
Date: November 2010

MOF Support for Semantic Structures
(SMOF)

FTF – Beta 1

__
OMG Document Number: ptc/2010-11-39

Standard Document URL: http://www.omg.org/spec/SMOF/1.0

Associated File(s)*: http://www.omg.org/spec/SMOF/20100801

__

* Original file: ad/2010-08-07.zip

This OMG document replaces the submission document (ad/2010-08-06, Alpha). It is an OMG adopted
Beta specification and is currently in the finalization phase. Comments on the content of this document
are welcome, and should be directed to issues@omg.org by August 2, 2011.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 30, 2011. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

MOF Support for Semantic Structures (SMOF), Beta 1 ii

Copyright © 2009-2010, 88solutions Corporation
Copyright © 2009-2010, Adaptive, Inc.
Copyright © 2009-2010, Deere & Company
Copyright © 2009-2010, Mega
Copyright © 2009-2010, Microsoft Corporation
Copyright © 2009-2010, Model Driven Solutions
Copyright © 2009-2010, Sandpiper Software, Inc.
Copyright © 2009-2010, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

MOF Support for Semantic Structures (SMOF), Beta 1 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

MOF Support for Semantic Structures (SMOF), Beta 1 iv

using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

MOF Support for Semantic Structures (SMOF), Beta 1 v

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

MOF Support for Semantic Structures (SMOF), Beta 1 vi

Table of Contents
0 Preface .. viii

0.1 OMG..viii

1 Scope..1

2 Conformance...2
2.1 SMOF for CMOF Compliance..2
2.2 SMOF for EMOF Compliance..2

3 Normative References...3
3.1 List of Normative References ...3
3.2 List of Non-Normative References..3

4 Terms and Definitions...4

5 Symbols ..5

6 Additional Information...6
6.1 How to Read this Specification ..6
6.2 Changes to Adopted OMG Specifications..6
6.3 Acknowledgements..6

7 Concept Overview and Use Cases ..7
7.1 Overview..7
7.2 Use Case: UML ..7
7.3 Use Case: Semantic of Business Vocabularies and Business Rules (SBVR)........................8
7.4 Use Case: Ontology Definition Metamodel (ODM) ..8

8 Abstract Syntax Architecture... 10

9 Metamodel Extensions... 12
9.1 Common SMOF Extensions ...12 9.1.1 Abstract Syntax .. 12 9.1.2 Class Descriptions... 13
9.2 SMOF Extensions for CMOF ..17 9.2.1 Abstract Syntax .. 17 9.2.2 Class Descriptions... 17

10 Abstract Semantics .. 19
10.1 SMOF Semantic Domain Model ...19 10.1.1 InstanceSpecification .. 22 10.1.2 Constraint... 26 10.1.3 Class.. 26 10.1.4 Property.. 27 10.1.5 Link ... 27 10.1.6 LinkSlot ... 28 10.1.7 Slot .. 28

MOF Support for Semantic Structures (SMOF), Beta 1 vii

10.1.8 Incompatibility... 29 10.1.9 Compatibility .. 29 10.1.10 Factory... 30

11 Semantic MOF Profile.. 32
11.1 Overview...32
11.2 Stereotype Descriptions..32 11.2.1 AspectOf.. 32 11.2.2 CompatibleWith... 34 11.2.3 IncompatibleWith... 35 11.2.4 EquivalentClass.. 36

12 Changes to the XMI Serialization .. 38

MOF Support for Semantic Structures (SMOF), Beta 1 viii

0 Preface

0.1 OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications
Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML
• MOF
• XMI
• CWM
• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP
• IDL/Language Mappings
• Specialized CORBA specifications
• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
• CORBAfacilities
• OMG Domain specifications
• OMG Embedded Intelligence specifications
• OMG Security specifications

MOF Support for Semantic Structures (SMOF), Beta 1 ix

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

MOF Support for Semantic Structures (SMOF), Beta 1 1

1 Scope
The Meta Object Facility has proven itself as a valuable and powerful foundation for a family of modeling
languages, like UML, ODM, CWM, etc.

However, MOF 2 suffers from the same structural rigidity as many object-oriented programming systems, lacking
the ability to classify objects by multiple metaclasses, the inability to dynamically reclassify objects without
interrupting the object lifecycle or altering the object's identity, and a too constrained view on generalization and
properties.

This extension to MOF modifies MOF 2 to support dynamically mutable multiple classifications of elements and to
declare the circumstances under which such multiple classifications are allowed, required and prohibited

MOF Support for Semantic Structures (SMOF), Beta 1 2

2 Conformance
The Semantic MOF specifies two compliance options:

• SMOF for CMOF

• SMOF for EMOF

2.1 SMOF for CMOF Compliance
As described in clause 9, package merge is used to extend the CMOF metamodel to produce the SMOF for CMOF,
or SCMOF compliance level.

2.2 SMOF for EMOF Compliance
As described in clause 9, package merge is used to extend the EMOF metamodel to produce the SMOF for EMOF,
or SEMOF compliance level. This also necessitates the inclusion of Abstractions::Constraints and
Abstractions::Expressions into SEMOF, because Semantic MOF of its nature involves the declaration of constraints.

MOF Support for Semantic Structures (SMOF), Beta 1 3

3 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

3.1 List of Normative References
Meta Object Facility (MOF) Core Specification, Version 2.0, OMG Document formal/06-01-01

Meta Object Facility (MOF) Facility Object Lifecycle, Version 2.0, OMG Document formal/10-03-04

OMG Unified Modeling LanguageTM (UML), Infrastructure, Version 2.3, OMG Document formal/2009-09-10

MOF 2.0/XMI Mapping, Version 2.1.1, OMG Document formal/2007-12-02

The Object Constraint Language (OCL) Version 2.2 is used to define constraints and semantics in subsequent
clauses of this specification. The OCL 2.2 language definition can be found here:

Object Constraint Language Specification, Version 2.0, OMG Document formal/06-05-01

3.2 List of Non-Normative References
The following specifications are mentioned in descriptive text of subsequent clauses, but do not constitute a
normative part of this specification:

OMG Unified Modeling LanguageTM (UML), Superstructure, Version 2.3, OMG Document ptc/2009-09-08

Semantics of a Foundational Subset for Executable UML Models, Version 1.0, OMG Document ptc/2010-02-03

MOF Support for Semantic Structures (SMOF), Beta 1 4

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Multiple Classification The type of an object resulting from instantiating the union of structural and
behavioral features defined by two or more independent metaclasses into a
single object.

Dynamic Reclassification The ability to add or remove metaclasses from the type of an object during
the lifecycle of that object. The addition or removal of metaclasses may
alter the structure and/or behavior of the object, but does not alter the
object’s identity.

