implies self.sourcePropertyPath-
>last().type.oclAsType(UML::Classifier).allAttributes()-
>includesAll(self.base_DirectedRelationship.source)

Issue(s): SYSML16-274

• 9_targetpath_last_type_owns_target
The type of the property at the last position of the targetPropertyPath list shall own or inherit the target
of the stereotyped directed relationship.

self.targetPropertyPath->notEmpty() implies self.targetPropertyPath-
>last().type.oclAsType(UML::Classifier).allAttributes()-
>includesAll(self.base_DirectedRelationship.target)

OMG Systems Modeling Language, v1.6 65

8.3.2.9 DistributedProperty

Description

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the
property. Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the
operands of the distributions represented by properties of those stereotype subclasses. A sample set of
probability distributions that could be applied to value properties is given in clause 22.7 .

Association Ends

• base_Property : Property [1]

Constraints

Issue(s): SYSML16-274

• 1_block_or_valuetype
The DistributedProperty stereotype shall only be applied to properties of classifiers stereotyped by
Block or ValueType.

Block.allInstances().base_Class.oclAsType(UML::Classifier)-
>union(ValueType.allInstances().base_DataType)-
>includes(self.base_Property.owner)

8.3.2.10 ElementPropertyPath

Description

The ElementPropertyPath stereotype based on UML Element enables elements to identify other elements by a
multi-level path of properties accessible from a context block. The context block is described in specializations
of ElementPropertyPath.

Association Ends

• base_Element : Element [1]

• propertyPath : Property [1..*]
A series of properties that identifies elements in the context of a block described in specializations of
ElementPropertyPath. The ordering of properties is from a property of the context block, through a
property of each intermediate block that types the preceding property, ending in a property with a type
that owns or inherits the fully nested property. The fully nested property is not included in the
propertyPath list, but is given by the element to which the ElementPropertyPath is applied in a way
described in specializations of ElementPropertyPath. The same property might appear more than once
because a block can own a property with the same or specialized block as a type.

Constraints

Issue(s): SYSML16-274

• 1_path_consistency
The property at each successive position of the propertyPath attribute, following the first position, shall
be owned by the Block or ValueType that types the property at the immediately preceding position, or
a generalization of the Block or ValueType.

self.propertyPath->size() >1 implies self.propertyPath->subSequence(2,
self.propertyPath->size())->forAll(p | let pp: UML::Property =
self.propertyPath->at(self.propertyPath->indexOf(p)-1) in let owners:
Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)-
>including(pp.type.oclAsType(UML::Classifier)) in owners->includes(p.owner))

8.3.2.11 EndPathMultiplicity

Description

The EndPathMultiplicity stereotype can be applied to properties that are related by redefinition to properties
that have BoundReference applied. The lower and upper properties of the stereotype give the minimum and
maximum number of values, respectively, of the property at the bound end of the related bound reference, for
each object reached by navigation along its binding path.

Attributes

• lower : Integer [0..1]
Gives the minimum number of values of the property at the end of the related bindingPath, for each
object reached by navigation along the bindingPath from an instance of the block owning the property
to which EndPathMultiplicity is applied

• upper : UnlimitedNatural [0..1]
Gives the maximum number of values of the property at the end of the related bindingPath, for each
object reached by navigation along the bindingPath from an instance of the block owning the property
to which EndPathMultiplicity is applied.

Association Ends

• base_Property : Property [1]

Constraints

Issue(s): SYSML16-274

• 1_redefinition
Properties to which EndPathMultiplicity is applied shall be related by redefinition to a property to
which BoundReference is applied.

self.base_Property.redefinedProperty->notEmpty() and
BoundReference.allInstances().base_Property->exists(p |
self.base_Property.redefinedProperty->includes(p))

Issue(s): SYSML16-274

• 2_non_negative
endPathLower shall be non-negative.

self.lower >= 0

8.3.2.12 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the
connected property may be identified by a multi-level path of accessible properties from the block that owns the
connector. The propertyPath inherited from ElementPropertyPath gives a series of properties that identifies the
connected property in the context of the block that owns the connector. The ordering of properties is from a
property of the block that owns the connector, through a property of each intermediate block that types the
preceding property, ending in a property with a type that owns or inherits the property that is the role of the
connector end (the property that the connector graphically attaches to at that end). The property that is the role
of the connector end is not included in the propertyPath list.

Generalizations

 ElementPropertyPath (from Blocks)

OMG Systems Modeling Language, v1.6 67

Association Ends

• base_ConnectorEnd : ConnectorEnd [1]
(redefines: ElementPropertyPath::base_Element)

Constraints

Issue(s): SYSML16-274

• 1_propertypath_first_owned_by_connector_owner
The first property in propertyPath shall be owned by the block that owns the connector, or one of the
block's generalizations.

let owningBlock: UML::Class =
self.base_ConnectorEnd.owner.oclAsType(UML::Connector).owner.oclAsType(UML::Cl
ass) in (not owningBlock.oclIsUndefined()) and owningBlock->closure(general)-
>including(owningBlock)->includes(self.propertyPath->first().owner)

Issue(s): SYSML16-274

• 2_propertypath_last_type_owns_role
The type of the property at the last position of the propertyPath list shall own or inherit the role
property of the stereotyped connector end

let type: UML::Classifier = self.propertyPath-
>last().type.oclAsType(UML::Classifier) in (not type.oclIsUndefined()) and
type.allFeatures()->includes(self.base_ConnectorEnd.role)

8.3.2.13 ParticipantProperty

Description

Issue(s): SYSML16-186

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association
Classes. These are informally called "association blocks." An association block can own properties and
connectors, like any other block. Each instance of an association block can link together instances of the end
classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to
specify which (participant) properties of the association block identify the instances being linked at which end
of the association. The value of a participant property on an instance (link) of the association block is the value
or object at the end of the link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can
be the type of multiple other connectors to reuse the same internal structure for all the connectors. The keyword
«participant» before a property name indicates the property is stereotyped by ParticipantProperty. They are
always the same as the corresponding association end type.

Participant properties can be the ends of connectors owned by an association block. The association block can
be the type of multiple other connectors to reuse the same internal structure for all the connectors. The keyword
«participant» before a property name indicates the property is stereotyped by ParticipantProperty. They are
always the same as the corresponding association end type

Attributes

• end : Property [1]
A member end of the association block owning the property on which the stereotype is applied.

Association Ends

• base_Property : Property [1]

Constraints

Issue(s): SYSML16-274

• 1_associationblock
ParticipantProperty shall only be applied to properties of association classes stereotyped by Block.

self.base_Property.class.oclIsKindOf(UML::AssociationClass) and
Block.allInstances().base_Class->includes(self.base_Property.class)

Issue(s): SYSML16-274

• 2_memberend
ParticipantProperty shall not be applied to properties that are member ends of an association.

UML::Association.allInstances().memberEnd->flatten()-
>excludes(self.base_Property)

Issue(s): SYSML16-274

• 3_aggregationkind_none
The aggregation of a property stereotyped by ParticipantProperty shall be none.

self.base_Property.aggregation = UML::AggregationKind::none

Issue(s): SYSML16-274

• 4_end_owner
The end attribute of the applied stereotype shall refer to a member end of the association block owning
the property on which the stereotype is applied.

self.base_Property.association.memberEnd->includes(self.end)

Issue(s): SYSML16-274

• 5_same_type
A property stereotyped by ParticipantProperty shall have the same type as the property referred to by
the end attribute.

self.base_Property.type = self.end.type

Issue(s): SYSML16-274

• 6_multiplicity_1
A property to which the ParticipantProperty is applied shall have a multiplicity of 1.

self.base_Property.lower = 1 and self.base_Property.upper = 1

8.3.2.14 PropertySpecificType

Description

Issue(s): SYSML16-76

The PropertySpecificType stereotype can be applied to classifiers that type exactly one property and that are
owned by the owner of that property. Classifiers with this stereotype applied shall be generalized by at most one
other classifier.

Instances of a property-specific type are exactly those that are values of the property it types, in all instances of
the property owner. Values are (de)classified under property-specific types as they are (removed from) added to
the property they type:

OMG Systems Modeling Language, v1.6 69

• Added values are classified as instances of the property-specific type.
• Removed values are

• Declassified as instances of the property-specific type.
• Classified as instances of the most specific generalization of the property-specific type that is not a

property-specific type, unless the instances are indirectly classified by that generalization already. If there is no
such property-specific type, removed values are not additionally classified.
This enables values of the property to

• Support more features than they would when they are not values of the property.
• Have redefined or constrained features only while they are values of the property.

Association Ends

• base_Classifier : Classifier [1]

Constraints

Issue(s): SYSML16-274, SYSML16-76

• 1_only_one_property
A classifier to which the PropertySpecificType stereotype is applied shall be referenced as the type of
one and only one property.

UML::Property.allInstances()->select(p | p.type = self.base_Classifier)-
>size() = 1

8.3.2.15 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be
identified as the target of any reference. Since a value cannot be identified except by means of the value itself,
each such value within a model is independent of any other, unless other forms of constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within SysML.
SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values
that may never be given a concrete data representation. For example, the SysML "Real" ValueType expresses
the mathematical concept of a real number, but does not impose any restrictions on the precision or scale of a
fixed or floating-point representation that expresses this concept. More specific value types can define the
concrete data representations that a digital computer can process, such as conventional Float, Integer, or String
types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the value. A
quantity kind is a kind of quantity that may be stated in terms of defined units, but does not restrict the selection
of a unit to state the value. A unit is a particular value in terms of which a quantity of the same quantity kind
may be expressed. A SysML ValueType and its quantityKind establishes, via UML typing, the associative
relationship between a particular "quantity" [VIM3-1.1] (modeled as a SysML value property typed by a
ValueType) and a "kind of quantity" [VIM3-1.2] (the ValueType::quantityKind of the SysML value property's
type). This UML/SysML associative relationship reflects the terminological distinction made in VIM3 between
the concepts of "quantity" [VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or
partitive hierarchical relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See 8.3.2.4,
Block for property classifications that SysML defines for either a Block or ValueType.

Association Ends

• base_DataType : DataType [1]

• quantityKind : InstanceSpecification [0..1]
A ValueType defines types of values that may be used to express information about a system, but
cannot be identified as the target of any reference. Since a value cannot be identified except by means
of the value itself, each such value within a model is independent of any other, unless other forms of
constraints are imposed.

Value types may be used to type properties, operation parameters, or potentially other elements within
SysML. SysML defines ValueType as a stereotype of UML DataType to establish a more neutral term
for system values that may never be given a concrete data representation. For example, the SysML
"Real" ValueType expresses the mathematical concept of a real number, but does not impose any
restrictions on the precision or scale of a fixed or floating-point representation that expresses this
concept. More specific value types can define the concrete data representations that a digital computer
can process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure and quantity kind associated with the
value. A quantity kind is a kind of quantity that may be stated in terms of defined units, but does not
restrict the selection of a unit to state the value. A unit is a particular value in terms of which a quantity
of the same quantity kind may be expressed. A SysML ValueType and its quantityKind establishes, via
UML typing, the associative relationship between a particular "quantity" [VIM3-1.1] (modeled as a
SysML value property typed by a ValueType) and a "kind of quantity" [VIM3-1.2] (the
ValueType::quantityKind of the SysML value property's type). This UML/SysML associative
relationship reflects the terminological distinction made in VIM3 between the concepts of "quantity"
[VIM3-1.1] and "kind-of-quantity" [VIM3- 1.2] that "cannot be in a generic or partitive hierarchical
relation to each other" [Dybkaer-2010].

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See
8.3.2.4, Block for property classifications that SysML defines for either a Block or ValueType.

• unit : InstanceSpecification [0..1]
A quantity, represented by an InstanceSpecification classified by a kind of SysML Unit, in terms of
which the magnitudes of other quantities that have the same quantity kind can be stated.

Constraints

• 1_specializations_are_valuetypes
Any classifier that specializes a ValueType shall also have the ValueType stereotype applied.

UML::Classifier.allInstances()->forAll(c | c.general-
>includes(self.base_DataType) implies ValueType.allInstances().base_DataType-
>includes(c))

• 2_unit
The unit of a ValueType, if any, shall be an InstanceSpecification classified by SysML's Unit block in
the UnitAndQuantityKind model library or a specialization of it.

self.unit->notEmpty() and self.unit.classifier->notEmpty() implies
self.unit.classifier->forAll(c |
c.oclIsKindOf(Libraries::UnitAndQuantityKind::Unit))

• 3_quantitykind
The quantityKind of a ValueType, if any, shall be an InstanceSpecification classified by SysML's
QuantityKind block in the UnitAndQuantityKind model library or a specialization of it.

OMG Systems Modeling Language, v1.6 71

self.quantityKind->notEmpty() and self.quantityKind.classifier->notEmpty()
implies self.quantityKind.classifier->forAll(c |
c.oclIsKindOf(Libraries::UnitAndQuantityKind::QuantityKind))

8.3.3 Model Libraries

8.3.3.1 Package PrimitiveValueTypes

Issue(s): SYSML16-337

Figure 8.10: Model library for primitive value types

8.3.3.1.1 Boolean

Description

A Boolean value type consists of the predefined values true and false.

8.3.3.1.2 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists
of a real part defined by a real number, and an imaginary part defined by a real number multiplied by the square
root of -1. Complex numbers are used to express solutions to various forms of mathematical equations.

Generalizations

 Number (from PrimitiveValueTypes)

Attributes

• imaginaryPart : Real [1]
A real number used to express the imaginary part of a complex number.

• realPart : Real [1]
A real number used to express the real part of a complex number.

properties

8.3.3.1.3 Integer

Description

An Integer value type represents the mathematical concept of an integer number. An Integer value type may be
used to type values that hold negative or positive integer quantities, without committing to a specific
representation such as a binary or decimal digits with fixed precision or scale.

Generalizations

 Number (from PrimitiveValueTypes)

8.3.3.1.4 Number

Description

Number is an abstract value type from which other value types that express concepts of mathematical numbers
are specialized.

8.3.3.1.5 Real

Description

A Real value type represents the mathematical concept of a real number. A Real value type may be used to type
values that hold continuous quantities, without committing a specific representation such as a floating point data
type with restrictions on precision and scale.

Generalizations

 Number (from PrimitiveValueTypes)

8.3.3.1.6 String

Description

A String value type consists of a sequence of characters in some suitable character set. Character sets may
include non-Roman alphabets and characters.

8.3.3.2 Package UnitAndQuantityKind

Issue(s): SYSML16-331

Figure 8.11: Model library for Unit and QuantityKind

8.3.3.2.1 QuantityKind

Description

A QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity
kind of length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-
abstract SysML Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a

OMG Systems Modeling Language, v1.6 73

specialization of it, classifies an InstanceSpecification to define a particular "kind-of-quantity" in the sense of an
"aspect common to mutually comparable quantities" [VIM3-1.2], where a SysML value property is understood
to correspond to the VIM concept of "quantity" defined as a "property of a phenomenon, body or substance,
where the property has a magnitude that can be expressed as a number and a reference" [VIM3-1.1]. Modelers
specialize QuantityKind as done in SysML's QUDV model library or in a similar manner in other model
libraries.
The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular
"kind-of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications
represent the same "kind-of-quantity" if and only if their definitionURIs have values and their values are equal.
The only valid use of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType
or Unit.
See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of
units and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of
documentation such as this optional model library.

Attributes

• definitionURI : String [0..1]

• description : String [0..1]

• symbol : String [0..1]

8.3.3.2.2 Unit

Description

QuantityKind is a kind of quantity that may be stated by means of defined units. For example, the quantity kind
of length may be measured by units of meters, kilometers, or feet. QuantityKind is defined as a non-abstract
SysML Block defined in the SysML UnitAndQuantityKind model library. QuantityKind, or a specialization of
it, classifies an InstanceSpecification to define a particular "kind-of-quantity" in the sense of an "aspect
common to mutually comparable quantities" [VIM3-1.2], where a SysML value property is understood to
correspond to the VIM concept of "quantity" defined as a "property of a phenomenon, body or substance, where
the property has a magnitude that can be expressed as a number and a reference" [VIM3-1.1]. Modelers
specialize QuantityKind as done in SysML's QUDV model library or in a similar manner in other model
libraries.
The definitionURI of an InstanceSpecification classified by a kind of QuantityKind identifies the particular
"kind-of-quantity" [VIM3-1.2] that the InstanceSpecification represents. Two such InstanceSpecifications
represent the same "kind-of-quantity" if and only if their definitionURIs have values and their values are equal.
The only valid use of a QuantityKind instance is to be referenced by the quantityKind property of a ValueType
or Unit.
See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of
units and quantity kinds as part of systems of units and systems of quantities. The name of a QuantityKind, its
definitionURI, or other means may be used to link individual quantity kinds to additional sources of
documentation such as this optional model library.
A Unit is a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can
be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length
such as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less
stable or precise ways to express some value, such as a cost expressed in some currency, or a severity rating
measured by a numerical scale.
Unit is defined as a non-abstract SysML Block defined in the SysML UnitAndQuantityKind model library. Unit,
or a specialization of it, classifies an InstanceSpecification to define a particular "measurement unit" in the sense
of a "real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind
can be compared to express the ratio of the two quantities as a number" [VIM3-1.9], where a SysML value

property is understood to correspond to the VIM concept of "quantity" defined as a "property of a phenomenon,
body or substance, where the property has a magnitude that can be expressed as a number and a reference"
[VIM3-1.1]. Modelers specialize Unit as done in SysML's QUDV model library or in a similar manner in other
model libraries.
The definitionURI of an InstanceSpecification classified by a kind of Unit identifies the particular
"measurement unit" [VIM3-1.9] that the InstanceSpecification represents. Two such InstanceSpecifications
represent the same "measurement unit" if and only if their definitionURIs have values and their values are
equal.
The only valid use of a Unit instance is to be referenced by the unit property of a ValueType stereotype.
See the non-normative model library in E.5 for an optional way to specify more comprehensive definitions of
units and quantity kinds as part of systems of units and systems of quantities. The name of a Unit, its
definitionURI, or other means may be used to link individual units to additional sources of documentation such
as this optional model library.

Attributes

• definitionURI : String [0..1]

• description : String [0..1]

• symbol : String [0..1]

Association Ends

• quantityKind : QuantityKind [0..*]

8.4 Usage Examples

8.4.1 Wheel Hub Assembly
In Figure 8.12 a block definition diagram shows the blocks that comprise elements of a Wheel. The block
property LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform
distribution of its values. Examples of such distributions can be found in E.5. Connectors from the lugBoltJoints
part go to nested parts, and use NestedConnectorEnd to specify the path of properties to reach those parts. For
the threadedHole end of the connector going to part h, the property path is (hub). For the mountingHole end of
the connector going to mountingHoles, the property path is (wheel, w). Similarly, the connector between the rim
and bead parts has property paths (w) and (t) on its ends.

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 75

Figure 8.12: Block diagram for the Wheel Package

Figure 8.13: Internal Block Diagram for WheelHubAssembly

In Figure 8.13 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used.
This ibd is a partial view that focuses on particular parts of interest and omits others from the diagram, such as
the “v” InflationValve and “weight” BalanceWeight, which are also parts of a Wheel.

8.4.2 Example Value Type Definitions
In Figure 8.14, several value types that use standard units of measure from the International System of Units
(SI) are defined to be available in the Example Value Type Definitions package. The value types in this package
could be imported into other contexts for typing properties of SysML Blocks. Because a SysML Unit can
already identify a type of quantity, or QuantityKind, that the unit measures, a value type only needs to identify
the unit to identify a quantity kind as well. The value types in this example refer to units that are assumed to be
defined in an imported package, such as the Model Library defined in E.6.

Issue(s): SYSML16-198

Figure 8.14: Defining Value Types with units of measure from the International System of Units (SI)

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values.
Figure D.41 shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and
unique properties such as its weight, color, and horsepower. This concept is distinct from the UML concept of
instance specifications in that it does not imply or assume any run-time semantic, and can also be applied to
specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the
form of a context block. The context block may capture a unique identity for the configuration, and utilizes
parts and initial value compartments to express property design values within the specification of a particular
system configuration. Such a context block may contain a set of parts that represent the block instances in this
system configuration, each containing specific values for each property. This technique also provides for
configurations that reflect hierarchical system structures, where nested parts or other properties are assigned
design values using initial value compartments. The following example illustrates the approach.

8.4.4 Water Delivery
Association blocks can be decomposed into connectors between properties of the associated blocks. These
properties can be ports, as in the water delivery example in 9.4.5, Association and Port Decomposition.

OMG Systems Modeling Language, v1.6 77

8.4.5 Constraining Decomposition
Figure 8.15 shows an example decomposition for vehicles in a block definition diagram. Figure 8.16 shows the
same decomposition in an internal block diagram that includes bound references. The binding connectors have
nested connector ends, because they link inside the parts of the vehicle.

Issue(s): SYSML16-198

Figure 8.15: Vehicle Decomposition

Issue(s): SYSML16-389

Figure 8.16: Vehicle internal structure

Figure 8.17 shows specializations for vehicles that restrict aspects of nested parts by redefining bound
references. Paths for bound references are based on the property paths of the corresponding binding connectors.
The general block on the top does not restrict the bound properties, except the total number of lug bolts is
required to be between 24 and 32, rather than 24 and 40 as the associations in Figure 8.15 allow. The
specialization on the lower left restricts the number of cylinders to four, requires a light roll bar, and a total of
24 lug bolts over all the wheels. The specialization on the lower right restricts the number of cylinders to
between six and eight, rules out any roll bar, and limits lug bolts per wheel to between 6 and 7, by giving the
end path upper and lower values.

Issue(s): SYSML16-198

Figure 8.17: Vehicle specialization

8.4.6 Units and Quantity Kinds

The following shows a minimal example of definitions a Unit, QuantityKind and ValueType based on them.

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 79

Figure 8.18: Example of Unit, QuantityKind and ValueType definitions

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account
of the instance-level representation of the above example. This instance-level representation is important for
model interchange, particularly across different implementations of SysML.

Issue(s): SYSML16-198

Figure 8.19: Instance-level view of the Unit, QuantityKind and Value Type definitions

The following example shows a minimal example of the semantics of Unit equivalence (A similar example for
QuantityKind is omitted).

Issue(s): SYSML16-198

Figure 8.20 - Example of equivalent Unit representations

In terms of the UML4SysML metamodel and of the SysML profile, the following figure shows a partial account
of the instance-level representation of the above example. This instance-level representation is important for
model interchange, particularly across different implementations of SysML.

Issue(s): SYSML16-198

Figure 8.21 - Instance-level representation of equivalent Unit definitions

Issue(s): SYSML16-76

8.4.7 Property-Specific Types

Figure 8.22 shows property-specific types in a model of facilities that includes factories and warehouses. Items
flow through facilities, while resources operate on items. Items in warehouses are assigned a location, while
resources in factories indicate own much they are being used as a percentage of time. Only objects that are
items in warehouses or resources in factories have these location and utilization properties. The properties
appear when an item arrives in a warehouse or a resource is used in a factory, because they are classified as
WarehouseItems and FactoryResources at that time, respectively. The properties disappear once an item leaves a
warehouse or a resource is no longer used in a factory, because they are declassified as WarehouseItems and
FactoryResources at that time, respectively.

OMG Systems Modeling Language, v1.6 81

Figure 8.22 Property-specific types in facility example

Figure 8.23 shows the classification of a particular machine over time, identified by its serial number. At first it
is not an item or resource and is classified only as a machine. Before delivery to the factory, a new machine is
stored in a warehouse, classified additionally as a warehouse item, and is assigned a storage location. Then it is
delivered to a factory, reclassified from a warehouse item to a factory resource (while still being a machine),
and records the percentage of time it is operating.

Figure 8.23 Changes in classification over time due to property-specific types

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 83

9 Ports and Flows

9.1 Overview
The main motivation for specifying ports and flows is to enable design of modular, reusable blocks with clearly
defined ways of connecting and interacting with their context of use. This clause extends UML ports to support
nested ports, and extends blocks to support flow properties, and required and provided features, including
blocks that type ports. Ports can be typed by blocks that support operations, receptions, and properties as in
UML. SysML defines a specialized form of Block (InterfaceBlock) that can be used to support nested ports.
SysML identifies two kinds of ports, one that exposes features of the owning block or its internal parts (proxy
ports), and another that supports its own features (full ports). Default compatibility rules are defined for
connecting block usages, such as parts and ports. These can be overridden with association blocks specifying
connections. These additional capabilities in SysML enable modelers to specify a wide variety of
interconnectable components, which can be implemented through many engineering and social techniques, such
as software, electrical or mechanical components, and human organizations. This clause also extends UML
information flows for specifying item flows across connectors and associations.

9.1.1 Ports

Ports are points at which external entities can connect to and interact with a block in different or more limited
ways than connecting directly to the block itself. They are properties with a type that specifies features available
to the external entities via connectors to the ports. The features might be properties, including flow properties
and association ends, as well as operations and receptions. The remaining overview sub clauses introduce other
aspects of ports and flows.

9.1.2 Flow Properties, Provided and Required Features, and Nested Ports

SysML extends blocks to support flow properties and provided and required features. Blocks with ports can
type other ports (nested ports). Flow properties specify the kinds of items that might flow between a block and
its environment, whether it is data, material, or energy. The kind of items that flow is specified by typing flow
properties. For example, a block specifying a car’s automatic transmission could have a flow property for
Torque as an input, and another flow property for Torque as an output. Required and provided features are
operations, receptions, and non-flow properties that a block supports for other blocks to use, or requires other
blocks to support for its own use, or both. For example, a block might provide particular services to other
blocks as operations, or have a particular geometry accessible to other block, or it might require services and
geometries of other blocks. Ports nest other ports in the same way that blocks nest other blocks. The type of the
port is a block (or one of its specializations) that also has ports. For example, the ports supporting torque flows
in the transmission example might have nested ports for physical links to the engine or the driveshaft.

9.1.3 Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning blocks or its
internal parts (proxy ports), and another where ports specify separate elements of the system (full ports). Both
are ways of defining the boundary of the owning block as features available through external connectors to
ports. Proxy ports define the boundary by specifying which features of the owning block or internal parts are
visible through external connectors, while full ports define the boundary with their own features. Proxy ports
are always typed by interface blocks, a specialized kind of block that has no behaviors or internal parts. Full
ports cannot be behavioral in the UML sense of standing in for the owning object, because they handle features

themselves, rather than exposing features of their owners, or internal parts of their owners. Ports that are not
specified as proxy or full are simply called “ports.”

In either case, users of a block are only concerned with the features of its ports, regardless of whether the
features are surfaced by proxy ports, or handled by full ports directly. Proxy and full ports support the
capabilities of ports in general, but these capabilities are also available on ports that are not declared as proxy or
full. Modelers can choose between proxy or full ports at any time in the development lifecycle, or not at all,
depending on their methodology.

9.1.4 Item Flows

Item flows specify the things that flow between blocks and/or parts and across associations or connectors.
Whereas flow properties specify what “can” flow in or out of a block, item flows specify what “does” flow
between blocks and/or parts in a particular usage context. This important distinction enables blocks to be
interconnected in different ways depending on its usage context. For example, tanks might include a flow
property that can accept fluid as an input. In a particular use of tanks, “gasoline” flows across a connector into a
tank, and in another use of tanks, “water” flows across a connector into a tank. The item flow in each case
specifies what “does” flow on the connector in the particular usage (e.g., gas, water) and the flow property
specifies what can flow (e.g., fluid). This enables type matching between the item flows and between flow
properties to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Clause 15, “Allocations,” and can be used to help ensure consistency
across the different parts of the model.

9.1.5 Deprecation of Flow Ports and Flow Specifications

Flow ports and flow specifications are included in SysML, but are deprecated. Annex C defines them, along
with transition guidelines to non-deprecated elements. In particular, the functionality of non-atomic flow ports is
supported with proxy ports typed by interface blocks owning flow properties. Flow properties are not
deprecated.

OMG Systems Modeling Language, v1.6 85

9.2 Diagram Elements

9.2.1 Block Definition Diagram

Issue(s): SYSML16-149, SYSML61-132

Table 9.1: Graphical nodes defined in Block Definition diagram

Node Name Concrete Syntax Abstract Syntax Reference

Port UML4SysML::Port

Port (Compartment Notation) UML4SysML::Port

Port (with Compartment) UML4SysML::Port

Node Name Concrete Syntax Abstract Syntax Reference

Port (Nested) UML4SysML::Port

ProxyPort SysML::PortsAndFlows::ProxyPort

ProxyPort (Compartment
Notation)

SysML::PortsAndFlows::ProxyPort

FullPort SysML::PortsAndFlows::FullPort

FullPort (Compartment
Notation)

SysML::PortsAndFlows::FullPort

FlowProperty SysML::PortsAndFlows::FlowProperty

OMG Systems Modeling Language, v1.6 87

Node Name Concrete Syntax Abstract Syntax Reference

Required and Provided
Features

SysML::PortsAndFlows::Directed
Feature

InterfaceBlock SysML::PortsAndFlows::InterfaceBlock

ItemFlow SysML::PortsAndFlows::ItemFlow

Interface UML4SysML::Interfaces::Interface

Node Name Concrete Syntax Abstract Syntax Reference

Required and Provided
Interfaces

UML4SysML::Interface

9.2.2 Internal Block Diagram

Issue(s): SYSML16-132, SYSML16-149

Table 9.2: Graphical nodes defined in Internal Block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port UML4SysML::Port

Port (Nested) UML4SysML::Port

OMG Systems Modeling Language, v1.6 89

Node Name Concrete Syntax Abstract Syntax Reference

Port (with Compartment) UML4SysML::Port

ProxyPort SysML::PortsAndFlows::ProxyPort

ProxyPort (isBehavior = true) SysML::PortsAndFlows::ProxyPort

FullPort SysML::PortsAndFlows::ProxyPort

Node Name Concrete Syntax Abstract Syntax Reference

ItemFlow SysML::PortsAndFlows::ItemFlow

Required and Provided
Interfaces

UML4SysML::Interface

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 DirectedFeature

Issue(s): SYSML16-94

A DirectedFeature has the same notation as other non-flow properties and behavioral features with a feature
direction prefix (prov | reqd | provreqd), which corresponds to one the FeatureDirectionKind literals “provided,”

OMG Systems Modeling Language, v1.6 91

“required,” and “providedrequired,” respectively. Directed features can appear in compartments for the various
kinds of properties and behavioral features.

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a block. A flow property has the same notation as a
Property only with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled flow
properties.

9.3.1.3 FullPort

Full ports can appear in block compartments labeled full ports. The keyword «full» before a property name can
also indicate the property is stereotyped by FullPort.

9.3.1.4 InvocationOnNestedPortAction

The nested port path is notated with a string “‘via’ <port-name> [‘,’ <port-name>]+” in the name string of the
icon for the invocation action. It shows the values of the onNestedPort property in order, and the value of the
onPort property at the end.

9.3.1.5 ItemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a
black arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow
with an item property, the label shows the name and type of the item property (in name: type format). Otherwise
the item flow is labeled with the name of the classifier of the conveyed items. When several item flows having
the same direction are represented, only one triangle is shown, and the list of item flows, separated by a comma
is presented.

9.3.1.6 Port

Ports are notated by rectangles overlapping the boundary of their owning blocks or properties (parts or ports)
typed by the owning block. Port labels appear in the same format as properties on the end of an association. Port
labels can appear inside port rectangles. Nested ports that are not on proxy ports can appear anywhere on the
boundary of the owning port rectangle that does not overlap the boundary of the rectangle the owning port
overlaps.

Port rectangles can have port rectangles overlapping their boundaries, to notate a port type that has ports (nested
ports).

Issue(s): SYSML16-132

Ports with types that have flow properties all in the same direction, either all in or all out, can have an arrow
inside them indicating the direction of the properties with respect to the owning block. (See FlowProperty on
page 90 for definition of owning block of proxy ports in this case.) This includes the direction of flow
properties on nested ports, and if the port is full and its type is unencapsulated, ports on parts of the port,
recursively. The arrows are perpendicular to the boundary lines they overlap. Ports with types that have flow
properties in different directions or flow properties that are all in both directions, including have two open arrow
heads inside them facing away from each other (<>). This includes the directions of nested and contained flow
properties as described above for one-way arrows. Ports appearing in block compartments can have their

direction appear textually before the port name as “in,” “out,” or “inout” determined in the same way as the
arrow direction.

Ports that are not proxy or full can appear in block compartments labeled ports.

Ports are specialized kinds of properties, and can be shown in same way as other properties. They can appear in
block compartments in the same format as other properties of their owning blocks, or as the ends of
associations, with the port appearing in the same format as other association ends, on the end opposite the
owning block.

All ports and nested ports (i.e., proxy, full, and ports with no stereotype applied), and their type definitions (e.g.,
interface blocks, blocks) can include compartments with textual and graphical representations to display their
features in the same way as other properties and types, including rectangles used to display properties in
structure compartments.

9.3.1.7 ProxyPort

Proxy ports can appear in block compartments labeled proxy ports. The keyword «proxy» before a property
name can also indicate the property is stereotyped by ProxyPort. Nested ports on proxy ports can appear on the
portion of the boundary of the owning port rectangle that is outside the rectangle the owning port overlaps.

9.3.1.8 TriggerOnNestedPort

The nested port path is notated following a trigger signature with a string “‘«from» (’ <port-name> [‘,’ <port-
name>]+ ‘)’” in the name string of the icon for the trigger. It shows the values of the onNestedPort property in
order, and the value of the port property at the end.

9.3.2 Stereotypes

Package PortsAndFlows

Issue(s): SYSML16-132, SYSML16-94

Figure 9.1 - Port Stereotypes

OMG Systems Modeling Language, v1.6 93

Figure 9.2 - Stereotypes for Actions on Nested Ports

Issue(s): SYSML16-462

Figure 9.3 - Stereotypes for Property Value Change Events

Issue(s): SYSML16-94

Figure 9.4 - Provided and Required Features

Figure 9.5 - Item Flow Stereotype

9.3.2.1 AcceptChangeStructuralFeatureEventAction

Description

Accept change structural feature event actions handle change structural feature events (see clause 9.3.2.10). The
actions have exactly two output pins. The first output pin holds the values of the structural feature just after the
values changed, while the second pin holds the values just before the values changed. The action only accepts
events for structural features on the blocks owning the behavior containing the action, or on the behavior itself,
if the behavior is not owned by a block.

Association Ends

• base_AcceptEventAction : AcceptEventAction [1]

OMG Systems Modeling Language, v1.6 95

Constraints

Issue(s): SYSML16-274

• 1_one_trigger
The action has exactly one trigger, the event of which shall be a change structural feature event.

self.base_AcceptEventAction.trigger->size()=1 and let trigger: UML::Trigger =
self.base_AcceptEventAction.trigger->any(true) in
ChangeStructuralFeatureEvent.allInstances().base_ChangeEvent-
>includes(trigger.event)

Issue(s): SYSML16-274

• 2_two_resultpins
The action has two result pins with type and ordering the same as the type and ordering of the
structural feature of the trigger event, and multiplicity compatible with the multiplicity of the structural
feature.

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger->any(true).event) in
self.base_AcceptEventAction.result->size() = 2 and
self.base_AcceptEventAction.result->forAll(r | r.type =
event.structuralFeature.type and r.isOrdered =
event.structuralFeature.isOrdered and r.lower <= event.structuralFeature.lower
and r.upper >= event.structuralFeature.upper)

Issue(s): SYSML16-274

• 3_context_owns_structuralfeature
The structural feature of the trigger event shall be owned by or inherited by the context of the behavior
containing the action. (The context of a behavior is either its owning block or itself if it is not owned
by a block. See definition in the UML 2 standard.)

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger->any(true).event) in
self.base_AcceptEventAction._'context'->notEmpty() and
self.base_AcceptEventAction._'context'.allFeatures()-
>includes(event.structuralFeature)

Issue(s): SYSML16-274

• 4_can_access_structuralfeature
Visibility of the structural feature of the trigger event shall allow access to the object performing the
action.

let event: ChangeStructuralFeatureEvent =
ChangeStructuralFeatureEvent.allInstances()->any(e | e.base_ChangeEvent =
self.base_AcceptEventAction.trigger->any(true).event) in if
event.structuralFeature.visibility = UML::VisibilityKind::private then
self.base_AcceptEventAction._'context'.feature-
>includes(event.structuralFeature) else if event.structuralFeature.visibility
= UML::VisibilityKind::protected then
self.base_AcceptEventAction._'context'.allFeatures()-
>includes(event.structuralFeature) else if event.structuralFeature.visibility
= UML::VisibilityKind::_'package' then let thePackage: UML::Package =
event.structuralFeature.allNamespaces()->select(n |
n.oclIsKindOf(UML::Package))->first().oclAsType(UML::Package) in (not
thePackage.oclIsUndefined()) and (let index: Integer =
event.structuralFeature.allNamespaces()->indexOf(thePackage) in

event.structuralFeature.allNamespaces()->subOrderedSet(1, index) ->iterate(n;
acc: Boolean=true | acc and not (n.visibility=UML::VisibilityKind::private or
n.visibility=UML::VisibilityKind::protected))) else true endif endif endif

Issue(s): SYSML16-274

• 5_uml_constraint_removed
The constraint under 11.3.2, "AcceptEventAction" in the UML 2 standard, "[2] There are no output
pins if the trigger events are only ChangeEvents," shall be removed for accept event actions that have
AcceptChangeStructuralFeatureEventAction applied.

-- cannot be expressed in OCL

9.3.2.2 AddFlowPropertyValueOnNestedPortAction

Issue(s): SYSML16-462

Description

This enables values added to a flow property to propagate out through a specified behavioral port of an object
executing the action, rather than all behavior ports exposing the flow property. It also enables values added to a
flow property to propagate into objects. Values flowing out of an object are added to an out or inout flow
property of the executing object. In this case, the applied stereotype specifies a (possibly nested) behavioral port
at the end of a (possibly multi-level) path of behavioral ports from a block that supports the flow property.
Values flowing into an object are added to an in or inout flow property of that object, specifying a (possibly
nested) port of that object.

Generalizations

 ElementPropertyPath (from Blocks)

Attributes

• onNestedPort : Port [1..*]
Gives a series of ports that end in one supporting the flow property to which a value is being added.
The ordering of ports is from a port of the object of the stereotyped action, through a port of each
intermediate block that types the preceding port, ending in a port with a type that owns or inherits the
flow property. The same port might appear more than once because a block can own a port with the
same block as a type, or another block that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Association Ends

• base_AddStructuralFeatureValueAction : AddStructuralFeatureValueAction [1]

Constraints

• 1_feature_flowproperty
The structural feature referred by actions with this stereotype applied must have FlowProperty applied.

FlowProperty.allInstances().base_Property-
>includes(self.base_AddStructuralFeatureValueAction.structuralFeature)

• 2_onnestedport_first_owned_by_target_type
The port at the first position in the onNestedPort list shall be owned by the block that types the object
pin of the stereotyped action, or one of that block's generalizations.

self.base_AddStructuralFeatureValueAction.object.type.oclAsType(UML::Classifie
r)->allFeatures()->includes(self.onNestedPort->first()))

• 3_path_consistency
The port at each successive position of the onNestedPort attribute, following the first position, shall be

OMG Systems Modeling Language, v1.6 97

owned by the Block that types the port at the immediately preceding position, or a generalization of
that Block

self.onNestedPort->size() >1 implies self.propertyPath->subSequence(2,
self.onNestedPort->size())->forAll(p |
let pp: UML::Property = self.onNestedPort->at(self.onNestedPort->indexOf(p)-1)
in
let owners: Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)-
>including(pp.type.oclAsType(UML::Classifier)) in
owners->includes(p.owner))

• 4_onnestedport_last_type_owns_invocation_onPort
The type of the port at the last position of the onNestedPort list shall own or inherit the flow property
that is the structural feature of the stereotyped action

self.onNestedPort->last().type.oclAsType(UML::Classifier).allFeatures()-
>includes(self.base_AddStructuralFeatureValueAction.structuralFeature)

9.3.2.3 Block

Description

Issue(s): SYSML16-132

Blocks (including specializations of Block) can own ports, including but not limited to proxy ports and full
ports. These blocks can be the type of ports (specifying nested ports), with some restrictions described in other
stereotypes in this sub clause. All links and interactions with a behavioral port (in the UML sense of standing in
for the owning object) are links and interactions with the owner, so the semantics of behavioral ports is the same
as if the value of the port as a property were always the owning block instance (the owning block instance for
behavioral ports on proxy ports is the value of the block usage the proxy port is standing in for, which might be
an internal part). Blocks loosen UML constraints on connectors to support nested ports. See Clause 8, “Blocks”
for further details of blocks.

9.3.2.4 ChangeStructuralFeatureEvent

Description

A ChangeStructuralFeatureEvent models changes in values of structural features.

Association Ends

• base_ChangeEvent : ChangeEvent [1]

• structuralFeature : StructuralFeature [1]
he event models occurrences of changes to values of this structural feature.

Constraints

Issue(s): SYSML16-274

• 1_not_static
The structural feature shall not be static

not self.structuralFeature.isStatic

Issue(s): SYSML16-274

• 2_one_featuringclassifier
The structural feature shall have exactly one featuringClassifier

self.structuralFeature.featuringClassifier->size()=1

9.3.2.5 DirectedFeature

Description

Issue(s): SYSML16-132

A DirectedFeature indicates whether the feature is supported by the owning block (provided), or is to be
supported by other blocks for the owning block to use (required), or both (the owning block for features on
types of proxy ports is the type of the block usage the proxy port is standing in for, which might be an internal
part). Using non-flow properties means to read or write them, and using behavioral features means to invoke
them. Provided non-flow properties are read and written on the owning block, while required non-flow
properties are read or written on an external block. Provided behavioral features are invoked with the owning
block as target, while required behavioral features are invoked with an external block as target (required).

Blocks owning or inheriting required behavioral features can have behaviors invoking the behavioral features
on instances of the block. This sends invocations out along connectors from usages of the block in internal
structures of other blocks, provided the behavioral features match on the other end of the connectors.

Invocations of provided behavioral features due to required behavioral features can only occur when the
features match. A single provided behavioral feature shall match each required one according to the following
conditions:

• The kind of behavioral feature is the same (operation or reception).
• Names are the same, including parameter names, in the same order.
• Parameter directions are the same, in the same order.
• Provided parameter types for parameters with:

• in direction are the same or more general than the required ones, in order.
• out or return direction are the same or more specialized than the required ones, in order.
• inout direction are the same as the required ones, in order.

Parameters without types are treated as if their type is more general than all other types.

• Provided parameter multiplicity has the same condition as type, where wider multiplicities are "more general"
than narrower ones.

• Provided parameter order (of each parameter separately) has the same condition as type, where unordered
parameters are "more general" than ordered ones.

• Provided parameter uniqueness (of each parameter separately) has the same condition as type, where non-
unique parameters are "more general" than unique ones.

• Provided operation preconditions are the same as or more general than required ones.

• Provided operation body conditions and postconditions are the same or more specialized than required ones.

If corresponding parameters in provided and required behavioral features both have defaults, the default value
specification of the required feature is used for in parameters, and the default value specification of the provided
feature is used for out and return parameters.

Reading or writing provided non-flow properties due to required non-flow properties can only occur when the
features match. Matching non-flow properties shall have the same name. For reading non-flow properties, the
types, multiplicities, uniqueness, and ordering shall match in the same way as out parameters for behavioral

OMG Systems Modeling Language, v1.6 99

features above. For writing non- flow properties, the types, multiplicities, uniqueness, and ordering shall match
in the same way as in parameters for behavioral features above. For both reading and writing non-flow
properties, the types, multiplicities, uniqueness, and ordering shall be the same. If provided and required non-
flow properties both have defaults, the default value specification of the required feature is used for writing and
the default specification of the provided feature is used for reading.

Attributes

• featureDirection : FeatureDirectionKind [1]
Specifies whether the feature is supported by the owning block (featureDirection="provided"), or is to
be supported by other blocks for the owning block to use (featureDirection="required"), or both
(featureDirection="providedrequired").

Association Ends

• base_Feature : Feature [1]

Constraints

Issue(s): SYSML16-274

• 1_behavioralfeature_or_not_flowproperty
DirectedFeature shall only be applied to behavioral features, or to properties that do not have
FlowProperty applied, including on subsetted or redefined features.

self.base_Feature.oclIsKindOf(UML::BehavioralFeature) or
(self.base_Feature.oclIsKindOf(UML::Property) and let property: UML::Property
= self.base_Feature.oclAsType(UML::Property) in
FlowProperty.allInstances().base_Property-
>excludesAll(property.redefinedProperty->union(property.subsettedProperty)-
>including(property)))

Issue(s): SYSML16-274, SYSML16-94

• 2_method_if_provided
A non-provided operation shall not be associated with a behavior as its method.

self.base_Feature.oclIsKindOf(UML::Operation) and
self.featureDirection=FeatureDirectionKind::required implies
self.base_Feature.oclAsType(UML::Operation).method->isEmpty()

9.3.2.6 FeatureDirectionKind

Description

Issue(s): SYSML16-132, SYSML16-94

FeatureDirectionKind is an enumeration type that defines literals used by directed features for specifying
whether they are supported by the owning block, or is to be supported by other blocks for the owning block to
use.

Literals

• provided
Indicates that the feature shall be supported by the owning block.

• providedRequired
Indicates that the feature shall be both provided and required.

• required
Indicates that the feature shall be supported by other blocks.

Constraints

• 2_specializations_are_constraintblocks
Any classifier that specializes a ConstraintBlock shall also have the ConstraintBlock stereotype
applied.

UML::Classifier.allInstances()->forAll(c | c.general-
>includes(self.base_Class) implies ConstraintBlock.allInstances().base_Class-
>includes(c))

9.3.2.7 FlowDirectionKind

Description

Issue(s): SYSML16-132, SYSML16-94

FlowDirectionKind is an enumeration type that defines literals used for specifying the direction that items can
flow to or from a block. FlowDirectionKind is used by flow properties to indicate the direction that its items can
flow to or from its owner. (See clause 9.3.2.13 for definition of owning block of proxy ports in this case.)

Literals

• in
Indicates that items of the flow property can flow into the owning block.

• inout
Indicates that items of the flow property can flow into or out of the owning block.

• out
Indicates that items of the flow property can flow out of the owning block.

9.3.2.8 FlowProperty

Description

Issue(s): SYSML16-130, SYSML16-132

A FlowProperty signifies a single kind of flow element that can flow to/from its owning instance that is
specified by the block defining that flow property. A flow property's values are either received from or
transmitted to another instance. An "in" flow property value cannot be modified by the owning instance of that
flow property, or by parts of that instance. An "out" flow property can only be modified by the owning instance
of that flow property, or by parts of that instance. An "inout" flow property can be used as an "in" flow property
or an "out" flow property, and there is no restriction regarding the way it can be modified. (The owning block of
a proxy port in this case depends on how the port is nested in the internal structures of blocks, because the block
directly owning the port might be used to type ports or parts at different levels of nesting in multiple blocks, or
the same block. The owning block of a proxy port in the internal structure of a block is the block typing the
innermost full port or part under which the port is nested.)

