
Date: December 2023

Software Fault Pattern Metamodel
(SFPM)

Version 1.0

OMG Document Number: formal/23-12-02]

Normative reference: https://www.omg.org/spec/SFPM/

https://www.omg.org/spec/SFPM/

ii Software Fault Pattern Metamodel (SFPM), v1.0

Copyright © 2019-2022, 88solutions Corp.
Copyright © 2019-2022, KDM Analytics, Inc.
Copyright © 2019-2022, Lockheed Martin Corporation
Copyright © 2019-2022, The MITRE Corporation
Copyright © 2019-2022, Dassault Systems
Copyright © 2023, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification
in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications
is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will
not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification.
This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon
termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

Software Fault Pattern Metamodel (SFPM), v1.0 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS
MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)
is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only
if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based on
this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

iv Software Fault Pattern Metamodel (SFPM), v1.0

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page https://www.omg.org, under Specifications, Report a Bug/Issue
(https://www.omg.org/technology/agreement.)

https://www.omg.org,/
http://www.omg.org/technology/agreement.)
http://www.omg.org/technology/agreement.)
http://www.omg.org/technology/agreement.)

Software Fault Pattern Metamodel (SFPM), v1.0 v

Table of Contents

1 Scope ... 1

1.1 SFP and CWE .. 1

1.2 SFP Applications ... 2

1.3 SFP Apparatus .. 2
1.3.1 Semantics of Dataflows .. 3
1.3.2 Formalization of dataflows in SFP ... 6
1.3.3 SFP-enabled capabilities ... 6
1.3.4 The role of the SFP Metamodel .. 7

2 Conformance ... 8

3 References ... 8

3.1 Normative References .. 8

3.2 Informative References .. 9

4 Terms and Definitions ... 9

5 Symbols ... 12

6 Additional Information .. 13

6.1 How to Read this Specification ... 13

6.2 Acknowledgements .. 13

7 SFP Exchange Format .. 15

7.1 Objectives .. 15

8 Software Fault Pattern Metamodel .. 17

8.1 Core Elements of the SFP Catalog ... 17
8.1.1 SFP Catalog Diagram .. 17
8.1.1.1 SFPCatalog Class... 18
Example 1. SFPM XMI .. 19
Example 2 Readable SFP language .. 20
8.1.1.2 Cluster Class ... 21
8.1.1.3 SFP Class .. 22
8.1.1.4 CWE Class .. 23
8.1.1.5 Note Class .. 26
8.1.1.6 CWESection Class ... 26
8.1.1.7 DiscernibilityLevel Enumeration ... 27
8.1.1.8 Status Enumeration .. 28
8.1.2 SFP Variations Class Diagram .. 29
8.1.2.1 Parameter .. 30
Superclass Attributes ... 31
Associations ... 31
Example 1. SFPM XMI .. 31
Example 2. Readable SFP language ... 32

vi Software Fault Pattern Metamodel (SFPM), v1.0

8.1.2.2 Variant Class .. 32
Example 1. SFPM XMI .. 33
Example 2. Readable SFP language ... 33
8.1.2.3 Variation Class ... 33
Superclass Associations .. 34
Example 1. SFPM XMI ... 34
Example 2. Readable SFP language ... 35
8.1.2.4 Property Class .. 35
8.1.3 SFP Causal Context Class Diagram .. 36
8.1.3.1 RootCause Class ... 36
Superclass Attributes ... 36
Example 1. SFPM XMI .. 37
Example 2. Readable SFP language .. 37
8.1.3.2 Injury Class ... 37
Example 1. SFPM XMI .. 38
Example 1. Readable SFP language .. 38
8.1.4 SFP Variant Mappings Class Diagram .. 39
8.1.4.1 InjuryMapping Class ... 39
8.1.4.2 CWEMapping Class ... 40

8.2 Sections of the SFP Catalog .. 41
8.2.1 All Sections Class Diagram .. 41
8.2.1.1 Section Class (abstract) ... 42
Superclass Attributes ... 42
8.2.1.2 CommonSection Class (abstract) ... 42
Constraints .. 43
8.2.1.3 ClusterSection Class (abstract) .. 43
Constraints .. 43
8.2.1.4 SFPSection Class (abstract) ... 43
Constraints .. 43
8.2.2 SFP Sections Class Diagram ... 43
8.2.2.1 InjuryMappingSection Class ... 44
Superclass .. 44
Constraints .. 44
Example ... 45
8.2.2.2 CWEMappingSection Class ... 45
Constraints .. 45
8.2.2.3 ParameterSection Class .. 45
8.2.2.4 VariationSection Class .. 45
8.2.2.5 ElementSection Class ... 46
8.2.2.6 CanonicalSection Class ... 47
8.2.2.7 SFP Class (additional properties) ... 47
8.2.3 Common Sections Class Diagram .. 48
8.2.3.1 RootCauseSection Class .. 49
8.2.3.2 InjurySection Class ... 49
8.2.3.3 IndicatorSection Class .. 49
8.2.3.4 PropertySection Class ... 50
8.2.3.5 ContextSection Class .. 50
8.2.3.6 VocabularySection Class ... 51
8.2.3.7 SFPCatalog Class (additional properties) ... 52

Software Fault Pattern Metamodel (SFPM), v1.0 vii

8.2.4 Characteristic Sections Class Diagram ... 52
8.2.4.1 CharacteristicSection Class ... 53
8.2.4.2 Cluster Class (additional properties) ... 55
8.2.4.3 SFP Class (additional properties) ... 55

8.3 SFP Defined Elements .. 55
8.3.1 SFP Defined Elements Class Diagram .. 56
8.3.1.1 Property Class .. 57
8.3.1.2 Indicator Class .. 59
8.3.1.3 ReferencedContextElement Class ... 61
8.3.2 SFP Dataflow Elements Class Diagram .. 63
8.3.2.1 DataflowElement Class (abstract) ... 64
8.3.2.2 PrimaryDataStatement Class .. 64
8.3.2.3 SinkStatement Class ... 66
8.3.2.4 SourceStatement Class ... 69
8.3.2.5 Condition Class .. 71
8.3.3 SFP Canonical Elements Class Diagram ... 71
8.3.3.1 CanonicalElement Class (abstract) .. 73
8.3.3.2 CanonicalForm Class .. 73
Example 1. SFPM XMI ... 73
Example 2. Readable SFP language ... 74
8.3.3.3 CanonicalSegment Class (abstract) ... 75
8.3.3.4 SinkSegment Class.. 75
8.3.3.5 SourceSegment Class ... 76
8.3.3.6 PrimaryDataSegment Class... 78
8.3.3.7 MitigatedSinkSegment Class .. 78
8.3.3.8 MitigatedSourceSegment Class .. 80
8.3.4 SFP Context Elements Class Diagram .. 81
8.3.4.1 ContextElement Class (abstract) ... 82
8.3.4.2 Resource Class ... 82
8.3.4.3 Operation Class .. 83
8.3.4.4 DataType Class ... 85
8.3.4.5 DataElement Class ... 86
8.3.4.6 API Class .. 87
8.3.4.7 Decision Class .. 87

8.4 Semantic Formalization Apparatus ... 87
8.4.1 Semantic Elements Class Diagram .. 88
8.4.1.1 SemanticElement Class (abstract) ... 88
8.4.1.2 SemanticFragment Class .. 88
8.4.1.3 Verbalization Class ... 89
8.4.2 Statements Class Diagram .. 89
8.4.2.1 SemanticFormulation Class .. 90
8.4.2.2 SemanticFormulationKind Enumeration ... 94
8.4.2.3 ClauseReference Class (abstract) .. 94
8.4.2.4 VerbForm Class (abstract) .. 95
8.4.2.5 Variable Class ... 95
8.4.3 Variable Bindings Class Diagram ... 97
8.4.3.1 RoleBinding Class ... 98
8.4.3.2 BindableTarget Class (abstract) .. 99

8.5 Referenced Vocabularies .. 99
8.5.1 Vocabularies Class Diagram .. 100

viii Software Fault Pattern Metamodel (SFPM), v1.0

8.5.1.1 NounConcept Class .. 100
8.5.1.2 VerbConcept Class ... 101
8.5.1.3 IndividualConcept Class.. 104
8.5.1.4 Vocabulary Class .. 105
8.5.1.5 VocabularyElement Class (abstract) .. 105

9 Appendix A (Informative) .. 107

Software Fault Pattern Metamodel (SFPM), v1.0 ix

Table of Figures

Figure 1: Computations and data flows ... 5
Figure 2: UML class diagram SFP Catalog .. 18
Figure 3: UML class diagram SFP Variations ... 30
Figure 4: UML class diagram SFP Causal Context ... 36
Figure 5: UML class diagram SFP Variant Mappings ... 39
 Figure 6: UML class diagram All Sections ... 42
 Figure 7: UML class diagram SFP Sections ... 44
 Figure 8: UML class diagram Common Sections ... 48
 Figure 9: UML class diagram Characteristic Sections .. 53
 Figure 10: UML class diagram SFP Defined Elements .. 57
Figure 11: UML class diagram SFP Dataflow Elements ... 64
Figure 12: UML class diagram SFP Canonical Elements .. 72
Figure 13: UML class diagram SFP Context Elements ... 82
Figure 14: UML class diagram Semantic Elements... 88
Figure 15: UML class diagram Statements ... 89
Figure 16: UML class diagram Variable Bindings ... 97
Figure 17: UML class diagram Vocabularies .. 100

x

Preface
About the Object Management Group
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.
More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec
All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:
OMG Headquarters
109 Highland Avenue
Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues
The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org

http://www.omg.org/
http://www.omg.org/spec
mailto:pubs@omg.org
http://www.iso.org/
http://www.omg.org/

 Software Fault Pattern Metamodel (SFPM), v1.0 1

1 Scope
 One of the key steps in preventing cyber-attacks is to collect, analyze and efficiently manage knowledge about
 exploitable weaknesses. This knowledge should be made available to the community as a resource to build more
comprehensive prevention, detection, and mitigation solutions. To this end, several classifications of weaknesses have been
developed; the Common Weakness Enumeration (CWE) catalog describes a large collection of weaknesses building upon
proposals by various researchers; however, all existing classifications remain informal and resist automation.

This document describes the Software Fault Pattern (SFP) approach to building machine-consumable knowledge of software
weaknesses. The goal of the SFP approach is not to study weaknesses as some abstract objects, but instead to examine
computations that exhibit certain "faults"; to reveal the invariants of such computations, and to provide a framework for
describing and cataloguing "faults" in terms of these invariants. Invariants of computations determine certain characteristic
elements of computations and common "patterns" in the flow of participating computations. Invariants also describe certain
logical relations between the characteristic elements of computations. The key benefit of the SFP approach is that invariants
of computations can be directly correlated with semantic descriptions of software. To describe invariants in terms of
software, the SFP approach uses ISO/OMG Knowledge Discovery Metamodel (KDM) as a language-neutral, vendor-
independent vocabulary for describing software facts. With KDM as the foundation, the SFP framework developed an
apparatus for formally specifying invariants of computations and describing and cataloguing faults as invariants of
computations. The SFP apparatus involves the specification of the SFP Metamodel (SFPM) and the SFPM XMI schema.

As the foundation of the SFP Catalog of Software Fault Patterns – collection of reusable, machine-consumable units of
knowledge, the SFP Metamodel defines an infrastructure for new capabilities in software assurance. SFPM XMI is a
common interoperable format for representing machine-consumable content related to software faults, their formal
semantics, and their mappings to the elements of the Common Weakness Enumeration (CWE) catalog.

1.1 SFP and CWE

CWE catalog has been selected as the “reference” of the SFP Catalog since it is a de facto body of community’s knowledge
of software weaknesses. Objectives of the SFP program are complimentary to those of CWE. SFP emphasizes machine-
consumable/formal definitions of semantics of weaknesses, focusing on the invariants, while CWE emphasizes the breadth
of knowledge about weaknesses and human-consumable content. Developing SFP content is an important to build a better
ecosystem of tools and services. SFP content can be available through cross-links from CWEs and vice versa.

The objective of SFP is to provide a semantic “viewpoint” on the content that is already in CWE, to provide a set of formal
compliance points for software weaknesses as well as to resolve any inconsistencies and ambiguities in existing CWE
content and fill any gaps in CWE.

A formal compliance point for a software weakness provides a rigorous, automatable way to address such questions as
a) whether a certain code fragment is an example of a given software weakness, and b) whether a certain tool can detect a
given software weakness. Existence of formal compliance points for individual “named” weaknesses – items of the CWE
Catalog - has significant benefits in removing ambiguities in weakness findings reporting and development of new evidence
collection capabilities for digital certification of systems.
A formal compliance points are particularly important for the industry of code analysis tools. In this context, formal
compliance points can be used analytically (by comparing an implementation to a formal definition of a weakness);
synthetically (by generating compliance test cases from the formal definition of a weakness) or constructively (by
developing a content-driven code analysis tool and importing formal definitions of weaknesses).
 SFP addresses a certain important subset of software weaknesses in CWE – weaknesses that are fully discernible/described
as properties of code. This class can be called discernible white-box code weaknesses.

The terms “weakness”, “flaw”, “bug” and “vulnerability” are often used inconsistently because the objects implied by these
terms lack constructive formal definitions. This specification uses the term “software fault” as it refers to an identified –
adjudged or hypothesized – cause of a failure of the service performed by a piece of software under investigation. Correct
service is delivered when the service implements the system function. A service failure, often abbreviated to failure, is an

2 Software Fault Pattern Metamodel (SFPM), v1.0

event that occurs when the delivered service deviates from correct service. A service fails either because it does not comply
with the functional specification, or because this specification did not adequately describe the system function. Further, the
SFP apparatus is developed to provide formal, constructive definitions to the class of software faults that can be identified in
the software alone. SFP metamodel as defined by this specification, is the machine-consumable representation of these
formal definition of software faults. Further, the context in which SFP has been developed is system assurance, risk
management and digital certification of systems. Consequentially, the class of software faults of interest for the SFP catalog
is related to cybersecurity failures.

From this perspective, the CWE catalog has a broader scope as the CWE “weaknesses” can be attributed to artifacts other
than software. CWE “weaknesses” are not necessarily “discernible either.

1.2 SFP Applications
Formal machine-consumable descriptions of software weaknesses are instrumental to establish an ecosystem of new
capabilities that will consume the SFP content and use this content for various purposes including (but not limited to):

- producing analytics related to software faults (visualizations, reports, identifying gaps, etc.),

- collecting evidence for digital certification of systems (identifying instances of weaknesses in code and
binary, proving absence of certain classes of weaknesses, etc.),

- synthesizing test cases for code analysis tools (measuring performance of code analysis tools,
calibrating reporting capabilities in tools, etc.),

- digital certification of systems (unambiguous and precise mapping of classes of weaknesses to risks,
communicating requirements for evidence collection between risk management tools and code analysis
tools, communicating evidence findings from code analysis tools to risk management tools, etc.).

1.3 SFP Apparatus

The primary objective of the SFP Catalog is to bring clarity and precision to the study of weaknesses by building a
systematic machine-consumable catalog of software faults and to enable analytics and automation of various workflows
involving the knowledge of software faults. To this end, the SFP approach brings together several successful model-based
techniques:

- ISO/OMG Knowledge Discovery Metamodel (KDM) as a language-neutral, vendor-independent

vocabulary for describing software facts;

- community best practices for machine-consumable descriptions of software faults as data flows;

- ISO/OMG Semantics of Business Vocabularies and Rules (SBVR) as a logical foundation for formal
definitions of logical propositions on top of vocabularies such as KDM, and

- Meta-Object Facility (MOF) as the foundation for building technology-neutral representations.

The resulting apparatus allows structured definitions of semantics of software faults, development of vendor-neutral content,
accumulation of reusable content, analytics, and development of new capabilities.

SFPM defines a set of elements to describe denotational semantics of highly specialized objects – software weaknesses, as
dataflows. These definitions are independent of the implementation language and thus are not related to syntax, structure of
pragmatics of the programming language. In contrast, SFP describes the semantics of the dataflows as invariants of
computations. These definitions are made modular, so that the resulting catalog can easily organize common clauses, and
reference them to the CWE items, which are considered as signifiers of the software weaknesses.
By providing a semantic definition of otherwise very informally defined CWE items, SFP program achieves its objective of
providing formal compliance points to CWEs.

 Software Fault Pattern Metamodel (SFPM), v1.0 3

The elements of meaning in SFPM have the following 4 layers:

- KDM elements define the meaning of the code elements. This is defined in the KDM specification. KDM
definitions do not involve full denotational semantics, but instead are defined in reference to known
programming languages.

- Common Logic Statements that use KDM vocabulary (as well as the common SBVR vocabulary). To
increase the readability of the definitions, SFP allows referencing any formally defined vocabulary
based on KDM. So, common clauses can be arranged into vocabularies and referenced from other
clauses.

- Semantic of a dataflow. This is defined informally by referencing to the well-known program analysis literature.
SFPM includes several structural elements of a dataflow that receive their separate definitions as common logic
statements. Thus, every dataflow is defined as its source, sink and data element, as wells as a global condition.
Structural apparatus of SFPM allows managing individual modular semantic clauses and cross referencing
them.

- Cross-referencing SFPs to enumerations of common causes and impacts.

The SFP Catalog provides a structured semantic approach to the enumeration of software faults. A software fault is a
situation that manifests itself as a faulty computation exhibited by a system. The rest of this section defines the scope of the
SFP Catalog in more detail by reviewing the background of the SFP approach.

The SFP approach borrows methods and apparatuses of program analysis to describe related families of computations
independent of the existing code. The discipline of program analysis deals with various representations of the computations
implemented by a given code in the larger context of an entire system under analysis. The purpose of SFP content is to be
consumed by some program analysis capabilities that would use it, for example, as executable rules to prove that the code
under analysis has faults described by the SFP. The SFP content exists independently of the corresponding capability and
independent of any code under analysis. The SFP Metamodel provides guidelines to the coordinated development of the SFP
content, and the capabilities that will use this content. It is important that the SFP content be defined as both technology-
neutral and vendor-neutral, i.e. not assuming a specific capability that can utilize it.

1.3.1 Semantics of Dataflows

SFP Metamodel involves an apparatus for defining invariants of data flows. The main purpose of this apparatus is to define
computations that exhibit certain faults (vulnerabilities, weaknesses).
Vulnerability is defined as “a bug, flaw, weakness, or exposure of an application, system, device, or service that could lead
to a failure of confidentiality, integrity, or availability”. In other words, “vulnerability” is a computation that can be
exploited to produce (negative) impact. Certain computations in the system are designed to mitigate vulnerabilities. These
computations and the corresponding mechanisms and “places” in the code are called “safeguards”. A “faulty computation”
is defined as either a computation that has direct negative impact on the operations of the system, or a computation that
corresponds to an incorrectly implemented security safeguard. The catalog of faulty computations focuses at computations
that are common to large families of systems.

Certain computations are specific to a single system. However, there are certain computations that are common to large
families of systems. For example, such common computations are related to input processing, authentication, access control,
cryptography, information output, resource management, memory buffer management, exception management. To focus on
the invariants of such common computations, further abstractions of the basic concept of a computation may need to be
considered.

4 Software Fault Pattern Metamodel (SFPM), v1.0

In general, a computation is a sequence of events performed by a system. The idea of formally describing invariants of
computations using an alphabet of event names was outlined in C.A.R. Hoar “Communicating Sequential Processes”. The
choice of an alphabet usually involves a deliberate simplification, a decision to ignore many other properties and actions
which are considered to be of lesser interest. This specification uses the word computation to stand for the behavior invariant
of a system, insofar as it can be described in terms of the limited set of events selected as its alphabet.
This first alphabet is referred to as the observable alphabet of a computation.

Events must be implemented by some activities which introduce another alphabet related to the computation. This second
alphabet is referred to as the activity alphabet of the computation.
Activities are implemented by the code and supported by other components of the system such as hardware, firmware,
networks, operators, etc. For a system implemented mostly in software, the code provides the constraints to computations and
therefore determines what computations can occur.
An activity corresponds to a certain identifiable place in the code (represented by some artifacts) - also referred to as a
program point. For example, a source code in C language is represented by one or more text files containing function
definitions and statements – these files are referred to as “artifacts”. An activity in this case corresponds to one or more
statements, and its place can be described in terms of a region of line numbers in the source file(s), as well as in terms of
function(s) owning the statement(s). Activities are usually defined at the semantic level (referrerd to as micro- KDM
operations in [kdm]), so a “line of code” taken at syntax level usually corresponds to multiple activities and thus – multiple
program points. Program points introduce the third and final alphabet of a computation – its program point alphabet. While
activity defines a specific semantic micro operation, for example assigning a value to a pointer, a program point refers to a
specific position in the control- and data-flow (same activity can happen at many different program points).
The fundamental decision of the SFP Catalog approach is to use the vocabulary defined by the KDM standard as that activity
alphabet and the program point alphabet for defining computations as vendor-neutral content. This establishes a language-
neutral foundation (SFP content can be mapped to the syntax of different programming languages) as well as a vendor-
neutral foundation (SFP content is not expressed against some proprietary internal representation of a tool by some vendor).

When describing vulnerabilities, a larger context of system is important. An entire system is a collection of activities that
exchange data to achieve some desired purpose. Activities occur at system nodes that are connected by channels. A system
node is implemented by some code. A channel is an abstraction to represent data exchanges between activities owned by
two nodes. Following the NIST Common Vulnerability Scoring System (CVSS) approach, we distinguish local channels
between system nodes deployed at the same machine (host); adjacent network channels between system nodes deployed at
the same local area network; and remote channels. This distinction is important because it determines the class of access
required to exploit vulnerabilities. Each system node performs activities to provide services to other system nodes or the
environment of the entire system. Thus, the events described by activities can be mapped to system nodes.
Data exchanges use channels. We distinguish between data at rest (for example, data in a database),
data in motion (data in a channel) and data in use (data used by an activity).

In program analysis, any serious attempt at characterizing computation exhibited by a system must provide for some sort of
account of the computation’s structure in terms of one of its alphabets (observable alphabet, activity alphabet or program
point alphabet). Assertions regarding order of activities, location and disposition of transfers, identification of subroutines,
internal consistency, as well as state of the computation in terms of the values of the data elements at any program point, all
involve a knowledge of the structure of the code under study. The structure of code is usually determined by code artifacts
describing the program and may usually be given a convenient geometric representation by means of control- and data- flow
graphs.
Thus, a computation may traverse multiple system nodes and channels in the sense that the activity events are mapped to a
sequence of nodes and channels involved in data exchanges between activities at connected nodes.
A trace of the behavior of a process is a finite sequence of symbols recording the events in which the
computation has engaged up to some moment in time.
A trace records a sequence of observable events, activities, or program points. For a trivial computation, a trace provides an
adequate description of the computation. Obviously, any non-trivial system exhibits an infinite number of traces. If one
wanted to enumerate representative traces of a certain system as a means of description, shorter traces may be preferred. For
example, a system can be described by a finite number of traces corresponding to a single statement (or a basic block of
statements). The number of larger traces of larger computations would be infinite as there is usually no upper bound
imposed on the maximum length of a trace. A more adequate description of the code may be achieved by aggregating the
initial single statement traces into longer sequences that are “recurring” throughout various end-to-end computations.

 Software Fault Pattern Metamodel (SFPM), v1.0 5

Figure 1: Computations and data flows

Selection of short “recurring” computations as the means of describing complex behavior patterns is important, as
computations can be combined and/or interleaved. A (shorter) trace can be part of one or more (larger) traces. Computations
can be interleaved as follows. Consider two computations, c1 with activities {a1,a2,a3} and c2 with activities {a4,a5,a6}.
Computation c1 is atomic, if a1 is always followed by a2, and a2 is always followed by a3. The quantification “always” is
taken over the set of all end-to-end traces for the code. Computation c1 may be interleaved with computation c2, if c1 is not
atomic, and a1 is followed by a4, a4 is followed by a2, etc. This is illustrated at Figure 1.
Further, a useful way of enumerating “recurring” trace segments of a computation is to consider “data flows”. A
computation can also be viewed as a series of transformations of the data state, which consists of the values of all data
elements (variables) across all system nodes, including data in motion, data in use and data at rest. A data flow is a
computation that only includes activities that are related to the state of a single “data element”. The concept of a data
element is essential for imperative programming languages, however, even in the context of non-imperative language, e.g.
functional programming, or logic programming, there are data elements, such as formal parameters of functions and logical
variables, and therefore, there are data flows to consider. Obviously, data flows are often interleaved between themselves.
A data flow focuses at assigning (or binding) values to data elements. A data flow can be viewed as a flattened inverted tree
of computations that compute the value of the data element at its root (the last element in the computation). This is
illustrated at Figure 1.

To focus on the invariants of computations that are common to broad classes of systems, further abstractions of the basic
concept of a computation may need to be considered. For example, computations c1 and c2 in Figure 1 share common
structure, with different names of the variables, types of the variables, data values and expression in the last statement. Both
are data flows, where a variable is assigned a value that is the result of an arithmetic expression involving two other
variables. Each of the two variables is assigned a constant value. This pattern can be considered an invariant of the
corresponding data flow. When a formal description of this invariant is available as machine-consumable content, one can
develop a generic data-driven capability that will collect evidence related to the presence of such data flows in the code (by
enumerating the possible locations in the code), or to synthesize samples of this data flow as tests.

