
Date: December 2010

Architecture-Driven Modernization (ADM):
Structured Metrics Meta-Model (SMM)

FTF - Beta 2

__

OMG Document Number: ptc/2010-11-32

Standard document URL: http://www.omg.org/spec/SMM/1.0/PDF

Associated File(s)*: http://www.omg.org/spec/SMM/20101135

 http://www.omg.org/spec/SMM/20101136

* Original file(s): XMI (admtf/08-05-05), XSD (admtf/08-06-05)

This OMG document replaces the submission document (admtf/10-02-12, Beta2). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content
of this document are welcome, and should be directed to issues@omg.org by April 1, 2011.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on July 1, 2011. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

http://www.omg.org/spec/SMM/20101136

Copyright © 2010, Benchmark Consulting

Copyright © 2010, eCube Systems, LLC

Copyright © 2010, Electronic Data Systems

Copyright © 2010, KDM Analytics

Copyright © 2010, Object Management Group, Inc.

Copyright © 2010, Software Revolution

Copyright © 2010, Tactical Strategy Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change

without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed

to have infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this specification. This limited permission automatically terminates without notice if

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph

(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as

specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.

12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners

are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,

Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are

registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified

Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA

logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,

and OMG SysML™ are trademarks of the Object Management Group. All other products or company names

mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these

materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software

satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/technology/agreement.)

 Structured Metrics Meta-Model, FTF 2 i

Table of Contents

1 Scope .. 1

2 Conformance .. 1

3 Normative References ... 2

4 Terms and Definitions .. 2

5 Symbols ... 2

6 Additional Information .. 2

6.1 Changes to Adopted OMG Specifications .. 2

6.2 How to Read this Specification ... 2

6.3 Acknowledgments ... 3

7 SMM ... 3

7.1 General Usage Notes (Non normative) ... 4

7.2 Steps in using SMM (Non normative) .. 4

7.3 Interpreting Measures (Informative) ... 4

8 Core Classes ... 5

8.1 SmmElement Class (Abstract) .. 7

8.2 SmmModel Class .. 8

8.3 SmmRelationship Class (abstract) .. 8

8.4 MeasureLibrary Class ... 8

8.5 MeasureCategory Class ... 9

8.6 CategoryRelationship .. 9

8.7 Date ... 10

8.8 Timestamp ... 10

9 Extensions .. 11

9.1 Attribute Class ... 11

9.2 Annotation Class ... 12

10 Measures .. 12

10.1 AbstractMeasureElement Class (abstract) ... 14

10.2 Characteristic Class ... 15

10.3 Scope Class .. 15

10.4 Measure Class (abstract) .. 16

10.5 Operation Class.. 18

10.6 OCLOperation Class.. 19

10.7 MeasureRelationship Class (abstract) ... 19

10.8 EquivalentMeasureRelationship Class .. 19

10.9 RefinementMeasureRelationship Class ... 20

10.10 RecursiveMeasureRelationship Class .. 21

10.11 DimensionalMeasure Class ... 21

10.12 Ranking Class .. 22

10.13 RankingMeasureRelationship .. 22

10.14 RankingInterval Class.. 22

11 Collective Measures ... 23

11.1 CollectiveMeasure Class ... 25

11.2 Accumulator data type (enumeration) ... 26

11.3 DirectMeasure Class ... 26

11.4 Counting Class .. 26

11.5 BinaryMeasure Class... 27

11.6 Ratio Class... 28

11.7 BaseMeasureRelationship Class ... 28

11.8 Base1MeasureRelationship Class ... 28

11.9 Base2MeasureRelationship Class ... 28

12 Other Measures .. 29

12.1 NamedMeasure Class .. 29

12.2 RescaledMeasure Class ... 30

12.3 RescaledMeasureRelationship Class ... 30

13 Measurements .. 30

13.1 Measurement Class (abstract) .. 31

13.2 MeasurementRelationship Class (abstract) ... 32

13.3 EquivalentMeasurementRelationship .. 32

13.4 RefinementMeasurementRelationship Class ... 33

13.5 RecursiveMeasurementRelationship Class.. 33

13.6 DimensionalMeasurement Class ... 33

13.7 Grade Class .. 34

RankingMeasurementRelationship Class .. 35

 Structured Metrics Meta-Model, FTF 2
iii

14 Collective Measurements... 35

14.1 CollectiveMeasurement Class ... 36

14.2 DirectMeasurement Class .. 37

14.3 Count Class .. 37

14.4 BinaryMeasurement Class ... 37

14.5 RatioMeasurement Class ... 38

14.6 BaseMeasurementRelationship Class .. 38

14.7 Base1MeasurementRelationship Class .. 38

14.8 Base2MeasurementRelationship Class .. 38

15 Named and Rescaled Measurements ... 39

15.1 NamedMeasurement Class .. 39

15.2 RescaledMeasurement Class ... 39

15.3 RescaledMeasurementRelationship Class ... 40

16 Observations .. 40

16.1 Observation Class .. 41

16.2 ObservationScope Class .. 42

16.3 ObservedMeasure Class .. 43

16.4 Argument Class ... 43

17 Historic and Trend Data (Non-Normative) .. 44

18 Inaccuracy (Non-Normative) ... 44

19 Library of Measures (Non-Normative) ... 46

19.1 Various Counts ... 46

19.1.1 Module Count .. 46

19.1.2 Screen Count .. 49

19.1.3 Method Count .. 52

19.1.4 Lines of Code ... 53

19.1.5 Lines of Code for ASTM ... 57

19.2 McCabe .. 58

19.2.1 Branching Factor of ActionElements and Modules ... 58

19.2.2 Cyclomatic Complexity of a Module ... 59

19.2.3 Extended Cyclomatic Complexity of a Module ... 60

19.2.4 Average Extended Cyclomatic Complexity of Modules in the System 60

 Ratio of Additive ECC over Additive Counting of modules. .. 60

19.3 Counts of Operating Systems .. 60

19.4 Halstead ... 62

19.4.1 Distinct Operator Count of a Module .. 62

19.4.2 Distinct Operand Count of a Module ... 63

19.4.3 Operator Occurrence Count of a Module... 63

19.4.4 Operand Occurrence Count of a Module ... 63

19.4.5 Halstead Length of a Module ... 63

19.4.6 Halstead Vocabulary of a Module .. 63

19.4.7 Halstead Volume of a Module .. 63

19.5 Software Engineering Institute (SEI) Maintainability Index ... 67

19.6 Qualitative Example .. 72

19.6.1 Non-standard language usage score ... 72

20 Library of Categories (Software example) .. 73

 SMM does not establish a standard set of measurement categories that presents an organization

of measures applicable to every environment or every engineering activity. SMM minimally

establishes a demonstration library of metric categories. The library does not assert that the given

categories are standards. These metric categories reflect a high-level summary of industry metrics

that support some engineering processes. .. 73

20.1 Environmental Metrics .. 73

20.2 Data Definition Metrics ... 73

20.3 Program Process Metrics ... 73

20.4 Architecture Metrics .. 73

20.5 Functional Metrics ... 74

20.6 Quality / Reliability Metrics .. 74

20.7 Performance Metrics .. 74

20.8 Security / Vulnerability .. 74

 Structured Metrics Meta-Model, FTF 2 v

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable, and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG‟s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG‟s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog

is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

1. UML

 MOF

 XMI

 CWM

 Profile specifications

OMG Middleware Specifications

1. CORBA/IIOP

 IDL/Language Mappings

 Specialized CORBA specifications

 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

1. CORBAservices

 CORBAfacilities

 OMG Domain specifications

 OMG Embedded Intelligence specifications

 OMG Security specifications

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing OMG

specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

http://www.iso.org/
http://www.iso.org/

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 1 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 1

1 Scope

This specification defines a meta-model for representing measurement information related to any model

structured information with an initial focus on software, its operation, and its design. Referred to as the

Structured Metrics Meta-model (SMM), this specification is an extensible meta-model for exchanging both

measures and measurement information concerning artifacts contained or expressed by structured models, such

as MOF.

The SMM include elements representing the concepts needed to express a wide range of diversified measures.

The specification does include a minimal library of software measures, but it is not asserting that the listed

measures constitute standards themselves; these are supplied simply as non-normative examples.

The SMM is a specification for the definition of measures and the representation of their measurement results.

The measure definitions make up the library of measures and that serves to establish the specification upon

which all of the measurements will be based.

The SMM is part of the Architecture Driven Modernization (ADM) roadmap and fulfills the metric needs of

the ADM roadmap scenarios as well as other information technology scenarios.

The SMM specifies the representation of measures without detailing the representation of the entities

measured. SMM anticipates that those entities are represented in other OMG meta-models. Measures of

software artifacts or their features that are defined within the SMM, the Knowledge Discovery Metamodel

(KDM), the Abstract Syntax Tree Metamodel (ASTM), another ADM roadmap meta-model or another OMG

meta-model may arise as:

 Counts. (Lines of code measures exemplify the mechanism.)

 Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

 Simple algebraic change of scales of already defined numeric measures (e.g. the translation to „choice

points‟ from Cyclomatic complexity).

 Simple algebraic aggregations of numeric artifact features, including other measures, over sets of

software artifacts. (Determining the complexity of an application by summing the complexities of the

application‟s elements demonstrates this process.)

 Simple range-based grading or classification of already defined numeric measures. (Cyclomatic

reliable/unreliable quadrants are one such a grading.)

 Qualitative evaluations where the range of evaluations can be mapped to a linear order.

Useful metrics must go beyond static (or dynamic) code analysis and technical performance to include factors

related to information utility and acceptance of the system by the organization(s) participating in an enterprise.

To be objective and repeatable, such metrics need to be based on technical characteristics of the system. Given

a meta-model representation of such characteristics, the SMM will facilitate the exchange of such measures.

Given the evolutionary nature of system development and the predicate value of metrics with respect to

“downstream” problems, metrics are gathered into trends or viewed from historical perspective. As shown in

Section Historic and Trend Data, SMM addresses the issues of trend and history to model for system

development as long as the historical links of the measured entities are provided.

Consistent with other models defined by OMG, the SMM will be defined using the MOF meta-modeling

language. As such, it will have a standard textual representation presented by XMI. Consequently, the

exchange of metrics defined by SMM will be in the XMI. These models will, similarly, be compatible with

MOF repositories for storage and retrieval by various tools.

2 Conformance

The principle goal of SMM is the exchange of measurements about software. To be SMM compliant, a tool

must fully support SMM as one compliance point. An implementation can provide:

2 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

 The capability to generate XMI documents based on the SMM XMI schema capturing measurements

from the existing model of the tool.

 The capability to import measurements via representations based on the SMM XMI schema and to map

the measurements into the existing model of the tool.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute

provisions of this specification. For dated references, subsequent amendments to, or revisions of any of these

publications do not apply.

 UML 2. Infrastructure Specification

 MOF 2.0 Specification

 OCL 2.2 Specification

4 Terms and Definitions

We assume the following definitions:

Measure: A method assigning comparable numerical or symbolic values to entities in order to characterize an

attribute of the entities.

Measurement: A numerical or symbolic value assigned to an entity by a measure.

Measurand: An entity quantified by a measurement.

Unit of Measure: A quantity in terms of which the magnitudes of other quantities within the same total order

can be stated.

Dimension: A totally ordered range of values which can be stated as orders of magnitude relative to one

another or to an archetypal member.

Measurement Accuracy: The measurement by which another measurement may be wrong.

Measurement Scope: The domain (set of entities) to which a given measure may be applied.

Measurement Range: The range (set of comparable values) assignable by a given measure.

5 Symbols

There are no symbols/abbreviations.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Although the chapters are organized in a logical manner and can be read sequentially, this reference

specification is intended to be read in a non-sequential manner. Consequently, extensive cross-references are

provided to facilitate browsing and search.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 3 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 3

6.3 Acknowledgments

The following companies submitted and/or supported parts of this specification:

 EDS

 Benchmark Consulting

 KDM Analytics

 Software Revolution

 Tactical Strategy Group

 NIST

 eCube Systems

The following persons were members of the core team that designed and wrote this specification: Kevin

Barnes, Djenana Campara, Larry Hines, Nikolai Mansurov, Alain Picard, John Salasin, Michael Smith, and

William Ulrich.

7 SMM

Measurements provide data for disciplined engineering in that engineers and their managers rely on these

comparable evaluations in assessing the static and operational qualities of systems.

For example, software measurement methods produce comparable evaluations of software or application

artifacts. Counts such as number of screens, lines of code and number of methods quantify the size of artifacts

along a single dimension. These evaluations readily distinguish larger artifacts from smaller ones; likewise

complexity metrics such as Halstead and Cyclomatic separate the simpler artifacts from the more complex.

Comparable evaluations form mappings of artifacts of a given type into a single dimension.

Such is also the case for architecture measures (coupling and cohesion); functional measures (functions

defined in system, persistent data as a percentage of all data, functions in current system that map to functions

in target architecture); quality measures (failures per unit time, meantime to failure, meantime between repair);

performance measures (average batch window clock time, average online response time); software assurance

measures; and cost measures.

Predictive metrics provide a basis for continual system-level in contrast to fixed milestone-based assessments.

These metrics may indicate at some future development stage the probability that the system will or will not

meet its requirements.

This specification defines a meta-model for representing measurement related to structured model assets and

their operational environments referred to as the Structured Metrics Meta-model (SMM).

The SMM promotes a common interchange format that will allow interoperability between existing tools,

commercial services providers and their respective models. This common interchange format applies equally

well to development and maintenance tools, services and models. SMM complements a common repository

structure and so facilitates the exchange of data currently contained within individual tool models that

represent modeled assets. Given that the repository‟s meta-model represents the physical and logical modeled

assets at various levels of abstraction as entities and relations, SMM represent the measurements of these

assets.

The main goals for the SMM are to provide an extendable meta-model establishing a standard for the

interchange of measure libraries and structured model related measurements over the entities modeled by

OMG meta-models. By structured model, we mean measurements derived from the structure model artifacts

(that is those artifact that are modeled according to the MOF meta-model approach). SMM contains meta-

model classes and associations to model measurements, measures and observations. We present and explain

diagrams depicting measures, then measurements and finally observations. All initial depictions are in terms of

software measurement, but the specification is not limited to representing those modeled elements.

4 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

SMM supports the meta-models of the OMG by providing for extendable measurements of entities.

7.1 General Usage Notes (Non normative)

The SMM is designed to allow for both the exchange of measurement data, as well as the measures upon

which those measurements were established.

Even though there exists a mechanism whereby someone can essentially exchange measurement data without

providing any insight into the measures (accomplished with NamedMeasure), this approach is surely not the

major trust of this specification.

The value of SMM comes from the ability of various groups and vendors to be able to define library of

measures against different structured models. These libraries can then be exchanged, validated and then used to

produce measurements of specific model instances.

In order to exchange measure libraries, the definition of those libraries has to be precise and detailed enough to

enable for their unambiguous use in carrying out measurements on models.

While SMM compliance doesn‟t mandate how to gather measurements from defined measures, it is clear that

without any common understanding measures loose most of their value. This section should help to facilitate

the understanding of the specification and also provide some background that will help in applying the

specification more uniformly.

7.2 Steps in using SMM (Non normative)

In general, using the SMM starts with the definition of measures and their libraries. In the case of measures

being applied to standard models, these measure libraries could also be pre-defined and made available to

various practitioners.

How we proceed next very much depends on the type of environment that the tools are operating in. Tools that

are simply using the SMM as a mean of interchanging measurement data will take some measurements, along

with the details about the Observation that resulted in those measurements, populate the model and deliver the

results.

Other tools that are designed more natively with the SMM in mind will take a bit of a different multi-steps

process.

Once we have our measures in place, the next step is to determine what we will be measuring. This is what we

call defining the observation. Among other things this will include specifying the model(s) to use

(ObservationScope) for taking the measures, as well as determining which measures we are interested in

performing (requestedMeasures). It can also include determining and passing in any arguments that might be

needed by our requestMeasure(s) and their descendants.

Next step is to apply the requested measure(s) on the model(s) in scope and to figure out the measurements.

Once that is done, the resulting model is ready to be used or exchanged.