Flow due to flow properties can only occur when flow properties match. Matching flow properties shall have
matching direction and types. Matching direction is defined below. Flow property types match when the target
flow property type has the same, or a generalization of, the source flow property type. (See 9.3.2.11, ItemFlow
for looser constraints on flow property types across connectors with item flows.) If multiple flow properties on
either end of a connector match by direction and type, then the names of the flow properties shall also be the
same for flow to occur. If multiple flow properties on either end match by direction, type, and name, which can
happen for unnamed flow properties, then no flow will occur.

Flow properties enable item flows across connectors between usages typed by blocks having the properties. For
Block and ValueType flow properties, setting an "out" or "inout" FlowProperty value of a block usage on one

OMG Systems Modeling Language, v1.6 101

end of a connector will result in assigning the same value of an "in" or "inout" FlowProperty of a block usage at
the other end of the connector, provided the flow properties are matched. It is not specified whether
send/receive signal events are generated when values are written to out/in flow properties typed by Signal
(implementations might choose to do this, but it is not required). This paragraph does not apply to internal
connectors of proxy ports, see next paragraph.

Items going to or from behavioral ports (UML isBehavior = true) are actually going to or from the owning
block. (See clause9.3.2.8 for definition of owning block of proxy ports in this case.) Items going to or from
non-behavioral ports (UML isBehavior = false) are actually going to the port itself (for full ports) or to internal
parts connected to the port (for proxy ports). Because of this, flow properties of a proxy port are the same as
flow properties on the owning block or internal parts, so the flow property directions shall be the same on the
proxy port and owning block or internal parts for items to flow. See Section 9.3.2.18 for the definition of
internal connectors and the semantics of proxy ports.

The flow property semantics above applies to each connector of a block usage, including when the block usage
has multiple connectors.

The binding of flow properties on ports to behavior parameters can be achieved in ways not dictated by SysML.
One approach is to perform name and type matching. Another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

Issue(s): SYSML16-132

• direction : FlowDirectionKind [1]
Specifies if the property value is received from an external block (direction="in"), transmitted to an
external Block (direction="out") or both (direction="inout").

Association Ends

• base_Property : Property [1]

Constraints

Issue(s): SYSML16-274

• 1_restricted_types
A FlowProperty shall be typed by a ValueType, Block, or Signal.

Block.allInstances().base_Class->includes(self.base_Property.type) or
ValueType.allInstances().base_DataType->includes(self.base_Property.type) or
self.base_Property.oclIsKindOf(UML::Signal)

9.3.2.9 FullPort

Description

Issue(s): SYSML16-132

Full ports specify a separate element of the system from the owning block or its internal parts. They might have
their own internal parts, and behaviors to support interaction with the owning block, its internal parts, or
external blocks. They cannot be behavioral ports, or linked to internal parts by binding connectors, because
these constructs imply identity with the owning block or internal parts. However, full ports can be linked to
non-full ports by binding connectors, because this does not necessarily imply identity with other parts of the
system.

Association Ends

• base_Port : Port [1]

Constraints

Issue(s): SYSML16-274

• 1_not_proxy
Full ports shall not also be proxy ports. This applies even if some of the stereotypes are on subsetted or
redefined ports.

ProxyPort.allInstances()->excludes(self.base_Port)

Issue(s): SYSML16-274

• 2_not_bound_to_fullport
Binding connectors shall not link full ports (either directly or indirectly through other binding
connectors) to other composite properties of the block owning the full port (or that block's
generalizations or specializations), unless the composite properties are non-full ports.

let fullPorts: Set(UML::Port) = FullPort.allInstances().base_Port->asSet() in
BindingConnector.allInstances().base_Connector->select(c | c.end.role-
>includes(self.base_Port))->forAll(c | fullPorts->excludesAll(c.end.role-
>reject(r | r=self.base_Port)))

Issue(s): SYSML16-274, SYSML16-132

• 3_not_behavioral
Full ports shall not be behavioral (isBehavior=false).

not self.base_Port.isBehavior

9.3.2.10 InterfaceBlock

Description

Interface blocks cannot have behaviors, including classifier behaviors or methods, or internal parts.

Generalizations

 Block (from Blocks)

Operations

Issue(s): SYSML16-132

• getConjugated () : InterfaceBlock [0..*]
bodyCondition:
~InterfaceBlock.allInstances()->any(ib | ib.original = self)

Constraints

Issue(s): SYSML16-274

• 1_no_behavior
Interface blocks shall not own or inherit behaviors, have classifier behaviors, or methods for their
behavioral features.

self.base_Class.inheritedMember->select(m | m.oclIsKindOf(UML::Behavior))-
>isEmpty() and self.base_Class.operation.method->flatten()->isEmpty()

OMG Systems Modeling Language, v1.6 103

Issue(s): SYSML16-274

• 2_no_part
Interface blocks' composite properties are either ports, value properties or flow properties

self.base_Class.ownedAttribute->select(a|a.isComposite)->forAll(a |
a.oclIsKindOf(UML::Port) or a.oclIsKindOf(ValueType))

Issue(s): SYSML16-274

• 3_interfaceblock_typed_ports
Ports owned by interface blocks shall only be typed by interface blocks.

self.base_Class.ownedPort->forAll(p|InterfaceBlock.allInstances().base_Class-
>includes(p.type))

Issue(s): SYSML16-132

• isconjugated_not_used
Any port typed by an InterfaceBlock shall have its isConjugated property set to false.

Port.allInstances()->forAll(p | p.type = self.base_Class implies
p.isConjugated=false)

9.3.2.11 InvocationOnNestedPortAction

Description

This extends the capabilities of UML's onPort property of InvocationAction to support nested ports. It identifies
a nested port by a multi-level path of ports from the block that executes the action. Like UML's onPort property,
this extends invocation actions to send invocations out of ports of objects executing the actions, or to ports of
those objects or other objects. Invocations intended to go out of the object executing the action shall be sent to
the executing object on a proxy port. Invocations intended to go directly to a target object are sent to that object
on a port of that object.

Generalizations

 ElementPropertyPath (from Blocks)

Association Ends

• base_InvocationAction : InvocationAction [1]
(redefines: ElementPropertyPath::base_Element)

• onNestedPort : Port [1..*]
Gives a series of ports that identifies the port receiving the invocation in the context of the target object
of the invocation. The ordering of ports is from a port of the target object, through a port of each
intermediate block that types the preceding port, ending in a port with a type that owns or inherits the
port given by the onPort property of the invocation action. The onPort port is not included in the
onNestedPort list. The same port might appear more than once because a block can own a port with the
same block as a type, or another block that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Constraints

Issue(s): SYSML16-274

• 1_onPort_defined
The onPort property of an invocation action shall have a value when this stereotype is applied.

self.base_InvocationAction.onPort->notEmpty()

Issue(s): SYSML16-274

• 2_onnestedport_first_owned_by_target_type
The port at the first position in the onNestedPort list shall be owned (directly or via inheritance) by a
block that types the target pin of the invocation action, or one of the block's generalizations.

let target: UML::InputPin = if
self.base_InvocationAction.oclIsKindOf(UML::CallOperationAction) then
 self.base_InvocationAction.oclAsType(UML::CallOperationAction).target
else if self.base_InvocationAction.oclIsKindOf(UML::SendSignalAction) then
 self.base_InvocationAction.oclAsType(UML::SendSignalAction).target
else if self.base_InvocationAction.oclIsKindOf(UML::SendObjectAction) then
 self.base_InvocationAction.oclAsType(UML::SendObjectAction).target
else
 invalid
endif endif endif in
not target.oclIsUndefined() and (
 let target_type: UML::Class = Block.allInstances()->any(b | b.base_Class =
target.type).base_Class in
 not target_type.oclIsUndefined() and target_type.allFeatures()-
>includes(self.onNestedPort->first()))

Issue(s): SYSML16-274

• 3_path_consistency
The port at each successive position of the onNestedPort attribute, following the first position, shall be
owned by the Block that types the port at the immediately preceding position, or a generalization of
that Block.

self.onNestedPort->size() >1 implies self.propertyPath->subSequence(2,
self.onNestedPort->size())->forAll(p |
 let pp: UML::Property = self.onNestedPort->at(self.onNestedPort->indexOf(p)-
1) in
 let owners: Set(UML::Classifier) = pp.type.oclAsType(UML::Classifier)-
>including(pp.type.oclAsType(UML::Classifier)) in
 owners->includes(p.owner))

Issue(s): SYSML16-274

• 4_onnestedport_last_type_owns_invocation_onPort
The type of the port at the last position of the onNestedPort list shall own or inherit the onPort port of
the stereotyped invocation action.

self.onNestedPort->last().type.oclAsType(UML::Classifier).allFeatures()-
>includes(self.base_InvocationAction.onPort)

9.3.2.12 ItemFlow

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item
exchange between blocks, block usages, or ports as specified by their flow properties. For example, a pump
connected to a tank: the pump has an "out" flow property of type Liquid and the tank has an "in" FlowProperty
of type Liquid. To signify that only water flows between the pump and the tank, we can specify an ItemFlow of
type Water on the connector.

One can label an ItemFlow with the classifiers of the items that may be conveyed. For example: a label Water
would imply that instances of Water might be transmitted over this ItemFlow. In addition, if the item flow
identifies an item property, then one can label the item flow with the item property. For example, a label of

OMG Systems Modeling Language, v1.6 105

"liquid: Water" means Water items might flow and these items are the values of the property "liquid," i.e., the
values of the "liquid" item property are the instances of Water flowing at any given time. Item properties are
owned by the common (possibly indirect) owner of the source and target of the item flow, rather than by the
source and target types, as flow properties are.

Item flows on connectors shall be compatible with flow properties of the blocks usages at each end of the
connector, if any. The direction of the item flow shall be compatible wit the direction of flow specified by the
flow properties. (See clause 9.3.2.12 and clause 9.3.2.13 about flow property direction.) Each classifier of
conveyed items on an item flow shall be the same as, a specialization of, or a generalization of at least one flow
property type on each end of the connected block usages (or their accessible nested block usages recursively,
see clause 9.3.2.8 about encapsulated blocks). The target flow property type shall be the same as, or a
generalization of, a classifier of the item flow or the source flow property type, whichever is more specialized.
(See clause 9.3.2.13, for tighter constraints on flow property types across connectors without item flows.)

Attributes

• itemProperty : Property [0..1]
An optional property that relates the flowing item to the instances of the connector's enclosing block.
This property is applicable only for item flows realized by connectors. The itemProperty attribute has
no values if the item flow is realized by an Association.

Association Ends

• base_InformationFlow : InformationFlow [1]

Constraints

Issue(s): SYSML16-274

• 1_source_and_target_linked
A Connector or an Association, or an inherited Association shall exist between the source and the target
of the InformationFlow.

let target: UML::NamedElement = self.base_InformationFlow.informationTarget-
>any(true) in let targets: Set(UML::NamedElement) = if
target.oclIsKindOf(UML::Classifier) then target.oclAsType(UML::Classifier)-
>closure(general)->including(target) else target->asSet() endif in let source:
UML::NamedElement = self.base_InformationFlow.informationSource->any(true) in
let sources: Set(UML::NamedElement) = if source.oclIsKindOf(UML::Classifier)
then source.oclAsType(UML::Classifier)->closure(general)->including(source)
else source->asSet() endif in UML::Association.allInstances()->exists(a |
a.memberEnd->intersection(targets)->notEmpty() and a.memberEnd-
>intersection(sources)->notEmpty()) or UML::Connector.allInstances()->exists(c
| c.end->intersection(targets)->notEmpty() and c.end->intersection(sources)-
>notEmpty())

Issue(s): SYSML16-274

• 2_type_restricted
An ItemFlow itemProperty shall be typed by a ValueType, Block, or Signal.

ValueType.allInstances().base_DataType->includes(self.itemProperty.type) or
Block.allInstances().base_Class->includes(self.itemProperty.type) or
UML::Signal.allInstances()->includes(self.itemProperty.type)

Issue(s): SYSML16-274

• 3_itemproperty_common_owner
If itemProperty has a value it shall be a property of the common (possibly indirect) owner of the source
and the target.

self.itemProperty->notEmpty() implies (let target: UML::Element =
self.base_InformationFlow.informationTarget->any(true) in let source:
UML::Element = self.base_InformationFlow.informationSource->any(true) in
target.oclIsKindOf(UML::Property) and source.oclIsKindOf(UML::Property) and
let owners: Set(UML::Classifier) = target->closure(owner)->select(o1 |
o1.oclIsKindOf(UML::Classifier))->asSet() ->intersection(source-
>closure(owner)->select(o2 |
o2.oclIsKindOf(UML::Classifier))).oclAsType(UML::Classifier)->asSet() in
owners.attribute->flatten()->includes(self.itemProperty))

Issue(s): SYSML16-274

• 4_association_xor_itemproperty
itemProperty shall not have a value if the item flow is realized by an Association.

self.base_InformationFlow.realization->exists(r |
r.oclIsKindOf(UML::Association)) implies self.itemProperty->isEmpty()

Issue(s): SYSML16-274

• 5_same_type
If an ItemFlow has an itemProperty, one of the classifiers of conveyed items shall be the same as the
type of the item property.

self.itemProperty->notEmpty() implies self.base_InformationFlow.conveyed-
>includes(self.itemProperty.type)

Issue(s): SYSML16-274

• 6_same_name
If an ItemFlow has an itemProperty, its name shall be the same as the name of the item flow.

self.itemProperty->notEmpty() implies self.itemProperty.name =
self.base_InformationFlow.name

9.3.2.13 ProxyPort

Description

Issue(s): SYSML16-131

Proxy ports identify features of the owning block or its internal parts that are available to external blocks
through external connectors to the ports. They do not specify a separate element of the system from the owning
block or internal parts. Actions on features of a proxy port have the same effect as if they were acting on
features of the owning block or internal parts the port stands in for, and changes to features of the owning block
or internal parts that the proxy port makes available to external blocks are visible to those blocks via connectors
to the port. (This applies to provided features; for required features, see Section 9.3.2.10.) Proxy ports do not
specify their own behaviors or internal parts, and shall be typed by interface blocks. Their nested ports shall also
be proxy ports.
 A completely specified proxy port shall describe how any interaction through the port is handled or initiated.
This can be achieved in several ways. For instance by making it behavioral, by binding it to a fully specified
internal part or by having all its properties individually bound to internal parts. However, blocks can be defined
with non-behavioral proxy ports that do not have internal connectors, with the expectation that these will be
added in specialized blocks. Internal connectors to ports are the ones inside the port's owner (specifically, they
are the ones that do not have a UML partwithPort on the connector end linked to the port, assuming
NestedConnectorEnd is not applied to that end, or if NestedConnectorEnd is applied to that end, they are the
connectors that have only ports in the property path of that end). The rest of the connectors linked to a port are
external.

OMG Systems Modeling Language, v1.6 107

Proxy ports can be connected to internal parts or ports on internal parts, identifying features on those parts or
ports that are available to external blocks. When a proxy port is connected to a single internal part, the
connector shall be a binding connector, or have the same semantics as a binding connector (the value of the
proxy port and the connected internal part are the same; links of associations typing the connector are between
all objects and themselves, and no others). When a proxy port is connected to multiple internal parts, the
connectors have the same semantics as a single binding connector to an aggregate of those parts, supporting all
their features, and treating flows and invocations from outside the aggregate as if they were to those parts, and
flows and invocations it receives from those parts as if they were to the outside. This aggregate is not a separate
element of the system, and only groups the internal parts for purposes of binding to the proxy port. Internal
connectors to proxy ports can be typed by association blocks, including when the connector is binding.

Association Ends

• base_Port : Port [1]

Constraints

Issue(s): SYSML16-274

• 1_not_fullport
Proxy ports shall not also be full ports. This applies even if some of the stereotypes are on subsetted or
redefined ports.

FullPort.allInstances()->excludes(self.base_Port)

Issue(s): SYSML16-274

• 2_interfaceblock
Proxy ports shall only be typed by interface blocks.

InterfaceBlock.allInstances().base_Class->includes(self.base_Port.type)

Issue(s): SYSML16-274

• 3_subports_are_proxyports
Ports owned by the type of a proxy port shall be proxy ports.

ProxyPort.allInstances().base_Port-
>includesAll(self.base_Port.class.ownedPort)

9.3.2.14 TriggerOnNestedPort

Description

This extends trigger to support nested ports. It identifies a nested port by a multi-level path of ports from the
object receiving the triggering events. It is not applicable to full ports.

Generalizations

 ElementPropertyPath (from Blocks)

Association Ends

• base_Trigger : Trigger [1]
(redefines: ElementPropertyPath::base_Element)

• onNestedPort : Port [1..*]
Gives a series of ports that identifies a port on which the event is occurring, in the context of a block in
which the trigger is used. The ordering of ports is from a port of the receiving object, through a port of
each intermediate block that types the preceding port, ending in a property with a type that owns or
inherits the port given by the port property of the trigger. The port property is not included in the
onNestedPort list. The same port might appear more than once because a block can own a port with the

same block as a type, or another block that has the same property.
(redefines: ElementPropertyPath::propertyPath)

Constraints

Issue(s): SYSML16-274

• 1_single_proxyport
The port property of the stereotyped trigger shall have exactly one value, and the value cannot be a full
port.

self.base_Trigger.port->size()=1 and FullPort.allInstances().base_Port-
>excludes(self.base_Trigger.port)

Issue(s): SYSML16-274

• 2_no_fullport
The values of the onNestedPort property shall not be full ports.

FullPort.allInstances().base_Port->excludesAll(self.onNestedPort)

Issue(s): SYSML16-274

• 3_onnestedport_first_owned_by_context
The port at the first position in the onNestedPort list shall be owned by a block in which the trigger is
used, or one of the block's generalizations.

let theContext: UML::Classifier = if
self.base_Trigger.owner.oclIsKindOf(UML::Action) then
self.base_Trigger.owner.oclAsType(UML::Action)._'context'.oclAsType(UML::Class
) else
self.base_Trigger.owner.oclAsType(UML::Transition).containingStateMachine()._'
context'.oclAsType(UML::Class) endif in let owners: Set(UML::Classifier) =
theContext->closure(general)->including(theContext) in owners-
>includes(self.onNestedPort->first().owner)

Issue(s): SYSML16-274

• 4_path_consistency
The port at each successive position of the onNestedPort attribute, following the first position, shall be
owned by the Block that types the port at the immediately preceding position, or a generalization of the
Block.

self.onNestedPort->size() >1 implies self.onNestedPort->subSequence(2,
self.onNestedPort->size())->forAll(p |
 let np: UML::Port = self.onNestedPort->at(self.onNestedPort->indexOf(p)-1) in
 let owners: Set(UML::Classifier) = np.type.oclAsType(UML::Classifier)-
>including(np.type.oclAsType(UML::Classifier)) in
 owners->includes(p.owner))

Issue(s): SYSML16-274

• 5_onnestedport_last_type_owns_trigger_port
The type of the port at the last position of the onNestedPort list must own or inherit the port of the
stereotyped trigger.

self.onNestedPort->last().type.oclAsType(UML::Classifier).allFeatures()-
>includes(self.base_Trigger.port)

OMG Systems Modeling Language, v1.6 109

9.3.2.15 ~InterfaceBlock

Issue(s): SYSML16-132

Description

The ~InterfaceBlock stereotype (shall be pronounced: "conjugated interface block") is a specialization of
InterfaceBlock that has the same features as its original InterfaceBlock except that its DirectedFeatures and
FlowProperties are reversed (conjugated), for example, in flow properties are conjugated as out flow properties
and provided features are conjugated as required features. Conjugation is specified by a constraint giving the
features of ~InterfaceBlocks according to those of their original InterfaceBlocks (see the Constraints subsection
below). It is expected that tools conforming to this specification automatically create features of
~InterfaceBlocks.

Generalizations

 InterfaceBlock (from PortsAndFlows)

Attributes

• original : InterfaceBlock [1]
The InterfaceBlock that this is a conjugation of.

Operations

Issue(s): SYSML16-94

• areConjugated (in df1 : DirectedFeature, in df2 : DirectedFeature) : Boolean [1]
DirectedFeature overloaded version of the areConjugated query used for specifying the
inverted_feature invariant that checks whether one feature definition is the conjugated definition of the
other.

bodyCondition:
if (df1.oclIsUndefined()) then
 (not df2.oclIsUndefined() and df2.featureDirection =
FeatureDirectionKind::required)
else if (df2.oclIsUndefined()) then
 (not df1.oclIsUndefined() and df1.featureDirection =
FeatureDirectionKind::required)
else
 (df1.featureDirection = FeatureDirectionKind::provided and
df2.featureDirection = FeatureDirectionKind::required)
 or (df1.featureDirection = FeatureDirectionKind::required and
df2.featureDirection = FeatureDirectionKind::provided)
 or (df1.featureDirection = FeatureDirectionKind::providedRequired and
df2.featureDirection = FeatureDirectionKind::providedRequired)
endif endif

Issue(s): SYSML16-94

• areConjugated (in fp1 : FlowProperty, in fp2 : FlowProperty) : Boolean [1]
FlowProperty overloaded version of the areConjugated query used for specifying the inverted_feature
invariant that check whether one feature definition is the conjugated definition of the other

bodyCondition:
(fp1.direction = FlowDirectionKind::_in and fp2.direction =
FlowDirectionKind::out)
or (fp1.direction = FlowDirectionKind::out and fp2.direction =
FlowDirectionKind::_in)
or (fp1.direction = FlowDirectionKind::inout and fp2.direction =

FlowDirectionKind::inout)

• areConjugated (in r1 : Reception, in r2 : Reception) : Boolean [1]
Reception overloaded version of the areConjugated query used for specifying the inverted_feature
invariant that check whether one feature definition is the conjugated definition of the other.

bodyCondition:
let df1: DirectedFeature = DirectedFeature.allInstances()->any(base_Feature =
r1) in
let df2: DirectedFeature = DirectedFeature.allInstances()->any(base_Feature =
r2) in
r1.concurrency = r2.concurrency
and r1.isAbstract = r2.isAbstract
and r1.ownedParameterSet->forAll(ps1 | r2.ownedParameterSet->exists(ps2 |
areSameParameterSets(r1, ps1, r2, ps2)))
and haveSameSignatures(r1, r2)
and r1.signal = r2.signal
and areConjugated(df1, df2)

• areConjugated (in o1 : Operation, in o2 : Operation) : Boolean [1]
Operation overloaded version of the areConjugated query used for specifying the inverted_feature
invariant that check whether one feature definition is the conjugated definition of the other.

bodyCondition:
let df1: DirectedFeature = DirectedFeature .allInstances()->any(base_Feature =
o1) in
let df2: DirectedFeature = DirectedFeature .allInstances()->any(base_Feature =
o2) in
o1.concurrency = o2.concurrency
and o1.isAbstract = o2.isAbstract
and o1.ownedParameterSet->forAll(ps1 | o2.ownedParameterSet->exists(ps2 |
areSameParameterSets(o1, ps1, o2, ps2)))
and areSameConstraintSets(o1.bodyCondition->asSet(), o2.bodyCondition-
>asSet())
and areSameConstraintSets(o1.precondition, o2.precondition)
and areSameConstraintSets(o1.postcondition, o2.postcondition)
and haveSameSignatures(o1, o2)
and o1.raisedException->forAll(e1 | o2.raisedException->exists(e2 | e2 = e1))
and o1.isQuery = o2.isQuery
and areConjugated(df1, df2)

• areConjugated (in p1 : Property, in p2 : Property) : Boolean [1]
Property overloaded version of the areConjugated query used for specifying the inverted_feature
invariant that checks whether one feature definition is the conjugated definition of the other.

bodyCondition:
let fp1: FlowProperty = FlowProperty.allInstances()->any(base_Property = a1)
in
let fp2: FlowProperty = FlowProperty.allInstances()->any(base_Property = a2)
in
let df1: DirectedFeature = DirectedFeature .allInstances()->any(base_Feature =
a1) in
let df2: DirectedFeature = DirectedFeature .allInstances()->any(base_Feature =
a2) in
a1.name = a2.name
and a1.type = a2.type
and a1.isStatic = a2.isStatic
and a1.isOrdered = a2.isOrdered

OMG Systems Modeling Language, v1.6 111

and a1.isUnique = a2.isUnique
and a1.lower = a2.lower
and a1.upper = a2.upper
and a1.isReadOnly = a2.isReadOnly
and a1.aggregation = a2.aggregation
and a1.isDerived = a2.isDerived
and a1.isDerivedUnion = a2.isDerivedUnion
and a1.isID = a2.isID
and ((not fp1.oclIsUndefined() and not fp2.oclIsUndefined() and
areConjugated(fp1, fp2))
 or
 (fp1.oclIsUndefined() and fp2.oclIsUndefined()))
and ((not df1.oclIsUndefined() and not df2.oclIsUndefined() and
areConjugated(df1, df2))
 or (df1.oclIsUndefined() and df2.oclIsUndefined()))

• areSameConstraintSets (in cs1 : Constraint, in cs2 : Constraint) : Boolean [1]
The areSameConstraintSets query is used for specifying the inverted_feature invariant. It checks
whether two sets of constraints are equivalent.

bodyCondition:
(cs1->isEmpty() and cs2->isEmpty())
or (cs1->size() = cs2->size()
 and cs1->forAll(c1 | cs1->exists(c2 | c2.name = c1.name
 and c2.specification.booleanValue()=true implies
c1.specification.booleanValue()=true
 and c2.specification.booleanValue()=false implies
c1.specification.booleanValue()=false)))

• areSameParameterSets (in ps1 : ParameterSet, in ps2 : ParameterSet) : Boolean [1]
The areSameParameterSets query is used for specifying the inverted_feature invariant. It checks
whether two sets of parameters are identical.

bodyCondition:
(ps1->isEmpty() and ps2->isEmpty())
or (ps1->size() = ps2->size()
 and areSameConstraintSets(ps1.condition, ps2.condition
 and ps1.parameter->forAll(p1 | ps2.parameter->exists(p2 |
 bf1.ownedParameter->indexOf(p1) = bf2.ownedParameter->indexOf(p2)))))

• haveSameSignatures (in bf1 : BehavioralFeature, in bf2 : BehavioralFeature) : Boolean [1]
The areSameConstraintSignatures query is used for specifying the inverted_feature invariant. It checks
whether two behavioral features have the same signature.

bodyCondition:
bf1.name = bf2.name
and bf1.ownedParameter->size() = bf2.ownedParameter->size()
and bf1.ownedParameter->forAll(p1 | let p2: UML::Parameter =
bf2.ownedParameter->at(bf1.ownedParameter->indexOf(p1)) in
 p1.name = p2.name
 and p1.type = p2.type
 and p1.direction = p2.direction
 and p1.isOrdered = p2.isOrdered
 and p1.isUnique = p2.isUnique
 and p1.lower = p2.lower
 and p1.upper = p2.upper
 and p1.effect = p2.effect
 and p1.isException = p2.isException

 and p1.isStream = p2.isStream)

Constraints

• enforced_name
The name of an ~InterfaceBlock shall be the name of its original InterfaceBlock with a tilde ("~")
character prepended

self.base_Class.name = '~'+self.original.base_Class.name

• inverted_features
An ~InterfaceBlock has same features and owned rules than its original InterfaceBlock except that –
where applicable – both its DirectedFeatures and FlowProperties have inverted directions (i.e. are
"conjugated").

let allAttributes: Set(UML::Property) = self.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Property)).oclAsType(UML::Property)->asSet() in
let allOperations: Set(UML::Operation) = self.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Operation)).oclAsType(UML::Operation)->asSet() in
let allReceptions: Set(UML::Reception) = self.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Reception)).oclAsType(UML::Reception)->asSet() in
let inheritedRules: Set(UML::Constraint) =
self.base_Class.inherit(self.base_Class.inheritedMember-
>select(oclIsKindOf(UML::Constraint))).oclAsType(UML::Constraint)->asSet() in
let allRules: Set(UML::Constraint) = self.base_Class.ownedRule-
>union(inheritedRules) in
let allOriginalAttributes: Set(UML::Property) =
self.original.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Property)).oclAsType(UML::Property)->asSet() in
let allOriginalOperations: Set(UML::Operation) =
self.original.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Operation)).oclAsType(UML::Operation)->asSet() in
let allOriginalReceptions: Set(UML::Reception) =
self.original.base_Class.allFeatures()-
>select(oclIsKindOf(UML::Reception)).oclAsType(UML::Reception)->asSet() in
let originalInheritedRules: Set(UML::Constraint) =
self.original.base_Class.inherit(self.original.base_Class.inheritedMember-
>select(oclIsKindOf(UML::Constraint))).oclAsType(UML::Constraint)->asSet() in
let allOrignalRules: Set(UML::Constraint) =
self.original.base_Class.ownedRule->union(originalInheritedRules) in

allAttributes->size() = allOriginalAttributes->size()
and allOperations->size() = allOriginalOperations->size()
and allReceptions->size() = allOriginalReceptions->size()

and (allAttributes->isEmpty() or allAttributes->forAll(a |
allOriginalAttributes->exists(oa | areConjugated(a, oa))))
and (allOperations->isEmpty() or allOperations->forAll(o |
allOriginalOperations->exists(oo | areConjugated(o, oo))))
and (allReceptions->isEmpty() or allReceptions->forAll(r |
allOriginalReceptions->exists(ro | areConjugated(r, ro))))
and areSameConstraintSets(allRules, allOrignalRules)

OMG Systems Modeling Language, v1.6 113

9.4 Usage Examples

9.4.1 Ports with Required and Provided Features

Issue(s): SYSML16-132

Figure 9.6 is a fragment of the ibd:PwrSys diagram used in the HybridSUV Sample Problem in Annex D. (The
complete diagram is in Figure D.19.) The ecu:PowerControlUnit part has three ports with required and provided
features, each connected to a port of another part. Each of the ports in this example is typed by a block
specifying provided and required features available via connectors to the ports. For example, the ICE block
specifies the provided operations setMixture and setThrottle, the provided properties RPM, temperature, and
isKnocking, and required property isControlOn, as shown in Figure D.20. This block types the ctrl port of
InternalCombustionEngine while its conjugation (~ICE) types the ice port of PowerControlUnit. This means
the provided features of ICE are provided by the ctrl port of InternalCombustionEngine, and required by the ice
port of PowerControlUnit, while the required features of ICE are required by the ctrl port of
InternalCombustionEngine, and provided by the ice port of PowerControlUnit. Since the ecu:PowerControlUnit
part and ice:InternalCombustionEngine part are connected via these ports, the ecu:PowerControlUnit part may
invoke setThrottle and setMixture on the ice:InternalCombustionEngine part via its ice port, across the
connector to the ctrl port of ice:InternalCombustionEngine. By invoking these operations, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. The PowerControlUnit can
also read properties of the InternalCombustionEngine across the connector to find out the its rpm, temperature,
and whether it is knocking. Inversely, the InternalCombustionEngine can read the isControlOn property of the
PowerControlUnit across the connector to determine if the unit is still operating, and possibly shut down if it is
not.

Issue(s): SYSML16-198

Figure 9.6 - Usage example of ports with provided and required features

Issue(s): SYSML16-110

9.4.2 Ports and Item Flows

Figure D.25 shows the usage of ItemFlow. Here each of the item flows has an item property (fuelSupply:Fuel
and fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines. We see how Fuel may flow
between the FuelTankAssy and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of
FuelTankAssy, the Fuel flows across the fuelSupplyLine connector to the fuelFittingPort of
InternalCombustionEngine and from there it is distributed via other ports to internal parts of the engine. Some
of the fuel is returned to the FuelTankAssy from the fuelFitting port across the fuelReturnLine connector. Note
that it is possible to connect a single port to multiple connectors: in this example the direction of the flow via the
fuelFitting port on the external connectors is implied by the direction of the ports on the other side of the fuel
lines as well as by the directions of the item flows on the fuel lines. The direction of the flow on the internal
connectors is implied by the direction of the ports of the engine’s internal parts.

9.4.3 Ports with Flow Properties

Issue(s): SYSML16-132

Figure D.22 shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since connections
over buses are characterized by broadcast asynchronous communications, ports with flow properties are used to
connect the parts to the CAN bus. To specify the flow between the ports, we need to specify flow properties as
done in Figure D.21. Here FS_ICE has three flow properties: an “out” flow property of type signal (ICEData)
and two “in” flow properties of type Real. This allows the InternalCombustionEngine to transmit an ICEData
signal via its fp port that will be transmitted over the CAN bus to the ice port of PowerControlUnit (a port typed
by the conjugation ~FS_ICE) . This single signal carries the temperature, rpm, and knockSensor information of
the engine. In addition, the PowerControlUnit can set the mixture and throttle of the InternalCombustionEngine
via the mixture and throttlePosition flow properties of FS_ICE.

9.4.4 Proxy and Full Ports

Modelers have the option of applying stereotypes for proxy and full ports to indicate whether ports are
specifying features of their owners and internal parts (proxy), or for themselves separately (full). This is a
concern when defining ports, rather than using existing blocks with ports already defined on them. Using
existing blocks with ports only requires knowing the port types, because they define the features available for
linking or communication with those ports via connectors. The stereotypes of proxy and full ports might be
elided in these cases to simplify diagrams.

The ProxyPort and FullPort stereotypes can be applied at any level in a block taxonomy, whether on ports of the
most general blocks, the most specialized, or at intermediate levels of generalization. Ports can be specialized
through redefinition and subsetting if desired, as long they are not proxy and full at the same time, including the
stereotypes they inherit. Figure 9.7 shows an example of a general block for an electrical plug specialized into
two other blocks. The general block can be contained in its own package, for export to users of electrical plugs.
The specialized blocks are for plug designers. This example has two designs, one using proxy ports and the
other full. The proxy design adds internal parts exposed by the ports. The full design redefines the ports with
specialized types. The same type is used for the internal parts of the proxy design and the redefined ports of the
full design. The net result for the systems as-built are the same.

OMG Systems Modeling Language, v1.6 115

Modelers can apply stereotypes for proxy and full ports at any stage of model development, or not all if the
stereotype constraints are not needed. Figure 9.7 happens to use unstereotyped ports on a general block
distributed to users, and stereotyped ports on its specializations for implementation, but the modelers might
have not used stereotypes at all, if they did not care whether the model met those constraints (such as no
behaviors on proxy ports, or no internal binding connectors to full ports).

Unstereotyped ports do not commit to whether they are proxy or full, and do not prevent or dictate future
application of the stereotypes, except for ports that violate constraints of the stereotypes. For example, if the
port types on the general block in Figure 9.7 had behaviors defined, then the proxy specialization would be
invalid. If the general ports had binding connectors to internal parts, then the full specialization would be
invalid. If the general ports had both behaviors and internal binding connectors, then both specializations would
be invalid. Unstereotyped ports have the basic functionality of stereotyped ones, including flow properties and
nested ports, so they can be used as long as the modeler is not concerned with the distinction between proxy and
full, and the constraints they impose.

Issue(s): SYSML16-389, SYSML16-198

Figure 9.7 - Usage example of proxy and full ports

OMG Systems Modeling Language, v1.6 117

9.4.5 Association and Port Decomposition

Figure 9.8 shows an association block Water Delivery between a bank of spigots and a faucet. The «port»
keyword indicates which association ends are ports (associations use properties as ends, which can be ports).
Figure 9.9 shows the internal structure of Water Delivery defining connectors between the spigots in the bank
and inlets on the faucet. The participant properties identify the spigot bank and faucet being connected. The end
property on the stereotype refers to the corresponding association end in Figure 9.8. The type of participant
properties is shown for clarity, but is always the same as the association end type and can be elided. They are
shown with dashed rectangles because they are reference properties. The internal structure connects hot and
cold ports of the participants.

Issue(s): SYSML16-198

Figure 9.8 - Water Delivery association block

Issue(s): SYSML16-149, SYSML16-198

Figure 9.9 - Internal structure of Water Delivery association block

Figure 9.10 shows two views of a block House with a connector of type Water Delivery. The connector in the
top view “decomposes” into the subconnectors in the lower view according to the internal structure of Water
Delivery. The subconnectors relate the nested ports of :WaterSupply to the nested ports of :WaterClient.

Issue(s): SYSML16-198

Figure 9.10 - Two views of Water Delivery connector within House block

The top portion of Figure 9.11 shows specializations of the block WaterClient into Bath, Sink, and Shower.
These are used as part types in the internal structure of the block House 2 shown in the lower portion of the
figure. The composite connector for Water Delivery is reused three times to establish connections between
spigots on the water supply and the inlets of faucets on the bath, sink, and shower.

OMG Systems Modeling Language, v1.6 119

Issue(s): SYSML16-198

Figure 9.11 - Specializations of Water Client in house example

Figure 9.12 adds a Plumbing association block for the association between Spigot and Faucet Inlet in Figure
9.11. Figure 9.13 shows the internal structure for the Plumbing association block, which includes a pipe and two
fittings (the additional part and connector definitions are omitted for brevity).

Issue(s): SYSML16-198

Figure 9.12 - Plumbing association block

Issue(s): SYSML16-198

Figure 9.13 - Internal structure of Plumbing association block

Figure 9.14 modifies Figure 9.9 to use Plumbing as a connector type within the Water Delivery association
block. The lower connector shows its connector property explicitly, enabling the pipe it contains to be
connected to a mounting bracket (the additional part and connector definitions are omitted for brevity).

Issue(s): SYSML16-149, SYSML16-198

Figure 9.14 - Water Delivery association block with internal Plumbing connector

9.4.6 Item Flow Decomposition

Item flows in internal block diagrams specify flows local to a block. For example, in Figure 9.15 the connector
to the output of the water heater has an item flow indicating distilled water is flowing, even though the out flow
property of the water heater indicates it produces water. The water heater is fed from a water distiller in this
particular usage, so the modeler knows the output will always be distilled water, rather than other kinds of
water. The radiator on the left requires distilled water, and its connection to the water heater is compatible
because the item flow narrows the items to distilled water. Item flows can also be more general than the actual
flow, as shown by the connector on the right. The water distiller produces distilled water, but the item flow is for
any kind of fluid. The connection to the water heater is compatible because it accepts any kind of water,
including distilled. The item flow does not require the heater to accept any kind of fluid, because the source of
flow is still producing water, regardless of the generality of the item flow.

Connectors with item flows can be decomposed by association blocks that have additional item flows. The
relationship between an item flow and those in the association block is determined by the modeler. Figures 9.16
and 9.17 are examples of item flow decomposition that modelers might choose, but they are not the only

OMG Systems Modeling Language, v1.6 121

possible decompositions and are not required. In Figure 9.16, the item flow classifier (EnginePart) is a
supertype of the classifiers of the item flows in the decomposition. The flow properties are all in the types of
the nested ports, while the composing item flow summarizes the kinds of items flowing by generalization. In
Figure 9.17, the item flow classifier (Engine) composes the classifiers of the items flows in the decomposition
from Figure 9.17. The port types have an additional flow property that is not in the nested ports. These are for
the flow of the engine, as opposed to its parts. Constraints can be added between the flow properties for the
engine and those for the parts, to indicate the flowing parts are inside the flowing engine, or are separate, for
example as spare parts.

Issue(s): SYSML16-198

Figure 9.15 - Usage example of item flows in internal block diagrams

Issue(s): SYSML16-149, SYSML16-198

Figure 9.16 - Usage example of item flow decomposition

Issue(s): SYSML16-198

Figure 9.17 - Usage example of item flow decomposition

OMG Systems Modeling Language, v1.6 123

This page intentionally left blank.

10 Constraint Blocks

10.1 Overview
Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability
models with other SysML models. Constraint blocks can be used to specify a network of constraints that
represent mathematical expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of
a system. Such constraints can also be used to identify critical performance parameters and their relationships to
other parameters, which can be tracked throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m,
and a. Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example,
a definition for Newton’s Laws may be used to specify these constraints in many different contexts. Reusable
constraint definitions may be specified on block definition diagrams and packaged into general-purpose or
domain-specific model libraries. Such constraints can be arbitrarily complex mathematical or logical
expressions. The constraints can be nested to enable a constraint to be defined in terms of more basic constraints
such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage
of a constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such
as a mass, that provide values for the parameters. The constrained properties, such as mass or response time,
typically have simple value types that may also carry units, quantity kinds, or probability distributions. A
pathname dot notation can be used to refer to nested properties within a block hierarchy. This allows a value
property (such as an engine displacement) that may be deeply nested within a containing hierarchy (such as
vehicle, power system, engine) to be referenced at the outer containing level (such as vehicle-level equations).
The context for the usages of constraint blocks shall also be specified in a parametric diagram to maintain the
proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be
established by a local or global clock that produces a continuous or discrete time value property. Other values of
time can be derived from this clock, by introducing delays and/or skew into the value of time. Discrete values of
time as well as calendar time can be derived from this global time property. SysML includes the time model
from UML, but other UML specifications offer more specialized descriptions of time that may also apply to
specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in
state results in a different set of constraint equations. This can be accommodated by specifying constraints that
are conditioned on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective
function to compare alternative solutions. The objective function can constrain measures of effectiveness or
merit and may include a weighting of utility functions associated with various criteria used to evaluate the
alternatives. These criteria, for example, could be associated with system performance, cost, or desired physical
characteristics. Properties bound to parameters of the objective function may have probability distributions
associated with them that are used to compute expected or probabilistic measures of the system. The use of an
objective function and measures of effectiveness in parametric diagrams are included in Annex E: “Non-
normative Extensions.”

OMG Systems Modeling Language, v1.6 125

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them.
The interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) shall
be provided. An expression may rely on other mathematical description languages both to capture the detailed
specification of mathematical or logical relations, and to provide a computational engine for these relations. In
addition, the block constraints are non-causal and do not specify the dependent or independent variables. The
specific dependent and independent variables are often defined by the initial conditions, and left to the
computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. Properties of this block
define parameters of the constraint, with the exception of properties that hold internally nested usages of
constraint blocks. The usage of a constraint block is distinguished from other parts by a box having rounded
corners rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal
block diagram that shows only the use of constraint blocks along with the properties they constrain within a
context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram
Table 10.1: Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference

ConstraintBlock SysML::ConstraintBlocks:
ConstraintBlock

10.2.2 Parametric Diagram

The diagram elements described in this sub clause are additions to the Internal Block Diagram described in
Clause 8. The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the
restrictions described in 10.3.1.2.

Issue(s): SYSML16-393, SYSML16-198

Table 10.2: Graphical nodes defined in Parametric diagrams

Element Name Concrete Syntax Example Metamodel Reference

ParametricDiagram SysML::ConstraintBlocks:
ConstraintBlock
SysML::Blocks::Block

ConstraintProperty UML4SysML::Property typed by
SysML::ConstraintBlocks::ConstraintBlock

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

10.3.1.1.1 Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that
specifies the constraint may appear in the constraints compartment of the block definition, using either formal
statements in some language, or informal statements using text. This expression can include a formal reference
to a language in braces as indicated in Table 10.1. Parameters of the constraint may be shown in a compartment
with the predefined compartment label “parameters.”

10.3.1.1.2 Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain
declarations for some or all of its constraint parameters. Properties of a constraint block should be shown either
in the constraints compartment, for nested constraint properties, or within the parameters compartment.

OMG Systems Modeling Language, v1.6 127

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may
contain constraint properties and their parameters, along with other properties from within the internal block
context. All properties that appear, other than the constraints themselves, shall either be bound directly to a
constraint parameter, or contain a property that is bound to one (through any number of levels of containment).

10.3.1.2.1 Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This
graphical shape distinguishes a constraint property from all other properties and avoids the need to show an
explicit «constraint» keyword. Otherwise, this notation is equivalent to the standard form of an internal property
with a «constraint» keyword shown. Compartments and internal properties may be shown within the shape just
as for other types of internal properties.

10.3.1.2.2 «constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property
rectangle with the «constraint» keyword preceding its name. Parameters are shown within a constraint property
using the standard notations for internal properties.

10.3.1.2.3 Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications
appearing in a text string close to the square box. The text string for such a value property may include all the
elements that could ordinarily be used to declare the property in a compartment of a block, including an
optional default value. The box may optionally be shown with one edge flush with the boundary of a containing
property. Placement of property boxes is purely for notational convenience, for example to enable simpler
connection from the outside, and has no semantic significance. If a connector is drawn to a region where an
internal property box is shown flush with the boundary of a containing property, the connector is always
assumed to connect to the innermost property.

10.3.2 Stereotypes

Package Constraint Blocks
Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way
to constrain properties of other blocks. A constraint block typically defines one or more constraint parameters,
which are bound to properties of other blocks in a surrounding context where the constraint is used. Binding
connectors, as defined in clause 8 are used to bind each parameter of the constraint block to a property in the
surrounding context. All properties of a constraint block are constraint parameters, with the exception of
constraint properties that hold internally nested usages of constraint blocks.

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of
the constraint block. Binding connectors may be used to bind the parameters of this constraint block to other
properties of the block that contains the usage.

Generalizations

 Block (from Blocks)

Constraints

Issue(s): SYSML16-274

• 1_constraintparameters_only
A constraint block shall not own any structural or behavioral elements beyond the properties that
define its constraint parameters, constraint properties that hold internal usages of constraint blocks,
binding connectors between its internally nested constraint parameters, constraint expressions that
define an interpretation for the constraint block, and general-purpose model management and
crosscutting elements.

-- Cannot be expressed in OCL

Issue(s): SYSML16-274

• 3_composite
Any property of a block that is typed by a ConstraintBlock shall have composite aggregation.

self.base_Class.ownedAttribute->forAll(p| p.isComposite)

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they shall
have the «constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are
ordinary UML constraints, using a special compartment to hold the constraint. This is shown in Figure D.34.
These particular constraints are specified only in an informal language, but a more formal language such as
OCL or MathML could also be used. The compartment labeled “parameters” shows the parameters of this
constraint, which are bound on the parametric diagram.

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure D.32 shows the use of constraint properties on a parametric diagram. This diagram shows the use of
nested property references to the properties of the parts; parametric diagrams can make use of the nested
property name notation to refer to multiple levels of nested property containment, as shown in this example. A
parametric diagram is similar to an internal block diagram with the exception that the only connectors that may

OMG Systems Modeling Language, v1.6 129

be shown are binding connectors. The Sample Problem in Annex D provides definitions of the containing
EconomyContext block for which this parametric diagram is shown.

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 131

BEHAVIORAL CONSTRUCTS

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 133

11 Activities

11.1 Overview
Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It
provides a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions
to UML Activity diagrams. For additional information, see extensions for Enhanced Functional Flow Block
Diagrams in E.2, Activity Diagram Extensions.