MOF Support for Semantic Structures (SMOF), Beta 1 5

5 Symbols
No symbols are defined by this specification.

MOF Support for Semantic Structures (SMOF), Beta 1 6

6 Additional Information

6.1 How to Read this Specification
This specification is part of the MOF 2 specifications. As such, it does not contain a complete specification of the
Meta Object Facility version 2, but an increment to extend the MOF 2 Core with features to handle semantic
structures. To obtain a complete extended MOF 2 specification, the content of this specification must be merged
with the MOF 2 Core specification.

Clause 7 provides several non-normative use cases and examples to introduce the problem area addressed by this
specification. Clause 8 formally positions this specification in relationship to the Complete MOF (CMOF)
specification contained in the MOF 2 Core document. Clause 9 provides the abstract syntax and detailed descriptions
of the MOF extensions specified in this document. Clause 10 provides the corresponding changes to the abstract
semantics. Clause 11 defines a UML profile to enable an SMOF metamodel to be specified in standard UML.
Clause 12 contains the required changes to the XMI serialization.

6.2 Changes to Adopted OMG Specifications

This specification amends / modifies the following OMG specifications:

• MOF Core 2.0

• MOF Facility Object Lifecycle 2.0

6.3 Acknowledgements
The following companies submitted this specification:

• 88solutions
• Adaptive
• Deere & Company
• Mega
• Microsoft
• Model Driven Solutions
• Sandpiper Software

The following companies supported this specification:

• Computer Science Corporation

MOF Support for Semantic Structures (SMOF), Beta 1 7

7 Concept Overview and Use Cases

[Informative]

7.1 Overview
The Meta Object Facility (MOF) takes a central architectural role in the family of modeling languages developed at
the Object Management Group (OMG). The combination of multiple meta-levels and reflection provides a flexible
and powerful but simple foundation for more elaborate modeling languages, like UML 2.

However, most object-oriented systems (including MOF) suffer from structural rigidness and lack the ability to
address temporal aspects in an elegant way. This makes a correct representation of real-world facts difficult, if not
impossible. Problem areas are the type / classification system and object relationships. Currently, if an object is
created, it is instantiated with the type and features of its defining class, and it has to live as such until its destruction.
In reality, objects are subject to constant variations without changing their identity or their fundamental type, they
undergo changes in classifications and assumed roles. This deficiency has a direct negative impact on several MOF-
based metamodels and languages. Clause 7.2 demonstrates the impact on the Semantic for Business Vocabularies
and Business Rules (SBVR) specification, and clause 7.3 shows the workarounds needed to base the Ontology
Definition Metamodel (ODM) on MOF.

7.2 Use Case: UML
An example issue with UML is the inability for actor to have the capabilities of a structured classifier.

Consider that Actor, BehavioredClassifer and StructuredClassifier were aspects as shown above. This would then
allow the SAME classifier to be an actor and a structured classifier, yet these concepts remain uncoupled in the
metamodel. To allow this capability in the current UML metamodel these all get inherited into a class that could do
anything and everything, which makes it unwieldy and difficult to use. It also makes it difficult to add or federate
capabilities without modifying the source metamodels. This demonstrates how SMOF facilitates a less coupled
approach to metamodeling while allowing a more flexible way to combine features.

MOF Support for Semantic Structures (SMOF), Beta 1 8

7.3 Use Case: Semantic of Business Vocabularies and Business
Rules (SBVR)

New metamodeling infrastructure layers are being built within ‘MOF’ metamodels: for example the Essential SBVR
in the Semantics of Business Vocabulary and Rules (SBVR). The following is an instance diagram example from the
SBVR specification that shows, to achieve the required flexibility, elements can only be typed by a generic MOF
metaclass called Thing. An aim of this RFP is to allow SBVR to represent the types of the domain directly in MOF.

7.4 Use Case: Ontology Definition Metamodel (ODM)
One of the incentives for the SMOF RFP was the requirement in OMG specifications for multiple classification.
This issue was identified in SBVR as well as “ODM” (Ontology Definition Metamodel). ODM provides a MOF
meta model of multiple ontology languages, including OWL. The following model fragment is from ODM:

MOF Support for Semantic Structures (SMOF), Beta 1 9

Note that there are sever subclasses of “Property” – this matches the semantics of OWL in that a property can be any
of these subclasses but can also be a combination of these classes. A property can, for example, be functional and
transitive. Here, due to the single classification restriction of MOF, it is not possible to directly represent the
intended OWL semantics or even the OWL structure. In OWL an instance can be classified by any number of
classifiers. To allow for the intended OWL semantics in ODM using SMOF, each of the subtypes of Property should
be an «AspectOf» of Property – and they would then be able to be combined in any order. Where there are
restrictions on these combinations “IncompatibleWith” can be used to declare which combinations are invalid.

Semantic MOF representation of OWL properties

The following model fragment shows the SMOF solution where the generalizations are marked as “aspects” of the
more general class. Since each asset is a classification of the same individual this matches the intent of the ODM
model without refactoring. Note that some combinations are invalid – which could be represented using
“IncompatibleWith” as it is using OWL disjoint.

MOF Support for Semantic Structures (SMOF), Beta 1 10

8 Abstract Syntax Architecture
Semantic structures may be introduced into MOF in multiple ways. However, not every method provides backward
compatibility with the existing MOF 2 Core. The approach selected in this specification aims for a maximum of
compatibility with MOF 2.

The following diagram shows the SMOF extension of MOF as a Package diagram.

Figure 1 - The SMOF Packages in relation to the EMOF / CMOF Packages

MOF Support for Semantic Structures (SMOF), Beta 1 11

The SMOF specification is part of the MOF 2 family of specifications. As such, it constitutes an increment building
on top of the MOF 2 Core. To obtain a complete extended MOF 2 specification with support for semantic structures
(SMOF), the content of this specification must be merged with the MOF 2 Core specification using Package Merge.

In order to support the two SMOF compliance levels, SEMOF as extension of EMOF, and SCMOF as extension of
CMOF, additional package merge steps are required due to the limitations of EMOF.

Package SEMOF contains all MOF 2 Core extensions provided by SMOF, with the exception of the new association
between Element and its metaclasses since EMOF does not support associations. The SMOF extensions directly
require Abstractions::Constraints and Abstractions::Expressions, which in turn require Abstractions::Ownership and
Abstractions::Namespaces. These four packages are all part of Constructs, but are lacking from EMOF. Therefore
package SEMOF merges these four InfrastructureLibrary packages explicitly.

Package SCMOF merges SEMOF with CMOF and introduces the new derived association between Element and
Class to facilitate navigation to metaclasses.

MOF Support for Semantic Structures (SMOF), Beta 1 12

9 Metamodel Extensions

9.1 Common SMOF Extensions

9.1.1 Abstract Syntax

Figure 2 – Reflection, as extended by SMOF

Figure 3 - SMOF Classification Constraints

MOF Support for Semantic Structures (SMOF), Beta 1 13

9.1.2 Class Descriptions

9.1.2.1 Incompatibility

Package: SEMOF
isAbstract: No
Generalization: Abstractions::Constraints

Description

A subclass of Constraint, providing the ability to define an incompatibility rule between two potential types (and
therefore also metaclasses).