The key part of a data flow is its sink. By definition, a data flow has a single sink. Further, a data flow may have one or more
sources. Sink and source(s) are defined as propositions that only use the program point alphabet. In other words, sink and
source(s) are defined in terms of the code constructs (in terms of the KDM standard, in a language-neutral and technology-
neutral way). They are not defined in terms of the values of the data elements, or in terms of the state of the computation.
Source specification may only describe a statement. As a source specification of a data flow, this is an indirect way of
specifying the possible range of values of a data element. For example, an assignment statement with constant “NULL” as
the right-hand side expression as a single source to a data flow specifies that the value of the data element can only be

6 Software Fault Pattern Metamodel (SFPM), v1.0

‘NULL’.
A data flow may involve a characteristic condition that involves the value at the sink – a direct way of specifying ranges of
values. Condition is a powerful way of specifying data flows. Condition correlates with the values specified by the source(s).
For example, values {1,2} for the sources satisfy the condition in Figure 1, and so do values {10,20}, but not values {1,-2}.
The SFP approach describes a sink of a data flow in terms of the code constructs, in such a way that its location in the code
can be established. This mechanism can be called a program point pattern that is effectively matched to the code and
identifies certain program points as instances of the pattern. The rest of the data flow is described as one or more logical
propositions the truth of which must be established to make a claim that an occurrence of a data flow is found in the code.
The SFP approach assumes a capability that will match the sink program point pattern, and another capability that will keep
finding longer and longer data flows leading to the sink, and yet another capability that will check the propositions that
describe the invariant. Such capability must eventually make a verdict whether there is enough evidence to claim the
presence of the pattern or not. The two latter capabilities must interact to keep extending the data flows, when possible, if no
verdict has been made, and to stop, when the evidence becomes inconclusive (when neither verdict can be made).
Condition as a means of specifying invariants of a data flow is a significantly more computationally expensive, compared to
more pattern-like propositions involving the source values.

1.3.2 Formalization of dataflows in SFP

The formalization approach of the SFP Catalog is based on the following considerations. An invariant of a data flow can be
described as a set of facts such that any “compliant” data flow will exhibit these facts, and only compliant data flows will
exhibit such facts.

Sink and sources of a data flow are defined using logical expressions built on top of program point patterns. The program
point patterns use KDM facts as the base vocabulary. The rest of the logical expression for sinks and sources uses the first
order logical formulations from the Semantics of Business Vocabularies and Rules (SBVR) standard.
The content of the SFP Catalog describes an argument justifying the claim that the code under assessment exhibits a
certain fault. The starting point of this argument is the presence of the Indicator. Additional evidence is provided by
matching of the elements of the SFP in relation to the Indicator. Final evidence is collected when the data flow
satisfies the condition of the SFP.
An invariant of a data flow can be described as a set of propositions such that any “compliant” data flow will exhibit
these propositions, and only compliant data flows will exhibit such propositions. Thus, the SFP Catalog accumulates
content related to describing “interesting” data flows.

1.3.3 SFP-enabled capabilities

The content of the SFP Catalog can be used for a multitude of purposes, including the three fundamental ones:

1) [certification] How to collect evidence that a certain system under assessment exhibits a given SFP;

2) [synthesis] How to generate representative samples of a given SFP;

3) [analytics] better understanding software weaknesses and their impact on systems, including machine
learning and artificial intelligence

From the certification perspective, the SFP approach assumes four supporting capabilities:

1) capability to locate certain “places” in the code under assessment;

2) capability to systematically identify data flows that involve a given “place” in the code;

3) capability to check certain conditions on a given data flow;

4) capability to eventually make a verdict whether there is enough evidence to claim the
occurrence of a data flow at the given place in the code.

 Software Fault Pattern Metamodel (SFPM), v1.0 7

Thus, the evidence collected by this process involves the evidence of an (initial) location of a (possible) SFP, evidence of the
identification of the data flows, and evidence to the condition checking.

A computation “indicator” is a known construct (such as an entry point, or an API call) manifested in the system’s artifacts,
such that it is a necessary condition for the computation. Certain places in the code can directly cause (negative) impact. Such
places are indicators for the impacting computations. Safeguards also have indicators, related to the safeguard itself as well as
to the protected region. Thus, a significant part of the SFP Catalog is the enumeration of the unique places in the code
associated with faulty computations that directly have impact or to the failed safeguards. Indicators are described as program
point patterns using KDM vocabulary.

From the synthesis perspective, the SFP Catalog accumulates content related to the full context in which an invariant of a
certain fault may occur, as well as the canonical samples of both “compliant” and “non-compliant” data flows. Further, the
SFP approach assumes the following capabilities:

1) capability to generate a sample code in selected programming language from a formal
description adopted by the SFP Catalog;

2) capability to select a coherent variant of the “compliant” (or “non-compliant”) data flow from the
formal description provided by the SFP Catalog;

3) capability to extend the code invariant provided by the SFP Catalog with local and global
variations (or “code and data complexities”) in a systematic way.

CWE already provides many illustrative examples of weaknesses in selected languages. While illustrative examples are
important for human consumption, such examples cannot be considered as a useful part of machine-consumable knowledge.
Code examples need to be parsed, they do not identify the core parts of the "fault" (not often precise enough to do using the
language syntax); they do not provide guidance on true positive/false positive; they are very limited in the code and data
complexity and in their language coverage. On the other hand, the industry of code analysis tools requires millions of
systematic test cases with appropriate metadata.

The SFP approach separates the knowledge of a “software fault” in the form of dataflow invariants from and “code and data
complexities” and the language-specific details. By focusing on the semantics of the dataflow, SFP provides the necessary
“scaffolding” that can be used to generate detailed metadata for a test case.

A software fault can be “implemented” (embodied) in an infinite number of ways: different variable names, embedding a
faulty computation into various contexts, introducing intermediate fragments to the invariant without changing its semantics
and many other ways. Concise specification of the dataflow invariant allows to use the SFP content in a synthesizer/test case
generator tool that can introduce systematic code and data variations to the selected dataflow “slice” in a language-
independent form.
Language-specific details and variations are addressed by the KDM standard in the form of language-specific mapping to and
from KDM.

From the analytics perspective, the SFP Catalog accumulates a multitude of reusable, machine- consumable units of
knowledge that provide semantic denotations to families of faulty computations (as dataflows), and reference them to the
signifiers in the CWE catalog. The SFP Catalog has modular organization of the semantic element to facilitate analytics,
cross-reference between elements, and reuse. This content facilitates machine learning and cross-referencing various
characteristics of software weaknesses, and other artificial intelligence applications.

1.3.4 The role of the SFP Metamodel

The Software Fault Pattern approach involves a certain apparatus for developing semantical definitions of software
weaknesses as dataflows, the SFP Metamodel that uses MOF to define the “language” in which the items of the SFP catalog
are defined, and the SFP catalog itself.

8 Software Fault Pattern Metamodel (SFPM), v1.0

The SFP Catalog provides a catalog of the faulty computations, focuses at the “places” in the code, that are the indicators of
the corresponding computations. Therefore, the Software Fault Pattern approach is driven by the invariants in the code as
they determine classes of faulty computations. The items of the SFP Catalog are grouped together into SFP items and further
into primary and secondary clusters based on their common indicators, and common impact. This viewpoint is constructive
and systematic and therefore enables automation. This uniform viewpoint makes the Software Fault Pattern approach
systematic and repeatable.

The SFP Metamodel (SFPM) – the normative part of this specification. SFPM determines the interchange format via the
XML Metadata Interchange (XMI) by applying the standard MOF to XMI mapping to the SFPM MOF model. The
interchange format defined by SFPM is called the SFPM XMI schema.

SFPM XML (XMI) is a common interoperable format for representing machine-consumable content related to software
faults, their formal semantics and their mappings to the elements of the Common Weakness Enumeration (CWE) catalog.
SFPM XMI is the foundation for the OMG Catalog of Software Fault Patterns that will over time accumulate formal
machine-consumable definitions of individual software faults and other structured content related to software faults. SFPM
XMI supports a larger ecosystem of capabilities that need to exchange formal definitions of weaknesses, including but not
limited to test generation tools, static code analysis tools, data repositories, machine learning tools, visualization tools,
training tools. The SFPM XMI is the canonical format in which this content is available.

This specification describes the SFPM XMI schema and illustrates the usage of the SFPM XMI schema by describing
example SFPM XMI data representations compliant with the SFPM XMI schema. To further facilitate development and
review of the SFP content, Appendix A of this specification describes a readable textual representation of the SFPM XMI.
The specification illustrates SFP Metamodel elements with numerous examples of real SFP content. All examples are
provided in SFPM XMI as well as in the readable SFP language. The readable SFP language is not a normative part of the
SFPM specification. This notation is a highly-specialized format optimized for the SFP content. By utilizing the OMG MOF
ecosystem, the SFP Metamodel allows multitude of other technology-specific representations of the SFP content.

2 Conformance

The principle goal of SFPM is to define a common normalized format for representing machine- consumable content related
to software faults, their formal semantics and their mappings to the elements of the Common Weakness Enumeration (CWE)
catalog. SFPM is defined via the Meta-Object Facility (MOF). SFPM determines the interchange format via the XML
Metadata Interchange (XMI) by applying the standard MOF to XMI mapping to the SFPM MOF model. The interchange
format defined by SFPM is called the SFPM XMI schema.

To be SFP compliant, a document or an implementation (such as a capability, a tool, a repository, a service) shall fully
support SFPM as one compliance point. A compliant document shall comply to the SFPM XMI schema. A compliant
implementation shall provide either or both of the following:

• The capability to generate XMI documents based on the SFPM XMI schema capturing content in the
scope of the SFP Catalog.

• The capability to import and use content via representations based on the SFPM XMI schema.

The “use” of imported SFP content in compliant tools is not limited to one of the use cases described in this specification.

3 References
3.1 Normative References

The following normative documents contain provisions which, through reference in this text, provide normative context for
material in this specification.

[kdm] Knowledge Discovery Metamodel (KDM), v1.4, http://www.omg.org/spec/KDM/1.4 [sbvr] Semantics
for Business Vocabulary and Rules (SBVR), v1.5,

http://www.omg.org/spec/KDM/1.4

 Software Fault Pattern Metamodel (SFPM), v1.0 9

http://www.omg.org/spec/SBVR/1.5/
[uml] Unified Modeling Language (UML), v2.5, http://www.omg.org/spec/UML/2.5 [mof] Meta-
Object Facility (MOF), v.2.4.2, http://www.omg.org/spec/MOF/2.4.2 [xmi] XML Metadata Interchange
(XMI), v2.5.1, http://www.omg.org/spec/XMI/2.5.1 [xml] Extensible Markup Language, v1.1, http://
http://www.w3.org/TR/xml11
[xsd-1] XML Schema Definition Language (XSD) v1.1 Part 1: Structures,

http://www.w3.org/TR/xmlschema11-1
[xsd-2] XML Schema Definition Language (XSD) v1.1 Part 2: Datatypes,

http://www.w3.org/TR/xmlschema11-2

[cwe] Common Weakness Enumeration (CWE) – a repository maintained by MITRE Corporation of known
weaknesses in software that can be exploited to modify data, read data, create a denial-of-service that results in
unreliable execution, create a denial-of-service that results in resource consumption, execute unauthorized
code or commands, gain privileges / assume identity, bypass protection mechanism, and/or hide their
activities 1. <https://cwe.mitre.org>.

Also, ITU standard: ITU X.1524 Common Weakness Enumeration <
https://www.itu.int/rec/T-REC-X.1524-201203-I/en >

3.2 Informative References
The following non-normative documents contain provisions which, through reference in this text, provide informative
context for material in this specification.

• Software Fault Patterns (SFP) Catalog –

• AFRL-RY-WP-TR-2012-0111, V2 - DoD document approved for public release, distribution unlimited;

• Software Fault Pattern Clusters - a repository maintained by MITRE Corporation of links connecting SFPs
and CWEs <https://cwe.mitre.org/data/definitions/888.html>

• [NIST CVSS] NISTR Interagency Report 7435 “The Common Vulnerability Scoring System (CVSS) and its
applicability to Federal Agencies”.

4 Terms and Definitions
This section provides a glossary of terms used by this specification.

Computation Behavior pattern of a system, insofar as it can be described in terms of the limited
set of events selected as its alphabet.

Alphabet A set of basic parts of elements, esp. the set of characters or symbols with which
a language is written. An alphabet of a computation can be a set of all events that
the computation can exhibit (or a set of all activities, or a set of all program
points). An alphabet of a computation is an abstraction to define behavior
patterns.

1 CWE technical impact enumeration <https://cwe.mitre.org/cwraf/enum_of_ti.html>

http://www.omg.org/spec/SBVR/1.5/
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/MOF/2.4.2
http://www.omg.org/spec/XMI/2.5.1
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xmlschema11-1
http://www.w3.org/TR/xmlschema11-2
http://www.itu.int/rec/T-REC-X.1524-201203-I/en

10 Software Fault Pattern Metamodel (SFPM), v1.0

Trace A trace of the behavior of a computation is a finite sequence of symbols
recording the events in which the computation has engaged up to some
moment in time.

Control flow A representation of the order of activities of the computation.

Data flow A data flow is a computation that only includes activities that are related to the
state of a set of data elements.

Data flow invariant A formal description characterizing multiple possible instances of a data flow
implemented as code in a variety of programming languages, runtime support
systems, hardware, etc. in a variety of system contexts.

Data element [KDM] DataElement represents computational objects of a software system that
are associated with a value of a particular datatype.

Data flow sink A proposition describing a final program point of a data flow.

Data flow source A proposition describing one or more starting program points of a data flow.

Data flow condition A proposition describing some invariant property involving the values of the data
elements of a data flow.

Indicator A proposition in the form of a possibly recursive statement in KDM vocabulary
that can be effectively matched to the KDM representation of the code under
analysis so that the instances of the indicator can be enumerated. In SFP
Metamodel, data flow sinks are specified as disjunctions of indicators.

Invariant A property of all objects in a collection or a family. A "logical invariant" is a
certain condition that is true for all objects in a family. A "structural invariant", is
a certain fragment that all objects in the family have.

Proposition A logic statement that uses semantic formulation and terms of KDM vocabulary

Program point A location in the code described in selected program point alphabet. As the basis
for defining some content that is independent of the code under analysis, the
foundation for the program point alphabets is KDM. Program points can be
defined as complex sets of KDM facts (statements in KDM vocabulary). Such
program point alphabet provides a further abstraction on top of KDM
vocabulary.

Program point pattern A proposition describing a program point as some content that is independent of
the existence and the nature of the code under analysis.

 Software Fault Pattern Metamodel (SFPM), v1.0 11

Weakness Software weaknesses are situations in software implementation, code, design or
architecture that if left unaddressed could result in systems and networks being
vulnerable to attack. Weaknesses can be referred to as flaws, bugs,
vulnerabilities.

Vulnerability Weakness in an information system, system security procedures, internal
controls, or implementation that could be exploited or triggered by an attacker.

Fault The adjudged or hypothesized cause of a failure is called a fault. Correct service
is delivered when the service implements the system function. A service failure,
often abbreviated to failure, is an event that occurs when the delivered service
deviates from correct service. A service fails either because it does not comply
with the functional specification, or because this specification did not adequately
describe the system function.

Software Fault An identified – adjudged or hypothesized – cause of a failure of the service
performed by a piece of software under investigation (a discernible white- box
code weakness), often related to cybersecurity failures.

Root cause A root cause is an initiating cause of either a condition or a causal chain that
leads to an outcome or effect of interest. The term denotes the earliest, most
basic, 'deepest', cause for a given behavior (usually of a failure). It is customary
to refer to the root cause in singular form, but one or several factors may in fact
constitute the root cause(s) of the problem under study. A factor is considered
the root cause of a problem if removing it prevents the
problem from recurring. A causal factor, conversely, is one that affects an

12 Software Fault Pattern Metamodel (SFPM), v1.0

 event's outcome but is not the root cause. Although removing a causal factor can
benefit an outcome, it does not prevent its recurrence with certainty.
Effective problem statements and event descriptions (as failures, for
example) are helpful and usually required to ensure the execution of
appropriate root cause analyses.

Impact The magnitude of harm that can be expected to result from the consequences of
successful attack resulting in unauthorized disclosure of information,
unauthorized modification of information, unauthorized destruction of
information, or loss of information or information system availability. Impact
can be further categorized as harm to operations, harm to assets, harm to
individuals, harm to other organizations, and harm to the nation.

SFP Catalog The goal of the SFP program is to establish the SFP Catalog. SFP Catalog is a
collection of formal machine-consumable content related to software weaknesses.
SFPM (the SFP metamodel) is the specification of the content in the SFP Catalog.
In addition to the content, the SFP Catalog involves custodians, technical support,
business support, and technical infrastructure to access and search the catalog.
This specification defines the SFP metamodel and the SFPM XML/XMI format.

Program point Reference to a specific place in control- and data-flow of the computation.
Program point corresponds to a certain activity. Activities are semantic micro
operations that can be performed by a computation. In SFP activities are micro-
KDM operations.

5 Symbols
List of symbols/abbreviations:

SFP Software Fault Pattern

SFPM Software Fault Pattern Metamodel

CWE Common Weakness Enumeration

KDM Knowledge Discovery Metamodel

MOF Meta-Object Facility

XMI XML Metadata Interchange

SBVR Semantics of Business Vocabularies and Rules

 Software Fault Pattern Metamodel (SFPM), v1.0 13

6 Additional Information

6.1 How to Read this Specification

SFPM XMI is a common normalized format for representing machine-consumable content related to software faults,
their formal semantics, and their mappings to the elements of the Common Weakness Enumeration (CWE) catalog.
SFPM XMI is the canonical representation of the SFP content as defined by the MOF specification and MOF to XMI
mapping. This document describes the SFP Metamodel and provides illustrations of SFPM XMI content. In addition,
this specification defines and informative “readable SFP language” that provides a very concise representation of the
SFP content, suitable for reviews by humans. The SFP content is also illustrated in the “readable SFP language”. The
specification of the readable SFP language is provided in Appendix A.

This specification has the following structure.

Section 7.1 “SFP Exchange Format” summarizes the key design objectives for the SFP Metamodel and the SFPM
XMI format as the canonical representation of the SFP content.

Section 8 “Software Fault Pattern Metamodel” describes the classes of the SFPM and provides examples of the SFPM
XMI as well as examples of SFP content in the readable SFP language.

Section 8.1. describes the core concepts of the SFP Catalog.
Section 8.2 describes the sections of the SFP Catalog as the main structuring mechanism for managing content in the
catalog.
Section 8.3 describes the framework for the formal definitions of the faulty computations captured by the core
elements of the SFP Catalog. These elements specify invariants of data flows as logical propositions for sink, source,
the data element of the data flow.
Section 8.4 describes the formalization apparatus developed to provide formal definitions to the elements of data
flows. This apparatus is aligned with existing ISO and OMG standards.
Section 8.5 describes the representation of the referenced vocabularies of the SFP Catalog. The formalization
apparatus of the SFP Catalog does not define the meaning of constructs involved in the definitions of the data flows
and their invariants. Instead, this apparatus defines the structure of the meaning. The elements of meaning, identified
as “atomic formulations” in section 8.4, are supplied by one or mode referenced vocabularies. The SFP Catalog
assumes the use of the ISO/OMG Knowledge Discovery Metamodel (KDM) vocabulary as the foundation for the
formalizations, and some generic parts of the vocabulary described in the Semantics of Business Vocabularies and
Rules (SBVR) specification.

Appendix A provides the specification of the “Readable SFP language” as a context-free grammar. The mapping of the
constructs of this language to the elements of the SFPM and thus to SFPM XMI is straightforward. This appendix is
informative.

6.2 Acknowledgements
The following companies submitted this specification:

• KDM Analytics
• Lockheed Martin
• MITRE Corporation
• 88solutions
• NoMagic

14 Software Fault Pattern Metamodel (SFPM), v1.0

This page intentionally left blank.

 Software Fault Pattern Metamodel (SFPM), v1.0 15

7 SFP Exchange Format
7.1 Objectives

• Define a common normalized format for representing reusable machine-consumable content related to
software faults, their formal semantics, and their relationships

• Define a common normalized format for structuring knowledge of software faults

• Define a common format for representing mappings to the formally defined and structured units of
software faults to the items in the Common Weakness Enumeration (CWE) catalog

• Contribute to the evolution of the CWE catalog by defining formal compliance points to CWEs

• Define the infrastructure to identify ambiguities, inconsistencies, and gaps in the CWE catalog based on
the formal descriptions of software faults and the mapping apparatus to the CWE catalog, and the
means for sharing these findings throughout the community.

• Align with the standard Knowledge Discovery Metamodel (KDM) for describing basic facts about
the software system under assessment

• Align formal definitions of software faults with their impact and define a common format for
enumerating impacts of software faults and their variants

• Align with the risk analysis interchange protocol and the TOIF protocol as well as other protocols
of the OMG System Assurance Ecosystem to link findings as evidence to risks

• Define a common format for enumerating root causes of software faults

• Align with the OMG TOIF protocol by defining a consistent enumeration of software faults.

• Establish a uniform, vendor-neutral, normalized environment for analyzing knowledge related to software
faults

• Define the foundation for the SFP Catalog that will accumulate structured, machine-consumable content
related to software faults

• Establish an ecosystem for development of new capabilities that will consume the SFP content and use
this content for various purposes including (but not limited to) analytics related to software faults,
collecting evidence for digital certification of systems, synthesizing test cases for code analysis tools.

16 Software Fault Pattern Metamodel (SFPM), v1.0

This page intentionally left blank.

 Software Fault Pattern Metamodel (SFPM), v1.0 17

8 Software Fault Pattern Metamodel

This section describes the MOF model for SFPM using UML class diagrams. The SFPM model is the normative part
of the SFPM specification. This model determines the SFPM XMI schema by applying the standard MOF to XMI mapping
to the SFPM MOF model. The canonical interchange format defined by SFPM is called the SFPM XMI schema. As the means
of illustrating the SFPM, examples of the SFP content are provided as fragments of XML/XMI documents compliant to
the SFPM XMI schema, as well as in “readable SFP language”. This readable SFP language is described in Appendix
A to this specification. This language constitutes an informative part of the specification.

The SFPM MOF model consists of a single UML package and includes 16 class diagrams to represent the following:

• Core elements of the SFP Catalog
• Sections of the SFP Catalog
• SFP Defined Elements
• Semantic Formalization Apparatus
• Referenced Vocabularies

The rest of this section has the following organization. Section 8.1 presents UML class diagrams that describe the
Core elements of the SFP Catalog. Section 8.2 presents UML class diagrams that describe the structuring mechanism
of the SFP Catalog, called “section” and the corresponding classes. Section 8.3 presents UML class diagrams that
describe the SFP Defined elements. These elements specify invariants of data flows as logical propositions for sink,
source, and the data element of the data flow. Section 8.4 presents UML class diagrams for the SFP’s apparatus to
define the formal semantics of the SFP elements. Section 8.5 concludes the definition of the SFPM by describing the
UML diagrams for the referenced vocabularies.

8.1 Core Elements of the SFP Catalog
This section describes several UML class diagrams that represent the core elements of the SFP catalog: SFP Catalog,
SFP and SFP Cluster. Several other classes are also considered as part of the “core”: these are the elements
representing the parameters and variation of SFPs, elements capturing the common root causes and injuries of
software faults, as well as the elements involved in representing mappings of SFP variants to the elements of the
Common Weakness Enumeration (CWE) catalog.

8.1.1 SFP Catalog Diagram
This section provides an overview of the core elements of the Software Fault Patterns Catalog. The SFP Catalog class
diagram defines the root element – class SFPCatalog – with owned elements Cluster and SFP. The diagram also
shows the related CWE elements, organized into one or more CWESection containers. A “section” is a general
structuring mechanism of the SFP Catalog. Sections are described in more detail in section 8.2.

18 Software Fault Pattern Metamodel (SFPM), v1.0

Figure 2: UML class diagram SFP Catalog

8.1.1.1 SFPCatalog Class

The SFPCatalog class is the root class of SFPM. This class represents an instance of an SFP Catalog. One of the
objectives of the SFPM is to support the SFP Catalog as the reference collection of the formal machine-consumable
content related to software faults. At the same time, multiple SFP Catalog instances can be established.
SFPCatalog is simply a container for some SFP content created under some authority. SFPM does not impose any
claims regarding completeness or usefulness of the content of any SFPCatalog instance. For example, an instance of
SFPCatalog can be used to pack the content related to a single SFP and deliver it to the SFP Catalog custodians to
be validated and added to the SFP Catalog.
The benefits of the SFP approach come from the content that is shared among multiple SFPs using the mechanism
of common sections (CWEsection is an example of a section that can be linked to a single SFP, other sections
can be linked to a cluster, or to the entire catalog). Some instances of SFPCatalog may be focused at delivering
such common content.