11.1.1 Control as Data

Issue(s): SYSML16-94

SysML extends control in activity diagrams as follows:

• In UML Activities, control can only enable actions to start. SysML extends control to support disabling
of actions that are already executing. This is accomplished by providing a model library with a type for
control values that are treated like data (see ControlValueKind in Figure 11.9).

• A control value is an input or output of a control operator, which is how control acts as data. A control
operator can represent a complex logical operation that transforms its inputs to produce an output that
controls other actions (see ControlOperator in Figure 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally
applicable to any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a
behavior (see Rate in Figure 11.8). This includes both discrete and continuous flows, either of material,
energy, or information. Discrete and continuous flows are unified under rate of flow, as is traditionally
done in mathematical models of continuous change, where the discrete increment of time approaches
zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values
that are already in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes
with the option to discard values if they do not immediately flow downstream (see NoBuffer in Figure
11.8). These two extensions are useful for ensuring that the most recent information is available to
actions by indicating when old values should not be kept in object nodes, and for preventing fast or
continuously flowing values from collecting in an object node, as well as modeling transient values,
such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Figure 11.8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object
node will traverse an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a
parameter set.

11.1.4 Activities as Blocks

In UML, all behaviors including activities are classes, and their instances are executions. Behaviors can appear
on block definition diagrams, and participate in generalization and associations. SysML clarifies the semantics
of composition association between activities, and between activities and the type of object nodes in the
activities, and defines consistency rules between these diagrams and activity diagrams. See 11.3.1.1, Activity.

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an
activity model. These constraints can be notated as constraint notes in an activity diagram. Although the UML 2
timing diagram was not included in this version of SysML, it can complement SysML behavior diagrams to
notate this information. More sophisticated SysML modeling techniques can incorporate constraint blocks from
Clause 10, “Constraint Blocks” to specify resource and related constraints on the properties of the inputs,
outputs, and other system properties. (Note: refer to 11.3.1.4, ObjectNode, Variables, and Parameters for
constraining properties of object nodes).

11.2 Diagram Elements

11.2.1 Activity Diagram

Issue(s): SYSML16-201, SYSML16-198

Table 11.1: Graphical notation of activity diagrams

Notation Name Concrete Syntax Abstract Syntax Reference

Action, CallBehaviorAction,
AcceptEventAction,
SendSignalAction

UML4SysML::Action
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity Frame and Heading UML4SysML::Activity

OMG Systems Modeling Language, v1.6 135

Notation Name Concrete Syntax Abstract Syntax Reference

ActivityFinal UML4SysML::ActivityFinalNode

ActivityNode See ControlNode and ObjectNode UML4SysML::ActivityNode

ActivityParameterNode UML4SysML::ActivityParameter Node

ControlNode See DecisionNode, FinalNode, ForkNode,
InitialNode, JoinNode, and MergeNode

UML4SysML::ControlNode

ControlOperator SysML::Activities::ControlOperator

DecisionNode UML4SysML::DecisionNode

FinalNode See ActivityFinal and FlowFinal UML4SysML::FinalNode

Notation Name Concrete Syntax Abstract Syntax Reference

FlowFinal UML4SysML::FlowFinalNode

ForkNode UML4SysML::ForkNode

InitialNode UML4SysML::InitialNode

JoinNode UML4SysML::JoinNode

isControl UML4SysML::Pin.isControl

OMG Systems Modeling Language, v1.6 137

Notation Name Concrete Syntax Abstract Syntax Reference

isStream UML4SysML::Parameter.isStream

Local pre- and postconditions UML4SysML::Action.local Precondition,

UML4SysML::Action.local Postcondition

MergeNode UML4SysML::MergeNode

NoBuffer SysML::Activities::NoBuffer

Notation Name Concrete Syntax Abstract Syntax Reference

ObjectNode UML4SysML::ObjectNode and its
children,

SysML::Activities::ObjectNode

Optional SysML::Activities::Optional

OverWrite SysML::Activities::Overwrite

OMG Systems Modeling Language, v1.6 139

Notation Name Concrete Syntax Abstract Syntax Reference

ParameterSet SysML::Activities::ParameterSet

Portability SysML::Activities::Portability

Notation Name Concrete Syntax Abstract Syntax Reference

Rate SysML::Activities::Rate
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2: Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference

ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

ControlFlow UML4SysML::ControlFlow
SysML::Activities::ControlFlow

OMG Systems Modeling Language, v1.6 141

Path Name Concrete Syntax Abstract Syntax Reference

ObjectFlow UML4SysML::ObjectFlow

Probability SysML::Activities::Probability

Rate SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Issue(s): SYSML16-198

Table 11.3: Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Activity, Association,
AdjunctProperty

UML4SysML::Activity,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

ActivityPartition UML4SysML::ActivityPartition

InterruptibleActivity Region UML4SysML::InterruptibleActivity
Region

OMG Systems Modeling Language, v1.6 143

Element Name Concrete Syntax Abstract Syntax Reference

StructuredActivityNode UML4SysML::StructuredActivity
Node

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

11.3.1.1 Activity

11.3.1.1.1 Notation

In UML, all behaviors are classes, including activities, and their instances are executions of the activity. This
follows the general practice that classes define the constraints under which the instances must operate. Creating
an instance of an activity causes the activity to start executing, and vice versa. Destroying an instance of an
activity terminates the corresponding execution, and vice versa. Terminating an execution also terminates the
execution of any other activities that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition
means that destroying an instance at the whole end destroys instances at the part end. When composition is used
with activity blocks, the termination of execution of an activity on the whole end will terminate executions of
activities on the part end of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a
composition association, with the invoking activity on the whole end, and the invoked activity on the part end.
If an execution of an activity on the whole end is terminated, then the executions of the activities on the part end
are also terminated. The upper multiplicity on the part end restricts the number of concurrent synchronous
executions of the behavior that can be invoked by the containing activity. See Constraints below.

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to
indicate the Block stereotype is applied to an activity, as shown in Figure 11.1. See example in 11.4, Usage
Examples. This provides a means for representing activity decomposition in a way that is similar to classical
functional decomposition hierarchies. Properties with AdjunctProperty applied, where the principal of the
AdjunctProperties are call actions, including call behavior actions, can be used as the part end of the

associations. See 8.3.2.2 for constraints when AdjunctProperty is used with call actions. Activities in block
definition diagrams can also appear with the same notation as CallBehaviorAction, except the rake notation can
be omitted, if desired. Also see use of activities in block definition diagrams that include ObjectNodes.

Issue(s): SYSML16-198

Figure 11.1 - Block definition diagram with activities as blocks

Activities as blocks can have properties of any kind, including value properties. Activity block properties have
all the capabilities of other properties, including that value properties can be bound to parameters in constraint
blocks by binding connectors.

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those

behaviors, as shown in Figure 11.2.

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked
behavior using the colon notation shown in Figure 11.3.

Figure 11.3 - CallBehaviorAction notation.with action name

OMG Systems Modeling Language, v1.6 145

11.3.1.3 ControlFlow

11.3.1.3.1 Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.4.

Figure 11.4 - Control flow notation

11.3.1.4 ObjectNode, Variables, and Parameters

11.3.1.4.1 Notation

See 11.3.1.1, Activity with regard to activities appearing in block definition diagrams. Associations can be used
between activities and classifiers (blocks or value types) that are the type of object nodes, variables, or
parameters in the activity, as shown in Figure 11.5. This supports linking the execution of the activity with items
that are flowing through the activity or assigned to variables or parameters, and happen to be contained by an
object node or assigned to a variable or parameter at the time the link exists. Properties with AdjunctProperty
applied, where the principal of the AdjunctProperty is an object node, variable, or parameter, can be used as the
end of the associations toward the object node, variable, or parameter type. Like any association end or property
these can be the subject of parametric constraints, design values, units, and quantity kinds. The associations may
be composition if the intention is to delete instances of the classifier flowing the activity when the activity is
terminated. See example in 11.4, Usage Examples.

Issue(s): SYSML16-198

Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes, variables,
and parameter

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object
node as shown in Figure 11.6.

Figure 11.6 - ObjectNode notation in activity diagrams

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7,
when the object node notation is used as a shorthand for pins. The stereotype applies to all parameters
corresponding to the pins notated by the object node. Stereotype applying to object nodes can also appear in

object nodes, and applies to all the pins notated by the object node.

Figure 11.7 - ObjectNode notation in activity diagrams

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this clause and which metaclasses they extend. The
descriptions, attributes, and constraints for each stereotype are specified below.
Package Activities

Figure 11.8 - Abstract Syntax for SysML Activity Extensions

OMG Systems Modeling Language, v1.6 147

11.3.2.1 Continuous

Description

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items
approaches zero. It is intended to represent continuous flows that may correspond to water flowing through a
pipe, a time continuous signal, or continuous energy flow. It is independent from UML streaming, see clause
11.3.2.8. A streaming parameter may or may not apply to continuous flow, and a continuous flow may or may
not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach
as close to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the
kind of values that flow through an activity. In particular, the value may represent as small a number as needed,
for example to simulate continuous material or energy flow. Finally, the exact timing of token flow is not
completely prescribed in UML. In particular, token flow on different edges may be coordinated to occur in a
clocked fashion, as in time march algorithms for numerical solvers of ordinary differential equations, such as
Runge-Kutta.

Generalizations

 Rate (from Activities)

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be
used to enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the
behavior takes control values as inputs or provides them as outputs, that is, it treats control as data (see clause
11.3.3.1.1). When the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed
by ControlValue. The «controlOperator» stereotype also applies to operations with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only
enable based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This
is so the control value can be passed into or out of the action and the invoked behavior, rather than control the
starting of the action, or indicating the ending of it.

Association Ends

• base_Behavior : Behavior [0..1]

• base_Operation : Operation [0..1]

Constraints

Issue(s): SYSML16-274

• 1_one_parameter_controlvalue
When the «controlOperator» stereotype is applied, the behavior or operation shall have at least one
parameter typed by ControlValue. If the stereotype is not applied, the behavior or operation may not
have any parameter typed by ControlValue.

UML::Behavior.allInstances()->forAll(b | not
(ControlOperator.allInstances().base_Behavior->includes(b) xor
b.ownedParameter->exists(p |
p.type=SysML::Libraries::ControlValues::ControlValue))) and
UML::Operation.allInstances()->forAll(o | not
(ControlOperator.allInstances().base_Operation->includes(o) xor

o.ownedParameter->exists(p |
p.type=SysML::Libraries::ControlValues::ControlValue)))

Issue(s): SYSML16-274

• 2_controloperator_operation_method
A behavior shall have the «controlOperator» stereotype applied if it is a method of an operation that
has the «controlOperator» stereotype applied.

(self.base_Operation->notEmpty() and self.base_Operation.method->notEmpty())
implies self.base_Operation.method->forAll(b |
ControlOperator.allInstances().base_Behavior->includes(b))

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see clause11.3.2.8) where the increment of time between items is a
non-zero. Examples include the production of assemblies in a factory and signals set at periodic time intervals.

Generalizations

 Rate (from Activities)

Constraints

Issue(s): SYSML16-274

• 1_not_continuous
The «discrete» and «continuous» stereotypes shall not be applied to the same element at the same time.

(self.base_ActivityEdge->notEmpty() implies
Continuous.allInstances().base_ActivityEdge->excludes(self.base_ActivityEdge))
and (self.base_Parameter->notEmpty() implies
Continuous.allInstances().base_Parameter->excludes(self.base_Parameter))

11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are
refused by outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with
fast or continuously flowing data values, to prevent buffer overrun, or to model transient values, such as
electrical signals. For object nodes that are the target of continuous flows, «nobuffer» and «overwrite» have the
same effect. The stereotype does not override UML token offering semantics; it just indicates what happens to
the token when it is accepted. When the stereotype is not applied, the semantics are as in UML, specifically,
tokens arriving at an object node that are refused by outgoing edges, or action for input pins, are held until they
can leave the object node.

Association Ends

• base_ObjectNode : ObjectNode [1]

Constraints

Issue(s): SYSML16-274

• 1_not_overwrite
The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

Overwrite.allInstances().base_ObjectNode->excludes(self.base_ObjectNode)

OMG Systems Modeling Language, v1.6 149

11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node removes one
that is already there before being added (a full object node has as many tokens as allowed by its upper bound).
This is typically used on an input pin with an upper bound of 1 to ensure that stale data is overridden at an input
pin. For upper bounds greater than one, the token removed is the one that has been in the object node the
longest. For FIFO ordering, this is the token that is next to be selected, for LIFO it is the token that would be
last to be selected. Tokens arriving at a full object node with the Overwrite stereotype applied take up their
positions in the ordering as normal, if any. The arriving tokens do not take the positions of the removed tokens.
A null token removes all the tokens already there. The number of tokens replaced is equal to the weight of the
incoming edge, which defaults to 1. For object nodes that are the target of continuous flows, «overwrite» and
«nobuffer» have the same effect. The stereotype does not override UML token offering semantics, just indicates
what happens to the token when it is accepted. When the stereotype is not applied, the semantics is as in UML,
specifically, tokens arriving at object nodes do not replace ones that are already there.

Association Ends

• base_ObjectNode : ObjectNode [1]

Constraints

Issue(s): SYSML16-274

• 1_not_nobuffer
The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

NoBuffer.allInstances().base_ObjectNode->excludes(self.base_ObjectNode)

11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity shall be equal to zero. This
means the parameter is not required to have a value for the activity or any behavior to begin or end execution.
Otherwise, the lower multiplicity shall be greater than zero, which is called "required." The absence of this
stereotype indicates a constraint, see below.

Association Ends

• base_Parameter : Parameter [1]

Constraints

Issue(s): SYSML16-274

• 1_lower_is_0
A parameter with the «optional» stereotypes applied shall have multiplicity.lower equal to zero,
otherwise multiplicity.lower shall be greater than zero

UML::Parameter.allInstances()->forAll(p |
Optional.allInstances().base_Parameter->includes(p) xor p.lower > 0)

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it
provides an expression for the probability that the edge will be traversed. These shall be between zero and one
inclusive, and add up to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set
will be given values at runtime. These shall be between zero and one inclusive, and add up to one for output
parameter sets of the same behavior at the time the probabilities are used.

Attributes

• probability : ValueSpecification [1]
Value of the probability

Association Ends

• base_ActivityEdge : ActivityEdge [0..1]

• base_ParameterSet : ParameterSet [0..1]

Constraints

Issue(s): SYSML16-274

• 1_source_decisionnode_or_objectnode
The «probability» stereotype shall only be applied to activity edges that have decision nodes or object
nodes as sources, or to output parameter sets.

(self.base_ActivityEdge->notEmpty() implies
self.base_ActivityEdge.source.oclIsKindOf(UML::DecisionNode)) and
(self.base_ParameterSet->notEmpty() implies self.base_ParameterSet.parameter-
>forAll(p | p.direction=UML::ParameterDirectionKind::out))

Issue(s): SYSML16-274

• 2_all_outgoing_edges
When the «probability» stereotype is applied to an activity edge, then it shall be applied to all edges
coming out of the same source.

self.base_ActivityEdge->notEmpty() implies
Probability.allInstances().base_ActivityEdge-
>includesAll(self.base_ActivityEdge.target.incoming)

Issue(s): SYSML16-274

• 3_all_parametersets
When the «probability» stereotype is applied to an output parameter set, it shall be applied to all the
parameter sets of the behavior or operation owning the original parameter set.

self.base_ParameterSet->notEmpty() implies
Probability.allInstances().base_ParameterSet-
>includesAll(self.base_ParameterSet.namespace.ownedMember->select(m |
m.oclIsKindOf(UML::ParameterSet)))

Issue(s): SYSML16-274

• 4_all_outputparameter_in_parametersets
When the «probability» stereotype is applied to an output parameter set, all the output parameters shall
be in some parameter set.

(self.base_ActivityEdge->notEmpty() implies
Continuous.allInstances().base_ActivityEdge->excludes(self.base_ActivityEdge))
and (self.base_Parameter->notEmpty() implies
Continuous.allInstances().base_Parameter->excludes(self.base_Parameter))

OMG Systems Modeling Language, v1.6 151

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of
objects and values that traverse the edge per time interval, that is, the expected value rate at which they leave
the source node and arrive at the target node. It does not refer to the rate at which a value changes over time.
When the stereotype is applied to a parameter, the parameter shall be streaming, and the stereotype gives the
number of objects or values that flow in or out of the parameter per time interval while the behavior or
operation is executing. Streaming is a characteristic of UML behavior parameters that supports the input and
output of items while a behavior is executing, rather than only when the behavior starts and stops. The flow may
be continuous or discrete, see the specialized rates in clause 11.3.2.1 and clause 11.3.2.3. The «rate» stereotype
has a rate property of type InstanceSpecification. The values of this property shall be instances of classifiers
stereotyped by «valueType» or «distributionDefinition», see clause 8. In particular, the denominator for units
used in the rate property shall be time units.

Attributes

• rate : InstanceSpecification [1]
Value of the rate

Association Ends

• base_ActivityEdge : ActivityEdge [0..1]

• base_ObjectNode : ObjectNode [0..1]

• base_Parameter : Parameter [0..1]

Constraints

Issue(s): SYSML16-274

• 1_streaming
When the «rate» stereotype is applied to a parameter, the parameter shall be streaming.

self.base_Parameter->notEmpty() implies self.base_Parameter.isStream

Issue(s): SYSML16-274

• 2_edges_rates
The rate of a parameter shall be less than or equal to rates on edges that come into or go out from pins
and parameters nodes corresponding to the parameter.

self.base_Parameter->notEmpty() implies (
 let nodes: Set(UML::ObjectNode) =
 if self.base_Parameter.owner.oclIsKindOf(UML::Behavior) then
 let pOwner: UML::Behavior =
self.base_Parameter.owner.oclAsType(UML::Behavior) in
 UML::CallBehaviorAction.allInstances()->select(a | a.behavior = pOwner)
 ->collect(a | a.argument->at(pOwner.ownedParameter-
>indexOf(self.base_Parameter)))
 ->union(UML::StartObjectBehaviorAction.allInstances()->select(a |
a.behavior() = pOwner)
 ->collect(a | a.argument->at(pOwner.ownedParameter-
>indexOf(self.base_Parameter))))
 ->union(UML::ActivityParameterNode.allInstances()->select(n | n.parameter =
self.base_Parameter))->asSet()
 else if self.base_Parameter.owner.oclIsKindOf(UML::Operation) then
 let pOwner: UML::Operation =
self.base_Parameter.owner.oclAsType(UML::Operation) in
 UML::CallOperationAction.allInstances()->select(a | a.operation = pOwner)

 ->collect(a | a.argument->at(pOwner.ownedParameter-
>indexOf(self.base_Parameter)))->asSet()
 else
 Set(UML::ObjectNode){}
 endif endif in
 nodes.incoming->flatten()->union(nodes.outgoing->flatten())
 ->forAll(e | let eRate: Rate = Rate.allInstances()->any(r |
r.base_ActivityEdge=e) in
 (not eRate.oclIsUndefined() and self.rate.specification.realValue() <=
eRate.rate.specification.realValue())))

11.3.3 Model Libraries

11.3.3.1 Package ControlValues

The SysML model library for activities is shown in Figure 11.9.

Issue(s): SYSML16-94, SYSML16-198

Figure 11.9 - Control values

11.3.3.1.1 ControlValueKind

Description

Issue(s): SYSML16-94

The ControlValueKind enumeration is a type for treating control values as data (see clause11.3.2.2) and for
UML control pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes,
and so on. The possible runtime values are given as enumeration literals. Modelers can extend the enumeration
with additional literals, such as suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the
beginning (compare to suspend). The enable literal means to start a new execution of a behavior (compare to
resume).

Literals

• disable
The disable literal means a termination of an executing behavior that can only be started again from the
beginning (compare to suspend).

• enable
The enable literal means to start a new execution of a behavior (compare to resume).

OMG Systems Modeling Language, v1.6 153

Constraints

• 1_node_is_controltype
UML::ObjectNode::isControlType is true for object nodes with type ControlValue

11.4 Usage Examples
The following examples illustrate modeling continuous systems (see 11.1.2, Continuous Systems). Figure 11.10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key
on has a duration constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts
two behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming
parameters to communicate with other behaviors. The Driving behavior outputs a brake pressure continuously
to the Braking behavior while both are executing, as indicated by the «continuous» rate and streaming
properties (streaming is a characteristic of UML behavior parameters that supports the input and output of items
while a behavior is executing, rather than only when the behavior starts and stops). Brake pressure information
also flows to a control operator that outputs a control value to enable or disable the Monitor Traction behavior.
No pins are used on Monitor Traction, so once it is enabled, the continuously arriving enable control values
from the control operator have no effect, per UML semantics. When the brake pressure goes to zero, disable
control values are emitted from the control operator. The first one disables the monitor, and the rest have no
effect. While the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by
the ABS system. The rake notations on the control operator and Monitor Traction indicate they are further
defined by activities, as shown in Figures 11.11 and 11.12. An alternative notation for this activity
decomposition is shown in Figure 11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple
Time model. The Operate Car activity owns a duration constraint specifying that the “Turn Key To On” action
lasts no more than 0.1 seconds. The concrete UML element used in this example is a DurationConstraint owned
by Operate Car that constrains the Turn Key To On action. The DurationConstraint owns a DurationInterval,
which specifies that the action is constrained to last between 0 seconds and 0.1 seconds (both being Duration
expressions).

Issue(s): SYMSL16-198

Figure 11.10 - Continuous system example 1

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it
begins listening for signals coming in from the wheel and accelerometer, as indicated by the signal receipt
symbols on the left, which begin listening automatically when the activity is enabled. A traction index is
calculated every 10 ms, which is the slower of the two signal rates. The accelerometer signals come in
continuously, which means the input to Calculate Traction does not buffer values. The result of Calculate
Traction is filtered by a decision node for a threshold value and Calculate Modulation Frequency determines the
output of the activity.

Issue(s): SYSML16-198

Figure 11.11 - Continuous system example 2

OMG Systems Modeling Language, v1.6 155

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The
decision node and guards determine if the brake pressure is greater than zero, and flow is directed to value
specification actions that output an enabling or disabling control value from the activity. The edges coming out
of the decision node indicate the probability of each branch being taken.

Issue(s): SYSML16-198

Figure 11.12 - Continuous system example 3

Figure 11.13 shows a block definition diagram with composition associations between the activities and
AdjunctProperty applied to the part ends in Figures 11.10, 11.11, and 11.12, as an alternative way to show the
activity decomposition of Figures 11.10, 11.11, and 11.12. Each instance of Operating Car is an execution of
that behavior. It owns the executions of the behaviors it invokes synchronously, such as Driving. Like all
composition, if an instance of Operating Car is destroyed, terminating the execution, the executions it owns are
also terminated.

Issue(s): SYSML16-198

Figure 11.13 - Example block definition diagram for activity decomposition

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure
11.10 and the types the object nodes in that activity, with AdjunctProperty applied to the object node type end.
In an instance of Operating Car, which is one execution of it, instances of Brake Pressure and Modulation
Frequency are linked to the execution instance when they are in the object nodes of the activity.

Issue(s): SYSML16-198

Figure 11.14 - Example block definition diagram for object node types

OMG Systems Modeling Language, v1.6 157

12 Interactions

12.1 Overview
Interactions are used to describe interactions between entities. UML Interactions are supported by four diagram
types including the Sequence diagram, Communications diagram, Interaction Overview diagram, and Timing
diagram. The Sequence diagram is the most common of the Interaction diagrams. SysML includes the Sequence
diagram only and excludes the Interaction Overview diagram and Communication diagram, which were
considered to offer significantly overlapping functionality without adding significant capability for system
modeling applications. The Timing diagram is also excluded due to concerns about its maturity and suitability
for systems engineering needs.

The Sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a
system. This diagram represents the sending and receiving of messages between the interacting entities called
lifelines, where time is represented along the vertical axis. The sequence diagrams can represent highly complex
interactions with special constructs to represent various types of control logic, reference interactions on other
sequence diagrams, and decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Issue(s): SYSML16-201, SYSML16-198

Table 12.1: Graphical notation of sequence diagramsa

Notation Name Concrete Syntax Abstract Syntax Reference

SequenceDiagram Frame and
Heading

UML4SysML::Interaction

Lifeline UML4SysML::Lifeline

Notation Name Concrete Syntax Abstract Syntax Reference

Execution Specification UML4SysML::ExecutionSpecification

InteractionUse UML4SysML::InteractionUse

An InteractionUse with just the <interaction-
name>.

An InteractionUse with <attribute - name>,
the value of arguments, the <return-value>,
etc.

CombinedFragment UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:

 seq - Weak Sequencing
 alt – Alternatives
 opt – Option
 break – Break
 par – Parallel
 strict - Strict Sequencing
 loop – Loop
 critical - Critical Region
 neg – Negative
 assert – Assertion
 ignore – Ignore
 consider – Consider

OMG Systems Modeling Language, v1.6 159

Notation Name Concrete Syntax Abstract Syntax Reference

StateInvariant / Continuations UML4SysML::Continuation
UML4SysML::StateInvariant

Coregion UML4SysML::CombineFragment (under
parallel)

CreationEvent
DestructionEvent

UML4SysML::CreationEvent
UML4SysML::DestructionEvent

Notation Name Concrete Syntax Abstract Syntax Reference

DurationConstraint Duration
Observation

UML4SysML::Interactions

TimeConstraint
TimeObservation

UML4SysML::Interactions

SequenceDiagram
(advanced)

UML4SysML::Interaction

Shows usage of arguments and assignment to
return value.

OMG Systems Modeling Language, v1.6 161

Notation Name Concrete Syntax Abstract Syntax Reference

InteractionUse
(advanced)

UML4SysML::InteractionUse

Shows usage of arguments and assignment to
attribute value upon return.

a. Table is compliant with UML 2.1 document.

Table 12.2: Graphical paths included in sequence diagram

Path Name Concrete Syntax Abstract Syntax Reference

Message UML4SysML::Message

Lost Message
Found Message

UML4SysML::Message

Path Name Concrete Syntax Abstract Syntax Reference

GeneralOrdering UML4SysML::GeneralOrdering

Issue(s): SYSML16-198

Table 12.3: Other graphical elements included in sequence diagram

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Interaction, Association,
AdjunctProperty

UML4SysML::Interactions,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Clause 17, “Profiles & Model Libraries.”

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing
 Diagram

Communication diagrams and Interaction Overview diagrams are excluded from SysML. The other behavioral
diagram representations were considered to provide sufficient coverage without introducing these diagram
kinds. Timing diagrams are also excluded due to concerns about their maturity and suitability for systems
engineering needs.

12.3.1.2 Interactions and Parameters

12.3.1.2.1 Notation

In UML, all behaviors are classes, including interactions, and their instances are executions of the interaction.
Interactions as blocks and associations between interactions corresponding to interaction uses have an
analogous semantics to activities as blocks and associations between activities corresponding to call actions, see
11.3.1.1.1, Notation. Similarly, associations between interactions and classifiers (blocks or value types) have an
analogous semantics to associations between activities and blocks or value types, see 11.3.1.4.1, Notation.

OMG Systems Modeling Language, v1.6 163

Interactions in block definition diagrams appear as regular blocks, except the «interaction» keyword may be
used to indicate the Block stereotype is applied to an interaction, as shown in Figure 12.1 Properties with
AdjunctProperty applied, where the principal of the AdjunctProperty is an interaction use, can be used as the
end of the associations towards the interaction being used. Properties with AdjunctProperty applied, where the
principal of the AdjunctProperty is a parameter of the interaction, can be used as the end of the associations
towards the parameter type. See 8.3.2.2, AdjunctProperty for constraints when AdjunctProperty is used with
interaction uses and parameters. Interactions in block definition diagrams can also appear with the same
notation as InteractionUses.

Issue(s): SYSML16-198

Figure 12.1 - Block definition diagram with interactions as blocks associated with used interactions and types of
parameters

12.4 Usage Examples

12.4.1 Sequence Diagrams

Figure D.7 illustrates the overall system behavior for operating the vehicle in Sequence diagram format. To
manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further
elaborate the system behavior (“ref StartVehicleBlackBox”). CombinedFragments are used to illustrate that
steering can take place at the same time as controlling the speed and that controlling speed can be either idling,
accelerating/cruising, or braking.

Figure D.9 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

Figure D.10 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is
started successfully.

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 165

13 State Machines

13.1 Overview
The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through
finite state transition systems. The state machine represents behavior as the state history of an object in terms of
its transitions and states. The activities that are invoked during the transition, entry, and exit of the states are
specified along with the associated event and guard conditions. Activities that are invoked while in the state are
specified as “do Activities,” and can be either continuous or discrete. A composite state has nested states that
can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the
language. The standard UML state machine concept (called behavior state machines in UML) are thought to be
sufficient for expressing protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

Issue(s): SYSML16-201, SYSML16-198

Table 13.1: Graphical notation of state machine diagrams

Notation Name Concrete Syntax Abstract Syntax Reference

StateMachineDiagram Frame
and Heading

UML4SysML::StateMachine

Choice pseudo state UML4SysML::PseudoState

Notation Name Concrete Syntax Abstract Syntax Reference

Composite state UML4SysML::State

Entry point UML4SysML::PseudoState

Exit point UML4SysML::PseudoState

Final state UML4SysML::FinalState

History, Deep Pseudo state UML4SysML::PseudoState

History, Shallow pseudo state UML4SysML::PseudoState

Initial Pseudo state UML4SysML::PseudoState

OMG Systems Modeling Language, v1.6 167

Notation Name Concrete Syntax Abstract Syntax Reference

Junction Pseudo state UML4SysML::PseudoState

Receive signal action UML4SysML::Transition

Send signal action UML4SysML::Transition

Action UML4SysML::Transition

Region UML4SysML::Region

Notation Name Concrete Syntax Abstract Syntax Reference

Simple state UML4SysML::State

State list UML4SysML::State

State Machine UML4SysML::StateMachine

Terminate node UML4SysML::PseudoState

Submachine state UML4SysML::State

OMG Systems Modeling Language, v1.6 169

Notation Name Concrete Syntax Abstract Syntax Reference

Composite State with a hidden
decomposition indicator icon

UML4SysML::State

Table 13.2: Graphical paths included in state machine diagrams

Path Name Concrete Syntax Abstract Syntax Reference

Transition UML4SysML::Transition

Alternative entry point
Connection-PointReference
notation

UML4SysML::ConnectionPoint
Reference

Alternative exit point
ConnectionPointReference
notation

UML4SysML::ConnectionPoint
Reference

Issue(s): SYSML16-198

Table 13.3: Other graphical elements included in state machine diagram

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition Diagrams,
Interaction, Association,
AdjunctProperty

UML4SysML::StateMachines,
UML4SysML::Association,
SysML::Blocks::AdjunctProperty

13.3 UML Extensions

13.3.1 Diagram Extensions

13.3.1.1 State Machines and Parameters

13.3.1.1.1 Notation

In UML, all behaviors are classes, including state machines, and their instances are executions of the state
machine. State machines as blocks and associations between state machines corresponding to submachine
states have an analogous semantics to activities as blocks and associations between activities corresponding to
call actions, see 11.3.1.1.1, Notation. Similarly, associations between state machines and classifiers (blocks or
value types) have an analogous semantics to associations between activities and blocks or value types, see
11.3.1.4.1, Notation.

State machines in block definition diagrams appear as regular blocks, except the «stateMachine» keyword may
be used to indicate the Block stereotype is applied to an state machine, as shown in Figure 13.1. Properties with
AdjunctProperty applied, where the principal of the AdjunctProperty is a submachine state, can be used as the
end of the associations towards the sub state machine. Properties with AdjunctProperty applied, where the
principal of the AdjunctProperty is a parameter of the state machine, can be used as the end of the associations
towards the parameter type. See 8.3.2.2, AdjunctProperty for constraints when AdjunctProperty is used with
submachine states and parameters. State machines in block definition diagrams can also appear with the same
notation as submachine states.

OMG Systems Modeling Language, v1.6 171

Figure 13.1 - Block definition diagram with state machines as blocks associated with submachines and types of
parameters

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are
illustrated in the state machine diagram in Figure D.8.

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 173

14 Use Cases

14.1 Overview
The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal,
that is realized by the subject providing a set of services to selected actors. The use case can also be viewed as
functionality and/or capabilities that are accomplished through the interaction between the subject and its actors.
Use case diagrams include the use case and actors and the associated communications between them. Actors
represent classifier roles that are external to the system that may correspond to users, systems, and or other
environmental entities. They may interact either directly or indirectly with the system. The actors are often
specialized to represent a taxonomy of user types or external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors
and the use case represent the communications that occur between the actors and the subject to accomplish the
functionality associated with the use case. The subject of the use case can be represented via a system boundary.
The use cases that are enclosed in the system boundary represent functionality that is realized by behaviors such
as activity diagrams, sequence diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are
connected to use cases via communication paths, that are represented by an association relationship. The
“include” relationship provides a mechanism for factoring out common functionality that is shared among
multiple use cases, and is required for the goals of the actor of the base use case to be met. The “extend”
relationship provides optional functionality (optional in the sense of not being required to meet the goals),
which extends the base use case at defined extension points under specified conditions. The “generalization”
relationship provides a mechanism to specify variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in
the packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram
Table 14.1: Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Use Case UML4SysML::UseCase

Node Name Concrete Syntax Abstract Syntax Reference

Use Case with Extension
Points

UML4SysML::UseCase

Actor UML4SysML::Actor

Subject Association end name on
UML4SysML::Classifier

Table 14.2: Graphical paths included in Use Case diagrams

Path Name Concrete Syntax Abstract Syntax Reference

Communication path UML4SysML::Association

Include UML4SysML::include

OMG Systems Modeling Language, v1.6 175

Path Name Concrete Syntax Abstract Syntax Reference

Extend UML4SysML::Extend

Extend with Condition UML4SysML::Extend

Generalization UML4SysML::Kernel

14.3 UML Extensions

None.

14.4 Usage Examples

Figure D.5 is a top-level set of use cases for the Hybrid SUV System. Figure D.6 shows the decomposition of
the Operate the Vehicle use case. In this diagram, the frame represents the package that contains the lower level
use cases. The convention of naming the package with the same name as the top level use case has been
employed. This practice offers an implicit tracing mechanism that complements the explicit trace relationships
in SysML.

In Figure D.6 the Extend relationship specifies that the behavior of a use case may be extended by the behavior
of another (usually supplementary) use case. The extension takes place at one or more specific extension points
defined in the extended use case. Note, however, that the extended use case is defined independently of the
extending use case and is meaningful independently of the extending use case. On the other hand, the extending
use case typically defines behavior that may not necessarily be meaningful by itself. Instead, the extending use
case defines a set of modular behavior increments that augment an execution of the extended use case under
specific conditions. The “Start the Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This
means that there are conditions that may exist that require the execution of an instance of “Start the Vehicle”
before an instance of “Drive the Vehicle” is executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into
the behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the
context of its owning use case. The including use case may only depend on the result (value) of the included use
case. This value is obtained as a result of the execution of the included use case. This means that “Accelerate,”

“Steer,” and “Brake” are all part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on
the approach of an individual modeler.

OMG Systems Modeling Language, v1.6 177

CROSSCUTTING CONSTRUCTS

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 179

15 Allocations

15.1 Overview
Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of
elements within the various structures or hierarchies of a user model. The concept of “allocation” requires
flexibility suitable for abstract system specification, rather than a particular constrained method of system or
software design. System modelers often associate various elements in a user model in abstract, preliminary, and
sometimes tentative ways. Allocations can be used early in the design as a precursor to more detailed rigorous
specifications and implementations. The allocation relationship can provide an effective means for navigating
the model by establishing cross relationships, and ensuring the various parts of the model are properly
integrated.

This clause does not try to limit the use of the term “allocation,” but provides a basic capability to support
allocation in the broadest sense. It does include some specific subclasses of allocation for allocating behavior,
structure, and flows. A typical example is the allocation of activities to blocks (e.g., functions to components).
This clause specifies an extension for an allocation relationship and selected subclasses of allocation, along with
the notation to represent allocations in a SysML model.

15.2 Diagram Elements
The diagram elements defined in this clause may be shown on some or all SysML diagram types, in addition to
the diagram elements that are specific for each diagram type.

In the following table, «elementType» is a placeholder for a keyword used to specify the kind of element it
prefixes. For uniformity, the «elementType» displayed for the allocated-to or allocated-from elements should be
from the following list, as applicable: «activity», «action», «objectFlow», «controlFlow», «objectNode»,
«operation», «block», «property», «itemFlow», «connector», «port», «value».

Other «elementType» designations may be used, if none of the above apply. Note that it is important to use fully
qualified names to avoid ambiguity when required. An example of a fully qualified name is the form:
(PackageName::ElementName.PropertyName).

15.2.1 Representing Allocation on Diagrams
Table 15.1: Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Allocation derived properties
displayed in compartment of a
Block.

SysML::Allocation:Allocate

Node Name Concrete Syntax Abstract Syntax Reference

Allocation derived properties
displayed in Comment.

SysML::Allocation:Allocate

Allocation derived properties
displayed in compartment of
Part on Internal Block
Diagram.

SysML::Allocation:Allocate

Allocation derived properties
displayed in compartment of
Action on Activity Diagram.

SysML::Allocation:Allocate

Allocation Activity Partition SysML::Allocation:Allocate
ActivityPartition

OMG Systems Modeling Language, v1.6 181

Node Name Concrete Syntax Abstract Syntax Reference

Allocation (general) SysML::Allocation:Allocate

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency.
“from” is the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName
for client and supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the
allocation. In other words, the directed line points “from: the element being allocated “to” the element that is the
target of the allocation.

15.3.1.3 Allocation Compartment Format

When the allocations of a model element are displayed in a compartment, a shorthand notation is used as shown
in Table 15.1. This shorthand groups and lists the elements allocated to that element together (in the “allocated
from” compartment), then the elements allocated from that element (in the “allocated to” compartment), per the
result of Allocate::getAllocatedFrom() and getAllocatedTo() respectively, called with that element as parameter.

15.3.1.4 Allocation Callout Format

When the allocation compartment is not used, a callout notation may be used. An allocation callout notation
uses the same shorthand notation as the allocation compartment. This notation is also shown in Table 15.1. For
brevity, the «elementType» portion of allocated-from or allocated-to elements may be elided from the diagram.

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the allocatedFrom or allocatedTo
property may be elided from the diagram.

15.3.2 Stereotypes

Package Allocations

Figure 15.1 - Abstract syntax extensions for SysML Allocation

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate

Description

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements of different
types, or in different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and
directing future design activity. It is expected that an «allocate» relationship between model elements is a
precursor to a more concrete relationship between the elements, their properties, operations, attributes, or sub-
classes.

Allocate is a stereotype of a UML4SysML::Abstraction that is permissible between any two NamedElements. It
is depicted as a dependency with the "allocate" keyword attached to it. Allocate is directional in that one
NamedElement is the "from" end (no arrow), and one NamedElement is the "to" end (the end with the arrow).
The Allocate stereotype specializes DirectedRelationshipPropertyPath to enable allocations to identify their
sources and targets by a multi-level path of accessible properties from context blocks for the sources and targets.

The following paragraphs describe types of allocation that are typical in systems engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept
requires independent models of "function" (behavior) and "form" (structure), and a separate, deliberate mapping
between elements in each of these models. It is acknowledged that this concept does not support a standard
object-oriented paradigm, not is this always even desirable. Experience on large scale, complex systems
engineering problems have proven, however, that segregation of form and function is a valuable approach. In
addition, behavior allocation may also include the allocation of Behaviors to BehavioralFeatures of Blocks (e.g.,

OMG Systems Modeling Language, v1.6 183

Operations).

Flow allocation specifically maps flows in functional system representations to flows in structural system
representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete
syntax for how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not
specifically addressed in SysML, but may be represented by relating an ItemFlow to the Control Flow using the
UML relationship InformationalFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation
between any defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an
activity diagram to the ItemFlow on an internal block diagram. ItemFlow is discussed in clause 9 , "Ports and
Flows."

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate "logical" and "physical" representations of a
system. It is often necessary to construct separate depictions of a system and define mappings between them.
For example, a complete system hierarchy may be built and maintained at an abstract level. In turn, it shall then
be mapped to another complete assembly hierarchy at a more concrete level. The set of models supporting
complex systems development may include many of these levels of abstraction. This International Standard will
not define "logical" or "physical" in this context, except to acknowledge the stated need to capture allocation
relationships between separate system representations.

Generalizations

 DirectedRelationshipPropertyPath (from Blocks)

Association Ends

• base_Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base_DirectedRelationship)

Operations

• getAllocatedFrom (in ref : NamedElement) : NamedElement [0..*]
bodyCondition:
getAllocatedFrom = Allocate.allInstances()->select(to = ref).from

• getAllocatedTo (in ref : NamedElement) : NamedElement [0..*]
bodyCondition:
getAllocatedFrom = Allocate.allInstances()->select(from = ref).to

Constraints

Issue(s): SYSML16-274

• 2_binary
A single «allocate» dependency shall have only one client (from) and one supplier (to).

self.base_Abstraction.source->size() = 1 and self.base_Abstraction.target-
>size() = 1

15.3.2.2 AllocateActivityPartition

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML::ActivityPartition, with modified constraints as stated below.

Association Ends

• base_ActivityPartition : ActivityPartition [1]

Constraints

Issue(s): SYSML16-274

• 1_actions_on_client_ends
An Action appearing in an "AllocateActivityPartition" shall be the /client (from) end of an "allocate"
dependency. The element that represents the "AllocateActivityPartition" shall be the /supplier (to) end
of the same "allocate" dependency. In the «AllocateActivityPartition» name field, Properties are
designated by the use of a fully qualified name (including colon, e.g., "part_name:Block_Name"), and
Classifiers are designated by a simple name (no colons, e.g., "Block_Name").

self.base_ActivityPartition.node->select(n|n.oclIsKindOf(UML::Action)) -
>forAll(a | let allocs: Set(UML::Abstraction) =
Allocate.allInstances().base_Abstraction->select(x |x.client->includes(a))-
>asSet() in allocs->exists(x | x.supplier-
>includes(self.base_ActivityPartition.represents)))

Issue(s): SYSML16-274

• 2_not_uml_semantics
The «AllocateActivityPartition» shall maintain the constraints, but not the semantics, of the
UML::ActivityPartition. Classifiers or Properties represented by an «AllocateActivityPartition» do not
have any direct responsibility for invoking behavior depicted within the partition boundaries. To depict
this kind of direct responsibility, the modeler is directed to the UML 2 standard, sub clause 12.3.10,
"ActivityPartition," Semantics topic.

-- Cannot be expressed in OCL

15.4 Usage Examples
The following examples depict allocation relationships as property callout boxes (basic), property compartment
of a Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic
allocation for Blocks.

Figure 15.3 - Generic Allocation, including /from and /to association ends

OMG Systems Modeling Language, v1.6 185

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the
AllocateActivityPartition, if used in this manner, is unambiguously associated with behavior allocation. The
allocation to Activity6 comes from a nested part, and uses the attributes of DirectedRelationshipPropertyPath to
specify the path of properties to reach that part. The sourceContext of the allocation is Block4 and the
sourcePropertyPath is (Part5).

Figure 15.4 - Behavior Allocation

15.4.2 Allocate Flow

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

Issue(s): SYSML16-198

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

Issue(s): SYSML16-198

Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 187

Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have frequent need to allocate structural model elements (e.g., blocks, parts, or connectors)
to other structural elements. For example, if a particular user model includes an abstract logical structure, it may
be important to show how these model elements are allocated to a more concrete physical structure. The need
also arise, when adding detail to a structural model, to allocate a connector (at a more abstract level) to a part (at
a more concrete level).

Issue(s): SYSML16-198

Figure 15.8 - Example of Structural Allocation

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for
providing power are allocated to blocks within the Hybrid SUV, as shown in Figure D.38.

Figure D.39 shows an internal block diagram showing allocation for the HybridSUV Accelerate example.

15.4.3 Tabular Representation

The table shown in Figure D.40 is provided as a specific example of how the «allocate» dependency may be
depicted in tabular form, consistent with the automotive example above.

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure
15.9.

Issue(s): SYSML16-198

Figure 15.9 - Allocation Matrix showing Allocation for Hybrid SUV Accelerate Example

OMG Systems Modeling Language, v1.6 189

16 Requirements

16.1 Overview
A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition a system must achieve. SysML provides
modeling constructs to represent text-based requirements and relate them to other modeling elements. The
requirements diagram described in this clause can depict the requirements in graphical, tabular, or tree structure
format. A requirement can also appear on other diagrams to show its relationship to other modeling elements.
The requirements modeling constructs are intended to provide a bridge between traditional requirements
management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement
includes properties to specify its unique identifier and text requirement. Additional properties such as
verification status, can be specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other
requirements as well as to other model elements. These include relationships for defining a requirements
hierarchy, deriving requirements, satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the
UML namespace containment mechanism. This relationship enables a complex requirement to be decomposed
into its containing child requirements. A composite requirement may state that the system shall do A and B and
C, which can be decomposed into the child requirements that the system shall do A, the system shall do B, and
the system shall do C. An entire specification can be decomposed into children requirements, which can be
further decomposed into their children to define the requirements hierarchy.

There is a real need for requirement reuse across product families and projects. Typical scenarios are regulatory,
statutory, or contractual requirements that are applicable across products and/or projects and requirements that
are reused across product families (versions/variants). In these cases, one would like to be able to reference a
requirement, or requirement set in multiple contexts with updates to the original requirements propagated to the
reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in
different contexts since a given model element can only exist in one namespace. Since the concept of
requirements reuse is very important in many applications, SysML introduces the concept of a slave
requirement. A slave requirement is a requirement whose text property is a read-only copy of the text property
of a master requirement. The text property of the slave requirement is constrained to be the same as the text
property of the related master requirement. The master/slave relationship is indicated by the use of the copy
relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically
involves analysis to determine the multiple derived requirements that support a source requirement. The derived
requirements generally correspond to requirements at the next level of the system hierarchy. A simple example
may be a vehicle acceleration requirement that is analyzed to derive requirements for engine power, vehicle
weight, and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A
system modeler specifies the system design elements that are intended to satisfy the requirement. In the example
above, the engine design satisfies the engine power requirement.

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, a test
case or other named element can be used as a general mechanism to represent any of the standard verification
methods for inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if
required to represent the different verification methods. A verdict property of a test case can be used to represent
the verification result. The SysML test case is defined consistent with the UML testing profile to facilitate
integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used
to further refine a requirement. For example, a use case or activity diagram may be used to refine a text-based
functional requirement. Alternatively, it may be used to show how a text-based requirement refines a model
element. In this case, some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any
other model element. The semantics of trace include no real constraints and therefore are quite weak. As a
result, it is recommended that the trace relationship not be used in conjunction with the other requirements
relationships described above.