Attributes

No new attributes

Associations

constrainedType : Type [2] {ordered} Redefines constrainedElement inherited from Constraint to more
precisely identify a pair of types declared as incompatible for
concurrent participation in the classification of an element.

Operations

No new operations.

Constraints

No new constraints.

9.1.2.2 Compatibility

Package: SEMOF
isAbstract: No
Generalization: Abstractions::Constraint

Description

A subclass of Constraint, providing the ability to define a compatibility rule between two potential types (and
therefore also metaclasses).

Attributes

isRequired : Boolean If true, and if the constraint’s specification evaluates to true, an instance
of the target type will automatically be classified by the source type,
where the source type is constrainedType->at(1) and the target type is
constrainedType->at(2).

isSymmetric : Boolean If true, the Compatibility constraint between the two referenced types
becomes symmetric, which is equivalent to two identical Compatibility
constraints in opposite direction applied to the two types.

MOF Support for Semantic Structures (SMOF), Beta 1 14

Associations

constrainedType : Type [2] {ordered} Redefines constrainedElement inherited from Constraint to more
precisely identify a pair of types declared as compatible for concurrent
participation in the classification of an element.

Operations

No new operations.

Semantics

Where an instance of Compatibility exists between two classes it is then permissible to classify an element by the
source class as well as the target class, as long as the constraint’s specification evaluates to true and there are no
conflicting constraints (such as Incompatibility constraints). Where no instance of Compatibility exists (the default)
it is not permissible to create such a multiple classification.

Where isRequired is true instances of the target classes are automatically additionally classified by the source class
provided that the constraint’s specification is true, and will be declassified if the constraint’s specification becomes
false.

If isRequired and isSymmetric are both true and the specification of the constraint evaluates to true, then the types
are equivalent

9.1.2.3 Element (as extended)

Package: SEMOF
isAbstract: Yes
Generalization: Reflection::Object

Description

Element is extended with a new operation getMetaClasses to return multiple values. The original getMetaClass
operation is retained; if there is only one metaclass then getMetaClass will return it; otherwise an exception will be
thrown. Two additional operations provide reclassification capabilities. Note that the existing operation isInstanceOf
can still be used to check whether an Element conforms to a class.

Attributes

No new attributes

Associations

No new associations.

Operations

getMetaClasses() : Class [1..*] Returns the set of metaclasses which classify this element.

getMetaClass(): Class Redefines MOF::Reflection::Element::getMetaClass(). If
getMetaClasses only contains one class, this is returned by
getMetaClass; otherwise getMetaClass will throw an exception.

reclassify(oldMetaClass : Class [0..*],
 newMetaClass : Class [0..*])

reclassifyAll(newMetaClass : Class [1..*])

This pair of operations provides the capability to reclassify any
instance of SMOF::Element or its subclasses. Reclassification
is not permitted for any element contained in package SMOF.

MOF Support for Semantic Structures (SMOF), Beta 1 15

Reclassification of the element instance using either of the two
operations is performed as an atomic step and results either in a
complete reclassification, or has no effect at all. See section
“Semantics” below for the detailed description.

addMetaClass(newMetaClass : Class [1..*]) Add the specified metaclasses to the classification of element.
This is a convenience signature for reclassify() and equivalent
to calling reclassify with an empty oldMetaClass argument.
e.g.: reclassify(, new)

removeMetaClass(oldMetaClass : Class [1..*]) Remove the specified metaclasses from the classification of
element. This is a convenience signature for reclassify() and
equivalent to calling reclassify with an empty newMetaClass
argument. e.g.: reclassify(old,)

container() : Element Redefines MOF::Reflection::Element:container(). Returns the
parent container of this element if any. Return Null if there is no
containing element. If more than one container exists, which is
possible in the case of multiple classification, a call to container
will return Null and throw an exception.

getContainers() : Element [0..*] Returns all existing parent containers for this element.

getContainerForMetaClass(metaClass : Class)
 : Element

Returns the parent container, if any, defined by the
classification by MetaClass. Returns Null if no such container
exists.

Constraints

[1] Metaclasses to be added must not be abstract.
not self.getMetaClasses()->exists(isAbstract=true)

[2] Any element must be classified by at least one metaclass.
self.getMetaClasses()->size() >=1

Semantics

Any instance of SMOF::Element or its subclasses can be reclassified as constrained by the applicable Compatibility
and Incompatibility elements.

Two operations, reclassify() and reclassifyAll() are provided to perform the reclassification (see below for the
difference). Reclassification is performed as an atomic step: either the element instance is reclassified by the
resulting set of classes derived during operation execution and all related side effects on all affected features of the
element instance are completely performed, or the operation execution has no effect on the element instance at all
and will signal its failure.

The signature of reclassify() has two input parameters: oldMetaClass lists the classes to be removed, newMetaClass
lists the classes to be added to the set of classes classifying the element instance. The signature of reclassifyAll() has
only the parameter newMetaClass and implies that all existing classes shall be removed. Besides this, both
operations implement identical behavior.

• Reclassification preserves the identity of the reclassified element instance.

• When the operation completes, at least one class must classify the element instance, and none of the classes

MOF Support for Semantic Structures (SMOF), Beta 1 16

classifying the element instance may be abstract.

• If the set of classes to be removed contains classes identical to classes in the set of classes to be added, then
these classes are not removed, the corresponding classes in the set of classes to be added are discarded, and
all values for features defined by these classes remain untouched.

• If a class contained in the set of classes to be removed defined some features of the element instance, which
are identically defined again by a class in the set of classes to be added, then the existing feature values are
preserved unchanged. (For example when an old and a new metaclass share a common ancestor, or where
an old and a new metaclass are ancestors of one another)

A new operation getMetaClasses(), has been introduced to return a list of all classes classifying the Element on
which the operation is performed.

The existing operation getMetaClass(), as defined in MOF::Reflection, is redefined to return either the single
metaclass if there is one, or to throw an exception.

9.1.2.4 Factory

Factory has not changed from CMOF. If an Element with multiple classifications needs to be constructed, a two-step
process must be applied:

1. Create the Element with single classification using one of the CMOF Factory operations create() or
createElement().

2. Add additional metaclasses using the SMOF Element::addMetaClass() operation.

MOF Support for Semantic Structures (SMOF), Beta 1 17

9.2 SMOF Extensions for CMOF

9.2.1 Abstract Syntax

Figure 4 – Additional SMOF Extension for CMOF

9.2.2 Class Descriptions

9.2.2.1 Element (as extended)

Package: SCMOF
isAbstract: Yes
Generalization: Reflection::Object

Description

Package SCMOF provides a merge increment to Element, which adds the association A_element_metaClass. This
association may be used in OCL expressions (or similar languages) to navigate to the Element’s metaclasses.