The step of applying the measure, the “measurement step” is clearly one that can take on many forms

depending on the implementer. But regardless of how the process is carried out, the measure library should

provide sufficient information for a tool vendor to implement “executable measuring”. This “executable

measuring” should enable another tool vendor, presented with the same measure libraries, observation

information and instance models, to be able to apply those measures in an unambiguous fashion and to come

up with the same measurements (subject to uncertainty errors).

7.3 Interpreting Measures (Informative)

Measures essentially fall into 2 “categories”, there are direct measures, which are measures that are taken

directly against a measurand, and all others, which we shall call derived measures, as their result is based on

some other measure(s), direct or derived. Ultimately, every measure comes from a direct measure (otherwise it

might end up triggering a defaultQuery for its value).

In order to support many type of measure refinement, where you have a drill-down of measures representing

the collective aggregation of values in a top-down fashion, and also in order to make sure that derived

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 5 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 5

measures are correctly linked to their base measure(s), the establishment of a measurement graph shall be

considered to essentially be a top-down operation.

In contrast, the taking of measurements to realize such a measurement graph, is normally a bottom-up

operation, where the direct measures are first calculated, in order for the various next levels of derived

measures to have all of the base measures calculated prior to being calculated themselves.

class Fundamental Approach

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]

+ measurementLabelFormat: string [0..1]

+ scale: MeasurementScale

+ visible: boolean [0..1]

+ getAllArguments() : Argument[0..*]

+ getArguments() : Argument[0..*] A

Measurement

- breakValue: string [0..1]

+ error: string [0..1]

+ getMeasureLabel() : string

+ getMeasurementLabel() : string

Observ ation

+ observer: string [0..1]

+ tool: string [0..1]

+ whenObserved: Date [0..1]

Observ ationScope

- scopeUri: string

MofElement

SmmRelationship

Observ edMeasure

SmmElement

- description: string

- name: string

- shortDescription: string

+ getInbound() : SmmRelationship[0..*]

+ getOutbound() : SmmRelationship[0..*]

0..*

+measure 1

+observedMeasures

0..*

+scopes 0..*

+measurements 0..*

0..*

+measurand

1

0..*

+requestedMeasures

0..*

Figure 1 Fundamental Approach

SMM avoids duplicating features of the measured artifact as features of the measurement. Consider as an

example a log of bug reports. Possible measures are total bug count in the log, total time logged in the log and

bugs per time-period. The units of measures are a bug, a unit of time and bugs per time interval, respectively.

SMM does not provide representations for bug, start time and end time. Their representations must be provided

elsewhere
1
.

A measurement result is precisely identified only if its measure is identified. To understand the meaning of

1000 lines we need to know that it is the result of measuring a program‟s length in lines. The measured entity

must be identified. That is, 1000 lines is for a particular program. Contextual information may also be needed.

For example, function point counts of a program may vary depending upon the expert applying the measure.

Figure 1 presents the fundamental approach of this specification. Measurement has a value conveying the

measurement results. The measurement may be of any MOF element as related by the measurand association.

In this way, measurement is applicable to elements of any OMG meta-models including the Knowledge

Discovery Meta-model and the Abstract Syntax Tree Meta-model. The measured entity may represent any

software artifact or an aspect of an artifact.

The SMM associates an evaluation process, a measure, to each of the measurement. Measures signify

functions from the domain of the modeled artifacts and aspects thereof to sets of ordered values.

Contextual information is related by Observation, such as who, where and when. Observation may serve to

distinguish distinct utilizations of a given measure on a given measurand.

8 Core Classes

1
 For example, the General Ledger Specification v1.0 provides representations for start_date and end_date.

6 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

 class Core Classes

SmmModel
SmmElement

- description: string

- name: string

- shortDescription: string

MeasureLibrary

Observ ation

+ observer: string [0..1]

+ tool: string [0..1]

+ whenObserved: Date [0..1]

SmmRelationship

Observ edMeasure

Measurement

- breakValue: string [0..1]

+ error: string [0..1]

+ getMeasureLabel() : string

+ getMeasurementLabel() : string

Measure

+ measureLabelFormat: string [0..1]

+ measurementLabelFormat: string [0..1]

+ visible: boolean [0..1]

+ getAllArguments() : Argument[]

+ getArguments() : Argument[] A

MeasureCategory

SmmRelationship

CategoryRelationship

AbstractMeasureElement

SmmRelationship

MeasureRelationship

Scope

+ class: string

Characteristic

Observ ationScope

- scopeUri: string

0..*

+/to 1

+libraries 0..*

0..*

+requestedMeasures

0..*

+observations

0..*
+observedMeasures

0..*

0..*

+measure 1

+measurements 0..*

+categoryMeasure

0..*

+category

0..*

0..*

+scope 1

+scopes 0..*

0..*

+/from
1

+categoryRelationships

0..*

+measureElements

0..*

+/outbound

0..*

{union}

+/from

1

{union}

+/inbound

0..*

{union}

+/to

1

{union}

+measureRelationships

0..*

+parent 0..1

+trait 1

0..*

+categoryElement 0..*

+category 0..*

Figure 2 Core Classes Diagram

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 7 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 7

class Core Relationship Classes

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]

+ measurementLabelFormat: string [0..1]

+ scale: MeasurementScale

+ visible: boolean [0..1]

+ getAllArguments() : Argument[0..*]

+ getArguments() : Argument[0..*] A

Observ ation

+ observer: string [0..1]

+ tool: string [0..1]

+ whenObserved: Date [0..1]

Measurement

- breakValue: string [0..1]

+ error: string [0..1]

+ getMeasureLabel() : string

+ getMeasurementLabel() : string

Observ edMeasure

Equiv alentMeasureRelationship

MeasureRelationship

SmmRelationship

+ getFrom() : SmmElement

+ getTo() : SmmElement

SmmElement

- description: string

- name: string

- shortDescription: string

+ getInbound() : SmmRelationship[0..*]

+ getOutbound() : SmmRelationship[0..*]

CategoryRelationship

MeasurementRelationship

RefinementMeasurementRelationship

Equiv alentMeasurementRelationship

Recursiv eMeasurementRelationship

Recursiv eMeasureRelationship

RefinementMeasureRelationship

+from

1

+equivalentTo

0..*

+observedMeasures

0..*

+to

1

+recursiveFrom
0..1

+from

1

+recursiveTo
0..1

+to
1 +refinementFrom

0..*
+from

1

+refinementTo

0..*

+from 1

+equivalentTo

0..*

+measurements

0..*

+to 1

+refinementFrom

0..*

+from

1

+refinementTo

0..*

+from

1

+recursiveTo 0..1

+to

1

+recursiveFrom

0..1

+to1

+equivalentFrom

0..*

+to1

+equivalentFrom

0..*

+/outbound

0..*

{union}

+/from
1

{union}

+measurementRelationships

0..*

0..*

+measure1

+/inbound

0..*

{union}

+/to

1

{union}

+/inbound

0..*

{union}
+/to1

{union}

+/outbound
0..*

{union}

+/from1

{union}

+measureRelationships

0..*

+/inbound

0..*

{union}

+/to

1

{union}

+/outbound0..*

{union}

+/from

1

{union}

Figure 3 Core Relationship Classes

8.1 SmmElement Class (Abstract)

An SmmElement constitutes an atomic constituent of a model. In the meta-model, SmmElement is the top

class in the hierarchy. SmmElement is an abstract class.

Attributes
name: String Specifies the name of the SMM element (optional)

shortDescription: String A short description for the element (optional).

description: String A detailed description for the element (optional).

Associations
inbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the

to-endpoint of these relations. This property is a derived union.

outbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the

from-endpoint of these relations. This property is a derived

union.

8 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

Operations
getInbound:SmmRelationship[0..*] This operation returns the set of relations represented by the

derived union inbound relation.

getOutbound:SmmRelationship[0..*] This operation returns the set of relations represented by the

derived union outbound relation.

8.2 SmmModel Class

This class represents the entry point into the SMM model and provides the top-level container for all the

elements of the SMM.

SuperClass
SmmElement

Associations
libraries:MeasureLibrary [0..*] The set of all MeasureLibrary owned by the model.

observations:Observation[0..*] The set of all Observation owned by the model.

8.3 SmmRelationship Class (abstract)
This class is a model element that represents semantic association between SMM elements.

SuperClass
SmmElement

Associations
from:SmmElement[1] The origin element (also referred to as the from-endpoint of the

relationship). This property is a derived union.

to:SmmElement[1] The target element (also referred to as the to-endpoint of the

relationship). This property is a derived union.

Operations
getFrom:SmmElement [1] This operation returns the SmmElement that is the to-endpoint (the

target) of the current relationship.

getTo:SmmElement[1] This operation returns the SmmElement that is the from-endpoint (the

origin) of the current relationship.

8.4 MeasureLibrary Class

This class represents libraries of measures. A library represents the top container for all measure artifacts. The

library of measures defines a reference set of measures that can be applied over and over in a way that is

independent and decoupled from the models under observation. Therefore it shall be possible to pre-define

library of metrics and to pass those libraries to a builder so that the metrics can be applied to specified models,

without affecting the measures in the library.

SuperClass

SmmElement

Associations
measureElements:AbstractMeasureElement [0..*] The set of all AbstractMeasureElement owned by

the measure library.

categoryRelationships:CategoryRelationship [0..*] The set of all CategoryRelationship owned by the

measure library.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 9 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 9

Semantics

Measure elements can be related across libraries and need not be restricted to their own library.

8.5 MeasureCategory Class

This class represents categories of measures. A category has measures and other categories as its elements.

A category represents the measures directly associated with an „element‟ and the measures of each sub-

category likewise associated with an „element‟.

A measure may appear in multiple categories. A category can be a subcategory of other categories indicating

only that its measures also are measures of these other categories.

This class may be used to represent a family of similar measures which apply to different scopes such as lines

of code in a file, lines of code in a method and lines of code in program. It may also represent a category of

measures which are associated with a given field or engineering task. For instance we speak often of Quality

Assurance Metrics and Software Maintainability Metrics. The category of a metric may indicate the kind of

purpose for which the metric is used.

 Environmental Metrics (e.g., number of screens, programs, lines of code, etc.)

 Data Definition Metrics (e.g., number of data groups, overlapping data groups, unused data elements,

etc.)

 Program Process Metrics (e.g., Halstead, McCabe, etc.)

 Architecture Metrics (e.g., average call nesting level, deepest call nesting level, etc.)

 Functional Metrics (e.g., functions defined in system, business data as a percentage of all data, functions

in current system that map to functions in target architecture, etc.)

 Quality Metrics (e.g., failures per day, meantime to failure, meantime to repair, etc.)

 Performance Metrics (e.g. average batch window clock time, average online response time, etc.)

 Software Assurance Metrics

Metric categorization has other uses as well. For example, measures may be categorized by tool support.

SuperClass

AbstractMeasureElement

Associations
category:MeasureCategory[0..*] Represents the parent endpoint of the category

hierarchy relationship.
categoryElement:MeasureCategory[0..*] Represents the children endpoint of the category hierarchy

relationship.

categoryMeasure:Measure[0..*] Represents that measure is in this category.

8.6 CategoryRelationship

This class is a model element that represents semantic or named association between Measure categories and

other Measure elements. For example, a modeler may choose to create a “gold standard” measure for a

selected category. To do so, the modeler can use a category relationship named “gold standard” to associate the

measure to the category. See Figure 17.

SuperClass

SmmRelationship

10 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

Associations
from:MeasureCategory[1] Indicates the measure category which has relation.

to:AbstractMeasureElement[1] Indicates the Category or Measure element related to the category. A

constraint is used to limit the type of SmmElement that can be used.

Semantics

CategoryRelationship represents a named association between a measure category and a measure element

(AbstractMeasureElement) such as a measure.

Constraints

context CategoryRelationship inv:

to.oclIsTypeOf(MeasureCategory) or

measures.oclIsTypeOf(Measure)

8.7 Date

This represents dates. In a language binding it should be mapped to a type that allows ordered comparison. For

XMI it is mapped to the XML Schema date type.

8.8 Timestamp

This represents a point in time: for example, a combination of a date and a time within the day. For XMI it is

mapped to the XML dateTime type.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 11 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 11

9 Extensions

The SMM model provides for a set of simple extension mechanisms that provide a uniform meta-model pattern for

extending the SMM model.

class Extensions

Attribute

+ tag: string

+ value: string

Annotation

+ text: string

SmmElement

- description: string

- name: string

- shortDescription: string

+annotations

0..*

+attributes

0..*

Figure 4 SMM Extensions

This diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to instances of

SMM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs of <tag, value>

to an individual element instance. An ad hoc user-defined attribute is owned by an individual element instance. This

means that different instances of the same meta-model element may own completely different user-defined attributes

(and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to

the elements of SMM instances. They may be used by implementer to add specific information to an individual

element. They may also be used by an analyst, annotating a given SMM instance.

9.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,

name=value). Attribute add information to the instances of model elements.

SuperClass

SmmElement

Attributes
tag: String Contains the name of the attribute. This name determines the semantics

that are applicable to the contents of the value attribute.

value: String Contains the current value of the attribute

Constraints

Attribute cannot have further annotations or attributes.

Semantics

The interpretation of attribute semantics is outside the scope of SMM. It must be determined by the user or the

implementer conventions. It is expected that some tools will provide capability to add arbitrary attributes to the

instances of the model to supply information needed for their operations beyond the basic semantics of SMM. Such

information could support analysis of SMM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an

extended meta-model element that is instantiated with every instantiation of the new element. Instead, an attribute

element can be added to any SMM element. It defines a property of a particular instance, not a property of a class of

12 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

instances.

9.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element.

SuperClass

SmmElement

Attributes
text: String Contains the text of the annotation to the target model element.

Constraints

Annotations cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.

10 Measures

Measures are evaluation processes that assign comparable numeric or symbolic values to entities in order to

characterize selected qualities or traits of the entities. Counting the lines of program code in a software application is

one such evaluation.

There may be many measures which characterize a trait with differing dimensions, resolutions, accuracy, and so

forth. Moreover, trait or characteristic may be generalize or specialized. For example, line length is a specialization

of length which is a specialization of size.

Each measure has a scope, the set of entities to which it is applicable; a range, the set of possible measurement

results; and the measurable property or trait which the measure characterizes. For example, the aforementioned line

counting has software applications as one of its scope with line length as one of its measurable trait. Explicitly

representing the scope and the measurable trait allows for the consideration of different measures which characterize

the same attribute for the same set of entities. Each measurable trait may have multiple, identifiably distinct

measures.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 13 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 13

 class Measurable Attribute

Characteristic

Measure

+ measureLabelFormat: String [0..1]

+ measurementLabelFormat: String [0..1]

+ visible: Boolean [0..1]

+ getAllArguments() : Argument[0..*]

+ getArguments() : Argument[0..*]
A

Scope

+ class: String

SmmElement

AbstractMeasureElement

Operation

+ body: String

+ language: String

+ getParamStrings() : string[0..*]

Recursiv eMeasureRelationship

RefinementMeasureRelationship

OCLOperation

+ body: String

+ context: String

DimensionalMeasure

DirectMeasure

SmmRelationship

MeasureRelationship

Equiv alentMeasureRelationship

+trait 1

0..*

+breakCondition

0..1

+recognizer

0..1

0..*
+scope

1

+defaultQuery
0..1

+from

1

+equivalentTo

0..*

+to1

+equivalentFrom

0..*

+to
1

+recursiveFrom

0..1

+from

1

+recursiveTo

0..1

+from

1

+refinementTo

0..*

+parent

0..1

+mapping

0..1

+operation

0..1

+measureRelationships

0..*

+measurandQuery

0..1+to

1

+refinementFrom

0..*

Figure 5 Measurable Characteristic and Scope

The evaluation process may assign numeric values which can be ordered by magnitude relative to one another.

These measures are modeled by the DimensionalMeasure class.

The evaluation process may alternatively assign numeric values which are percentages or, more generically, ratios of

two base measurements. These measures are modeled by the Ratio class. The percentage of comment lines in an

application exemplifies this type of measure.