The rationale construct that is defined in Clause 7, “Model Elements” is quite useful in support of requirements.
It enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For
example, a rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that
provides the supporting rationale for why the particular design satisfies the requirement. Similarly, this can be
used with the other relationships such as the derive relationship. It also provides an alternative mechanism to
capture the verify relationship by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement
stereotype. For example, a modeler may want to define requirements categories to represent operational,
functional, interface, performance, physical, storage, activation/deactivation, design constraints, and other
specialized requirements such as reliability and maintainability, or to represent a high level stakeholder need.
The stereotype enables the modeler to add constraints that restrict the types of model elements that may be
assigned to satisfy the requirement. For example, a functional requirement may be constrained so that it can
only be satisfied by a SysML behavior such as an activity, state machine, or interaction. Some potential
Requirement subclasses are defined in Annex E.3.

Some users may want a more explicit way to model numerical values and equations as expressed in
requirements. Annex E.8 provides examples of non-normative extensions to SysML that meet this need.

OMG Systems Modeling Language, v1.6 191

16.2 Diagram Elements

16.2.1 Requirement Diagram

Issue(s): SYMSL16-198

Table 16.1: Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Requirement
Diagram

SysML::Requirements::

Requirement, SysML::

ModelElements::Package

Requirement SysML::Requirements::
Requirement

Id = "62j32"

Text = "The system shall do..."

«requirement»

Requirement Name

derived

«requirement» Derived Reqt Name

derivedF rom

«requirement» DerivedFrom Reqt Name

mas ter

«requirement» Master Reqt Name

refinedB y

«namedElement» Element Name

satis fiedB y

«namedElement» Element Name

tracedT o

«namedElement» Element Name

verifiedB y

«namedElement» Element Name

Node Name Concrete Syntax Abstract Syntax Reference

NamedElement UML4SysML::NamedElement

Table 16.2: Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax Reference

Requirement
containment
relationship

UML4SysML::Nested
Classifier

Copy Dependency SysML::Requirements::Copy

MasterCallout SysML::Requirements::Copy

DeriveDependency SysML::Requirements::
DeriveReqt

OMG Systems Modeling Language, v1.6 193

«namedElement»

Element Name

refines

«requirement» Requirement Name

satis fies

«requirement» Requirement Name

tracedF rom

«requirement» Requirement Name

verifies

«requirement» Requirement Name

«namedElement»

Element Name

refines

«requirement» Requirement Name

satis fies

«requirement» Requirement Name

tracedF rom

«requirement» Requirement Name

verifies

«requirement» Requirement Name

Path Type Concrete Syntax Abstract Syntax Reference

DeriveCallout SysML::Requirements::
DeriveReqt

SatisfyDependency SysML::Requirements::Satisfy

SatisfyCallout SysML::Requirements::Satisfy

VerifyDependency SysML::Requirements::Verify

VerifyCallout SysML::Requirements::Verify

Path Type Concrete Syntax Abstract Syntax Reference

RefineDependency UML4SysML::Refine

RefineCallout UML4SysML::Refine

TraceDependency UML4SysML::Trace

TraceCallout UML4SysML::Trace

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale.
The relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a
requirement diagram. The callout notation can also be used to reflect the relationship of other model elements to
a requirement.

OMG Systems Modeling Language, v1.6 195

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16.1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as
indicated in Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2, Requirement Notation and 16.3.1.3, Requirement
Property Callout Format can be used. The callouts represent the requirement that is attached to another model
element such as a design element.

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

 Requirements with their properties in columns.

 A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine,
Trace).

 A column that includes the model elements that satisfy the requirement.

 A column that represents the rationale for any of the above relationships, including reference to
analysis reports for trace rationale, trade studies for design rationale, or test procedures for verification
rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is
similar to the table used for allocations (15.4.3, Tabular Representation). The table should include the source
and target elements names (and optionally kinds) and the requirement dependency kind.

16.3.2 Stereotypes

Package Requirements

Figure 16.1 - Abstract Syntax for Requirements Stereotypes

16.3.2.1 AbstractRequirement

Description

An AbstractRequirement establishes the attributes and relationships essential to any potential kind of
requirement. Any intended requirement kind should subclass AbstractRequirement. The only normative
stereotype based on AbstractRequirement is the Requirement stereotype, described in clause 16.3.2.5 .
Examples of additional non-normative stereotypes based on AbstractRequirement are included in clause 22.8 .

Attributes

• base_NamedElement : NamedElement [1]

• /derived : AbstractRequirement [0..*]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this

OMG Systems Modeling Language, v1.6 197

requirement is a supplier.
(derived)

• /derivedFrom : AbstractRequirement [0..*]
Derived from all requirements that are the supplier of a «deriveReqt» relationship for which this
requirement is a client.
(derived)

• id : String [1]
The unique id of the requirement.

• /master : AbstractRequirement [0..*]
This is a derived property that lists the master requirement for this slave requirement. The master
attribute is derived from the supplier of the Copy dependency that has this requirement as the slave.
(derived)

• /refinedBy : NamedElement [0..*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a
supplier.
(derived)

• /satisfiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a
supplier.
(derived)

• text : String [1]
The textual representation or a reference to the textual representation of the requirement.

• /tracedTo : NamedElement [0..*]
Derived from all elements that are the client of a «trace» relationship for which this requirement is a
supplier.
(derived)

• /verifiedBy : NamedElement [0..*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a
supplier.
(derived)

Operations

• getDerived () : AbstractRequirement [0..*]
bodyCondition:
DeriveReqt.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getDerivedFrom () : AbstractRequirement [0..*]
bodyCondition:
DeriveReqt.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getMaster () : AbstractRequirement [0..*]
bodyCondition:
Copy.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getRefinedBy () : NamedElement [0..*]
bodyCondition:
Refine.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getSatisfiedBy () : NamedElement [0..*]
bodyCondition:
Satisfy.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

• getTracedTo () : NamedElement [0..*]
bodyCondition:
Trace.allInstances()-
>select(base_Abstraction.client=self).base_Abstraction.supplier

• getVerifiedBy () : NamedElement [0..*]
bodyCondition:
Verify.allInstances()-
>select(base_Abstraction.supplier=self).base_Abstraction.client

16.3.2.2 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that
the text of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two
elements for the purpose of requirements re-use in different contexts. When a Copy dependency exists between
two requirements, the requirement text of the client requirement is a read-only copy of the requirement text
ofthe requirement at the supplier end of the dependency.

Generalizations

 Trace (from Requirements)

Operations

• isCopy (in req1 : AbstractRequirement, in req2 : AbstractRequirement) : Boolean [1]
bodyCondition:
let subReq1: Set(AbstractRequirement) = AbstractRequirement.allInstances()
->select(r | req1.base_NamedElement.ownedElement-
>includes(r.base_NamedElement)) in
let subReq2: Set(AbstractRequirement) = AbstractRequirement.allInstances()
->select(r | req2.base_NamedElement.ownedElement-
>includes(r.base_NamedElement)) in
req1.text = req2.text and subReq1->size() = subReq2->size() and
subReq1->forAll(r1 | subReq2->exists(r2 | self.isCopy(r1, r2)))

Constraints

Issue(s): SYSML16-274

• 1_source_and_taget_are_requirements
A Copy dependency may only be created between two NamedElements that have a subtype of the
abstractRequirement stereotype applied

AbstractRequirement.allInstances().base_NamedElement-
>includesAll(self.base_Abstraction.client) and
AbstractRequirement.allInstances().base_NamedElement-
>includesAll(self.base_Abstraction.supplier)

OMG Systems Modeling Language, v1.6 199

Issue(s): SYSML16-274

• 2_same_text
The text property of the client requirement is constrained to be a read-only copy of the text property of
the supplier requirement and this applies recursively to all subrequirements

let cltReq: AbstractRequirement = AbstractRequirement.allInstances()->any(r |
self.base_Abstraction.client->includes(r.base_NamedElement)) in let supReq:
AbstractRequirement = AbstractRequirement.allInstances()->any(r |
self.base_Abstraction.supplier->includes(r.base_NamedElement)) in
self.isCopy(cltReq, supReq)

16.3.2.3 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be
derived from the supplier requirement. For example, a system requirement may be derived from a business
need, or lower-level requirements may be derived from a system requirement. As with other dependencies, the
arrow direction points from the derived (client) requirement to the (supplier) requirement from which it is
derived.

Generalizations

 Trace (from Requirements)

Constraints

Issue(s): SYSML16-274

• 1_supplier_is_requirement
The supplier shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances().base_NamedElement-
>includesAll(self.base_Abstraction.client)

Issue(s): SYSML16-274

• 2_client_is_requirement
The client shall be an element stereotyped by a subtype of AbstractRequirement.

AbstractRequirement.allInstances().base_NamedElement-
>includesAll(self.base_Abstraction.supplier)

16.3.2.4 Refine

Description

The Refine stereotype specializes UML4SysML Refine and DirectedRelationshipPropertyPath to enable
refinements to identify their sources and targets by a multi-level path of accessible properties from context
blocks for the sources and targets.

Generalizations

 DirectedRelationshipPropertyPath (from Blocks)

Association Ends

• base_Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base_DirectedRelationship)

Operations

• getRefines (in ref : NamedElement) : AbstractRequirement [0..*]
The query getRefines() gives all the requirements that are suppliers ("to"end of the concrete syntax) of
a «Refine» relationships whose client is the element in parameter. This is a static query.

bodyCondition:
Refine.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

Issue(s): SYSML16-274

• 2_binary
Abstractions with a Refine stereotype or one of its specializations applied shall have exactly one client
and one supplier.

self.base_Abstraction.client->size()=1 and self.base_Abstraction.supplier-
>size()=1

16.3.2.5 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a
function that a system must perform or a performance condition that a system must satisfy. Requirements are
used to establish a contract between the customer (or other stakeholder) and those responsible for designing and
implementing the system.

A requirement is a stereotype of both Class and Abstract Requirement. Compound requirements can be created
by using the nesting capability of the class definition mechanism. The default interpretation of a compound
requirement, unless stated differently by the compound requirement itself, is that all its subrequirements shall be
satisfied for the compound requirement to be satisfied. Subrequirements shall be accessed through the
"nestedClassifier" property of a class. When a requirement has nested requirements, all the nested requirements
apply as part of the container requirement. Deleting the container requirement deleted the nested requirements,
a functionality inherited from UML.

Generalizations

 AbstractRequirement (from Requirements)

Association Ends

• base_Class : Class [1]
(redefines: AbstractRequirement::base_NamedElement)

Constraints

Issue(s): SYSML16-274

• 1_no_operation
The property "ownedOperation" shall be empty.

self.base_Class.ownedOperation->isEmpty()

Issue(s): SYSML16-274

• 2_no_attribute
The property "ownedAttribute" shall be empty.

self.base_Class.ownedAttribute->isEmpty()

OMG Systems Modeling Language, v1.6 201

Issue(s): SYSML16-274

• 3_no_association
Classes stereotyped by «requirement» shall not participate in associations.

UML::Association.allInstances().memberEnd->flatten().type-
>excludes(self.base_Class)

Issue(s): SYSML16-274

• 4_no_generalization
Classes stereotyped by «requirement» shall not participate in generalizations.

UML::Classifier.allInstances().general->flatten()->excludes(self.base_Class)

Issue(s): SYSML16-274

• 5_nestedclassifiers_are_requirements
A nested classifier of a class stereotyped by Requirement or one of its specializations shall also be
stereotyped by Requirement or one of its specializations

self.base_Class.nestedClassifier->forAll(c |
Requirement.allInstances().base_Class->includes(c))

Issue(s): SYSML16-274

• 6_not_a_type
Classes stereotyped by «requirement» shall not be used to type any other model element.

UML::TypedElement.allInstances().type->excludes(self.base_Class)

16.3.2.6 TestCase

Description

A test case is a method for verifying a requirement is satisfied.

Association Ends

• base_Behavior : Behavior [0..1]

• base_Operation : Operation [0..1]

Constraints

Issue(s): SYSML16-274

• 1_return_verdictkind
The type of return parameter of the stereotyped model element shall be VerdictKind. (note this is
consistent with the UML Testing Profile).

(self.base_Behavior->notEmpty() implies self.base_Behavior.ownedParameter-
>exists(p | p.direction=UML::ParameterDirectionKind::return and p.type =
VerdictKind)) and (self.base_Operation->notEmpty() implies
self.base_Operation.ownedParameter->exists(p |
p.direction=UML::ParameterDirectionKind::return and p.type = VerdictKind))

16.3.2.7 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement.
As with other dependencies, the arrow direction points from the satisfying (client) model element to the
(supplier) requirement that is satisfied.

Generalizations

 Trace (from Requirements)

Operations

• getSatisfies (in ref : NamedElement) : AbstractRequirement [0..*]
bodyCondition:
Satisfy.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

• 1_supplier_is_requirement
The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».

AbstractRequirement.allInstances().base_NamedElement-
>includes(self.base_Abstraction.supplier)

16.3.2.8 Trace

Description

The Trace stereotype specializes UML4SysML Trace and DirectedRelationshipPropertyPath to enable traces to
identify their sources and targets by a multi-level path of accessible properties from context blocks for the
sources and targets.

Generalizations

 DirectedRelationshipPropertyPath (from Blocks)

Association Ends

• base_Abstraction : Abstraction [1]
(redefines: DirectedRelationshipPropertyPath::base_DirectedRelationship)

Operations

• getTracedFrom (in ref : NamedElement) : AbstractRequirement [0..*]
The query getTracedFrom() gives all the requirements that are clients ("from" end of the concrete
syntax) of a «Trace» relationship whose supplier is the element in parameter. This is a static query.

bodyCondition:
AbstractRequirement.allInstances()->select(tracedTo->includes(ref))

Constraints

Issue(s): SYSML16-274

• 2_binary
Abstractions with a Trace stereotype or one of its specializations applied shall have exactly one client
and one supplier.

self.base_Abstraction.client->size()=1 and self.base_Abstraction.supplier-
>size()=1

16.3.2.9 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can
determine whether a system fulfills the requirement. As with other dependencies, the arrow direction points
from the (client) element to the (supplier) requirement.

OMG Systems Modeling Language, v1.6 203

Generalizations

 Trace (from Requirements)

Operations

• getVerifies (in ref : NamedElement) : AbstractRequirement [0..*]
The query getVerifies() gives all the requirements that are suppliers ("to" end of the concrete syntax)
of a «Verify» relationships whose client is the element in parameter. This is a static query.

bodyCondition:
Verify.allInstances()-
>select(base_Abstraction.client=ref).base_Abstraction.supplier

Constraints

Issue(s): SYSML16-274

• 1_supplier_is_requirement
The supplier shall be an element stereotyped by any subtype of «AbstractRequirement».

AbstractRequirement.allInstances().base_NamedElement-
>includes(self.base_Abstraction.supplier)

16.4 Usage Examples
The examples in this clause show the use of the normative Requirement stereotypes. Examples showing the
definition and use of non-normative requirement stereotypes based on AbstractRequirement are shown in Annex
E.8. All the examples in this clause are based on a set of publicly available (on-line) requirement specifications
from the National Highway Traffic Safety Administration (NHTSA). Excerpts of the original requirement text
used to create the models are shown in Figure 16.2. The name and ID of these requirements are referred to in
the SysML usage examples that follow. See NHTSA specification 49CFR571.135 for the complete text from
which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.2 shows an example of a compound requirement decomposed into multiple
subrequirements.

Issue(s): SYSML16-198

Figure 16.2 - Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Figure 16.3 shows derived requirements and refers to the design elements that satisfy them. The
rationale is also shown as a basis for the design solution.

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 205

Figure 16.3 - Links between requirements and design

Issue(s): SYSML16-198

Figure 16.4 - Requirement satisfaction in an internal block diagram

«requirement»
Master Cylinder Efficacy

«requirement»
LossOfFluid

«requirement»
Reservoir

«block»
BrakeSystem

«satisfy»
 Decelerate Car

«refine»

«rationale»
body = “This design of the brake
assembly satisfies the federal safety
requirements.”

id = “S5.4.1a”
text =”Prevent complete loss of fluid”

id = “S5.4.1b”
text = "Separate reservoir compartment”

id = “S5.4.1”
text =”A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”

«rationale»
body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

«deriveReqt» «deriveReqt»

f: FrontBrake
r: Rear Brake
l1: BrakeLine
l2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

SatisfiedBy
BrakeSystem::l1
BrakeSystem::l2

SatisfiedBy
BrakeSystem::m

req [Package] MasterCylinderSafety [Links between requirements and design]

16.4.3 Requirements Reuse

Figure 16.5 illustrates the use of the Copy dependency to allow a single requirement to be reused in several
requirements hierarchies. The master tag provides a textual reference to the reused requirement.

Issue(s): SYSML16-198

Figure 16.5 - Use of the copy dependency to facilitate reuse

16.4.4 Verification Procedure (Test Case)

The example in Figure 16.6 is taken from the automotive safety domain, and shows a Burnish requirement
contained in the NHTSASafetyRequirements requirement. Note that the text of the Burnish requirement
indicates a specific sequence of steps and transition criteria. The Burnish requirement is shown as having a
Verify relationship to the BurnishTest test case using callout notation on the diagram, indicating that the Burnish
requirement is verified by the BurnishTest test case.

Figure 17.1 is a state machine diagram of the BurnishTest test case, which expresses the textual sequence and
criteria of the Burnish requirement in state machine form. The Verify relationship is shown on Figure 16.7 using
callout notation anchored to the diagram frame, which indicates that the BurnishTest test case verifies the
Burnish requirement.

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 207

Figure 16.6 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

17 Profiles & Model Libraries

17.1 Overview
The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to
adapt them for different purposes. This includes the ability to tailor the UML metamodel for different domains.
The profiles mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some
notational extensions to represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are
defined by extending a metaclass, and then have them applied to the applicable model elements in the user
model. A stereotype of a requirement could be extended to create a «functionalRequirement» as described in
Annex E, “Non-normative Extensions.” This would allow specific properties and constraints to be created for a
functional requirement. For example, a functional requirement may be constrained such that it must be satisfied
by an operation or behavior. When the stereotype is applied to a requirement, then the requirement would
include the notation «functionalRequirement» in addition to the name of the particular functional requirement.
Extending the metaclass requirement is different from creating a subclass of requirement called
functionalRequirement.

The Usage Examples sub clause provides guidance both on how to use existing profiles and how to create new
profiles. In addition, the examples provide guidance on the use of model libraries. A model library is a library of
model elements including class and other type definitions that are considered reusable for a given domain.
These guidelines can be applied to further customize SysML for domain specific applications such as
automotive, military, or space systems.

17.2 Diagram Elements

Table 17.1: Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference

Stereotype UML4SysML::Stereotype

Metaclass UML4SysML::Class

OMG Systems Modeling Language, v1.6 209

Node Name Concrete Syntax Abstract Syntax Reference

Profil UML4SysML::Profile

Model Library UML::StandardProfile

Table 17.2: Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference

Extension UML4SysML::Extension

Path Name Concrete Syntax Abstract Syntax Reference

Generalization UML4SysML::Generalization

ProfileApplication UML4SysML::Profile
Application

MetamodelReference UML4SysML::PackageImport;
UML4SysML::ElementImport

Unidirectional
Association

UML4SysML::Association

NOTE: In the above table, boolean properties can be displayed alternatively as BooleanPropertyName=[True|
False].

17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the
metaclass Class and describes a clock software component for an embedded software system. It has description
of the operating system version supported, an indication of whether it is compliant to the POSIX operating
system standard and a reference to the operation that starts the clock.

OMG Systems Modeling Language, v1.6 211

Figure 17.1 - Defining a stereotype

17.2.2 Stereotypes Used On Diagrams
Table 17.3: Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference

StereotypeNode UML4SysML::Element

StereotypeNode UML4SysML::Element

StereotypeInNode UML4SysML::Element

Node Name Concrete Syntax Abstract Syntax Reference

StereotypeInCompartmen
tElement

UML4SysML::Element

StereotypeOnEdge UML4SysML::Element

StereotypeCompartment UML4SysML::Element

17.2.2.1 StereotypeInNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

Figure 17.2 - Using a stereotype

OMG Systems Modeling Language, v1.6 213

17.2.2.2 StereotypeInComment

When two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3,
the attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model

element.

Figure 17.3 - Other notational forms for showing values

17.2.2.3 StereotypeInCompartment

Finally, the compartment form is shown.

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called
Start. Note that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions
None.

17.4 Usage Examples

17.4.1 Defining a Profile

Issue(s): SYSML16-92, SYSML16-198

Figure 17.5 - Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so
that it can build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile
is identified by a reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can
extend those metaclasses from UML that the SysML profile references.

OMG Systems Modeling Language, v1.6 215

17.4.2 Adding Stereotypes to a Profile

Issue(s): SYSML16-198

Figure 17.6 - Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by
configurationItem, is called an extension, shown by a line with a filled triangle; this relates a stereotype to a
reference (called base) class or classes, in this case NamedElement and DirectedRelationship from UML and
adds new properties that every NamedElement or DirectedRelationship stereotyped by configurationItem must
have. NamedElement and DirectedRelationship are abstract classes in UML so it is their subclasses that can
have the stereotype applied. The second mechanism is demonstrated by the system and context stereotypes
which are sub-stereotypes of an existing SysML stereotype, Block; sub-stereotypes inherit any properties of
their super-stereotype and also extend the same base class or classes. Note that TypedElements whose type is
extended by «system» do not display the «system» stereotype; this also applies to InstanceSpecifications. Any
notational conventions of this have to be explicitly specified in a diagram extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional
associations to metaclasses in the reference metamodel (in this case Behavior).

17.4.3 Defining a Model Library that Uses a Profile

Issue(s): SYSML16-198

Figure 17.7 - Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements
from them in its own definition. It defines value types having specific units which can be used when property
values are measured in SI units. SI Definitions is a separately published model library, containing definitions of

standard SI units and quantity kinds such as shown in Annex D, sub clause D.4. A further model library,
Physical, imports SI Value Types so it can define properties that have those types. One model element,
PhysicalObject, is shown, a block that can be used as a supertype for a physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This sub clause provides guidance on when to use stereotypes. Stereotypes can be applied to any model
element. Stereotyping a model element allows the model element to be identified with the «guillemet» notation.
In addition, the stereotyped model element can have stereotype properties, and the stereotype can specify
constraints on the model element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class.
One reason is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties
are different from properties of classes. Stereotype properties represent properties of the class that are not
instantiated and therefore do not have a unique value for each instance of the class, although a class thus
stereotyped can have a separate value for the property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an
example where a stereotype is appropriate because every modeling element stereotyped by SE
Toolkit::functionalRequirement has a reference to another modeling element. In another example, SE
Toolkit::configurationItem defined above, which applies to classes among other concepts, is a stereotype
because its properties characterize the author, version, and last changed date of the modeling element
themselves. One test of this is whether the new properties are inheritable; in this case author, version, and last-
changed date are not, because it is only those classes under configuration control that need the properties. To
summarize, in the following circumstances a stereotype is appropriate:

• Where the model concept to be extended is not a class or class-based.

• Where the extensions include properties that reference other model elements.

• Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is PhysicalObject from Figure 17.7. In this case, the properties
density and volume, and the component numbers, have distinct values for each system element described by the
class, and are inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 217

Figure 17.8 - A model with applied profile and imported model library

The HSUVModel is a systems engineering model that needs to use stereotypes from SysML. It therefore needs
to have the SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI
Definitions model library. Having done this, elements in HSUVModel can be extended by SysML stereotypes
and types like SIVolume can be used to type properties. Both the SI Definitions model library and HSUVModel
have applied the profile strictly, which means that only those metaclasses directly referenced by SysML can be
used in those models.

17.4.6 Using a Stereotype

Issue(s): SYSML16-198

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied:

• functionalRequirement, which identifies it as a requirement that is satisfied by a function, and

• configurationItem, which allows it to have configuration management properties.

The modeler has provided values for all the newly available properties; those for criticalRequirement are shown
in a compartment in the node symbol for StoppingDistance; those for configurationItem are shown in a separate
note.

17.4.7 Using a Model Library Element

Issue(s): SYSML16-198

Figure 17.10 - Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type
SILength to measure the circumference of the (spherical) shot.

OMG Systems Modeling Language, v1.6 219

ANNEXES

This page intentionally left blank.

OMG Systems Modeling Language, v1.6 221

Annex A: Diagrams

(informative)

A.1 Overview
SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in
the SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the
concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. This taxonomy is one example of how to organize the
SysML diagrams. Other categories could also be defined, such as a grouping of the use case diagram and the
requirement diagram into a category called Specification Diagrams.

SysML reuses many of the major diagram types of UML. In some cases, the UML diagrams are strictly reused,
such as use case, sequence, state machine, and package diagrams, whereas in other cases they are modified so
that they are consistent with SysML extensions. For example, the block definition diagram and internal block
diagram are similar to the UML class diagram and composite structure diagram respectively, but include
extensions as described in Clause 8, “Blocks.” Activity diagrams have also been modified via the activity
extensions. Tabular representations, such as the allocation table, are used in SysML but are not considered part
of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram,
interaction overview diagram, timing diagram, deployment diagram, and profile diagram. This is consistent with
the approach that SysML represents a subset of UML. In the case of deployment diagrams, the deployment of
software to hardware can be represented in the SysML internal block diagram. In the case of interaction
overview and communication diagrams, it was felt that the SysML internal block diagram. In the case of
interaction overview and communication diagrams, it was felt that the SysML behavior diagrams provided
adequate coverage for representing behavior without the need to include these diagram types. In the case of the
profile diagram, profile definitions can be captured on a package diagram and the parametric diagram.

Figure A.1: SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct
for text-based requirements, and the relationship between requirements and other model elements that satisfy or
verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties
associated with blocks. This diagram is used to integrate behavior and structure models with engineering
analysis models such as performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not
preclude the careful mixing of different kinds of diagram types, as one might do when one combines structural
and behavioral elements (e.g., showing a state machine nested inside a compartment of a block). However, it is
critical that the types of diagram elements that can appear on a particular diagram kind be constrained and well-
specified. The diagram elements tables in each clause describe what symbols can appear in the diagram, but do
not specify the different combinations of symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to
represent a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to
organize the model in packages and views. As such, a package diagram can include a wide array of packageable
elements. The callout notation provides a mechanism for representing relationships between model elements
that appear on different diagram kinds. In particular, they are used to represent allocations and requirements,
such as the allocation of an activity to a block on a block definition diagram, or showing a part that satisfies a
particular requirement on an internal block diagram. There are other mechanisms for representing this including
the compartment notation that is generally described in Clause 17, “Profiles & Model Libraries,” Clause 16,
“Requirements,” and Clause 15, “Allocations” provide specific guidance on how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram
kinds are described in the SysML clauses as indicated below.

• activity diagram - activity

• block definition diagram - block, package, constraint block, or activity

• internal block diagram - block or constraint block

• package diagram - package, model, modelLibrary, profile

• parametric diagram - block or constraint block

• requirement diagram - package, requirement, modelLibrary, model

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package, block, model, modelLibrary

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description (see Figure A.2).

OMG Systems Modeling Language, v1.6 223

Figure A.2: Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame
shall designate a model element that is the default namespace for the model elements enclosed in the frame. A
qualified name for the model element within the frame shall be provided if it is not contained within default
namespace associated with the frame. The following are some of the designated model elements associated with
the different diagram kinds.

• activity diagram - activity

• block definition diagram - block, package, or constraint block

• internal block diagram - block or constraint block

• package diagram - package or model

• parametric diagram - block or constraint block

• requirement diagram - package or requirement

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package

The frame may include border elements associated with the designated model element, like

• ports for blocks,

• entry/exit points on statemachines,

• gates on interactions,

• parameters for activities, and

• constraint parameters for constraint blocks.

The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of
primary graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary
symbols in the contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner
of the rectangle, with the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName
are in brackets. The heading name should always contain the diagram kind and model element name, and
include the model element type and additional information to remove ambiguity. Ambiguity can occur if there is
more than one model element type for a given diagram kind, or where there is more than one diagram for the
same model element. If a model element type has a stereotype applied to the base model element, such as
“modelLibrary” applied to a package or “controlOperator” applied to an activity, then either the stereotype
name or the base model element may be used as the name for the model element type. In either case, the initial
character of the name is shown in lower case. For a stereotype name, guillemet characters (« and ») are not
shown. If more than one stereotype has been applied to the base model element, either the name of one of the
applied stereotypes or a comma-separated list of any or all of the applied stereotype names may be shown. If a
base model element name is used, this element is either a UML metaclass which SysML uses directly, such as
package or activity, or a stereotype which SysML defines on a UML metaclass, such as block or view.

SysML diagram kinds should have the following names or (abbreviations) as part of the heading:

• activity diagram (act)

• block definition diagram (bdd)

• internal block diagram (ibd)

• package diagram (pkg)

• parametric diagram (par)

• requirement diagram (req)

• sequence diagram (sd)

• state machine diagram (stm)

• use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A.2
that includes version, description, references to related information, a completeness field that describes the
extent to which the modeler asserts the diagram is complete, and other user defined fields. In addition, the
diagram description may identify the view associated with the diagram, and the corresponding viewpoint that
identifies the stakeholders and their concerns (refer to Model Elements clause). The diagram description can be
made more explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram
type, such as a context diagram as a usage of a block definition diagram, internal block diagram, or use case
diagram. The diagram usage can be identified in the header above the diagramKind as «diagramUsage». An
example of a diagram usage extension is shown in Figure A.3. For this example, the header in Figure A.2 would
replace diagram kind with “uc” and «diagramUsage» with «ContextDiagram». Applying a stereotype approach
to specify a diagram usage can allow a tool implementation to check that the diagram constraints defined by the
stereotype are satisfied.

Diagram usage can be represented by creating stereotypes that extend SysMLDiagram (see Annex B).

OMG Systems Modeling Language, v1.6 225

Figure A.3: Diagram Usages

Some typical diagram usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram.

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by
system, item, activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram.

A.2 Guidelines
The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean
decomposition in a formal sense, but rather a reference to a more elaborated diagram of the model
element that includes the rake symbol. This notation adds to the existing decomposition notations
defined in UML (Composite state symbol for States that refer to StateMachines and rake symbol for
CallBehaviorActions that refer to Activities). In SysML, the rake on a model element may also include
the following:

o activity diagram - call behavior actions that can refer to another activity diagram.

o internal block diagram - parts that can refer to another internal block diagram.

o package diagram - package that can refer to another package diagrams.

o parametric diagram - constraint property that can refer to another parametric diagram.

o requirement diagram - requirement that can refer to another requirement diagram.

o sequence diagram - interaction fragments that can refer to another sequence diagram.

o state machine diagram - state that can refer to another state machine diagram.

o use case diagram - use case can that may be realized by other behavior diagrams (activity,
state, interactions).

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity
of the label to its symbol. This applies to ports, item flows, pins, etc.

• Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on
diagrams, but should be used sparingly since they are equivalent to go-to(s) in programming languages,
and can lead to “spaghetti diagrams.” Whenever practical, elaborate the model element designated by
the frame instead of using a page connector. A page connector is depicted as a circle with a label inside
(often a letter). The circle is shown at both ends of a line break and means that the two line end connect
at the circle.

• When two lines cross, the crossing optionally may be shown with a small semicircular jog to indicate
that the lines do not intersect (as in electrical circuit diagrams), as shown in Figure A.4.

Figure A.4: Optional Form of Line Crossing

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an
overlay may be a geographic map to provide a spatial context for the symbols.

Issue(s): SYSML16-397

• SysML diagrams including the enhancements described in this sub clause are intended to conform to
diagram definition and interchange standards to facilitate exchange of diagram and layout information.

• Tabular and matrix representation is an optional alternative notation that can be used in conjunction
with the graphical symbols as long as the information is consistent with the underlying metamodel.
Tabular and matrix representations are often used in systems engineering to represent detailed
information and other views of the model such as interface definitions, requirements traceability, and
allocation relationships between various types of model elements. They also can be convenient
mechanisms to represent property values for selected properties, and basic relationships such as
function and inputs/outputs in N2 charts. UML contains a tabular representation of a sequence diagram
in an interaction matrix (refer to UML Annex with interaction matrix). The implementations of tabular
and matrix representations are defined by the tool implementations and are not standardized in SysML
at this time. However, tabular or matrix representations may be included in a frame with the heading
designator «table» or «matrix» in bold.

• Graph and tree representations are also optional, alternative notations that can be used in conjunction
with graphical symbols as long as the information is consistent with the underlying metamodel. These
representations can be used for describing complex series of relationships that represent other views of
the model. One example is the browser window in many tools that depicts a hierarchical view of the
model. The implementations of graphs and trees are defined by the tool implementations and are not
standardized in SysML at this time. However, graph and tree representations may be included in a
frame with the heading designator «graph» or «tree» in bold.

OMG Systems Modeling Language, v1.6 227

Annex B: SysML Diagram Interchange

(informative)

B.1 Overview
This annex provides information regarding the exchange of SysML diagrams. It is an extension of the UML
Diagram Interchange (DI) to support the graphical notation specific to SysML. A first part presents stereotypes
that extend the UML DI. A second part presents modifications in the use of UML DI in SysML diagrams.

Figure B.1: SysML DI architecture

B.2 Stereotypes

Figure B.2: Abstract Syntax Extension for SysMLDiagramElement

Figure B.3: Abstract syntax extensions for SysML diagrams (1)

OMG Systems Modeling Language, v1.6 229

Figure B.4: Abstract syntax extensions for SysML diagrams (2)

B.2.1 SysML Activity Diagram
Description
A SysMLActivityDiagram represents an activity diagram. It extends UMLActivityDiagram.

Attributes

• isControlFlowDashed : Boolean [1] = false
Specifies whether the control flows in the activity diagram are dashed (isControlFlowDashed=true) or
not (isControlFlowDashed=false).

Constraints
[1] A SysMLActivityDiagram shall have as a defaultNamespace an Activity.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied
AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State,

or InteractionUse.

B.2.2 SysML Behavior Diagram
Description
SysMLBehaviorDiagram is an abstract stereotype for all SysML behavior diagrams. It extends
UMLBehaviorDiagram.

Constraints
[1] SysMLBehaviorDiagram shall only be applied to a UMLBehaviorDiagram.

[2] SysMLActivityDiagram shall only be applied to a UMLActivityDiagram.The principal of an applied
AdjunctProperty shall be a Connector, CallAction, ObjectNode, Variable, Parameter, submachine State,

or InteractionUse.

B.2.3 SysMLBlockDefinitionDiagram
Description
A SysMLBlockDefinitionDiagram represents a block definition diagram. It extends UMLPackageDiagram.

Constraints
[1] A SysMLBlockDefinitionDiagram shall have as a defaultNamespace a Class with a Block stereotype or
one of its specializations applied or a Package.

[2] SysMLBlockDefinitionDiagram shall only be applied to a UMLClassDiagram.

B.2.4 SysMLDiagram
Description
SysMLDiagram is an abstract stereotype for all SysML diagrams. It extends UMLDiagram.

Attributes

• defaultNamespace : Namespace [1]

Specifies the default namespace of the SysML diagram.

• isLineJogShown : Boolean [1] = false

Show semi-circular jogs in the stereotyped diagram when two lines are crossing (see Annex A).

Constraints

[1] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have isFrame=true.

[2] A UMLDiagram stereotyped by a specialization of SysMLDiagram shall have a heading.

[3] A SysMLDiagram that stereotypes a UMLDiagram with a modelElement shall have this modelElement
as defaultNamespace.

[4] SysMLDiagram shall only be applied to a UMLDiagram.

B.2.5 SysMLDiagramElement
Description
SysMLDiagramElement is an abstract generalization of all the other SysML DI stereotypes.

Attributes

• isDecompositionSymbolShown : Boolean [1]
Display a decomposition symbol in a diagram element to indicate the corresponding model element is
decomposed in another diagram. Diagram elements that may have a decomposition symbol are listed in
Annex A.

OMG Systems Modeling Language, v1.6 231

B.2.6 SysMLDiagramWithAssociations
Description
SysMLDiagramWithAssociations is an abstract stereotype for all SysML diagrams with associations. It extends
UMLDiagramWithAssociations.

Constraints
[1] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations
shall have isAssociationDotShown=false.

[2] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations
shall have navigabilityNotation=oneWay.

[3] A UMLDiagramWithAssociations stereotyped by a specialization of SysMLDiagramWithAssociations
shall have nonNavigabilityNotation=never.

[4] SysMLDiagramWithAssociations shall only be applied to a UMLDiagramWithAssociations.

B.2.7 SysMLInteractionDiagram
Description
A SysMLInteractionDiagram represents an interaction diagram. It extends UMLInteractionDiagram.

Constraints
[1] A SysMLInteractionDiagram shall have as a defaultNamespace an Interaction.

[2] A UMLInteractionDiagram stereotyped by SysMLInteractionDiagram shall have kind=sequence.

[3] SysMLInteractionDiagram shall only be applied to a UMLInteractionDiagram.

B.2.8 SysMLInternalBlockDiagram
Description
A SysMLInternalBlockDiagram represents an internal block diagram. It extends
UMLCompositeStructureDiagram.

Constraints
[1] A SysMLInternalBlockDiagram shall have as a defaultNamespace a Class with a Block stereotype or
one of its specializations applied.

[2] SysMLInternalBlockDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.9 SysMLPackageDiagram
Description
A SysMLPackageDiagram represents a package diagram. It extends UMLPackageDiagram.

Constraints
[1] A SysMLPackageDiagram shall have as a defaultNamespace a Package.

[2] SysMLPackageDiagram shall only be applied to a UMLPackageDiagram.

B.2.10 SysMLParametricDiagram

Description
A SysMLParametricDiagram represents a parametric diagram. It is a specialization of
SysMLInternalBlockDiagram.

Attributes

• isConstraintPropertyRounded: Boolean = false
Specifies whether the constraint properties in the parametric diagram have rounded corners
(isConstraintPropertyRounded=true) or not (isConstraintPropertyRounded=false).

Constraints
[1] A SysMLParametricDiagram shall have as a defaultNamespace a Class with a Block stereotype or one
of its specializations applied.

[2] SysMLParametricDiagram shall only be applied to a UMLCompositeStructureDiagram.

B.2.11 SysMLRequirementDiagram
Description
A SysMLRequirementDiagram represents a requirement diagram. It is based on the UML class diagram.

Constraints
[1] A SysMLRequirementDiagram shall have as a defaultNamespace a Package or a Class with a
Requirement stereotype or one of its specializations applied.

[2] SysMLRequirementDiagram shall only be applied to a UMLClassDiagram.

B.2.12 SysMLStateMachineDiagram
Description
A SysMLStateMachineDiagram represents a state machine diagram. It extends UMLStateMachineDiagram.

Constraints
[1] A SysMLStateMachineDiagram shall have as a defaultNamespace a StateMachine.

[2] SysMLStateMachineDiagram shall only be applied to a UMLStateMachineDiagram.

B.2.13 SysMLUseCaseDiagram
Description
A SysMLUseCaseDiagram represents a use case diagram. It extends UMLUseCaseDiagram.

Constraints
[1] A SysMLUseCaseDiagram shall have as a defaultNamespace a Package.

[2] SysMLUseCaseDiagram shall only be applied to a UMLUseCaseDiagram.

B.3 SysML DI Usage Notes
This clause provides additional notes on how the SysML notation is modeled.

OMG Systems Modeling Language, v1.6 233

A UMLEdge with a Connector as modelElement may be the source or the target of a UMLEdge with no
modelElement. The target or the source of the latter UMLEdge is a UMLShape with a Property stereotyped by
ConnectorProperty or one of its specializations as modelElement. This UMLEdge is rendered as a dotted line.

Issue(s): SYSML16-76

Property names with property-specific types (in parentheses) are modeled with UMLTypedElementLabels.

UMLCompartmentableShapes that have a modelElement stereotyped by Allocated or one of its specializations
may have a compartment titled “allocatedFrom” and a compartment titled “allocatedTo.” These compartments
contain UMLLabels with modelElements that are the values of the allocatedFrom and allocatedTo properties,
respectively, of the Allocated stereotype.

A UMLShape with a modelElement stereotyped by Allocated or one of its specializations may be the source or
the target of a UMLEdge with no modelElements. The target or the source of this UMLEdge is a UMLShape
with no modelElement. This UMLShape may contain UMLLabels with text “allocatedFrom” and “allocatedTo,”
each being followed by UMLLabels with modelElements that are the values of the allocatedFrom properties of
the Allocated stereotype or the values of the allocatedTo properties, respectively, of the Allocated stereotype.

SysML callout notation (MasterCallout, DeriveCallout, SatisfyCallout, VerifyCallout, RefineCallout,
TraceCallout) can be modeled by a UMLShape with no modelElement. This UMLShape contains a UMLLabel
with text specified by the callout notation, followed by a UMLLabel with modelElement that is the element
with text shown by the callout notation.

B.4 SysML Notation and DI Representation
This sub clause summarizes Annex B by showing how SysML-specific notations shall be modeled using UML
and SysML UML DI. It does not cover all of Annex B or all notations in previous Clauses. The left column
shows an example of SysML notation. The middle column shows UML DI and SysML DI elements
corresponding to the notation. These elements are presented in a containment hierarchy. Elements with the same
container are ordered according to the notation shown in the left column, read from left to right, top to bottom.
For each element, the type of diagram element is given, followed by the type of modelElement and sometimes
other constraints that apply to the diagram element, put between parentheses. The type of modelElement is
followed by a '+' when multiple modelElements of this type can be assigned to one diagram element. A '+' sign
between a metaclass and a stereotype corresponds to an element that instantiates the metaclass and that has the
stereotype applied. The right column references “Notation” clauses and figures where the notation is defined.

Table B.1: SysML Diagram Elements

Notation Diagram Elements Ref.

UMLEdge (ControlFlow, isControlFlowDashed=false)

UMLEdge+SysMLControlFlowEdge (ControlFlow,
isControlFlowDashed=true)

11.3.1.3.1

Notation Diagram Elements Ref.

UMLClassifierShape (Property+ConstraintProperty,
isConstraintPropertyRounded =false)
- UMLLabel (Stereotype)
- UMLTypedElementLabel (Property)
 UMLClassifierShape (Property+ConstraintProperty is
 ConstraintPropertyRounded=true)
- UMLLabel (Stereotype)
- UMLTypedElementLabel (Property)

10.3.1.2.1

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape+SysMLPort (Port, in flows, isIcon=true)
- UMLShape+SysMLPort (Port, out flows, isIcon=true)
- UMLShape+SysMLPort (Port, inout flows, isIcon=true)

9.3.1.6

UMLClassifierShape (Class+Block)
- UMLNameLabel (Class)
- UMLShape (Port)
 - UMLNameLabel (Port
 - UMLShape (Port
 - UMLNameLabel (Port)
 - UMLShape (Port)
 - UMLNameLabel (Port)
 - UMLShape (Port)
 - UMLNameLabel (Port)

9.3.1.6

OMG Systems Modeling Language, v1.6 235

«constraint»
Constraint1

«constraint»
Constraint1

Notation Diagram Elements Ref.

UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLShape (Property)
----- UMLTypedElementLabel (Property)
--- UMLEdge (Connector)
----- UMLTypedElementLabel (Property)
--- UMLShape (Property)
----- UMLTypedElementLabel (Property)
--- UMLEdge
--- UMLShape (Property)
----- UMLTypedElementLabel

8.3.2.3

UMLClassifierShape (Class)
- UMLNameLabel (Class)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)
- UMLCompartment
--- UMLLabel
--- UMLLabel (Element)

15.3.1.3

UMLClassifierShape (Class)
- UMLNameLabel (Class)
UMLEdge
UMLShape
- UMLLabel
- UMLLabel (Element)
- UMLLabel
- UMLLabel (Element)

15.3.1.4

UMLShape (Element)
 - UMLNameLabel (Element)
UMLEdge
UMLShape
 - UMLLabel
 - UMLLabel (Element)

16.3.1.3

Annex C: Deprecated Elements and Migration

Issue(s): SYSML16-132

(informative)

C.1 Overview
Issues(s): SYSML16-132

This annex

• Defines SysML elements that are deprecated, but included for backward compatibility (see Subannexes
C.1.1 and C.1.2).

• Provides guidlines for migrating elements to this version of SysML that are deprecated (see above) or
that changed significantly between versions of SysML (see Subannexes C.5 through C.7).

C.1.1 Flow Ports

Issue(s): SYSML16-132

Flow Port and Flow Specification are deprecated in this version of SysML and are defined for backward
compatibility. This annex contains the definition of these concepts as they are defined by SysML 1.2. In
addition it provides some guidelines on how to convert FlowPort to ports in this version of SysML.

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports
are interaction points through which data, material, or energy can enter or leave the owning block. The
specification of what can flow is achieved by typing the flow port with a specification of things that flow. This
can include typing an atomic flow port with a single type representing the items that flow in or out, or typing a
nonatomic flow port with a flow specification which lists multiple items that flow. A block representing an
automatic transmission in a car could have an atomic flow port that specifies “Torque” as an input and another
atomic flow port that specifies “Torque” as an output. A more complex flow port could specify a set of signals
and/or properties that flow in and out of the flow port. In general, flow ports are intended to be used for
asynchronous, broadcast, or send-and-forget interactions. Flow ports exten UML 2 ports.

Issue(s): SYSML16-132

C1.2 Conjugated Ports
UML's conjugated ports (UML::Port::isConjugated) are deprecated in this version of SysML and included for
backward compatibility. This annex contains the description of port conjugation in SysML 1.5. In addition it
provides guidelines on how to convert conjugated ports to ports in this version of SysML.

OMG Systems Modeling Language, v1.6 237

C.2 Diagram Elements

C.2.1 Block Definition Diagram

Issue(s): SYSML16-132

Table C.1: Graphical nodes defined in block definition diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port
Transmission

p1 : ~T1

Conjugated Ports

p2 : ~T2

UML4SysML::Port

FlowPort SysML::PortsAndFlows::FlowPort

Node Name Concrete Syntax Abstract Syntax Reference

FlowPort (Compartment
Notation)

SysML::PortsAndFlows::FlowPort

FlowSpecification SysML::PortsAndFlows::
FlowSpecification

OMG Systems Modeling Language, v1.6 239

C.2.2 Internal Block Diagram

Issue(s): SYSML16-132

Table C.2: Graphical nodes defined in internal block diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Port UML4SysML::Port

FlowPort SysML::PortsAndFlows::FlowPort

Node Name Concrete Syntax Abstract Syntax Reference

ItemFlow SysML::PortsAndFlows::ItemFlow

C.3 UML Extensions

C.3.1 Diagram Extensions

Issue(s): SYSML16-132

C.3.1.1 Conjugated Ports

Conjugated ports have UML's Port::isConjugated property equal to true. Arrows in port rectangles indicated
flow property direction are reversed in conjugated ports. Conjugated ports in conjugated ports (nested
conjugated ports) behave as if they were not conjugated. Full ports also cannot be conjugated, because their
types can have behaviors and can be reused on non-conjugated ports. This would require the same behaviors to
use the directed features and flow properties in opposite directions at the same time.