Attributes

No new attributes

Associations

/metaClass : SCMOF::Class [1..*]

(A_element_metaClass)

A derived association providing navigation capabilities between
metalevels. The association is navigable in both directions, but the
association owns both ends.

Operations

No new operations

Constraints

[1] The metaClass association is derived from the getMetaClasses operation.
self.metaClass = self.getMetaClasses()

9.2.2.2 Class (as extended)

Package: SCMOF
isAbstract: No
Generalization: Constructs::Classifier

Description

Package SCMOF provides a merge increment to Class, which adds the association A_element_metaClass. This
association may be used in OCL expressions (or similar languages) to navigate to the Elements and their

MOF Support for Semantic Structures (SMOF), Beta 1 18

metaclasses.

Attributes

No new attributes

Associations

/element : SCMOF::Element [*]

(A_element_metaClass)

A derived association providing navigation capabilities between
metalevels. The association is navigable in both directions, but the
association owns both ends.

Operations

No new operations

Constraints

No new constraints

MOF Support for Semantic Structures (SMOF), Beta 1 19

10 Abstract Semantics
This clause describes the abstract semantics of SMOF. It uses essentially the same approach as the abstract
semantics of CMOF but is reformulated here. The semantics of the SMOF reflective operations are described by the
effect of corresponding operations on an abstract semantic domain model.

10.1 SMOF Semantic Domain Model
This specification does not model the semantics of Extents, which are unchanged from the MOF specification. The
goal of this clause is to model the new semantics of Elements including the possibility of multiple classifications.
This covers the concepts of multiply classified Elements, their Properties and values of those properties, including
creation and destruction.

The SMOF semantic domain model is an extended version of the UML instance model constructed by merging in
some additional elements and constraining the result.

UML::Classes::Kernel

SMOF::AbstractDomainModel

«merge»

Figure 5 – Semantic Domain Model Package

The extensions are introduced to simplify the modeling of links (association instances), and to enable modeling of
collection values and compatible and incompatible classifiers.

.

MOF Support for Semantic Structures (SMOF), Beta 1 20

reClassify()
reClassifyAll ()
getMetaClasses()
getMetaClass()
get()
set()
isSet()
unSet()

InstanceSpecification

Slot

Link LinkSlot

1
firstSlot {subsets slot}

1

secondSlot {subsets slot}

Association

classifier {redefines classifier }1

Constraint

isRequired: Boolean
isSymmetric: Boolean
evaluate()

Compatibility
Incompatibility

ValueSpecification

add()
remove()
clear()
size()

CollectionValue

get()
set()

SequenceValue

evaluateDerivation()
deriveUnion()
clearSlot()

InstanceSpecification

elements
*

elements {ordered, redefines elements}

*

createObject()
createLink()

Factory

allSlottableProperties()
isCompatibleWith()
isNotCompatibleWith()
impliedClasses ()

Class

allSubsettedProperties()
allSubsettingProperties()

Property

Argument

value

1

1 property

1
opposite

Figure 6 – AbstractDomainModel package

The semantics of SMOF::Element are modeled by instances of InstanceSpecification according to the constraints
and operations defined in what follows. To break any apparent circularity we assume that the semantics of

MOF Support for Semantic Structures (SMOF), Beta 1 21

instantiating the domain model itself are as defined in the OCL 2 specification, which also of course allows us to use
OCL to express constraints over instances of the abstract semantics domain model.

Slightly more formally, we are introducing a semantic function Φ that is a homomorphism from elements and
operators in the SMOF specification to elements and operators in the semantic domain:

Φ : SMOF → SMOF::AbstractDomainModel

Such that for every n-ary operator μ:

Φ(μ(a1,.. ,an) = Φ(μ)(Φ(a1), ..., Φ(an))

Because UML Kernel shares most of its content with those aspects of UML infrastructure that are merged into
SMOF, much of Φ is simply an identity mapping. Hence Φ(SMOF::Class) =
SMOF::AbstractDomainModel::Class, Φ(SMOF::Property) = SMOF::AbstractDomainModel::Property, and
so on. Φ applied to any operation or attribute maps to a corresponding operation or attribute with the same name. Φ
is the identity when applied to any data type or data value.

The interesting semantics are captured as follows.

For all instances obj of SMOF::Object:

-- Elements map to InstanceSpecifications
if (obj.isInstanceOfType(SMOF::Element, true)) then
 Φ(obj).oclIsKindOf(SMOF::AbstractDomainModel::InstanceSpecification)

-- Links map to Links
if (obj.isInstanceOfType (SMOF::Link, true)) then
 Φ(obj).oclIsKindOf(SMOF::AbstractDomainModel::Link)

-- ReflectiveCollections map to CollectionValues
if (obj.isInstanceOfType(SMOF::ReflectiveCollection)) then
 Φ(obj).oclIsKindOf(SMOF::AbstractDomainModel::CollectionValue)

-- ReflectiveSequences map to SequenceValues
if (obj.isInstanceOfType(SMOF::ReflectiveSequence)) then
 Φ(obj).oclIsKindOf(SMOF::AbstractDomainModel::SequenceValue)

For all operations defined on classes in SMOF:

Φ(el.op(a1,.. ,an)) = Φ(el).Φ(op)(Φ(a1), ..., Φ(an))

For all properties defined on classes in SMOF:

Φ(el.attr) = Φ(el).Φ(attr)

Said in English, this means that the meaning of an operation or attribute applied to the element el is defined by the
meaning of the corresponding operation or attribute in the semantic domain, with the mapping function applied to all
of its arguments and results.

The following constraints and operations are introduced in the AbstractDomainModel package and apply to the
classes in the merged semantic domain model in addition to all constraints in UML Kernel.

MOF Support for Semantic Structures (SMOF), Beta 1 22

10.1.1 InstanceSpecification

Constraints
The classifiers can only be Classes or Associations.

context: InstanceSpecification
inv:
 classifier->forall(c | c.oclIsKindOf(Class) or c.oclIsKindOf(Association))

If the InstanceSpecification is not a Link, none of its classifiers are associations.

context: InstanceSpecification
inv:
 not self.oclIsKindOf(Link) implies classifier->forall(c | c.oclIsKindOf(Class))

All classifiers are non-abstract.
context: InstanceSpecification
inv:
 not classifier->exists(isAbstract)

There are no slots for derived or redefining properties.
context: InstanceSpecification
inv:
 not slot->exists(s |
 let p = s.definingFeature.oclAsType(Property) in p.isDerived or not p.redefinedProperty->isEmpty())

The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance
specification.
context: InstanceSpecification
inv:
 slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature)))

One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at
most one slot in an instance specification.
context: InstanceSpecification
inv:
 classifier->forAll(c | (c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)))

No two classifiers may be related by an Incompatibility.
context: InstanceSpecification
inv:
 classifier->forAll(c1 | not classifier->exists(c2 | c1 <> c2 and c1.isNotCompatibleWith(c2))