 Software Fault Pattern Metamodel (SFPM), v1.0 19

Superclass

Attributes

version:String[1] Owned attribute that specifies the version of the
SFP catalog. The version of the SFP Metamodel is given
in the namespace in the XMI

description:String[1] Informal description of the purpose and content

delivered as the owned elements of this element

owner:String[1] Organization that is the owner of the catalog

Associations

cluster:Cluster[0..*] Owned collection of Cluster elements

Example 1. SFPM XMI
<?xml version="1.0" encoding="UTF-8"?>
<sfpm:SFPCatalog xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sfpm="https://www.omg.org/spec/SFPM/20200202"
version="03-08-2015_fp" owner=”sample organization”>

<cluster name="Memory Access">
<cluster name="Faulty Pointer Use">

<sfp name="Faulty Pointer Use" id="7">
<parameter_section name=""> <!—- body omitted --> </parameter_section>
<variation_section name=""> <!—- body omitted --> </variation_section>
<cwe_section name=""> <!—- body omitted --> </cwe_section>
<element_section name=""> <!—- body omitted --> </element_section>
<characteristic_section name="">

<!—- body omitted --></characteristic_section>
<canonical_section name=""> <!—- body omitted --> </canonical_section>
<cwe_mapping_section > <!—- body omitted --> </cwe_mapping_section >

</sfp>
</cluster>

</cluster>
<context_section name=""> <!—- body omitted --> </context_section>
<vocabulary_section name=""> <!—- body omitted --> </vocabulary_section>
<property_section name=""> <!—- body omitted --> </property_section>
<indicator_section name=""> <!—- body omitted --> </indicator_section>
<rootcause_section name=""> <!—- body omitted --> </rootcause_section>
<injury_section name=""> <!—- body omitted --> </injury_section>

<vocabulary_section name="referenced">

<vocabulary name="KDM"> <!—- body omitted --> </vocabulary>
<vocabulary name="Hooks"> <!—- body omitted --> </vocabulary>
<vocabulary name="Analysis API"> <!—- body omitted --> </vocabulary>
<vocabulary name="Strings"> <!—- body omitted --> </vocabulary>
<vocabulary name="SBVR"> <!—- body omitted --> </vocabulary>

http://www.omg.org/spec/XMI/20131001
http://www.w3.org/2001/XMLSchema-instance
http://www.omg.org/spec/SFPM/20200202

20 Software Fault Pattern Metamodel (SFPM), v1.0

<vocabulary name="Platform Meta"> <!—- body omitted --> </vocabulary>
<vocabulary name="Platform APIs"> <!—- body omitted --> </vocabulary>

</vocabulary_section >
</sfpm:SFPCatalog>

Example 2 Readable SFP language

#####################################
########## SFP 7 #################
#####################################

Catalog 03-08-2015_fp

Cluster Memory Access
Secondary Faulty Pointer Use

SFP 7 Faulty Pointer Use

Parameters
End Parameters

Variations
End Variations

CWEs
End CWEs

############### SFP Elements #################################

Elements
End Elements

Characteristics
End Characteristics

Canonicals
End Canonicals

End SFP
End Secondary
End Cluster

############## Context Elements ####################

SharedContextElements
End SharedContextElements

########### definitions ######

Vocabularies

 Software Fault Pattern Metamodel (SFPM), v1.0 21

Definitions KDM Patterns

End Definitions
End Vocabularies

#####################################
########### Properties ##############
#####################################
Properties
End Properties

############### Indicators ####################

Indicators
End Indicators

End Catalog

8.1.1.2 Cluster Class

The Cluster class represents a logically coherent collection of SFP items. The SFP catalog supports at least two
levels of clusters: primary clusters and secondary clusters. Primary clusters are represented by instances of the Cluster
class owned directly by the SFPCatalog. Secondary clusters are represented by the instances of Cluster class owned
the primary clusters.
A primary SFP cluster is a collection of one or more secondary SFP clusters. A primary SFP cluster shall not directly
own SFP elements. A secondary SFP cluster is a collection of one or more SFP elements.
A Cluster may have one or more CWE sections which are references to the related elements of the Common Weakness
Enumeration (CWE) catalog.

Superclass

Attributes

name: String[1] Name of the cluster

description:String[1] Description of the cluster

Associations

cluster:Cluster[0..*] Owned collection of (secondary) clusters.

sfp:SFP[0..*] Owned collection of SFP elements

cwe_section:CWESection[0..*] Owned collection of CWE sections.

22 Software Fault Pattern Metamodel (SFPM), v1.0

Constraints
1. Each Cluster instance of the SFPCatalog shall have a unique name in the scope of the catalog.
2. Each Cluster instance that owns another Cluster shall not own SFP instances
3. Each Cluster instance that owns SFP shall not own another Cluster instances

Example 1. SFPM XMI

<cluster name="Memory Access">

<cluster name="Faulty Pointer Use">
<sfp name="Faulty Pointer Use" id="7"> <!—- body omitted --> </sfp>

</cluster>
</cluster>

Example 2. Readable SFP language

Cluster Memory Access
Secondary Faulty Pointer Use

SFP 7 Faulty Pointer Use

End SFP
End Secondary

End Cluster

8.1.1.3 SFP Class

The SFP class represents a single Software Fault Pattern – a core item of the SFP Catalog. This specification will
refer to an instance of SFP class as “SFP” or an “SFP item”, and to the semantically significant parts of its definition as
“SFP elements”.

Superclass

Attributes

name:String[1] Name of the SFP item

id: String[1] Unique identifier of the SFP item

description:String[1] Description of the SFP item

Associations

cwe_section:CWESection[0..*] Owned collection of CWE sections rootcause:RootCause[0..*]

 References to the related Root Cause elements (see SFP
Causal Context diagram)

injury:Injury[0..*] References to the related Injury elements (see SFP Causal

Context diagram)

 Software Fault Pattern Metamodel (SFPM), v1.0 23

Example 1. SFPM XMI

<sfp name="Faulty Pointer Use" id="7">

<parameter_section name=""> <!—- body omitted --> </parameter_section>
<variation_section name=""> <!—- body omitted --> </variation_section>
<cwe_section name=""> <!—- body omitted --> </cwe_section>
<element_section name=""> <!—- body omitted --> </element_section>
<characteristic_section name="">

<!—- body omitted --> </characteristic_section>
<canonical_section name=""> <!—- body omitted --> </canonical_section>
<cwe_mapping_section > <!—- body omitted --> </cwe_mapping_section >
<injury_mapping_section > <!—- body omitted --> </injury_mapping_section >

</sfp>

Example 2. Readable SFP language

SFP 7 Faulty Pointer Use

Parameters
End Parameters

Variations
End Variations

CWEs
End CWEs

############### SFP Elements #################################

Elements
End Elements

Characteristics
End Characteristics

Canonicals
End Canonicals

End SFP

8.1.1.4 CWE Class

The CWE class represents an element of the Common Weakness Enumeration (CWE) catalog. CWE catalog has
been selected as the reference body of knowledge of software weaknesses. The objective of SFP is to provide structured
“viewpoint” on the content that is already in CWE, to provide a set of formal compliance points for the software weaknesses,
as well as to resolve the inconsistencies and ambiguities in existing CWE content and fill any gaps in CWE. From the
versioning perspective, versions of the SFP catalog are aligned with the versions of CWE catalog, such that a CWE element
is identical in all implementations that are based on the same CWE version.

24 Software Fault Pattern Metamodel (SFPM), v1.0

However, SFP catalog may suggest new elements to the CWE catalog that resolve inconsistencies or address some gaps.
Such new elements are represented by instances of CWE class with “derived” names which includes the name of some
existing CWE element and a suffix. The intention of the CWE sections is to facilitate the knowledge transfer to the CWE
community.

Superclass

Attributes

name:String[1] Full name of the element as it appears in the
Common Weakness Enumeration (CWE) catalog (or derived
from such name by ways of a suffix to indicate refined
elements).

id: String[1] Unique identifier of the element in the CWE catalog (or derived
from such identifier by ways of a suffix to indicate refined
elements)

url:String[0..1] Unique URL of the element

description:String[0..1] Description of the element

details:String[0..1] Detailed description of the element

status:Status[1] Status of the element to indicate if this is an original element,
or a new element that fills a gap, or a refinement of another
element

discernible:DiscernibilityLevel[1] Level of discernibility of the content available for
this CWE in the CWE catalog (established in the course of
SFP formalization of CWE, not part of the CWE catalog)

Associations

note:Note[0..*] Owned collection of informal notes for this element. SFP often

includes notes related to the applicable languages, even if this
is completely redundant given that the SFP content is
formalized using language-neutral KDM representation.
Informal notes are often useful to explain the relationship
between CWE and SFP variants

 Software Fault Pattern Metamodel (SFPM), v1.0 25

Example 1. SFPM XMI

<cwe_section name="">
<cwe xmi:id="cwe416"

name="Use After Free"
id="416"
description=""
details=""
status="original"
discernible=”Very High”
url="http://cwe.mitre.org/data/definitions/416.html" >

<note text="Rename to Use After Release" />
<note text="this pattern involves an explicit release" />
<note text="the kind of entity must be releasable. This involves read
or write access via pointer that still exists while the target

entity was released" />
<note text="not applicable to java, since there is no explicit
delete" />

<note text="c,c++" />
</cwe>
<cwe xmi:id="cwe416a" name="Use After Expiration" id="416a"

status="refinement"
discernible=”Very High” >

<note text="This pattern involves use of an entity that ceased to
exist for reasons other than an explicit release. The use is via a
pointer. This involves non-releasable named entities which cease to
exist while the pointer still exists. This pattern involves read or
write access." />
<note text="uses involve passing to known api" />
<note text="this is not applicable to java, as objects are garbage-
collected" />
<note text="c,c++" />

</cwe>
</cwe_section>

Example 2. Readable SFP language

#####################################
########### CWE ####################
#####################################

CWEs

CWE 416 Use After Free

description=
details=
status=”other”
discernible=Very High
url="http://cwe.mitre.org/data/definitions/416.html"

Mapping: 1.10 2.5 3.3
Note: Rename to Use After Release
Note: this pattern involves an explicit release
Note: the kind of entity must be releasable. This involves read or

http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/416.html

26 Software Fault Pattern Metamodel (SFPM), v1.0

write access via pointer that still exists while the target entity
was released

Note: not applicable to java, since there is no explicit delete
Note: c,c++

End CWE

CWE 416a Use After Expiration
Mapping: 1.10 2.6 3.3
Discernible=Very High
Note: This pattern involves use of an entity that ceased to exist for
reasons other than an explicit release. The use is via a pointer.
This involves non-releasable named entities which cease to exist
while the pointer still exists. This pattern involves read or write
access.
Note: uses involve passing to known api
Note: this is not applicable to java, as objects are

garbage-collected
Note: c,c++

End CWE
End CWEs

8.1.1.5 Note Class
The Note class represents a text note for the CWE element.

Superclass

Attributes

text:String[1] The body of the note

Example

 See 8.1.1.4

8.1.1.6 CWESection Class
The CWESection class represents a container for one or more CWE elements. CWESection is part of the structuring
mechanism of the SFP catalog called “sections” that are described in full detail in section 8.2

Superclass

 ClusterSection

Associations

 cwe:CWE[0..*] Owned collection of the CWE elements

Example

 See 8.1.1.4

 Software Fault Pattern Metamodel (SFPM), v1.0 27

8.1.1.7 DiscernibilityLevel Enumeration
The DiscernibilityLevel class introduces levels of discernibility of content available for a CWE element in the
Common Weakness Enumeration (CWE) Catalog. CWE catalog introduces signifiers of software weaknesses. Each
signifier in CWE is linked to an informal description, and to one or more sections with code samples and cross-
references to other content. Discernibility level is an informal measure of how easy it is to recognize the underlying
situation (described by CWE signifier) in the code artifacts. A more discernible description can be formalized. A
discernible characteristic is a property (used in a semantic definition representing some computation) that can be
expressed as a formal statement in the vocabulary of the system’s artifacts. The foundation for such vocabulary is
KDM, however the definition does not preclude certain extensions. A common way of referring to situations that can
be recognized in code is “white-box property” (as opposed for example to a “black box property” that is described
purely as a function of the values of inputs and outputs). Thus, a discernible description of a computation is a logical
statement that is based entirely on discernible characteristics. A non-discernible description is either ambiguous (the
meaning is ill-defined, the description is not a logical statement), uses ill-defined characteristics, uses one or more
non-discernible characteristics or is not “white-box”. A discernible characteristic emphasizes the artifacts rather than
values or state – consistent with the SFP approach.

A non-discernible description can be turned into a discernible one by:

• Providing more clarity and precision

• Using structured language based on controlled vocabulary of well-defined meanings

• Performing additional research to better define the corresponding family of computations, and better
defining the characteristics involved in the definition

• Defining additional facts and extending the currently available vocabulary of facts related to the system’s
artifacts.

Literals

Very High The content of this CWE weakness description is
based directly on the well-understood discernible white-box
properties

High The content of this CWE weakness description is based on
discernible white-box properties

Medium The content of this CWE weakness description is based on
discernible white-box properties or

28 Software Fault Pattern Metamodel (SFPM), v1.0

properties that are believed to be derivable from them

Low The content of this CWE weakness description involves
properties that are not derivable from discernible white-box
properties

Very Low The content of this CWE description is not discernible

Example

 See 8.1.1.4 where SFPM XMI representation is illustrated. The actual values of discernibility levels
 for CWEs are provided in the SFP catalog.

8.1.1.8 Status Enumeration
 The Status class introduces Status of a referenced CWE element to indicate if this is an original element,
 or a new element that fills a gap, or a refinement of another element

Literals

original The CWE element represents an existing item from the CWE
catalog

new The CWE element represents a new item, not present in
the CWE catalog

refinement The CWE element represents a modification of an
existing item in the CWE catalog

other The CWE element represents a situation not covered by
other literals

 Software Fault Pattern Metamodel (SFPM), v1.0 29

Example

See 8.1.1.4 where SFPM XMI representation is illustrated.

8.1.2 SFP Variations Class Diagram
This section describes the analytical mechanism of the SFP Catalog that allows managing the content and
establishing new properties of the software faults. The elements of this mechanism are SFP Parameters, Variations
and Variants. A Software Fault Pattern (SFP) – an SFP item - represents a family of similar faulty computations by
identifying a common indicator, common data flow elements and possibly some associated conditions. When
generalized, an SFP definition refers to the entire secondary cluster and is arranged into an invariant core and variation
points. By focusing at the dataflow elements of faulty computations, the SFP approach allows a generalized statement
to cover many situations that share an invariant of the data flow- and thus concisely describe the entire family of
computations. A generalized statement includes several “variation points” that are disjunctions of more detailed
situations. To ensure full coverage, variation points are identified through top-down analysis of entire cluster space.
Once all variation points are identified, they are defined as specific “parameters”. In other words, variations introduce
additional details for the generalized definition, focusing at the named variation points – the parameters. Each SFP
Parameter defines a set of distinct situations, referred to as its Variants. SFP also includes a mechanism to achieve
“horizontal” consistency between multiple “slices” of the tree of variants.

Parameters and Variants are part of the mechanism for establishing a mapping between SFP and related CWEs which
also contributes to the analytical capabilities of SFP. SFP items map to multiple CWEs in such a way that each CWE
in the family can be defined as a specialization of an SFP through a specific set of variants for certain parameters – this
can be called a “profile” of the CWE. This specialization is formally defined as a unique set of variants of one or
more SFP parameters. Based on this mapping, CWEs can serve as a reporting mechanism for SFP.
Identified Software Fault Pattern definitions provide the foundation for developing more accurate testing tools and
improving developer education since it is easier to manage the knowledge of fewer SFPs than hundreds of CWEs.
They also provide for a more cost-effective formalization.

Each SFP element owns one or more Parameters, Variants and Variations. This ownership is implemented by the
structuring mechanism of SFPM called “sections”. Section as fully explained in section 8.2. Parameters, and
Variations are owned by separate sections. Variants are owned by each Parameter as illustrated below. Properties are
owned by, yet another section owned by the entire catalog.

30 Software Fault Pattern Metamodel (SFPM), v1.0

Figure 3: UML class diagram SFP Variations

8.1.2.1 Parameter

Parameter is one of the key concepts of the structured approach to formally defining software faults. According to
this approach, an SFP defines a family of computations that exhibits a certain fault. First these computations are
defined by their characteristic Sink, Source and Data (referred to as the SFP Dataflow Elements). Then a set of
Parameters is identified and enumerated where a Parameter is one of the “concepts” involved in the definition of the
faulty computation (part of the Sink, Source or Data).

Each Parameter defines a set of distinct situations, referred to as its Variants. Parameters are owned by an SFP element
through a ParameterSection (as described in section 8.2 in more detail).

 Software Fault Pattern Metamodel (SFPM), v1.0 31

Superclass

Attributes

name:Name[1] Name of the parameter

Associations

variant:Variant[1..*] Owned set of Variants for the Parameter

Example 1. SFPM XMI

<parameter_section name="">

<parameter name="Pointer Use Kind">
<variant xmi:id="variant1" name="1.1 Dereference" definition="prop1" />
<variant xmi:id="variant2" name="1.2 Call via pointer" definition="prop1" />
<variant xmi:id="variant3" name="1.3 Access to Member via pointer"

definition="prop2" />
<variant xmi:id="variant4" name="1.4 Method call via pointer"

definition="prop3" />
<variant xmi:id="variant5" name="1.5 Access with index" definition="prop4" />
<variant xmi:id="variant6" name="1.6 Cast" definition="prop5" />
<variant xmi:id="variant7" name="1.7 Hidden access via api"

definition="prop6" />
<variant xmi:id="variant8" name="1.10 Any use" definition="prop7" />
<variant xmi:id="variant9" name="1.11 Access to Member via overlay struct"

definition="prop8" />
<variant xmi:id="variant10" name="1.12 Access to Method via overlay class"

definition="prop9" />
</parameter>
<parameter name="Incorrect Value Kind">

<variant xmi:id="variant11" name="2.1 Pointer is NULL" definition="prop10" />
<variant xmi:id="variant12" name="2.2 Pointer is invalid" definition="prop11"

/>
<variant xmi:id="variant13" name="2.4 Faulty Type" definition="prop12" />
<variant xmi:id="variant14" name="2.5 Entity is released" definition="prop13"

/>
<variant xmi:id="variant15" name="2.6 Entity ceased to exist"

definition="prop14" />
<variant xmi:id="variant16" name="2.7 Any value" definition="prop15" />
<variant xmi:id="variant17" name="2.8 Not valid for call" definition="prop16"

/>
</parameter>
<parameter name="Access Kind">

<variant xmi:id="variant18" name="3.1 Read access" definition="prop17" />
<variant xmi:id="variant19" name="3.2 Write access" definition="prop18" />
<variant xmi:id="variant20" name="3.3 Read or Write" definition="prop19" />
<variant xmi:id="variant21" name="3.4 Call" definition="prop20" />
<variant xmi:id="variant22" name="3.5 Not applicable" definition="prop21" />
<variant xmi:id="variant23" name="3.7 Object oriented access"

definition="prop22" />
</parameter>

32 Software Fault Pattern Metamodel (SFPM), v1.0

</parameter_section>

Example 2. Readable SFP language

Parameters

Parameter Pointer Use Kind

Variant 1.1 Dereference -> Property "access mechanism pointer"
Variant 1.2 Call via pointer -> Property "access mechanism pointer"
Variant 1.3 Access to Member via pointer -> Property "access mechanism

member"
Variant 1.4 Method call via pointer -> Property "access mechanism method"
Variant 1.5 Access with index -> Property "access mechanism index"
Variant 1.6 Cast -> Property "access mechanism cast"
Variant 1.7 Hidden access via api -> Property "access mechanism hidden"
Variant 1.10 Any use -> Property "access mechanism any"
Variant 1.11 Access to Member via overlay struct -> Property "access

mechanism overlay"
Variant 1.12 Access to Method via overlay class -> Property "access

mechanism overlay call"
End Parameter

Parameter Incorrect Value Kind

Variant 2.1 Pointer is NULL -> Property "value null"
Variant 2.2 Pointer is invalid -> Property "value invalid"
Variant 2.4 Faulty Type -> Property "value faulty type"
Variant 2.5 Entity is released -> Property "value released"
Variant 2.6 Entity ceased to exist -> Property "value expired"
Variant 2.7 Any value -> Property "any value"
Variant 2.8 Not valid for call -> Property "value not callable"

End Parameter

Parameter Access Kind
Variant 3.1 Read access -> Property "access read"
Variant 3.2 Write access -> Property "access write"
Variant 3.3 Read or Write -> Property "access read or write"
Variant 3.4 Call -> Property "access call"
Variant 3.5 Not applicable -> Property "access any"
Variant 3.7 Object oriented access -> Property "access oo"

End Parameter

End Parameters

8.1.2.2 Variant Class

An SFP Variant is a fundamental concept of the structured approach to formally defining software faults. According
to this approach, an SFP defines a family of computations that exhibits some fault. First these computations are
defined by describing its characteristic Sink, Source and Data (referred to as the SFP Dataflow Elements). Then a set
of Parameters is identified and enumerated where a Parameter is one of the concepts involved in the definition of the
faulty computation (part of the Sink, Source or Data). Each Parameter defines a set of distinct situations, referred to
as its Variants. The computation is defined by a covering set of cases each uniquely identified by a combination of
distinct Variants. Another element called Variation helps manage the permutations of the Variants.

A combination of variants for the SFP’s parameters provides a slice of the faulty computation. Each such slice may
have own root causes and impacts. SFP Catalog provides a mapping between computation slices and elements of
the Common Weakness Enumeration (CWE) catalog. The structured approach of the SFP allow to formally define
individual CWEs as SFP slices, defined as a set of variants for SFP’s parameters. This approach allows to detect

 Software Fault Pattern Metamodel (SFPM), v1.0 33

ambiguities, overlaps and gaps in the CWE catalog. These observations are captured as notes in the CWE
mappings in the SFP Catalog.

Variants are owned by the corresponding Parameter of the SFP. SFP element owns Parameters through a
ParameterSection (as described further in section 8.2 in more detail).

Superclass

Attributes

name:String[1] The name of the variant

description:String[1..*] Description of the variant

Associations

definition:Property[1..*] Definition of the variant in terms of one or more
properties

Example 1. SFPM XMI
<variant xmi:id="variant2" name="1.2 Call via pointer" definition="prop1" />

Example 2. Readable SFP language
Variant 1.2 Call via pointer -> Property "access mechanism pointer"

See also 8.1.2.1

8.1.2.3 Variation Class
Variation class is involved in constructing “variation trees” – auxiliary structures that help manage variants of an
SFP. Variation trees are represented as follows. A Variation element may own several (nested) variation elements.
This parent variation usually corresponds to a certain parameter element, although this link is not explicit in SFPM.
The leaf variations refer to certain variants. Variation section owns a set of top variations. Nesting of variations
imposes dependencies between parameters and their variants. The variation tree restricts acceptable permutations of the
variants. Variations in the variation tree are ordered. The ordering of the variants in the tree may be utilized to
achieve predictable enumeration of all possible permutations of the variants.

The “variation tree” defines the initial structure of the family of computations identified as an SFP. Further, the SFP
elements define the invariant of the data flows involved, by defining the sink (a collection of the Indicators), the
primary data element of the data flow, the source, and the invariant condition. These elements are defined as a
disjunction of “clauses”, enumerating various distinct situations involved in the data flow. Consistency of the clauses
of the SFP element, as well as their correlation with the “variation tree” is achieved using “properties”. Each property
is defined as a set of “tags”. Two clauses are compatible if they include tags with matching values.
When the SFP content is used to synthesize representative samples of “compliant” or “non-compliant” (but similar
looking) computations, the tags guide the selection of the computation slices, and can be used to identify a given
computation slice.

Properties are further defined in section 8 .3 .

Variation tree is closely aligned with the CanonicalForm of the SFP that describes the structure of the multitude of
canonical representations of the computations described by the SFP with full context.

34 Software Fault Pattern Metamodel (SFPM), v1.0

Canonical Elements are further described in section 8 .3 .

SFP element owns Variations though a VariationSection (as further described in section 8.2 in more detail).

Superclass

Associations

name:String[1] Name of the variation

description:String[1] Description of the variation

Associations

variation:Variation[0..*]
{ordered}

Owned (nested) variations (ordered)

variant:Variant[0..*] Specific variant that defines the variation

Example 1. SFPM XMI
This example illustrates variation tree for SFP-7. Parameters for SFP-7 are illustrated in section 8.1.2.1. The top level
of the variation tree has two variations: DataType and Parameter Value Kind. For each variant of the Parameter Value
Kind, the tree has all variations of the Parameter Access Kind. Then for each variation of the Access Kind, the tree
has appropriate variations of the Parameter Use Kind.
DataType is “built-in” Parameter, describing variants of a data type (e.g. character, integer, Boolean, string, pointer,
etc.).