The meaning of DirectedFeature::featureDirection property is reversed for conjugated ports. On conjugated
ports, directed features with a feature direction "provided" are required and those with a feature direction
"required" are provided. Port conjugation has no impact on "providedrequired" directed features. The meanings
of the "required" and "provided" literals in FeatureDirection are switched for conjugated ports. In these cases
the actual use is in the opposite direction than the one specified by the enumeration literal.

The meaning of FlowProperty::direction is reversed for conjugated ports. On conjugated ports, flow properties
with direction "in" are out flow properties and those with direction "out" are in flow properties. Port conjugation

OMG Systems Modeling Language, v1.6 241

has no impact on "inout" flow properties. The meanings of the "in" and "out" literals in FlowDirection are
switched for conjugated ports. In these cases the actual flow direction is in the opposite direction than the one
specified by the enumeration literal.

C.3.1.2 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy
may flow. The notation of flow port is a square on the boundary of the owning block or its usage. The label of
the flow port is in the format portName: portType. Atomic flow ports have an arrow inside them indicating the
direction of the port with respect to the owning Block. A nonatomic flow port has two open arrow heads facing
away from each other (i.e., < >). The fill color of the square is white and the line and text colors are black.

In addition, flow ports can be listed in a special compartment labeled “flow ports.” The format of each line is:

in | out | inout portName:portType [{conjugated}]

C.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties”
compartment that lists the flow properties.

C.3.2 Stereotypes

C.3.2.1 Package PortsAndFlows

Figure C.1: Deprecated Stereotypes

C.3.2.2 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy
may flow. This enables the owning block to declare which items it may exchange with its environment and the
interaction points through which the exchange is made.

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are
classified by a single Block, ValueType, or Signal classifier. A nonatomic flow port relays items of several types
as specified by a FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If a flow
port is typed by a flow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, or
Signal classifier, then it is atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment,
whereas item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal
parts (internal connector).

The isBehavior attribute inherited from UML port is interpreted in the following way: if isBehavior is set to
true, then the items are relayed to/from the owning block. More specifically, every flow property within the
flow port is bound to a property owned by the port’s owning block or to a parameter of its behavior. If
isBehavior is set to false, then the flow port shall be connected to an internal connector, which in turn related the
items via the port. The need for isBehavior is mainly to allow specification of internal parts relaying items to
their containing part via flow ports.

The isConjugated attribute inherited from the UML Port metaclass is interpreted as follows: It indicates if the
flows of items of a nonatomic flow port maintain the directions specified in the flow specification or if the
direction of every flow property specified in the flow specification is reversed (IN becomes OUT and vice
versa). If set to True, then all the directions of the flow properties specified by the flow specification that types a
nonatomic flow port are relayed in the opposite direction (i.e., an “in” flow property is treated as an “out” flow
property by the flow port and vice-versa). By default, the value is False. This attribute applies only to nonatomic
flow ports since atomic flow ports have a direction attribute signifying the direction of the flow.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are
mapped to a Reception of the signal type (or a subtype) of the flow property’s type. Outbound flow properties
only declare the ability of the flow port to relay the signal over external connectors attached to it and are not
mapped to a property of the flow port’s owning block.

The item flows specified as flowing on a connector between flow ports shall match the flow properties of the
ports at each end of the connector: the source of the item flow should be the port that has an
outbound/bidirectional flow property that matches the item flow’s type and the target of the item flow should be
the port that has an inbound/bidirectional flow property that matches the type of the item flow.

If a flow port is connected to multiple external and/or internal connectors, then the items are propagated
(broadcast) over all connectors that have matching properties at the other end.

C.3.2.3 Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic
variation point. One approach is to perform name and type matching. Another approach is to explicitly use
binding relationships between the ports properties and behavior parameters or block properties.

Attributes

• /isAtomic : Boolean (derived)

This is a derived attribute (derived from the flow port’s type). For a flow port typed by a flow
specification the value of this attribute is False, otherwise the value is True.

• direction : FlowDirection

Indicates the direction in which an atomic flow port relays its items. If the direction is set to “in,” then
the items are relayed from an external connector via the flow port into the flow port’s owner

OMG Systems Modeling Language, v1.6 243

(or one of its parts). If the direction is set to “out,” then the items are relayed from the
flow port’s owner, via the flow port, through an external connector attached to the flow port.
If the direction is set to “inout,” then items can flow both ways. By default, the value is
inout.

Constraints

[1] A FlowPort shall be typed by a FlowSpecification, Block, Signal, or ValueType.

[2] If the FlowPort is atomic (by its type), then isAtomic=True, the direction shall be specified (has a
value), and isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with
direction “in,” the FlowPort direction shall be “in” (or “out” if isConjugated=true). If the flow properties are
all out, the FlowPort direction shall be out (or in if isConjugated=true). If flow properties are both in and
out, the direction shall be inout.

[4] A FlowPort can be connected (via connectors) to one or more flow ports that have matching flow
properties. The matching of flow properties shall be done in the following steps:

1. Type Matching: The type being sent shall be the same type or a subtype of the type being
received.

2. Direction Matching: If the connector connects two parts that are external to one another, then
the

direction of the flow properties shall be opposite, or at least one of the ends should be
inout. If the

connector is internal the owner of one of the flow ports, then the direction shall be the
same or at least

one of the ends shall be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the
other end,

the property that has the same name at the other end shall be selected. If there is no
such property, then

the connection is ambiguous (ill-formed).

[5] If a flow port is not connected to an internal part, then isBehavior shall be set to true.

C.3.2.4 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow
ports to specify what items can flow via the port.

Constraints

[1] Flow specifications shall not own operations or receptions (they can only own FlowProperties).

[2] Every “ownedAttribute” of a FlowSpecification shall be a FlowProperty.

C.3.2.5 ItemFlow (deprecated compatibility rule)

ItemFlows are not deprecated, but when used with atomic flows ports, have a deprecated modification of item
flow compatibility rules that treats types of source and target atomic ports as if they were types of flow
properties on types of those ports.

C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3
Ports

 (informative)
To convert a SysML 1.2 flow port to ports in this version of SysML it is recommended to use the following
guidelines:

1. Decide if the port should be converted to a proxy port, a full port, or an unstereotyped port.

2. Based on the decision in step 1, create a block (for proxy ports, it shall be an interface block specifically).

3. If the original flow port is non-atomic:

a. Copy all the flow properties owned by the flow port’s type, a flow specification, to the block created
in step 2

 (meaning the flow properties will be owned by the newly created block).

b. Replace the type of the port with the block created in step 2.

c. Remove the flow port stereotype from the port.

d. Based on the decision in step 1, apply the ProxyPort or FullPort stereotype, or do nothing if the
decision is not to use either one.

e. If the proxy stereotype is applied in step 3d, and there is a single connector from the port to a part,
the BindingConnector may be applied to the connector.

f. If the flow specification is not referenced by other model elements, delete it.

4. If the original flow port is atomic:

a. On the block created in step 2, specify a flow property typed by the same type as the flow port and
with the same direction as the original flow port.

b. Do steps b to d from step 3 about non-atomic flow ports.

C.5 Transitioning SysML 1.3 Viewpoint and View to
SysML 1.4 (informative)

Refactoring a view model build from the SysML 1.3 defined viewpoint, view, conforms, and the UML package
import mechanism could be performed as follows:

• Conform

o Replace v1.3 Conform with v1.4 Conform. The conform target in 1.3 becomes the general
classifier in 1.4.

• View

OMG Systems Modeling Language, v1.6 245

o Replace v1.3 View package with 1.4 View class

• Viewpoint

o For each Stakeholder string, create a stakeholder with the string as the name

o Update the stakeholder property on the new viewpoint with the created stakeholder

o For each method string of the 1.3 viewpoint, create the operation «create»View() and append
the string to the body of a comment that annotates the operation.

• Element and package import

o Replace each package and element import with an expose relationship.

C.6 Transitioning SysML 1.3 Units and QuantityKinds
to SysML 1.4 (informative)

Changing units and quantity kinds from SysML 1.3 to SysML 1.4 can be accomplished as follows, depending
on the kind of element being changed:

• An InstanceSpecification stereotyped by SysML 1.3 Unit:

o Unapply the SysML 1.3 Unit stereotype.

o Classify the instance specification by SysML::Libraries::UnitAndQuantityKind::Unit.

o Set the values of SysML 1.4 Unit properties (symbol, description, definitionURI) to the values
of the Unit stereotype properties of the same name (symbol, description, definitionURI).

• An InstanceSpecification stereotyped by SysML 1.3 QuantityKind:

o Unapply the SysML 1.3 QuantityKind stereotype.

o Classifying the instance specification by
SysML::Libraries::UnitAndQuantityKind::QuantityKind.

o Set the values of SysML 1.4 QuantityKind properties (symbol, description, definitionURI) to
the values of the QuantityKind stereotype properties of the same name (symbol, description,
definitionURI).

• An InstanceSpecification classified by SysML 1.3 QUDV::Unit or one of its specializations:

o If the instance specification has no value for the SysML 1.3 QUDV::Unit::name property, no
further changes are needed.

o If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and
the instance specification has no name, then set its name to the value of the SysML 1.3
QUDV::Unit::name property.

o If the instance specification has a value for the SysML 1.3 QUDV::Unit::name property and
the instance specification has a name, then choose whether to keep the same name for the

instance specification or use the value of the SysML 1.3 QUDV::Unit::name property.

• An InstanceSpecification classified SysML 1.3 QUDV::QuantityKind or one of its specializations:

o If the instance specification has no value for the SysML 1.3 property
QUDV::QuantityKind::name, then no further changes are needed.

o If the instance specification has a value for the SysML 1.3 property
QUDV::QuantityKind::name and the instance specification has no name, then set the name of
the instance specification to the value of the SysML 1.3 QUDV::QuantityKind::name
property.

o If the instance specification has a value for the SysML 1.3 property
QUDV::QuantityKind::name and the instance specification has a name, then choose whether
to keep the same name for the instance specification or use the value of the SysML 1.3
QUDV::QuantityKind::name property.

• An InstanceSpecification An InstanceSpecification classified by SysML 1.3 QUDV::Scale. Each
SysML 1.3 QUDV::ScaleValueDefinition becomes an EnumerationLiteral such that:

o The numeric value of SysML 1.3 QUDV::ScaleValueDefinition::value becomes a
specification of the
 corresponding EnumerationLiteral.

o The string value of SysML 1.3 QUDV::ScaleValueDefinition::description becomes a comment
on the
 corresponding EnumerationLiteral.

• Blocks defined as specializations of SysML 1.3 QUDV::Unit do not require changes in SysML 1.4.

• Blocks defined as specializations of SysML 1.3 QUDV::QuantityKind do not require changes in SysML
1.4 except for the following:

o Blocks defined specializations of QUDV::SpecializedQuantityKind in SysML 1.3 become
corresponding Blocks defined as specializations of QUDV::QuantityKind in SysML 1.4.

o Usages of SysML 1.3 QUDV::SpecializedQuantityKind::general property become
corresponding usages of QUDV::QuantityKind::general in SysML 1.4.

Issue(s): SYSML16-132

C.7 Transitioning SysML 1.5 conjugated port typed by
InterfaceBlock to SysML 1.6 conjugated InterfaceBlock
(informative)

Here are the migration rules from former versions of SysML in pseudo code, they can be easily automated:

OMG Systems Modeling Language, v1.6 247

For each port with isConjugated=true
do {
 assume t1 is the type the port
 if t1 is a kind of InterfaceBlock then
 {
 if t1.getConjugated() return an empty result then
 {
 create a new InterfaceBlock t2 with the name of t1 prepended by a tilde
symbol (~)
 For each feature of t1
 do {
 create the exact same feature f' in t2
 if f' has the FlowProperty stereotype applied
 {
 if the direction of f' is "in" then
 set f' direction to "out"
 else if direction of f' is "out" then
 set f' direction to "in"
 else do nothing
 }
 else if f' has the DirectedFeature stereotype applied
 {
 if the direction of f' is "provided" then
 set f' direction to "required"
 else if direction of f' is "required" then
 set f' direction to "provided"
 else do nothing
 }
 else
 {
 apply the DirectedFeature stereotype to f'
 set f' direction to "required"
 }
 }

 For each owned rule r of t1
 do {
 create the exact same owned rule r' in t2
 }
 create a dependency from t2 to t1 with the Conjugation stereotype applied
 }
 set this port type to t2
 set this port isConjugated to false
 }
}

Annex D: Sample Problem

(informative)

D.1 Purpose
The purpose of this annex is to illustrate how SysML can support the specification, analysis, and design of a
system using some of the basic features of the language.

D.2 Scope
The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to
select simplified fragments of the problem to illustrate how the diagrams can be applied, and to demonstrate
some of the possible inter-relationships among the model elements in the different diagrams. The sample
problem does not highlight all of the features of the language. The reader should refer to the individual clauses
for more detailed features of the language. The diagrams selected for representing a particular aspect of the
model, and the ordering of the diagrams are intended to be representative of applying a typical systems
engineering process, but this will vary depending on the specific process and methodology that is used.

D.3 Problem Summary
The sample problem describes the use of SysML as it applies to the development of an automobile, in particular
a Hybrid gas/electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently
conflicting requirements, viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-
road capability. Technical accuracy and the feasibility of the actual solution proposed were not high priorities.
This sample problem focuses on design decisions surrounding the power subsystem of the hybrid SUV; the
requirements, performance analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such an example
problem. The first sub clause shows SysML diagrams as they might be used to establish the system context;
establishing system boundaries, and top level use cases. The next sub clause is provided to show how SysML
diagrams can be used to analyze top level system behavior, using sequence diagrams and state machine
diagrams. The following sub clause focuses on use of SysML diagrams for capturing and deriving requirements,
using diagrams and tables. A sub clause is provided to illustrate how SysML is used to depict system structure,
including block hierarchy and part relationships. The relationship of various system parameters, performance
constraints, analyses, and timing diagrams are illustrated in the next sub clause. A sub clause is then dedicated to
illustrating definition and depiction of interfaces and flows in a structural context. The final sub clause focuses
on detailed behavior modeling, functional and flow allocation.

D.4 Diagrams

D.4.1 Package Overview (Structure of the Sample Model)

D.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Figure D.1, the HSUVModel is a package that represents the user model. The SysML Profile shall
be applied to this package in order to include stereotypes from the profile. The HSUVModel may also require

OMG Systems Modeling Language, v1.6 249

model libraries, such as the SI Units Types model library. The model libraries shall be imported into the user
model as indicated.

Issue(s): SYSML16-198

Figure D.1: Establishing the User Model by importing and applying SysML Profile & Model Library (Package

Diagram)

Figure D.2 details the specification of units and valueTypes employed in this sample problem.

Issue(s): SYSML16-198

Figure D.2: Defining value Types and units to be used in the Sample Problam

D.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure D.3) shows the structure of the model used to evaluate the sample problem.
Model elements are contained in packages, and relationships between packages (or specific model elements) are
shown on this diagram. The relationship between the views (OperationalView and PerformanceView) and the
rest of the user model are explicitly expressed using the «import» relationship. Note that the «view» models
contain no model elements of their own, and that changes to the model in other packages are automatically
updated in the Operational and Performance Views.

OMG Systems Modeling Language, v1.6 251

Issue(s): SYSML16-198

Figure D.3: Establishing Structure of the User Model using Packages and Views (Package Diagram)

D.4.2 Setting the Context (Boundaries and Use Cases)

D.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Figure D.4, refers to a user-defined usage of an internal block diagram, which
depicts some of the top-level entities in the overall enterprise and their relationships. The diagram usage enables
the modeler or methodologist to specify a unique usage of a SysML diagram type using the extension
mechanism described in Annex A, “Diagrams.” The entities are conceptual in nature during the initial phase of
development, but will be refined as part of the development process. The «system» and «external» stereotypes
are user defined, not specified in SysML, but help the modeler to identify the system of interest relative to its
environment. Each model element depicted may include a graphical icon to help convey its intended meaning.
The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although this is
not specifically captured in the semantics. Also, a background such as a map can be included to provide
additional context. The associations among the classes may represent abstract conceptual relationships among
the entities, which would be refined in subsequent diagrams. Note how the relationships in this diagram are also
reflected in the Automotive Domain Model Block Definition Diagram, Figure D.15.

Issue(s): SYSML16-198

Figure D.4: Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.

(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description

D.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram for “Drive Vehicle” in Figure D.5 depicts the drive vehicle usage of the vehicle system.
The subject (HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV)
interact to realize the use case.

OMG Systems Modeling Language, v1.6 253

Issue(s): SYSML16-198

Figure D.5: Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

D.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use
cases help flesh out the specific kind of goals associated with driving and parking the vehicle. Maintenance,
registration, and insurance of the vehicle would be covered under a separate set of goal-oriented use cases.

Issue(s): SYSML16-198

Figure D.6: Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)

D.4.3 Elaborating Behavior (Sequence and State Machine
Diagrams)

D.4.3.1 Sequence Diagram - Drive Black Box

Figure D.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use
Case. This diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain
block. “BlackBox” for the purpose of this example, refers to how the subject system (HybridSUV block)
interacts only with outside elements, without revealing any interior detail.

The conditions for each alternative in the alt controlSpeed sub clause are expressed in OCL, and relate to the
states of the HybridSUV block, as shown in Figure D.8.

OMG Systems Modeling Language, v1.6 255

Issue(s): SYSML16-198

Figure D.7: Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

D.4.3.2 State Machine Diagram - HSUV Operational States

Figure D.8 depicts the operational states of the HSUV block, via a State Machine named
“HSUVOperationalStates.” Note that this state machine was developed in conjunction with the DriveBlackBox
interaction in Figure D.7. Also note that this state machine refines the requirement “PowerSourceManagment,”
which will be elaborated in the requirements sub clause of this sample problem. This diagram expresses only the
nominal states. Exception states, like “acceleratorFailure,” are not expressed on this diagram.

Issue(s): SYSML16-198

Figure D.8: Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

Figure D.9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure D.10), which will
decompose the lifelines within the context of the HybridSUV block.

Issues(s): SYSML16-198

Figure D.9: Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram)

OMG Systems Modeling Language, v1.6 257

The lifelines on Figure D.10 (“whitebox” sequence diagram) need to come from the Power System
decomposition. This now begins to consider parts contained in the HybridSUV block.

Issue(s): SYSML16-198

Figure D.10: White Box Interaction for "StartVehicle" (Sequence Diagram)

D.4.4 Establishing Requirements (Requirements Diagrams and
Tables)

D.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in
Figure D.11, including the requirement for the vehicle to pass emissions standards, which is expanded for
illustration purposes. The containment (cross hair) relationship, for purposes of this example, refers to the
practice of decomposing a complex requirement into simpler, single requirements.

Issue(s): SYSML16-198

Figure D.11: Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

D.4.4.2 Requirement Diagram - Derived Requirements

Figure D.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification.
Derived requirements, for the purpose of this example, express the concepts of requirements in the
HSUVSpecification in a manner that specifically relates them to the HSUV system. Various other model
elements may be necessary to help develop a derived requirement, and these model element may be related by a
«refinedBy» relationship. Note how PowerSourceManagement is “RefinedBy” the HSUVOperationalStates
model (Figure D.8). Note also that rationale can be attached to the «deriveReqt» relationship. In this case,
rationale is provided by a referenced document “Hybrid Design Guidance.”

OMG Systems Modeling Language, v1.6 259

Issue(s): SYSML16-198

Figure D.12: Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy.

(Requirements Diagram)

D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Figure D.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements.
The “refine” relation, introduced in Figure D.12, shows how the Acceleration requirement is refined by a
similarly named use case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration
test case verifies the Acceleration requirement.

Issue(s): SYSML16-198

Figure D.13: Acceleration Requirement Relationships (Requirements Diagram)

D.4.4.4 Table - Requirements Table

Figure D.14 contains two diagrams that show requirement containment (decomposition), and requirements
derivation in tabular form. This is a more compact representation than the requirements diagrams shown
previously.

OMG Systems Modeling Language, v1.6 261

Figure D.14: Requirements Relationships Expressed in Tabular Format (Table)

D.4.5 Breaking Down the Pieces (Block Definition Diagrams,
Internal Block Diagrams)

D.4.5.1 Block Definition Digram - Automotive Domain

Figure D.15 provides definition for the concepts previously shown in the context diagram. Note that the
interactions DriveBlackBox and Stac4rtVehicleBlackBox (described in D.4.3, Elaborating Behavior (Sequence
and State Machine Diagrams)) are depicted as owned by the AutomotiveDomain block.

Figure D.15: Defining the Automotive Domain (compare with Figure D.4) - (Block Definition Diagram)

D.4.5.2 Block Definition Diagram - Hybrid SUV

Figure D.16 defines components of the HybridSUV block. Note that the BrakePedal and WheelHubAssembly
are used by, but not contained in, the PowerSubsystem block.

Figure D.16: Defining Structure of the Hybrid SUV System (Block Definition Diagram)

OMG Systems Modeling Language, v1.6 263

D.4.5.3 Internal Block Diagram - Hybrid SUV

Figure D.17 shows how the top level model elements in the above diagram are connected together in the
HybridSUV block.

Figure D.17: Internal Structure of Hybrid SUV (Internal Block Diagram)

Figure D.18: Defining Structure of Power Subsystem (Block Definition Diagram)

Power Subsystem BreakdownHSUV Structure[Package] bdd []

InternalC ombus tionE ngine

E lec tric alP owerC ontroller

E lec tric MotorG eneratorF uelT ankA s s embly

WheelHubAs s embly

P owerC ontrolUnit

P owerS ubs ys tem

T rans mis s ionF uelP ump F uelInjec tor

B rakeP edal

A c c elerator

F rontWheel

Differential

B atteryP ac k

F uel

trsm

difacl

rfw 1

0..1

lfw 1

0..1

bkp 1

0..1

ft

bp epc

emgice

0..1

pcu

fp fi 4

D.4.5.3 Internal Block Diagram for the "Power Subsystem"

Figure D.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It
shows connectors between parts, ports, and connectors with item flows. The dashed borders on FrontWheel and
BrakePedal denote the “use-not-composition” relationship depicted elsewhere in Figure D.16 and Figure D.18.
The dashed borders on Fuel denote a store, which keeps track of the amount and mass of fuel in the
FuelTankAssy. This is also depicted in Figure D.18.

Figure D.19: Internal Structure of the Power Subsystem (Internal Block Diagram)

Issue(s): SYSML16-198-SYSML16-132

Figure D.20: Blocks Typing Ports in the Power Subsystem (Block Definition Diagram)

Figure D.20 provides definition of the block that types the ports linked by connector c1 in Figure D.19.

OMG Systems Modeling Language, v1.6 265

bdd [Block] PowerSubsystem [ICE Port Type Definitions]

rpm : Integer
Temperature : Real
isKnocking : Boolean
reqd isControlOn : Boolean

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

ICE

operations

value properties

reqd rpm : Integer
reqd Temperature : Real
reqd isKnocking : Boolean
isControlOn : Boolean

reqd setThrottle(throttlePosition:Real):void
reqd setMixture(mixture:Real):void

operations

value properties

~ICE<<InterfaceBlock>>

<<~InterfaceBlock>>

{original=ICE}

D.4.6 Defining Ports and Flows

D.4.6.1 Block Definition Diagram - ICE Flow Properties

For purposes of example, the ports, flows, and related point-to-point connectors in Figure D.19 are being
refined into a common bus architecture. For this example, ports with flow properties have been used to model
the bus architecture. Figure D.21 is an incomplete first step in the refinement of this bus architecture, as it
begins to specify the flow properties for InternalCombustionEngine, the Transmission, and the
ElectricalPowerController.

Issue(s): SYSML16-198b, SYSML16-132

Figure D.21: Initially Defining Port Types with Flow Properties for the CAN Bus (Block Definition Diagram)

D.4.6.2 nternal Block Diagram - CANbus

Figure D.22 continues the refinement of this Controller Area Network (CAN) bus architecture using ports. The
explicit structural allocation between the original connectors of Figure D.19 and this new bus architecture is
shown in Figure D.39.

out engineData: ICEData
in mixture: Real
in throttlePosition: Real

FS_ICE

flow properties

rpm: Integer
temperature: Real
isKnocking: Boolean

«signal»
ICEData

FS_TRSM

flow properties

FS_EPC

flow properties

To be specified – What is
being exchanged over the
bus to/from the
transmission.

To be specified – What is
being exchanged over the
bus to/from the electronic
power controller.

in engineData: ICEData
out mixture: Real
out throttlePosition: Real

~FS_ICE

flow properties

<<~InterfaceBlock>>

<<InterfaceBlock>>
{original=FS_ICE}

<<InterfaceBlock>>

<<InterfaceBlock>>

~FS_TRSM

flow properties

~FS_EPC

flow properties

<<~InterfaceBlock>>

<<~InterfaceBlock>>

Figure D.22: Consolidating Connectors into the CAN Bus. (Internal Block Diagram)

D.4.6.3 Block Definition diagram - Fuel Flow Properties

The ports on the FuelTankAssembly and InternalCombustionEngine (as shown in Figure D.19) are defined in
Figure D.23.

Issue(s): SYSML16-198

Figure D.23: Elaborating Definition of Fuel Flow. (Block Definition Diagram)

OMG Systems Modeling Language, v1.6 267

D.4.6.4 Parametric Diagram - Fuel Flow

Figure D.24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure
value properties.

Issue(s): SYSML16-198

Figure D.24: Defining Fuel Flow Constraints (Parametric Diagram)

D.4.6.5 Internal Block Diagram - Fuel Distribution

Figure D.25 shows how the connectors fuelDelivery and fdist on Figure D.19 have been expanded to include
design detail. The fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other
carrying fuelReturn. The fdist connector inside the InternalCombustionEngine block has been expanded into the
fuel regulator and fuel rail parts. These more detailed design elements are related to the original connectors
using the allocation relationship. The Fuel store represents a quantity of fuel in the FuelTankAssy, which is
drawn by the FuelPump for use in the engine, and is refreshed, to some degree, by fuel returning to the
FuelTankAssy via the FuelReturnLine.

Figure D.25: Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

D.4.7 Analyze Performance (Constraint Diagrams, Timing
Diagrams, Views)

D.4.7.1 Block Definition Diagram - Analysis Context

Figure D.26 defines the various model elements that will be used to conduct analysis in this example. It depicts
each of the constraint blocks/equations that will be used for the analysis, and key relationships between them.

OMG Systems Modeling Language, v1.6 269

Figure D.26: Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

D.4.7.2 Package Diagram - Performance View Definition

Figure D.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain a number of diagrams depicting the elements it
contains.

Figure D.27: Establishing a Performance View of the User Model (Package Diagram)

D.4.7.3 Package Diagram - Viewpoint Definition

Figure D.28 shows the Requirements and VnV viewpoint definitions with relationships to stakeholders,
concerns and views. The stakeholder and viewpoint share the same concern via comments that are shown
textually as values of the concern property. The comments could be shown graphically with annotation
relationships to stakeholders and viewpoints, if needed. Note that the value of the stakeholder property is an
instance of the stereotype not the class to which the stereotype is applied.

OMG Systems Modeling Language, v1.6 271

Figure D.28: Defining Requirements and VnV viewpoints (Package Diagram)

D.4.7.4 Package Diagram - View Definition

Figure D.29 shows the Requirements and VnV views and the model elements they expose. Note that the expose
relationship relies on the viewpoint method to identify the entire set of elements that appear in the view.

Figure D.29: Requirements and VnV views exposing elements from the model (Package Diagram)

D.4.7.5 Package Diagram - View Hierarchy

Figure D.30 shows the Requirements and VnV views and the supporting views that complete the description of
Requirements and VnV respectively for the Hybrid SUV.

OMG Systems Modeling Language, v1.6 273

Figure D.30: The Requirements and VnV views with supporting views (Package Diagram)

D.4.7.6 Package Diagram - Measures of Effectiveness

Measure of Effectiveness is a user defined stereotype. Figure D.31 shows how the overall cost effectiveness of
the HSUV will be evaluated. It shows the particular measures of effectiveness for one particular alternative for
the HSUV design, and can be reused to evaluate other alternatives.

Figure D.31: Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

D.4.7.7 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in
assessing it. Figure D.32 shows the constraint blocks and properties necessary to evaluate fuel economy.

Issue(s): SYSML16-198

Figure D.32: Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

OMG Systems Modeling Language, v1.6 275

D.4.7.8 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Figure D.32 has been expanded in Figure D.33.
ConstraintNotes are used, which identify each constraint using curly brackets {}. In addition, Rationale has
been used to explain the meaning of each constraint maintained.

Issue(s): SYSML16-198

Figure D.33: Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parameters in Figure D.33 are detailed in Figure D.34 in Block Definition Diagram format.

Figure D.34: Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure D.2.

D.4.7.9 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2, are not directly supported by SysML. For illustration purposes,
however, the interaction shown in Figure D.35 was generated based on the constraints and parameters of the
StraightLineVehicleDynamics constraintBlock, as described in the Figure D.33. It assumes a constant 100hp at
the drive wheels, 4000lb gross vehicle weight, and constant values for Cd and Cf.

OMG Systems Modeling Language, v1.6 277

Issue(s): SYSML16-198

Figure D.35: Results of Maximum Acceleration Analysis (Timing Diagram)

17.4.8 D.4.8 Defining, Decomposing, and Allocating Activities

D.4.8.1 Activity Diagram - Acceleration (top level)

Figure D.36 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of
the systems engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly
found, however, that the behavior as depicted cannot be allocated, and must be further decomposed. The
stereotypes on the object nodes between actions in the figure apply to parameters of the behaviors or operations
called by the actions (see the notation for object nodes described in 11.3.1.4, ObjectNode, Variables, and
Parameters).

Issue(s): SYSML16-198

Figure D.36: Behavior Model for “Accelerate” Function (Activity Diagram)

D.4.8.2 Block Definition Diagram - Acceleration

Figure D.37 defines a decomposition of the activities and objectFlows from the activity diagram in Figure D.36.

OMG Systems Modeling Language, v1.6 279

Figure D.37: Decomposition of “Accelerate” Function (Block Definition diagram)

D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

Figure D.38 shows the ProvidePower activity, which includes Actions invoking the decomposed Activities and
ObjectNodes from Figure D.37. It also uses AllocateActivityPartitions and an allocation callout to explicitly
allocate activities and an object flow to parts in the PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This
was done to distinguish the flow of electrically generated mechanical power and gas generated mechanical
power, and to provide further insight into the specific vehicle conditions being monitored.

Issue(s): SYSML16-92

Figure D.38: Detailed Behavior Model for “Provide Power” (Activity Diagram)

Note hierarchical consistency with Figure D.36.

D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow
Allocation

Figure D.39 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated
in Figure D.38.

Issue(s): SYSML16-92

Figure D.39: Flow Allocation to Power Subsystem (Internal Block Diagram)

D.4.8.5 Table - Acceleration Allocation

Figure D.40 shows the same allocation relationships shown in Figure D.39, but in a more compact tabular
representation.

OMG Systems Modeling Language, v1.6 281

Issue(s): SYSML16-76

D.4.8.6 Internal Block Diagram: Property Values - EPA Fuel Economy Test

Figure D.40: Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

Figure D.41 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial
numbers of specific relevant parts are indicated.

[Figure B.37 Tabular Representation of Allocation from"Accelerate" Behavior Model to Power Subsystem]HSUV Behavior[Package] bdd

Type Name End Relation End Type Name
action a1 : ProportionPower from allocate to part ecu : PowerControlUnit
action a2 : ProvideGasPower from allocate to part ice : InternalCombustionEngine
action a3 : ControlElectricPower from allocate to part epc : ElectricPowerController
action a4 : ProvideElectricPower from allocate to part emg : ElectricMotorGenerator
objectFlow o6 from allocate to connector epc-emg.1

Figure D.41: Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

OMG Systems Modeling Language, v1.6 283

This page intentionally left blank.

Annex E: Non-normative Extensions

(informative)

E.1 Overview
This annex describes useful non-normative extensions to SysML that may be considered for standardization in
future versions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type,
consistent with how the main body of this International Standard is organized. Stereotypes in this sub clause are
specified using a tabular format, consistent with how non-normative stereotypes are specified in the UML 2
standard. Model libraries are specified using the guidelines provided in the Profiles & Model Libraries clause of
this International Standard.

E.2 Activity Diagram Extensions

E.2.1 Overview

Two non-normative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and
UML 2.0 Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of
Systems Engineering, 2006].

E.2.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also
called a behavior diagram. Most of its functionality is a constrained use of UML activities, as described below.
This extension does not address replication, resources, or kill branches. Kill branches can be translated to
activities using interruptible regions and join specifications.

Table E.1: Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description

«effbd» UML4SysML::Activity (or
subtype of «nonStreaming»
below)

N/A See below. Specifies that the activity
conforms to the constraints
necessary for EFFBD.

When the «effbd» stereotype is applied to an activity, its contents shall conform to the following constraints:

[1] (On Activity) Activities shall not have partitions.

[2] (On Activity) All decisions, merges, joins, and forks shall be well-nested. In particular, each decision
and merge shall be matched one-to-one, as are forks and joins, accounting for the output parameter sets
acting as decisions, and input parameters and control acting as a join.

OMG Systems Modeling Language, v1.6 285

[3] (On Action) All actions shall have exactly one control edge coming into them, and exactly one control
edge coming out,except when using parameter sets.

[4] (Execution constraint) All control shall be enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that shall have isControl =
true.

[6] (On ObjectNode) Ordering shall be first-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow shall be never used for control, isControlType = false, except for pins of
parameters in parameter sets.

[8] (On Parameter) Parameters shall take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters shall produce exactly one value, multiplicity.lower = 1. The
«optional» stereotype cannot be applied to parameters.

[10] (On Parameter) Parameters shall not be streaming or exception.

[11] (On ParameterSet) Parameter sets shall only apply to output parameters.

[12] (On ParameterSet) Parameter sets shall only apply to control. Parameters in parameter sets shall have
pins with

 is ControlType = true.

[13] (On ParameterSet) Parameter sets shall have exactly one parameter, and it shall not be shared with
other parameter sets.\

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the
behavior or operation shall be in parameter sets.

[15] (On ActivityEdge) Edges shall not have time constraints.

[16] The following SysML stereotypes shall not be applied: «rate», «controlOperator», «noBuffer»,
«overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after
they start and before they finish (streaming), or only accept inputs when they start and provide outputs when
they are finished (nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated
by other activities, while nonstreaming activities usually terminate themselves.

Table E.2: Streaming options for activities

Stereotype Base class Properties Constraints Description

«streaming» UML4SysML::Activity N/A The activity has at
least one
streaming
parameter.

Used for activities that can
accept inputs or provide
outputs after they start and
before they finish.

«nonStreaming» UML4SysML::Activity N/A The activity has
no streaming
parameters.

Used for activities that
accept inputs only when
they start, and provide
outputs only when they
finish.

E.2.3 Stereotype Examples

Figure E.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J.,
“Relationships between common graphical representations in system engineering,” 2002]. The stereotype
applies the constraints specified in E.2.2, Stereotypes, for example, that the data outputs on all functions are
required and that queuing is FIF.

Issue(s): SYSML16-198

Figure E.1: Example activity with «effbd» stereotype applied

Figure E.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied,
adapted from [MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t)
= -2x(t) + u(t). Item types are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which
subactivities take inputs and produce outputs while they are executing. They are simpler to use than the
{stream} notation on streaming inputs and outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with
clocked token flow, to ensure that actions with multiple inputs receive as many of them as possible before
proceeding. See the article referenced in E.2.1, Overview.

Issue(s): SYSML16-198

OMG Systems Modeling Language, v1.6 287

Figure E.2: Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

E.3 Requirements Diagram Extensions

E.3.1 Overview

This sub clause describes an example of a non-normative extension for a requirements profile.

E.3.2 Stereotypes

This non-normative extension includes stereotypes for a simplified requirements taxonomy that is intended to
be further adapted as required to support the particular needs of the application or organization. The
requirements categories in this example include functional, interface, performance, physical requirements, and
design constraints as shown in Table E.3. As shown in the table, each category is represented as a stereotype of
the generic SysML «requirement». The table also includes a brief description of the category. The table does
not include any stereotype properties or constraints, although they can be added as deemed appropriate for the
application. For example, a constraint that could be applied to a functional requirement is that only SysML
activities and operations can satisfy this category of requirement. Other examples of requirements categories
may include operational, specialized requirements for reliability and maintainability, store requirements,
activation, deactivation, and a high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table.
This includes agreement on the categories and their associated descriptions, stereotype properties, and
constraints. Additional categories can be added by further subclassing the categories in the table below,
or adding additional categories at the pier level of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design
constraint) as applicable and ensure consistency with the description, stereotype properties, and
constraints.

• A specific text requirement can include the application of more than one requirement category, in which
case, each stereotype should be shown in guillemets.

Table E.3: Additional Requirement Stereotypes

Stereotype Base class Properties Constraints Description

«extendedRequirement» «requirement» source: String N/A A mix-in stereotype that

Stereotype Base class Properties Constraints Description

risk: RiskKind

verifyMethod:
VerifyMethodKin
d

contains generally useful
attributes for
requirements.

«functionalRequirement» «extendedrequirement» N/A satisfied by an
operation or
behavior

Requirement that
specifies an operation or
behavior that a system, or
part of a system, must
perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a
port, conector,
item flow, and/
or constraint
property

Requirement that
specifies the ports for
connecting systems and
system parts and the
optionally may include the
item flows across the
connector and/or
interface constraints.

«performanceRequirement
»

«extendedrequirement» N/A satisfied by a
value property

Requirement that
quantitavely measures
the extent to which a
system, or a system part,
satisfies a required
capability or condition.

«physicalRequirement» «extendedrequirement» N/A satisfied by a
structural
element

Requirement that
specifies physical
characteristics and/or
physical constraints of the
system, or a system part.

«designConstraint» «extendedrequirement» N/A satisfied by a
block or part

Requirement that
specifies a constraint on
the implementation of the
system or system part,
such as the system must
use a commercial off the
shelf component.

Table E.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure E.3.

Table E.4: Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description

RiskKind High High indicates an unacceptable level of risk

OMG Systems Modeling Language, v1.6 289

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis Analysis indicates that verification will be performed by
technical evaluation using mathematical representations,
charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of
requirements under conditions, which are simulated or
modeled; where the results are derived from the analysis of
the results produced by the model.

Demonstration Demonstration indicates that verification will be performed by
operation, movement or adjustment of the item under specific
conditions to perform the design functions without recording of
quantitative data.. Demonstration is typically considered the
least restrictive of the verification types.

Inspection Inspection indicates that verification will be performed by
examination of the item, reviewing descriptive documentation,
and comparing the appropriate characteristics with a
predetermined standard to determine conformance to
requirements without the use of special laboratory equipment
or procedures.

Test Test indicates that verification will be performed through
systematic exercising of the applicable item under appropriate
conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of
quantitative data to show that measured parameters equal or
exceed specified requirements.

E.3.3 Stereotype Examples

Figure E.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the
requirement.

Issue(s): SYSML16-198

Figure E.3: Example extensions to Requirement

E.4 Parametric Diagram Extensions for Trade Studies

E.4.1 Overview

This sub clause describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks
clause) to support trade studies and analysis, which are an essential aspect of any systems engineering effort. In
particular, a trade study is used to evaluate a set of alternatives based on a defined set of criteria. The criteria
may have a weighting to reflect their relative importance. An objective function (aka optimization or cost
function) can be used to represent the weighted criteria and determine the overall value of each alternative. The
objective function can be more complex than a simple linear weighting of the criteria and can include
probability distribution functions and utility functions associated with each criteria. However, for this example,
we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired
mission cost effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined
by applying an objective function to a set of criteria, each of which is represented by a measure of effectiveness.

This non-normative extension includes stereotypes for an objective function and a measure of effectiveness. The
objective function is a stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a
block property.

OMG Systems Modeling Language, v1.6 291

E.4.2 Stereotypes
Table E.5: Stereotypes for Measures of Effectiveness

Stereotype Base class Properties Constraints Description

«objectiveFunction» «ConstraintBlock» N/A N/A An objective function (aka
optimization or cost
function) is used to
determine the overall value
of an alternative in terms of
weighted criteria and/or
moe's.

«moe» UML4SysML::Proper
ty

N/A N/A A measure of effectiveness
(moe) represents a
parameter whose value is
critical for achieving the
desired mission cost
effectiveness.

E.4.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moes
along with life cycle cost. The overall cost effectiveness for each alternative may be defined by an objective
function that represents a weighted sum of their moe values. For each moe, there is a separate parametric model
to estimate the value of operational availability, mission response time, security effectiveness, and life cycle cost
to determine an overall cost effectiveness for each alternative. It is assumed that the moes refer to the values for
system alternative j (sj).

Figure E.4: Example Parametric Diagram using Stereotypes for Measures of Effectiveness

E.5 Model Library for Quantities, Units, Dimensions, and
Values (QUDV)

E.5.1 Overview

For any system model, a solid foundation of well-defined quantities, units, and dimensions system is very
important. Properties that describe many aspects of a system depend on it. At the same time, such a foundation
should be a shareable resource that can be reused in many models within and across organizations and projects.

The most widely accepted, scrutinized, and globally used system of quantities and system of units are the
International System of Quantities (ISQ) and the International System of Units (SI). They are formally
standardized through [ISO31] and [IEC60027]. The harmonization of these two sets of standards into one new
set [ISO/IEC80000] has been published by ISO in 2009 and 2010. The present QUDV model in SysML is based
on ISO/IEC 80000-1:2009, which refers normatively to the ISO/IEC Guide 99:2007. The ISO/IEC 80000-
1:2009 document is also the baseline for the 2010 revision of the IEEE/ASTM American National Standards for
Metric Practice SI-10. All the relevant concepts underlying ISQ and SI are publicly available in [VIM]. See
E.5.3, References for references to these documents.

At a minimum, SysML should provide the means to support the imminent international standard
[ISO/IEC80000]. In addition, many other systems of quantities and units are still in use for particular
applications and for historical reasons. A prime example is the system based on UK Imperial units, which is still
widely used in North America. SysML should provide the means to support all such specific systems of
quantities and units, including precise definitions of the relationships between different systems of units, and
with explicit and unambiguous unit conversions to and from SI as well as other systems.

To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in
SysML is explicitly based on the concepts defined in [VIM], which have been written by the authoritative
Working Group 2 of the Joint Committee for Guides in Metrology (JCGM/WG 2), in which the JCGM member
organizations are represented: BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. At the same time, the
model library is designed in such a way that extensions to the ISQ and SI can be represented, as well as any
alternative systems of quantities and units.

The model library can be used to support SysML user models in various ways. A simple approach is to define
and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link
units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user
models. The name of a Unit or QuantityKind stereotype, its definitionURI, or other means may be used to link it
with definitions made using this library. Instances of blocks conforming to this model library may be created by
instance specifications, as shown in E.5.4, Usage Examples, or by other means.

Even though this model library is specified in terms of SysML blocks, its contents could equally be specified by
UML classes without dependencies on any SysML extensions. This annex specifies the model library using
SysML blocks to maintain compatibility with the SysML standard. UML and other forms of this same
conceptual model are important and useful to align different standards with each other and with those of [VIM].

Separate forms of this model library, including a UML class model generated as a simple transformation from
the model library specified in this annex, together with additional mappings and resources, example
applications, and reference libraries of systems of units and quantities built using this model, are expected to be
published via the SysML Project Portal wiki at http://www.omgwiki.org/OMGSysML/.

OMG Systems Modeling Language, v1.6 293

E.5.2 Abstract Syntax

Figures E.5 - E.7 present the QUDV model library in a series of block definition diagrams.

The QUDV Concepts diagram in Figure E.5 presents the core concepts of System of Units, Unit,
SystemOfQuantities, and QuantityKind. The QUDV concepts of Unit and QuantityKind are specialized by
restriction from their respective SysML concepts shown in gray in Figure E.5. The QUDV concepts form the
basis of the QUDV subset of the Vocabulary of International Metrology (VIM) from ISO 80000-1 and JCGM
200:2012. In SysML, a value property typed by a given ValueType, with stereotype properties that refer to a
SysML Unit and/or QuantityKind, defines a quantity in the sense of ISO 80000-1, Sub clause 3.1. If specified,
the unit of the ValueType designates the measurement unit assumed for the numerical value of such a quantity.

In the QUDV Unit diagram in Figure E.6, SimpleUnit provides the basis for defining other units via conversion
or derivation. Additionally, QUDV provides support for specifying a coherent derived unit as a product of the
baseUnit(s) of a given SystemOfUnits. In a coherent SystemOfUnits, there is only one base unit for each base
quantity kind.

In the QUDV QuantityKind diagram in Figure E.7, SimpleQuantityKind provides the basis for defining other
quantity kinds via specialization or derivation. QUDV provides a declarative specification of dimensional
analysis to assign to each QuantityKind an expression of its dependence on the baseQuantityKind(s) of a
SystemOfQuantities. This dependence is expressed as a list of QuantityKindFactor(s) corresponding to a
product of powers of the base quantities. E.5.2.15, SystemOfQuantities specifies the derivation of quantity
dimensions using an algorithm specified in OCL.

Issue(s): SYSML16-198

Figure E.5: QUDV Concepts Diagram

 bdd [Package] QUDV [QUDV Concepts]

Issue(s): SYSML16-198

Figure E.6: QUDV Units Diagram

Issue(s): SYSML16-198

Figure E.7: QUDV QuantityKinds Diagram

OMG Systems Modeling Language, v1.6 295

 bdd [Package] QUDV [QUDV Units]

 bdd [Package] QUDV [QUDV Quantity Kind]

E.5.2.1 AffineConversionUnit

Description

An AffineConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with
respect to another reference measurement unit through an affine conversion relationship with a conversion
factor and offset.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU + offset

where:

valueRU is the quantity value expressed in the referenceUnit, and,

valueCU is the quantity value expressed in the AffineConversionUnit.

For example, in the definition of the AffineConversionUnit for “degree Fahrenheit” with respect to the
referenceUnit “degree Celsius,” the factor would be 5/9 and the offset would be -160/9, because

T
Celsius = 5/9 · TFahrenheit - 160/9 which is equivalent with TFahrenheit = 9/5 · TCelsius + 32/1

Properties

• factor: Number
Number that specifies the factor in the unit conversion relationship.