Every classifier must be related by Compatibility to another classifier.
context: InstanceSpecification
inv:
 classifier->forAll(c1 | classifier->forall(c2 | c1 = c2 or c1.isCompatibleWith(c2))

If any classifiers are implied, they are present.
context: InstanceSpecification
inv:
 classifier->forAll(c1 | c1.impliedClasses()->forall(c2 | classifier->includes(c2))

MOF Support for Semantic Structures (SMOF), Beta 1 23

Operations

container() : InstanceSpecification [0..1]
 pre:
 self.getContainers()->size() <= 1
 post:
 result = self.getContainers()->any(true)

getContainers() : InstanceSpecification [0..*]
 post:
 result = Link.allInstances()->select(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance = self
 and
 link.secondSlot.definingFeature.oclAsType(Property).isComposite)->collect(link |
 link.firstSlot. value.oclAsType(InstanceValue).instance)

getContainerForMetaClass(metaClass: Class) : InstanceSpecification [0..1]
 pre:
 Link.allInstances()->select(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance = self
 and
 link.secondSlot.definingFeature.oclAsType(Property).isComposite
 and
 metaClass.allParents()->including(metaClass)->includes(link.secondSlot.definingFeature.type)
)->collect(link |
 link.firstSlot. value.oclAsType(InstanceValue).instance).asSet()->size() <= 1

 post:
 result = Link.allInstances()->select(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance = self
 and
 link.secondSlot.definingFeature.oclAsType(Property).isComposite
 and
 metaClass.allParents()->including(metaClass)->includes(link.secondSlot.definingFeature.type)
)->collect(link |
 link.firstSlot. value.oclAsType(InstanceValue).instance).asSet()->any(true)

getMetaClasses() : Class [1..*] { ordered }
 post:
 result = self.classifier

getMetaClass() : Class
 pre:
 self.classifier->size() = 1
 post:
 result = self.classifier->one(true)

reclassify(oldMetaClass : Class[0..*], newMetaClass : Class[0..*])
 pre:
 not newMetaClass->exists(isAbstract)
 pre:
 not self.classifier->exists(oclIsKindOf(Association)) and
 not newMetaClass->exists(oclIsKindOf(Association))
 pre:

MOF Support for Semantic Structures (SMOF), Beta 1 24

 let classesToRemove = oldMetaClass – newMetaClass in
 let classesToAdd = newMetaClass – oldMetaClass in
 let classesToLeave = (classifier – classesToRemove)->union(classesToAdd) in
 classesToLeave->size() > 0
 and classesToLeave->forall(ctl1 | not classesToLeave->exists(ctl2 |
 ctl1 <> ctl2 and ctl1.isNotCompatibleWith(ctl2)))
 and classesToAdd->forall(addedClass |
 classesToLeave->exists(existingClass |
 addedClass <> existingClass and
 addedClass.isCompatibleWith(existingClass)))
 post:
 let classesToRemove = oldMetaClass – newMetaClass in
 let classesToAdd = newMetaClass – oldMetaClass in
 let classesToLeave = (classifier – classesToRemove)->union(classesToAdd) in
 classifier = classesToLeave->collect(ctl | ctl->impliedClasses())
 post:
 (slot@pre – slot)->forall(sl | self.clearSlot(sl.definingFeature.oclAsType(Property)))
 post:
 (slot – slot@pre)->forall(sl | sl.value = sl.definingFeature.oclAsType(Property).defaultValue)

reclassifyAll(newMetaClass : Class[1..*])
 pre:
 not newMetaClass->exists(isAbstract)
 pre:
 not self.classifier->exists(oclIsKindOf(Association)) and
 not newMetaClass->exists(oclIsKindOf(Association))
 pre:
 newMetaClass ->forall(nmc1 | not newMetaClass ->exists(nmc2 |
 nmc1 <> nmc2 and nmc1.isNotCompatibleWith(nmc2)))
 and newMetaClass ->forall(addedClass |
 newMetaClass->exists(existingClass |
 addedClass <> existingClass and
 addedClass.isCompatibleWith(existingClass)))

 post:
 classifier = newMetaClass->collect(ctl | ctl->impliedClasses())
 post:
 (slot@pre – slot)->forall(sl | self.clearSlot(sl.definingFeature.oclAsType(Property)))
 post:
 (slot – slot@pre)->forall(sl | sl.value = sl.definingFeature.oclAsType(Property).defaultValue)

get(prop: Property) : ValueSpecification
 pre:
 classifier.collect(ownedAttribute).asSet().includes(prop)
 pre:
 -- if a property redefines several other properties they all have the same value
 not prop.redefinedProperty->isEmpty() implies prop.redefinedProperty->forall(red1 |
 prop.redefinedProperty->forall(red2 | self.get(red1) = self.get(red2)))

 post:
 -- specify the type of the result
 prop.upper <> 1 implies result.oclIsKindOf(CollectionValue)
 and

MOF Support for Semantic Structures (SMOF), Beta 1 25

 prop.upper <> 1 and prop.isOrdered implies result.oclIsKindOf(SequenceValue)
 and
 prop.upper = 1 and prop.type.oclIsKindOf(Class) implies result.oclIsKindOf(InstanceValue)
 post:
 -- non-derived attributes
 self.slot->exists(definingFeature = prop) implies
 let v = self.slot->any(definingFeature = prop).value in
 if v->isEmpty() then result = prop.defaultValue else result = v
 post:
 -- derived properties
 prop.isDerived and not prop.isDerivedUnion implies result = evaluateDerivation(prop)
 post:
 -- derived unions
 prop.isDerivedUnion implies result = self->deriveUnion(prop)
 post:
 -- redefining properties
 not prop.redefinedProperty->isEmpty() implies result = self.get(prop.redefinedProperty->any(true))

set(prop: Property, value: ValueSpecification)
 pre:
 classifier.collect(ownedAttribute).asSet().includes(prop)
 pre:
 not prop.isDerived and not prop.isReadOnly
 pre:
 -- if a property redefines several other properties they all have the same value
 not prop.redefinedProperty->isEmpty() implies prop.redefinedProperty->forall(red1 |
 prop.redefinedProperty->forall(red2 | self.get(red1) = self.get(red2)))

 post:
 -- non-derived attributes
 self.slot->exists(definingFeature = prop) implies self.slot->any(definingFeature = prop).value = value
 post:
 -- redefined properties
 not prop.redefinedProperty->isEmpty() implies prop.redefinedProperty.forall(red | self.set(red, value))

isSet(prop: Property) : Boolean
 pre:
 classifier.collect(ownedAttribute).asSet().includes(prop)
 post:
 result = (not self.slot->any(definingFeature = prop).value->isEmpty())

unSet(prop: Property)
 pre:
 classifier.collect(ownedAttribute).asSet().includes(prop)
 post:
 self.slot->any(definingFeature = prop).value= prop.defaultValue

delete()
 post:
 self.slot->forall(sl | self.clearSlot(sl.definingFeature.oclAsType(Property)))

clearSlot(Property prop)
 post:

MOF Support for Semantic Structures (SMOF), Beta 1 26

 if prop.isComposite then
 link.allInstances()->select(link |
 link.firstSlot.value.oclAsType(InstanceValue).instance = self
 and
 link.secondSlot.definingFeature.oclAsType(Property).isComposite)->collect(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance)->forall(delete())

deriveUnion(Property prop) : ValueSpecification
 pre:
 prop.isDerivedUnion and prop.definingFeature.type.oclIsKindOf(Class)
 post:
 let linksSourcedOnSelf = Link.allInstances()->select(link |
 link.firstSlot.value.oclAsType(InstanceValue).instance = self)
 in let linksTargetedOnSelf = Link.allInstances()->select(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance = self)
 in let subsettingLinksSourcedOnSelf = linksSourcedOnSelf->select(link |
 self.allSubsettingProperties->includes(link.secondSlot.definingFeature.oclAsType(Property)))
 in let subsettingLinksTargetedOnSelf = linksTargetedOnSelf ->select(link |
 self.allSubsettingProperties->includes(link.firstSlot.definingFeature.oclAsType(Property)))
 in let allTargets = subsettingLinksSourcedOnSelf->collect(link |
 link.secondSlot.value.oclAsType(InstanceValue).instance)
 in let allSources = subsettingLinksTargetedOnSelf ->collect(link |
 link.firstSlot.value.oclAsType(InstanceValue).instance)
 in let allElements = allTargets ->union(allSources)
 in
 if allElements->size() = 1
 then
 result.oclIsKindOf(InstanceValue) and result = allElements->one(true)
 else
 result.oclIsKindOf(CollectionValue) and result.ocllAsType(CollectionValue).elements = allElements

evaluateDerivation(Property prop) : ValueSpecification
 -- return the result of evaluating the derivation expression according to the semantics of its language

10.1.2 Constraint

Constraints
None additional.

Operations

10.1.3 Class

Constraints
None additional.

Operations

allSlottableProperties() : Property [0..*]
post:
 result = self.ownedAttribute->select(prop |
 not prop.isDerived and prop.redefinedProperty->isEmpty()
)->union(superclass->collect(allSlottableProperties())

MOF Support for Semantic Structures (SMOF), Beta 1 27

isCompatibleWith(other : Class)
 pre:
 self <> other
 post:
 result =
 Compatibility.allInstances()->exists(cmp I cmp.check(self, other))
 or
 self.allParents()->includes(other)
 or
 other.allParents()->includes(self)

isNotCompatibleWith(other : Class)
 pre:
 self <> other
 post:
 result =
 Incompatibility.allInstances()->exists(inc | inc.check(self, other))

impliedClasses() : Class [1..*]
 post:
 result = Set{self} ->union(Compatibility.allInstances()->select(cmp |
 cmp.isRequired and
 (cmp.constrainedElement->at(1) = self or
 (cmp.isSymmetric and cmp.constrainedElement->at(2) = self)))->collect(cmp|
 cmp.constrainedElement->collect(el | oclAsType(Class))))

10.1.4 Property

Constraints

Derived unions are only defined for properties whose type is a class.
context: Property
inv:
 isDerivedUnion implies type.oclIsKindOf(Class)

Operations

allSubsettedProperties() : Property[0..*]
pre:
 self.type.oclIsKindOf(Class)
post:
 result = Property.allInstances()->select(prop |
 self.subsettedProperty->includes(prop) or
 self.subsettedProperty->collect(sub | sub.allSubsettedProperties->includes(prop))

allSubsettingProperties() : Property[0..*]
pre:
 self.type.oclIsKindOf(Class)
post:
 result = Property.allInstances()->select(prop | prop.allSubsettedProperties->includes(self))

10.1.5 Link

Constraints

MOF Support for Semantic Structures (SMOF), Beta 1 28

There is only one classifier and it is an association.
context: Link
inv:
 classifier->size() = 1 and classifier->one(true).oclIsKindOf(Association)

If a Link represents a composition, then secondSlot.definingFeature.isComposite is true
context: Link
inv:
 not firstSlot.definingFeature.oclAsType(Property).isComposite

The link slots are opposites
context: Link
inv:
 firstSlot.opposite = secondSlot and secondSlot.opposite = firstSlot

Operations

equals(otherLink : Link) : Boolean
post:
 result = (self.association = otherLink.association and
 self.firstSlot.value.oclAsType(InstanceValue).instance =
 otherLink.firstSlot.value.oclAsType(InstanceValue).instance and
 self.secondSlot.value.oclAsType(InstanceValue).instance =
 otherLink.secondSlot.value.oclAsType(InstanceValue).instance)

10.1.6 LinkSlot

Constraints

The value must evaluate to an element.
context: LinkSlot
inv:
 value.oclIsKindOf(InstanceValue)

Where the property is navigable, the instance slot is compatible with the link slot (i.e. look in the element found in
the opposite slot; if it has a slot with the same property then the value must be the same).
context: LinkSlot
inv:
 let oppositeElement = opposite.value.oclAsType(InstanceValue).instance in
 let property = definingFeature.oclAsType(Property) in
 let oppositeElementSlot = oppositeElement.slot->any(sl | sl.definingFeature = property) in
 not oppositeElementSlot ->isEmpty() implies
 oppositeSlot.value. oclAsType(InstanceValue).instance = value.oclAsType(InstanceValue).instance

Operations

None.

10.1.7 Slot

Constraints

The value is compatible with the multiplicity and type of the defining property

MOF Support for Semantic Structures (SMOF), Beta 1 29

context: Slot
inv:
 let prop = definingFeature.oclAsType(Property) in
 prop.upper <> 1 implies value.oclIsKindOf(CollectionValue)
 and
 prop.upper <> 1 and prop.isOrdered implies value.oclIsKindOf(SequenceValue)
 and
 prop.upper = 1 and prop.type.oclIsKindOf(Class) implies value.oclIsKindOf(InstanceValue)

Operations

None.

10.1.8 Incompatibility

Constraints
The constrainedElement collection contains two different elements.

context: Incompatibility
inv:
 self.constrainedElement->size() = 2
 and
 constrainedElement->at(1) <> constrainedElement->at(2)

The specification is a LiteralBoolean with value true.

context: Incompatibility
inv:
 self.specification.oclIsKindOf(LiteralBoolean)
 and
 self.specification.oclAsType(LiteralBoolean).value = true

Operations

check(first : Class, second: Class) : Boolean
 pre:
 first <> second
 post:
 result = constrainedElement->includes(first) and constrainedElement->includes(second)

10.1.9 Compatibility

Constraints
The constrainedElement collection contains two different elements.

context: Compatibility
inv:
 self.constrainedElement->size() = 2
 and

MOF Support for Semantic Structures (SMOF), Beta 1 30

 constrainedElement->at(1) <> constrainedElement->at(2)

Operations

evaluate() : Boolean
-- evaluate the specification as a Boolean expression in the context of the first constrained element

check(first : Class, second: Class) : Boolean
 pre:
 first <> second
 post:
 result = self.evaluate() and
 ((constrainedElement->at(1) = first and constrainedElement ->at(2) = second) or
 (self.isSymmetric and
 constrainedElement ->at(2) = first and constrainedElement ->at(1) = second))

10.1.10 Factory

Constraints

None.