The evaluation process may also assign symbolic values demonstrating a ranking which preserve the ordering of

underlying base measures. These measures are modeled by the Ranking class. Cyclomatic reliable/unreliable

criterion illustrates one such ranking. Reliable is comparably better than unreliable. Comparability is essential here

because ranking is not intended to model every possible assignment of measurands.

The documentations of measures, accomplished with measure libraries, should stand by themselves so that an

interchange of measurements may simply reference such documentation and not duplicate it. The documentation of

measures should also be precise and complete enough to provide for an unambiguous specification that can be

executed on a referenced model, with the exception of the NamedMeasure when used for simple result interchange.

The actual ability to execute a model is not part of the compliance to this specification and neither is the method to

provide execution defined within this specification. These are left to the implementers.

14 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

class Measures

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]

+ measurementLabelFormat: string [0..1]

+ visible: boolean [0..1]

+ getAllArguments() : Argument[0..*]

+ getArguments() : Argument[0..*]
A

Ranking
DimensionalMeasure

+ unit: string

SmmElement

RankingInterv al

+ maximumEndpoint: double

+ maximumOpen: boolean [0..1]

+ minimumEndpoint: double

+ minimumOpen: boolean [0..1]

+ symbol: string

SmmRelationship

MeasureRelationship

Equiv alentMeasureRelationship

RankingMeasureRelationship

AbstractMeasureElement

Operation

+ body: string

+ language: string

+ getParamStrings() : string[0..*]

+mapping

0..1

+to 1

+equivalentFrom

0..*

+from 1

+equivalentTo

0..*
+defaultQuery

0..1

+from 1

+rankingTo

0..1

+to
1

+rankingFrom

0..*
+interval 1..*

+measurandQuery

0..1

+measureRelationships

0..*

+/inbound

0..*

{union}

+/to

1

{union}

+/outbound
0..*

{union}

+/from

1

{union}

Figure 6 Measure Class Diagram

10.1 AbstractMeasureElement Class (abstract)

The AbstractMeasureElement is the abstract parent class for all measure entities.

SuperClass

SmmElement

Associations

None.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 15 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 15

10.2 Characteristic Class

This class represents a property or trait of the members in its scope, a set of MOF Elements, which may be

characterized by applying a measure to those members. By specifying a characteristic a modeler is indicating what

aspect, trait or property the measure purports to measure.

Note that Characteristic provides for a representation of a hierarchy of measures based upon the abstraction of

measured trait. For example, a length characteristic may be the parent of the fileLength and programLength

characteristics. programLength could be the parent of programLinesOfCodeLength.

SuperClass

AbstractMeasureElement

Attributes
name: String Specifies the name of the SMM element. (inherited)

Associations
parent:Characteristic[0..1] Specifies the generalization of this characterization.

10.3 Scope Class

This class represents sets of MOF::Elements as domains for measures. The domain is a subset instances of a class

specified by the class attribute. If the subset does not include all instances of the given class then a restriction is

specified by specifying a recognizer for the subset elements.

The scope of a measure identifies a set of objects as the domain of the measure. The object all exhibit to varying

degrees the trait or property characterized by a measurement. SMM requires that the objects be instances of a single

class. The set of objects may be further restricted by a recognizer operation. The recognizer is optional.

The recognizer, if given, is a boolean operation applicable to instances of the named class. The measure‟s scope is

restricted to those instances for which the recognizer returns true.

SuperClass

AbstractMeasureElement

Attributes

class: String[1] Specifies the class for elements of the set. See semantics for format rules

(required).

Associations
recognizer:Operation[0..1] If given, provides a boolean operation applicable to instances of the

class which returns true if and only if the instance is an element of the

set.

breakCondition: Operation[0:1] If given, provides for an operation that returns a string describing a

break condition to allow for dynamically grouping instances of the class

in scope by a certain value. For example, this can be used to group

elements by language name in KDM SourceItem or by folder name in

Inventory Items, without having to know all of the possible conditions

in advance.

Semantics

The class attribute may name a class within any MOF model. The entities associated as elements of a Scope are

restricted to members of the specified class.

The class attribute should be able to provide an unambiguous way to specify a class name. In order to achieve this

16 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

goal, the string should be formatted according to the following pattern, with all 3 elements being required:

 Namespace:Package::ClassName

This usage of package pathnames is transitive and can also be used for packages within packages:

 Packagename1::Packagename2::ClassName

Where:

 Namespace represents the model where the class is defined. Namespace can be either one of the pre-defined

values (“kdm”, “astm” or “smm” at the moment) or be a namespace defined in the XMI where this measure is

located. For example a namespace value of “mykdm” would be valid if the SMM model contains the

following XMI namespace definition in its header:

“xmlns:mykdm=http://kdm.somecompany.com/spec/KDM/1.4”. XMI based namespace definition can also be

used with the standard namespace to point the class name definition to a specific version of those model

specification. Without such a namespace entry, the pre-defined values would point to a “current” unspecified

version.

 Package represents the package name within the model

 ClassName represents the base class name within the specified package.

The breakCondition attribute is defined as an OCL operation that evaluates to a string representing the group or

break value of the class instance.

 Examples:

1. this.language

1. This would represent a break on the attribute language, as seen in the KDM inventory model

SourceFile class. Applicable as long as the measurand class is the same as the scope class,

SourceFile in this example.

10.4 Measure Class (abstract)

The Measure class (see Figure 1) models the specification of measures either by name, by representing derivations of

base measures, or by representing method operations directly applied to the measured object. The essential

requirement for the measure class is that it meaningfully identifies the measure applied to produce a given

measurement. For example, McCabe‟s cyclomatic complexity could be specified by its name, McCabe‟s cyclomatic

complexity, by a direct measurement operation or by rescaling counts of either independent paths or choice points. A

measure may alternatively be identified by citing a library of measure which includes the measure by name.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying

degrees the trait or property characterized by a measurement. SMM requires that the objects be instances of a single

class. The set of objects may be further restricted by a recognizer function. The recognizer is optional.

Scope need not be specified if the library and name are given. In that case, the scope can be found in the library.

A measure may be a refinement of another measure. The scope of the first measure is a subset of the second

measure‟s scope. The characteristic of both measures must be identical.

SuperClass

AbstractMeasureElement

Attributes
name: String[1] Specifies the unique name of the measure. (inherited)

measureLabelFormat:String[0:1] Specifies a label format string to use when rendering this

measure. See semantics for detailed content format.

measurementLabelFormat:String[0:1] Specifies a label format string to use when rendering

measurements of this measure. See semantics for detailed

content format.

visible:boolean[1:1] Specifies if rendering tools should display this measure or not.

http://kdm.somecompany.com/spec/KDM/1.4

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 17 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 17

Some measures whose role is only to help produce other

measures will often be marked as non-visible. Defaults to true.

Associations
scope:Scope[1] Specifies a set of elements measurable by this

measure.

defaultQuery:Operation[0..1] Specifies a query that is used to determine a

default value for the measure in case we are

dealing with a non-direct measure (i.e. a

measure that depends on another for its value)

where its base measure returns no children. This

is a normal situation that can happen when

certain optional “children” don‟t exist.

equivalentFrom:EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines

the equivalency of this measure.

equivalentTo: EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines

the equivalency of this measure.

refinementFrom:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines

the refinement of this measure.

refinementTo:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines

the refinement of this measure.

recursiveFrom:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines

the recursivity of this measure.

recursiveTo:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines

the recursivity of this measure.

category:MeasureCategory[0..*] Specifies categories to which this measure

belongs.

trait:Characteristic[1] Specifies the trait characterized by this

measure.

inbound:MeasureRelationship[0..*] The set of relationship such that the current

Measure is the to-endpoint of these relations.

This property is a derived union.

outbound:MeasureRelationship[0..*] The set of relationship such that the current

Measure is the to-endpoint of these relations.

This property is a derived union.

measureRelationships:MeasureRelationship[0..*] The set of all MeasureRelationship owned by

the measure.

Operations
getArguments:Argument[0..*] This operation returns the set of arguments that the different

operations of the measure have defined and got returned by

getParamStrings().

getAllArguments:Argument[0..*] This operation returns the set of arguments for this measure and any

child measure required for the execution of the measure. It should call

getArguments() on itself and every one of its child measures.

Semantics

The labelFormat is based on the concept of format string used in many languages to assemble string content for

rendering. Although beyond the scope of this specification to cover implementation details, this format also supports

the use of external resource to provide i18N internationalization.

Just like format strings, the labelFormat is defined as a text portion with possible replacement expressed as argument

index surrounded by French braces “{}”, where the zero-based index is matched with its corresponding replacement

argument, which follow the text portion.

Label format specification:

18 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

“Template Text”, Context Object: OperationName, ContextObject.attribute,…

Examples of the label String Template could be:
“This is a label” A fixed string, in which case no arguments are necessary

“This {1} of {0} A label with replaceable arguments that will come from evaluating

the corresponding argument from the list supplied (in numerical

order, starting at 0)

$Resource:resource_text_constant Here resource_text_constant would be replaced with a constant that

will be matched in some resource location and for the proper locale

(not defined here). The content returned by this resource resolution

can be any valid label string template.

The arguments of the label format are defined in a comma separated list. Each of those arguments must follow a

specific pattern. There is a standard syntax and also a shorthand version for some common cases.

The standard syntax, which is always valid, starts by specifying a context object, followed by a literal colon “:”, then

an operation whose name must be the name of a valid instance in the Operation class,

 ContextObject: It is the first part and it represents the Object that we are interested in collecting information

from. This object is related or associated with the measurement such as the Scope or the measure or the

measurand …etc. It is important to understand here that the labelFormat is defined as part of the measure, but

it is accessed normally from within the context of a measurement.

 OperationName: Defines the name of a valid instance of the Operation class that is designed to return a string.

The shorthand syntax is valid to get the value of attributes from the current instance of measurement, measure and

scope based on the current context of the initial measurement. This syntax calls for the use of a dotted notation being

ContextObject.attributeName. For example you could get “Measure.name” or “Scope.class” directly.

The defaultQuery is designed to provide a way to specify a default value in the specific case where a non-direct

measure (i.e. a measure that depends on another for its value) happens not to have any available value from what

should have been its “base measure”. In those case, the query should be execute to provide for the value instead of

returning null or failing the measurement, as this is a normal situation that can happen when certain optional

“children” don‟t exist.

10.5 Operation Class

Operation is a subclass of AbstractMeasureElement which defines an operation to execute.

SuperClass

AbstractMeasureElement

Attributes
language:String Specifies the language of the operation. Valid values are currently

“OCL” and “XQuery”.

body:String Specifies the measurement operation expressed in the selected language.

Operations
getParamStrings:String[0..*] This operation returns the set of String that defines the parameter in use

by an operation.

Semantics

The operation body supports the use of replaceable parameters in order to support parameterized measures. This is

accomplished by defining placeholders for incoming arguments that will be replaced at runtime with a specific

value, like when dealing with date ranges for example.

The implementer is responsible, when using the measure library in an executable fashion, to determine base on the

requested measures of his observation, what are all of the arguments that should be passed in with the observation in

order to properly perform the measurements. The getArguments and getAllArguments operation of the Measure

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 19 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 19

class are designed to help in this regard.

When parameters are used they must adhere to the following specification: '{' [typeName] parameterName [' =”'

defaultValue '” '] '}' where:

 typeName represents the type of the parameter. The typeName must be one of the types supported by the

“type” attribute of the Argument class

 parameterName represents the name of the parameter (required)

 defaultValue represents a default value to offer (on getArguments()) or to use if not supplied as Argument to

an observation. defaultValue is optional.

10.6 OCLOperation Class

OCLOperation is a subclass of AbstractMeasureElement which defines OCL helper methods.

SuperClass

AbstractMeasureElement

Attributes
context:String Specifies the classifier for which this helper is being defined. OCL inheritance rules

applies to resolve applicability of operation, based on the passed in context

body:String Specifies the body of the OCL helper method.

Semantics

The OCLOperation class allows for the definition and registration of OCL helper methods in the context of specific

classifiers. These operations allow for the definition and reuse of often lengthy and complex OCL methods. It is the

implementer‟s responsibility to determine how to best provide for the parsing or execution environment of those

methods. Any helper method that is defined with an OCLOperation then becomes available for OCL based

operations applied to the proper classifier.

10.7 MeasureRelationship Class (abstract)

MeasureRelationship is an abstract class representing any relationship between two measures. See Figure 6.

SuperClass

SmmRelationship

Attributes
name:String Specifies the name of this measure relationship. (inherited)

Associations
from:Measure [1] The origin element (also referred to as the from-endpoint of the

relationship). This property is a derived union.

to:Measure [1] The target element (also referred to as the to-endpoint of the

relationship). This property is a derived union.

measurandQuery:Operation[0..1] Specifies a query that is used to determine the measurands that satisfy

the relation between two measures. It is most often used to specify the

measurands that match a specific non-containment refinement relation

between measures.

Semantics

By default, relationships between measures have their meaning implied by their concrete subtype. The

measurandQuery defines an optional way to describe this relationship by allowing the specification of a query

operation that will return the specific measure instance that satisfies the query condition. It is mostly designed to be

20 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

used with RefinementMeasureRelationship in order to provide a navigation that is different than the default

containment mode.

10.8 EquivalentMeasureRelationship Class

EquivalentMeasureRelationship is a class representing any relationship of equivalency between two measures. See

Figure 6.

SuperClass

MeasureRelationship

Associations
from:Measure[1] Specifies the equivalent measure at the from endpoint of the relationship.

to:Measure[1] Specifies the equivalent measure at the to-endpoint of the relationship.

mapping:Operation[0..1] Specifies the mapping operation query that retrieves the “to” measure

between a pair of equivalent measures, when each measure is represented

by a different scope.

Semantics

Defining a measure as being equivalent to another measure states that two measures are semantically

indistinguishable. Any measurement result by one on a given entity under a given observation should equal a

measurement by the other on the same or different entity as long as they are part of the same observation.

The semantics of this association is symmetric, but only one direction needs to be defined in a way that is

resolvable, i.e. in a way that provides a path all of the way to base measures assigned against outside measurand. If a

measure can‟t resolve to base measurements but is defined as equivalent to another measure, then it can use this

equivalency to derive its own measurement result.

This means that when establishing the dependency graph for calculation, a measure can find its base measure not

only through direct lineage, but also through measure equivalency. For example, calculating LOC at various levels

in code can be defined against ASTM. Then we define that the ASTM CompilationUnit level LOC measure is

equivalent to the KDM SourceFile LOC measure. This then allows for the SourceFile LOC measure to find its result

through its equivalency relationship.

10.9 RefinementMeasureRelationship Class

Refinement MeasureRelationship is a class representing any relationship of refinement between two measures.

SuperClass

MeasureRelationship

Associations
from:Measure[1] Specifies the measure at the from endpoint of the relationship.

to:Measure[1] Specifies the measure at the to-endpoint of the relationship.

Semantics

Throughout the remainder of this document we will say that a measure is a refinement of another measure if and

only if the first is associated to the second as a refinement directly or transitively.

When this association is defined without a measurandQuery (from MeasureRelationship superclass), then it implies

that the from and to measure of the refinement are related through a containment relation where the from measure is

the container and the to measure represents the content of the container.

When the refinement relation between the two measure classes is not a direct containment, then a measurandQuery

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 21 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 21

should be used to provide the appropriate query to retrieve the related children in the scope of the „to‟ measure.

10.10 RecursiveMeasureRelationship Class

RecursiveMeasureRelationship is a class representing any relationship of recursivity on a measure upon itself.

SuperClass

MeasureRelationship

Associations
from:Measure[1] Specifies the measure at the from endpoint of the relationship.

to:Measure[1] Specifies the measure at the to-endpoint of the relationship.

Semantics

Defining a measure as being recursive to itself states that measure can recursively refine itself and that we intend to

apply this recursive refinement to our measure.

Constraint
context RecursiveMeasureRelationship inv:

from = to.

10.11 DimensionalMeasure Class

This class models the specification of measures which assign numeric values that can be placed in order by

magnitude. Dimensional measures have units of measures and their values span a dimension. See Figure.

The unit of measure is an archetypal or prototype element of the dimension. Every element of the dimension can be

stated by a numerical multiple of the „unit of measure‟ element.