• offset: Number
Number that specifies the offset in the unit conversion relationship.

E.5.2.2 ConversionBasedUnit

Description

A ConversionBasedUnit is an abstract classifier that is a Unit that represents a measurement unit that is defined
with respect to another reference unit through an explicit conversion relationship.

Properties

• referenceUnit: Unit
Specifies the unit with respect to which the ConversionBasedUnit is defined.

• inInvertible: Boolean
Specifies whether the unit conversion relationship is invertible. For LinearConversionUnit and
AffineConversionUnit this is always true.

Operations

[1] A ConversionBasedUnit transitively depends on its referenceUnit and all of the Units that its
referenceUnit depends on.

dependsOnUnits() : Unit[0..*] {unique}
body: referenceUnit.dependsOnUnits()->including(referenceUnit)->asSet()

E.5.2.3 DerivedQuantityKind

Description

A DerivedQuantityKind is a QuantityKind that represents a kind of quantity that is defined as a product of
powers of one or more other kinds of quantity. A DerivedQuantityKind may also be used to define a synonym
kind of quantity for another kind of quantity.

For example “velocity” can be specified as the product of “length” to the power one times “time” to the power
minus one, and subsequently “speed” can be specified as “velocity” to the power one.

Properties

• factor: QuantityKindFactor [1..*]
Set of QuantityKindFactor that specifies the product of powers of other kind(s) of quantity that define
the DerivedQuantityKind.

Operations

[1] A DerivedQuantityKind transitively depends on its factors' QuantityKinds and all of the QuantityKinds
that its factors' QuantityKinds depend on.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}
body: factor.quantityKind.dependsOnQuantityKinds()->flatten()->asSet()

->union(factor.quantityKind->flatten()->asSet())->asSet()

E.5.2.4 DerivedUnit

Description

A DerivedUnit is a Unit that represents a measurement unit that is defined as a product of powers of one or
more other measurement units.

For example the measurement unit “metre per second” for “velocity” is specified as the product of “metre” to
the power one times “second” to the power minus one.

Properties

• factor: UnitFactor [1..*]
Set of UnitFactor that specifies the product of powers of other measurement units that define the
DerivedUnit.

• hasReducedFactors : Boolean[1] = true
If true, the UnitFactors specifying the product of powers of other measurement units that define the
DerivedUnit cannot be simplified. If false, the DerivedUnit is non-reduced; some UnitFactors can be
simplified. A non-reduced DerivedUnit can have as a general unit other DerivedUnits defined in terms
of simplified UnitFactors, possibly in reduced form.

Operations

[1] A DerivedUnit transitively depends on its factors' Units and all of the Units that its factors' Units
depend on.

dependsOnUnits() : Unit[0..*] {unique}
body: factor.unit.dependsOnUnits()->flatten()->asSet()->union(factor.unit-

>flatten()
->asSet())->asSet()

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the
SystemOfQuantities or transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()-

OMG Systems Modeling Language, v1.6 297

>asSet()
inv SoU3_3:
getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =

getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()
->forAll(u | aqk>includesAll

 (getKindOfQuantitiesForMeasurementUnit(u)))

E.5.2.5Dimension

A Dimension represents the [VIM] concept of “quantity dimension” that is defined as “expression of the
dependence of a quantity on the base quantities of a system of quantities as a product of powers of factors
corresponding to the base quantities, omitting any numerical factor.”

For example in the ISQ the quantity dimension of “force” is denoted by dim F = L·M·T-2, where “F” is the
symbol for “force,” and “L,” “M,” and “T” are the symbols for the ISQ base quantities “length,” “mass,” and
“time” respectively.

The Dimension of any QuantityKind can be derived through the algorithm that is defined in E.5.2.15,
SystemOfQuantities with SystemOfQuantities. The actual Dimension for a given QuantityKind depends on the
choice of baseQuantityKind specified in a SystemOfQuantities.

Properties

• symbolicExpression: String [0..1]
Symbolic expression of the quantity dimension's product of powers, in terms of symbols of the kinds of
quantity that represent the base kinds of quantity and their exponents. In tool implementations, the
symbolicExpression may automatically derived from the associated factor set.

• factor: QuantityKindFactor [0..*] {ordered}
If true Ordered set of QuantityKindFactor that specifies the product of powers of base dimensions that
define the Dimension. The possible base dimensions are represented by the ordered set of
baseQuantityKind defined in the SystemOfQuantities for which the Dimension is specified. The order
of the factors should follow the ordered set of baseQuantityKind in SystemOfQuantities.

E.5.2.6 GeneralConversionUnit

Description

A GeneralConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with
respect to another reference measurement unit through a conversion relationship expressed in some syntax
through a general mathematical expression.

The unit conversion relationship is defined by the following equation:

valueRU / valueCU = f(valueRU, valueCU)

where:

valueRU is the quantity value expressed in the referenceUnit and

valueCU is the quantity value expressed in the GeneralConversionUnit and

f(valueRU, valueCU) is a mathematical expression that includes valueRU and valueCU

Properties

• expression: String
Specifies the unit conversion relationship in some expression syntax.

• expressionLanguageURI: String [0..1]
URI that specifies the language for the expression syntax.

E.5.2.7 LinearConversionUnit

Description

A LinearConversionUnit is a ConversionBasedUnit that represents a measurement unit that is defined with
respect to another measurement reference unit through a linear conversion relationship with a conversion factor.

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:

valueRU is the quantity value expressed in the referenceUnit, and,

valueCU is the quantity value expressed in the LinearConversionUnit.

For example, in the definition of the LinearConversionUnit for “inch” with respect to the referenceUnit
“metre,” the factor would be 254/10000, because 0.0254 metre = 1 inch.

Properties

• factor: Number
Number that specifies the factor in the unit conversion relationship.

E.5.2.8 Prefix

Description

A Prefix represents a named multiple or submultiple multiplication factor used in the specification of a
PrefixedUnit. A SystemOfUnits may specify a set of prefixes.

Properties

• symbol: String [0..1]
Short symbolic name of the prefix.

• factor: Rational [1]
Specifies the multiple or submultiple multiplication factor.

E.5.2.9 PrefixedUnit

Description

A PrefixedUnit is a ConversionBasedUnit that represents a measurement unit that is defined with respect to
another measurement reference unit through a linear conversion relationship with a named prefix that represents
a multiple or submultiple of a unit.

[VIM] defines “multiple of a unit” as “measurement obtained by multiplying a given measurement unit by an
integer greater than one” and “submultiple of a unit” as “measurement unit obtained by dividing a given
measurement unit by an integer greater than one.”

OMG Systems Modeling Language, v1.6 299

The unit conversion relationship is defined by the following equation:

valueRU = factor · valueCU

where:

valueRU is the quantity value expressed in the referenceUnit and

valueCU is the quantity value expressed in the PrefixedUnit.

For example, in the definition of the PrefixedUnit for “megabyte” with respect to the referenceUnit “byte,” the
prefix would be the Prefix for “mega” with a factor 106, because 106 byte = 1 megabyte.

See [VIM] for all decimal and binary multiples and decimal submultiples defined in SI.

Properties

• prefix: Prefix
Specifies the prefix that defines the name, symbol, and factor of the multiple or submultiple.

Constraints

[1] The referenceUnit shall not be a PrefixedUnit, i.e., it is not allowed to prefix an already prefixed
measurement unit. In general the referenceUnit should be a SimpleUnit.

package QUDV
context PrefixedUnit
inv: not referenceUnit.oclIsTypeOf(PrefixedUnit)
endpackage

E.5.2.10 QuantityKind

Description

In QUDV, the concept of QuantityKind is an abstract specialization of SysML QuantityKind to support
designating a primary QuantityKind for a given Unit within the scope of a system of units and quantities and to
support a richer vocabulary for defining QuantityKinds.

Properties

• /dependsOnQuantityKinds : QuantityKind[0..*] {readOnly, unique}
The set of all QuantityKinds that this QuantityKind directly or indirectly depends on according to its
definition.

• general: QuantityKind[0..*] {unique}

 A quantity can be defined to represent a combination of specific characteristics from one or more
aspects defined by general QuantityKinds (see ISO 80000-1, 3.2).

• isNumberOfEntities: Boolean = false
If true, indicates that the QuantityKind represents a number of entities (see ISO 80000-1, 3.8, Note 4).

• isQuantityOfDimensionOne: Boolean = false
If true, indicates that the QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[1] A QuantityKind cannot be defined in terms of itself. This follows from the quantity calculus used for
expressing a derived QuantityKind in terms of base QuantityKinds chosen for a SystemOfQuantities by
means of non- contradictory equations (See ISO 80000-1, 4.3).

inv acyclic_quantity_kind_dependencies:
dependsOnQuantityKinds()->excludes(self)

Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of
the derived property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}

E.5.2.11 QuantityKindFactor

Description

A QuantityKindFactor represents a factor in the product of powers that defines a DerivedQuantityKind.

Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the quantityKind is raised.

• QuantityKind: QuantityKind
Reference to the QuantityKind that participates in the factor.

E.5.2.12 Rational

Description

A Rational value type represents the mathematical concept of a number that can be expressed as a quotient of
two integers. It may be used to express the exact value of such values, without issues of rounding or other
approximations if the result of the division were used instead.

Properties

• numerator: Integer
An integer number used to express the numerator of a rational number.

• denominator: Integer
An integer number used to express the denominator of a rational number.

Operations

package QUDV
context Rational
def: plus(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.demonimator
+ r.numerator * self.denominator
and result.denominator = self.denominator * r.denominator

context Rational
def: equivalent(r : Rational[1]) : Boolean[1]

= result = (self.numerator * r.demonimator
= r.numerator * self.denominator)

context Rational
def: times(r : Rational[1]) : Rational[1]

= result.numerator = self.numerator * r.numerator

OMG Systems Modeling Language, v1.6 301

and result.denominator = self.denominator * r.denominator
endpackage

Constraints

[1] The denominator of a rational number shall not be zero.

package QUDV
context Rational
inv: denominator <> 0
endpackage

E.5.2.13 SimpleQuantityKind

Description

A SimpleQuantityKind is a QuantityKind that represents a kind of quantity that does not depend on any other
QuantityKind. Typically a base quantity would be specified as a SimpleQuantityKind.

Operations

[1] A SimpleQuantityKind does not depend on any other QuantityKind.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}
body: Set{}

E.5.2.14 SimpleUnit

Description

A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit. Typically a
base unit would be specified as a SimpleUnit.

Operations

[1] A SimpleUnit is a Unit that represents a measurement unit that does not depend on any other Unit.
Typically a base unit would be specified as a SimpleUnit.

dependsOnUnits() : Unit[0..*] {unique}
body: Set{}

E.5.2.15 SystemOfQuantities

Description

A SystemOfQuantities represents the [VIM] concept of “system of quantities” that is defined as a “set of
quantities together with a set of non-contradictory equations relating those quantities.” It collects a list of
QuantityKind that specifies the kinds of quantity that are known in the system.

The International System of Quantities (ISQ) is an example of a SystemOfQuantities, defined in [ISO31] and
[ISO/IEC80000].

Properties

• symbol: String [0..1]
Short symbolic name of the system of quantities.

• description: String [0..1]
Textual description of the system of quantities.

• definitionURI: String [0..1]
URI that references an external definition of the system of quantities. Note that as part of
[ISO/IEC80000] normative URIs for each of the ISQ quantities and SI units are being defined.

• quantityKind: QuantityKind [0..*] {ordered}
Ordered set of QuantityKind that specifies the kinds of quantity that are known in the system.

• baseQuantityKind: QuantityKind [0..*] {ordered, subsets quantityKind}
Ordered set of QuantityKind that specifies the base quantities of the system of quantities. This is a
subset of the complete quantityKind list. The base quantities define the basis for the quantity dimension
of a kind of quantity.

• /dimension: Dimension [0..*] {ordered, readOnly, nonunique}
Derived ordered set of Dimension. The actual dimension of a QuantityKind depends on the list of

baseQuantityKind that are specified in an actual SystemOfQuantities, see the
DerivedDimensions constraint.

• includedSystemOfQuantities: SystemOfQuantities[0..*] {unique}
Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from
other SystemOfQuantities.

• usedSystemOfQuantities: SystemOfQuantities[0..*] {unique}
A QuantityKind can be defined in a SystemOfQuantities in terms of QuantityKinds defined in that
SystemOfQuantities or from other SystemOfQuantities it uses or includes. See for example the units

used with the SI in ISO 80000-1, Table 5.

Constraints

[1] All quantity dimensions are derived through the following algorithm specified in OCL.

package QUDV

-- get the set of units, if any, that a given unit directly depends on

context Unit

def: directUnitDependencies : Set(Unit) =

if oclIsKindOf(ConversionBasedUnit)

then oclAsType(ConversionBasedUnit).referenceUnit

else

if oclIsKindOf(DerivedUnit)

then oclAsType(DerivedUnit).factor->collect(unit)->asSet()

else Set{}

endif

endif

-- get the set of units, if any, that a given unit directly or indirectly depends
on

context Unit

def: allUnitDependencies : Set(Unit)

OMG Systems Modeling Language, v1.6 303

= self->closure(directUnitDependencies)

context Unit

inv acyclic_unit_dependencies

: not allUnitDependencies->excludes(self)

-- get the set of quantityKinds, if any, that a given quantityKind directly depends
on

context QuantityKind

def: directQKindDependencies : Set(QuantityKind)

= if oclIsKindOf(DerivedQuantityKind)

then oclAsType(DerivedQuantityKind).factor

->collect(quantityKind)->asSet()

else

if oclIsKindOf(SpecializedQuantityKind)

then oclAsType(SpecializedQuantityKind).general

else Set{}

endif

endif

context QuantityKind

def: allQuantityKindDependencies : Set(QuantityKind)

= self->closure(directQKindDependencies)

context QuantityKind

inv acyclic_quantity_kind_dependencies

: allQuantityKindDependencies->excludes(self)

--context SystemOfQuantities::deriveQuantityKindDimensions() :

--post: quantityKind->forAll(qK|qK.hasProperDimension(self))

-- The derived dimension of a simple quantity kind must

-- have exactly one factor

-- whose numerator and denominator are equal to 1.

context SimpleQuantityKind

def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension=sq.getDimension(self)

in d.factor->size()=1

and d.factor->forAll(exponent->forAll(numerator=1 and denominator=1))

-- The derived dimension of a specialized quantity kind is

-- the dimension of its general quantity kind.

context SpecializedQuantityKind

def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= sq.getDimension(self) = sq.getDimension(general)

-- A helper function to produce the factor/quantityKind tuples

-- for a given Dimension.

context Dimension

def: dimFactors : Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf |
Tuple{factor=qkf.exponent,qKind=qkf.quantityKind})

-- A helper function to get all the factor/quantityKind tuples

-- for the dimension factors of a derived quantity kind.

context DerivedQuantityKind

def: derQFactors(sq:SystemOfQuantities) :
Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.factor->collect(qkf |

let qd:Dimension = sq.getDimension(qkf.quantityKind) in

qd.factor->collect(qkf |

Tuple{factor=qkf.exponent.plus(df.exponent),qKind=qkf.quantityKind}))

-- Reduce a bag of factor/quantityKind tuples by combining

-- all factors for the same quantity kind

-- and eliminating the zero-factor/quantityKind tuples

context DerivedQuantityKind

def: reducetoNonZeroUniqueFactors(

qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind)),

qKinds:Set(QuantityKind))

: Bag(Tuple(factor:Rational,qKind:QuantityKind))

= let uqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

OMG Systems Modeling Language, v1.6 305

= qKinds->collect(

-- for each unique quantity kind, qKind1,

-- from the set of unique quantity kinds, qKinds...

qKind1:QuantityKind|

-- get the sequence of factors from the set of

-- qFactors tuples whose quantity kind is qKind1...

let factor1s:Sequence(Rational)

= qFactors->select(qKind=qKind1)

->collect(factor)->asSequence()

-- start with the first factor, factor1,

-- from all the factor1s associated to qKind1...

in let factor1:Rational=factor1s->first()

-- construct the factor/quantityKind tuple

-- for qKind1 where

-- the factor is the product of factor1 with

-- all remaining factors1s

in Tuple{

factor=factor1s->excluding(factor1)->iterate(

factorI:Rational;

factorN:Rational=factorI |

factorN.plus(factorI)),

qKind=qKind1})

-- eliminate the factor/quantityKind tuples where

-- the factor is zero

in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= uqFactors->select(factor.numerator<>0)

in nqFactors

-- The derived dimension of a derived quantity kind is

-- the simplified set of factor/quantityKind tuples

-- for the derived quantity kind. The simplified set

-- of factor/quantityKind tuples has

-- one factor/quantityKind tuple for each quantityKind where

-- the simplified factor is a non-zero product of

-- all the factors in the factor/quantityKind tuples.

context DerivedQuantityKind

def: hasProperDimension(sq:SystemOfQuantities) : Boolean

= let d:Dimension = sq.getDimension(self)

in let resFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= d.dimFactors

-- the unique quantityKinds from the result...

in let resKinds:Set(QuantityKind)

=resFactors->collect(qKind)->asSet()

-- the factor/quantityKind tuples from the derived quantity...

in let qFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.derQFactors(sq)

-- the unique quantityKinds from the derived quantity...

in let qKinds:Set(QuantityKind)=qFactors->collect(qKind)->asSet()

-- get the reduced non-zero factor/quantityKinds...

in let nqFactors:Bag(Tuple(factor:Rational,qKind:QuantityKind))

= self.reducetoNonZeroUniqueFactors(qFactors, qKinds)

-- condition1: there should be the same number

-- of factor/quantityKind tuples in the result

-- compared to the non-zero unique factor/quantityKind

-- tuples for the derivedQuantityKind

in nqFactors->size() = resFactors->size()

-- condition2: there should be the same set of

-- quantity kinds in the result

-- and in the non-zero unique factor/quantityKind tuples

-- and qKinds->symmetricDifference(resKinds)->isEmpty()

-- condition3: for each quantity kind,

-- the factors in the result and

-- in the reduced non-zero unique factor/quantityKind

-- tuples should be equivalent rationals

OMG Systems Modeling Language, v1.6 307

and qKinds->forAll(qk:QuantityKind|

let nFactor:Rational

=nqFactors->select(qKind=qk)

->collect(factor)->asSequence()->first()

in let rFactor:Rational

=resFactors->select(qKind=qk)

->collect(factor)->asSequence()->first()

in nFactor.equivalent(rFactor))

endpackage

[2] For a QuantityKind to have a provenance to a single SystemOfQuantities, all included systems of
quantities

shall be transitively disjoint with all used systems of quantities.

inv includedSystemOfQuantities_transitivelyDisjoint_usedSystemOfQuantities:
allIncludedSystemOfQuantities()->intersection(self.oclAsSet()

->closure(usedSystemOfQuantities))->isEmpty()

[3] The set of all QuantityKinds in a given SystemOfQuantities shall be partitioned into two disjoint,
covering subsets: the set of base QuantityKinds (typically chosen to be mutually independent) and its
complement, the

set of derived QuantityKinds, each of which can be expressed in terms of the base QuantityKinds (See
ISO

80000-1, 4.3).

inv allBaseQuantitiesAreQuantities:
allQuantityKinds()->includesAll(allBaseQuantityKinds())

[4] Every QuantityKind shall be defined in only one SystemOfQuantities but it can be in the scope of
several SystemOfQuantities. A given QuantityKind is in scope of a SystemOfQuantities either because it is
defined or used in a SystemOfQuantities or because it is included from the scope of another
SystemOfQuantities.

inv singleProvenance:
includedSystemOfQuantities->collect(allQuantityKinds())

->intersection(quantityKind)->isEmpty()

[5] For a QuantityKind to have a provenance to a single SystemOfQuantities, the use and includes
relationships among SystemOfQuantities shall be acyclic.

inv acyclicProvenance:
allAccessibleSystemOfQuantities()->excludes(self)

Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the
SystemOfQuantities or transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}
body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()-

>asSet()

[2] The query allAccessibleSystemOfQuantities() gives all the SystemOfQuantities directly or transitively
included or used.

allAccessibleSystemOfQuantities() : SystemOfQuantities[0..*] {unique}
body: self->closure(includedSystemOfQuantities-

>union(usedSystemOfQuantities))
->asSet()

[3] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted
from any included SystemOfQuantities as base QuantityKinds.

allBaseQuantityKinds(): QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities()->collect(baseQuantityKind)->flatten()-

>asSet()
->union(baseQuantityKind)->asSet()

[4] The query allIncludedSystemOfQuantities() gives all the SystemOfQuantities directly or transitively
included.

allIncludedSystemOfQuantities () : SystemOfQuantities[0..*] {unique}
body: self->closure(includedSystemOfQuantities)->asSet()

[5] The query allQuantityKinds() gives all the QuantityKinds in scope of a SystemOfQuantities; that is,
each QuantityKind is either directly defined in the SystemOfQuantities, selectively used from another

SystemOfQuantities or part of the scope of all the QuantityKinds included from another
SystemOfQuantities.

allQuantityKinds(): QuantityKind[0..*] {unique}
body: allIncludedSystemOfQuantities()->collect(quantityKind)->flatten()-

>asSet()
->union(quantityKind)->asSet())

E.5.2.16 SystemOfUnits

Description

A SystemOfUnits represents the [VIM] concept of “system of units” that is defined as “set of base units and
derived units, together with their multiples and submultiples, defined in accordance with given rules, for a given
system of quantities.” It collects a list of Units that are known in the system. A QUDV SystemOfUnits only
optionally defines multiples and submultiples.

Properties

OMG Systems Modeling Language, v1.6 309

• symbol: String [0..1]
Short symbolic name of the system of units.

• description: String [0..1]
Textual description of the system of units.

• definitionURI: String [0..1]
A URI that references an external definition of the system of units. Note that as part of [ISO/IEC80000]
normative URIs for each of the quantities in the ISQ and units in the SI are being defined.

• unit: Unit [0..*] {ordered}
Ordered set of Unit that specifies the units that are known in the system.

• baseUnit: Unit [0..*] {ordered, subsets unit}

Ordered set of Unit that specifies the base units of the system of units. A “base unit” is defined in
[VIM] as a “measurement unit that is adopted by convention for a base quantity.” It is the (preferred)

unit in which base quantities of the associated systemOfQuantities are expressed.

• prefix: Prefix [0..*] {ordered}

Ordered set of Prefix that specifies the prefixes for multiples and submultiples of units in the system.

• systemOfQuantities: SystemOfQuantities [0..1]
Reference to the SystemOfQuantities for which the units are specified.

• includedSystemOfUnits: SystemOfUnits[0..*] {unique}

Including a SystemOfQuantities means including all of the QuantityKind it defines and includes from
other SystemOfQuantities.

• usedSystemOfUnits: SystemOfUnits[0..*] {unique}

A Unit can be defined in a SystemOfUnits in terms of Units defined in that SystemOfUnits or from
other SystemOfUnits it uses or includes. See for example the units used with the SI in ISO 80000-1,
Table 5.

Constraints

[1] In a coherent system of units, there shall be only one base unit for each base quantity.

package QUDV

context SystemOfUnits

def: isCoherent() : Boolean =

baseUnit->size() = systemOfQuantities.baseQuantityKind->size()

and baseUnit

->forAll(bU|systemOfQuantities.baseQuantityKind

->one(bQK|bU.primaryQuantityKind=bQK))

and systemOfQuantities.baseQuantityKind

->forAll(bQK|baseUnit->one(bU|bQK=bU.primaryQuantityKind))

endpackage

[2] A coherent derived unit shall be a derived unit that, for a given system of quantities and for a chosen
set of base units, is a product of powers of base units with no other proportionality factor than one.

package QUDV

context SystemOfUnits

def: isCoherent(du : DerivedUnit) : Boolean =

baseUnit->includesAll(du.factor->collect(unit))

and du.factor->collect(exponent)

->forAll(numerator=1 and denominator=1)

endpackage

[3] In a well-formed SystemOfUnits, all of the prefixes of PrefixedUnits shall be defined in the
SystemOfUnits.

inv SoU3_1:

allPrefixes()->includesAll(allUnits()->select(oclIsTypeOf(PrefixedUnit))

->collect(oclAsType(PrefixedUnit).prefix))

[4] All the dependent Units of a SystemOfUnits shall be in the scope of that SystemOfUnits.

inv SoU3_2:

allUnits()->includesAll(allUnits()->collect(dependsOnUnits())->flatten()-
>asSet())

[5] All of the quantityKinds that are measurementUnits of Units in the SystemOfUnits shall be defined in
the systemOfQuantities of that SystemOfUnits.

inv SoU3_3:

getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =

getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()

->forAll(u | aqk
->includesAll(getKindOfQuantitiesForMeasurementUnit(u)))

[6] For a Unit to have a provenance to a single SystemOfUnits, all included systems of units shall be
transitively disjoint with all used systems of units.

OMG Systems Modeling Language, v1.6 311

inv includedSystemOfUnits_transitivelyDisjoint_usedSystemOfUnits:

allIncludedSystemOfUnits()->intersection(self.oclAsSet()

->closure(usedSystemOfUnits))->isEmpty()

[7] The set of all Units in a given SystemOfUnits shall be capable of being partitioned into two disjoint,
covering subsets: the set of base Units (typically chosen to be mutually independent) and all its
complement, the set of derived Units, each of which can be expressed in terms of the base Units (See ISO
80000-1, 6.4).

inv allBaseUnitsAreUnits:

allUnits()->includesAll(allBaseUnits())

[8] Every Unit shall be defined in only one SystemOfUnits but it can be in the scope of several
SystemOfUnits. A given Unit is in scope of a SystemOfUnits either because it is defined or used in a
SystemOfUnits or because it is included from the scope of another SystemOfUnits.

inv singleProvenance:

includedSystemOfUnits->collect(allUnits())->intersection(unit)->isEmpty())

[9] For a Unit to have a provenance to a single SystemOfUnits, the use and includes relationships among
SystemOfUnits shall be acyclic.

inv acyclicProvenance:

allAccessibleSystemOfUnits()->excludes(self)

Operations

[1] The query accessibleQuantityKinds() gives all the QuantityKinds directly defined in the
SystemOfQuantities or transitively in any included or used SystemOfQuantities.

allAccessibleQuantityKinds() : QuantityKind[0..*] {unique}

body: allAccessibleSystemOfQuantities()->collect(quantityKind)->flatten()-
>asSet()

inv SoU3_3:

getEffectiveSystemOfQuantities() = null or let aqk : Set(QuantityKind) =

getEffectiveSystemOfQuantities().allQuantityKinds() in ->allUnits()

->forAll(u | aqk
->includesAll(getKindOfQuantitiesForMeasurementUnit(u)))

[2] The query allAccessibleSystemOfUnits() gives all the SystemOfUnits directly or transitively included
or used.

allAccessibleSystemOfUnits(): SystemOfUnits[0..*] {unique}

body: self->closure(includedSystemOfUnits->union(usedSystemOfUnits))->asSet()

[3] The query accessibleUnits () gives all the units directly defined in a system of units or transitively in
any included or used system of units.

allAccessibleUnits(): Unit[0..*] {unique}

body: allAccessibleSystemOfUnits()->collect(unit)->flatten()->asSet()

[4] The query allBaseQuantityKinds() gives all the QuantityKinds directly adopted or transitively adopted
from any included SystemOfQuantities as base QuantityKinds in the effective SystemOfQuantities
associated to a SystemOfUnits.

allBaseQuantityKinds(): QuantityKind[0..*] {unique}

body: getEffectiveSystemOfQuantities()->allBaseQuantityKinds()->flatten()-
>asSet()

[5] The query allBaseUnits() gives all the Units directly adopted or transitively adopted from any included
SystemOfUnits as base Units.

allBaseUnits(): Unit[0..*] {unique}

body: allIncludedSystemOfUnits()->collect(baseUnit)->flatten()->asSet()

->union(baseUnit)->asSet

[6] The query allIncludedSystemOfUnits() gives all the SystemOfUnits directly or transitively included.

allIncludedSystemOfUnits(): SystemOfUnits[0..*] {unique}

body: self->closure(includedSystemOfUnits->union(usedSystemOfUnits))->asSet()

OMG Systems Modeling Language, v1.6 313

[7] The predicate allMeasurementUnitsDefinedForSomeQuantityKind() determines whether, in a
SystemOfUnits, every Unit shall be defined, by convention, as a multiplicable reference for at least one
QuantityKind (see ISO 80000-1, 3.9).

allMeasurementUnitsDefinedForSomeQuantityKind(): Boolean

body: allUnits()->select(quantityKind <> null)

[8] The query allPrefixes() gives all the Prefixes in scope of a SystemOfUnits; that is, each Prefix is either
directly defined in the SystemOfUnits or in any accessible SystemOfUnits.

allPrefixes(): Prefix[0..*] {unique}

body: allAccessibleSystemOfUnits()->including(self)->collect(prefix)-
>flatten()

->asSet()

[9] The query allUnits() gives all the Units in scope of a SystemOfUnits; that is, each Unit is either directly
defined in the SystemOfUnits, selectively used from another SystemOfUnits or part of the scope of all the
Units included from another SystemOfUnits.

allUnits(): Unit[0..*] {unique}

body: allIncludedSystemOfUnits()->collect(unit)->flatten()->asSet()-
>union(unit)

->asSet()

[10] The query getAdoptedBaseUnitForMeasurementUnit() determines for a Unit u in scope of a
SystemOfUnits the base Unit, if any, corresponding to u, which can be u itself if it is a baseUnit in that
SystemOfUnits or its reference Unit if it is a base Unit and u is a PrefixUnit.

getAdoptedBaseUnitForMeasurementUnit(u : Unit) : Unit[0..1]

body: let abu : Set(Unit) = allBaseUnits() in

if (abu->includes(u)) then u

else if (u.oclIsKindOf(PrefixedUnit))

then abu->intersection(u.oclAsType(PrefixedUnit).referenceUnit-
>asSet())

->any(true)

else null endif

endif

[11] The query getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit() determines for a Unit
u in scope of a SystemOfUnits the base QuantityKind, if any, corresponding to the base Unit of u.

getAdoptedQuantityKindForAdoptedBaseUnitOfMeasurementUnit (u : Unit) :
QuantityKind[0..1]

body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit(u) in

if (bu = null) then Set{}

else let qks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit(bu)
in

allBaseQuantityKinds()->intersection(qks)

endif

[12] The query getEffectiveSystemOfQuantities() determines for a SystemOfUnits the SystemOfQuantities,
if any, that it is directly or indirectly associated with via included SystemOfUnits.

getEffectiveSystemOfQuantities () : SystemOfQuantities[0..1]

body: if systemOfQuantities = null then includedSystemOfUnits->

collect(getEffectiveSystemOfQuantities())->flatten()->asSet()-
>any(true)

else systemOfQuantities endif

[13] The query getKindOfQuantitiesForMeasurementUnit() determines for a Unit u in scope of a
SystemOfUnits the set of QuantityKinds corresponding to u, if specified, or to the Units that u is defined
in terms of, if any.

getKindOfQuantitiesForMeasurementUnit(u : Unit) : QuantityKind[0..*] {unique}

body: let bu : Unit = getAdoptedBaseUnitForMeasurementUnit(u) in

if (bu = null) then Set{}

else let qks : Set(QuantityKind) = getKindOfQuantitiesForMeasurementUnit(bu)
in

allBaseQuantityKinds()->intersection(qks)

endif

E.5.2.17 Unit

Description

In QUDV, the concept of Unit is an abstract specialization of SysML Unit to support designating a primary
QuantityKind for a given Unit within the scope of a system of units and quantities and to support a richer
vocabulary for defining Units.

OMG Systems Modeling Language, v1.6 315

Properties

• /dependsOnUnits : Unit[0..*] {readOnly, unique}
The set of all Units that this Unit directly or indirectly depends on according to its definition.

• general: Unit[0..*] {unique}
A Unit can be defined as a specialization of zero or more Units. This capability is important for
specifying the meaning of a unit for a quantity of dimension one (see ISO 80000-1, 3.8 and 3.10).

• isUnitCountOfEntities: Boolean = false
If true, indicates that the measurement unit represents a number of entities (see ISO 80000-1, 3.10,
Note 3).

• isUnitForQuantityOfDimensionOne: Boolean = false
If true, indicates that the corresponding QuantityKind has dimension one (see ISO 80000-1, 3.8).

Constraints

[1] A Unit cannot be defined in terms of itself. This follows from the requirement that, in a coherent
SystemOfUnits, the Units of all derived QuantityKinds are expressed in terms of the base Units in

accordance with the equations in the SystemOfQuantities (see ISO 80000-1, 6.4).

inv acyclic_unit_dependencies:
dependsOnUnits()->excludes(self)

Operations

[1] Abstract operation specified in SimpleQuantityKind and DerivedQuantityKind to calculate the value of
the derived property QuantityKind:/dependsOnQuantityKinds.

dependsOnQuantityKinds() : QuantityKind[0..*] {unique}

E.5.2.18 UnitFactor

Description

A UnitFactor represents a factor in the product of powers that defines a DerivedUnit.

Properties

• exponent: Rational
Rational number that specifies the exponent of the power to which the unit is raised.

• unit: Unit
Reference to the Unit that participates in the factor.

E.5.3 References

[VIM]

JCGM 200:2012, International vocabulary of metrology - Basic and general concepts and associated terms
(VIM), 3rd edition (JCGM 200:2008 with minor corrections), 2012, BIPM, Paris, France. http://www.bipm.org/
utils/common/documents/jcgm/JCGM_200_2012.pdf.

[ISO/IEC80000]

ISO/IEC 80000, Quantities and units. 15 parts, some published, some still in progress, harmonized replacement
of [ISO31] and [IEC60027], the new international system of quantities and units.

[ISO31]

ISO 31, Quantities and units (Third edition 1992-08-01). Specifies the international system of units - SI - in 14
parts.

[IEC60027]

IEC 60027-2:2005, Letter symbols to be used in electrical technology - Part 2: Telecommunications and
electronics (Third edition 2005-08).

[SI-Brochure]

Le Système international d'unités (SI) / The International System of Units (SI), 8th edition 2006, BIPM, (French
and English). Available for download in PDF format from http://www.bipm.org/en/si/si_brochure.

[NIST330]

The International System of Units (SI), NIST Special Publication 330, 2008 Edition. NOTE: U.S. version of the
English language text of [SI-Brochure].

Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[NIST822]

Guide for the Use of the International System of Units (SI), NIST Special Publication 811, 2008 Edition.

Available for download in PDF format from http://physics.nist.gov/cuu/Units/bibliography.html.

[Dybkaer-2010] Rene Dybkaer, “ISO terminological analysis of the VIM3 concepts of ‘quantity’ and ‘kind-of-
quantity’”, Metrologia 47, (2010) 127-143, http://dx.doi.org/10.1088/0026-1394/47/3/003. See also:
http://www.bipm.org/en/publications/guides/rationale_vim3.html.

E.5.4 Usage Examples

E.5.4.1 SI Unit and QuantityKind examples

Figure E.8 shows an approach for defining base units of the System International of Units defined in
http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ and http://physics.nist.gov/cuu/Units/units.html. This
approach involves instantiating the concrete classes of Unit shown in Figure E.6.

Figure E.9 diagram shows the definition of “newton” as a DerivedUnit (E.5.2.4) corresponding to the “force”
DerivedQuantityKind (E.5.2.3). Derived units and quantity kinds are defined as products of factors on other
units and quantity kinds respectively. In the QUDV, the product factors of a DerivedUnit (resp.
DerivedQuantityKind) are all of the UnitFactor (resp. DerivedUnitFactor) at the “factor” ends of association
link instances.

OMG Systems Modeling Language, v1.6 317

Example of QUDV definitions for base units and quantities from ISO 80000-1 Quantities and Units Part 1[package] ISO-80000-1-QUDV Diagrambdd []

definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/kilogram.html"
name = "kilogram"
symbol = "kg"

kilogram : PrefixedUnit

definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html"
name = "metre"
symbol = "m"

metre : SimpleUnit

name = "International
System of Units"
symbol = "SI"

SI : SystemOfUnits

name = "International
System of Quantities"
symbol = "ISQ"

ISQ : SystemOfQuantities

name = "mass"
symbol = "m"

mass : SimpleQuantityKind

name = "length"
symbol = "l"

length : SimpleQuantityKind

name = "gram"
symbol = "g"

gram : SimpleUnit

factor = 1.0E3
name = "kilo"
symbol = "k"

kilo : Prefix

systemOfQuantities

unit

quantityKind

primaryQuantityKind

quantityKind baseQuantityKind

quantityKind

quantityKind

quantityKind baseQuantityKind

primaryQuantityKind

referenceUnitprefixprefix

unit

baseUnit

unit

baseUnit

Figure E.8: Base Unit and Quantity Kinds of the SI and ISQ respectively

Figure E.9: Example of a derived unit and derived quantity kind

E.5.4.2 Spring Example

Figure E.10 shows a simple model of the length of a spring defined as the linear distance between the linear
position of its two flange ends. QUDV supports defining arbitrary systems of units and quantities. Although this
example uses only one unit, “metre” and one quantity kind, “lengthQK;” this example illustrates specialized
value types to make additional distinctions such as “LinearPosition” vs. “LinearDistance,” two distinct
quantities that have the same unit and quantity kind. This example illustrates an instance of a spring and uses the
dot pathname property notation defined for IBDs (8.3.1.2, Internal Block Diagram) to clearly indicate the role
of each instance specification.

Example of QUDV definitions for derived units and quantities from ISO 80000-1 Quantities and Units Part 1ISO-80000-1-QUDV Diagram[package] bdd []

name = "newton"
symbol = "N"

newton : DerivedUnit

name = "force"
symbol = "F"

force : DerivedQuantityKind

exponent = 1/1

length^1 : QuantityKindFactor

exponent = 1/1

mass^1 : QuantityKindFactor

exponent = -2/1

time^-2 : QuantityKindFactor

name = "length"
symbol = "l"

length : SimpleQuantityKind

name = "mass"
symbol = "m"

mass : SimpleQuantityKind

name = "time"
symbol = "t"

time : SimpleQuantityKind

name = "kilogram"
prefix = kilo
referenceUnit = gram
symbol = "kg"

kilogram : PrefixedUnit

exponent = 1/1

kilogram^1 : UnitFactor

exponent = -2/1

second^-2 : UnitFactor

exponent = 1/1

metre^1 : UnitFactor

name = "second"
symbol = "s"

second : SimpleUnit

name = "metre"
symbol = "m"

metre : SimpleUnit

factor

factor

factor

factor

factor

factor

primaryQuantityKind quantityKind

quantityKind quantityKindprimaryQuantityKind primaryQuantityKindquantityKindprimaryQuantityKind

quantityKind quantityKindquantityKind

unitunitunit

Figure E.10: Spring Length Example

E.6 Model Library of SysML Quantity Kinds and Units for ISO
8000

E.6.1 Overview

This non-normative extension defines a model library of SysML QuantityKind and Unit definitions for a subset
of quantities and units defined by the International System of Quantities (ISQ) and the International System of
Units (SI). The specific quantities and units in this library are defined by ISO 80000-1 Quantities and units -
Part1: General. ISO/IEC 80000 currently has fourteen parts that define many quantities and units for use within
various fields of science and technology. Part 1 defines base quantities and units used by other parts as well as a
starting set of derived quantities and units with special names and symbols.

E.6.2 Units and Quantity Kinds

The model library defined in this sub clause contains SysML QuantityKind and Unit elements as defined by
Clause 8, “Blocks.” Each QuantityKind or Unit element may optionally carry a “definitionURI” property to
document each quantity kind and unit using additional information available from some external source. One
option is for this definitionURI to identify an element of a QUDV model (see E.5, Model Library for Quantities,
Units, Dimensions, and Values (QUDV)) that more fully describes the same quantities and units, including the
systems of quantities and units they belong to, and the means by which they may be derived from each other.

OMG Systems Modeling Language, v1.6 319

Spring Length ExampleSpringExample[package] bdd []

position = spring1.a.pos {unit = metre}

«block»

spring1.a : Flange

position = spring1.b.pos {unit = metre}

«block»

spring1.b : Flange

values
position : LinearPosition{unit = metre}

«block»

Flange

a = spring1.a
b = spring1.b
length = spring1.length {unit = metre}
springLength = spring1.springLength

«block»

spring1 : Spring

constraints
springLength : SpringLength

parts
a : Flange
b : Flange

values
length : LinearDistance{unit = metre}

«block»

Spring

constraints
{length.value = | a.position.value - b.position.value |}

parameters
a : Flange
b : Flange
length : LinearDistance

«constraint»

SpringLength

«block»

SpringQuantities : SystemOfQuantities

«constraint»

spring1.springLength : SpringLength

«quantityKind»

lengthQK : SimpleQuantityKind

value = 42.0

«ValueType»

spring1.length : LinearDistance

value = 8.0

spring1.a.pos : LinearPosition
«ValueType»

value = 50.0

spring1.b.pos : LinearPosition
«ValueType»

«block»

SpringUnits : SystemOfUnits

«unit»

metre : SimpleUnit

unit = metre

value : Real

«valueType»

LinearDistance

unit = metre

value : Real

«valueType»

LinearPosition

quantityKind

primaryQuantityKind

systemOfQuantities

baseUnitunit baseQuantityKindquantityKind

values

«valueType»

values

«valueType»

E.5.4, Usage Examples contains examples of such QUDV definitions that could be referenced by these
definitionURIs.

Issue(s): SYSML16-198

Figure E.11: Model libraries of SysML Quantity Kinds and Units for the covered content of ISO 80000 parts

3,4,5,6,7,9,10 and 13

 pkg [Package] SysML

Figure E.12: Organization of the definitions of units and quantities from the normative parts of ISO 80000

covered in SysML 1.4, which includes all the normative content of parts 3,4,5,6; the subset of parts 7,9,10

corresponding to the content from SysML 1.3 and the subset of part 13 pertaining to commonly used units of

OMG Systems Modeling Language, v1.6 321

pkg [Package] ISO80000 [SysML Quantity Kinds and Units for the covered content of ISO 8000]

information. Parts 8,11 and 12 are not covered because none of their units and quantities were referenced in

previous versions of SysML nor in the summary tables in ISO 80000-1

Issue(s): SYSML16-198

Figure E.13: Content relationships for the systems of units and quantities in from the different parts of ISO 80000

in relation to ISO 80000 as a whole and to the International System of Units (SI) and quantities (ISQ)

bdd [Package] ISO80000 [SysML Quantity Kinds and Units for the covered content of ISO 8000]

Issue(s): SYSML16-198

Figure E.14: Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities

OMG Systems Modeling Language, v1.6 323

bdd [Package] ISO80000 [Table 1 (from ISO 80000-1) SI base units for the ISQ base quantities]

Issue(s): SYSML16-198

Figure E.15: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (1)

bdd [Package] ISO80000 [Table 2a – SI derived units with special names and symbols]

Issue(s): SYSML16-198

Figure E.16: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (2)

OMG Systems Modeling Language, v1.6 325

bdd [Package] ISO80000 [Table 2b – SI derived units with special names and symbols]

Issue(s): SYSML16-198

Figure E.17: Table 2 (from ISO 80000-1) ISQ derived quantities and SI derived units with special names (3)

bdd [Package] ISO80000 [Table 2c – SI derived units with special names and symbols]

Issue(s): SYSML16-198

Figure E.18: Table 3 (from the SI brochure) SI derived units with special names and symbols

E.6.3 ISO 80000-1 Prefixes
Table E.6: The decimal and binary prefixes in scope of the International System of Units (SI) which uses the ISO
80000 system of units and its included systems of units such as ISO 80000-13

Prefix name Prefix Factor
(num, den)

Defining Part

yocto 1,10^24 ISO 80000-1 General

zepto 1,10^21 ISO 80000-1 General

atto 1,10^18 ISO 80000-1 General

femto 1,10^15 ISO 80000-1 General

pico 1,10^12 ISO 80000-1 General

nano 1,10^9 ISO 80000-1 General

micro 1,10^6 ISO 80000-1 General

milli 1,10^3 ISO 80000-1 General

centi 1,10^2 ISO 80000-1 General

deci 1,10^1 ISO 80000-1 General

deca 10^1.1 ISO 80000-1 General

hecto 10^2.1 ISO 80000-1 General

OMG Systems Modeling Language, v1.6 327

bdd [Package] ISO80000 [Table – SI derived units with special names and symbols admitted for safeguarding human health]

kilo 10^3.1 ISO 80000-1 General

mega 10^6.1 ISO 80000-1 General

giga 10^9.1 ISO 80000-1 General

tera 10^12.1 ISO 80000-1 General

peta 10^15.1 ISO 80000-1 General

exa 10^18.1 ISO 80000-1 General

zetta 10^21.1 ISO 80000-1 General

yotta 10^24.1 ISO 80000-1 General

kibi (2^10)^1,1 IEC80000-13 Information Science and Technology

mebi (2^10)^2,1 IEC80000-13 Information Science and Technology

gibi (2^10)^3,1 IEC80000-13 Information Science and Technology

lebi (2^10)^4,1 IEC80000-13 Information Science and Technology

pebi (2^10)^5,1 IEC80000-13 Information Science and Technology

exbi (2^10)^6,1 IEC80000-13 Information Science and Technology

zebi (2^10)^7,1 IEC80000-13 Information Science and Technology

yobi (2^10)^8,1 IEC80000-13 Information Science and Technology

E.6.4 ISO 80000-2 Mathematical Signs and Symbols

ISO 80000 part 2 defines Mathematical Signs and Symbols used in other ISO 80000 parts. In the SysML library,
this part contains definitions of constant numbers used across all other parts.

Issue(s): SYSML16-198

Figure E.19: Constant numbers used throughout the SysML ISO 80000 library

OMG Systems Modeling Language, v1.6 329

bdd [Package] Constant Numbers [ISO80000 Constants]

E.6.5 Summary of the covered parts of ISO 80000

The following sub clauses provide a summary overview of all definitions of units and quantity kinds grouped by
ISO 80000 part (3,4,5,6,7,9,10,13). Note that “quantities” in the ISO documents correspond to “QuantityKinds”
in QUDV. As explained in 8.3.3.2.1, QuantityKind, the type of a SysML value property (i.e., a VIM “quantity”),
a SysML ValueType, specifies the QUDV QuantityKind aspects that this “quantity” has in common with other
“quantities” typed by SysML ValueTypes referencing the same QUDV QuantityKind aspect.

The SysML definitions are indexed and ordered according to their corresponding ISO 80000 definition. The
ISO 80000 part document provides the authoritative reference for the meaning of the corresponding SysML
definitions of units and quantity kinds.