<variation_section name="">

<variation name="DataType" />
<variation name="Parameter Value Kind" >

<variation name="Pointer is NULL" variant="variant11" >
<variation name="Parameter Access Kind" />
<variation name="Read" variant="variant18" >

<variation name="Ordinary Pointer Dereference" variant="variant1" />
<variation name="Access with index" variant="variant5" />

<variation name="Access to member via pointer" variant="variant3" />
<variation name="Access to member via overlay struct"
variant="variant9" >

<variation name="Hidden call via API" variant="variant7" />
</variation>

</variation>
<variation name="Write" variant="variant19" >

<variation name="Ordinary Pointer Dereference" variant="variant1" />
<variation name="Access with index" variant="variant5" />
<variation name="Access to member via pointer" variant="variant3" />
<variation name="Access to member via overlay struct"

variant="variant9" >
<variation name="Hidden call via API" variant="variant7" />

</variation>

 Software Fault Pattern Metamodel (SFPM), v1.0 35

</variation>
<variation name="Call" variant="variant21" > … </variation>

<variation name="Pointer is invalid" variant="variant12" > … </variation>
<variation name="Entity has been released" variant="variant14" > …

</variation>
<variation name="Entity ceased to exist" variant="variant15" > … </variation>
<variation name="Pointer is valid but faulty type" variant="variant13" > …

</variation>
</variation>

</variation_section>

Example 2. Readable SFP language

Variations

DataType
Parameter Value Kind

Pointer is NULL -> 2.1
Parameter Access Kind

Read -> 3.1
Ordinary Pointer Dereference -> 1.1
Access with index -> 1.5
Access to member via pointer -> 1.3
Access to member via overlay struct-> 1.11

Hidden call via API -> 1.7
Write -> 3.2

Ordinary Pointer Dereference -> 1.1
Access with index -> 1.5
Access to member via pointer -> 1.3
Access to member via overlay struct-> 1.11

Hidden call via API -> 1.7
Call -> 3.4

…
Pointer is invalid -> 2.2

…
Entity has been released -> 2.5

…
Entity ceased to exist -> 2.6

…
Pointer is valid but faulty type -> 2.4

…
End Variations

8.1.2.4 Property Class
Property class is a semantic element that provides definitions for variants in terms of special tags (markers).
This class is described in more detail in section 8.3.
The purpose of the tags is to correlate variations with the clauses of the formalized descriptions.

When the SFP content is used to synthesize representative samples of “compliant” or “non-compliant” (but similar
looking) computations, the tags guide the selection of the computation slices, and can be used to identify a given
computation slice.

36 Software Fault Pattern Metamodel (SFPM), v1.0

8.1.3 SFP Causal Context Class Diagram
This section describes the UML representation of the elements that capture the cause and effect of a software fault.

Figure 4: UML class diagram SFP Causal Context

8.1.3.1 RootCause Class
RootCause class defines a typical root cause for an SFP item. Root causes – also known as “vulnerability
fundamentals” – are typical factors that may be facilitating vulnerabilities, especially as they are introduced
during the design and development of systems. Root causes may be attributed to programming languages, the
runtime systems, the hardware, or any other parts of the environment. A typical root cause may not be the same
as the actual root cause for a bug in a specific system under assessment. A RootCause is a useful abstraction.
Enumerating possible root causes for the Software Fault Patterns as part of the SFP Catalog is aimed at steering
research into hardening systems. SFPM facilitates analytics that may reveal common root causes.

RootCause elements are owned by the SFPCatalog through one or more RootCauseSection containers. Collectively,
RootCause elements define the set of possible root causes of the faults covered by the SFP Catalog.

Superclass

Attributes

name:String[1] Name of the root cause

description:String[1..*] Description of the root cause

 Software Fault Pattern Metamodel (SFPM), v1.0 37

Example 1. SFPM XMI

<rootcause_section name="">

<rootcause xmi:id="rc1" name="Lack of automatic management of buffers"

description=”language runtime”/>
<rootcause xmi:id="rc2" name="Failure to provide integrity of internal

references to memory buffer contents"/>
<rootcause xmi:id="rc3" name="Disconnect between dumb pointers and resources

that they represent"/>
<rootcause xmi:id="rc4" name="Failure to compute size of memory buffer content

parts"/>
<rootcause xmi:id="rc5" name="Lack of exception on incorrect pointer use"/>
<rootcause xmi:id="rc6" name="Failure to process fault state"/>

</rootcause_section>

<sfp name="Faulty Pointer Use" id="7" rootcause=”rc1 rc2 rc3 rc4 rc5 rc6”>
<sfp name="Faulty Buffer Access" id="8" rootcause=”rc1 rc7 rc8 rc9 rc10 rc11”>

Example 2. Readable SFP language
SFP 7 Faulty Pointer Use

RootCauses
Lack of automatic management of buffers
Failure to provide integrity of internal references to memory buffer
contents
Disconnect between dumb pointers and resources that they represent
Failure to compute size of memory buffer content parts
Lack of exception on incorrect pointer use
Failure to process fault state

End RootCauses

End SFP

8.1.3.2 Injury Class
Injury class defines a specific impact caused by a vulnerability to the operations of the system. Impact consists of
Confidentiality Impact, Integrity Impact and Availability Impact. NIST Common Vulnerability Scoring System (CVSS)
provides measurement schema for impact, and the NIST National Vulnerability Database (NVD) provides measures of
impact for known vulnerabilities in open source and commercial software systems.

Confidentiality Impact measures the impact on confidentiality of a successfully exploited vulnerability. Confidentiality
refers to limiting information disclosure to only authorized users, as well as preventing access by, or disclosure to,
unauthorized users.

Integrity Impact measures the impact on integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and guaranteed veracity of information. Integrity impact involves modification of some system files or
information.

Availability Impact measures the impact of availability of a successfully exploited vulnerability. Availability
refers to the accessibility of information resources. Attacks that consume bandwidth, processor cycles, or disk
space all impact availability of the system.

38 Software Fault Pattern Metamodel (SFPM), v1.0

The Injury element of the SFP Catalog represents an enumeration of the situations with impact. Enumerations of
the impact situations and mapping specific variants of Software Fault Patterns to impact aims at establishing a
mapping between weakness findings and risks.

SFPM views injuries as a flat enumeration however they can be described hierarchically, with the following 3 tiers. The
first tier is the base type of impact: Confidentiality, Integrity, and Availability. The second tier considers the object of
impact: Data, Service and Resource. The third tier considers several specific situations. Data impacts can involve Data at
rest, Data in motion or Data in use. Service impacts involve Disclosure, Distortion, Subversion, Shutdown and Lock.
Further Subversion of a service may involve Code at rest or code in motion. Availability of the Data at rest may involve
Damage or Lock. Also, a fault may not cause impact directly, but may contribute to other faults.

Some weaknesses may not have an impact from the cybersecurity perspective but may contribute to other
weaknesses. This type of indirect impact is also represented by the Injury elements (illustrated below).

SFP Catalog provides two places where the impact of a fault is described. First the injuries of an entire SFP are
enumerated. Second, SFP variants are mapped to specific injuries.

The SFP Catalog owns Injury elements through an InjurySection container. Links between individual Variants of an SFP
to Injuries are established through InjuryMapping class (described in a subsequent section). Each SFP owns
InjuryMapping through InjuryMappingSection container. Sections of the SFP Catalog are described in more detail in
section 8.2.

Superclass

Attributes

name:String[1] Name of the injury

description: String[1] Description of the injury

Example 1. SFPM XMI

<injury_section name="">

<injury xmi:id="inj1" name="Availability of service"/>
<injury xmi:id="inj2" name="Contributes to SFP-4"/>
<injury xmi:id="inj3" name="Subversion of service (especially bulk write

access)"/>
<injury xmi:id="inj4" name="Distortion of service (write access)"/>
<injury xmi:id="inj5" name="Confidentiality (read access)"/>

</injury_section>

<sfp name="Faulty Pointer Use" id="7" injury=”inj1 inj2”>
<sfp name="Faulty Buffer Access" id="8" injury=”inj1 inj3 inj4 inj5”>

Example 1. Readable SFP language

SFP 7 Faulty Pointer Use

Injuries
Shutdown of service
Contributes to SFP11

 Software Fault Pattern Metamodel (SFPM), v1.0 39

End Injuries

End SFP

SFP 8 Faulty Buffer Access
Injuries

Shutdown of service
Subversion of service (especially bulk write access)
Distortion of service (write access)
Confidentiality (read access)

End Injuries

End SFP

8.1.4 SFP Variant Mappings Class Diagram
This section describes the UML representation of the variant mappings.

Figure 5: UML class diagram SFP Variant Mappings

8.1.4.1 InjuryMapping Class

InjuryMapping class defines a mapping between Variants of an SFP and Injury elements. An SFP element owns
InjuryMappings through InjuryMappingSection container (further described in section 8.2 in more detail).

40 Software Fault Pattern Metamodel (SFPM), v1.0

Superclass

Associations
injury:Injury[1] Reference to an Injury

variant:Variant[1..*] Reference to one or more Variant

Constraints

1. Each Injury referenced by the SFP shall be mapped to one or more Variants of the SFP

Example 1. SFPM XMI

<injury_mapping_section >

<injury_mapping injury="inj1" variant="variant18 variant19 variant20 variant21
variant22 variant23" />

<injury_mapping injury="inj2" variant="variant18 variant19 variant20 variant21
variant22 variant23" />
</injury_mapping_section >

<injury_section name="">

<injury xmi:id="inj1" name="Availability of service"/>
<injury xmi:id="inj2" name="Contributes to SFP-4"/>
<injury xmi:id="inj3" name="Subversion of service (especially bulk write

access)"/>
<injury xmi:id="inj4" name="Distortion of service (write access)"/>
<injury xmi:id="inj5" name="Confidentiality (read access)"/>

</injury_section>

<sfp name="Faulty Pointer Use" id="7" injury=”inj1 inj2”>

Example 2. Readable SFP language

Variant 3.1 Read access -> Property "access read"
Injury: “Availability of service”, “Contributes to SFP-4”

8.1.4.2 CWEMapping Class
CWEMapping class defines a mapping between a CWE element and one or more Variant elements. The intent of
the CWE mapping is to provide a formal definition of a CWE element as a profile of SFP variants.

An SFP element owns CWEMappings through CWEMappingSection container (further described in section 8.2 in
more detail).

 Software Fault Pattern Metamodel (SFPM), v1.0 41

Superclass

Associations

cwe:CWE[1] CWE element being defined in terms of SFP variants

variant: Variant[1..*] Set of SFP variants that defines a CWE element

Example 1. SFPM XMI

<cwe_mapping_section >

<cwe_mapping cwe="cwe476a" variant="variant12 variant20 variant8" />
<cwe_mapping cwe="cwe476b" variant="variant11 variant21 variant8" />
<cwe_mapping cwe="cwe476c" variant="variant17 variant21 variant8" />

</cwe_mapping_section >

Example 2. Readable SFP language

CWE 476a Invalid Pointer Dereference

Mapping: 1.10 2.2 3.3
Note: c,c++

End CWE

CWE 476b NULL Pointer Call

Mapping: 1.10 2.1 3.4
Note: c,c++, java

End CWE

CWE 476c Invalid Pointer Call

Mapping: 1.10 2.8 3.4
Note: c,c++

End CWE

8.2 Sections of the SFP Catalog
A section is the structuring mechanism of the SFP catalog. Sections group common content and provide scoping:
common sections contain content for the entire SFP catalog that can be shared between all SPF items owned by the
SFP Catalog; cluster sections contain content that can be shared by the SFP items within this cluster; SFP sections
contain content referenced by a single SFP item. SFP Catalog allows multiple sections of the same type at the same
scope. This provides additional grouping capability for the readers, however semantically there is no difference
between such sections.

8.2.1 All Sections Class Diagram
This section provides an overview of all sections of the SFP Catalog.

42 Software Fault Pattern Metamodel (SFPM), v1.0

Figure 6: UML class diagram All Sections

8.2.1.1 Section Class (abstract)
The Section class is the common parent of all sections in the SFPM.

Superclass

Attributes
name:String[1] Name of the section

description:String[1] Description of the section

8.2.1.2 CommonSection Class (abstract)
CommonSection class is a parent class for all sections that represent the common reusable content of the SFP
catalog, i.e. the content that is applicable to the entire collection of SFP items and is referenced by these items (in
the current catalog or in other catalogs) or may be referenced by the items in the future releases of the current
catalog. Other kinds of sections represent the content that is specific to either an individual SFP item or specific
to a certain cluster of SFP items.

Superclass

Section

 Software Fault Pattern Metamodel (SFPM), v1.0 43

Constraints

1. Owned elements of a common section shall not reference elements owned by any cluster section or by any
SFP section. An element references another element either directly or indirectly in its owned semantic
definition.

8.2.1.3 ClusterSection Class (abstract)
ClusterSection class is a parent class for all sections that represent the content specific to a certain SFP cluster or to an
individual SFP item.

Superclass

Section

Constraints

1. Owned elements of a cluster section shall not reference elements owned by any section from a different cluster
or owned by any SFP section.

8.2.1.4 SFPSection Class (abstract)
SFPSection class is a parent class for all sections that represent the content specific to an individual SFP item.

Superclass

Section

Constraints

1. Owned elements of an SFP section shall not reference elements owned by any section from a different cluster or
owned by any SFP section owned by a different SFP.

8.2.2 SFP Sections Class Diagram
This section describes the sections of the SFP that are specific to an individual SFP item. Another section called
CharacteristicsSection may be owned by SFP as well as by a Cluster and is described separately in section 8.2.4.

44 Software Fault Pattern Metamodel (SFPM), v1.0

 Figure 7: UML class diagram SFP Sections

8.2.2.1 InjuryMappingSection Class
The InjuryMappingSection class is a container for the InjuryMapping elements. Each SFP item owns the
InjuryMapping elements for its variants.

Superclass

SFPSection
Associations

injury_mapping:InjuryMapping[0..*] Owned set of the injury mapping elements for the SFP

item

Constraints

1. Each SFP item shall own at least one InjuryMappingSection

 Software Fault Pattern Metamodel (SFPM), v1.0 45

Example
See 8.1.4.1

8.2.2.2 CWEMappingSection Class
CWEMappingSection class is a container for the CWEMapping elements. Each SFP item owns the
CWEMapping elements for its variants.

Superclass

SFPSection

Associations

cwe_mapping:CWEMapping[0..*] Owned set of CWEMapping elements for the SFP

Constraints

1. Each SFP shall own at least one CWEMappingSection

Example

See 8.1.4.2

8.2.2.3 ParameterSection Class
ParameterSection class is a container for the Parameter elements.

Superclass

SFPSection

Associations

parameter:Parameter[0..*] Owned set of Parameter

Example

See 8.1.2.1

8.2.2.4 VariationSection Class

VariationSection class is a container for the Variation elements.

Superclass

SFPSection

Associations
variation:Variation[0..*] Owned set of Variation (ordered)
{ordered}

46 Software Fault Pattern Metamodel (SFPM), v1.0

Example

See 8.1.2.3

8.2.2.5 ElementSection Class
ElementSection class is a container for the SFP DataflowElement. These elements specify dataflows that constitute the
extension of the SFP as a concept. “Extension” is the totality of objects to which a concept corresponds. According to
the SFP approach, the “objects” of software weaknesses are dataflows implemented in code. SFP items are
denotations (semantic definitions) for families of dataflows that correspond to the classes of software weaknesses
introduced by the CWE catalog. CWE catalog provides signifiers to the software weaknesses. SFP provides formal
semantic definitions to a subset of software weaknesses in CWE catalog, and links these definitions to the
corresponding CWE items. SFP DataflowElement is an SFP Defined Element, so semantics of DataflowElements is
defined according to the formalization apparatus defined in section 8.4. DataflowElements correspond to the key parts
of a dataflow. DataflowElement class and its subclasses are further described in section 8.3.

Superclass

SFPSection

Associations

element:DataflowElement[0..*] Owned set of Dataflow Element of the SFP

Example 1. SFPM XMI

<element_section name="">

<element xmi:type="sfpm:PrimaryDataStatement" xmi:id="cla1">
<!—- body omitted --> </element>

<element xmi:type="sfpm:SourceStatement" xmi:id="cla2">
<!—- body omitted --> </element>

<element xmi:type="sfpm:SinkStatement" xmi:id="cla3">
<!—- body omitted --> </element>

</element_section>

Example 2. Readable SFP language

Elements

PrimaryDataStatement … End PrimaryDataStatement
SourceStatement … End SourceStatement
SinkStatement … End SinkStatement

End Elements

 Software Fault Pattern Metamodel (SFPM), v1.0 47

8.2.2.6 CanonicalSection Class
CanonicalSection class is a container for CanonicalElement. CanonicalElement provide canonical definition of
the dataflow with full context. CanonicalElement class and its subclasses are further described in section 8.3.

Superclass

SFPSection

Associations

canonical:CanonicalElement[0..*] Owned set of Canonical Element

Example 1. SFPM XMI

<canonical_section name="">

<canonical xmi:type="sfpm:CanonicalForm" xmi:id="cla40" name="CF1" >
<!—- body omitted --> </canonical>

<canonical xmi:type="sfpm:PrimaryDataSegment" xmi:id="cla41" >
<!—- body omitted --> </canonical>

<canonical xmi:type="sfpm:SourceSegment" xmi:id="cla42" >
<!—- body omitted --> </canonical>

<canonical xmi:type="sfpm:SinkSegment" xmi:id="cla43" >
<!—- body omitted --> </canonical>

<canonical xmi:type="sfpm:MitigatedSourceSegment" xmi:id="cla44" >
<!—- body omitted --> </canonical>

<canonical xmi:type="sfpm:MitigatedSinkSegment" xmi:id="cla45" >
<!—- body omitted --> </canonical>

</canonical_section>

Example 2. Readable SFP language

Canonicals

Canonical CF1 … End Canonical
Segment PrimaryDataSegment … End Segment
Segment SourceSegment … End Segment
Segment SinkSegment … End Segment
Segment MitigatedSourceSegment … End Segment
Segment MitigatedSinkSegment … End Segment

End Canonicals

8.2.2.7 SFP Class (additional properties)
Class diagram SFP Sections introduces several additional properties to the SFP class.

Superclass

Associations

injury_mapping_section:InjuryMappingSection[1..*] Injury mapping section of the SFP

48 Software Fault Pattern Metamodel (SFPM), v1.0

cwe_mapping_section:CWEMappingSection[1..*] CWE mapping section of the SFP

parameter_section:ParameterSection[1..*] Parameters and variants of the SFP

variation_section:VariationSection[1..*] Variations of the SFP

element_section:ElementSection[1..*] Elements of the SFP

canonical_section:CanonicalSection[1..*] Canonical elements of the SFP

Example

See 8.1.1.3, 8.1.2.1, 8.1.2.3, 8.1.4.1, 8.1.4.2 and also 8.3.2 and 8.3.4

8.2.3 Common Sections Class Diagram
This section describes the sections of the SFP Catalog. These sections are containers for the formal content that is
common across multiple SFPs. Accumulation of the common content for multiple software faults is one of the
objectives of the SFP approach. The SFPM is structured to enable analytics related to the software faults. The
common content includes Indicators, shared characteristics, common referenced vocabularies, enumeration of the
root causes and injuries, as well as the enumeration of the common properties.

 Figure 8: UML class diagram Common Sections

 Software Fault Pattern Metamodel (SFPM), v1.0 49

8.2.3.1 RootCauseSection Class
RootCauseSection class is a container for the RootCause elements. All RootCause elements are owned by the
SFPCatalog through one or more of the RootCauseSection containers. Individual SFP items reference the RootCause
elements as defined in the SFP Causal Context class diagram. The same RootCause element can be referenced by
several SFP items. The RootCause class is defined in section 8.1.3.1.

Superclass

CommonSection

Associations
rootcause:RootCause[0..*] Owned set of RootCause element

Example

 8.1.3.1

8.2.3.2 InjurySection Class
InjurySection class is a container for the Injury elements. All Injury elements are owned by the SFPCatalog
through one or mode InjurySection containers. Individual SFP items reference the Injury elements as defined in
the SFP Casual Context class diagram. The same Injury element can be referenced by several SFP items. The
Injury class is defined in section 8.1.3.2.

Superclass

CommonSection

Associations

injury:Injury[0..*] Owned set of Injury element

Example

See 8.1.3.2

8.2.3.3 IndicatorSection Class
IndicatorSection class is a container for the Indicator elements. All Indicator elements are owned by the SFPCatalog
through one or mode IndicatorSection containers. Individual SFP items reference the Indicator elements. The same
Indicator element can be referenced by several SFP items. Indicator class is a semantic element of the SFP
Catalog. This class is further described in section 8.3.

Superclass

CommonSection

Associations

indicator:Indicator[0..*] Owned set of Indicator element

50 Software Fault Pattern Metamodel (SFPM), v1.0

Example 1. SFPM XMI

<indicator_section name="">

<indicator xmi:type="sfpm:Indicator" xmi:id="cla4"
name="ordinary pointer dereference read">

<!—- body omitted --> </indicator>
<indicator xmi:type="sfpm:Indicator" xmi:id="cla5"

name="array with index read">
<!—- body omitted --> </indicator>

<!—- body omitted -->
</indicator_section>

Example 2. Readable SFP language

Indicators

Indicator "ordinary pointer dereference read" … End Indicator
Indicator "array with index read" … End Indicator

…
End Indicators

8.2.3.4 PropertySection Class
PropertySection class is a container for the Property elements. All Property elements are owned by the SFPCatalog
through one or more PropertySection containers. Individual SFP items reference the Property elements. The same
Property element can be referenced by several SFP items. Property class is a semantic element of the SFP
Catalog. This class is further described in section 8.3.

Superclass

CommonSection

Associations

property:Property[0..*] Owned set of Property element

Example 1. SFPM XMI

<property_section name="">

<property xmi:type="sfpm:Property" xmi:id="prop1"
name="access mechanism pointer"> <!—- body omitted --> </property>

<property xmi:type="sfpm:Property" xmi:id="prop4"
name="access mechanism index"> <!—- body omitted --> </property>
<!—- body omitted -->

</property_section>

Example 2. Readable SFP language

Properties

Property "access mechanism pointer" … End Property
Property "access mechanism index" … End Property

End Properties

8.2.3.5 ContextSection Class
ContextSection class is a container for the ContextElement. All ContextElement are owned by the SFPCatalog
through one or mode ContextSection containers. Individual SFP items reference the ContextElement in two stages,
by first referencing a local ReferencedContextElement which then in turn references a common ContextElement.

 Software Fault Pattern Metamodel (SFPM), v1.0 51

Local ReferencedContextElement are owned by CharacteristicSection of SFP or one of the Cluster elements that
owns the SFP directly or through another Cluster. The set of ReferencedContextElement for an SFP or a Cluster is
its “profile”. Eventually the same ContextElement can be referenced by several SFP items. This approach allows
formal grouping of SFPs based on the characteristics that they share. The analytics can establish the exact nature
of the relation between two or more SFPs.

ContextElement class is a semantic element of the SFP Catalog. This class is further described in section 8.3.

Superclass

CommonSection

Associations

element:ContextElement[0..*] Owned set of Context element

Example 1. SFPM XMI

<context_section name="">

<element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">
<definition> <!—- body omitted --> </definition>

</element>
<!—- body omitted -->

</context_section>

Example 2. Readable SFP language

SharedContextElements

DataType ElementType … End DataType
…
End SharedContextElements

8.2.3.6 VocabularySection Class
VocabularySection class is a containter for one or more Vocabulary representing a referenced vocabulary. A Vocabulary
class owns one or more VocabularyElement. At a minimum, a VocabularyElement is a proxy to some externally defined
concept, however it can also have a full formal definition using the formalization apparatus defined to section 9.4. All
VocabularyElement are owned by the SFPCatalog through one or more VocabularySection and Vocabulary containers.
Individual SFP items reference the VocabularyElement in SemanticFormulations. Vocabulary class and VocabularyElement
class and its subclasses is further described in section 8.5.

Superclass

CommonSection

Associations

vocabulary:Vocabulary[0..*] Owned set of Vocabulary element

52 Software Fault Pattern Metamodel (SFPM), v1.0

Example

See 8.5.1.1-3

8.2.3.7 SFPCatalog Class (additional properties)
Class diagram Common Sections introduces several additional properties to the SFPCatalog class.

Superclass

Associations

rootcause_section:RootCauseSection[1..*] RootCause section of the SFP
Catalog

injury_section:InjurySection[1..*] Injury section of the SFP Catalog

property_section:PropertySection[1..*] Properties of the SFP Catalog

indicator_section:IndicatorSection[1..*] Indicators of the SFP Catalog

context_section:ContextSection[1..*] Context elements of the SFP Catalog

vocabulary_section:VocabularySection[1..*] Referenced vocabularies of the SFP
Catalog

Example

See 8.1.1.1

8.2.4 Characteristic Sections Class Diagram
This section describes the sections of the Cluster and SFP containing referenceable definitions (clauses) that are
used by the CanonicalSegments. ReferencedContextElements can be owned by SFP or Cluster. This allows
introducing local names and scoping. Cluster has more generic referenced elements, SFP has more specific ones
if needed. CanonicalForm references these element. CanonicalForm describes how various segments (specific to an
SFP and referenced context elements) can be arranged into a coherent piece of source code which “implements” a
fault in an appropriate context.

ReferncedContextElement determine the common characteristics of an SFP (and all SFPs in a cluster) and
constitute an important part of the overall SFP content. Based on the shared ContextElement, SFP can be
systematically grouped into clusters, and the nature of the relationships between different SFPs can be formally
described. ContextElement class is described in section 8.3.