The unit of measure does not distinguish between measures which share the same range. That distinction would be

entirely within the purview of the measure identification. For examples, a height measure and a width measure may

share the same unit of measure. That is to say, a measurement is not just a number and a unit of measure. The

measured artifact must be indicated, the measure identified and contextual information retained as the observation.

SuperClass

Measure

Attributes
unit:String Identifies the unit of measure.

Associations
 rankingFrom:RankingMeasureRelationship[0..*] Specifies the relationship instance that defines the

rankings for this measure.

baseMeasureFrom:BaseMeasureRelationship[0..*] Specifies the relationship instance that defines the

accumulation for this measure.

baseMeasure1From:Base1MeasureRelationship[0..*] Specifies the relationship instance that defines the 1
st

part of the binary comparator for this measure.

baseMeasure2From:Base2MeasureRelationship[0..*] Specifies the relationship instance that defines the

2nd part of the binary comparator for this measure.

rescaleTo:RescaledMeasureRelationship[0..*] Specifies the relationship instance that defines the

measure rescaling this measure.

22 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

10.12 Ranking Class

This class represents simple range-based grading or classifications based upon already defined dimensional

measures. See Figure 6.

Examples are:

 Small, medium, large

 Cold, warm, hot

 A, B, C, D or F

 Reliable / Unreliable

Collectively the ranking intervals may completely cover the base dimension or may leave gaps. A base

measurement in such a gap is considered unranked and is not representable as a measurement of the ranking

measure.

The intervals may overlap. A ranking resulting in a particular symbol means and only means that the base measure

resulted in a value occurring a ranking‟s interval which mapped to that symbol. This does not exclude the possibility

that the value might occur in another interval.

Ranking consists of mapping intervals to symbols where the intervals are parts of the underlying measure‟s

dimension. For example, 100 to 90 points maps to “A,” 80 up to 90 maps to “B,” 70 up to 80 maps to “C,” 60 up to

70 maps to “D,” and below 60 maps to “F.” The underlying dimension consists of grade points. The result is the

usual A,B,C,D, and F style grade.

Ranking measure may represent a purely qualitative evaluation with no quantitative base measure. For example we

could measure the non-standardness of the source language and evaluate it without quantification. It is identified as

“2GL,” “Unacceptable 3GL or 4GL,” “Acceptable 3GL or 4GL,” or “Ideal Strategic Language.” The first two are

judged equivalently non-standard. The third is more nearly standard and the last is standard.

SuperClass
Measure

Associations

rankingTo:RankingMeasureRelationship[0..1] Specifies the relationship instance that defines the measure

ranked by this ranking.

interval:RankingInterval[1..*] Identifies intervals within the dimension of the base measure

and the symbol to which each interval is mapped.

10.13 RankingMeasureRelationship

RankingMeasureRelationship is a class representing any relationship of ranking between a ranking measure and a

dimensional measure.

SuperClass

MeasureRelationship

Associations
from:Ranking [1] Specifies the ranking measure at the from endpoint of the relationship.

to:DimensionalMeasure[1] Specifies the dimensional measure at the to-endpoint of the relationship.

10.14 RankingInterval Class

This class represents the mapping of an interval to a symbol that serves as a rank. See Figure 6.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 23 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 23

SuperClass

SmmElement

Attributes
maximumOpen:Boolean True if and only if interval include maximum endpoint. Default = false.

minimumOpen:Boolean True if and only if interval include minimum endpoint. Default = false.

maximum:Number Identifies interval‟s maximum endpoint.

minimum:Number Identifies interval‟s minimum endpoint.

symbol:String Base measurements within this interval are mapped by symbol.

Constraints
context RankingInterval inv:

maximum ≥ minimum and (maximumOpen or minimumOpen → maximum > minimum)

11 Collective Measures

This diagram represents measures which assess container entities by accumulating assessments of contained entities

which are found by the base measure. See demonstration given in Figure 8.

Most engineering measures are collective. We count up lines of code for each program block and sum these values

to measure routines, programs and eventually applications. A similar process is followed to count operators,

operands, operator and operand occurrences, independent paths, and branching points.

Other frequently used container measures are based upon finding the maximum measurement of the container‟s

elements. Nesting depth in a program and class inheritance depth exemplify these collective measures.

The collective measure specifies the following measurement process:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

Figure 8 demonstrates this process, with simplified associations.

24 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

 class Collectiv e Measures

Collectiv eMeasure

+ accumulator: Accumulator

Measure

DimensionalMeasure

+ unit: String

Counting

DirectMeasure

BinaryMeasure

+ functor: string

RatioMeasure

+ functor: string = divide

«enumeration»

Accumulator

 sum

 maximum

 minimum

 average

 standardDeviation

SmmRelationship

MeasureRelationship

Base1MeasureRelationship
BaseMeasureRelationship

Base2MeasureRelationship

AbstractMeasureElement

Operation

+ body: String

+ language: String

+ getParamStrings() : string[0..*]

+to

1+baseMeasure2From
0..*

+from 1

+baseMeasure1To

1

+from 1

+baseMeasure2To

1

+operation

0..1

+to

1

+baseMeasureFrom

0..*

+measurandQuery

0..1

+from 1

+baseMeasureTo

1..*

+baseMeasure1From

0..*

+to 1

+operation

0..1

Figure 7 Collective Measures

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 25 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 25

object ContainRelation

Measurement1 :

Collectiv eMeasurement

value = 12

baseSupplied = true

Collectiv eMeasure1 :

Collectiv eMeasurement

accumulator = sum

unit = unit1

Entity1 :Class2

Entity2 :Class1 Entity3 :Class1 Entity4 :Class1

Measurement2 :

DimensionalMeasurement

value = 7

Measurement3 :

DimensionalMeasurement

value = 3

Measurement4 :

DimensionalMeasurement

value = 2

DMeasure1 :

DimensionalMeasure

unit = unit1

+baseMeasurement

+measurand

+baseMeasurement

+measure

+baseMeasurement

+baseMeasure

+measure

+measurand

+measure

+measurand

+measure

+measurand

Figure 8 Collective Measure Demonstration

11.1 CollectiveMeasure Class

The CollectiveMeasure class represents measures which when applied to a given entity accumulates measurements

of entities similarly related to the given entity. See Figure 7. For example, counts for container entities are often

found by accumulating (adding) counts of the containers‟ contained entities. In fact, sizing measures generally

accumulate to containers by adding the results of applying the appropriate size measure to the contained entities.

Maximum is another frequent accumulator.

The measurands of the base measurements need not be the same of the measurand of the collective measurement.

Within SMM, the measurands are just arbitrary MOF::Elements declared in another MOF model.

The SEI Maintainability Index is one such aggregation that does not change the unit of measure.

SuperClass

DimensionalMeasure

26 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Attributes
accumulator:Accumulator Identifies the n-ary or custom function that accumulates the base

measurements.

Associations
baseMeasureTo:BaseMeasureRelationship[1..*] Specifies the relationship instance that defines the

measure accumulated by this collective measure.

operation:Operation[0..1] Specifies the measurement operation of this measure.

Constraints
Context CollectiveMeasure inv:

accumulator->isEmpty or operation->iEmpty

11.2 Accumulator data type (enumeration)

The Accumulator enumeration defines DirectMeasure – a subclass of DimensionalMeasure which applies a given

operation to the measured entity. See Figure 7.

Literal Values
Sum

Minimum

Maximum

Average

standardDeviation

11.3 DirectMeasure Class

DirectMeasure – a subclass of DimensionalMeasure which applies a given operation to the measured entity. See

Figure 7.

SuperClass

DimensionalMeasure

Associations
operation:Operation[0..1] Specifies the measurement operation of this measure..

11.4 Counting Class

Counting is a subclass of DirectMeasure where the given operation returns 0 or 1 based upon recognizing the

measured entity. See Figure 7.

SuperClass

DirectMeasure

Constraints
context Counting::self.operation(…):int
post: result = 0 or result = 1

The operation is a recognizer that selects some subset of the elements of the measure‟s scope found by self.scope.

The recognizers returns 1 for the elements of the subset and returns 0 otherwise. self.unit need not be an element of

the subset.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 27 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 27

object Counting Constraint

:Count

value = ...

:Counting

name = CountingMeasure

unit = Class1

:Class1
:Characteristic

name = CountableTrait

:Scope

class = Class1

+measurand

+measurement

+measure

+scope

+trait

Figure 9 Counting Unit of Measure Constraint

11.5 BinaryMeasure Class

The BinaryMeasure class represents measures which when applied to a given entity accumulates measurements of

two entities related to the given entity. See Figure 7. For example, areas for two dimensional entities are often found

by accumulating (multiplying) lengths.

The measurands of the base measurements need not be the same as the measurand of the collective measurement.

SuperClass

DimensionalMeasure

Attributes
 functor:String Identifies the binary function that combines two base measurements.

Associations
baseMeasure1:DimensionalMeasure The first base measurement is derived by applying the specified

measure or a refinement of it.

baseMeasure2:DimensionalMeasure The second base measurement is derived by applying the specified

measure or a refinement of it.

Semantics

The usual semantics of algebra would require that the unit of a binary measure equals applying the accumulator to

the units of the base measures. While conforming to this requirement would ensure more easily understood models,

SMM does not enforce this requirement.

28 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

11.6 Ratio Class

This class represents those measures that are ratios of two base measures. See Figure 7. Examples include:

 Average lines of code per module,

 Failures per day,

 Uptime percentage – Uptime divided by total time,

 Business data percentage of all data,

 Halstead level = Halstead volume divided by potential volume,

 Halstead effort = Halstead level divided by volume.

A ratio measure and its two base measures frequently characterize three different traits of the same entity. If the

dividend characterized the total code length of an application and the divisor characterized the number of program in

the application then the ratio characterizes the average code length per program.

Ratios may also characterize traits of distinct entities. For example, a ratio may contrast the code length between a

pair of programs.

SuperClass

DimensionalMeasure

Constraints
context MaximalMeasure inv:

functor = ‘divide’

11.7 BaseMeasureRelationship Class

BaseMeasureRelationship is a class representing relationship of hierarchy between a collective measure and a

dimensional measure.

SuperClass
MeasureRelationship

Associations
from:CollectiveMeasure[1] Specifies the collective measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.8 Base1MeasureRelationship Class

Base1MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a

dimensional measure.

SuperClass

MeasureRelationship

Associations
from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.9 Base2MeasureRelationship Class

Base2MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a

dimensional measure.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 29 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 29

SuperClass
MeasureRelationship

Associations
from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

12 Other Measures

The following diagram presents three additional measures.

 Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

 Simple algebraic change of scales of already defined numeric measures (e.g. the translation to „choice points‟

from Cyclomatic complexity).

class Other Measures

Measure

DimensionalMeasure

+ unit: string

RescaledMeasure

+ formula: string

NamedMeasure

+ name: string

MeasureRelationship

RescaledMeasureRelationship+from

1

+rescaleTo

0..*

+to
1

+rescaleFrom 0..*

Figure 10 Other Measures

12.1 NamedMeasure Class

The class allows for specifying measures which are well-known and can be specify simply by name. See Figure 10.

For example, McCabe‟s cyclomatic complexity. The meaning of applying the named measure should be generally

accepted.

SMM is for the exchange of measurement results. To convey such results for well known measures, it suffices to

identify the measure solely by name.

SuperClass

DimensionalMeasure

Attributes
name: String Specifies the name of the SMM element. This attribute is inherited from the

30 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

SmmElement class where it is optional. Here it is required.

Constraints
context NamedMeasure inv:

not self.name->isEmpty

12.2 RescaledMeasure Class

The measure specifies a process that re-scales a measurement on an entity with one unit of measure to obtain a

second measurement of the same entity with an different unit of measure. See Figure 10.

SuperClass

DimensionalMeasure

Attributes
formula:String Specifies the algebraic formula that re-scales a result from the base

measure‟s dimension to obtain a value expressed in a different unit of

measure with respect to this measure‟s unit of measure

Associations
baseMeasure:DimensionalMeasure Identifies the measure applied to each “contained”

entity to determine base measurements.

rescaleFrom:RescaledMeasureRelationship[0..

*]

Specifies the relationship instance that defines the

measure rescaled by this rescaled measure.

12.3 RescaledMeasureRelationship Class

RescaledMeasureRelationship is a class representing relationship of measure rescaling between a rescaled measure

and a dimensional measure.

SuperClass

MeasureRelationship

Associations
from: DimensionalMeasure [1] Specifies the dimensional measure at the from endpoint of the

relationship.

to:RescaledMeasure [1] Specifies the rescaled measure at the to-endpoint of the relationship.

13 Measurements

Measurement results are values from ordered sets. Such a set may be nominal (e.g. Poor, Fair, Good, Excellent) as

long as there is an underlying order. A set may instead define a dimension where its values may be stated in orders of

magnitude with respect to archetypal member. SMM allows for dimensional measurements. The magnitude is the

measure‟s unit of measure.

SMM also allows for dimensionless measurements derived by ratios and ranking schemes. In the former the ratio is

derived from two measurements of the same dimension; whereas, in the latter measurements from a dimension are

mapped to symbolic representations (e.g., 100-90 becomes “A”, 89-80 becomes “B”).

The modeling of measurements mirrors the modeling of measure.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 31 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 31

class Measurement

SmmElement

Measurement

- breakValue: string [0..1]

+ error: string [0..1]

+ getMeasureLabel() : string

+ getMeasurementLabel() : string

DimensionalMeasurement

+ value: double [0..1]

Grade

+ isBaseSupplied: boolean

+ value: string [0..1]

SmmRelationship

MeasurementRelationship

MofElement

Equiv alentMeasurementRelationship
Recursiv eMeasurementRelationship

RefinementMeasurementRelationship

RankingMeasurementRelationship

+from

1

+equivalentTo

0..*

+/outbound

0..*

{union}

+/from

1

{union}

+/inbound

0..*

{union}

+/to

1

{union}

+from 1

+rankingTo 0..1

+to

1

+rankingFrom

0..*

+measurementRelationships
0..*

+to

1

+equivalentFrom 0..*

+from 1

+refinementTo

0..*

+to 1

+refinementFrom

0..*

+from

1

+recursiveTo
0..1

+to
1

+recursiveFrom 0..1

0..*

+measurand

1

Figure 11 Measurements

13.1 Measurement Class (abstract)

The Measurement class represents the results of applying the associated Measure to the associated Measurand. See

Figure 11. Two measurements of the same measurand by the same measure can be distinguished by observation

information provided by the associated Observation. Measurand is in the scope of the measure.

The value of a measurement is an element of an ordered set. It may be a number where the ordering is the usual

standard. The DimensionalMeasurement and Percentage subclasses of Measurement defined below have numeric

values. The value may also be a symbol that we can map to a numeric interval. The Grade subclass has a symbolic

value.

Measure is a process and, hence, may fail. The error attribute of measurement allows such failures to be noted. A

measurement either has a value or an error is recorded.

SuperClass

SmmElement

Attributes
error:String[0..1] If an error occurred in the measurement process, this field contains

a code representing the error.

 breakValue:String[0:1] If the scope specifies a break condition, this field contains the instance

value associated with the break condition.

Associations
measurand:MOF::Element[1] Identifies the object measured.

equivalentFrom:EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that

defines the equivalency of this

measurement.

equivalentTo: EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that

defines the equivalency of this

32 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

measurement.

refinementFrom:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that

defines the refinement of this measurement.

refinementTo:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that

defines the refinement of this measurement.

recursiveFrom:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that

defines the recursivity of this measurement.

recursiveTo:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that

defines the recursivity of this measurement.

inbound:MeasurementRelationship[0..*] The set of relationship such that the current

Measurement is the to-endpoint of these

relations. This property is a derived union.

outbound:MeasurementRelationship[0..*] The set of relationship such that the current

Measurement is the to-endpoint of these

relations. This property is a derived union.

measurementRelationships:MeasurementRelationship[0..*] The set of all MeasurementRelationship

owned by the measure.