Prefixes apply for all units except for units corresponding to quantities of dimension one or for units in non-
reduced form. The 20 decimal prefixes apply to such units in parts 3,4,5,6,7,9,10; the 8 binary prefixes apply to
such units in parts 13. For a derived unit defined in terms of N other units, there are 20^N possible prefixed
derived units; far too many to create explicitly. This library contains only the combinations for the first factor
for each derived unit. Finally, the library includes value type definitions for the possible combinations of
quantity kinds and compatible units and prefixed units represented in the library.

All value type definitions follow the same pattern: a toplevel value type is defined with only the quantity kind.
This value type is compatible with values typed by specializations of that toplevel value type that specify a
particular unit. The following diagram shows the resulting taxonomy for the value types about 'mass' (ISO
80000-4, 4-1) and all applicable prefixes for the corresponding unit, 'gram' (ISO 80000-4, 4-1.a).

Issue(s): SYSML16-198

Figure E.20: Example of value type definitions for a quantity and applicable units and prefixed units

bdd [Package] mass [mass value types]

E.6.5.1 ISO 80000-3 Space and Time

All 25 entries (including sub-entries) in the normative contents of ISO 80000-3 are modeled as summarized
below.

Table E.7: Normative units in ISO 80000-3 (1 of 2)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity

of

is
reduced
form?

metre ISO 80000-3, 3-1.a,
3-17.a

m ISO 80000-3,

3-1.1

metre to the power
minus one

ISO 80000-3, 3-2.a,

3-18.a, 3-19.a,

3-25.a

m-1 ISO 80000-3,

3-2 [5]

square metre ISO 80000-3, 3-3.a m2 ISO 80000-3, 3-3

cubic metre ISO 80000-3, 3-4.a m3 ISO 80000-3, 3-4

litre ISO 80000-3, 3-4.b 1

radian ISO 80000-3, 3-5.a rad ISO 80000-3 VRAI

degree angle degree angle ° VRAI

minute angle ISO 80000-3, 3-5.c ' VRAI

second angle ISO 80000-3, 3-5.d " VRAI

gon ISO 80000-3, 3-5.e gon VRAI

steradian ISO 80000-3, 3-6.a srad ISO 80000-3, 3-6 VRAI

second ISO 80000-3, 3-7.a,
3-12.a, 3-13.a

s ISO 80000-3, 3-7

minute ISO 80000-3, 3-7.b min

hour ISO 80000-3, 3-7.c h

day ISO 80000-3, 3-7.d d

metre per second ISO 80000-3, 3-8.a,
3-20.a

m/s ISO 80000-3,

3-8.1

metre per second
squared

ISO 80000-3, 3-9.a m/s2 ISO 80000-3,

3-9.1

OMG Systems Modeling Language, v1.6 331

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity

of

is
reduced
form?

radian per second ISO 80000-3, 3-10.a,

3-16.a

rad/s ISO 80000-3,

3-15.b, 3-16.b,

3-23.\a [4\]

ISO 80000-3,

3-10 [5]

radian per second
squared

ISO 80000-3, 3-11.a rad/s2 ISO 80000-3,3-11

number of turns ISO 80000-3, 3-14.a ISO 80000-3,3-14 VRAI

revolution ISO 80000-3, 3-14.a ISO 80000-3,

3-14.a

VRAI

hertz ISO 80000-3, 3-15.a Hz ISO 80000-3,

3-15.1

Table E.8: Normative units in ISO 80000-3 (2 of 2)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

is
reduced
form?

number of turns per
second

ISO 80000-3, 3-15.b s-1 ISO 80000-3,
3-15.b, 3-16.b

ISO 80000-3,
3-15.2 [6]

second to the
power minus one

ISO 80000-3, 3-15.b,
3-16.b, 3-23.a

s-1 ISO 80000-3,
3-23 [6]

revolution per
second

ISO 80000-3, 3-15.b r/s ISO 80000-3,

3-15.b

revolution per
minute

ISO 80000-3, 3-15.b r/min ISO 80000-3

neper ISO 80000-3, 3-21.a,
3-22.a, 3-24.b

Np ISO 80000-3,
3-24

VRAI

bel ISO 80000-3, 3-21.b,

3-22.b

B ISO 80000-3,
3-24 [6]

VRAI

bel per second ISO 80000-3, 3-23.b,

3-24.b

B/s ISO 80000-3,
3-15.b, 3-16.b,
3-23.a [4]

neper per second ISO 80000-3, 3-23.b Np/s ISO 80000-3,
3-15.b, 3-16.b,
3-23.a

Table E.9: Normative quantity kinds in ISO 80000-3 (1 of 2)

Quantity Kind
name

Description Symbol General is dimension
1?

length ISO 80000-3, 3-1.1

breadth ISO 80000-3, 3-1.2 ISO 80000-3, 3-1.1 [5]

height ISO 80000-3, 3-1.3 ISO 80000-3, 3-1.1 [5]

thickness ISO 80000-3, 3-1.4 ISO 80000-3, 3-1.1 [5]

radius ISO 80000-3, 3-1.5 ISO 80000-3, 3-1.1 [5]

radial distance ISO 80000-3, 3-1.6 ISO 80000-3, 3-1.1 [5]

diameter ISO 80000-3, 3-1.7 ISO 80000-3, 3-1.1 [5]

length of path ISO 80000-3, 3-1.8 ISO 80000-3, 3-1.1 [5]

distance ISO 80000-3, 3-1.9 ISO 80000-3, 3-1.1 [5]

cartesian coordinates ISO 80000-3, 3-1.10 ISO 80000-3, 3-1.1 [5]

OMG Systems Modeling Language, v1.6 333

l,L

b,B

h, H

d,d

r,R

rQ ,r

d,D

s

d,r

x, y,z

Quantity Kind
name

Description Symbol General is dimension
1?

position vector ISO 80000-3, 3-1.11 r ISO 80000-3, 3-1.1 [5]

displacement ISO 80000-3, 3-1.12 ISO 80000-3, 3-1.1 [5]

radius of curvature ISO 80000-3, 3-1.13 ISO 80000-3, 3-1.1 [5]

curvature ISO 80000-3, 3-2

area ISO 80000-3, 3-3

volums ISO 80000-3, 3-4 V

plane angle ISO 80000-3, 3-5 VRAI

solid angle ISO 80000-3, 3-6 VRAI

time ISO 80000-3, 3-7 t

speed ISO 80000-3, 3-8.1 u,v,w ISO 80000-3, 3-8.1 [5]

velocity ISO 80000-3, 3-8.1 v

speed of propagation of
waves

ISO 80000-3, 3-8.2 c ISO 80000-3, 3-8.1 [5]

acceleration ISO 80000-3, 3-9.1 a

acceleration of free fall ISO 80000-3, 3-9.2 g ISO 80000-3, 3-9.1 [5]

Dr

r

c

A, S()

a ,b,g,J ,f

W

Quantity Kind
name

Description Symbol General is dimension
1?

angular velocity ISO 80000-3, 3-10

angular acceleration ISO 80000-3, 3-11

period duration ISO 80000-3, 3-12 ISO 80000-3, 3-7 [5]

time constant for an
exponentially varying
quantity

ISO 80000-3, 3-13 ISO 80000-3, 3-7 [5]

rotation ISO 80000-3, 3-14 N VRAI

frequency ISO 80000-3, 3-15.1

Quantity Kind
name

Description Symbol General is dimension
1?

Table E.10: Normative quantity kinds in ISO 80000-3 (2 of 2)

Quantity Kind
name

Description Symbol General is dimension
1?

rational frequency ISO 80000-3, 3-15.2 n

angular frequency ISO 80000-3, 3-16

wavelength ISO 80000-3, 3-17 ISO 80000-3, 3-1.1 [5]

OMG Systems Modeling Language, v1.6 335

w ,w

a

T

t , T()

f ,n

w

l

Quantity Kind
name

Description Symbol General is dimension
1?

linear repetency8 ISO 80000-3, 3-18

angular repetency ISO 80000-3, 3-19 k

phase velocity ISO 80000-3, 3-20.1 ISO 80000-3, 3-8.1 [5]

group velocity ISO 80000-3, 3-20.2 cg, vg
ISO 80000-3, 3-8.1 [5]

level of a field quantity ISO 80000-3, 3-21 LF
VRAI

level of a power quantity ISO 80000-3, 3-22 LP
VRAI

damping coefficient for an
exponentially varying
quantity

ISO 80000-3, 3-23 δ

logarithmic decrement for
an exponentially varying
quantity

ISO 80000-3, 3-24 Λ ISO 80000-3, 3-23 [6] VRAI

attenuation coefficient for
an exponentially varying
quantity

ISO 80000-3, 3-25.1 α ISO 80000-3,
3-25.3 [6]

phase coefficient for an
exponentially varying
quantity

ISO 80000-3, 3-25.2 β ISO 80000-3,
3-25.3 [6]

propagation coefficient for
an exponentially varying
quantity

ISO 80000-3, 3-25.3 γ

E.6.5.2 ISO 80000-4 Mechanics

All 37 entries (including sub-entries) in the normative contents of ISO 80000-4 are modeled as summarized
below.

Table E.11: Normative units in ISO 80000-4 (1 of 2)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

gram ISO 80000-4, 4-1.a g ISO 80000-4,
4-1 [10]

c,v,cf ,vf

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

tonne ISO 80000-4, 4-1.b t

kilogram per cubic
metre

ISO 80000-4, 4-2.a kg/m3 ISO 80000-4,
4-2 [10]

mass density ratio ISO 80000-4, 4-3.a ISO 80000-4,
4-3 [10]

VRAI

cubic metre per
kilogram

ISO 80000-4, 4-4.a m3/kg ISO 80000-4,
4-4 [10]

kilogram per square
metre

ISO 80000-4, 4-5.a kg/m2 ISO 80000-4,
4-5 [10]

kilogram per metre ISO 80000-4, 4-6.a kg/m ISO 80000-4,
4-6 [10]

kilogram metre
squared

ISO 80000-4, 4-7.a kg.m2 ISO 80000-4,
4-7 [10]

kilogram metre per
second

ISO 80000-4, 4-8.a kg.m/s ISO 80000-4,
4-8 [10]

newton ISO 80000-4, 4-9.a N ISO 80000-4,
4-9.1 [10]

newton metre
squared per
kilogram squared

ISO 80000-4, 4-10.a N · m2/kg2 ISO 80000-4,
4-10 [10]

newton second ISO 80000-4, 4-11.a N.s ISO 80000-4,
4-11 [10]

kilogram metre
squared per second

ISO 80000-4, 4-12.a kg · m 2/s ISO 80000-4,
4-12 [10]

newton metre ISO 80000-4, 4-13.a N.m ISO 80000-4,
4-13 [10]

newton metre
second

ISO 80000-4, 4-14.a N.m.s ISO 80000-4,
4-14 [10]

pascal ISO 80000-4, 4-15.a
4-18.a

Pa ISO 80000-4,
4-15.1 [10]

cubic metre
strain factor

ISO 80000-4, 4-16.a ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.3 [11]

VRAI

strain factor ISO 80000-4, 4-16.a ISO 80000-4,
4-16.1.2.3 [10]

VRAI

metre strain factor ISO 80000-4, 4-16.a ISO 80000-4,
4-16.a [7]

ISO 80000-4,
4-16.1 [11]

VRAI

OMG Systems Modeling Language, v1.6 337

Table E.12: Normative units in ISO 80000-4 (2 of 2)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

contraction to
elongation metre
ratio

ISO 80000-4, 4-17.a ISO 80000-4,
4-17 [11]

VRAI

cubic metre strain
factor per pascal

ISO 80000-4, 4-19.a ISO 80000-4,
4-19.a [8]

ISO 80000-4,
4-19 [11]

pascal to the power
minus one

ISO 80000-4, 4-19.a

metre to the power
of four

ISO 80000-4, 4-20.a m 4 ISO 80000-4,
4-20.1 [11]

newton ratio ISO 80000-4, 4-22.a ISO 80000-4,
4-22.1 [13]

VRAI

pascal second ISO 80000-4, 4-23.a Pa.s ISO 80000-4,
4-23 [13]

metre per second
per metre

ISO 80000-4, 4-23.a ISO 80000-3,
3-15b, 3-16b,
3-23.a [4]

ISO 80000-4,
4-23 [13]

FAUX

square metre per
second

ISO 80000-4, 4-24.a m 2/s

pascal second
kilogram per cubic
metre

ISO 80000-4, 4-24.a m 2/s ISO 80000-4,
4-24.a [8]

ISO 80000-4,
4-24 [13]

newton per metre ISO 80000-4, 4-25.a N/m ISO 80000-4,
4-25 [13]

watt ISO 80000-4, 4-26.a,
4-56.a

W ISO 80000-4,
4-26.a [8]

joule per second ISO 80000-4, 4-26.a J/s ISO 80000-4,
4-26.a [8]

newton metre per
second

ISO 80000-4, 4-26.a N.m/s ISO 80000-4,
4-26 [13]

joule ISO 80000-4, 4-27.a,
4.34.a, 4-36.a

J ISO 80000-4,
4-34 [14]

Pa- 1

Pa- 1

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

output watt ISO 80000-4, 4-28.a ISO 80000-4,
4-26.a, 4-56.a [8]

ISO 80000-4,
4-28 [13]

output input

watt ratio

ISO 80000-4, 4-28.a ISO 80000-4,
4-28 [13]

input watt ISO 80000-4, 4-28.a ISO 80000-4,
4-26.a, 4-56.a [8]

ISO 80000-4,
4-28 [13]

kilogram per
second

ISO 80000-4, 4-29.a kg/s ISO 80000-4,
4-29 [14]

cubic metre per
second

ISO 80000-4, 4-30.a ISO 80000-4,
4-30 [14]

joule second ISO 80000-4, 4-37.a J.s ISO 80000-4,
4-37 [14]

Table E.13: Normative quantity kinds in ISO 80000-4 (1 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

mass ISO 80000-4, 4-1 m

density ISO 80000-4, 4-2 ISO 80000-4, 4-24 [10]

mass density of a
reference substance

ISO 80000-4, 4-2, 4-3 ISO 80000-4, 4-24 [10]

mass density ISO 80000-4, 4-2

relative mass density ISO 80000-4, 4-3 d VRAI

specificVolume ISO 80000-4, 4-4 v

OMG Systems Modeling Language, v1.6 339

m3 / s

r0

r

Wout

Win

Quantity Kind
name

Description Symbol General is dimension
1?

surface density ISO 80000-4, 4-5

linear density ISO 80000-4, 4-6

mass moment of inertia ISO 80000-4, 4-7 I, J

momentum ISO 80000-4, 4-8

force ISO 80000-4, 4-9.1

weight ISO 80000-4, 4-9.2

gravitational constant
between two mass
particles

ISO 80000-4, 4-10

impulse ISO 80000-4, 4-11

moment of momentum ISO 80000-4, 4-12

moment of force ISO 80000-4, 4-13.1 M

torque ISO 80000-4, 4-13.2 T ISO 80000-4, 4-13.1 [10]

bending moment of force ISO 80000-4, 4-13.3 ISO 80000-4, 4-13.1 [10]

angular impulse ISO 80000-4, 4-14 H

rA

rl

p

F

Fg ,G

G

I

L

Mb

Quantity Kind
name

Description Symbol General is dimension
1?

pressure ISO 80000-4, 4-15.1 p

normal stress ISO 80000-4, 4-15.2 σ ISO 80000-4, 4-15.1 [10]

sheer stress ISO 80000-4, 4-15.3 τ ISO 80000-4, 4-15.1 [10]

length of item in a
reference state

ISO 80000-4, 4-16 ISO 80000-3, 3-1.1 [5]

increase in length ISO 80000-4, 4-16 ISO 80000-3, 3-1.1 [5]

strain ISO 80000-4, 4-16.1.2.3 VRAI

Table E.14: Normative quantity kinds in ISO 80000-4 (2 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

linear strain ISO 80000-4, 4-16.1 ISO 80000-4, 4-16.1.2.3
[10]

VRAI

thickness of a layer
between two surfaces

ISO 80000-4, 4-16.2 d ISO 80000-3, 3-1.4 [5]

sheer strain ISO 80000-4, 4-16.2 ISO 80000-4, 4-16.1.2.3
[10]

VRAI

parallel displacement
between two surfaces of a
layer

ISO 80000-4, 4-16.2 ISO 80000-3, 3-1.12 [5]

increase in volume ISO 80000-4, 4-16.3 ISO 80000-3, 3-4 [5]

volume strain ISO 80000-4, 4-16.3 ISO 80000-4, 4-16.1.2.3
[10]

VRAI

OMG Systems Modeling Language, v1.6 341

l0

Dl

e , e()

g

Dx

DV

J

Quantity Kind
name

Description Symbol General is dimension
1?

volume in a reference
state

ISO 80000-4, 4-16.3 ISO 80000-3, 3-4 [5]

elongation ISO 80000-4, 4-17 ISO 80000-3, 3-1.1 [5]

lateral contraction ISO 80000-4, 4-17 ISO 80000-3, 3-1.1 [5]

poisson number ISO 80000-4, 4-17 VRAI

modulus of elasticity ISO 80000-4, 4-18.1 E ISO 80000-4, 4-18.1.2.3
[11]

modulus ISO 80000-4, 4-18.1.2.3 ISO 80000-4, 4-15.1 [10]

modulus of rigidity ISO 80000-4, 4-18.2 G ISO 80000-4, 4-18.1.2.3
[11]

modulus of compression ISO 80000-4, 4-18.3 K ISO 80000-4, 4-18.1.2.3
[11]

compressibility ISO 80000-4, 4-19

increase in pressure ISO 80000-4, 4-19 ISO 80000-4, 4-15.1 [10]

surface considered ISO 80000-4, 4-20 ISO 80000-3, 3-3 [5]

second axial

moment of area

ISO 80000-4, 4-20.1

radial distance from a Q-
axis in the plane of the
surface considered

ISO 80000-4, 4-20.1 ISO 80000-3, 3-1.6 [5]

V0

Dl

Dd

m, n()

c

I a

rQ

Quantity Kind
name

Description Symbol General is dimension
1?

second polar

moment of area

ISO 80000-4, 4-20.2

radial distance from a Q-
axis perpendicular to the
plane of the surface
considered

ISO 80000-4, 4-20.2 ISO 80000-3, 3-1.6 [5]

Table E.15: Normative quantity kinds in ISO 80000-4 (3 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

section modules ISO 80000-4, 4-21

maximum radial distance
from a Q-axis in the plane
of the surface considered

ISO 80000-4, 4-21 ISO 80000-4, 4-20.1 [11]

maximum tangential
component of the contact
force between two bodies
at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

tangential component of
the contact force between
two sliding bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

contact force between two
sliding bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

tangential component of
the contact force between
two bodies at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

tangential component of
the contact force between
two bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

contact force between two
bodies

ISO 80000-4, 4-22 F ISO 80000-4, 4-9.1 [10]

normal component of the
contact force between two

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [13]

OMG Systems Modeling Language, v1.6 343

I p

rQ

Z, W()

IQ, max

Quantity Kind
name

Description Symbol General is dimension
1?

sliding bodies

maximum contact force
between two bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

contact force between two
bodies at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

normal component of the
contact force between two
bodies at rest

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [13]

normal component of the
contact force between two
bodies

ISO 80000-4, 4-22 ISO 80000-4, 4-22 [12]

Table E.16: Normative quantity kinds in ISO 80000-4 (4 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

dynamic friction factor ISO 80000-4, 4-22.1 VRAI

static friction factor ISO 80000-4, 4-22.2 VRAI

velocity gradient ISO 80000-4, 4-23

dynamic viscosity ISO 80000-4, 4-23

kinematic viscosity ISO 80000-4, 4-24

surface tension ISO 80000-4, 4-25

force component
perpendicular to a line
element in a surface

ISO 80000-4, 4-25 ISO 80000-4, 4-9.1 [10]

Fmax

m, f()

ms , fs()

n

g,s

Quantity Kind
name

Description Symbol General is dimension
1?

length of line element in a
surface

ISO 80000-4, 4-25 ISO 80000-3, 3-1.1 [5]

power ISO 80000-4, 4-26

work ISO 80000-4, 4-27.1 W

potential energy ISO 80000-4, 4-27.2 Ep ISO 80000-4, 4-27.4 [13]

kinetic energy ISO 80000-4, 4-27.3 Ek ISO 80000-4, 4-27.4 [13]

mechanical energy ISO 80000-4, 4-27.4 E ISO 80000-4, 4-27.1 [13]

power efficiency ISO 80000-4, 4-28 η VRAI

output power ISO 80000-4, 4-28 ISO 80000-4, 4-26 [13]

input power ISO 80000-4, 4-28 ISO 80000-4, 4-26 [13]

mass flow rate ISO 80000-4, 4-29

volume flow rate ISO 80000-4, 4-30

generalized coordinate ISO 80000-4, 4-31

OMG Systems Modeling Language, v1.6 345

P

Pout

Pin

qm

qV

qi

Quantity Kind
name

Description Symbol General is dimension
1?

generalized velocity ISO 80000-4, 4-32

generalized force ISO 80000-4, 4-33

generalized potential
energy

ISO 80000-4, 4-34

generalized kinetic energy ISO 80000-4, 4-34

Lagrange function ISO 80000-4, 4-34 ISO 80000-4, 4-34 [14]

generalized momentum ISO 80000-4, 4-35

generalized momentum of
velocity

ISO 80000-4, 4-36 ISO 80000-4, 4-36 [14]

Hamilton function ISO 80000-4, 4-36 H ISO 80000-4, 4-36 [14]

action functional ISO 80000-4, 4-37 S

Contact force between two bodies is an example of a taxonomy of specialized quantity kinds induced by
different measurement procedures.

qi

Qi

V qi ,qi

.æ
è

ö
ø

T qi ,qi

.æ
è

ö
ø

L qi ,qi

.æ
è

ö
ø

pi

pi qi

.

Per ISO 80000-4, 4-31, 4-32, 4-33 and 4-35, there are no measurement units defined for these generalized
quantity kinds; the unit of a particular quantity (i.e., SysML value property) typed by a SysML ValueType
referencing a generalized quantity kind depends on the dimension of that particular quantity.

E.6.5.3 ISO 80000-5 Thermodynamics

All 33 entries (including sub-entries) in the normative contents of ISO 80000-5 are modeled as summarized
below.

Table E.17: Normative units in ISO 80000-5 (1 of 2)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

kelvin ISO 80000-5, 5-1.a
5-33.a

ISO 80000-5,
5-1 [17]

degree celsius ISO 80000-5, 5-2.a ISO 80000-5,
5-2 [17]

cubic metre
coefficient per
kelvin

ISO 80000-5, 5-3.2 ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.2 [17]

pascal ratio per
kelvin

ISO 80000-5, 5-3.3 ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.1 [17]

kelvin to the power
minus one

ISO 80000-5, 5-3.a

metre coefficient
per kelvin

ISO 80000-5, 5-3.a ISO 80000-5,
5-3.a [15]

ISO 80000-5,
5-3.1 [17]

pascal ratio ISO 80000-5, 5-3.a ISO 80000-5,
5-3.3 [17]

VRAI

pascal per kelvin ISO 80000-5, 5-4.a ISO 80000-5,
5-4 [17]

OMG Systems Modeling Language, v1.6 347

K

°C

K - 1

K - 1

K - 1

K - 1

Pa / K

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

cubic metre ratio
per pascal

ISO 80000-5, 5-5.a ISO 80000-4,
4-19.a [8]

ISO 80000-5,
5-5.1 [17]

watt per square
metre

ISO 80000-5, 5-8.a ISO 80000-5,
5-8 [18]

watt per metre
kelvin

ISO 80000-5, 5-9.a ISO 80000-5,
5-9 [18]

kelvin per metre ISO 80000-5, 5-9.a ISO 80000-5,
5-9 [18]

watt per square
metre per kelvin

ISO 80000-5, 5-10.a ISO 80000-5,
5-10.1 [18]

square metre kelvin
per watt

ISO 80000-5, 5-11.a ISO 80000-5,
5-11 [18]

kelvin per watt ISO 80000-5, 5-12.a ISO 80000-5,
5-12 [18]

watt per kelvin ISO 80000-5, 5-13.a ISO 80000-5,
5-13 [18]

watt square metre
per joule

ISO 80000-5, 5-14.a ISO 80000-4,
4-24.a [8]

ISO 80000-5,
5-14 [18]

joule per kelvin ISO 80000-5, 5-15.a,
5-18.a, 5-21.a, 5-
22.a, 5-23.a

ISO 80000-5,
5-18 [19]

Table E.18: Normative units in ISO 80000-5 (2 of 2)

Pa - 1

 W / m2

W / m×K()

 K / m

 W / m2 ×K

 m
2 ×K / W

 K / W

 W / K

 W×m2 / J

 J / K

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

joule per kilogram
kelvin

ISO 80000-5, 5-16.a ISO 80000-5,
5-16.1 [18]

cubic metre per
pascal ratio

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.2 [19]

VRAI

cubic metre per
pascal

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.2 [19]

joule per kilogram
kelvin ratio

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.1 [19]

VRAI

pascal per cubic
metre

ISO 80000-5, 5-17.a ISO 80000-5,
5-17.2 [19]

kelvin joule per
kelvin

ISO 80000-5, 5-20.a ISO 80000-4,
4-27.a, 4-34.a,
4-36.a [8]

ISO 80000-5,
5-20.
[45]
[19]

FAUX

pascal cubic metre ISO 80000-5, 5-20.a ISO 80000-4,
4-27.a, 4-34.a,
4-36.a [8]

ISO 80000-5,
5-20.3 [19]

kelvin joule per
kelvin kilogram

ISO 80000-5, 5-21.a ISO 80000-5,
5-21.a [16]

ISO 80000-5,
5-21.5 [20]

FAUX

joule per kilogram ISO 80000-5, 5-21.a ISO 80000-5,
5-21.1 [19]

kilogram ratio ISO 80000-5, 5-26.a,
5-27.a, 5-28.a,
5-29.a

ISO 80000-5,
5-26 [20]

VRAI

OMG Systems Modeling Language, v1.6 349

J / kg×K()

 m
3 / Pa

 Pa / m3

 J

 Pa×m3

 J / K

 J / K

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

kilogram ratio
fraction

ISO 80000-5, 5-28.a,
5-32.a

ISO 80000-5,
5-28 [21]

VRAI

kilogram per cubic
metre ratio

ISO 80000-5, 5-31.a ISO 80000-5,
5-31 [21]

VRAI

Table E.19: Normative quantity kinds in ISO 80000-5 (1 of 5)

Quantity Kind
name

Description Symbol General is dimension
1?

thermodynamic
temperature

ISO 80000-5, 5-1

celcius Temperature ISO 80000-5, 5-2 ISO 80000-5, 5-1 [17]

linear expansion
coefficient

ISO 80000-5, 5-3.1

increase in temperature ISO 80000-5, 5-3.1.2.3.4 ISO 80000-5, 5-1 [17]

cubic expansion
coefficient

ISO 80000-5, 5-3.2

pressure in a reference
state

ISO 80000-5, 5-3.3 ISO 80000-4, 4-15.1 [10]

relative pressure
coefficient

ISO 80000-5, 5-3.3

pressure ratio ISO 80000-5, 5-3.3 VRAI

T, Q()

 t,J

 a l

 ¶T,dT

 aV ,a ,g

a p

Quantity Kind
name

Description Symbol General is dimension
1?

increase in pressure at
constant volums

ISO 80000-5, 5-3.3 ISO 80000-4, 4-19 [11]

increase in temperature at
constant volume

ISO 80000-5, 5-3.3 ISO 80000-5, 5-3.1.2.3.4
[17]

pressure coefficient ISO 80000-5, 5-4

isothermal compressibility ISO 80000-5, 5-5.1

increase in pressure at
constant temperature

ISO 80000-5, 5-5.1 ISO 80000-4, 4-19 [11]

increase in volume at
constant temperature

ISO 80000-5, 5-5.1 ISO 80000-4, 4-16.3 [11]

increase in pressure at
constant entropy

ISO 80000-5, 5-5.2 ISO 80000-4, 4-19 [11]

isentropic compressibility ISO 80000-5, 5-5.2

OMG Systems Modeling Language, v1.6 351

¶P()

V

¶T()

V

b

 cT

¶P()

T

¶V()

T

¶P()

S

 cS

Quantity Kind
name

Description Symbol General is dimension
1?

increase in volume at
constant entropy

ISO 80000-5, 5-5.2 ISO 80000-4, 4-16.3 [11]

Table E.20: Normative quantity kinds in ISO 80000-5 (2 of 5)

Quantity Kind
name

Description Symbol General is dimension
1?

amount of heat ISO 80000-5, 5-6 ISO 80000-4, 4-27 [13]

heat flow rate ISO 80000-5, 5-7 ISO 80000-4, 4-26 [13]

surface density of heat
flow rate

ISO 80000-5, 5-8 ISO 80000-5, 5-8 [18]

areic heat flow rate ISO 80000-5, 5-8

thermodynamic
temperature gradient

ISO 80000-5, 5-9

thermal conductivity ISO 80000-5, 5-9

coefficient of heat transfer ISO 80000-5, 5-10.1

tnermodynamic
temperature difference

ISO 80000-5, 5-10.1 ISO 80000-5, 5-1 [17]

surface coefficient of heat
transfer

ISO 80000-5, 5-10.2

¶V()

S

 Q

F

 q,f

 q,f

l, c()

K , k()

h, a()

Quantity Kind
name

Description Symbol General is dimension
1?

surface thermodynamic
temperature difference

ISO 80000-5, 5-10.2 ISO 80000-5, 5-2 [18]

surface thermodynamic
temperature

ISO 80000-5, 5-10.2 ISO 80000-5, 5-1 [17]

reference thermodynamic
temperature

ISO 80000-5, 5-10.2 ISO 80000-5, 5-1 [17]

coefficient of thermal
insulance

ISO 80000-5, 5-11

thermal resistance ISO 80000-5, 5-12

thermal conductance ISO 80000-5, 5-13

thermal diffusivity ISO 80000-5, 5-14

heat capacity ISO 80000-5, 5-15

specific heat capacity ISO 80000-5, 5-16.1

specific heat capacity at
constant pressure

ISO 80000-5, 5-16.2 ISO 80000-5, 5-16.1 [18]

Table E.21: Normative quantity kinds in ISO 80000-5 (3 of 5)

OMG Systems Modeling Language, v1.6 353

h, a()

 M

 R

G, H()

a

 C

 c

cp

Quantity Kind
name

Description Symbol General is dimension
1?

specific heat capacity at
constant volume

ISO 80000-5, 5-16.3 ISO 80000-5, 5-16.1 [18]

specific heat capacity at
saturation

ISO 80000-5, 5-16.4 ISO 80000-5, 5-16.1 [18]

ratio of the specific heat
capacities

ISO 80000-5, 5-17.1 VRAI

pressure per volume
increase at constant
entropy

ISO 80000-5, 5-17.2

volume per pressure in a
reference state

ISO 80000-5, 5-17.2

isentropic exponent ISO 80000-5, 5-17.2

entropy ISO 80000-5, 5-18

heat received ISO 80000-5, 5-18 ISO 80000-5, 5-6 [18]

specific entropy ISO 80000-5, 5-19

energy ISO 80000-5, 5-20.1 ISO 80000-4, 4-27.4 [13]

internal thermodynamic
energy

ISO 80000-5, 5-20.2 ISO 80000-5, 5-18 [19]

 cV

 csat

g

 S

 dQ

 s

 E

 U

c

Quantity Kind
name

Description Symbol General is dimension
1?

volumetric pressure ISO 80000-5, 5-20.3

enthalpy ISO 80000-5, 5-20.3 ISO 80000-5, 5-20.2 [19]

Helmholtz energy ISO 80000-5, 5-20.4 ISO 80000-5, 5-20.2 [19]

Gibbs energy ISO 80000-5, 5-20.5 ISO 80000-5, 5-20.3 [19]

system enthalpy at
thermodynamic
temperature

ISO 80000-5, 5-20 [45]

specific energy ISO 80000-5, 5-21.1

specific internal
thermodynamic energy

ISO 80000-5, 5-21.2 ISO 80000-5, 5-21.1 [19]

specific enthalpy ISO 80000-5, 5-21.3 ISO 80000-5, 5-21.2 [19]

specific Helmholtz energy ISO 80000-5, 5-21.4

Table E.22: Normative quantity kinds in ISO 80000-5 (4 of 5)

OMG Systems Modeling Language, v1.6 355

 pV

 H

 A, F

 G

 TS

 e

 u

 h

 a, f

Quantity Kind
name

Description Symbol General is dimension
1?

specific Gibs energy ISO 80000-5, 5-21.5

Massieu function ISO 80000-5, 5-22

Planck function ISO 80000-5, 5-23

mass of water irrespective
of the form of aggregation

ISO 80000-5, 5-24 ISO 80000-4, 4-1 [10]

mass concentration of
water at saturation

ISO 80000-5, 5-24 ISO 80000-4, 4-2 [10]

total volume of water and
dry matter

ISO 80000-5, 5-24 ISO 80000-3, 3-4 [5]

mass concentration of
water

ISO 80000-5, 5-24 ISO 80000-4, 4-2 [10]

mass of water vapour ISO 80000-5, 5-24 ISO 80000-5, 5-24 [20]

mass concentration of
water vapour

ISO 80000-5, 5-25 ISO 80000-4, 4-2 [10]

 g

 J

 Y

 m

 wsat

 V

 w

 m

 v

Quantity Kind
name

Description Symbol General is dimension
1?

mass concentration of
water vapour at saturation

ISO 80000-5, 5-25 ISO 80000-4, 4-2 [10]

mass of water at
saturation

ISO 80000-5, 5-25 ISO 80000-5, 5-24 [20]

mass of water vapour at
saturation

ISO 80000-5, 5-25 ISO 80000-5, 5-24 [20]

mass ratio of water to dry
matter

ISO 80000-5, 5-26 VRAI

mass of dry matter ISO 80000-5, 5-26 ISO 80000-4, 4-1 [10] VRAI

mass ratio of water to dry
gas at saturation

ISO 80000-5, 5-26 ISO 80000-5, 5-26 [20] VRAI

mass ratio of water
vapour to dry gas

ISO 80000-5, 5-27 ISO 80000-5, 5-26 [20] VRAI

mass ration of water
vapour to dry gas at
saturation

ISO 80000-5, 5-27 ISO 80000-5, 5-27 [20] VRAI

OMG Systems Modeling Language, v1.6 357

 vsat

 msat

 msat

 u

 md

 usat

 w

 wsat

Table E.23: Normative quantity kinds in ISO 80000-5 (5 of 5)

Quantity Kind
name

Description Symbol General is dimension
1?

mass of dry gas ISO 80000-5, 5-27 ISO 80000-5, 5-26 [20]

mass fraction of water ISO 80000-5, 5-28 VRAI

mass fraction of dry
matter

ISO 80000-5, 5-29 ISO 80000-5, 5-28 [21] VRAI

partial pressure of a gas
in a mixture at saturation

Quantity Kind name Description Symbol General

partial pressure of a gas
in a mixture

ISO 80000-5, 5-30 ISO 80000-4, 4-15.1 [10]

relative partial pressure of
a gas

ISO 80000-5, 5-30 ISO 80000-5, 5-3.3 [17] VRAI

relative mass
concentration of water
vapour

ISO 80000-5, 5-31 VRAI

relative mass ratio of
water vapour

ISO 80000-5, 5-32 VRAI

dew point thermodynamic
temperature of humid air

ISO 80000-5, 5-33 ISO 80000-5, 5-33 [21]

thermodynamic
temperature of humid air

ISO 80000-5, 5-33 ISO 80000-5, 5-1 [17]

 md

w

H2O

 wd

 p

f

 Td

 T

E.6.5.4 ISO 80000-6 Electromagnetism

All 62 entries (including sub-entries) in the normative contents of ISO 80000-6 are modeled as summarized
below.

Table E.24: Normative units in ISO 80000-6 (1 of 5)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

ampere IEC 80000-6, 6-1.a A IEC 80000-6,
6-1 [27]

coulomb IEC 80000-6, 6-2.a C IEC 80000-6,
6-2 [27]

coulomb per cubic
metre

IEC 80000-6, 6-3.a IEC 80000-6,
6-3 [27]

coulomb per square
metre

IEC 80000-6, 6-4.a IEC 80000-6,
6-4 [27]

coulomb per metre IEC 80000-6, 6-5.a IEC 80000-6,
6-5 [27]

coulomb metre IEC 80000-6, 6-6.a IEC 80000-6,
6-6 [27]

coulomb per square
metre per second

IEC 80000-6, 6-7.a IEC 80000-6,
6-8.a [22]

IEC 80000-6,
6-8 [27]

coulomb per metre
squared

IEC 80000-6, 6-7.a IEC 80000-6,
6-4.a [22]

IEC 80000-6,
6-7 [27]

OMG Systems Modeling Language, v1.6 359

 C / m3

 C / m2

 C / m

 C×m

C / m2 ×s()

 C / m2

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

ampere per square
metre

IEC 80000-6, 6-8.a IEC 80000-6,
6-8 [27]

coulomb per metre
per second

IEC 80000-6, 6-9.a IEC 80000-6,
6-25.a [23]

IEC 80000-6,
6-9 [27]

volt per metre IEC 80000-6, 6-10.a IEC 80000-6,
6-10 [27]

newton per
coulomb

IEC 80000-6, 6-10.a IEC 80000-6,
6-10.a [22]

IEC 80000-6,
6-10 [27]

volt IEC 80000-6, 6-11.a V IEC 80000-6,
6-11.1 [27]

volt metre per
metre

IEC 80000-6, 6-11.a IEC 80000-6,
6-11.a [22]

FAUX

farad volt per metre
squared

IEC 80000-6, 6-12.a IEC 80000-6,
6-7.a [22]

IEC 80000-6,
6-12 [27]

farad IEC 80000-6, 6-13.a F IEC 80000-6,
6-13 [27]

farad per metre IEC 80000-6, 6-14.a IEC 80000-6,
6-14.a [22]

IEC 80000-6,
6-14.1 [27]

 A / m2

C / m×s()

 V / m

 N / C

 V×m / m

 F×V / m2

 F / m

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

coulomb per volt
per metre

IEC 80000-6, 6-14.a IEC 80000-6,
6-14.2 [28]

coulomb per volt
per metre ratio

IEC 80000-6, 6-15.a IEC 80000-6,
6-15 [28]

VRAI

Table E.25: Normative units in ISO 80000-6 (2 of 5)

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

coulomb per metre
squared ratio

IEC 80000-6, 6-16.a IEC 80000-6,
6-16 [28]

VRAI

square metre
coulomb per metre
squared

IEC 80000-6, 6-17.a

C
IEC 80000-6,
6-2.a [22]

FAUX

coulomb per metre
squared per second

IEC 80000-6, 6-18.a IEC 80000-6,
6-8.a [22]

square metre
ampere per square
metre

IEC 80000-6, 6-19.a A IEC 80000-6,
6-1.a [22]

FAUX

volt second per
metre squared

IEC 80000-6, 6-21 IEC 80000-6,
6-21.a [23]

newton per ampere
per metre

IEC 80000-6, 6-21.a IEC 80000-6,
6-21.a [23]

tesla IEC 80000-6, 6-21.a T IEC 80000-6,
6-21 [28]

weber IEC 80000-6, 6-22.a Wb IEC 80000-6,
6-21.1 [28]

OMG Systems Modeling Language, v1.6 361

C / V×m()

C / m2 ×s()

 V×s / A×m2

N / A×m()

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

newton metre per
ampere

IEC 80000-6, 6-22.a IEC 80000-6,
6-22.a [23]

volt second IEC 80000-6, 6-22.a IEC 80000-6,
6-22.a [23]

ampere square
metre

IEC 80000-6, 6-23.a IEC 80000-6,
6-23 [28]

ampere square
metre per cubic
metre

IEC 80000-6, 6-24.a IEC 80000-6,
6-25.a [23]

FAUX

newton per weber IEC 80000-6, 6-25 IEC 80000-6,
6-25.a [23]

ampere per metre IEC 80000-6, 6-25.a IEC 80000-6,
6-25 [28]

ampere metre per
metre squared

IEC 80000-6, 6-25.a IEC 80000-6,
6-25.a [23]

FAUX

volt second metre
squared per
ampere per metre
cube

IEC 80000-6, 6-26.a IEC 80000-6,
6-26.a [24]

FAUX

Table E.26: Normative units in ISO 80000-6 (3 of 5)

 V×s

 A×m2

 A×m2 / m3

 N / Wb

 A / m

 A×m / m2

A×s×m2

A×m3

 N×m / A

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

volt second per
ampere per metre

IEC 80000-6, 6-26.a IEC 80000-6,
6-26.a [24]

newton weber per
ampere per metre
per newton

IEC 80000-6, 6-26.a IEC 80000-6,
6-26.a [24]

FAUX

henry per metre IEC 80000-6, 6-26.a IEC 80000-6,
6-26.2 [28]

weber per ampere
per metre

IEC 80000-6, 6-26.a IEC 80000-6,
6-26.a [24]

henry per metre
ratio

IEC 80000-6, 6-27.a IEC 80000-6,
6-27 [28]

VRAI

ampere per metre
ratio

IEC 80000-6, 6-28.a IEC 80000-6,
6-28 [29]

VRAI

weber per metre
squared

IEC 80000-6, 6-29.a IEC 80000-6,
6-21.a [23]

volt second ampere
per ampere per
metre squared

IEC 80000-6, 6-29.a IEC 80000-6,
6-21 [23]

FAUX

OMG Systems Modeling Language, v1.6 363

V×s
A×m

N×Wb
A×m×N

 H / m

Wb
A×m

 Wb / m2

V×s×A

A×m2

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

volt second metre IEC 80000-6, 6-30.a IEC 80000-6,
6-30.a [24]

weber metre IEC 80000-6, 6-30.a IEC 80000-6,
6-30 [29]

weber per metre IEC 80000-6, 6-32.a IEC 80000-6,
6-32 [29]

newton per ampere IEC 80000-6, 6-32.a IEC 80000-6,
6-32.a [24]

volt second per
metre

IEC 80000-6, 6-32.a IEC 80000-6,
6-32.a [24]

newton ampere per
metre squared

IEC 80000-6, 6-33.a IEC 80000-6,
6-33.a [25]

newton coulomb
per metre squared

IEC 80000-6, 6-33.a IEC 80000-6,
6-33.a [25]

joule per cubic
metre

IEC 80000-6, 6-33.a IEC 80000-6,
6-33 [29]

Table E.27: Normative units in ISO 80000-6 (4 of 5)

 V×s×m

 Wb×m

 Wb / m

 N / A

 V×s / m

 N×A / m2

 N×C / m2

 J / m3

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

newton per metre
squared

IEC 80000-6, 6-33.a IEC 80000-6,
6-33.a [24]

volt ampere per
square metre

IEC 80000-6, 6-34.a ISO 80000-5,
5-8.a [15]

IEC 80000-6,
6-34 [29]

ampere metre per
metre

IEC 80000-6, 6-37.a IEC 80000-6,
6-1.a [22]

FAUX

turns IEC 80000-6, 6-38.a IEC 80000-6,
6-38 [29]

ampere per volt per
second

IEC 80000-6, 6-39.a IEC 80000-6,
6-39.a [25]

henry to the power
minus one

IEC 80000-6, 6-39.a IEC 80000-6,
6-39 [29]

volt second per
ampere

IEC 80000-6, 6-41.a IEC 80000-6,
6-41.a [25]

weber per ampere IEC 80000-6, 6-41.a IEC 80000-6,
6-41.a [25]

henry IEC 80000-6, 6-41.a H IEC 80000-6,
6-41.1 [29]

henry factor
squared

IEC 80000-6, 6-42.2 IEC 80000-6,
6-42.2 [29]

VRAI

henry factor IEC 80000-6, 6-42.a IEC 80000-6,
6-42.1 [29]

VRAI

OMG Systems Modeling Language, v1.6 365

 N / m2

 N×A / m2

 A×m / m

A / V×s()

 1/ H

 V×s / A

 Wb / A

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

ampere metre per
volt per square
metre

IEC 80000-6, 6-43.a IEC 80000-6,
6-43.a [25]

FAUX

siemens per metre IEC 80000-6, 6-43.a IEC 80000-6,
6-43 [29]

ampere per volt per
metre

IEC 80000-6, 6-43.a IEC 80000-6,
6-43.a [25]

metre per siemens IEC 80000-6, 6-44 IEC 80000-6,
6-44.a [25]

ohm metre IEC 80000-6, 6-44.a IEC 80000-6,
6-44 [29]

volt ampere IEC 80000-6, 6-45.a,
6-57.a, 6-59.a, 6-
61.a

ISO 80000-4,
4-26.a, 4-56.a [8]

IEC 80000-6,
6-59 [30]

ohm IEC 80000-6, 6-46.a Ω IEC 80000-6,
6-46 [30]

volt per ampere IEC 80000-6, 6-46.a IEC 80000-6,
6-46.a [25]

Table E.28: Normative units in ISO 80000-6 (5 of 5)

A×m

V×m2

 S / m

A / V×m()

 m / S

 Ω×m

 V×A

 V / A

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

siemens to the
power minus one

IEC 80000-6, 6-46.a IEC 80000-6,
6-46.a [25]

siemens IEC 80000-6, 6-47.a S IEC 80000-6,
6-47 [30]

ampere per volt IEC 80000-6, 6-47.a IEC 80000-6,
6-47.a [26]

ohm to the power
minus one

IEC 80000-6, 6-47.a IEC 80000-6,
6-47.a [26]

ohm ratio IEC 80000-6, 6-53.a IEC 80000-6,
6-53 [30]

VRAI

watt per volt per
ampere

IEC 80000-6, 6-58.a IEC 80000-6,
6-58 [30]

VRAI

var IEC 80000-6, 6-60.b var IEC 80000-6,
6-45.a, 6-57.a, 6-
59.a, 6-61.a [25]

IEC 80000-6,
6-60 [30]

second joule per
second

IEC 80000-6, 6-62.a s.J/s ISO 80000-4,
4-27.a, 4-34.a,
4-36.a [8]

IEC 80000-6,
6-62 [31]

FAUX

watt hour IEC 80000-6, 6-62.b W.h IEC 80000-6,
6-62 [31]

Table E.29: Normative quantity kinds in ISO 80000-6 (1 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

electric current in a thin
conducting loop n

IEC 80000-6, 6-1 IEC 80000-6, 6-1 [27]

OMG Systems Modeling Language, v1.6 367

 1/ S

 A / V

 1/ Ω

 In

Quantity Kind
name

Description Symbol General is dimension
1?