 Software Fault Pattern Metamodel (SFPM), v1.0 53

 Figure 9: UML class diagram Characteristic Sections

8.2.4.1 CharacteristicSection Class

CharacteristicSection class is a container for zero or more ReferencedContextElement. Local ReferencedContextElement
are owned by CharacteristicSection of SFP or one of the Cluster elements that owns the SFP directly or through another
Cluster. The set of ReferencedContextElement for an SFP or a Cluster is its “profile”. ReferencedContextElement
references a common ContextElement. All ContextElement are owned by the SFPCatalog through one or more
ContextSection containers. Thus, individual SFP items reference the ContextElement in two stages, by first referencing a
local ReferencedContextElement which then in turn references a common ContextElement (illustrated in more detail in
section 8.3.1). Eventually the same ContextElement can be referenced by several SFP items. This approach allows formal
grouping of SFPs based on the characteristics that they share. The analytics can establish the exact nature of the relation
between two or more SFP. ContextElement class is a semantic element of the SFP Catalog, with a formal semantic
definition in the form of a common logic statement on top of the KDM vocabulary. The ContextElement class is further
described in section 8.3.

Superclass

ClusterSection

54 Software Fault Pattern Metamodel (SFPM), v1.0

Associations

characteristic:ReferencedContextElement[0..*] Owned set of characteristics

Constraints

1. Owned elements of a CharacteristicSection shall only reference a local ReferenceContextElement and
shall not reference any ContextElement in common ContextSections of the SFPCatalog. An element
references another element either directly or indirectly in its owned semantic definition. A
ReferencedContextElement is local when it is owned by a CharacteristicSection of the SFP or the
(secondary) Cluster that owns the SFP or the (primary) Cluster that owns the (secondary) Cluster that
owns the SFP.

Example 1. SFPM XMI

<characteristic_section name="">

<characteristic xmi:id="cla25" element="shared1" name="ElementType"/>
<characteristic xmi:id="cla26" element="shared2" name="TargetBuffer"/>
<characteristic xmi:id="cla27" element="shared3" name="TargetBufferType"/>
<characteristic xmi:id="cla28" element="shared4" name="BufferPointerType"/>
<characteristic xmi:id="cla29" element="shared5" name="BufferPointer"/>
<characteristic xmi:id="cla30" element="shared6" name="BufferOffset"/>
<characteristic xmi:id="cla31" element="shared7" name="BufferLength"/>
<characteristic xmi:id="cla32" element="shared8" name="DataLengthGood"/>
<characteristic xmi:id="cla33" element="shared9" name="DefineData"/>
<characteristic xmi:id="cla34" element="shared10" name="DefineIndex"/>
<characteristic xmi:id="cla35" element="shared11" name="DefineTargetBuffer"/>
<characteristic xmi:id="cla36" element="shared12"

name="BindPointerToTargetBuffer"/>
<characteristic xmi:id="cla37" element="shared13" name="ReleaseTargetBuffer"/>
<characteristic xmi:id="cla38" element="shared14" name="Cleanup"/>
<characteristic xmi:id="cla39" element="shared15" name="DefineValidReference"/>

</characteristic_section>

Example 2. Readable SFP language

Characteristics

Ref DataType ElementType

Ref Resource TargetBuffer
Ref DataType TargetBufferType

Ref DataType BufferPointerType
Ref DataElement BufferPointer
Ref DataElement BufferOffset

Ref DataElement BufferLength
Ref DataElement DataLengthGood

Ref DataElement DefineData
Ref DataElement DefineIndex

 Software Fault Pattern Metamodel (SFPM), v1.0 55

Ref Operation DefineTargetBuffer

Ref Operation BindPointerToTargetBuffer
Ref Operation ReleaseTargetBuffer
Ref Operation Cleanup
Ref Operation DefineValidReference

End Characteristics

8.2.4.2 Cluster Class (additional properties)

Class diagram Characteristic Sections introduces several additional properties to the Cluster class.

Superclass

Associations

characteristic_section:CharacteristicSection[1..*] Owned set of characteristics for the
cluster

Example

See 8.1.6.1

8.2.4.3 SFP Class (additional properties)
Class diagram Characteristic Sections introduces several additional properties to the SFP class.

Superclass

Associations

characteristic_section:CharacteristicSection[1..*] Owned set of characteristics for the
SFP

Example

See 8.1.6.1

8.3 SFP Defined Elements
This section describes the framework for the formal semantic definitions of the faulty computations represented by
the core elements of the SFP Catalog. These elements constitute the formal semantic content of the SFP catalog.

These elements specify dataflows that constitute the extension of an SFP as a concept. “Extension” is the totality of
objects to which a concept corresponds. According to the SFP approach, the “objects” of software weaknesses are
dataflows implemented in code. SFP items are denotations (semantic definitions) for families of dataflows that
correspond to the classes of software weaknesses introduced by the CWE catalog. CWE catalog provides
signifiers to the software weaknesses.

56 Software Fault Pattern Metamodel (SFPM), v1.0

SFP provides formal semantic definitions to a subset of software weaknesses in CWE catalog and links these
definitions to the corresponding CWE items. Formal semantic definitions of DataflowElement are given using the
formalization apparatus defined in section 8.4.

An overview of the SFP approach to formal semantics of dataflows is given in the introduction to this
specification.

8.3.1 SFP Defined Elements Class Diagram
This section describes the elements of the SFP Catalog that have a formal semantic definition and constitute the
formalization framework of the SFP Catalog. These elements are Properties, Indicators, SFP DataflowElements,
ContextElements and CanonicalElements. In addition, some VocabularyElements can be formally defined using
the same formalization apparatus.

SFP DataflowElements describe each SFP as a data flow with a primary data element, source, and sink. The faulty
computation is assumed to involve the values of the data element and “flow” from the source to the sink. This
approach is based on the best practices of the community.

The SFP approach focuses at the discernible “places” in the code that are “indicators” of particular computations.
The indicators may describe places in the code that implement operations directly linked to some injury (for
example, access to a buffer is a necessary condition for a buffer overflow), or describe important regions of the
code based on its purpose, such as common safeguards, authentication, access control, privilege management,
cryptography, data validation, memory management, resource management, exception management, etc. Each
discernible SFP includes some Indicators that provide a starting point for identifying the presence of the SFP in
the code under assessment. The rest of the SFP definition includes a set of propositions that may be eventually
traced to the code, always in relation to the Indicator. Usually, SFP definitions involve a condition that must be
satisfied to make the claim that the SFP has been detected in code.

The concept of a data flow with a data element, source, sink and the invariant condition is central to SFP
formalization. SFP DataflowElements capture these elements. Indicator element represent discernible “places” in
code. Typically, the sink of an SFP is defined as a disjunction of references to Indicators.

The content of the SFP Catalog describes an argument justifying the claim that the code under assessment exhibits
a certain fault. The starting point of this argument is the presence of the Indicator. Additional evidence is provided
by matching of the elements of the SFP in relation to the Indicator. Final evidence is collected when the data flow
satisfies the condition of the SFP.
An invariant of a data flow can be described as a set of propositions such that any “compliant” data flow will exhibit
these propositions, and only compliant data flows will exhibit such propositions. Thus, the SFP Catalog
accumulates content related to describing “interesting” data flows.

CanonicalElements define a broader context for faulty computations, sufficient to generate complete (compilable,
executable) examples of the faulty computation in the form of a test case. These test cases can be used to validate
CWE compliance mappings of existing and future Static Code Analysis tools. The ContextElements represent
reusable elements that are used in CanonicalElements. CanonicalElements also represent “mitigated” computations
that shared significant fragments with faulty computations but do not exhibit the fault. The latter content can be
used to generate additional test cases for the “false positives” reporting in existing and future Static Code Analysis
tools.

 Software Fault Pattern Metamodel (SFPM), v1.0 57

 Figure 10: UML class diagram SFP Defined Elements

8.3.1.1 Property Class
Property is a special semantic element that contains statements only from a special vocabulary of tags and values
(markers). This vocabulary is usually aligned with the implementation capabilities.
Properties is a mechanism that is used to manage the variations of the SFP. Typically, a family of related faulty
computations that exhibit a certain fault (identified as an SFP), involves many “variations” that share many
common elements of the overall data flow. The overall structure of the variants of the family is defined as a set
of SFP Parameters, their Variants, and is represented by a tree of Variations.
SFP data element, source, and sink are usually defined as disjunctions of statements, each focusing at a certain specific
case. The connections between these cases and the variants of the SFP is made through Properties which are certain
tags and values (markers) added to the KDM Fragments.

SFP uses a completely generic formalization mechanism to extend the semantics of other elements with tags and
markers. Thus, the formalization uses an SBVR statement “Thing1 is Thing2” where the role of “Thing1” is bound
to a tag, and the role “Thing2” is bound to a value. Both tag and value are defined as Individual concepts in a
special vocabulary in the VocabularySection.

The SFP implementation may use the tag and value definitions of properties in a multitude of ways, for example as
annotations, markers, metadata for variants, or executable clauses that use single assignment to prevent synthesis

58 Software Fault Pattern Metamodel (SFPM), v1.0

of incompatible variants, or to cut matching incompatible subtrees of the semantic definition.

The vocabulary of property tags and values in not part of the SFP Metamodel and should be explained in the SFP
catalog.
Superclass

SemanticElement

Attributes

name:String[1] Name of the property

description:String[1] Description of the property

Example 1. SFPM XMI

<property xmi:type="sfpm:Property" xmi:id="prop1" name="access mechanism
pointer">

<definition>
<meaning xmi:id="sem1208" identificator="property access mechanism pointer"

kind="SetProjection" description="" >
<variable xmi:id="var492" range="nc29" name="phantom"/>
<operand xmi:id="sem1209" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem1210" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic93"/>
<binding rolename="Thing2" target="ic103"/>

</operand>
<operand xmi:id="sem1211" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic19"/>
<binding rolename="Thing2" target="ic5"/>

</operand>
<operand xmi:id="sem1212" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic18"/>
<binding rolename="Thing2" target="ic5"/>

</operand>
<operand xmi:id="sem1213" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic8"/>
<binding rolename="Thing2" target="ic3"/>

</operand>
</operand>

</meaning>
</definition>

</property>

<verb xmi:id="vc4" name="Thing1 is Thing2"/>

<vocabulary name="Platform Meta">

<individual xmi:id="ic93" name="core.bufferaccessmechanism"/>
<individual xmi:id="ic103" name="pointerdereference"/>

</vocabulary>

 Software Fault Pattern Metamodel (SFPM), v1.0 59

Example 2. Readable SFP language

Property "access mechanism pointer"

[meta] core.bufferaccessmechanism,pointerdereference
[meta] isindex,no
[meta] isapi,no
[meta] buffermode,regular

End Property

8.3.1.2 Indicator Class
The SFP approach focuses at the discernible “places” in the code that are “indicators” of computations. The indicators may
describe places in the code that implement operations directly linked to some injury (for example, access to a buffer is a
necessary condition for a buffer overflow), or describe important regions of the code based on its purpose, such as common
safeguards, authentication, access control, privilege management, cryptography, data validation, memory management,
resource management, exception management, etc. Each discernible SFP includes some Indicators that provide a starting
point for identifying the presence of the SFP in the code under assessment. The rest of the SFP definition includes a set of
propositions that may be eventually matched to the code, always in relation to the Indicator.

Superclass

SemanticElement, ClauseReference

Attributes

name:String[1] Name of the indicator

description: String[1] Description of the indicator

Example 1. SFPM XMI

<indicator xmi:type="sfpm:Indicator" xmi:id="cla4" name="ordinary pointer
dereference read">

<definition>
<meaning xmi:id="sem1388" kind="SetProjection"

description="Definition of indicator ordinary pointer
dereference read" >

<variable xmi:id="var514" range="nc4" name="S1"/>
<variable xmi:id="var515" range="nc4" name="S2"/>
<variable xmi:id="var516" range="nc2" name="BP"/>
<variable xmi:id="var517" range="nc2" name="BPTI"/>
<variable xmi:id="var518" range="nc2" name="Data"/>
<operand xmi:id="sem1389"

identificator="ordinary pointer dereference read"
kind="Conjunction" description="">

<operand xmi:id="sem1390" verb="vc4" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="Thing1" target="ic26"/>

60 Software Fault Pattern Metamodel (SFPM), v1.0

<binding rolename="Thing2" target="ic27"/>
</operand>

<operand xmi:id="sem1391" verb="vc4" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="Thing1" target="ic86"/>
<binding rolename="Thing2" target="ic87"/>

</operand>
<operand xmi:id="sem1392" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic93"/>
<binding rolename="Thing2" target="ic103"/>

</operand>
<operand xmi:id="sem1393" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic8"/>
<binding rolename="Thing2" target="ic3"/>

</operand>
<operand xmi:id="sem1394" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic143"/>
<binding rolename="Thing2" target="ic144"/>

</operand>
<operand xmi:id="sem1395" verb="vc109" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>

</operand>
<operand xmi:id="sem1396" verb="vc9" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var516"/>

</operand>
<operand xmi:id="sem1397" verb="vc6" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var517"/>

</operand>
<operand xmi:id="sem1398" verb="vc7" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var518"/>

</operand>
<operand xmi:id="sem1399" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var515"/>
<binding rolename="Thing2" target="var514"/>

</operand>
</operand>

</meaning>
</definition>

</indicator>

Example 2. Readable SFP language

Indicator "ordinary pointer dereference read"

 Software Fault Pattern Metamodel (SFPM), v1.0 61

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End

Var BP: DataElement [KDM]
Var BPTI: DataElement [KDM]
Var Data: DataElement [KDM]

Clause "ordinary pointer dereference read"

data=*p;
[meta] platform,c or cpp
[meta] core.bufferaccess,read
[meta] core.bufferaccessmechanism,pointerdereference
[meta] buffermode,regular
[meta] core.indicator,deref_read

[ActionElement is ptrselect :KDM] S1
[ActionElement addresses DataElement :KDM] S1,BP
[ActionElement reads DataElement :KDM] S1, BPTI
[ActionElement writes DataElement :KDM] S1,Data
[Thing1 is Thing2 :SBVR] S2, S1

End Indicator

8.3.1.3 ReferencedContextElement Class

ReferencedContextElement class represents an element of a conceptual “profile” of an SFP defined in terms of common
ContextElement. Local ReferencedContextElement are owned by CharacteristicSection of SFP or one of the Cluster
elements that owns the SFP directly or through another Cluster. The set of ReferencedContextElement for an SFP or a
Cluster is its “profile”. ReferencedContextElement references a common ContextElement. All ContextElement are
owned by the SFPCatalog through one or mode ContextSection containers. Thus, individual SFP items reference the
ContextElement in two stages, by first referencing a local ReferencedContextElement which then in turn references a
common ContextElement. Eventually the same ContextElement can be referenced by several SFP items.

The purpose of a localReferencedContextElement is to provide visibility to the common characteristics of multiple SFPs and
to the conceptual “profile” of an SFP. This approach allows formal grouping of SFPs based on the shared characteristics.
Analytics can establish the exact nature of the relation between two or more SFP based on the shared ContextElement as
well as other content, such as Property or Indicator. ContextElement class is a semantic element of the SFP Catalog. This
class is further described in section 8.3.

Superclass

ClauseReference

Attributes

name:String[1] Name of the referenced context element

Associations

element: ContextElement[1] Reference to a common context element

62 Software Fault Pattern Metamodel (SFPM), v1.0

Example 1. SFPM XMI

<characteristic_section name="">

<characteristic xmi:id="cla25" element="shared1" name="ElementType"/>
… </characteristics_section>

<context_section name="">

<element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">
<definition>

<meaning xmi:id="sem131" kind="SetProjection"
description="Definition of DataType ElementType" >

<variable xmi:id="var143" range="nc1" name="DT"/>
<operand xmi:id="sem132" identificator=""

kind="ExistentialQuantification" description="">
<variable xmi:id="var144" range="nc8" name="T">

<restriction xmi:id="sem133" verb="vc2" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="KDMEntity" target="var144"/>
<binding rolename="Name" target="ic11"/>

</restriction>
</variable>
<operand xmi:id="sem134" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem135" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic12"/>
<binding rolename="Thing2" target="ic13"/>

</operand>
<operand xmi:id="sem136" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var143"/>
<binding rolename="Thing2" target="var144"/>

</operand>
</operand>

</operand>
</meaning>

</definition>
</element>

<!—- body omitted -->
</context_section>

Example 2. Readable SFP language

Characteristics

Ref DataType ElementType
…

End Characteristics

SharedContextElements

DataType ElementType

 Software Fault Pattern Metamodel (SFPM), v1.0 63

Var DT : DataType [KDM]
Clause

Var T : CharType [KDM] such that
[KDMEntity has Name :KDM] T, {"char": Strings}

where
[meta] complexity.datatype,char
[Thing1 is Thing2 :SBVR] DT, T

End DataType
…
End SharedContextElements

8.3.2 SFP Dataflow Elements Class Diagram
This section describes the main structural parts of a faulty computation as a data flow. The challenge in describing
software faults is to manage complexity of possible computations that may exhibit the given fault. The main
dimensions of the set of computations that exhibit a given fault include:

- Programming language

- Code libraries and components

- Runtime environment, operating system

- Lexical variations (e.g. names of variables)

- Semantic variations of the indicator

- Semantic variations of the overall data flow

- The context into which the faulty computation is embedded

The SFP approach follows community’s best practices in providing machine-consumable descriptions of software
faults based on common data flows (for example Juliette test cases). According to this approach, the invariant of a
faulty computation is a certain data flow, which has several structural parts:

- The data statement

- The sink statement

- The source statement

As an invariant of a faulty computation, the data flow has a certain condition that involves the data element, and
the source and sink statements. Some common terminology is reviewed and illustrated in the introduction to this
specification.

Each of the elements above is an SFP DefinedElement, such that it has a semantic definition in the form of the
SFP SemanticFormulation, further defined in section 8.4. Thus, a “statement” can be a conjunction of several logical
propositions.

The data element determines that set of values that flow from the source statement to the sink statement. The
scope of the data flow is restricted to the activities that occur at the source statement, followed by the activities at
the sink statement. In other words, the data flow is assumed to flow from the source statement to the sink
statement. Further, it is assumed that any activities between the source and the sink do not affect the values of the
data element. The compliant data flows in the “extension” of the semantic definition can be interleaved with any
other activities as long as they do not violate the above assumptions.

64 Software Fault Pattern Metamodel (SFPM), v1.0

Figure 11: UML class diagram SFP Dataflow Elements

8.3.2.1 DataflowElement Class (abstract)
DataflowElement is a parent class for several elements that define the structural parts of faulty computations
as an invariant of a data flow.

Superclass

SemanticElement, ClauseReference

8.3.2.2 PrimaryDataStatement Class
PrimaryDataStatement class represents the data element of the data flow that constitutes an invariant of the family
of faulty computations collectively described as an SFP.

PrimaryDataStatements are usually defined as SetProjections, involving one or more variables that “range”
over some concepts (see example below). Semantic formulations are based on the SBVR specification and
are described in more detail in Section 8.4.

Superclass

DataflowElement

Example 1. SFPM XMI

<element xmi:type="sfpm:PrimaryDataStatement" xmi:id="cla1">

 <definition>
 <meaning xmi:id="sem1" kind="SetProjection"

 Software Fault Pattern Metamodel (SFPM), v1.0 65

 description="Definition of primary data statement" >
 <variable xmi:id="var1" range="nc1" name="BPBT"/>

 <variable xmi:id="var2" range="nc2" name="TBTI"/>
 <variable xmi:id="var3" range="nc2" name="BP"/>
 <variable xmi:id="var4" range="nc1" name="BPT"/>
 <variable xmi:id="var5" range="nc2" name="BPTI"/>
 <operand xmi:id="sem2" identificator="pointer"
 kind="ExistentialQuantification" description="">

 <variable xmi:id="var6" range="nc3" name="PT">
 <restriction xmi:id="sem3" verb="vc1" identificator=""
 kind="AtomicFormulation"
 description=""> … </restriction>

 </variable>
 <variable xmi:id="var7" range="nc2" name="SU">

 <restriction xmi:id="sem4" identificator=""
 kind="Conjunction" description="">

 <!—- body omitted -->
 </restriction>

 </variable>
 <operand xmi:id="sem7" identificator="" kind="Conjunction"
 description="">

 <!—- body omitted -->
 </operand>

 </operand>
 </meaning>

 </definition>
</element>

Example 2. Readable SFP language

PrimaryDataStatement

Var BPBT: DataType [KDM] ;;; target buffer base type (in)
Var TBTI: DataElement [KDM] ;;; target buffer type item (in)
Var BP: DataElement [KDM] ;;; buffer pointer (out)
Var BPT: DataType [KDM] ;;; buffer pointer type (out)
Var BPTI: DataElement [KDM] ;;; buffer pointer item (out)

Clause "pointer"

BPBT * p;
Var PT : PointerType [KDM] such that

[Type is a pointer to BaseType with ItemUnit:KDM Patterns] PT,
BPBT, BPTI

Var SU :DataElement [KDM] such that
[KDMEntity has Name :KDM] SU, {"p": Strings}
[DataElement has type DataType :KDM] SU, PT

where
[meta] pointermode,regular
[Thing1 is Thing2 :SBVR] BP, SU
[Thing1 is Thing2 :SBVR] BPT, PT

End PrimaryDataStatement

66 Software Fault Pattern Metamodel (SFPM), v1.0

8.3.2.3 SinkStatement Class
SinkStatement class represents the sink of the data flow that constitutes an invariant of the family of faulty
computations collectively described as an SFP.

SinkStatements are defined as SetProjections, involving one or more variables that “range” over some concepts
(see example below). A SetProjection “considers” another proposition. Semantic formulations are based on the
SBVR specification and are described in more detail in Section 8.4.

Superclass

DataflowElement

Constraints

1. Each SinkStatement shall be defined as a SetProjection that considers a Disjunction in which the clauses are
references to Indicator elements.

Example 1. SFPM XMI
<element xmi:type="sfpm:SinkStatement" xmi:id="cla3">

<definition>
<meaning xmi:id="sem30" kind="SetProjection"

description="Definition of sink statement" >
<variable xmi:id="var15" range="nc4" name="S1"/>
<variable xmi:id="var16" range="nc4" name="S2"/>
<variable xmi:id="var17" range="nc5" name="BK"/>
<variable xmi:id="var18" range="nc1" name="TBT"/>
<variable xmi:id="var19" range="nc1" name="BPT"/>
<variable xmi:id="var20" range="nc2" name="BPTI"/>
<variable xmi:id="var21" range="nc2" name="TBTI"/>
<variable xmi:id="var22" range="nc1" name="BPBT"/>
<variable xmi:id="var23" range="nc1" name="DT"/>
<variable xmi:id="var24" range="nc2" name="BP"/>
<variable xmi:id="var25" range="nc2" name="Data"/>
<variable xmi:id="var26" range="nc2" name="DataLength"/>
<variable xmi:id="var27" range="nc2" name="Index"/>
<operand xmi:id="sem31" identificator="" kind="Disjunction" description="">

<operand xmi:id="sem32" identificator="Read Access"
kind="ExistentialQuantification" description="">

<variable xmi:id="var28" range="nc1" name="F1"/>
<operand xmi:id="sem33" identificator="" kind="Disjunction"

description="">
<operand xmi:id="sem34" identificator="Explicit Access"

kind="ExistentialQuantification" description="">
<variable xmi:id="var29" range="nc1" name="F2"/>
<operand xmi:id="sem35" identificator="" kind="Disjunction"

description="">
<operand xmi:id="sem36" verb="cla4" kind="AtomicFormulation"

description="ordinary pointer dereference read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="BP" target="var24"/>

<binding rolename="BPTI" target="var20"/>

 Software Fault Pattern Metamodel (SFPM), v1.0 67

<binding rolename="Data" target="var25"/>
</operand>
<operand xmi:id="sem37" verb="cla5" kind="AtomicFormulation"

description="array with index read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="BP" target="var24"/>
<binding rolename="TBTI" target="var21"/>
<binding rolename="Index" target="var27"/>
<binding rolename="Data" target="var25"/>

</operand>
<operand xmi:id="sem38" verb="cla6" kind="AtomicFormulation"

description="struct member read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="BP" target="var24"/>
<binding rolename="BPBT" target="var22"/>
<binding rolename="BPTI" target="var20"/>
<binding rolename="TBTI" target="var21"/>
<binding rolename="Data" target="var25"/>

</operand>
<operand xmi:id="sem39" verb="cla7" kind="AtomicFormulation"

description="class member read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="BP" target="var24"/>
<binding rolename="TBTI" target="var21"/>
<binding rolename="Data" target="var25"/>

</operand>
<operand xmi:id="sem40" verb="cla8" kind="AtomicFormulation"

description="cast read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="DT" target="var23"/>
<binding rolename="BP" target="var24"/>
<binding rolename="BPBT" target="var22"/>
<binding rolename="Data" target="var25"/>

</operand>
</operand>

</operand>
<operand xmi:id="sem41" verb="cla9" kind="AtomicFormulation"

description="overlay struct read">
<binding rolename="S1" target="var15"/>
<binding rolename="S2" target="var16"/>
<binding rolename="DT" target="var23"/>
<binding rolename="BP" target="var24"/>
<binding rolename="BPBT" target="var22"/>
<binding rolename="Data" target="var25"/>

</operand>
<operand xmi:id="sem42" identificator="Hidden Access via api"

kind="ExistentialQuantification" description="">
<!—body omitted --> </operand>

</operand>

68 Software Fault Pattern Metamodel (SFPM), v1.0

<operand xmi:id="sem46" identificator="Write Access"
kind="ExistentialQuantification" description="">

<!—body omitted --> </operand>
<operand xmi:id="sem60" identificator="Call access"

kind="ExistentialQuantification" description="">
<!—body omitted --> </operand>

 </operand>

 </meaning>
 </definition>
</element>

Example 2. Readable SFP language

SinkStatement

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End

Var BK: TargetBufferKind [Platform Meta]
Var TBT: DataType [KDM]
Var BPT: DataType [KDM]
Var BPTI: DataElement [KDM]

TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
Var TBTI: DataElement [KDM]
Var BPBT: DataType [KDM]
Var DT: DataType [KDM]
Var BP: DataElement [KDM]
Var Data: DataElement [KDM]
Var DataLength : DataElement [KDM]
Var Index: DataElement [KDM]

Disjunction

Clause "Read Access"
Var F1 : DataType [KDM]
Disjunction

Clause "Explicit Access"
Var F2 : DataType [KDM]
Disjunction

Clause [ordinary pointer dereference read]
S1=S1, S2=S2,

BP=BP, BPTI=BPTI, Data=Data
Clause [array with index read] S1=S1, S2=S2,

BP=BP, TBTI=TBTI,
Index=Index, Data=Data

Clause [struct member read] S1=S1, S2=S2,
BP=BP, BPBT=BPBT, BPTI=BPTI,
TBTI=TBTI, Data=Data

Clause [class member read] S1=S1, S2=S2,
BP=BP, TBTI=TBTI, Data=Data

Clause [cast read] S1=S1, S2=S2,
DT=DT, BP=BP, BPBT=BPBT,
Data=Data

End Disjunction

Clause [overlay struct read] S1=S1, S2=S2,

 Software Fault Pattern Metamodel (SFPM), v1.0 69

DT=DT, BP=BP, BPBT=BPBT, Data=Data
Clause "Hidden Access via api"

…

End Disjunction

Clause "Write Access"
…

Clause "Call access"

…

End SinkStatement

8.3.2.4 SourceStatement Class
SourceStatement class represents the source of the data flow that constitutes an invariant of the family of faulty
computations collectively described as an SFP.