Operations
getMeasureLabel:String[1] This operation returns the label describing the measure of this

measurement according to the rule specified in measureLabelFormat in

the Measure class.

getMeasurementLabel:String[1] This operation returns the label describing this measurement and

measurand according to the rule specified in measurementLabelFormat

in the Measure class.

Constraints
context Measurement inv:
scope.breakCondition->isEmpty == breakValue->isEmpty

Semantics

Measurand must be in the scope of measure. Specifically, measurand must be an instance of the class named in

measure. scope.class. If measure. scope.recognizers is given then the recognizer applied to the measurand must

return true.

13.2 MeasurementRelationship Class (abstract)

MeasurementRelationship is an abstract class representing any relationship between two measurements. See Figure

11.

SuperClass

SmmRelationship

13.3 EquivalentMeasurementRelationship

EquivalentMeasurementRelationship is a class representing any relationship of equivalency between two

measurements.

SuperClass

MeasurementRelationship

Associations
from:Measurement [1] Specifies the equivalent measurement at the from endpoint of the

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 33 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 33

relationship.

to:Measurement[1] Specifies the equivalent measurement at the to-endpoint of the

relationship.

13.4 RefinementMeasurementRelationship Class

Refinement MeasurementRelationship is a class representing any relationship of refinement between two

measurements.

SuperClass

MeasurementRelationship

Associations
from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.5 RecursiveMeasurementRelationship Class

RecursiveMeasurementRelationship is a class representing any relationship of recursivity on a measurement upon

itself.

SuperClass

MeasurementRelationship

Associations
from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.6 DimensionalMeasurement Class

The DimensionalMeasurement class represents the results of applying a dimensional measure to an entity. The

result is given in terms of the measure‟s unit. See Figure 11.

SuperClass

Measurement

Attributes
value:Number[0..1] Represents the measurement result as a magnitude with respect to the unit

of measure.

Associations
 rankingFrom:RankingMeasurementRelationship[0..*] Specifies the relationship instance that

defines the rankings for this measurement.

baseMeasurementFrom:BaseMeasurementRelationship[0..*] Specifies the relationship instance that

defines the accumulation for this

measurement.

baseMeasurement1From:Base1MeasurementRelationship[0..*] Specifies the relationship instance that

defines the 1
st
 part of the binary comparator

for this measurement.

baseMeasurement2From:Base2MeasurementRelationship[0..*] Specifies the relationship instance that

defines the 2nd part of the binary comparator

for this measurement.

rescaleTo:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that

defines the measurement rescaling this

measurement.

34 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Constraints
context DimensionalMeasurement inv:

measure.oclIsTypeOf(DimensionalMeasure) and

error->isEmpty <> value->isEmpty

13.7 Grade Class

The Grade class represents the grade found by Ranking measure. Its ranking scheme mapped the grade‟s underlying

base measurement to the grade‟s symbol. Once again, the base measurements share its measurand with this derived

grading. See Figure 11.

Super Class

Measurement

Attributes
value: String[0..1] Identifies rank as a measurement derived from the base measurement.

isBaseSupplied:Boolean True if baseMeasurement is supplied.

Associations
rankingTo:RankingMeasurementRelationship[0..1] Specifies the relationship instance that defines the

measurement graded by this grade.

Constraints
context Grade inv:

measure.oclIsTypeOf(Ranking) and

error->isEmpty <> value->isEmpty and

isBaseSupplied →(measurand = baseMeasurement.measurand and

baseMeasurement.measure = measure.baseMeasure)

Semantics

If isBaseSupplied holds, then value is one of the symbols found by measure.interval where baseMeasurement.value

is in the interval. A numeric value is in the interval if and only if the it is less than the maximumEndPoint when

maximumOpen is false, less than or equal to maximumEndPoint when maximumOpen is true, greater than

minimumEndPoint when minimumOpen is false, and greater than or equal to minimumEndPoint when

minimumOpen is true.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 35 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 35

Figure 12 Grade Constraint

RankingMeasurementRelationship Class

RankingMeasurementRelationship is a class representing any relationship of grading between a grade measurement

and a dimensional measurement.

SuperClass

MeasurementRelationship

Associations
from:Grade [1] Specifies the grade measurement at the from endpoint of the

relationship.

to:DimensionalMeasurement[1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14 Collective Measurements

This class represents measurements found by accumulating a set of base measurements. For example, the number

lines of code in application can be determines by accumulating the number lines in its programs.

uc GradeConstraint

:Grade

:Ranking

:DimensionalMeasurement

:DimensionalMeasure

+measure

+baseMeasure

+baseMeasurement

+measure

36 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

class Collectiv e Measurements

Measurement

DimensionalMeasurement

+ value: double [0..1]

Collectiv eMeasurement

- accumulator: Accumulator

+ isBaseSupplied: boolean

DirectMeasurement

Count

BinaryMeasurement

+ isBaseSupplied: boolean

RatioMeasurment

MeasurementRelationship

Base1MeasurementRelationship

MeasurementRelationship

BaseMeasurementRelationship

MeasurementRelationship

Base2MeasurementRelationship +to

1

+baseMeasurement2From

0..*

+to

1

+baseMeasurementFrom

0..*

+to
1

+baseMeasurement1From

0..*

+from 1

+baseMeasurementTo 0..*

+from 1

+baseMeasurement2To
0..1

+from 1

+baseMeasurement1To

0..1

Figure 13 Collective Measurements

14.1 CollectiveMeasurement Class

The CollectiveMeasurement class represents the results of applying its CollectiveMeasure measure to an entity. See

Figure 13. In this case, applying the measure is as follows:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

The results of step 1 are the DimensionalMeasurements associated by base measurement.

SuperClass

DimensionalMeasurement

Attributes
isBaseSupplied:Boolean True if baseMeasurements are supplied. All are supplied or none is

assumed.

accumulator: Accumulator Enumerated value indicating the type collective measure

Associations
baseMeasurement:DimensionalMeasurement[0..*] Identifies the measurements from which this

collective measurement was derived.

Constraints
context CollectiveMeasurement inv:

measure.oclIsTypeOf(CollectiveMeasure) and

isBaseSupplied →
(not baseMeasurement->isEmpty and

baseMeasurement.measure=measure.baseMeasure)

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 37 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 37

Semantics

If isBaseSupplied holds, then value equals the result of applying measure.accumulator the set of values given by

baseMeasurement.value.

14.2 DirectMeasurement Class

The DirectMeasurement class represents the measurement results found by of applying the measure‟s specified

operation directly to the measurand. See Figure 13.

SuperClass

DimensionalMeasurement

Constraints
context DirectMeasurement inv:

measure.oclIsTypeOf (DirectMeasure)

14.3 Count Class

Counting forms the basis for multiple metrics. This class consists of a particular subclass of directMeasurement

which is very useful in counting. See Figure 13. Its associated measure is a CountingMeasure where the specified

operation is a recognizer operation. Therefore, the value of any instance of this class is 1 or 0 depending upon

whether or not the measurand is recognized.

SuperClass

DirectMeasurement

Constraints
context Count inv:

measure.oclIsTypeOf (CountingMeasure)

14.4 BinaryMeasurement Class

SuperClass

DimensionalMeasurement

Attributes
isBaseSupplied:Boolean True if both base measurements are supplied.

Associations
baseMeasurement1:DimensionalMeasurement[0..1] Identifies the first base measurement.

baseMeasurement2:DimensionalMeasurement[0..1] Identifies the second measurement.

Constraints
 context RatioMeasurement inv:

measure.oclIsTypeOf(BinaryMeasure) and

isBaseSupplied →

(not baseMeasurement1.isEmpty and not baseMeasurement2.isEmpty) and

not baseMeasurement1.isEmpty →

(baseMeasurement1.measure = measure. baseMeasurement1) and

not baseMeasurement2.isEmpty →

(baseMeasurement2.measure = measure. baseMeasure2)

38 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Semantics

If isBaseSupplied holds, then value equals the result of applying measure.functor to baseMeasurement1.value and

baseMeasurement2.value.

14.5 RatioMeasurement Class

The RatioMeasurement class affords evaluations of a ratio measure of two evaluations of different dimensional

measures. See Figure 13. The measure associated with the dividend has its unit of measure in common with the

measure associated with the divisor.

SuperClass

BinaryMeasurement

Constraints
context RatioMeasurement inv:

measure.oclIsTypeOf(RatioMeasure) and

isBaseSupplied → (value = baseMeasurement1.value / baseMeasurement2.value)

14.6 BaseMeasurementRelationship Class

BaseMeasurementRelationship is a class representing relationship of hierarchy between a collective measurement

and a dimensional measurement.

SuperClass

MeasurementRelationship

Associations
from:CollectiveMeasurement[1] Specifies the collective measurement at the from endpoint of the

relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14.7 Base1MeasurementRelationship Class

Base1MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and

a dimensional measurement.

SuperClass

MeasurementRelationship

Associations
from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the

relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14.8 Base2MeasurementRelationship Class

Base2MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and

a dimensional measurement.

SuperClass

MeasurementRelationship

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 39 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 39

Associations
from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the

relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

15 Named and Rescaled Measurements

Measurement is in terms of its unit of measure as specified under its associated DimensionalMeasure. That is, the

measurement is a multiple of its unit of measure where value determines the multiple.

class Other Measurements

Measurement

DimensionalMeasurement

+ value: double [0..1]

NamedMeasurement
RescaledMeasurement

+ isBaseSupplied: boolean

MeasurementRelationship

RescaledMeasurementRelationship

+from

1

+rescaleTo

0..*

+to

1

+rescaleFrom

0..*

Figure 14 Named and Rescaled Measurements

15.1 NamedMeasurement Class

The NamedMeasurement class represents the measurement results of applying to the Measurand measurement

processes which are generally known and identifiable by name. See Figure 14.

SuperClass

DimensionalMeasure

Constraints
context NamedMeasurement inv:

measure.oclIsTypeOf(NamedMeasure).

15.2 RescaledMeasurement Class

The RescaledMeasurement class represents the measurement results of applying to the base measurement the

operation specified by the Measure to rescale the measurement. That is, given a one measurement of the measurand

with respect to one unit of measure, we obtain a second measurement of the measurand with respect to a different

unit of measure. See Figure 14.

Measure is a RescaledMeasure.

SuperClass

DimensionalMeasure

40 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Attributes

isBaseSupplied:Boolean True if the base measurement is supplied.

Associations
rescaleFrom:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that defines

the measurement rescaled by this rescaled

measurement.

Constraints
context RescaledMeasurement inv:

measure.oclIsTypeOf(RescaledMeasure) and

isBaseSupplied →

not baseMeasurement->isEmpty and baseMeasurement.measure =

measure.baseMeasure

Semantics

If isBaseSupplied is true then value equals result of applying measure.operation to the baseMeasurements‟ values.

15.3 RescaledMeasurementRelationship Class

RescaledMeasurementRelationship is a class representing relationship of measurement rescaling between a rescaled

measurement and a dimensional measurement.

SuperClass

MeasurementRelationship

Associations
from: DimensionalMeasurement [1] Specifies the dimensional measurement at the from endpoint of the

relationship.

to:RescaledMeasurement [1] Specifies the rescaled measurement at the to-endpoint of the

relationship.

16 Observations

Measurements are sometimes repeated. An old carpentry rule is measure twice, cut once.

To distinguish these multiple measurements, the observation and scope class can represent contextual information

such as the time of the measurement and the identification of the measurement tool and the artifacts that are under

measurement.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 41 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 41

class Observ ation

SmmElement

Observ ation

+ observer: string [0..1]

+ tool: string [0..1]

+ whenObserved: Date [0..1]

SmmElement

Observ ationScope

- scopeUri: string

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]

+ measurementLabelFormat: string [0..1]

+ scale: MeasurementScale

+ visible: boolean [0..1]

+ getAllArguments() : Argument[0..*]

+ getArguments() : Argument[0..*]
A

SmmRelationship

Observ edMeasure

SmmElement

Measurement

- breakValue: string [0..1]

+ error: string [0..1]

+ getMeasureLabel() : string

+ getMeasurementLabel() : string

SmmElement

Argument

+ type: string

+ value: string

+measurements 0..*

0..*

+measure 1

+observedMeasures

0..*

+arguments 0..*

+scopes 0..*

 Figure 15 Observations

16.1 Observation Class

This class represents some of the contextual information which may be unique to this measurement such as date,

measurer and tool used. See Figure 15.

SuperClass

 SmmElement

Attributes
 whenObserved:date[0..1] Identifies the “moment” when the measurement was taken.

observer:String[0..1] Identifies measurer.

tool:String[0..1] Identifies tool used in measurement.

42 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Associations
observedMeasures:ObservedMeasure[0..*] The set of all ObservedMeasure owned by the observation.

requestedMeasures:SmmElement[0..*] Specifies the measures or their category that are part of the

observation request. This association is optional and can

be used by a builder to know what to include in a specific

observation.

scopes:ObservationScope[0..*] Specifies the scopes of the observation, i.e. the models or

model portions that are the subject of the Observation

Constraints
context Observation inv:

requestedMeasures.oclIsTypeOf(MeasureCategory) or

requestedMeasures.oclIsTypeOf(CategoryRelationship) or

requestedMeasures.oclIsTypeOf(Measure)

16.2 ObservationScope Class

This class represents the model(s) or sub model that are the subject of the related observation. This information can

be used initially by builders to understand which model to gather measurements from, later by anyone wishing to

recreate a new observation of the same artifacts. See Figure 15.

SuperClass

 SmmElement

Attributes
scopeUri:String[1] Uri that identifies model(s) or model fragment.

Semantics

The scopeUri represents specific schemes following the RFC 2396: Uniform Resource Identifiers (URI): Generic

Syntax. As a hierarchical URI, the scopeUri supports all features associated with such URI, including both absolute

and relative addressing. The starting point for the resolution of relative addressing should match generally accepted

rules, but this specification doesn‟t dictate any such details.

To quote the URI syntax:

At the highest level a URI reference (hereinafter simply "URI") in string form has the syntax

 [scheme:]scheme-specific-part[#fragment]

The scopeUri should inherently accept and understand the following 2 schemes: mof and ecore, respectively

representing models expressed as MOF and Ecore (Eclipse EMF model variant of MOF).

Our scheme-specific-part complies with the definition of hierarchical URI and as such it has the following syntax:

 [//authority][path][?query]

The general form of a scope uri is then:

mof://kdm.example.com/projectName/kdmName Uri for a specific MOF KDM model.

ecore://astm.example.com/pathToWherever/longPath/modelName Uri for a specific Ecore ASTM model

A more advanced form of the URI for our schemes is made to support the query part of the URI in order to specify

portion of models and also to specify models in paths that represent folders or collections.

The query part of the scopeUri follows the general form of key=value separated by ampersand (&). The following

keys are defined by our schemes:
Model Regex based pattern representing the name of model or models that should be matched in

the path

Recursive True if the search for models matching the model pattern should also recursively descend

the hierarchical path structure rooted at the path specified in the URI. Default is false.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 43 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 43

queryType Type of query to use in select. “OCL” (default) or “XQuery”.

Select Query into selected model(s) that represent a selection of a subset or portion of the entire

model that will be used as the scope of performing measurements. For example this could

represent a segment in a KDM that is related to a specific application.

The general form of a scope uri is then:

mof://kdm.example.com/projectName?model=a?rt*&recursive=true Uri for all MOF models with name

matching a?rt* located in projectName

or under.

ecore://kdm.example.com/path/

?queryType=Xquery&select=/Segment[@name=”default”]/

Segment[@name=”myApp”]

Uri for a specific Ecore KDM model

segment representing a particular

application segment.

16.3 ObservedMeasure Class

This class represents association between observations and the measures that make up such observation. This class

also serves to hold the list of measurements characterized by the related measure that are part of a given observation.

SuperClass

SmmRelationship

Associations
Measurements:Measurement[0..*] The set of all Measurement owned by the observed measure.

measure:Measure[1] The measure that is being observed.

16.4 Argument Class

This class represents some of the variable arguments or parameters that are being passed to the measures that have

Operations that make use of replaceable parameters.

SuperClass

 SmmElement

Attributes
 name: String[1..1] Specifies the name of the argument. (inherited)

 type:String[1..1] Specifies the type of the argument. See semantic section for detailed

information.

 value:String[1..1] The value of the argument, expressed in a “typesafe” fashion.