electirc current IEC 80000-6, 6-1

rms current IEC 80000-6, 6-1 IEC 80000-6, 6-1 [27]

electric charge IEC 80000-6, 6-2

volumic electric charge IEC 80000-6, 6-3

areic electric charge IEC 80000-6, 6-4

lineic electric charge IEC 80000-6, 6-5

electric dipole moment IEC 80000-6, 6-6

electric polarization IEC 80000-6, 6-7

electric current density IEC 80000-6, 6-8

 I ,i

 I

 Q,q

 r,rV

 rA,s

 rl ,t

 p

 P

 J

Quantity Kind
name

Description Symbol General is dimension
1?

areic electric current IEC 80000-6, 6-8 IEC 80000-6, 6-8 [27]

lineic electric current IEC 80000-6, 6-9

electric field strength IEC 80000-6, 6-10

electric potential IEC 80000-6, 6-11.1

electric potential
difference

IEC 80000-6, 6-11.2 IEC 80000-6, 6-11.1 [27]

electric tension IEC 80000-6, 6-11.3 IEC 80000-6, 6-11.1 [27]

voltage IEC 80000-6, 6-11.3 IEC 80000-6, 6-11.3 [27]

rms voltage IEC 80000-6, 6-11.3 IEC 80000-6, 6-11.3 [27]

electric flux density IEC 80000-6, 6-12 IEC 80000-6, 6-7 [27]

electric flus density in
vacuum

IEC 80000-6, 6-12 IEC 80000-6, 6-12 [27]

OMG Systems Modeling Language, v1.6 369

 J

 J s

 E

 V ,f

 Vab

 U ,Uab

 U ,Uab

 U

 D

Quantity Kind
name

Description Symbol General is dimension
1?

capacitance IEC 80000-6, 6-13

permittivity of vaccum IEC 80000-6, 6-14.1 IEC 80000-6, 6-14.2 [28]

permittivity IEC 80000-6, 6-14.2

relative permittivity IEC 80000-6, 6-15 VRAI

electric susceptibility IEC 80000-6, 6-16 VRAI

electric flux IEC 80000-6, 6-17 IEC 80000-6, 6-2 [27]

displacement current
density

IEC 80000-6, 6-18 IEC 80000-6, 6-20 [25]

displacement current IEC 80000-6, 6-19.1 IEC 80000-6, 6-19.2 [28]

total current IEC 80000-6, 6-19.2 IEC 80000-6, 6-1 [27]

 C

 e0

e

 e r

c

y

 J D

 ID

 I tot
,I

t

Quantity Kind
name

Description Symbol General is dimension
1?

total current density IEC 80000-6, 6-20 IEC 80000-6, 6-8 [27]

Table E.30: Normative quantity kinds in ISO 80000-6 (2 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

magnetic flux density IEC 80000-6, 6-21

magnetic flux IEC 80000-6, 6-22.1

linked flux in a loop
caused by an electric
current in that loop

IEC 80000-6, 6-22.2 IEC 80000-6, 6-22.2 [28]

linked flux IEC 80000-6, 6-22.2

linked flux in a loop m
caused by an electric
current in another loop n

IEC 80000-6, 6-22.2 IEC 80000-6, 6-22.2 [28]

magnetic area moment IEC 80000-6, 6-23

magnetization IEC 80000-6, 6-24 IEC 80000-6, 6-25 [28]

OMG Systems Modeling Language, v1.6 371

 J tot
,J

t

 B

F

 cm,c

c

c

 m

 M,H
i

Quantity Kind
name

Description Symbol General is dimension
1?

magnetic field strength in
vacuum

IEC 80000-6, 6-25 IEC 80000-6, 6-25 [28]

magnetic field strength IEC 80000-6, 6-25

permeability of vacuum IEC 80000-6, 6-26.1 IEC 80000-6, 6-26.2 [28]

permeability IEC 80000-6, 6-26.2 IEC 80000-6, 6-26.2 [28]

magnetic flux density of
magnetic field strength

IEC 80000-6, 6-26.2

relative permeability IEC 80000-6, 6-27 VRAI

magnetic susceptibility IEC 80000-6, 6-28 VRAI

magnetic polarization IEC 80000-6, 6-29

magnetic dipole moment IEC 80000-6, 6-30

 H0

 H

 m0

m

 mr

k , c

m()

 J m

 jm
,j

Quantity Kind
name

Description Symbol General is dimension
1?

coercivity IEC 80000-6, 6-31 IEC 80000-6, 6-25 [28]

magnetic vector potential IEC 80000-6, 6-32

energy density of electric
field

IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]

energy density of
magnetic field

IEC 80000-6, 6-33 IEC 80000-6, 6-33 [29]

electromagnetic energy
density

IEC 80000-6, 6-33

Poynting vector IEC 80000-6, 6-34

phase speed of
electromagnetic waves

IEC 80000-6, 6-35.1 ISO 80000-3, 3-8.2 [5]

phase speed of light in
vacuum

IEC 80000-6, 6-35.2 IEC 80000-6, 6-35.1 [29]

source voltage IEC 80000-6, 6-36 IEC 80000-6, 6-11.3 [27]

scalar magnetic potential IEC 80000-6, 6-37.1 IEC 80000-6, 6-1 [27]

OMG Systems Modeling Language, v1.6 373

H

c,B

 A

 w

 S

 c

 c0

 Us

 Vm,f

Quantity Kind
name

Description Symbol General is dimension
1?

magnetic tension IEC 80000-6, 6-37.2 IEC 80000-6, 6-1 [27]

magnetomotive force IEC 80000-6, 6-37.3 IEC 80000-6, 6-1 [27]

current linkage IEC 80000-6, 6-37.4 IEC 80000-6, 6-1 [27]

Table E.31: Normative quantity kinds in ISO 80000-6 (3 of 4)

Quantity Kind
name

Description Symbol General is dimension
1?

number of turns in a
winding

IEC 80000-6, 6-38

reluctance IEC 80000-6, 6-39

permeanance IEC 80000-6, 6-40

inductance IEC 80000-6, 6-41.1

mutual inductance IEC 80000-6, 6-41.1 IEC 80000-6, 6-41.1 [29]

 Um

 Fm

Q

 N

 Rm,R

L

 L,Lm

 Lmn

Quantity Kind
name

Description Symbol General is dimension
1?

self inductance IEC 80000-6, 6-41.1 IEC 80000-6, 6-41.1 [29]

coupling factor IEC 80000-6, 6-42.1

leakage factor IEC 80000-6, 6-42.2

conductivity IEC 80000-6, 6-43

resistivity IEC 80000-6, 6-44

electric power IEC 80000-6, 6-45 ISO 80000-4, 4-26 [13]

electric resistance IEC 80000-6, 6-46

electric conductance IEC 80000-6, 6-47

initial phase of electric
voltage

IEC 80000-6, 6-48 ISO 80000-3, 3-5 [5]

OMG Systems Modeling Language, v1.6 375

 Ln

 k

s

 s ,g

r

 p

 R

 G

 fu

Quantity Kind
name

Description Symbol General is dimension
1?

phase difference IEC 80000-6, 6-48 ISO 80000-3, 3-5 [5]

initial phase of electric
current

IEC 80000-6, 6-48 ISO 80000-3, 3-5 [5]

electric current phasor IEC 80000-6, 6-49 IEC 80000-6, 6-1 [27]

voltage phasor IEC 80000-6, 6-50 IEC 80000-6, 6-11.3 [27]

complex impedance IEC 80000-6, 6-51.1 IEC 80000-6, 6-46 [30]

resistance to alternating
electric current

IEC 80000-6, 6-51.2 IEC 80000-6, 6-51.1 [30]

reactance to alternative
electric current

IEC 80000-6, 6-51.3 IEC 80000-6, 6-51.1 [30]

modules of impedance IEC 80000-6, 6-51.4 IEC 80000-6, 6-51.1 [30]

Table E.32: Normative quantity kinds in ISO 80000-6 (4 of 4)

f

 fi

 I

 U

 Z

 R

 X

 Z

Quantity Kind
name

Description Symbol General is dimension
1?

complex admittance IEC 80000-6, 6-52.1

OMG Systems Modeling Language, v1.6 377

 Y

Quantity Kind
name

Description Symbol General is dimension
1?

conductance to
alternating current

IEC 80000-6, 6-52.2 IEC 80000-6, 6-52.1 [30]

susceptance to
alternating current

IEC 80000-6, 6-52.3 IEC 80000-6, 6-52.1 [30]

modules of admittance IEC 80000-6, 6-52.4 IEC 80000-6, 6-52.1 [30]

quality factor IEC 80000-6, 6-53 VRAI

loss factor IEC 80000-6, 6-54 VRAI

loss angle IEC 80000-6, 6-55 ISO 80000-3, 3-5 [5] VRAI

active power IEC 80000-6, 6-56 IEC 80000-6, 6-59 [30]

apparent power IEC 80000-6, 6-57

power factor IEC 80000-6, 6-58 VRAI

complex power IEC 80000-6, 6-59

 G

 B

 Y

 Q

 d

d

 P

 S

l

 S

Quantity Kind
name

Description Symbol General is dimension
1?

reactive power IEC 80000-6, 6-60 IEC 80000-6, 6-59 [30]

non-active power IEC 80000-6, 6-61 IEC 80000-6, 6-56 [30]

active energy IEC 80000-6, 6-62

E.6.5.5 ISO 80000-7 Light

The subset of the normative contents of ISO 80000-7 is identical to that of SysML 1.4 as summarized below.

Table E.33: Units in ISO 80000-7

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

refractive index ISO 80000-7, 7-5.a ISO 80000-7,
7-5 [33]

VRAI

lumen ISO 80000-7, 7-32.a lm ISO 80000-7,
7-32 [33]

candela ISO 80000-7, 7-35.a cd ISO 80000-7,
7-35 [33]

lux ISO 80000-7, 7-36.a lx ISO 80000-7,
7-36 [33]

candela per square
metre

ISO 80000-7, 7-37.a cd/m2 ISO 80000-7,
7-37 [33]

Table E.34: Quantity kinds in ISO 80000-7

OMG Systems Modeling Language, v1.6 379

 Q

 ¢Q

 W

Quantity Kind
name

Description Symbol General is dimension
1?

speed of light in vacuum ISO 80000-7, 7-4.1 ISO 80000-3, 3-8.1 [5]

 c0

Quantity Kind
name

Description Symbol General is dimension
1?

phase speed of light in
medium

ISO 80000-7, 7-4.2 ISO 80000-3, 3-8.2 [5]

refractive index ISO 80000-7, 7-5 VRAI

radiant flux ISO 80000-7, 7-13 ISO 80000-4, 4-26 [13]

luminous flux ISO 80000-7, 7-32

luminous intensity ISO 80000-7, 7-35

illuminance ISO 80000-7, 7-36

luminance ISO 80000-7, 7-37

E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic

The subset of the normative contents of ISO 80000-9 is identical to that of SysML 1.4 as summarized below.

Table E.35: Units in ISO 80000-9

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

mole ISO 80000-9, 9-1.a mol ISO 80000-9,
9-1

OMG Systems Modeling Language, v1.6 381

 c

 n

Fv, F()

Iv, I()

Ev, E()

Lv, L()

mole per cubic
metre

ISO 80000-9, 9-13.a mol/m3 ISO 80000-9,
9-13

Table E.36: Quantity kinds in ISO 80000-9

Quantity Kind
name

Description Symbol General is dimension
1?

amount of substance ISO 80000-9, 9-1

amount of substance
concentration

ISO 80000-9, 9-13

E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics

The 3 units and 3 quantity kind definitions included were in the non-normative ISO 80000-10 library of SysML
1.3.

Table E.37: Units in ISO 80000-10

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

becquerel ISO 80000-10,
10-29.a

Bq ISO 80000-10,
10-29

gray ISO 80000-10,
10-84.a

Gy ISO 80000-10,
10-84

sievert ISO 80000-10,
10-86.a

Sv ISO 80000-10,
10-86

Table E.38: Quantity kinds in ISO 80000-10

Quantity Kind
name

Description Symbol General is dimension
1?

radionuclide activity ISO 80000-10, 10-29

 n

 cB

 A

absorbed dose ISO 80000-10, 10-81.1

dose equivalent ISO 80000-10, 10-86

E.6.5.8 ISO 80000-13 Information Science and Technology

SysML 1.4 adds commonly used 3 units (bit, byte and octet) of information and 3 of their associated quantity
kinds.

Table E.39: Units in ISO 80000-13

Unit name Description Symbol General units Quantity
Kinds

is unit for
quantity of
dimension

1?

is
reduced
form?

bit IEC 80000-13,
13-9.b

bit IEC 80000-13,
13-9

VRAI

byte IEC 80000-13,
13-9.c

B IEC 80000-13,
13-9

VRAI

octet IEC 80000-13,
13-9.c

o IEC 80000-13,
13-9

VRAI

Table E.40: Quantity kinds in ISO 80000-13

Quantity Kind
name

Description Symbol General is dimension
1?

storage capacity IEC 80000-13, 13-9 VRAI

storage size IEC 80000-13, 13.9 IEC 80000-13,
13-9

VRAI

equivalent binary storage
capacity

IEC 80000-13, 13-10 VRAI

OMG Systems Modeling Language, v1.6 383

 D

 H

 M

 M

 Me

E.7 Distribution Extensions

E.7.1 Overview

This sub clause describes a non-normative extension to provide a candidate set of distributions (see 8.3.2.9,
DistributedProperty). It consists of a profile containing stereotypes that can be used to specify distributions for
properties of blocks.

E.7.2 Stereotypes

E.7.2.1 Package Distributions

Figure E.21: Basic distribution stereotypes

Table E.41: Distribution Stereotypes

Stereotype Base Class Properties Constraints Description

«BasicInterval» «DistributedProperty» min:Real
max:Real

N/A Basic Interval distribution -
value between min and max
inclusive

«Interval» «BasicInterval» N/A N/A Interval distribution -
unknown probability between
min and max

«Uniform» «BasicInterval» N/A N/A Uniform distribution - constant
probability between min and
max

Stereotype Base Class Properties Constraints Description

«Normal» «DistributedProperty» mean:Real
standard
Deviation:Real

N/A Normal distribution - constant
probability between min and
max

E.7.3 Usage Example

Figure E.22 shows a simple example of using distributions; the force of the Cannon is specified using a Normal
distribution with parameters mean and standard deviation. Whereas the use of a Normal distribution can be
inferred from the names of its parameters, an Interval distribution shares parameters with a Uniform
distribution, hence the stereotype keyword «interval» is used to distinguish it.

Figure E.22: Distribution Example

E.8 Building Non-normative Extension for Property-based
Requirements

E.8.1 Overview

Annex E.3 addresses extending requirements that are fundamentally textual in nature. They may be extended
with various enumerations (for example RiskKind or VerifyMethodKind), and they may have different
modeling constraints applied to the requirements relationships, but the requirements are only expressed as text
strings.

Expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified.
This Annex addresses a more formal expression of requirements generally referred to as property based
requirements (PBR); one that includes quantitative specification of numerical parameters, relationships,
equations and/or constraints.

Current users of text-based requirements have frequently expressed a basic need to represent numerical
requirements more precisely, both to reduce ambiguity and facilitate verification by analysis and other methods.

OMG Systems Modeling Language, v1.6 385

This basic need can be decomposed into three primary needs: 1) Requirements shall have numerical properties
(properties capable of representing numerical values), 2) these numerical properties shall be typeable
(preferably by ValueType) to account for quantity kind and units, and 3) these numerical properties shall be
bindable (preferably using BindingConnector) to other model elements (e.g., ConstraintParameters) so they can
be evaluated using analysis tools. For the purpose of this discussion, a requirement that meets these three
conditions is said to be a property-based requirement.

This kind of property-based requirement is intended to be used with the overall system model to assist in
specifying and architecting systems. More generally, the system model may be used as a model-based
specification, such as when block instances with specific property values represent the requirement. In this latter
case, the model-based specification can further refine the property-based requirement.

Users of property-based requirements may desire a more elaborate capability than the primary need described
above. For example, it may be desirable for the requirement to contain a constraint or mathematical expression
that formally states an acceptance condition, threshold, or goal. This may alternatively need to be expressed as
a set of valued pairs, elaborating both the conditions and the acceptance thresholds for each condition, or by an
arbitrary graphical relationship. Some users may want the property-based requirement to formally own a
behavior representing the functionality of the requirement, or the behavior by which it is satisfied or verified.

The need for this kind of property-based requirement is illustrated in the simple example of specifying a
vehicle’s required stopping distance for various initial speeds and road conditions. The requirement can be
expressed in a table as follows:

The Vehicle stopping distance shall not exceed the values in Table E.42 as a function of initial speed and
pavement condition.

Table E.42: Example of Requirement in Tabular Form

Initial
Speed
(mph)

Pavement
Condition
(wet/dry)

Req'd Stopping
Distance -Dry

(feet)

Initial
Speed
(mph)

Pavement
Condition
(wet/dry)

Req'd Stopping
Distance- Wet

(feet)

0 dry 0 0 wet 0

10 dry 4 10 wet 6

20 dry 17 20 wet 22

30 dry 38 30 wet 50

40 dry 67 40 wet 89

50 dry 104 50 wet 139

60 dry 150 60 wet 201

70 dry 205 70 wet 273

80 dry 267 80 wet 357

90 dry 338 90 wet 451

Initial
Speed
(mph)

Pavement
Condition
(wet/dry)

Req'd Stopping
Distance -Dry

(feet)

Initial
Speed
(mph)

Pavement
Condition
(wet/dry)

Req'd Stopping
Distance- Wet

(feet)

100 dry 418 100 wet 557

An alternative expression in plot format can be:

The Vehicle stopping distance shall not exceed the values in Table E.42 as a function of initial speed and
pavement condition.

OMG Systems Modeling Language, v1.6 387

Figure E.23: Example of Requirement in Graphical Form

The input/output parameter relationship or constraint can be specified in equation form, such as in the following
example:

Stopping distance <= (1/(2*32.174* alpha)*(580*Initial Speed/3600^2)

State Speed = 0 ...100

alpha

dry 0,8

wet 0,6

More generally, the input and output parameter values may be complex functions of other parameters, and may
have probability distributions associated with them.

This annex addresses mechanisms and approaches for building SysML profiles to enable property-based
requirements. While examples of property-based requirement profiles are provided in this annex, these are not
to be considered normative or even authoritative. Instead, they are intended to be illustrative of the kind of
extensions that some users may find desirable. Ultimate responsibility for the compatibility of any property-
based requirement profile with a particular requirements management process or toolset rests fully with the user.

E.8.2 An Example PBR Profile Based on ConstraintBlock

Using «constraintBlock» as a base class for PBR may prove compact, simple, and intuitive. The following
example first establishes a PBR user profile, and then employs that profile for a simple user example.

E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock

Figure E.24 shows use of both «abstractRequirement» and «constraintBlock» to define a new PBR stereotype,
named RequirementConstraintBlock in this example for clarity.

Figure E.24: Example of a PBR Profile Based on ConstraintBlock

Basing PBR on ConstraintBlock provides flexibility in expressing the name of required numerical values as
ConstraintParameters, which can be typed by ValueTypes and related to properites or parameters of other model
elements using binding connectors. Textual requirement statements may be restated as constraint expressions
that reference these ConstraintParameters. The value bindings can then be used to evaluate the constraint
expression and determine compliance with the requirement.

The numerical required value may then be stored as a DefaultValue of the ConstraintParameter. It may
alternatively be specified directly in a constraint expression, rather than a default value, e.g., {requiredWeight =
1450} where requiredWeight is defined as a constraint parameter typed by a value type. Complex requirement
criteria may be represented by a series of constraint expressions.

It is also noted that constraint blocks can have owned behavior, and that a constraint expression can be a value
expression (with opaque behavior).

17.4.8.1 E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

The following example leverages the above PBR user profile based on ConstraintBlock to specify and evaluate
the weight of a vehicle.

The requirement is captured via a PBR (RequirementConstraintBlock), which includes a constraint expression
that reflects the textual requirements statement in terms of two defined parameters, actualMass and
requiredMass. Both of these parameters are typed by the kilogram value type from the SI value types library.
The required value for mass is expressed as a default value of the requiredMass parameter. Note that the
required value may have alternatively been expressed as a second constraint expression, e.g., {requiredMass =

OMG Systems Modeling Language, v1.6 389

requirementConstraintBlock schemaPBR Profile[Profile] bdd []

attributes

+Text : String [1]
+Id : String [1]
+/derived : AbstractRequirement [*]
+/derivedFrom : AbstractRequirement [*]
+/satisfiedBy : NamedElement [*]
+/refinedBy : NamedElement [*]
+/tracedTo : NamedElement [*]
+/verifiedBy : NamedElement [*]
+/master : AbstractRequirement

«stereotype»

A bs trac tRequiremen t

«stereotype»

Requiremen tConstraintB loc k

«stereotype»

C ons traintBloc k

1450}. The vehicle itself is represented in the model by a block with a value property for mass, also typed by
the kilogram SI value type.

As shown in Figure E.25, the context for evaluating if the requirement has been met is established using a
Requirement Context block. This method of context setting is a best practice that is not essential to this
example. Both the Vehicle and the Vehicle Mass Requirement are used in this Requirement Context.

Figure E.25: Example of Requirement Evaluation Context Using PBR Based on Constraint Block

Figure E.26 shows a parametric diagram of the Requirement Context block, useful for establishing the method
of evaluating compliance of the vehicleMass value with the Vehicle Mass Requirement. As with any parametric
model, it does not actually perform the evaluation/analysis, but it does specify the key relationships so that an
evaluation tool may determine if the weight requirement has been met.

Figure E.26: Example of Parametric Diagram Using PBR based on Constraint Block

E.8.3 An Example PBR Profile Based on Constraint

Constraints are arguably the most straightforward way for representing system requirements. Their specification
may be provided by opaque constraint expressions, which can be expressed in formal (and computable)
languages like OCL. This allows the constraint statement to be applied directly to a specific design, without
necessarily applying a formal evaluation context.

Vehicle Example[Package] contextbdd []

cons traints

{actualMass ≤ requiredMass}

Id = "1"
Text = "The vehicle mass shall be less than
or equal to 1450 kilograms"

parameters

actualMass : mass[kilogram]
requiredMass : mass[kilogram] = 1450

«RequirementConstraintBlock»

Vehicle Mass R equirement

«block»

R equirement C ontext

values

vehicleMass : mass[kilogram]

«block»

V eh ic lev01

r1.01

vehicle mass evaluationRequirement Context[Block] par []

«RequirementConstraintBlock»

r1.01 : Vehicle Mass R equirement

{actualMass ≤ requiredMass}

actualMass
Default Value = 1450.0
requiredMass

vehicleMass : mass [kilogram]

v01 : Vehicle

E.8.3.1 Profile/Stereotypes of PBR based on Constraint

Figure E.27 shows use of both «abstractRequirement» and «constraint» to define a new PBR stereotype, named
CbRequirement in this example.

Figure E.27: Example of a PBR profile based on Constraints

17.4.8.2 E.8.3.2 Example using PBR profile based on Constraint

Figure E.28 shows how requirements are specified on the model representing a specification. Note that, as
modeled here, the requirement represented by Constraint2 applies to any instance of the Vehicle block while the
one represented by Constraint1 applies to instances of Vehicle block which are “used” as defined by the
“vehicle” role of the Context block, such as the design weight of the vehicle on a bridge or vehicle transporter.

Figure E.28: Example of PBR based on Constraint used in different contexts

Figure E.29 shows a particular case where testedVehicle is an instance of the Vehicle block and AnalysisContext
an instance of the Context block, as specified above. A simple evaluation of model constraints using a classical
OCL evaluator would produce a report showing that Requirement/Constraint2 is met, while
Requirement/Constraint1 is violated.

OMG Systems Modeling Language, v1.6 391

Figure E.29: Establishing an Analysis Context for evaluating requirement compliance using PBR based on

Constraint

E.8.4 An Example Property Based Requirement based on Block

Property based requirements can be based on a Block which allows to define additional properties like value
properties.

Figure E.30 shows use of both “abstractRequirement” and “Block” to define a new PBR stereotype, named
«PBR» in this example.

Figure E.30: PBR Example

Figure E.31 gives an example where a requirement element “Max Peak Power Requirement is created. It
defines “id,” “text,” and “maxPeakPwr.”

It also has additionally a constraint property “maxPower” which permits to define constraints for the value
properties. The requirement is contextualized in the block “System Specification.” The block “Verification
Context” contextualizes the block “System Design” which holds the as-designed “totalPower” value property. In
this context the as-designed value is bound to the requirement constraint for the purpose of analysis to verify
that the designed value satisfies the required value.

Property Based Requirement Stereotype[Model] bdd Data []

attributes

id
text

«stereotype»

A bs trac tR equirement

[NamedElement]

«stereotype»

B loc k

[Class]

«stereotype»

R equirement

[Class]

«stereotype»

PB R

[Class]

«comment»

New in SysML
1.5

«comment»

SysML 1.4

«comment»

User defined
Property Based
Requirement
stereotype

Issue(s): SYSML16-389, SYSML16-399

Figure E.31: PBR

OMG Systems Modeling Language, v1.6 393

This page intentionally left blank.

Annex F: Requirements Traceability

(informative)
The OMG SysML requirements traceability matrix traces this International Standard to the original source
requirements in the UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix is included by
reference in a separate document (ptc/2007-03-09).

OMG Systems Modeling Language, v1.6 395

This page intentionally left blank.

Annex G: Model Interchange

(informative)

G.1 Overview
This annex describes two methods for exchanging SysML models between tools. The first method discussed is
XML Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based
tools. The second approach describes the use of ISO 10303-233 Application Protocol: Systems engineering
(AP233), which is one of the series of STEP (Standard for the Exchange of Product Model Data) engineering
data exchange standards. Other model interchange approaches are possible, but the ones described in this annex
are expected to be the primary ones supported by SysML.

G.2 Context for Model Interchange
Developing today’s complex systems typically requires engineering teams that are distributed in time and space
and that are often composed of many companies, each with their own culture, methods, and tools. Effective
collaboration requires agreement on, and a thorough understanding of, the various work assignments and
resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral
models, verification & validation) that transcend the entire life cycle of the system of interest and are the basis
for important systems engineering considerations and decisions. So it is critical that the system information
contained in these artifacts and information models be accurately captured and readable by all appropriate team
members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems
engineering data and can’t share its data with other tools because they only understand their own native schema.
To mitigate this situation, collaborating organizations are usually forced to either adopt a common set of tools or
develop a unique, bidirectional interface between many of the tools that each organization uses. This can be an
expensive and untimely approach to data exchange between team members. So there is a need to define
standardized approaches for model interchange between the different data schemas in use.

G.3 XMI Serialization of SysML
UML 2.5.1 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language
for specifying modeling languages. The OMG XML Metadata Interchange (XMI) 2.5.1 standard specifies an
XML-based interchange format for any language modeled using MOF. This results in a standard, convenient
format for serializing UML user models as XMI files for interchange between UML tools. The XMI
specification also includes rules for generating an XML Schema that can be used for basic validation of the
structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves
defined as UML models (MOF is not used). However, their intent is to specify extensions to the UML language
semantics in much the same way one could extend the UML language by adding to the MOF definition of
UML. As UML Profiles are valid UML models, XMI does provide a mechanism for exchanging the UML
Profiles between UML tools. However, as they are extensions to concepts defined in the UML language itself,
the definition of a UML Profile refers to the UML language definitions. An XMI 2.5.1 representation of the
SysML profile (i.e., the UML Profile for SysML), as well as XMI 2.5.1 representations of Model Libraries

OMG Systems Modeling Language, v1.6 397

defined by SysML, are provided as support documents to this International Standard. As with UML, XMI
provides a convenient serialized format for model interchange between SysML tools and basic validation of
those files using an XML Schema as well.

The namespace for the standard profile is: http://www.omg.org/spec/SysML/20181001/SysML.xmi.

G.4 SysML Model Interchange Using AP233
AP233 is a data exchange standard designed to support the exchange of systems engineering data between the
many and varied software tools that systems engineers use in the course of their work. Data from systems
modeling tools is included in the scope of AP233, in fact, requirements for AP233 and SysML have been largely
aligned by the OMG and the ISO teams working together and in close cooperation with the INCOSE Model
Driven System Design working group.

G.4.1 Scope of AP233

AP233 is not a graphical modeling language, but specifies data exchange mechanisms to support the exchange
of data between Engineering Tools that generate or consume systems engineering data. Figure G.1 illustrates the
overlaps between the types of data that can be exchanged by a tool that supports the AP233 data exchange
mechanisms, and the type of data that is generated or consumed by a SysML modeling tool. In general, there is
considerable overlap indicating the potential support that AP233 can provide as a data exchange standard for
SysML modeling tools.

Figure G.1: SysML/AP233 Data Overlaps

AP233 includes support for assigning program management information as well as system modeling
information to systems engineering data.

Program management capabilities include issue management, risk management and aspects of project
management such as project breakdown, project resource information, organization structure, schedule, and
work structure.

System modeling capabilities include requirements and requirements allocation, trade studies with measures of
effectiveness, interface to analysis, function-based behavior, state-based behavior, system hierarchies for the
design system, the realized system and all interfaces.

Additional information about AP233 can be found at http://www.ap233.org/.

G.4.2 STEP Architecture

AP233 is standardized under ISO Technical Committee 184 (Industrial Automation Systems and Integration),
Subcommittee 4 (Industrial Data). AP233 is part of the family of ISO 10303 standards, referred to as STEP, that
include standardized models and infrastructure for the exchange of product model data.

The STEP architecture is modular. This enables the component information models to be reused across
disciplines and life-cycle stages in different application protocols, which are the models used for
implementation. STEP models are written using the ISO 10303-11 EXPRESS language.

STEP also standardizes a series of implementation methods: a text file structure (ISO 10303-21), a data access
interface (ISO 10303-22) and an XML file format (ISO 10303-28). The data access interface has bindings that
provide standardized APIs for accessing EXPRESS-based data in various programming languages. A
conforming STEP implementation is the combination of a STEP application protocol and one or more of the
implementation methods.

The scope of STEP is very large and a number of data exchange standards (e.g., geometry, product life-cycle
support, structural, electrical, and engineering analysis) have been in wide use in industry for more than 15
years. Support for several systems engineering viewpoints within the scope of AP233 are shared with other
application protocols. Since AP233 is part of STEP, it is easy to relate systems engineering data to that of other
engineering disciplines over the life cycle of a system and to related product models.

For more information on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page
at http://www.tc184-sc4.org.

G.4.3 EXPRESS

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language. EXPRESS is a
precise text-based information modeling language with a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA Ap233_systems_engineering_arm_excerpt;

ENTITY Product;

 id : STRING;

 name : STRING;

 description : OPTIONAL STRING;

END_ENTITY;

ENTITY Product_version;

 id : STRING;

OMG Systems Modeling Language, v1.6 399

 description : OPTIONAL STRING;

 of_product : Product;

END_ENTITY;

ENTITY Product_view_definition;

 id : OPTIONAL STRING;

 name : OPTIONAL STRING;

 additional_characterization : OPTIONAL STRING;

 initial_context : View_definition_context;

 additional_contexts : SET [0:?] OF View_definition_context;

 defined_version : Product_version;

WHERE

 WR1: NOT (initial_context IN additional_contexts);

 WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF(SELF));

END_ENTITY;

ENTITY View_definition_context;

 application_domain : STRING;

 life_cycle_stage : STRING;

 description : OPTIONAL STRING;

WHERE

 WR1: (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +

 'PRODUCT_VIEW_DEFINITION.INITIAL_CONTEXT')) > 0) OR

 (SIZEOF (USEDIN(SELF, 'AP233_SYSTEMS_ENGINEERING_ARM_EXCERPT.' +

 'PRODUCT_VIEW_DEFINITION.ADDITIONAL_CONTEXTS')) > 0);

END_ENTITY;

ENTITY System

 SUBTYPE OF (Product);

END_ENTITY;

ENTITY System_version

 SUBTYPE OF (Product_version);

 SELF\Product_version.of_product : System;

END_ENTITY;

ENTITY System_view_definition

SUBTYPE OF (Product_view_definition);

 SELF\Product_view_definition.defined_version : System_version;

END_ENTITY;

END_SCHEMA;

EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar
expressiveness. EXPRESS has also been approved as an OMG standard with a September 2009 publication of
Version 1.0 of the Reference Metamodel for the EXPRESS Information Modeling Language Specification. This
will enable the use of OMG Model Driven Architecture technologies against AP233 and other STEP models
written in EXPRESS.

G.4.4 SysML-AP233 Mapping

A formal and standardized mapping between SysML and AP233 is being developed within the OMG. The
mapping is a specification for SysML and other tool vendors to implement so that their tools can import from
and export to AP233 data exchange files. AP233 usage is aimed primarily at scenarios where SysML data is fed
to downstream applications such as those used in manufacturing, life cycle management or systems
maintenance. Additional information can be found at the OMG SysML Portal at
http://www.omgwiki.org/OMGSysML/.

OMG Systems Modeling Language, v1.6 401

This page intentionally left blank.

	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this International Standard
	3.2.1 Organization

	3.3 Acknowledgments

	4 Language Architecture
	4.1 General
	4.2 Design Principle
	4.3 Architecture
	4.4 Extension Mechanisms
	4.5 SysML Diagrams

	5 Conformance
	5.1 Overview
	5.2 Conformance Types

	6 Language Formalisms
	6.1 Levels of Formalism
	6.2 Clause Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	7 Model Elements
	7.1 Overview
	7.1.1 View and Viewpoint

	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 ElementGroup
	7.3.2.3 Expose
	7.3.2.4 Problem
	7.3.2.5 Rationale
	7.3.2.6 Stakeholder
	7.3.2.7 View
	7.3.2.8 Viewpoint

	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.1.1 Block and Value Type Definitions
	8.3.1.1.2 Default «block» stereotype on unlabeled box
	8.3.1.1.3 Labeled compartments
	8.3.1.1.4 Behavior compartment
	8.3.1.1.5 Constraints compartment
	8.3.1.1.6 Namespace compartment
	8.3.1.1.7 Structure compartment
	8.3.1.1.8 BoundReference compartment
	8.3.1.1.9 Receptions compartment
	8.3.1.1.10 Default multiplicities
	8.3.1.1.11 Property-specific type
	8.3.1.1.12 Unit Notation
	Units on value properties

	8.3.1.1.13 Units on values

	8.3.1.2 Internal Block Diagram
	8.3.1.2.1 Property types
	8.3.1.2.2 Block reference in diagram frame
	8.3.1.2.3 Compartments on internal properties
	8.3.1.2.4 Compartments on a diagram frame
	8.3.1.2.5 Property path name
	8.3.1.2.6 Nested connector end
	8.3.1.2.7 Property-specific type
	8.3.1.2.8 Initial values compartment
	8.3.1.2.9 Default multiplicities

	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Package Blocks
	8.3.2.2 AdjunctProperty
	8.3.2.3 BindingConnector
	8.3.2.4 Block
	8.3.2.5 BoundReference
	8.3.2.6 ClassifierBehaviorProperty
	8.3.2.7 ConnectorProperty
	8.3.2.8 DirectedRelationshipPropertyPath
	8.3.2.9 DistributedProperty
	8.3.2.10 ElementPropertyPath
	8.3.2.11 EndPathMultiplicity
	8.3.2.12 NestedConnectorEnd
	8.3.2.13 ParticipantProperty
	8.3.2.14 PropertySpecificType
	8.3.2.15 ValueType

	8.3.3 Model Libraries
	8.3.3.1 Package PrimitiveValueTypes
	8.3.3.1.1 Boolean
	8.3.3.1.2 Complex
	8.3.3.1.3 Integer
	8.3.3.1.4 Number
	8.3.3.1.5 Real
	8.3.3.1.6 String

	8.3.3.2 Package UnitAndQuantityKind
	8.3.3.2.1 QuantityKind
	8.3.3.2.2 Unit

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 Example Value Type Definitions
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery
	8.4.5 Constraining Decomposition
	8.4.6 Units and Quantity Kinds
	8.4.7 Property-Specific Types

	9 Ports and Flows
	9.1 Overview
	9.1.1 Ports
	9.1.2 Flow Properties, Provided and Required Features, and Nested Ports
	9.1.3 Proxy Ports and Full Ports
	9.1.4 Item Flows
	9.1.5 Deprecation of Flow Ports and Flow Specifications

	9.2 Diagram Elements
	9.2.1 Block Definition Diagram
	9.2.2 Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 DirectedFeature
	9.3.1.2 FlowProperty
	9.3.1.3 FullPort
	9.3.1.4 InvocationOnNestedPortAction
	9.3.1.5 ItemFlow
	9.3.1.6 Port
	9.3.1.7 ProxyPort
	9.3.1.8 TriggerOnNestedPort

	9.3.2 Stereotypes
	9.3.2.1 AcceptChangeStructuralFeatureEventAction
	9.3.2.2 AddFlowPropertyValueOnNestedPortAction
	9.3.2.3 Block
	9.3.2.4 ChangeStructuralFeatureEvent
	9.3.2.5 DirectedFeature
	9.3.2.6 FeatureDirectionKind
	9.3.2.7 FlowDirectionKind
	9.3.2.8 FlowProperty
	9.3.2.9 FullPort
	9.3.2.10 InterfaceBlock
	9.3.2.11 InvocationOnNestedPortAction
	9.3.2.12 ItemFlow
	9.3.2.13 ProxyPort
	9.3.2.14 TriggerOnNestedPort
	9.3.2.15 ~InterfaceBlock

	9.4 Usage Examples
	9.4.1 Ports with Required and Provided Features
	9.4.2 Ports and Item Flows
	9.4.3 Ports with Flow Properties
	9.4.4 Proxy and Full Ports
	9.4.5 Association and Port Decomposition
	9.4.6 Item Flow Decomposition

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.1.1 Constraint block definition
	10.3.1.1.2 Parameters compartment

	10.3.1.2 Parametric Diagram
	10.3.1.2.1 Round-cornered rectangle notation for constraint property
	10.3.1.2.2 «constraint» keyword notation for constraint property
	10.3.1.2.3 Small square box notation for an internal property

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.1.1 Notation

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.3.1 Presentation Option

	11.3.1.4 ObjectNode, Variables, and Parameters
	11.3.1.4.1 Notation

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 Package ControlValues
	11.3.3.1.1 ControlValueKind

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram
	12.3.1.2 Interactions and Parameters
	12.3.1.2.1 Notation

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.3.1 Diagram Extensions
	13.3.1.1 State Machines and Parameters
	13.3.1.1.1 Notation

	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocation Compartment Format
	15.3.1.4 Allocation Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate
	15.3.2.2 AllocateActivityPartition

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 AbstractRequirement
	16.3.2.2 Copy
	16.3.2.3 DeriveReqt
	16.3.2.4 Refine
	16.3.2.5 Requirement
	16.3.2.6 TestCase
	16.3.2.7 Satisfy
	16.3.2.8 Trace
	16.3.2.9 Verify

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1.1 Extension
	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: SysML Diagram Interchange
	B.1 Overview
	B.2 Stereotypes
	B.2.1 SysML Activity Diagram
	B.2.2 SysML Behavior Diagram
	B.2.3 SysMLBlockDefinitionDiagram
	B.2.4 SysMLDiagram
	B.2.5 SysMLDiagramElement
	B.2.6 SysMLDiagramWithAssociations
	B.2.7 SysMLInteractionDiagram
	B.2.8 SysMLInternalBlockDiagram
	B.2.9 SysMLPackageDiagram
	B.2.10 SysMLParametricDiagram
	B.2.11 SysMLRequirementDiagram
	B.2.12 SysMLStateMachineDiagram
	B.2.13 SysMLUseCaseDiagram

	B.3 SysML DI Usage Notes
	B.4 SysML Notation and DI Representation

	Annex C: Deprecated Elements and Migration
	C.1 Overview
	C.1.1 Flow Ports
	C1.2 Conjugated Ports

	C.2 Diagram Elements
	C.2.1 Block Definition Diagram
	C.2.2 Internal Block Diagram

	C.3 UML Extensions
	C.3.1 Diagram Extensions
	C.3.1.1 Conjugated Ports
	C.3.1.2 FlowPort
	C.3.1.3 FlowSpecification

	C.3.2 Stereotypes
	C.3.2.1 Package PortsAndFlows
	C.3.2.2 FlowPort
	C.3.2.3 Semantic Variation Points
	C.3.2.4 FlowSpecification
	C.3.2.5 ItemFlow (deprecated compatibility rule)

	C.4 Transitioning SysML 1.2 Flow Ports to SysML 1.3 Ports (informative)
	C.5 Transitioning SysML 1.3 Viewpoint and View to SysML 1.4 (informative)
	C.6 Transitioning SysML 1.3 Units and QuantityKinds to SysML 1.4 (informative)
	C.7 Transitioning SysML 1.5 conjugated port typed by InterfaceBlock to SysML 1.6 conjugated InterfaceBlock (informative)

	Annex D: Sample Problem
	D.1 Purpose
	D.2 Scope
	D.3 Problem Summary
	D.4 Diagrams
	D.4.1 Package Overview (Structure of the Sample Model)
	D.4.1.1 Package Diagram - Applying the SysML Profile
	D.4.1.2 Package Diagram - Showing Package Structure of the Model

	D.4.2 Setting the Context (Boundaries and Use Cases)
	D.4.2.1 Internal Block Diagram - Setting Context
	D.4.2.2 Use Case Diagram - Top Level Use Cases
	D.4.2.3 Use Case Diagram - Operational Use Cases

	D.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	D.4.3.1 Sequence Diagram - Drive Black Box
	D.4.3.2 State Machine Diagram - HSUV Operational States
	D.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	D.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	D.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	D.4.4.2 Requirement Diagram - Derived Requirements
	D.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	D.4.4.4 Table - Requirements Table

	D.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	D.4.5.1 Block Definition Digram - Automotive Domain
	D.4.5.2 Block Definition Diagram - Hybrid SUV
	D.4.5.3 Internal Block Diagram - Hybrid SUV
	D.4.5.3 Internal Block Diagram for the "Power Subsystem"

	D.4.6 Defining Ports and Flows
	D.4.6.1 Block Definition Diagram - ICE Flow Properties
	D.4.6.2 nternal Block Diagram - CANbus
	D.4.6.3 Block Definition diagram - Fuel Flow Properties
	D.4.6.4 Parametric Diagram - Fuel Flow
	D.4.6.5 Internal Block Diagram - Fuel Distribution

	D.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	D.4.7.1 Block Definition Diagram - Analysis Context
	D.4.7.2 Package Diagram - Performance View Definition
	D.4.7.3 Package Diagram - Viewpoint Definition
	D.4.7.4 Package Diagram - View Definition
	D.4.7.5 Package Diagram - View Hierarchy
	D.4.7.6 Package Diagram - Measures of Effectiveness
	D.4.7.7 Parametric Diagram - Economy
	D.4.7.8 Parametric Diagram - Dynamics
	D.4.7.9 (Non-Normative) Timing Diagram - 100hp Acceleration

	17.4.8 D.4.8 Defining, Decomposing, and Allocating Activities
	D.4.8.1 Activity Diagram - Acceleration (top level)
	D.4.8.2 Block Definition Diagram - Acceleration
	D.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	D.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	D.4.8.5 Table - Acceleration Allocation
	D.4.8.6 Internal Block Diagram: Property Values - EPA Fuel Economy Test

	Annex E: Non-normative Extensions
	E.1 Overview
	E.2 Activity Diagram Extensions
	E.2.1 Overview
	E.2.2 Stereotypes
	E.2.3 Stereotype Examples

	E.3 Requirements Diagram Extensions
	E.3.1 Overview
	E.3.2 Stereotypes
	E.3.3 Stereotype Examples

	E.4 Parametric Diagram Extensions for Trade Studies
	E.4.1 Overview
	E.4.2 Stereotypes
	E.4.3 Stereotype Examples

	E.5 Model Library for Quantities, Units, Dimensions, and Values (QUDV)
	E.5.1 Overview
	E.5.2 Abstract Syntax
	E.5.2.1 AffineConversionUnit
	E.5.2.2 ConversionBasedUnit
	E.5.2.3 DerivedQuantityKind
	E.5.2.4 DerivedUnit
	E.5.2.5Dimension
	E.5.2.6 GeneralConversionUnit
	E.5.2.7 LinearConversionUnit
	E.5.2.8 Prefix
	E.5.2.9 PrefixedUnit
	E.5.2.10 QuantityKind
	E.5.2.11 QuantityKindFactor
	E.5.2.12 Rational
	E.5.2.13 SimpleQuantityKind
	E.5.2.14 SimpleUnit
	E.5.2.15 SystemOfQuantities
	E.5.2.16 SystemOfUnits
	E.5.2.17 Unit
	E.5.2.18 UnitFactor

	E.5.3 References
	E.5.4 Usage Examples
	E.5.4.1 SI Unit and QuantityKind examples
	E.5.4.2 Spring Example

	E.6 Model Library of SysML Quantity Kinds and Units for ISO 8000
	E.6.1 Overview
	E.6.2 Units and Quantity Kinds
	E.6.3 ISO 80000-1 Prefixes
	E.6.4 ISO 80000-2 Mathematical Signs and Symbols
	E.6.5 Summary of the covered parts of ISO 80000
	E.6.5.1 ISO 80000-3 Space and Time
	E.6.5.2 ISO 80000-4 Mechanics
	E.6.5.3 ISO 80000-5 Thermodynamics
	E.6.5.4 ISO 80000-6 Electromagnetism
	E.6.5.5 ISO 80000-7 Light
	E.6.5.6 ISO 80000-9 Physical Chemistry and Molecular Physic
	E.6.5.7 ISO 80000-10 Atomic and Nuclear Physics
	E.6.5.8 ISO 80000-13 Information Science and Technology

	E.7 Distribution Extensions
	E.7.1 Overview
	E.7.2 Stereotypes
	E.7.2.1 Package Distributions

	E.7.3 Usage Example

	E.8 Building Non-normative Extension for Property-based Requirements
	E.8.1 Overview
	E.8.2 An Example PBR Profile Based on ConstraintBlock
	E.8.2.1 Profile/Stereotypes of PBR Based on ConstraintBlock
	17.4.8.1 E.8.2.2 Usage Example using PBR profile based on ConstraintBlock

	E.8.3 An Example PBR Profile Based on Constraint
	E.8.3.1 Profile/Stereotypes of PBR based on Constraint
	17.4.8.2 E.8.3.2 Example using PBR profile based on Constraint

	E.8.4 An Example Property Based Requirement based on Block

	Annex F: Requirements Traceability
	Annex G: Model Interchange
	G.1 Overview
	G.2 Context for Model Interchange
	G.3 XMI Serialization of SysML
	G.4 SysML Model Interchange Using AP233
	G.4.1 Scope of AP233
	G.4.2 STEP Architecture
	G.4.3 EXPRESS
	G.4.4 SysML-AP233 Mapping