SourceStatements are usually defined as SetProjections, involving one or more variables that “range” over some
concepts (see example below). A SetProjection “considers” another proposition. Semantic formulations are based
on the SBVR specification and are described in more detail in Section 8.4.

Superclass

DataflowElement

Example 1. SFPM XMI
<element xmi:type="sfpm:SourceStatement" xmi:id="cla2">

<definition>
<meaning xmi:id="sem11" kind="SetProjection"

description="Definition of source statement" >
<variable xmi:id="var8" range="nc4" name="S1"/>
<variable xmi:id="var9" range="nc4" name="S2"/>
<variable xmi:id="var10" range="nc5" name="BK"/>
<variable xmi:id="var11" range="nc2" name="TB"/>
<variable xmi:id="var12" range="nc1" name="BPT"/>
<variable xmi:id="var13" range="nc1" name="BPBT"/>
<variable xmi:id="var14" range="nc2" name="BP"/>
<operand xmi:id="sem12" identificator="" kind="Disjunction"

description="">
<operand xmi:id="sem13" identificator="assign" kind="Conjunction"

description="">
<operand xmi:id="sem14" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic4"/>
<binding rolename="Thing2" target="ic5"/>

</operand>
<operand xmi:id="sem15" verb="vc4" identificator=""

kind="AtomicFormulation" description="">

70 Software Fault Pattern Metamodel (SFPM), v1.0

<binding rolename="Thing1" target="ic6"/>
<binding rolename="Thing2" target="ic7"/>

</operand>
<operand xmi:id="sem16" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic8"/>
<binding rolename="Thing2" target="ic3"/>

</operand>

<operand xmi:id="sem17" verb="vc5" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ActionElement" target="var8"/>
</operand>
<operand xmi:id="sem18" verb="vc6" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var8"/>
<binding rolename="DataElement" target="var11"/>

</operand>
<operand xmi:id="sem19" verb="vc7" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var8"/>
<binding rolename="DataElement" target="var14"/>

</operand>
<operand xmi:id="sem20" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var9"/>
<binding rolename="Thing2" target="var8"/>

</operand>
</operand>

<!—- body omitted -->
</operand>

</meaning>
</definition>

</element>

Example 2. Readable SFP language

SourceStatement

Var S1: ActionElement [KDM]
Var S2: ActionElement [KDM]
Var BK: TargetBufferKind [Platform Meta]
Var TB: DataElement [KDM]
Var BPT: DataType [KDM]
Var BPBT: DataType [KDM]
Var BP: DataElement [KDM]

Disjunction

Clause "assign"
p=buf;

[meta] complexity.inline,no
[meta] isnamed,yes
[meta] buffermode,regular
[ActionElement is assign :KDM] S1
[ActionElement reads DataElement :KDM] S1, TB
[ActionElement writes DataElement :KDM] S1, BP

 Software Fault Pattern Metamodel (SFPM), v1.0 71

[Thing1 is Thing2 :SBVR] S2, S1

Clause "address"
p=&buf;

[meta] complexity.inline,no
[meta] isnamed,yes
[meta] buffermode,struct
[ActionElement is ptr :KDM] S1

[ActionElement addresses DataElement :KDM] S1,TB
[ActionElement writes DataElement :KDM] S1,BP
[Thing1 is Thing2 :SBVR] S2, S1

Clause "release"

[simple Begin End releases Buffer of DataType:KDM Patterns]
S1, S2, BP, BPT

End Disjunction

End SourceStatement

8.3.2.5 Condition Class
Condition class represents the invariant condition of the data flow for the family of faulty computations collectively
described as an SFP. While SinkStatement, SourceStatement and PrimaryDataStatement focus on program point
patterns, Condition allows specification of properties that involve values (state) of the computation. In general,
specification based on values assumes a more powerful class of supporting capabilities.

Superclass

DataflowElement

8.3.3 SFP Canonical Elements Class Diagram
This section describes the Canonical Elements of the SFP Catalog. In contrast to the Dataflow Element that define
the invariant of some data flow, CanonicalElements define canonical dataflows by providing their full context.
CanonicalElements are aligned with the Dataflow elements and define dataflows that exhibit the fault described by
the SFP, as well as related dataflows that share certain significant parts of the invariant without exhibiting the fault.
The latter dataflows are referred to as “mitigated dataflows” as they illustrate possible “mitigations” of the fault.

The intention of the Canonical Elements is to synthesize the test cases that correspond to the software weaknesses
defined by the SFP items. CanonicalElements define a broader context for faulty computations, sufficient to
generate complete (compilable, executable) examples of the faulty computation in the form of a test case with
appropriate metadata. These test cases can be used to validate CWE compliance mappings of existing and future
Static Code Analysis tools. The ContextElements represent reusable elements that are used in CanonicalElements.
CanonicalElements also represent “mitigated” computations that shared significant fragments with the faulty
computations but do not exhibit the fault. The latter content can be used to generate additional test cases for the
“false positives” reporting in existing and future Static Code Analysis tools.

The Dataflow Element Sink and Source (when applicable) are specifications of the fault. On the other hand,
CanonicalElements SinkSegment and SourceSegment are rules that describe unmitigated Sink and Source together
with the context. At the same time, MitigatedSinkSegment and MitigatedSourceSergment elements represent
canonical Sink and Source with mitigations, also with the context. CanonicalSegment are referred to by a
CanonicalForm that provides the full context for canonical descriptions of both faulty and mitigated computations.
The elements of context are introduced when needed, esp. for Source when there is a gap between the

72 Software Fault Pattern Metamodel (SFPM), v1.0

specification and the full context.

For example, an invariant specification may specify data flow as having a sink that is a dereference of a pointer. This
content may be used to systematically collect evidence of such data flows in a given code. The assumed
capabilities are:

1) representing the code as a set of KDM facts;

2) identifying the specific facts that are instances of the invariant.

This example is simplified not to include capabilities to identify dataflows related to the identified location. From
the certification perspective, a complete collection of facts is obtained by the capability #1 (for example by
parsing source or binary code and representing the result as a set of standard KDM facts). The content that
specifies the fault only focuses at the key KDM facts. The makes implicit assumptions and relies on the
constraints defined in the KDM standard (for example, that there is a variable that declares a pointer, and that
the statement representing a pointer dereference is part of some procedure that is called from some runtime entry
point). Also, the concise description of the invariant relies on KDM to represent the multitude of situations where
the pointer being dereferenced can be embedded into a more complex data structure, and the dereference may be
also part of a more complex statement. Some (but not all) of these implicit assumptions are referred to as the
“context” of the faulty computation.

The CanonicalElements define the dataflow related to the SFP fault in context by providing the necessary
definitions and filling in the minimal required scopes so that the resulting KDM describes a minimal fully
functional code sample. Further, the CanonicalElements provide some “hooks” for adding “code and data
complexities” in a structured way so that increasingly more complex samples can be produced. For obvious
reasons, it is not possible to enumerate all samples of a fault. Thus, the content of the SFP Catalog involves an
interface to the external capabilities that can systematically add code and data complexities as needed. The name
“canonical” emphasizes the fact that the content only represents certain select (i.e. “canonical” rather than
“random”) examples out of an infinite number of compliant dataflows.

Figure 12: UML class diagram SFP Canonical Elements

 Software Fault Pattern Metamodel (SFPM), v1.0 73

8.3.3.1 CanonicalElement Class (abstract)
CanonicalElement is a parent class of the elements of SFP Catalog that provide context for the faulty computations
captured as dataflow invariants.

Superclass

SemanticElement

8.3.3.2 CanonicalForm Class
Through its semantic definition, CanonicalForm defines a sequence of segments that completes the definition of
fault into a full canonical representation with appropriate context. The CanonicalForm is the “blueprint” for
plugging in other CanonicalSegments. CanonicalForm describes how various segments (specific to an SFP and
referenced context elements) can be arranged into a coherent piece of source code which “implements” a fault in
an appropriate context.

The Canonical Form assumes few simple variation rules, such as that the “unmitigated” sample of the data flow
can be obtained by plugging in Sink and Source segments, while several structurally different forms of “mitigated”
dataflow can be obtained by plugging in 1) only Mitigated Sink instead of the Sink Segment; 2) only
MitigatedSource instead of SourceSegment; 3) both Mitigated Sink and MitigatedSource.

CanonicalForm is closely aligned with the variation tree described in section 8.1.2.3.

A “segment” (a “KDM segment”) is a term consistently used in SFP to refer to a semantic formulation that
represents one or more KDM ActionElement together with the corresponding Flows relationships is such a way
that there is a single “entry” ActionElement and a single “exit” element. The “signature” of a segment includes two
variables that reference these two elements. KDM segments are useful building blocks of content. SFP
vocabularies built on top of KDM often define KDM segments as new “verbs”.

Specification of the CanonicalForm assumes the Flow relations between the segments of the semantic definition,
connecting them in the order in which they occur in the conjunction. The intent is that the implementation
capabilities may inject interleaving dataflows between the segments of the CanonicalForm.

Complexity “hooks” are introduced to the same end and use explicit tags that refer to the kinds of complexity that
can be injected. The vocabulary of complexity “hooks” in not part of the SFP Metamodel and shall be explained in the
SFP catalog.

Superclass

CanonicalElement

Example 1. SFPM XMI

This example focuses on the main element of the CanonicalForm and omits the body of the semantic formulation.
See Example 2 for the full content.
<canonical xmi:type="sfpm:CanonicalForm" xmi:id="cla40" name="CF1" >

<definition>
<meaning xmi:id="sem67" kind="SetProjection"

74 Software Fault Pattern Metamodel (SFPM), v1.0

description="Definition of CF1" >
<variable xmi:id="var35" range="nc4" name="S1"/>
<variable xmi:id="var36" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language
Canonical CF1

CanonicalForm defines a sequence of segments that fully exemplifies a fault
in an appropriate context

Var S1: ActionElement [KDM]
Var S2: ActionElement [KDM]

Var DT :DataType [KDM]
Var BK: TargetBufferKind [Platform Meta]
Var TB: Buffer [Platform APIs]

Var TBT : DataType [KDM] ;; target buffer type

TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
Var TBTI : DataElement [KDM] ;; target buffer item

Var BPTI: DataElement [KDM] ;; buffer pointer item
Var BPCT: DataType [KDM] ;; buffer pointer container type
Var BPT: DataType [KDM] ;; buffer pointer type
Var BPBT: DataType [KDM] ;; buffer pointer base type
Var BP: DataElement [KDM] ;; buffer pointer

Var BufferLength: DataElement [KDM]
Var BufferSize : IntegerValue [SBVR]
Var Data: DataElement [KDM]
Var DataLength : DataElement [KDM]
Var DataSize: IntegerValue [SBVR]
Var Index: DataElement [KDM]
Var Offset: DataElement [KDM]

Clause

Var A2: ActionElement [KDM]
Var A3: ActionElement [KDM]

Var A4: ActionElement [KDM]
Var A5: ActionElement [KDM]
Var A6: ActionElement [KDM]
Var A7: ActionElement [KDM]
Var A8: ActionElement [KDM]
Var A9: ActionElement [KDM]
Var A10: ActionElement [KDM]
Var A11: ActionElement [KDM]

Var BE_1: DataElement [KDM]
Var BE_2: DataElement [KDM]
Var BE_3: DataElement [KDM]
Var BP_1: DataElement [KDM]

Var SA: ActionElement [KDM]
Var SB: ActionElement [KDM]

Clause [DataType ElementType] DT=DT

 Software Fault Pattern Metamodel (SFPM), v1.0 75

Clause [Resource TargetBuffer] BK=BK, TB=TB
Clause [DataType TargetBufferType] BK=BK, TBT=TBT, TBTI=TBTI, BPT=BPT,

DT=DT, BPBT=BPBT, BufferSize=BufferSize

Clause [PrimaryDataSegment] S1=S1, S2=A2, BPBT=BPBT, TBTI=TBTI,
BufferSize=BufferSize, BP=BP, BPT=BPT, BPTI=BPTI, BPCT=BPCT

Clause [DataElement BufferLength] BufferLength=BufferLength,

BufferSize=BufferSize

Clause [DataElement DataLengthGood] DataLength=DataLength,
DataSize=DataSize

Clause [DataElement DefineData] DT=DT, Data=Data, DataSize=DataSize
Clause [DataElement DefineIndex] BK=BK, Index=Index

[container access :Hooks] A3, A4, BP, BE_1

Clause [SourceSegment] S1=A4, S2=A5, BK=BK, TB=TB, TBT=TBT, BPT=BPT,
BPBT=BPBT, BP=BE_1, BufferSize=BufferSize

[complexity comment :Hooks] A6

[container access :Hooks] A6, A7, BP_1, BE_2

Clause [SinkSegment] S1=A7, S2=A8, BK=BK, TBT=TBT, BPT=BPT, BPTI=BPTI,
TBTI=TBTI, BPBT=BPBT, DT=DT, BP=BE_2, Data=Data,
DataLength=DataLength, Index=Index, BufferSize=BufferSize

[container access :Hooks] A9, A10, BP_1, BE_3

Clause [Operation Cleanup] S1=A10, S2=A11, BK=BK, BPT=BPT, BPBT=BPBT,
BP=BE_3

[complexity connect :Hooks] A2, A3
[complexity end :Hooks] A6, A8, SA, SB, BPT
[complexity connect :Hooks] SB, A9
[complexity path :Hooks] A5, SA, BP, BP_1, BPT, BPBT, BPCT
[complexity return :Hooks] A11

End Canonical

8.3.3.3 CanonicalSegment Class (abstract)
CanonicalSegment class represents a canonical version of a Dataflow element with full context. Further, Some
CanonicalSegment represent the “mitigated” versions of the corresponding Dataflow element.
Coordination of the various clauses is guided by the Property element defined as part of the clauses.

Superclass

CanonicalElement, ClauseReference

8.3.3.4 SinkSegment Class
SinkSegment class represents a canonical version of the Dataflow element SinkStatement with full context.

76 Software Fault Pattern Metamodel (SFPM), v1.0

Superclass

CanonicalSegment

Example 1. SFPM XMI

This example focuses on the main element of the SinkSegment and omits the body of the semantic
formulation. See Example 2 for the full content.

<canonical xmi:type="sfpm:SinkSegment" xmi:id="cla43" >

<definition>

<meaning xmi:id="sem104" kind="SetProjection"
description="Definition of segment SinkSegment" >

<variable xmi:id="var92" range="nc4" name="S1"/>
<variable xmi:id="var93" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language

Segment SinkSegment

the version of Sink with context uses additional parameter BufferSize
for use in mitigation;
must be signature compatible with MitigatedSinkSegment

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End

Var BK: TargetBufferKind [Platform Meta]
Var TBT: DataType [KDM]
Var BPT: DataType [KDM]
Var BPTI: DataElement [KDM]

TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
Var TBTI: DataElement [KDM]

method unit optional
Var TBTM: ControlElement [KDM]

Var BPBT: DataType [KDM]
Var DT: DataType [KDM]
Var BP: DataElement [KDM]
Var Data: DataElement [KDM]
Var DataLength : DataElement [KDM]
Var Index: DataElement [KDM]

Var BufferSize : IntegerValue [SBVR]

Clause [SinkStatement] S1=S1, S2=S2, BK=BK, TBT=TBT, BPT=BPT,
BPTI=BPTI, TBTI=TBTI, BPBT=BPBT, DT=DT, BP=BP, Data=Data,
DataLength=DataLength, Index=Index

End Segment

8.3.3.5 SourceSegment Class

SourceSegment class represents a canonical version of the Dataflow element SourceStatement with full context.

 Software Fault Pattern Metamodel (SFPM), v1.0 77

Superclass

CanonicalSegment

Example 1. SFPM XMI

This example focuses on the main element of the SourceSegment and omits the body of the semantic formulation.
See Example 2 for the full content.

<canonical xmi:type="sfpm:SourceSegment" xmi:id="cla42" >

<definition>
<meaning xmi:id="sem96" kind="SetProjection"

description="Definition of segment SourceSegment" >
<variable xmi:id="var79" range="nc4" name="S1"/>
<variable xmi:id="var80" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language

Segment SourceSegment

Var S1: ActionElement [KDM]
Var S2: ActionElement [KDM]

Var BK: TargetBufferKind [Platform Meta]
Var TB: Buffer [Platform APIs]
Var TBT : DataType [KDM]
Var BPT: DataType [KDM]
Var BPBT: DataType [KDM]
Var BP: DataElement [KDM]
Var BufferSize : IntegerValue [SBVR]

Clause

Var A2: ActionElement [KDM]
Var A3: ActionElement [KDM]
Var A4: ActionElement [KDM]
Var A5: ActionElement [KDM]

where
Clause [Operation DefineTargetBuffer] S1=S1, S2=A2, BK=BK, TBT=TBT,

BPT=BPT, BPBT=BPBT, TB=TB, BP=BP, BufferSize=BufferSize
Clause [Operation BindPointerToTargetBuffer] S1=A3, S2=A4,

BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB
Clause [Operation ReleaseTargetBuffer] S1=A5, S2=S2, BK=BK, BPT=BPT,

BPBT=BPBT, BP=BP
[ActionElement1 flows into ActionElement2 :KDM] A2, A3
[ActionElement1 flows into ActionElement2 :KDM] A4, A5

End Segment

78 Software Fault Pattern Metamodel (SFPM), v1.0

8.3.3.6 PrimaryDataSegment Class
PrimaryDataSegment class represents a canonical version of the Dataflow element PrimaryDataStatement
with full context.

Superclass

CanonicalSegment

Example 1. SFPM XMI

This example focuses on the main element of the PrimaryDataSegment and omits the body of the semantic
formulation. See Example 2 for the full content.

<canonical xmi:type="sfpm:PrimaryDataSegment" xmi:id="cla41" >

<definition>
<meaning xmi:id="sem90" kind="SetProjection"

description="Definition of segment PrimaryDataSegment" >
<variable xmi:id="var70" range="nc4" name="S1"/>
<variable xmi:id="var71" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language
Segment PrimaryDataSegment

Var S1: ActionElement [KDM]
Var S2: ActionElement [KDM]

Var BPBT: DataType [KDM] ;;; target buffer base type (in)
Var TBTI: DataElement [KDM] ;;; target buffer type item (in)
Var BufferSize: DataType [KDM] ;; target buffer size (in)
Var BP: DataElement [KDM] ;;; buffer pointer (out)
Var BPT: DataType [KDM] ;;; buffer pointer type (out)
Var BPTI: DataElement [KDM] ;;; buffer pointer item (out)
Var BPCT: DataType [KDM] ;;; buffer pointer container type (out)

[meta] complexity.inline,no
Clause [DataType BufferPointerType] BPT=BPT, BPBT=BPBT, BPTI=BPTI,

TBTI=TBTI
[key data type pointer :Hooks] BPBT, BPT, BPTI, BufferSize
Clause [DataElement BufferPointer] S1=S1, S2=S2, BP=BP, BPT=BPT,

BPBT=BPBT, BPCT=BPCT
End Segment

8.3.3.7 MitigatedSinkSegment Class

MitigatedSinkSegment class represents a canonical mitigated version of the Dataflow element SinkStatement
with full context. See additional descriptions in the CanonicalForm section and the introduction to section
8.3.

 Software Fault Pattern Metamodel (SFPM), v1.0 79

Superclass

CanonicalSegment

Example 1. SFPM XMI

This example focuses on the main element of the MitigatedSinkSegment and omits the body of the semantic
formulation. See Example 2 for the full content.

<canonical xmi:type="sfpm:MitigatedSinkSegment" xmi:id="cla45" >

<definition>
<meaning xmi:id="sem117" kind="SetProjection"

description="Definition of segment MitigatedSinkSegment" >
<variable xmi:id="var124" range="nc4" name="S1"/>
<variable xmi:id="var125" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language
Segment MitigatedSinkSegment

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End

Var BK: TargetBufferKind [Platform Meta]
Var TBT: DataType [KDM]
Var BPT: DataType [KDM]
Var BPTI: DataElement [KDM]

TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
Var TBTI: DataElement [KDM]
Var BPBT: DataType [KDM]
Var DT: DataType [KDM]
Var BP: DataElement [KDM]
Var Data: DataElement [KDM]
Var DataLength : DataElement [KDM]
Var Index: DataElement [KDM]
Var BufferSize : IntegerValue [SBVR]

Disjunction

Clause "null dereference"
Var A1 : ActionElement [KDM] ;;; segment Begin
Var A2 : ActionElement [KDM] ;;; segment End
where

[meta] isnull,yes
Clause [SinkStatement] S1=A1, S2=A2, BK=BK, TBT=TBT,

BPT=BPT, BPTI=BPTI, TBTI=TBTI, BPBT=BPBT,
DT=DT, BP=BP, Data=Data, DataLength=DataLength,
Index=Index

[simple Begin2 End2 mitigates null of DataType in segment
Begin1 End1 DataElement:KDM Patterns] S1, S2,

BPT, A1, A2, BP

Clause "other - use an alternative source"

80 Software Fault Pattern Metamodel (SFPM), v1.0

Var TB: Buffer [Platform APIs]

Var A2: ActionElement [KDM]
Var A3: ActionElement [KDM]

where
[meta] isnull,no
[meta] complexity.inline,no

Clause [Operation DefineValidReference] S1=S1, S2=A2,

BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=TB,
BP=BP, BufferSize=BufferSize

Clause [SinkStatement] S1=A3, S2=S2, BK=BK, TBT=TBT,
BPT=BPT, BPTI=BPTI, TBTI=TBTI, BPBT=BPBT, DT=DT,
BP=BP, Data=Data, DataLength=DataLength,

Index=Index

[ActionElement1 flows into ActionElement2 :KDM] A2, A3

End Disjunction
End Segment

8.3.3.8 MitigatedSourceSegment Class

MitigatedSourceSegment class represents a canonical mitigated version of the Dataflow element SourceStatement
with full context. See additional descriptions in the CanonicalForm section and the introduction to section 8.3.

Superclass

CanonicalSegment

Example 1. SFPM XMI

This example focuses on the main element of the MitigatedSourceSegment and omits the body of the semantic
formulation. See Example 2 for the full content.