Associations

None

Semantics

The type attribute represents the type of the argument being passed. The accepted types are the basic types that are

defined in OCL, as this is the main operation language supported. Those types are, as defined in section 7.1 of the

OCL 2.1 specification: Boolean, Integer, Real and String.

The above supported types are very limited. For example there is no direct support for Date or DateTime. The

implementation of additional types is left to the implementers. As a suggestion (not normative), implementers should

try to use OCLOperation helper functions in order to facilitate hiding the implementation and make their

implementation shareable and portable.

For all accepted types, the value attribute is a String whose content directly matches what is expected by the

Operation language, so that it can be transferred verbatim into the Operation body during the parameter replacement.

44 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Implementer specific types can define their own value format if needed.

17 Historic and Trend Data (Non-Normative)

SMM does not model tracking or trend data directly. Linking versions of objects through a software evolution poses

a concern in modeling software evolution even if measures are never taken. When the measurand‟s model provides

the linkage (e.g. an “EvolvesTo” relationship), then a measurement of an original artifact could be traced to its

newer versions and to their measurements if available. The diagram below (Figure 16) is overly simplistic, but

hopefully conveys the gist of such tracing. The beige filled instances indicate the metric representations augmenting

the base model (green). The central point is that the evolves path is between instances of the base model. The

measures of the evolving artifacts can be gathered or compared only if the linkage between the artifacts is captured

and maintained through the modeling of the system development and modification.

uc Ev olv esTo

Artifact1 Artifact2

Meas urement1 Measurement2Meas ure

Obse rv ation1 Observ ation2

+observation

+measure

+measurand

+observation

+measure

+measurand

+evolvedFrom +evolvedTo

Fig
ure 16 Tracking Measurements across Versions

18 Inaccuracy (Non-Normative)

Inaccuracy of a measurement is the amount by which the measurement is in error. That is, we may model inaccuracy

as measure if we first model a measure which is assumed to be true. Inaccuracy of a measurement is then just the

difference between the measurement and a “true” measurement of the same entity.

In SMM inaccuracy is representable by measures that characterize inaccuracy. The measures are comparable

elevation of measurements evaluated by the difference between the measurement and the truest (at least accepted as

such) measurement of that entity for that trait.

Given two measures which characterize the same trait and share the same scope, then inaccuracy can be modeled as

a binary measure expressing the difference taken over the two measures.

In the demonstration below (Figure 17), a category collects measures that are applicable to ExampleClass1 and

characterize ExampleTrait. The category identifies the “truest” measure by the goldStandard relationship and

identifies an appropriate inaccuracy measure for Measure1 by the InaccuracyMeasure relationship.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 45 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 45

A Characteristic may have a measure that is designated as the best or truest measure of the attribute. That measure

may be associated as the attribute‟s gold standard. Such a designation allows for the representation of inaccuracy for

each of the attribute‟s measures as the difference between the measure and the gold standard.

Figure 17 Inaccuracy Demonstration

Figure 18 Uncertainty Demonstration

object Inaccuracy

:Sc ope

class = Exampl eClass1

:DimensionalMeasure

name = Mea sure1

:DimensionalMeasure

name = M easure2

:DimensionalMeasurement:DimensionalMeasurement

Objec t1 :

ExampleClass1

:BinaryMe asurement

baseSuppli ed = true

:BinaryMeasure

functor = difference

name = In accuracyMeasure1

Inaccuracy1 :Characteristic

name = InaccuracyWRTMeasure2

Scope1 :Scope

recognizer = measu re.name='Measure1'

class = SMM::Measurement

:Characteristic

name = ExampleTrait

Category1 :SMM_Category

:Category_Relationship

name = gol dStandard

:Category_Relationship

name = InaccuracyMeasure

+trait

+baseMe asure1+baseMeasure2
+scope

+measure

+measurand

+baseMeasurement1+baseMeasurement2

+measurand

+measurement

+measure

+measurand

+measurement

+measure

+scope +scope

+trait

+categoryElement +categoryElement

+value

+parameter

+category

+parameter

+category

+value

object UncertaintyDemonstration

ExampleM easure :

DimensionalMeasure

UncertaintyEstimatorForExampleMeasure :

DimensionalMeasure

:UncertaintyMeasureOf

Measure ment1 :

DimensionalMeasurement

UncertaintyEstimate :

DimensionalMeasurement

:UncertaintyM easurementOf

+measure +measure

+from +to

+from +to

46 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 19 SMM Extension for Uncertainty

19 Library of Measures (Non-Normative)

The following is a suggestive list of measurement classes along with their measure classes and measurand classes.

Sources include:

 Comsys Systems Redevelopment Methodology:

www.comsysprojects.com/SystemTransformation/TMethodology.htm

 “A Survey of Software Metrics” by F. Riguzzi, DEIS Technical Report no. DEIS-LIA-96-010, July 1996,

Università degli Studi di Bologna.

Each measure is defined using the classes of the SMM. The referenced software artifacts are modeled using the

Knowledge Discovery Metamodel (KDM) unless otherwise noted.

19.1 Various Counts

19.1.1 Module Count23

Module Count ≡ A count of the number of modules in a system.

Assume that the system is modeled by a KDM model. The KDM:AbstractCodeElement serves as a container of

code parts as well as modeling the code parts themselves. The KDM:Module is an AbstractCodeElement subclass

that models modules. SeeFigure 20.

Counting the modules in the code model requires summing the results of a
recognizer for module across the model. The unit of measure is module. See

3
 See GAM 003 in Comsys Systems Redevelopment Methodology.

3
 See GAM 003 in Comsys Systems Redevelopment Methodology.

class UncertaintyRelations

UncertaintyMeasureOf

SMM_Rela tionship

MeasureRelationship

SMM_Rela tionship

MeasurementRelation

UncertaintyM easurementOf

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 47 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 47

Figure 21 for the library entry and see
object MethodCountExample

:Module:CodeModel

:Count

value = 1

:Counting

name = ModuleMethodRecognizer

library = SMMsampleLibrary

:Collectiv eMeasurement

baseSupplied = true

value = ...

:Collectiv eMeasure

name = MethodCountInModel

library = SMMsampleLibrary

accumulator = sum

+codeElement

+measurand

+measure

+measurand

+measure

+baseMeasurement

+baseMeasure

Figure 22 for a brief demonstration.

Figure 20 KDM Code Package Fragment

class KDM_Code_Fragment

Element

source::SourceRegion

{leaf}

+ startLine: Integer

+ startPosition: Integer

+ endLine: Integer

+ endPosition: Integer

+ language: String

+ path: String

Element

source::SourceRef

{leaf}

+ language: String

+ snippet: String

code::Module

KDMEntity

code::AbstractCodeElement

code::ComputationalObject code::Datatype

code::CodeItem

code::ControlElement

code::MethodUnit

{leaf}

+ kind: MethodKind

+ export: ExportKind

code::CallableUnit

{leaf}

+ kind: CallableKind

code::DataElement

+ ext: String

+ size: Integer

action::

ActionElement

+ kind: String

+owner

0. .1

+codeElement

0..*

0..*

Signa ture

+type

0. .1

0. .1

CodeSource+source

0..*

+owner 0. .1

+codeElement

0..*

1

SourceRegions

+region 0..*

+type

1

Type

0..*

+codeElement

0..*

+owner 0. .1

+owner 0. .1

+codeElement

0..*

48 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

object ModuleCount

:Collectiv eMeasure

accumulator = sum

name = ModuleCountInModel

unit = code::Module

measurandQuery = Operation->XQuery->.//Module

:Counting

name = ModuleCountRecognizer

unit = code::Module

operation = true

:Characteristic

name = ModuleCount

:Scope

class = code::AbstracCodeIElement

recognizer = Operation->isOCLTypeOf(code::Module)

:Scope

class = code::CodeModel

+refinement

+baseMeasure

+trait

+scope

+trait

+scope

Figure 21 Library Entry for Module Count in Code Model

object MethodCountExample

:Module:CodeModel

:Count

value = 1

:Counting

name = ModuleMethodRecognizer

library = SMMsampleLibrary

:Collectiv eMeasurement

baseSupplied = true

value = ...

:Collectiv eMeasure

name = MethodCountInModel

library = SMMsampleLibrary

accumulator = sum

+codeElement

+measurand

+measure

+measurand

+measure

+baseMeasurement

+baseMeasure

Figure 22 Module Count in Model Demonstration

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the

ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the

default containment association relation is overridden by a measurand query expressed as the XQuery operation of

„..//Module‟ which states that we want all Module children of our CodeModel recursively. Next we move to apply

the scope recognizer, which filters out any elements that are not of class code::Module, which here is just a safety

test as the measurand query already provides this level of filtering. This leaves us with only instances of

code::Module, on which we apply a Counting measure with a default operation of true so that it always returns 1.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 49 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 49

All of the Counting measurement with a value of 1 representing here the code:Module are then summed up into a

Collective measurement for each code::CodeModel according to the accumulator defined in the Collective measure.

Another possible approach would be to move the recognizer to the Counting class instead of the scope as shown in

Figure 1.

The difference between these two approaches is subtle but very interesting. In the first case, the recognizer is applied

to determine if a class instance is in scope or not. In the second approach, the recognizer is used to determine if the

counting class will return 0 or 1 for the measurement of the class instance. The 1
st
 approach would normally be

preferred as it avoids creating measurements with a value of 0 for any non-matching class instance, whereas the

second approach will have measurement for every AbstractCodeElement in the CodeModel. Obviously, the sum

applied by the collective measure will produce the same final result.

object ModuleCount Take2

:Collectiv eMeasure

accumulator = sum

name = ModuleCountInModel

unit = code::Module

measurandQuery = Operation->XQuery->.//Module

:Counting

name = ModuleCountRecognizer

unit = code::Module

operation = isOCLTypeOf(code::Module)

:Characteristic

name = ModuleCount

:Scope

class = code::AbstracCodeIElement

:Scope

class = code::CodeModel

+refinement

+baseMeasure

+trait

+scope

+trait

+scope

Figure 1Module Count in Model (take 2)

19.1.2 Screen Count4

Screen Count ≡ A count of the number of screens in a system.

4
 See TEM 153 in Comsys Systems Redevelopment Methodology.

50 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 23 KDM Action Package Fragment

class KDM-ScreenFragment

KDMEntity

ui::AbstractUIElement

KDMModel

ui::UIModel

ui::UIResource

ui::UIDisplay

ui::Reportui::Screen

+owner

0. .1

+UIElement

0..*

+model 0. .1

+UIElement 0..*

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 51 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 51

object ScreenCount

:Counting

operation = true

name = ScreenCountRecognizer

library = SMMsampleLibrary

unit = ui::Screen

:Scope

class = ui::AbstracUIElement

recognizer = Operation->isOCLTypeOf(ui::Screen)

:Characteristic

name = ScreenCount

:Collectiv eMeasure

accumulator = sum

name = ScreenCountInModel

library = SMMsampleLibrary

unit = ui::Screen

measurandQuery = Operation->XQuery->.//Screen

:Scope

class = ui::UIModel

+trait

+scope

+trait

+scope

+refinement

+baseMeasure

Figure 24 Screen Count Library Entry

object ScreenCountExample

:UIModel :Screen

:Collectiv eMeasurement

baseSupplied = true

value = ...

:Count

value = 1

:Collectiv eMeasure

name = ScreenCountInModel

library = SMMsampleLibrary

:Counting

name = ScreenCountRecognizer

library = SMMsampleLibrary

+uiElement

+measure

+baseMeasurement

+measurand

+measure

+measurand

+baseMeasure

Figure 25 Screen Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:UIElement serves as a container of user interface

parts as well as modeling the user interface parts themselves. The KDM:Screen is a UIElement subclass that models

screens.

For an entire system, we identify each UIModel instance in the KDM (or a specific subset depending on the

ObservationScope). Then for each ui::UIModel, its baseMeasure elements are identified. In this example the default

containment association relation is overridden by a measurand query expressed as the XQuery operation of

52 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

„..//Screen‟ which states that we want all Screen children of our UIModel recursively. Next we move to apply the

scope recognizer, which filters out any elements that are not of class ui::Screen, which here is just a safety test as the

measurand query already provides this level of filtering. This leaves us with only instances of ui::Screen, on which

we apply a Counting measure with a default operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the ui::Screen are then summed up into a

Collective measurement for each ui::UIModel according to the accumulator defined in the Collective measure.

19.1.3 Method Count

Method Count ≡ A count of the number of methods in a system.

object MethodCount

:Counting

operation = true

name = MethodCountRecognizer

library = SMMsampleLibrary

unit = code::MethodUnit

:Scope

class = code::AbstracCodeIElement

recognizer = Operation->isOCLTypeOf(code::MethodUnit)

:Characteristic

name = MethodCount

:Collectiv eMeasure

accumulator = sum

name = MethodCountInModel

library = SMMsampleLibrary

unit = code::MethodUnit

measurandQuery = Operation->XQuery->.//MethodUnit

:Scope

class = code::CodeModel

+trait

+scope +scope

+trait

+refinement

+baseMeasure

Figure 26 Method Count Library Entry

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 53 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 53

object MethodCountExample

:Module:CodeModel

:Count

value = 1

:Counting

name = ModuleMethodRecognizer

library = SMMsampleLibrary

:Collectiv eMeasurement

baseSupplied = true

value = ...

:Collectiv eMeasure

name = MethodCountInModel

library = SMMsampleLibrary

accumulator = sum

+codeElement

+measurand

+measure

+measurand

+measure

+baseMeasurement

+baseMeasure

Figure
27 Method Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:MethodUnit is a CodeElement subclass which

models methods. The counting of methods then is very similar to the counting of modules given above.

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the

ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the

default containment association relation is overridden by a measurand query expressed as the XQuery operation of

„..//MethodUnit‟ which states that we want all MethodUnit children of our CodeModel recursively. Next we move to

apply the scope recognizer, which filters out any elements that are not of class code::MethodUnit, which here is just

a safety test as the measurand query already provides this level of filtering. This leaves us with only instances of

code::MethodUnit, on which we apply a Counting measure with a default operation of true so that it always returns

1.

All of the Counting measurement with a value of 1 representing here the code::MethodUnit are then summed up into

a Collective measurement for each code::CodeModel according to the accumulator defined in the Collective

measure.

19.1.4 Lines of Code5

A line of code is any line of program text that is not a comment or a blank line, regardless of the number of

statements or fragments of statements on the line. This specifically includes all lines containing program headers,

declarations, and executable and non-executable statements”
6
 Lines of code here means fully expanded lines of code

including copy books, includes and comments.

KDM does not directly model lines of source, code or otherwise. As a demonstration, let us assume that blank lines

may be included. This allows us to use the KDM SourceRegion to measure lines of code. We will further assume

source region do not overlap or even having one start on the line that another ends on. The problem here is that code

snippets are the smallest pieces of source modeled in KDM. Lines by themselves are not modeled, which means that

counting them is indirect. We will sum of the line size of code snippets and call that counting lines of code.

5
 See ERP 001 in Comsys Systems Redevelopment Methodology.

6
 See S. Conte, H. Dunsmore, V. Shen, Software Engineering Metrics and Models, Benjamin/Cummings, Menlo

Park, CA.

54 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Lines of SourceRegion and SourceRef

KDM specifies a code snippet with a SourceRegion element that has two attributes, startLine and endLine, that

interest us here. The number of lines in the SourceRegion is endLine – StartLine + 1.

Our representation is a DirectMeasure with a class of SourceRegion and a function of endLine – startLine + 1.