Operations

createElement(class: Class, arguments : Argument[0..*]) : InstanceSpecification
pre:
 arguments->forall(value.oclIsKindOf(LiteralSpecification))
pre:
 arguments->forall(arg | class.member->includes(arg.property))

post:
 class.allSlottableProperties->forall(prop | result.slot->one(definingFeature = prop))
post:
 arguments->forall(arg | result.slot->one(definingFeature = arg.property).value = arg.value)
post:
 let argInitializedSlots =
 arguments->collect(arg | result.slot->one(definingFeature = arg.property))
 in
 (result.slot – argInitializedSlots)->forall(slot |
 slot.value = slot.definingFeature.oclAsType(Property).defaultValue)

createLink(ass : Association, first : InstanceSpecification, second : instanceSpecification) : Link
pre:
 (first.classifier->includes(ass.memberEnd->at(1).type)
 and
 second.classifier->includes(ass.memberEnd->at(2).type))
or
 (first.classifier->includes(ass.memberEnd->at(2).type)
 and
 second.classifier->includes(ass.memberEnd->at(1).type))

post:

MOF Support for Semantic Structures (SMOF), Beta 1 31

 result.firstSlot.oclAsType(InstanceValue).instance = first
and
 result.secondSlot.oclAsType(InstanceValue).instance = second
or
 result.firstSlot.oclAsType(InstanceValue).instance = second
and
 result.secondSlot.oclAsType(InstanceValue).instance = first

post:
 ass.memberEnd.any(isComposite) implies
 result.secondSlot.definingFeature.oclAsType(Property).isComposite

MOF Support for Semantic Structures (SMOF), Beta 1 32

11 Semantic MOF Profile

11.1 Overview
The following UML profile elements are provided to enable a SMOF meta model to be specified in standard UML.
The essential features of this profile are to manage when a MOF instance may be, must be or may not be classified
by any two classifiers.

Figure 7 - SMOF Profile

11.2 Stereotype Descriptions

11.2.1 AspectOf

Package:
Stereotype of: Generalization

Description

It is common within a model to have a type of instance that may be categorized by any combination of subclasses
and these subclasses may change over time. The additional classes represent aspects of the instance that may be
added or removed during the life-cycle of the object. These additional classes, or aspects, of an object may be
combined in arbitrary ways, except as may be prevented by a constraint or “IncompatibleWith” dependency.

Where AspectOf exists between two classes it is then permissible to add or remove the subtype during the lifetime of
an instance. Alternatively, if AspectOf does not exist between two classes the subtype can not be added or removed
from an instance. This represents a more conservative default than, say, OWL which allows any resource to be
classified by any class unless otherwise constrained.

MOF Support for Semantic Structures (SMOF), Beta 1 33

“AspectOf” is a stereotype of generalization which specifies that the aspect is a subtype of the target class and that
the subtype may be added or removed at runtime. The Generalization with the AspectOf stereotype may have a
Constraint (using normal UML modeling) to limit when the aspect may be applied.

Applying «AspectOf» to a Generalization from A to B is exactly equivalent to, and a shorthand for, creating a
«CompatibleWith» Dependency with A as client and B as supplier and isSymmetric=’false’.

When the subtype/aspect is added, the element remains directly classified by the superclass as well as the subclass.
So, for example, oclIsKindOf() will be true for both the superclass and the subclass.

A Generalization that is not stereotyped as an aspect uses the more common “object oriented programming”
semantics where an object must be created with a single type that can not be changed. Generalization with
«AspectOf» applied (or linked by a «CompatibleWith» Dependency) corresponds more closely to the semantics of
RDFS and OWL in that whatever is being modeled may be classified by any number of aspects, each with its own
class.

Note that in MOF-2 subtypes are assumed to be non-overlapping (like Java or C#). Aspects are required to specify
when the broader concept of generalization applies – that the same modeled individual may be classified in multiple
ways. Base UML has the broader interpretation of generalization: AspectOf make the distinction specific.

Attributes

isRequired : Boolean = false isRequired causes instances of the superclass to be automatically
classified by the subclass provided any constraints on the superclass
relation are true. If isRequired is false instances are allowed to, but not
required to, add the subclass using the reclassify operations on the
instance.
Where isRequired is true, instances of the superclass that comply with
the constraint (if any) will implicitly be classified with the subclass and
declassified when the constraint (if any) becomes false. If there is a
constraint the set of instances of the subclass will be that subset of the
superclass set of instances where the constraint holds true.
Where the aspect is required with no constraints, all instances of the
superclass will be instances of the subclass.

SMOF Metamodel Effect

In addition to creating the “superClass” relation as normal,
a Compatibility constraint is created, owned by the subtype.
The ConstrainedType property is set with the subclass as
the first element and the superclass as the second element.
The isRequired property of the Compatibility constraint is
set to the corresponding property value of the AspectOf
stereotype

MOF Support for Semantic Structures (SMOF), Beta 1 34

Example

The above model demonstrates the use of AspectOf applied to generalization. A person may be a “Licensed”
Driver” and/or a “Parent”. Within the lifetime of a Person they may become a parent or a licensed driver and may be
both at the same time. All of the features and constraints of person apply to both licensed drivers and parents. Since
they are subtypes, the age and any other parent properties are visible in both “Parent” and “Licensed Driver”.

11.2.2 CompatibleWith

Package:
Stereotype of: Dependency

Description

It is common within a model to have a type of instance that may be categorized by any combination of other classes.
The additional classes of an instance may be added or removed during the life-cycle of the object. These additional
classes of an object may be combined in arbitrary ways, except as may be prevented by a constraint or
“IncompatibleWith” statement.

 “CompatibleWith” is a stereotype of Dependency and specifies that an instance may be classified by both classifiers
and that the classifiers may be added or removed at runtime. The CompatibleWith dependency may have a
constraint to limit when the compatibility holds.

Where CompatibleWith exists between two classes it is then permissible to add or remove the clientt classifier
during the lifetime of an instance of the supplier classifier – that is you can add the subject classifier. Alternatively,
if AspectOf or CompatibleWith does not exist between two classes (or their supertypes) an instance may not be
explicitly classified by both classes (A class always implicitly classifies an instance by all superclasses of such a
class). This represents a more conservative default than, say, OWL which allows any resource to be classified by
any class unless otherwise constrained.