<canonical xmi:type="sfpm:MitigatedSourceSegment" xmi:id="cla44" >

<definition>
<meaning xmi:id="sem106" kind="SetProjection"

description="Definition of segment MitigatedSourceSegment" >
<variable xmi:id="var106" range="nc4" name="S1"/>
<variable xmi:id="var107" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</canonical>

Example 2. Readable SFP language
Segment MitigatedSourceSegment

generates a valid reference for each variant of the Parameter Incorrect Value
Kind

Var S1: ActionElement [KDM]

 Software Fault Pattern Metamodel (SFPM), v1.0 81

Var S2: ActionElement [KDM]

Var BK: TargetBufferKind [Platform Meta]
Var TB: Buffer [Platform APIs]
Var TBT : DataType [KDM]
Var BPT: DataType [KDM]
Var BPBT: DataType [KDM]
Var BP: DataElement [KDM]
Var BufferSize : IntegerValue [SBVR]

Clause
Var A1: ActionElement [KDM]
Var A2: ActionElement [KDM]

Var A3: ActionElement [KDM]
Var A4: ActionElement [KDM]

Var A5: ActionElement [KDM]
Var A6: ActionElement [KDM]

Var A7: ActionElement [KDM]

Var A8: ActionElement [KDM]
Var A9: ActionElement [KDM]
Var A10: ActionElement [KDM]

Var ValidTB: DataElement [KDM] such that
[DataElement is a temporary variable of DataType :KDM]

ValidTB, BPT

where
Clause [Operation DefineTargetBuffer] S1=A1, S2=A2,

BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=TB,
BP=BP, BufferSize=BufferSize

Clause [Operation BindPointerToTargetBuffer] S1=A3, S2=A4,
BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB

Clause [Operation ReleaseTargetBuffer] S1=A5, S2=A6,
BK=BK, BPT=BPT, BPBT=BPBT, BP=BP

[ActionElement1 flows into ActionElement2 :KDM] A2, A3
[ActionElement1 flows into ActionElement2 :KDM] A4, A5

Clause [Operation DefineValidReference] S1=A7, S2=A8,
BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=ValidTB,
BP=BP, BufferSize=BufferSize

Clause [Operation BindMitigatedPointerToTargetBuffer]
S1=A9, S2=A10, BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB

[ActionElement1 flows into ActionElement2 :KDM] A8, A9

[segment Begin3 End3 mitigates segments Begin1 End1 and
Begin2 End2:KDM Patterns] S1, S2, A1, A6, A7, A8

End Segment

8.3.4 SFP Context Elements Class Diagram
This section describes the Context Elements of the SFP Catalog. As ContextElement represent significant referenced
clauses that are used mainly by the CanonicalElement they determine the common characteristics of an SFP and
constitute an important part of the overall SFP content.

Based on the shared ContextElement, SFP can be systematically grouped into clusters, and the nature of the

82 Software Fault Pattern Metamodel (SFPM), v1.0

relationships between different SFPs can be formally described.

SFP ContextElement represent the conceptual level of the SFP description in contrast to the technical level
represented by KDM vocabulary and KDM patterns. SFP ContextElement focus at the essential Resource,
Operations, DataTypes and DataElements, as well as APIs and Decision involved in SFPs. By adding few more
abstractions, SFP Catalog extends the standard vocabularies and accumulates more useful content towards the
advanced analytics of the software weaknesses.

Figure 13: UML class diagram SFP Context Elements

8.3.4.1 ContextElement Class (abstract)
ContextElement class represents the common parent for context elements.

Superclass

SemanticElement

Attributes

name:String[1] Name of the context elements

description: String[1] Informal description of the context element

8.3.4.2 Resource Class
Resource class represents a resource provided by the operating system or by one of the frameworks. Resource
can also be implemented by the software under assessment. Several weaknesses are directly related to
manipulations of resources in non-secure ways. Describing these situations in terms of the programming
constructs fails to communicate the essence of the related software faults, as from the programming language
perspective manipulations of resources looks like API calls. KDM specification already introduces a Resource
Layer to provide a more meaningful representation of common resources. SFP Resource makes this framework
more visible as part of the content of the SFP Catalog. As an SFP ContextElement DataType can serve as a

 Software Fault Pattern Metamodel (SFPM), v1.0 83

variation point for synthesis of test cases with appropriate metadata, as well as a characteristic of an SFP while
analyzing relationships between multiple SFP.

Superclass

ContextElement

Attributes

kind:String[1] Kind of the resource (defined in the KDM
specification)

Associations

interface:API[0..*] Set of API of the resource

Example 1. SFPM XMI
<element xmi:type="sfpm:Resource" xmi:id="shared2" name="TargetBuffer">

<definition>
<meaning xmi:id="sem188" kind="SetProjection"

description="Definition of Resource TargetBuffer" >
<variable xmi:id="var163" range="nc5" name="BK"/>
<variable xmi:id="var164" range="nc6" name="TB"/>
<operand xmi:id="sem189" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem190" verb="vc27" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="TargetBufferKind" target="var163"/>
<binding rolename="Buffer" target="var164"/>

</operand>
<operand xmi:id="sem191" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic22"/>
<binding rolename="Thing2" target="ic5"/>

</operand>
</operand>

</meaning>
</definition>

</element>

Example 2. Readable SFP language
Resource TargetBuffer

Var BK: TargetBufferKind [Platform Meta]
Var TB: Buffer [Platform APIs]

[TargetBufferKind represents Buffer : Platform APIs] BK, TB
[meta] ooapi,no

End Resource

8.3.4.3 Operation Class
Operation class represents a logical operation on a resource. Usually, an operation changes the state of the resource.
Operations are often implemented by the operating systems or by one of the software frameworks. Operation can

84 Software Fault Pattern Metamodel (SFPM), v1.0

also be defined as part of the software. As an SFP ContextElement Operation can serve as a variation point for
synthesis of test cases with appropriate metadata, as well as a characteristic of an SFP while analyzing relationships
between multiple SFP. From the formalization perspective, an Operation is usually a KDM segment.

Superclass

ContextElement

Associations

resource:Resource[0..*] Resource manipulated by the operation, if any

input: DataElement[0..*] Input to the operation, if any

output: DataElement[0..*] Output of the operation, if any

interface: API[0..*] API of this operation

Example 1. SFPM XMI
<element xmi:type="sfpm:Operation" xmi:id="shared13" name="ReleaseTargetBuffer"
resource="shared2" >

<definition>
<meaning xmi:id="sem707" kind="SetProjection"

description="Definition of operation ReleaseTargetBuffer" >
<variable xmi:id="var255" range="nc4" name="S1"/>
<variable xmi:id="var256" range="nc4" name="S2"/>

<!—- body omitted -->
</meaning>

</definition>
</element>

Example 2. Readable SFP language
Operation ReleaseTargetBuffer

involves TargetBuffer

Var S1: ActionElement [KDM]
Var S2: ActionElement [KDM]
Var BK: TargetBufferKind [Platform Meta]
Var BPT: DataType [KDM]
Var BPBT: DataType [KDM]
Var BP: DataElement [KDM]

Disjunction

Clause "buffer is available"
no release
[meta] release, no
[ActionElement is nop :KDM] S1

[Thing1 is Thing2 :SBVR] S2, S1

Clause "buffer is in released state"
explicit release;

[meta] release, yes

 Software Fault Pattern Metamodel (SFPM), v1.0 85

[simple Begin End releases Buffer of DataType:KDM Patterns]
S1, S2, BP, BPT

End Operation

8.3.4.4 DataType Class

DataType class represents a data type in the software under assessment. A DataType class is a more powerful
construct in comparison to a KDM fact, since it allows disjunction of KDM types, complex KDM types, that involve
multiple facts, as well as combinations of KDM statements and properties. As an SFP ContextElement DataType can
serve as a variation point for synthesis of test cases with appropriate metadata, as well as a characteristic of an
SFP while analyzing relationships between multiple SFP.

Superclass

ContextElement

Example 1. SFPM XMI
<element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">

<definition>
<meaning xmi:id="sem131" kind="SetProjection"

description="Definition of DataType ElementType" >
<variable xmi:id="var143" range="nc1" name="DT"/>
<operand xmi:id="sem132" identificator="" kind="ExistentialQuantification"

description="">
<variable xmi:id="var144" range="nc8" name="T">

<restriction xmi:id="sem133" verb="vc2" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="KDMEntity" target="var144"/>
<binding rolename="Name" target="ic11"/>

</restriction>
</variable>
<operand xmi:id="sem134" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem135" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="ic12"/>
<binding rolename="Thing2" target="ic13"/>

</operand>
<operand xmi:id="sem136" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var143"/>
<binding rolename="Thing2" target="var144"/>

</operand>
</operand>

</operand>
</meaning>

</definition>

</element>

Example 2. Readable SFP language
DataType ElementType

86 Software Fault Pattern Metamodel (SFPM), v1.0

Var DT : DataType [KDM]
Clause

Var T : CharType [KDM] such that
[KDMEntity has Name :KDM] T, {"char": Strings}

where
[meta] complexity.datatype,char
[Thing1 is Thing2 :SBVR] DT, T

End DataType

8.3.4.5 DataElement Class
DataElement class represents a data element in the software under assessment. A DataElement class is a more
powerful construct in comparison to a KDM fact, since it allows disjunction of KDM facts, complex KDM facts,
as well as combinations of KDM statements and properties. As an SFP ContextElement DataElement can serve as
a variation point for synthesis of test cases with appropriate metadata, as well as a characteristic of an SFP while
analyzing relationships between multiple SFP.

Superclass

ContextElement

Associations

type:DataType[0..*] Type of the data element, if available

Example 1. SFPM XMI
<element xmi:type="sfpm:DataElement" xmi:id="shared7" name="BufferLength">

<definition>
<meaning xmi:id="sem137" kind="SetProjection"

description="Definition of DataElement BufferLength" >
<variable xmi:id="var145" range="nc2" name="BufferLength"/>
<variable xmi:id="var146" range="nc7" name="BufferSize"/>
<operand xmi:id="sem138" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem139" verb="vc22" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="DataElement" target="var145"/>
<binding rolename="Datatype" target="ic14"/>
<binding rolename="Name" target="ic15"/>

</operand>
<operand xmi:id="sem140" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var146"/>
<binding rolename="Thing2" target="ic15"/>

</operand>
</operand>

</meaning>
</definition>

</element>

 Software Fault Pattern Metamodel (SFPM), v1.0 87

Example 2. Readable SFP language
DataElement BufferLength

Var BufferLength: DataElement [KDM]
Var BufferSize : IntegerValue [SBVR]

[DataElement is a constant of Datatype with Name :KDM Patterns]

BufferLength, defaultInt, {"10":SBVR}
[Thing1 is Thing2 :SBVR] BufferSize, {"10":SBVR}

End DataElement

8.3.4.6 API Class
API class represents an external function provided by the operating system or a software library. An API class is
a more powerful construct in comparison to a KDM fact, since it allows disjunction of KDM facts, complex KDM
facts, as well as combinations of KDM statements and properties. API provides more visibility to certain external
functions as part of the SFP Content. As an SFP ContextElement API can serve as a variation point for synthesis
of test cases with appropriate metadata, as well as a characteristic of an SFP while analyzing relationships
between multiple SFP.

Superclass

ContextElement

8.3.4.7 Decision Class
Decision class represents one or more statements in the software under assessment that implement a decision.
While such content can be represented as KDM, the use of a special ContextElement is warranted for important
decisions in the code. A Decision class is a more powerful construct in comparison to a KDM fact, since it
allows complex KDM facts, as well as combinations of KDM statements and properties.

As an SFP ContextElement Decision can serve as a variation point for synthesis of test cases with appropriate
metadata, as well as a characteristic of an SFP while analyzing relationships between multiple SFP.

Superclass

ContextElement

Associations

input:DataElement[1..*] Input into the decision, if any

8.4 Semantic Formalization Apparatus
This section describes the set of elements that provide formal definitions to the SFP Formalization elements. The
formalization apparatus defined in this section is aligned with existing ISO and OMG standards.

The formalization approach of the SFP Catalog used the ISO/OMG Knowledge Discovery Metamodel (KDM) as
the foundation of the discourse related to software faults. Statements in KDM vocabulary represent basic semantic
fragments. A basic KDM fragment is interpreted as a set of facts. More complex logical statements are made on

88 Software Fault Pattern Metamodel (SFPM), v1.0

top of the KDM fragments using the semantic formulations language defined in the ISO/OMG Semantics of
Business Vocabularies and Rules (SBVR). Basic KDM fragments are the atomic propositions. There are two kinds
of semantic formulations. The first kind, logical formulation, structures propositions, both simple and complex.
Specializations of that kind are given for various logical operations, quantifications, atomic formulations based on
verb concepts and other formulations for special purposes such as objectifications and nominalizations.

The second kind of semantic formulation is projection. It structures intensions as sets of things that satisfy
constraints. Projections formulate definitions, aggregations, and questions.

Semantic Formulations allow building complex logical propositions in the well-understood formalism of
propositional logic.

For the purposes of the SFP Catalog, SBVR provides a means for describing the structure of the meaning of
software faults expressed in the natural language. Semantic formulations are not expressions or statements. They
are structures that make up meaning. Using SBVR, the meaning of a definition or statement is communicated as
facts about the semantic formulation of the meaning, not as a restatement of the meaning in a formal language.

8.4.1 Semantic Elements Class Diagram
This section describes the semantic elements of the SFP Catalog.

Figure 14: UML class diagram Semantic Elements

8.4.1.1 SemanticElement Class (abstract)
SemanticElement is the parent class for all elements of SFP Catalog that have a formal definition.

Superclass

Associations

definition:SemanticFragment[0..1] Formal definition of a semantic element

8.4.1.2 SemanticFragment Class
SemanticFragment class represents the formal meaning of the element together with the designated structure text
that describes the element. The top SemanticFormulation is typically a SetProjection that introduces zero or more

 Software Fault Pattern Metamodel (SFPM), v1.0 89

variables which are considered the signature of the semantic element; any references to the semantic element shall
match the signature. For a SFP Condition the top element is usually a quantification.

Superclass

Associations

designation:Verbalization[0..1] Designated structured text describing the
element

meaning: SemanticFormulation[0..1] The formally defined meaning of the element

8.4.1.3 Verbalization Class
Verbalization class represents designated text that represent a semantic element in addition to its formal definition.
For example, the verbalization can be provided as a structured English text according to the rules of SBVR.

Superclass

Attributes

text:String[1] Designation of the element, for example Structured
English text

sample: String[1] Sample of the element, for example a fragment in
selected programming language

8.4.2 Statements Class Diagram
This section describes the semantic formulations of the SFP Catalog. Semantic formulations provide conceptual
structure of meaning [SBVR]. In SFPM semantic formulations are represented by a single class
SemanticFormulation with a property kind of type SemanticFormulationKind that determines the associations and
the meaning of the SemanticFormulation. The constraints of individual ‘semantic formulation’ kinds explain what
meaning is formulated. A meaning is directly formulated only for a closed semantic formulation. In the case of
variables being free within a semantic formulation, a meaning is formulated with respect to there being exactly
one referent thing given for each free variable.

Figure 15: UML class diagram Statements

90 Software Fault Pattern Metamodel (SFPM), v1.0

8.4.2.1 SemanticFormulation Class
SemanticFormulation class represents structure of meaning. Property kind of type SemanticFormulationKind
determines the associations and the meaning of the SemanticFormulation element. The constraints of individual
‘semantic formulation’ kinds explain what meaning is formulated.

Superclass

Attributes

identificator:String[1] Unique identifier of the element

kind: SemanticFormulationKind[1] Literal that defines the kind of the Semantic
Formulation element and constrains its
associations

Associations

verb:VerbForm[0..1] Verb used in some semantic formulation as
determined by the SemanticFormulationKind

operand:SemanticFormulation[0..*] Owned operand used in some semantic
formulation as determined by the
SemanticFormulationKind

noun:nounConcept[0..1] Noun used in some semantic formulation as
determined by the SemanticFormulationKind

variable:Variable[0..*] Owned variable introduced by some semantic
formulation as determined by the
SemanticFormulationKind

description:String[0..1] Description of the element

binding:RoleBinding[0..*] Owned role bindings used in some semantic
formulation as determined by the
SemanticFormulationKind

Constraints

1. Each SemanticFormulation element shall have a set of associations determined by its kind as
follows

a. If Kind=AtomicFormulation then the SemanticFormulation element shall have exactly one
verb and zero or more binding elements where each RoleBinding corresponds to a free
variable of the VerbForm. The rolename property of the RoleBinding corresponds to the name
of the role in the VerbForm.

i. The AtomicFormulation formulates the meaning: there is an actuality that involves in
each role of the verb concept the thing to which the bindable target of the
corresponding role binding refers [SBVR].

b. If Kind=SetProjection then the SemanticFormulation element shall have at most one
operand (the constraint of the projection) and one or more variable elements. The

 Software Fault Pattern Metamodel (SFPM), v1.0 91

SemanticFormulation is a Projection. The constraint of the projection shall not be a
Projection.

i. Projection introduces one or more variables corresponding to involvements in
actualities. If the projection is constrained by a logical formulation, then for each
combination of variables, one referent for each variable, the actuality is that the
meaning of the constraining formulation is true. If the projection has no constraining
formulation, then for each combination of variables, one referent for each variable,
the actuality is that the referents exist [SBVR].

ii. A Projection can be opened or closed. An opened projection refers to variables that are
introduced outside of the projection. A closed projection refers only to the variables
introduced by the projection.

iii. Projection is used in ProjectingFormulation and as the element of meaning in

SemanticFragment elements.

c. If Kind=InstantiationFormulation then the SemanticFormulation element shall have exactly
one noun element and exactly one binding element where the rolename property of the
RoleBinding is shall be ignored.

i. InstantiationFormulation formulates the meaning: the thing to which the
bindable target refers is an instance of the concept [SBVR]

d. If Kind=LogicalNegation then the SemanticFormulation element shall have exactly one
operand element.

i. LogicalNegation formulates that the meaning: the logical operand is false [SBVR]

e. If Kind=Conjunction or Kind=Disjunction then the SemanticFormulation element shall
have two or more operand elements.

i. Conjunction formulates that the meaning: each of its logical operands is true
[SBVR]

ii. Disjunction formulates that the meaning: at least one of its logical operands is true
[SBVR]

f. If Kind=UniversalQuantification then the SemanticFormulation element shall exactly one
operand element (the scope formulation) and exactly one variable element.

i. UniversalQuantification formulated the meaning: for each referent of the variable
introduced by the quantification the meaning formulated by the logical formulation
for the referent is true [SBVR]

g. If Kind=AtLeastNQuantification or Kind=ExistentialQuantification or
Kind=AtmostNQuantification or Kind=AtmostNQuantification or
Kind=ExactlyNQuantification or Kind=ExactlyOneQuantification then the
SemanticFormulation element shall have exactly one operand element and exactly one
variable element and exactly one binding element where the rolename shall be ignored and
the target is an individual concept representing a non-negative number. The
SemanticFormulation is a Quantification.

i. Quantification formulates the meaning: a bounded number of referents of the
variable exist and satisfy a scope formulation [SBVR]

92 Software Fault Pattern Metamodel (SFPM), v1.0

h. If Kind=NumericRangeQuantification then the SemanticFormulation element shall have
exactly one operand element and exactly one variable element and exactly two binding
elements where the rolename of the first RoleBinding is a string “min” and the rolename of
the second RoleBinding is a string “max” and the target of either RoleBinding an individual
concept representing a non-negative number.

i. NumericRangeQuantification formulates the meaning: the number of referents of the
variable introduced by the quantification that exist and that satisfy a scope
formulation, is not less then the minimum cardinality and is not greater then the
maximum cardinality [SBVR]

i. If Kind=Objectification then the SemanticFormulation element shall have exactly one
operand element (the considered logical formulation) and exactly one binding element

where the rolename property of the RoleBinding is an empty string. The considered formulation
shall not be a Projection.

i. Objectification formulates the meaning: the thing to which the bindable target
refers is a state of affairs to which the meaning of the considered logical formulation
corresponds [SBVR]

j. If Kind=AggregationFormulation or Kind=VerbConceptNominalization then the
SemanticFormulation element shall have exactly one operand element (the considered
projection) and exactly one binding element where the rolename property of the
RoleBinding shall be ignored. The operand element shall be a Projection.

i. AggregationFormulation formulates the meaning: the thing to which the bindable
target bound to the projecting formulation refers is the result of the projection of the
projecting formulation [SBVR]. The aggregation formulation is used primarily to
associate a variable with a set of things, involvements, or actualities that satisfy some
condition.

ii. VerbConceptNominalization formulates the meaning: the thing to which the bindable
target bound to the projecting formulation refers is a verb concept that is defined by
the projection of the projecting formulation [SBVR]. A verb concept nominalization
formulates the (anonymous) verb concept defined by a projection. In most uses of
verb concept nominalizations, the bindable target is a unitary variable, and the effect
is to define the variable to refer to the anonymous verb concept defined by the
projection. It is the only referent for which the verb concept nominalization will hold.

k. If Kind=PropositionNominalization then the SemanticFormulation element shall have exactly
one operand element (the considered logical formulation) and exactly one binding element
where the rolename property of the RoleBinding is an empty string. The considered logical
formulation shall not be a Projection.

i. PropositionNominalization formulates the meaning: the thing to which the bindable
target refers is the proposition that is formulated by the considered logical
formulation [SBVR]

 Software Fault Pattern Metamodel (SFPM), v1.0 93

Example 1. SFPM XMI
<indicator xmi:type="sfpm:Indicator" xmi:id="cla4" name="ordinary pointer
dereference read">

<definition>
<meaning xmi:id="sem1388" kind="SetProjection"

description="Definition of indicator ordinary pointer
dereference read" >

<variable xmi:id="var514" range="nc4" name="S1"/>
<variable xmi:id="var515" range="nc4" name="S2"/>
<variable xmi:id="var516" range="nc2" name="BP"/>
<variable xmi:id="var517" range="nc2" name="BPTI"/>
<variable xmi:id="var518" range="nc2" name="Data"/>
<operand xmi:id="sem1389" identificator="ordinary pointer dereference

read" kind="Conjunction" description="">

<operand xmi:id="sem1395" verb="vc109" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ActionElement" target="var514"/>
</operand>

<operand xmi:id="sem1396" verb="vc9" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var516"/>

</operand>
<operand xmi:id="sem1397" verb="vc6" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var517"/>

</operand>
<operand xmi:id="sem1398" verb="vc7" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var514"/>
<binding rolename="DataElement" target="var518"/>

</operand>
<operand xmi:id="sem1399" verb="vc4" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Thing1" target="var515"/>
<binding rolename="Thing2" target="var514"/>

</operand>
</operand>

</meaning>
</definition>

</indicator>

Example 2. Readable SFP language
Indicator "ordinary pointer dereference read"

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End
Var BP: DataElement [KDM]
Var BPTI: DataElement [KDM]
Var Data: DataElement [KDM]

Clause "ordinary pointer dereference read"

94 Software Fault Pattern Metamodel (SFPM), v1.0

data=*p;
[ActionElement is ptrselect :KDM] S1
[ActionElement addresses DataElement :KDM] S1,BP
[ActionElement reads DataElement :KDM] S1, BPTI
[ActionElement writes DataElement :KDM] S1,Data
[Thing1 is Thing2 :SBVR] S2, S1

End Indicator

8.4.2.2 SemanticFormulationKind Enumeration
Enumeration that determines the structure and meaning of a SemanticFormulation element.

Literals

AtomicFormulation

SetProjection

InstantiationFormulation

LogicalNegation Conjunction

Disjunction

UniversalQuantification

AtleastNQuantification

ExistentialQuantification

NumericRangeQuantification

AtmostNQuantification

ExactlyOneQuantification

Objectification

AggregationFormulation

PropositionNominalization

8.4.2.3 ClauseReference Class (abstract)

ClauseReference class represents the proposition based on a formally defined “clause” instead of a “VerbConcept”
from one of the referenced vocabularies. A “clause” is a proposition that is part of one of the formally defined
elements of the SFP Catalog, such as an Indicator, or one of the DataflowElement, or a ContextElement. Referenced
clauses can be used in SemanticFormulation in the same way as VerbConcept. Note that a VerbConcept can also be
formally described. The ability to directly reference a clause allows preserving its primary role in the SFP
Catalog.Superclass.

VerbForm

 Software Fault Pattern Metamodel (SFPM), v1.0 95

8.4.2.4 VerbForm Class (abstract)
VerbForm is either a VerbConcept or a ClauseReference. A VerbForm is the basis of propositions as defined
in section 8.4.2.1.

8.4.2.5 Variable Class
Variable class represents logical variables introduced by certain semantic formulations. A variable is reference to an element
of a set, whose referent may vary or is unknown [SBVR]. The set of referents of a variable is defined by the two verb
concepts ‘variable ranges over concept’ and ‘logical formulation restricts variable’. The set is limited to instances of the
concept. If the variable is restricted by a logical formulation, the set is further limited to those things for which the meaning
formulated by that logical formulation is true when the thing is substituted for each occurrence of the variable in the
formulation.