SourceRef consists of multiple SourceRegions. Assuming no overlap as stated above, the determination of lines of

code in a SourceRef is a sum accumulator CollectiveMeasure with the previous lines of SourceRegion as its base

measure.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 55 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 55

object SourceLOC

:DirectMeasure

operation = endLine - startLine + 1

name = SourceRegionLOCMeasure

unit = LineOfCode

:Characteristic

name = LineCount

:Scope

class = source::SourceRegion

:Collectiv eMeasure

accumulator = sum

name = SourceRefLOCMeasure

unit = LineOfCode

:Scope

class = source::SourceRef

:Scope

class = code::AbstractCodeElement

:Collectiv eMeasure

accumulator = sum

name = CodeEltTotalLOC

unit = LineOfCode

+scope

+trait+trait

+scope+scope

+trait

+refinement+refinement

+baseMeasure +baseMeasure

Figure 28 Lines of Code Measures

object AbstractCodeElementLOC

:Collectiv eMeasure

name = SourceRefLOCMeasure

library = SMMsampleLibrary

accumulator = sum

:Collectiv eMeasurement

value = 25

baseSupplied = true

:Collectiv eMeasurement

value = 38

:Collectiv eMeasure

name = CodeEltTotalLOC

library = SMMsampleLibrary

accumulator = sum

:Collectiv eMeasurement

value = 63

baseSupplied = true

:SourceRef

:AbstractCodeElement

:DirectMeasure

name = SourceRegionLOCMeasure

library = SMMsampleLibrary

:SourceRegion

startLine = 6

endLine = 23

:DirectMeasurement

value = 18

:DirectMeasurement

value = 7

:SourceRegion

startLine = 24

endLine = 30

:SourceRef

+measurand

+region

+measurand

+measure

+measurand

+measure

+source+source

+region

+measure

+baseMeasure

+baseMeasurement

+baseMeasure

+measurand

+measure

+baseMeasurement

+measure

+measurand

+baseMeasurement

+baseMeasurement

Figure 29 Lines of Code Demonstration

56 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Refinement of Lines of ControlElement, CodeElement and Module

The source role for these elements is SourceRef. Determining the lines of code in each is a sum accumulator

CollectiveMeasure where the base measure is the lines of SourceRef given above (the one in darker blue).

object CodeLOC

:Collectiv eMeasure

accumulator = sum

name = ModuleTotalLOC

unit = LineOfCode

:Characteristic

name = LineCount

:Scope

class = code::Module

:Collectiv eMeasure

accumulator = sum

name = ControlLOCMeasure

unit = LineOfCode

:Scope

class = code::ControlElement

:Scope

class = code::AbstractCodeElement

:Collectiv eMeasure

accumulator = sum

name = CodeEltTotalLOC

unit = LineOfCode

+baseMeasure

+scope

+trait

+baseMeasure

+scope

+trait

+scope

+trait

+refinement +refinement

Figure 30 Additional Lines of Code Measures

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 57 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 57

object ModulreLOC2

:Characteristic

name = CodeLength

:Scope

class = Code::AbstractCodeElement

:Collectiv eMeasurement

value = 83

baseSupplied = false

:Scope

class = Code::Module

:Collectiv eMeasure

unitClass = LineOfCode

accumulator = sum

basePath = codeElement

:Collectiv eMeasurement

value = 297

baseSupplied = true

:Module :CodeElement

:Module

:Collectiv eMeasure

unitClass = LineOfCode

accumulator = sum

basePath = source

:Collectiv eMeasurement

value = 63

baseSupplied = false

:Collectiv eMeasure

unitClass = LineOfCode

accumulator = sum

basePath = codeElement

:Scope

class = Code::ControlElement

:Collectiv eMeasurement

value = 151

baseSupplied = false

:ControlElement

+baseMeasurement

+measurand

+trait

+scope

+measure

+measurand

+scope

+refinement

+refinement

+codeElement

+measure

+codeElement

+trait

+baseMeasurement

+measurand

+baseMeasurement

+measure

+scope

+baseMeasure

+trait

+measurand

+measure

+codeElement

+baseMeasure

Figure 31 Module and Control Element LOC Demonstration

19.1.5 Lines of Code for ASTM

The Abstract Syntax Tree Metamodel (ASTM) facilitates the interchange of programming language constructs

parsed as abstract syntax trees. The Generic Abstract Tree Metamodel establishes a common core for modeling

across a wide variety of programming languages. Each of these constructs may, of course, be measured by their lines

of code.

GASTM does not directly model lines of source, code or otherwise. We will, consequently, make the same

assumptions we made above for KDM. Blank lines are included and overlaps are ignored.

Figure 34 shows a fragment of the proposed ASTM covering the core syntax object, source location and source file.

Figure 35 shows a possible SMM library entry to represent lines of code measure of GASTM syntax objects.

58 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 34 GASTM Fragment

Figure 35 LOC Library Entry for GASTM

19.2 McCabe

McCabe‟s cycolmatic complexity could be modeled in different ways. It could be a RescaledMeasure from count of

independent paths found by adding 2. Another representation would be as aRescaledMeasure from count of

branching points found by adding 1. Each of these representations represents equivalent measures. We demonstrate

below cyclomatic as a NamedMeasure and as a RescaledMeasure from branching factor.

19.2.1 Branching Factor of ActionElements and Modules

Branching Factor is simply the difference between the number of nodes and edges in a module‟s control flow graph.

KDM models the nodes as ActionElements, the edges as ControlFlow. Branching factor is then measured by

subtracting the count of ControlFlow instances from the count of ActionElements.

class ASTM_Fragment

GASTMObject

GASTMSyntaxObject

GASTMSourceObject

SourceLocation

+ StartLine: int

+ StartColumn: int

+ EndLine: int

+ EndColumn: int

GASTMSourceObject

SourceFile

+ PathName: String

+InSourceFile+LocationInfo

object ASTMSourceLOC

:DirectMeasure

operation = LocationInfo.endLine - Locati onInfo.startLine + 1

name = SourceRe gionLOCMeasure

unit = Line

library = SMMsampleLibrary

:Sc ope

class = gastm::GASTMSyntaxObject

:Characteristic

name = LineCount

+trait +scope

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 59 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 59

Figure 36 Control Flow Edge Count Library Entry

Figure 37 Control Flow Node Count Library Entry

Figure 38 Control Flow Branching Factor Library Entry

19.2.2 Cyclomatic Complexity of a Module7

Cyclomatic complexity (CC) = E - N + p where E is the number of edges of the flow graph, N is the number of

nodes of the flow graph and p is the number of connected components.

7
 See TPM 065 in Comsys Systems Redevelopment Methodology.

object FlowEdgeCount

:Counting

name = FlowEdgeCount

unit = edge

:Sc ope

class = action::ControlFlow

:Characteristic

name = ControlFlowEdgeCount

:Additiv eMeasure

accumulator = sum

name = DirectFl owEdgesInAction

unit = edge

:Sc ope

class = action::ActionElement

:Additiv eMeasure

accumulator = sum

name = TotalFlo wEdgesInAction

unit = edge

+baseMeasure
+scope

+trait

+baseMeasure

+trait

+scope

+scope

+trait

object FlowNodeCount

:Counting

name = FlowNodeCount

unit = node

:Characteristic

name = ControlFlowNodeCount

:Sc ope

class = action::ActionElement

:Additiv eMeasure

accumulator = sum

name = TotalFlo wNodesInAction

unit = node

+baseMeasure

+scope+trait

+scope
+trait

object BranchingFactor

:Sc ope

class = action::ActionElement

:Additiv eMeasure

accumulator = sum

name = TotalFlo wEdgesInAction

unit = edge

:Additiv eMeasure

accumulator = sum

name = TotalFlo wNodesInAction

unit = node

:BinaryMeasure

functor = difference

name = B ranching

unit = edge

:Characteristic

name = BranchingFactor

:Additiv eMeasure

accumulator = sum

name = B ranching

unit = edge

:Sc ope

class = co de::Module

:Additiv eMeasure

accumulator = sum

name = B ranching

unit = edge

+trait
+baseMeasure

+scope

+refinement+baseMeasure
+scope

+trait

+trait

+scope

+baseMe asure1 +baseMeasure2

+scope+scope

60 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

In this demonstration we assume that the control graph of each module is entirely connected. That is, p is always 1.

Cyclomatic is then simply the branching factor of a module plus one.

Figure 39 McCabe Cyclomatic Complexity Library Entry

19.2.3 Extended Cyclomatic Complexity of a Module8

Extended cyclomatic is the count of predicates or atomic formula in the condition of branching statements. We

demonstrate this count based upon ASTM modeling of an “if” statement. The condition of the “if” is an expression

that can be navigated to find its atomic formulas.

19.2.4 Average Extended Cyclomatic Complexity of Modules in
the System

19.3 Ratio of Additive ECC over Additive Counting of
modules.Counts of Operating Systems

The Application Management and System Monitoring for CMS Systems (ASMS) specification provides a PIM

based upon commercial enterprise management called the DMTF Common Information Model (CIM). “CIM

models a software or hardware system as a collection of component models connected via associations. A specific

instance of a system is modeled as a collection of instances of component models and associations.”
9

We demonstrate the counting of operating systems installed and running on computer systems.

8
 See ”An extension to the Cyclomatic measure of Program Complexity”, Glenford Myers, SIGPLAN Notices, vol

12 no 10, 1977.
9
 See dtc/07-05-02.

object McCabeMeasures

:Characteristic

name = McCabeComplexity

:NamedM easure

name = McCabeCyclomaticComplexity

unit = edge

:Characteristic

name = BranchingFactor

:Rescale dMeasure

operation = 1+BranchingFactor

name = McCab eCyclomaticComplexity1

unit = edge

:Sc ope

class = code::Module

:Additiv eMeasure

accumulator = sum

name = Branching

unit = edge

+trait

+scope

+scope

+baseMeasure

+trait

+equivalentFrom

+equivalentTo +scope

+trait

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 61 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 61

class CIM

CIM_OperatingSystem

+ OSType: String

Logical Hardware::

AMS_OperatingSystem

+ Name: String

+ Version: String

CIM_LogicalElement

Supported Application Model::

AMS_SupportedApplicationModel

+ Name: String

+ Configuration Info: String

Supported Application Model::

AMS_OSType

- cf. CIM_OperatingSystem.OSType: int

CIM_Compu terSystem

Logical Hardware::

AMS_ComputerSystem

+ Name: String

+ ArchitectureInfo: String

+ Status: uint16

+ NetworkLoa d: uint16

Logical Hardware Specification::

AMS_ConfigurationSpecification

+ InstanceID: String

CIM_LogicalElement

Application Deployment

Specific ation::

AMS_DeploymentLinkSpec

+ LinkID: String

0. .1

AMS_DeploymentLinkDependency

0..*

0. .1

AMS_ConfSpecCS

0. .1

0. .1

AMS_ConfSpecOS

0. .1

0. .1

AMS_ConfSpecDLS

0. .1

0..*

Supporte dOSType

1

OST ype

0..*

AMS_AMSupportedByOS

0..*

0..*

CIM_InstalledOS

1

1. .*

CIM_Run ningOS

1

-1

AMS_OSUsed

-1

Figure 40 ASMS Fragment

62 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

object OS_Count

:Additiv eMeasure

accumulator = sum

name = InstalledOperatingSystems

library = SMMsampleLibrary

unit = OS

:Counting

name = AMS_OperatingSystemCounter

library = SMMsampleLibrary

unit = OS

:Characteristic

name = InstalledOperatingSystems

:Sc ope

class = Logical Hardware::AMS_OperatingSystem

:Sc ope

class = Logical Hardwa re::AMS_ComputerSystem

:Additiv eMeasure

accumulator = sum

name = RunningOperatingSystems

library = SMMsampleLibrary

unit = OS

:Characteristic

name = RunningOperatingSystems

:Characteristic

name = OperatingSystems

+baseMeasure+scope

+trait

+scope

+baseMeasure

+trait

+scope

Figure 41 OS Counting Demonstration

19.4 Halstead

19.4.1 Distinct Operator Count of a Module

ή1 ≡ A count of the number of distinct operators in a module.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 63 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 63

Distinguishing operators invocations from calls to externally defined routines is not the type of higher level

architectural concerns represented in the KDM. Counting the number of called, but not defined elements would get

us close to this metric.

19.4.2 Distinct Operand Count of a Module

ή2 ≡ A count of the number of distinct operands in a module.

This is the data count shown above.

19.4.3 Operator Occurrence Count of a Module

N1 ≡ A count of the number of operator occurrences in a module.

This is a count of the calls to elements identified as operators.

19.4.4 Operand Occurrence Count of a Module

N2 ≡ A count of the number of operand occurrences in a module.

For KDM, this is a count StorableElements owned by ActionElements.

19.4.5 Halstead Length of a Module

N=N1+N2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the occurrence counts

given above.

19.4.6 Halstead Vocabulary of a Module

ή = ή 1+ή2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the counts given above.

19.4.7 Halstead Volume of a Module

V=N log2 ή

First log2 ή is a ReScaledMeasure based upon the vocabulary metric given above. The volume is then an

CollectiveMeasure of the length given above and the rescaled vocabulary with multiplication as the aggregator. The

unit of measure for the rescaled vocabulary and for the volume is “required bits of representation”.

64 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 42 Halstead Vocabulary Library Entry

object HalsteadVocabulary

:BinaryMeasure

functor = sum

name = HalsteadVocabulary

unit = occurrence

:DirectMeasure

operation = Set { operand } -> size()

name = DistinctOperandsCount

unit = occurrence

:DirectMeasure

operation = Set { operator } -> size()

name = DistinctOperatorsCount

unit = occurrence

:Rescale dMeasure

operatio n = log2

name = HalsteadVocabularyInBits

unit = discrimination

:Characteristic

name = Symb olSpaceSize

+trait
+baseMeasure

+trait+trait

+trait

+baseMeasure2+baseMe asure1

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 65 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 65

Figure 43 Halstead Volume Library Entry

object HalsteadVolume

:DirectMeasure

name = TotalOpe ratorOccurrence

unit = occurrence

operation = operator -> size{}

:DirectMeasure

name = TotalOpe randOccurrence

unit = occurrence

operation = operand -> size{}

:BinaryMeasure

functor = times

name = HalsteadVolume

unit = discrimination

:BinaryMeasure

functor = sum

name = HalsteadLength

unit = occurrence

:Rescale dMeasure

operatio n = log2

name = HalsteadVocabularyInBits

unit = discrimination

:Characteristic

name = Symb olSpaceSize

:Characteristic

name = Info rmationSize

:Characteristic

name = SymbolUsage

+trait

+trait
+baseMeasure2

+baseMe asure1

+trait

+baseMeasure2

+baseMe asure1

+trait

+trait

object HalsteadPotentialVolume

:BinaryMeasure

functor = times

name = Halstead PotentialVolume

unit = discrimination

:DirectMeasure

operation = parameter -> size()

name = DistinctIOoperandsCount

unit = occurrence

:Rescale dMeasure

operation = log2 baseMeasurement

name = HalsteadPotentialLengthInBits

unit = discrimination

:Rescale dMeasure

operation = base Measurement + 2

name = HalsteadConceptualVocabulary

unit = occurrence

:Characteristic

name = Info rmationSize

:Characteristic

name = Symb olSpaceSize

:Characteristic

name = SymbolUsage

+trait

+baseMeasure

+trait

+baseMeasure

+trait

+trait

+baseMe asure1

+baseMeasure2

66 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 44 Halstead Potential Library Entry

Figure 45 Halstead Effort Library Entry

object HalsteadEffort

:BinaryMeasure

functor = times

name = HalsteadVolume

unit = discrimination

:RatioM easure

name = Hal steadLevel

functor = divide

unit = ''

:RatioM easure

name = HalsteadEffort

unit = discrimination

:BinaryMeasure

functor = times

name = Halstead PotentialVolume

unit = discrimination

:Characteristic

name = ProblemSize

:Characteristic

name = Pro blemLevel

+trait

+baseMe asure1

+baseMeasure2

+trait

+baseMe asure1

+baseMeasure2

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 67 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 67

Figure 46 Halstead Measures Demonstration

19.5 Software Engineering Institute (SEI) Maintainability
Index

171 - 5.2(ln(aveV)) - 0.23(aveV(g')) - 16.2(ln(aveLOC)) + 50(sin (sqrt(2.4(perCM))))

Each of the averages are RatioMeasures of their respective metric (V for Halstead volume, V(g‟) for extended Cyclomatic

complexity and LOC of line of code) for modules over the count of modules. perCM, the percentage of comments in a module, is

a PercentageMeasure of line count of comments over the total line count of a module.