Attributes

isRequired : Boolean = false isRequired causes instances of the client class to be automatically
classified by the supplier class provided any constraints on the
isCompatible dependency are true. If isRequired is false instances are
allowed to, but not required to, become instances of the client class
using the reclassify operations on the instance.

MOF Support for Semantic Structures (SMOF), Beta 1 35

isSymmetric : Boolean = false isSymmetric is equivalent to having two CompatibleWith Dependencies
where the inverse isCompatibleWith dependency is implied. The
constraint, if any, is evaluated in the context of the first constrained
element, but applies in both directions.

Constraints

[1] The source and target of the dependency must be types.

SMOF Metamodel Effect

A Compatibility constraint is created. Owned by the client
class The constrainedType relation is set with the client
class as the first element and the supplier class as the second
element. The isRequired and isSymmetric properties of the
Compatibility constraint are set to the corresponding
property values of the CompatibleWith stereotype.

Example

The “Record club member” class may be added to a person – the classes are compatible as classifiers of any one
instance.

11.2.3 IncompatibleWith

Package:
Stereotype of: Dependency

Description

“IncompatibleWith” specifies that two classes may not classify the same instance. Any attempt to have an instance
classified by both results in an exception.

With so many options to multiply classify model elements based on aspects it is frequently required to prevent
various combinations. IncompatibleWith specifies these illegal combinations.

Attributes

none

Constraints

[1] The client and supplier of the dependency must be types.

MOF Support for Semantic Structures (SMOF), Beta 1 36

SMOF Metamodel Effect

An Incompatibility constraint is created, owned by the
client class. The constrainedType property is set with the
client class as the first element and the supplier class as the
second element.

Example

The above model fragment states that a Person can’t be a Beverage.

11.2.4 EquivalentClass

Package:
Stereotype of: Dependency

Description

An «EquivalentClass» Dependency asserts that two classes have the same set of instances – that is that every
instance of one class is an instance of the other. Equivalent class is frequently used when there are multiple names
or representations of the same set of things.

This is shorthand for, and exactly equivalent, to applying the «CompatibleWith» stereotype to the same Dependency
and setting isRequired and isSymmetric to true.

EquivalentClass in SMOF has the same intent as equivalentClass in OWL.

Attributes

none

Constraints

[1] The client and supplier of the dependency must be types.

MOF Support for Semantic Structures (SMOF), Beta 1 37

SMOF Metamodel Effect

A Compatibility constraint is created owned by the client
class. The constrainedType relation is set with the client
class as the first element and the supplier class as the second
element. The isRequired & isSymmetric properties as well
as the specification of the Compatibility constraint are set to
true.

Example

The above model states that people and humans are the same thing – all people are humans and all humans are
people. It does not, however, merge these classes.

MOF Support for Semantic Structures (SMOF), Beta 1 38

12 Changes to the XMI Serialization
Normally XMI element names are derived from the metamodel names: the root XMI element uses a metaclass name
and the other elements use the name of the Property used to link the element to its container, with the xmi:type
attribute indicating the actual metaclass (for single-inheritance metamodels xsi:type can be used).

xmi:ids only need to be unique within a document, and there is nothing to stop many xmi:ids being used for the same
element in either the same, or different documents: they are all unified through using the same xmi:uuid. Though the
use of xmi:uuid is generally optional in XMI, it is needed in such cases.

To allow the serialization of multiple classifications for an element, SMOF makes use of this existing mechanism
with a separate XML element per class applied to a model element. Thus no changes are required to the XMI
specification, and importers can deal with XMI documents from SMOF as they do with any other XMI document.

For example:

<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/20100101"
 xmlns:uml="http://www.omg.org/spec/XMI/20100101"
 xmlns:bpmn="http://www.omg.org/spec/BPMN/20100101">
 <uml:Package name="P1" xmi:id="x1" xmi:type="uml:Package">
 <packagedElement xmi:id="x2" xmi:uuid="myorg.models.m555.e123” name="myClass"
 xmi:type="uml:Class">

 ... content related to uml:Class

 </packagedElement>
 </uml:Package>
 <bpmn:Definitions name = "Defs1" xmi:id="x3" xmi:type="bpmn:Definitions">
 <rootElements xmi:id="x4" xmi:uuid="myorg.models.m555.e123" name="myProcess"
 xmi:type=”bpmn:Process”>
 ...content related to bpmn:Process
 </rootElements >
 </bpmn:Definitions>
</xmi:XMI>

Note: in the above, the ‘name’ properties for the uml:Class and bpmn:Process are different

Alternatively, the individual metaclass-related aspects could be serialized in different XMI files.

The above also represents one option for serializing multiple ownership (the same element having multiple
composite owners through being multiple classified). Another option is to serialize the MOF Associations: this
example uses a combination of XML nesting and an Association element in the same file; alternatively they could be
in separate files with a href rather than an xmi:idref used:

<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/20100101"
 xmlns:uml="http://www.omg.org/spec/XMI/20100101"
 xmlns:bpmn="http://www.omg.org/spec/BPMN/20100101">
 <uml:Package name="P1" xmi:id="x1" xmi:type="uml:Package">
 <packagedElement xmi:id="x2" xmi:uuid="myorg.models.m555.e123” name="myClass"
 xmi:type="uml:Class">

 ... content related to uml:Class

 </packagedElement>
 </uml:Package>
 <bpmn:Definitions name = "Defs1" xmi:id="x3" xmi:type="bpmn:Definitions"/>

MOF Support for Semantic Structures (SMOF), Beta 1 39

 <bpmn:Process xmi:id="x4" xmi:uuid="myorg.models.m555.e123" name="myProcess"
 xmi:type=”bpmn:Process”>
 ...content related to bpmn:Process
 </bpmn:Process>
 <bpmn:A_definitions_rootElements>
 <definition xmi:idref="x3"/>
 <rootElements xmi:idref="x4"/>
 </bpmn:A_definitions_rootElements>
</xmi:XMI>

In the case where more than one metaclass shares the same property, the shared slots must be separately, and
somewhat redundantly, serialized for each metaclass.

In order to provide control over how the metaclass aspects are serialized, additional options are added to the export
option. Since this control over serialization is applicable to non-SMOF facilities, this represents a change to the
general MOF Facility and Object Lifecycle specification.

In detail the change is as follows:

Add the following properties to the ExportOptions data type in section 6.10.3.2.1:

onlyPackages:Package[0..*] If a value is supplied for this property, only direct instances of classifiers
in the specified packages are included in the export (in addition to those
explicitly specified through onlyClassifiers).

onlyClassifiers: Classifier[0..*] If a value is supplied for this property, only instances of the specified
classifiers are included in the export, in addition to those specified
through the onlyPackages property. Unlike that other property,
specifying Classifiers in this property includes subtypes.

MOF Support for Semantic Structures (SMOF), Beta 1 40