Each resulting metric is rescaled to share the same unit of measure, namely maintainability index points.

aveV rescaled 50 – 5.2(ln(aveV)

aveV(g‟) rescaled 50 – 0.23(aveV(g‟))

aveLOC rescaled 21 – ln(aveLOC)

perCM rescaled 50(sin (sqrt(2.4(perCM))))

The SEI index is then a CollectiveMeasure for a module of the above four rescaling with addition as the aggregator.

object Halstead

:BinaryMeasure

functor = sum

name = HalsteadLength

unit = occurrence

:Additiv eMeasure

accumulator = sum

name = TotalOpe randOccurrence

unit = occurrence

:Additiv eMeasure

accumulator = sum

name = TotalOpe ratorOccurrence

unit = occurrence

:DirectMeasure

operation = Set { operators } -> size()

name = DistinctOperatorsCount

unit = occurrence

:DirectMeasure

operation = Set { operand } -> size()

name = DistinctOperandsCount

unit = occurrence

:BinaryMeasure

functor = sum

name = HalsteadVocabulary

unit = occurrence

:Rescale dMeasure

operatio n = log2

name = HalsteadVocabularyInBits

unit = discrimination

:BinaryMeasure

functor = times

name = HalsteadVolume

unit = discrimination

:DirectMeasure

operation = parameter -> size()

name = DistinctIOoperandsCount

unit = occurrence

:Rescale dMeasure

operation = base Measurement + 2

name = HalsteadConceptualVocabulary

unit = occurrence

:Rescale dMeasure

operation = log2 baseMeasurement

name = HalsteadPotentialLengthInBits

unit = discrimination

:BinaryMeasure

functor = times

name = Halstead PotentialVolume

unit = discrimination

:Perce ntage

name = Hal steadLevel

:RatioM easure

name = HalsteadEffort

unit = discrimination

+baseMeasure2

+baseMe asure1 +baseMeasure2+baseMeasure

+baseMeasure

+baseMeasure

+baseMeasure2

+baseMe asure1

+baseMeasure2

+baseMeasure2

+baseMe asure1

+baseMe asure1 +baseMeasure2

+baseMe asure1

+baseMe asure1

68 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 47 Conversion of Information Size to Maintainability

object InformationSize

:Rescale dMeasure

operation = 50 - 5.2*ln(baseMeasure)

name = Volume2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:Sc ope

class = co de::Module

:BinaryMeasure

functor = times

name = HalsteadVolume

unit = discrimination

library = SMMsampleLibrary

:Additiv eMeasure

accumulator = sum

name = Module CountInModel

library = SMMsampleLibrary

unit = cod e::Module

:Sc ope

class = code ::CodeModel

:Characteristic

name = ModuleCount

:RatioM easure

functor = divide

name = AveM oduleVolume

library = SMMsampleLibrary

unit = discrimina tion/code::Module

:Characteristic

name = AverageInformationSize

:Characteristic

name = Info rmationSize

:Characteristic

name = Maintainability

+scope+trait

+baseMeasure2

+baseMe asure1

+trait

+scope

+trait +scope

+baseMeasure

+scope

+trait

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 69 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 69

object CodeStructureMaintainability

:Rescale dMeasure

operation = 50 - 0.23*baseMeasure

name = Cyclomatic2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:RatioM easure

functor = divide

name = AveModuleCyclomatic

library = SMMsampleLibrary

unit = edge/code::Module

:Characteristic

name = Average CyclomaticSize

:Characteristic

name = Maintainability

:Additiv eMeasure

accumulator = sum

name = Module CountInModel

library = SMMsampleLibrary

unit = cod e::Module

:Sc ope

class = code ::CodeModel

:Characteristic

name = ModuleCount

:Characteristic

name = McCabeComplexity

:NamedM easure

name = McCabeCyclomaticComplexity

unit = edge

library = SMMsampleLibrary

:Rescale dMeasure

operation = 1+BranchingFactor

name = McCab eCyclomaticComplexity1

unit = edge

library = SMMsampleLibrary

:Sc ope

class = co de::Module

+scope

+trait

+trait

+trait

+equivalentFrom

+equivalentTo

+scope

+scope

+baseMe asure1

+trait

+trait

+scope

+scope

+baseMeasure

+baseMeasure2

Figure 48 Conversion of McCabe Cyclomatic to Maintainability

70 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 49 Conversion of LOC to Maintainability

object CodeLengthMaintainability

:Additiv eMeasure

accumulator = sum

name = Module CountInModel

library = SMMsampleLibrary

unit = cod e::Module

:Sc ope

class = code ::CodeModel

:Characteristic

name = ModuleCount

:Rescale dMeasure

operation = 21 - ln(baseMeasure)

name = LinesOfCode2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:RatioM easure

functor = divide

name = Ave ModuleLOC

library = SMMsampleLibrary

unit = LineOfCo de/code::Module

:Characteristic

name = Avera geCodeLength

:Additiv eMeasure

accumulator = sum

name = Modu leTotalLOC

unit = Li neOfCode

library = SMMsampleLibrary

:Characteristic

name = LineCount

:Sc ope

class = co de::Module

:Characteristic

name = Maintainability

+scope

+trait

+scope

+baseMeasure

+scope

+trait

+baseMeasure2

+trait +scope

+baseMe asure1

+trait

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 71 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 71

object CommentedCodeMaintainability

:Rescale dMeasure

operation = 21 - ln(baseMeasure)

name = Commentedness2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:RatioM easure

functor = divide

name = AveModuleCommentPercentage

library = SMMsampleLibrary

unit = Percent /code::Module

:Characteristic

name = AverageCommentedness

:Additiv eMeasure

accumulator = sum

name = Module CountInModel

library = SMMsampleLibrary

unit = cod e::Module

:Sc ope

class = code ::CodeModel

:Characteristic

name = ModuleCount

:Characteristic

name = Maintainability

:Additiv eMeasure

accumulator = sum

name = ModuleCommentLines

unit = Line

library = SMMsampleLibrary

:Characteristic

name = CommentLineCount

+trait

+baseMeasure

+scope

+trait

+scope

+scope

+trait

+trait

Figure 50 Conversion of Comment Count to Maintainability

72 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

object SEI_Maintainability

:Rescale dMeasure

operation = 50 - 5.2*ln(baseMeasure)

name = Volume2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:Sc ope

class = code ::CodeModel

:Rescale dMeasure

operation = 50 - 0.23*baseMeasure

name = Cyclomatic2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:Characteristic

name = Maintainability

:Rescale dMeasure

operation = 21 - ln(baseMeasure)

name = LinesOfCode2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:Rescale dMeasure

operation = 21 - ln(baseMeasure)

name = Commentedness2Maintainability

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

:AggregatedMeasure

aggregator = sum

name = SIE_Mainta inabilityMeasure

unit = MaintainabilityUnit

l ibrary = SMMsampleLibrary

+scope

+trait

+scope

+trait

+scope

+trait

+scope

+trait

+baseMeasure

+baseMeasure

+baseMeasure

+baseMeasure

+trait

+scope

Figure 51 SEI Maintainability Demonstration

19.6 Qualitative Example

19.6.1 Non-standard language usage score

Non-standard languages are defined by an organization‟s accepted technology standards. Assign the following

scores where a 1 or 2 is low, a 3 is medium and a 5 is high:
1. 2GL or unacceptable 4GL assign 1 or 2

2. Acceptable 3GL or 4GL assign 3 or 4

3. Ideal strategic language assign 5

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 73 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 73

class NonstandardLanguage

:Ranking

name = SourceLanguageScore

library = SMMsampleLibrary

:Sc ope

class = code::AbstractCodeElement

:Characteristic

name = StandardnessOfSourceLanguage

:RankingInterv al

symbol = 2GL

minimum Endpoi nt = 1

maximumEnd point = 2

maximumOpe n = false

minimumOpe n = false

:RankingInterv al

symbol = Acceptable 3GL or 4GL

minimumEnd point = 3

maximumEndpoint = 4

maximumOpe n = false

minimumOpe n = false

:RankingInterv al

symbol = Ideal Strategic Language

minimumEnd point = 5

minimumOpe n = false

maximumOpe n = false

:RankingInterv al

symbol = Unacceptable 3GL or 4GL

minimum Endpoi nt = 1

maximumEnd point = 2

maximumOpe n = false

minimumOpe n = false

+interval

+interval

+interval

+interval

+trait

+scope

Figure 52 Qualitative Measure Demonstration

20 Library of Categories (Software example)

SMM does not establish a standard set of measurement categories that presents an organization

of measures applicable to every environment or every engineering activity. SMM minimally

establishes a demonstration library of metric categories. The library does not assert that the given

categories are standards. These metric categories reflect a high-level summary of industry

metrics that support some engineering processes.

20.1 Environmental Metrics

Number of screens, programs, lines of code, etc.

20.2 Data Definition Metrics

Number of data groups, overlapping data groups, unused data elements, etc.

20.3 Program Process Metrics

Halstead, McCabe, etc.

20.4 Architecture Metrics

Average call nesting level, deepest call nesting level, etc.

74 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

20.5 Functional Metrics

Functions defined in system, business data as a percentage of all data, functions in current system that map to

functions in target architecture, etc.

20.6 Quality / Reliability Metrics

Failures per day, meantime to failure, meantime to repair, etc.

20.7 Performance Metrics

Average batch window clock time, average online response time, etc.

20.8 Security / Vulnerability

Breaches per day, vulnerability points, etc.

	OMG
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgments

	7 SMM
	7.1 General Usage Notes (Non normative)
	7.2 Steps in using SMM (Non normative)
	7.3 Interpreting Measures (Informative)

	8 Core Classes
	8.1 SmmElement Class (Abstract)
	Attributes
	Associations
	Operations

	8.2 SmmModel Class
	SuperClass
	Associations

	8.3 SmmRelationship Class (abstract)
	SuperClass
	Associations
	Operations

	8.4 MeasureLibrary Class
	SuperClass
	Associations
	Semantics

	8.5 MeasureCategory Class
	SuperClass
	Associations

	8.6 CategoryRelationship
	SuperClass
	Associations
	Semantics
	Constraints

	8.7 Date
	8.8 Timestamp

	9 Extensions
	9.1 Attribute Class
	SuperClass
	Attributes
	Constraints
	Semantics

	9.2 Annotation Class
	SuperClass
	Attributes
	Constraints
	Semantics

	10 Measures
	10.1 AbstractMeasureElement Class (abstract)
	SuperClass
	Associations

	10.2 Characteristic Class
	SuperClass
	Attributes
	Associations

	10.3 Scope Class
	SuperClass
	Attributes
	Associations
	Semantics

	10.4 Measure Class (abstract)
	SuperClass
	Attributes
	Associations
	Operations
	Semantics

	10.5 Operation Class
	SuperClass
	Attributes
	Operations
	Semantics

	10.6 OCLOperation Class
	SuperClass
	Attributes
	Semantics

	10.7 MeasureRelationship Class (abstract)
	SuperClass
	Attributes
	Associations
	Semantics

	10.8 EquivalentMeasureRelationship Class
	SuperClass
	Associations
	Semantics

	10.9 RefinementMeasureRelationship Class
	SuperClass
	Associations
	Semantics

	10.10 RecursiveMeasureRelationship Class
	SuperClass
	Associations
	Semantics
	Constraint

	10.11 DimensionalMeasure Class
	SuperClass
	Attributes
	Associations

	10.12 Ranking Class
	SuperClass
	Associations

	10.13 RankingMeasureRelationship
	SuperClass
	Associations

	10.14 RankingInterval Class
	SuperClass
	Attributes
	Constraints

	11 Collective Measures
	11.1 CollectiveMeasure Class
	SuperClass
	Attributes
	Associations
	Constraints

	11.2 Accumulator data type (enumeration)
	Literal Values

	11.3 DirectMeasure Class
	SuperClass
	Associations

	11.4 Counting Class
	SuperClass
	Constraints

	11.5 BinaryMeasure Class
	SuperClass
	Attributes
	Associations
	Semantics

	11.6 Ratio Class
	SuperClass
	Constraints

	11.7 BaseMeasureRelationship Class
	SuperClass
	Associations

	11.8 Base1MeasureRelationship Class
	SuperClass
	Associations

	11.9 Base2MeasureRelationship Class
	SuperClass
	Associations

	12 Other Measures
	12.1 NamedMeasure Class
	SuperClass
	Attributes
	Constraints

	12.2 RescaledMeasure Class
	SuperClass
	Attributes
	Associations

	12.3 RescaledMeasureRelationship Class
	SuperClass
	Associations

	13 Measurements
	13.1 Measurement Class (abstract)
	SuperClass
	Attributes
	Associations
	Operations
	Constraints
	Semantics

	13.2 MeasurementRelationship Class (abstract)
	SuperClass

	13.3 EquivalentMeasurementRelationship
	SuperClass
	Associations

	13.4 RefinementMeasurementRelationship Class
	SuperClass
	Associations

	13.5 RecursiveMeasurementRelationship Class
	SuperClass
	Associations

	13.6 DimensionalMeasurement Class
	SuperClass
	Attributes
	Associations
	Constraints

	13.7 Grade Class
	Super Class
	Attributes
	Associations
	Constraints
	Semantics

	RankingMeasurementRelationship Class
	SuperClass
	Associations

	14 Collective Measurements
	14.1 CollectiveMeasurement Class
	SuperClass
	Attributes
	Associations
	Constraints
	Semantics

	14.2 DirectMeasurement Class
	SuperClass
	Constraints

	14.3 Count Class
	SuperClass
	Constraints

	14.4 BinaryMeasurement Class
	SuperClass
	Attributes
	Associations
	Constraints
	Semantics

	14.5 RatioMeasurement Class
	SuperClass
	Constraints

	14.6 BaseMeasurementRelationship Class
	SuperClass
	Associations

	14.7 Base1MeasurementRelationship Class
	SuperClass
	Associations

	14.8 Base2MeasurementRelationship Class
	SuperClass
	Associations

	15 Named and Rescaled Measurements
	15.1 NamedMeasurement Class
	SuperClass
	Constraints

	15.2 RescaledMeasurement Class
	SuperClass
	Attributes
	Associations
	Constraints
	Semantics

	15.3 RescaledMeasurementRelationship Class
	SuperClass
	Associations

	16 Observations
	16.1 Observation Class
	SuperClass
	Attributes
	Associations
	Constraints

	16.2 ObservationScope Class
	SuperClass
	Attributes
	Semantics

	16.3 ObservedMeasure Class
	SuperClass
	Associations

	16.4 Argument Class
	SuperClass
	Attributes
	Associations
	Semantics

	17 Historic and Trend Data (Non-Normative)
	18 Inaccuracy (Non-Normative)
	19 Library of Measures (Non-Normative)
	19.1 Various Counts
	19.1.1 Module Count
	19.1.2 Screen Count
	19.1.3 Method Count
	19.1.4 Lines of Code
	Lines of SourceRegion and SourceRef
	Refinement of Lines of ControlElement, CodeElement and Module

	19.1.5 Lines of Code for ASTM

	19.2 McCabe
	19.2.1 Branching Factor of ActionElements and Modules
	19.2.2 Cyclomatic Complexity of a Module
	19.2.3 Extended Cyclomatic Complexity of a Module
	19.2.4 Average Extended Cyclomatic Complexity of Modules in the System

	19.3 Ratio of Additive ECC over Additive Counting of modules.Counts of Operating Systems
	19.4 Halstead
	19.4.1 Distinct Operator Count of a Module
	19.4.2 Distinct Operand Count of a Module
	19.4.3 Operator Occurrence Count of a Module
	19.4.4 Operand Occurrence Count of a Module
	19.4.5 Halstead Length of a Module
	19.4.6 Halstead Vocabulary of a Module
	19.4.7 Halstead Volume of a Module

	19.5 Software Engineering Institute (SEI) Maintainability Index
	19.6 Qualitative Example
	19.6.1 Non-standard language usage score

	20 Library of Categories (Software example)
	20.1 Environmental Metrics
	20.2 Data Definition Metrics
	20.3 Program Process Metrics
	20.4 Architecture Metrics
	20.5 Functional Metrics
	20.6 Quality / Reliability Metrics
	20.7 Performance Metrics
	20.8 Security / Vulnerability