Superclass

BindableTarget

Associations

name:String[1] Name of the variable

description: String[1] Description of the variable

Associations

range:NounConcept[1] Range of the variable

restriction:SemanticFormulation[0..1] Restriction on the set of instances

Example 1. SFPM XMI
<indicator xmi:type="sfpm:Indicator" xmi:id="cla6" name="struct member read">

<definition>
<meaning xmi:id="sem1411" kind="SetProjection" description="Definition of

indicator struct member read" >
<variable xmi:id="var525" range="nc4" name="S1"/>
<variable xmi:id="var526" range="nc4" name="S2"/>
<variable xmi:id="var527" range="nc2" name="BP"/>
<variable xmi:id="var528" range="nc1" name="BPBT"/>
<variable xmi:id="var529" range="nc2" name="BPTI"/>
<variable xmi:id="var530" range="nc2" name="TBTI"/>
<variable xmi:id="var531" range="nc2" name="Data"/>
<operand xmi:id="sem1412" identificator="struct member read"

kind="ExistentialQuantification" description="">
<variable xmi:id="var532" range="nc2" name="Tmp">

<restriction xmi:id="sem1413" verb="vc19" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="DataElement" target="var532"/>
<binding rolename="DataType" target="var528"/>

</restriction>
</variable>
<operand xmi:id="sem1414" identificator="" kind="Conjunction"

description="">

96 Software Fault Pattern Metamodel (SFPM), v1.0

<operand xmi:id="sem1421" verb="vc109" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ActionElement" target="var525"/>
</operand>

<operand xmi:id="sem1422" verb="vc9" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ActionElement" target="var525"/>
<binding rolename="DataElement" target="var527"/>

</operand>
<operand xmi:id="sem1423" verb="vc6" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var525"/>
<binding rolename="DataElement" target="var529"/>

</operand>
<operand xmi:id="sem1424" verb="vc7" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var525"/>
<binding rolename="DataElement" target="var532"/>

</operand>
<operand xmi:id="sem1425" verb="vc18" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement1" target="var525"/>
<binding rolename="ActionElement2" target="var526"/>

</operand>
<operand xmi:id="sem1426" verb="vc111" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var526"/>

</operand>
<operand xmi:id="sem1427" verb="vc9" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var526"/>
<binding rolename="DataElement" target="var532"/>

</operand>
<operand xmi:id="sem1428" verb="vc6" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var526"/>
<binding rolename="DataElement" target="var530"/>

</operand>
<operand xmi:id="sem1429" verb="vc7" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="ActionElement" target="var526"/>
<binding rolename="DataElement" target="var531"/>

</operand>
</operand>

</operand>
</meaning>

</definition>
</indicator>

Example 2. Readable SFP language
Indicator "struct member read"

Var S1 : ActionElement [KDM] ;;; segment Begin
Var S2 : ActionElement [KDM] ;;; segment End
Var BP: DataElement [KDM]
Var BPBT: DataType [KDM]
Var BPTI: DataElement [KDM]
Var TBTI: DataElement [KDM]

 Software Fault Pattern Metamodel (SFPM), v1.0 97

Var Data: DataElement [KDM]

Clause "struct member read"

assuming struct sx { char a; } *bpt; bpt p; data=p->a;
Var Tmp : DataElement [KDM] such that
[DataElement is a temporary variable of DataType :KDM] Tmp, BPBT
where

[ActionElement is ptrselect :KDM] S1
[ActionElement addresses DataElement :KDM] S1,BP
[ActionElement reads DataElement :KDM] S1, BPTI
[ActionElement writes DataElement :KDM] S1,Tmp
[ActionElement1 flows into ActionElement2 :KDM] S1,S2
[ActionElement is fieldselect :KDM] S2
[ActionElement addresses DataElement :KDM] S2,Tmp
[ActionElement reads DataElement:KDM] S2, TBTI
[ActionElement writes DataElement :KDM] S2,Data

End Indicator

8.4.3 Variable Bindings Class Diagram
This section describes the variable bindings used by semantic formulations of the SFP Catalog.

Figure 16: UML class diagram Variable Bindings

98 Software Fault Pattern Metamodel (SFPM), v1.0

8.4.3.1 RoleBinding Class
RoleBinding class represents a connection of an atomic formulation to a bindable target. The rolename property of the
RoleBinding refers to one of the roles in the atomic formulation.

RoleBinding also represents a connection of certain other SemanticFormulation to its elements. In this case, the rolename
property identifies the element, if there is more than one. For example, NumericRangeQuantification has two elements
that represent the minimum and maximum cardinality. The rolename “min” refer to the minimum cardinality, and the
rolename “max” refers to the maximum cardinality. Other SemanticFormulation may have a single element, in which case
the rolename is ignored.

Superclass

Attributes

rolename:String[1] Unique reference to the role of the SemanticFormulation

description: String[0..1] Description of the binding

Associations

target:BindableTarget[1] BindableTarget

Example 1. SFPM XMI
<operand xmi:id="sem1422" verb="vc9" identificator="" kind="AtomicFormulation"

description="">
<binding rolename="ActionElement" target="var525"/>
<binding rolename="DataElement" target="var527"/>

</operand>

<verb xmi:id="vc9" name="ActionElement addresses DataElement"/>

<variable xmi:id="var525" range="nc4" name="S1"/>
<variable xmi:id="var527" range="nc2" name="BP"/>

Example 2. Readable SFP language

[ActionElement addresses DataElement :KDM] S1,BP

Example 3. SFPM XMI
<variable xmi:id="var450" range="nc2" name="C2">

<restriction xmi:id="sem1125" verb="vc22" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="DataElement" target="var450"/>
<binding rolename="Datatype" target="ic14"/>
<binding rolename="Name" target="ic135"/>

</restriction>
</variable>

<verb xmi:id="vc22" name="DataElement is a constant of Datatype with Name"/>

<individual xmi:id="ic14" name="defaultInt"/>
<individual xmi:id="ic135" name="NULL"/>

 Software Fault Pattern Metamodel (SFPM), v1.0 99

Example 4. Readable SFP language
Var C2: DataElement [KDM] such that

[DataElement is a constant of Datatype with Name :KDM Patterns]
C2, defaultInt, {"NULL" :Strings}

Example 5. SFPM XMI

<operand xmi:id="sem1705" verb="vc4" identificator="" kind="AtomicFormulation"
description="">

<binding rolename="Thing1" target="ic143"/>
<binding rolename="Thing2" target="ic168"/>

</operand>

<verb xmi:id="vc4" name="Thing1 is Thing2"/>

<individual xmi:id="ic143" name="core.indicator"/>
<individual xmi:id="ic168" name="callback_call"/>

Example 6. Readable SFP language
[meta] core.indicator,callback_call

8.4.3.2 BindableTarget Class (abstract)
BindableTarget is either an IndividualConcept or a Variable.

Superclass Example

See 8.4.3.1

8.5 Referenced Vocabularies
This section describes the representation of the referenced vocabularies of the SFP Catalog. The formalization
apparatus of the SFP Catalog (defined in section 8.4) does not define the meaning of constructs involved in the
definitions of the data flows and their invariants. Instead, this apparatus defines the structure of the meaning.
The elements of meaning, identified as “atomic formulations” in section 8.4, are supplied by one or more
referenced vocabularies. The SFP Catalog assumes the use of the ISO/OMG Knowledge Discovery Metamodel
(KDM) vocabulary as the foundation for the formalizations, and some generic parts of the vocabulary described
in the Semantics of Business Vocabularies and Rules (SBVR) specification. Other vocabularies are introduced by
a given SFP Catalog to represent:

- Entire fragments of KDM constructs based entirely on the KDM vocabulary

- Vocabulary of tags for SFP Properties

- Interfaces to the supporting capabilities of the SFP Catalog

The elements of the referenced vocabularies can be “basic” or “structured”. Both types of elements are meant to
be used as part of structured semantic statements by the content of the SFP Catalog. Basic elements are informally
described in the vocabulary. In contrast, the “Structured” elements are formally defined using the formalization
apparatus of section 8.4.

100 Software Fault Pattern Metamodel (SFPM), v1.0

8.5.1 Vocabularies Class Diagram
This section describes the organization of referenced vocabularies of the SFP Catalog.

Figure 17: UML class diagram Vocabularies

8.5.1.1 NounConcept Class
NounConcept class represents a noun concept - concept that is the meaning of a noun or noun phrase. A noun
concept describes a “class” of some objects. Concept is a unit of knowledge created by a unique combination of
characteristics. Characteristic is abstraction of a property of an object [thing] or of a set of objects [ISO 1087-1,
SBVR]. Noun concepts are used as restrictions on the ranges of values for variables and roles of verb concepts.
Noun concepts can be also considered in some logical formulations (see section 8.4.2.1).

 Software Fault Pattern Metamodel (SFPM), v1.0 101

Superclass

VocabularyElement

Attributes

name:String[1] Name of the noun concept

description: String[1] Informal description of the noun concept

Example 1. SFPM XMI
<vocabulary name="KDM">

<noun xmi:id="nc2" name="DataElement"/>
<noun xmi:id="nc22" name="MethodUnit"/>
<noun xmi:id="nc11" name="ValueList"/>
<noun xmi:id="nc24" name="Name"/>
<noun xmi:id="nc23" name="IndexUnit"/>
<noun xmi:id="nc28" name="BooleanType"/>
<noun xmi:id="nc21" name="Signature"/>
<noun xmi:id="nc8" name="CharType"/>

…
</vocabulary>

8.5.1.2 VerbConcept Class

VerbConcept class represents a verb concept - concept that specializes the concept ‘state of affairs’ and that is the
meaning of a verb phrase that involves one or more verb concept roles. Each instance of a verb concept is a state
of affairs. For each instance, each role of the verb concept is one point of involvement of something in that state
of affairs. A verb concept role is played by a thing in the domain of discourse - the world of interest. A verb
concept is 'bound' by specifying the thing(s) that play the verb concept role. Linguistically those things can be
specified by a quantified noun phrase or by an individual noun concept or by a pronoun that refers to a specific
thing [SBVR].

An integral part of a verb concept is one or more verb concept roles. A verb concept role is a role that specifically
characterizes its instances by their involvement in an actuality that is an instance of a given verb concept. A verb
concept role is fundamentally understood as a point of involvement in actualities that correspond to a verb
concept. Its incorporated characteristics come from the verb concept - what the verb concept requires of instances
of the role [SBVR].

The SFPM takes a simplified approach to representing the roles of a verb concept as the words of the name of the
concept starting with an uppercase letter. The corresponding RoleBinding element refers to the name of the role (see
section 8.4.3.1). This convention makes the description of the SFP content less verbose (in comparison to a more
complete representation based on SBVR).

Superclass

VerbForm, VocabularyElement

Attributes

name:String[1] Name of the verb concept

102 Software Fault Pattern Metamodel (SFPM), v1.0

description: String[1] Informal description of the verb concept

Meaning

Consider KDM verb “ActionElement is ptrselect”. The VerbFormWithRoles includes a single role “ActionElement”.
The extent of this verb is zero or more systems that have code such that when the code its represented as the set of KDM
facts (referred to as a KDM representation), such set contains at least one fact as follows (showing KDM XMI fragment
for PtrSelect):
<codeElement xmi:id="id.92" xmi:type="action:ActionElement" name="b2.9"

kind="PtrSelect">
<actionRelation xmi:id="id.93" xmi:type="action:Addresses"

to="id.49" from="id.92"/>
<actionRelation xmi:id="id.94" xmi:type="action:Reads"

to="id.104" from="id.92"/>
<actionRelation xmi:id="id.95" xmi:type="action:Writes"

to="id.98" from="id.92"/>
</codeElement>
In this fragment, the role ActionElement matches the xmi:id “id.92”, which is the xmi:id of the ActionElement. According
to KDM constraints, the same xmi:id is the “from” property of the 3 “actionRelation” elements owned by the
ActionElement. Other xmi:id in this example can be any. Also, the ActionElement may contain other associated KDM
facts, such as the location, etc.

The meaning of the verb is formalized as follows:
“Any KDM representation K such that exists ID, and also exist
AR1, AR2, AR3, and
also exist N, R, W, A, such that K
contains at least one fragment
<codeElement xmi:id=ID xmi:type="action:ActionElement"

name=N kind="PtrSelect">
<actionRelation xmi:id=AR1 xmi:type="action:Addresses" to=A from=ID/>
<actionRelation xmi:id=AR2 xmi:type="action:Reads" to=R from=ID/>
<actionRelation xmi:id=AR3 xmi:type="action:Writes" to=W from=ID/>

</codeElement>
“
This fragment includes 4 KDM “existential facts” and 3 “owns facts”. The references N, R, W and A provide the “context”
of the fragment, into which it is “embedded”. The “location” of the finding is determined by the parameter ID. For
example, this can be the line in the KDM XMI file, or the associated KDM source location fact. The meaning of the verb
is formalized as a Projection.
Usually, KDM fragments take the form of a “segment” of connected ActionElement. A KDM segment is
determined by the two ID of its first and last ActionElement.
Connections between ActionElement in KDM is represented by an actionRelation “Flow”. For example (showing
KDM XMI):
<actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>
These facts may have special meaning when interleaving of the segments needs to be considered. Usually, the
connections between segments is represented by the SFP Dataflow elements. Each Dataflow element is assumed to be a
non-interleaving segment, i.e., the Flow shall match to exactly one KDM fact.

Example 1. SFPM XMI

<vocabulary name="KDM">

<verb xmi:id="vc90" name="KDMEntity has Kind"/>
<verb xmi:id="vc80" name="Class extends Class"/>
<verb xmi:id="vc109" name="ActionElement is ptrselect"/>
<verb xmi:id="vc87" name="Array has Size"/>
<verb xmi:id="vc40" name="MemberUnit is static"/>
<verb xmi:id="vc98" name="ActionElement reads DataElement1 and DataElement2"/>

 Software Fault Pattern Metamodel (SFPM), v1.0 103

<!—body omitted -->
</vocabulary>

Example 2. SFPM XMI
<verb xmi:id="vc66" name="segment Begin End copies Data to Buffer of DataType">

<definition>
<meaning xmi:id="sem915" kind="SetProjection" description="Definition of verb

segment Begin End copies Data to Buffer of DataType" >
<variable xmi:id="var329" range="nc4" name="S1"/>
<variable xmi:id="var330" range="nc4" name="S2"/>
<variable xmi:id="var331" range="nc2" name="Data"/>
<variable xmi:id="var332" range="nc2" name="BP"/>
<variable xmi:id="var333" range="nc1" name="BPT"/>
<operand xmi:id="sem916" identificator="" kind="ExistentialQuantification"

description="">
<variable xmi:id="var334" range="nc7" name="ArgCount"/>
<variable xmi:id="var335" range="nc21" name="Sig"/>
<variable xmi:id="var336" range="nc13" name="Api">

<restriction xmi:id="sem917" verb="vc67" identificator=""
kind="AtomicFormulation" description="">

<binding rolename="ControlElement" target="var336"/>
<binding rolename="Signature" target="var335"/>
<binding rolename="ArgCount" target="var334"/>

</restriction>
</variable>
<operand xmi:id="sem918" identificator="" kind="Conjunction"

description="">
<operand xmi:id="sem919" verb="vc68" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Par1" target="var332"/>
<binding rolename="Par2" target="var331"/>

</operand>
<operand xmi:id="sem920" verb="vc69" identificator=""

kind="AtomicFormulation" description="">
<binding rolename="Begin" target="var329"/>
<binding rolename="End" target="var330"/>
<binding rolename="ControlElement" target="var336"/>
<binding rolename="Signature" target="var335"/>
<binding rolename="ArgCount" target="var334"/>
<binding rolename="DataElement" target="var332"/>
<binding rolename="DataType" target="var333"/>

</operand>
</operand>

</operand>
</meaning>

</definition>
</verb>

Example 3. Readable SFP language

Verb segment Begin End copies Data to Buffer of DataType [KDM Patterns]

Var S1 : ActionElement [KDM]
Var S2 : ActionElement [KDM]
Var Data : DataElement [KDM]

104 Software Fault Pattern Metamodel (SFPM), v1.0

Var BP: DataElement [KDM]
Var BPT : DataType [KDM]
Clause

Var ArgCount: IntegerValue [SBVR]
Var Sig: Signature [KDM]
Var Api: ControlElement [KDM] such that

[ControlElement of Signature with ArgCount copies data
:Platform APIs] Api, Sig, ArgCount

where
[two actual parameters Par1 Par2 :KDM] BP, Data
[segment Begin End calls ControlElement of Signature with

ArgCount with DataElement of DataType :KDM Patterns]
S1, S2, Api, Sig, ArgCount, BP, BPT

End Verb

8.5.1.3 IndividualConcept Class
IndividualConcept class represents an individual noun concept - noun concept that corresponds to at most one
thing in all possible worlds [ISO-1087-1, SBVR]. An example of an individual concept is an integer number “1”.

Superclass

BindableTarget, VocabularyElement

Attributes

name:String[1] Name of the individual concept

description: String[1] Informal description of the individual concept

Example 1. SFPM XMI
<vocabulary name="SBVR">

<noun xmi:id="nc7" name="IntegerValue"/>
<noun xmi:id="nc26" name="String"/>
<verb xmi:id="vc4" name="Thing1 is Thing2"/>
<individual xmi:id="ic76" name="0xabad1dea"/>
<individual xmi:id="ic15" name="10"/>
<individual xmi:id="ic17" name="a"/>
<individual xmi:id="ic137" name="false"/>
<individual xmi:id="ic158" name="1.1"/>
<individual xmi:id="ic80" name="null"/>
<individual xmi:id="ic21" name="0"/>
<individual xmi:id="ic68" name="1"/>
<individual xmi:id="ic131" name="2"/>
<individual xmi:id="ic64" name="3"/>
<individual xmi:id="ic96" name="5"/>

</vocabulary>

 Software Fault Pattern Metamodel (SFPM), v1.0 105

8.5.1.4 Vocabulary Class
Vocabulary class represents a single reference vocabulary, including its version and authority. A vocabulary is a
container for a collection of noun and verb concepts. The alignment with the ISO/OMG SBVR standard facilitates
the use of externally defined ontologies, vocabularies, and models for the purposes of defining the content of the
SFP Catalog.

Superclass

Attributes

name:String[1] Name of the referenced vocabulary

version: String[1] Version of the vocabulary

description:String[1] Description of the vocabulary

url:String[1] url to the official location of the vocabulary

owner:String[1] Owner of the vocabulary

Example

See 8.5.1.1-3

8.5.1.5 VocabularyElement Class (abstract)
VocabularyElement class is a common parent for the elements owned by a vocabulary. This includes noun
concepts, verb concepts and individual concepts.

Superclass

SemanticElement

106 Software Fault Pattern Metamodel (SFPM), v1.0

This page intentionally left blank.

 Software Fault Pattern Metamodel (SFPM), v1.0 107

9 Appendix A (Informative)
This section defines a simple textual language that is can be used to represent SFP context in a readable form. This
language is referred to as “readable SFP language” throughout this specification. The formal grammar of the
readable SFP language is given in this specification using a simple Extended Backus- Naur Form (EBNF) notation,
used in the W3C specification of XML [xml].

The SFPM XMI representation can be automatically generated from this language. Examples in section 8 are given
both in SFPM XMI and in this readable SFP language.

SFPCatalog ::= `Catalog` Version CatalogClause*

PrimaryCluster+ CommonSection+

`End` ̀ Catalog`

CatalogClause ::=

‘description’ ‘=’ Text |

‘owner’ ‘=’ Text

PrimaryCluster ::= ‘Cluster’ Name

SecondaryCluster+ (CWESection | ClusterSection)+

`End’ ‘Cluster’

SecondaryCluster ::= ‘Secondary’ Name

SFP+

(CWESection | ClusterSection)+

‘End’ ‘Secondary’

CWESection ::= ‘CWEs’ CWE+ ‘End’ ‘CWEs’

CWE ::= ‘CWE’ CWEID Name CWEClause+ Note* ‘End’ ‘CWE’

CWEClause ::= ‘description’ ‘=’ Text |

‘details’ ‘=’ Text |

‘status’ ‘=’ Text |

‘url’ ‘=’ Text |

‘discernible’ ‘=’ DiscernibilityLevel |

‘Mapping:’ VariantId+

DiscernibilityLevel ::= ‘Very High’ | ‘High’ | “Medium’ | ‘Low’ | ‘Very Low’

Note ::= ‘Note:’ Text

108 Software Fault Pattern Metamodel (SFPM), v1.0

SFP ::= ‘SFP’ SFPID Name Description

RootCauses Injuries

(SFPSection | ClusterSection | CWESection)+

‘End’ ‘SFP’

RootCauses ::= ‘Rootcauses’ Name+ ‘End’ ‘RootCauses’

Injuries ::= ‘Injuries’ Name+ ‘End’ ‘Injuries’

ClusterSection ::= ‘Characteristics’ ReferencedContextElement*

‘End’ ‘Characteristics’

ReferencedContextElement ::= ‘Ref’ ContextElementKind Name

ContextElementKind ::= ‘Resource’ | ‘Operation’ | ‘DataType’ | ‘DataElement’ |
‘API’ | ‘Decision’

SFPSection ::= ParameterSection | VariationSection | ElementSection |
CanonicalSection

ParameterSection ::= ‘Parameters’ Parameter+ ‘End’ ‘Parameters’

Parameter ::= ‘Parameter’ Name Variant+ ‘End’ ‘Parameter’

Variant ::= ‘Variant’ VariantId Name ‘->’ ‘Property’ Name InjuryMapping

InjuryMapping ::= ‘Injuries:’ Name*

VariationSection ::= ‘Variations’ Variation+ ‘End’ ‘Variations’

Variation ::= VariantRef Variation* |

Name NL Variation+ LF

VariantRef ::= Name ‘->’ VariantId LF

ElementSection ::= ‘Elements’ DataflowElement+ ‘End’ ‘Elements’

DataflowElement ::= PrimaryDataStatement | SourceStatement | SinkStatement |

Condition

PrimaryDataStatement ::= ‘PrimaryDataStatement’ Definition

‘End’ ‘PrimaryDataStatement’

SourceStatement ::= ‘SourceStatement’ Definition

‘End’ ‘’SourceStatement’

SinkStatement ::= ‘SinkStatement’ Definition

‘End’ SinkStatement’

 Software Fault Pattern Metamodel (SFPM), v1.0 109

Condition ::= ‘PrimaryDataStatement’ Definition

‘End’ ‘Condition’

CanonicalSection ::= ‘Canonicals’ CanonicalElement* ‘End’ ‘Canonicals’

CanonicalElement ::= CanonicalForm | PrimaryDataSegment | SourceSegment |

SinkSegment | MitigatedSourceSegment | MitigatedSinkSegment

PrimaryDataSegment ::= ‘PrimaryDataSegment’ Definition

‘End’ ‘PrimaryDataSegment’

SourceSegment ::= ‘SourceSegment’ Definition

‘End’ ‘’SourceSegment’

SinkSegment ::= ‘SinkSegment’ Definition

‘End’ SinkSegment’

MitigatedSourceSegment ::= ‘MitigatedSourceSegment’ Definition

‘End’ ‘MitigatedSourceSegment’

MitigatedSinkSegment ::= ‘MitigatedSinkSegment’ Definition

‘End’ ‘MitigatedSinkSegment’

CommonSection ::= RootCauseSection | InjurySection | PropertySection |

IndicatorSection | ContextSection | VocabularySection

RootCauseSection ::= ‘RootCauses’ Name+ ‘End’ ‘RootCauses’

InjurySection ::= ‘Injuries’ Name+ ‘End’ ‘Injuries’

PropertySection ::= ‘Properties’ Property+ ‘End’ ‘Properties’

Property ::= ‘Property’ Name Definition ‘End’ ‘Property’

IndicatorSection ::= ‘Indicators’ Indicator+ ‘End’ ‘Indicators’

Indicator ::= ‘Indicator’ Name Definition ‘End’ ‘Indicator’

ContextSection ::= ‘SharedContextElements’

ContextElement*

‘End’ ‘SharedContextElements’

ContextElement ::= ContextElementKind Name Definition

110 Software Fault Pattern Metamodel (SFPM), v1.0

VocabularySection ::= ‘Vocabularies’

(Vocabulary | Definitions)*

‘End’ ‘Vocabularies’

Vocabulary ::= ‘Vocabulary’ VocabularyName VocabularyClause* ‘End’ ‘Vocabulary’

VocabularyClause ::= ‘description’ ‘=’ Text |

‘version’ ‘=’ Text |

‘url’ ‘=’ Text |

‘owner’ ‘=’ Text

Definitions ::= ‘Definitions’ VocabularyName VocabularyElement* ‘

End’ ‘Definitions’

VocabularyElement ::= NounConcept | VerbConcept | IndividualConcept

NounConcept ::= ‘Noun’ Name Definition ‘End’ ‘Noun’

VerbConcept ::= ‘Verb’ VerbFormWithRoles Definition ‘End’ ‘Verb’

IndividualConcept ::= ‘Individual’ Name Definition ‘End’ ‘Individual’

Definition ::= Verbalization Meaning

Verbalization ::= Text

Meaning ::= Projection

Projection ::= Variable* LogicalFormulation

Variable ::= ‘Var’ Name ‘:’ NounRef (‘such’ ‘that’ LogicalFormulation)?

NounRef ::= Name ‘[‘ VocabularyName ’]’

LogicalFormulation ::= AtomicFormulation |

Instantiation | LogicalOperation |

Quantification | Objectification | AggregationFormulation |

VerbConceptNominalization | PropositionNominalization

AtomicFormulation ::= VerbRef BindableTarget*

VerbRef ::= ‘[‘ VerbFormWithRoles ‘:’ VocabularyName ‘]’ |

‘[‘ContextElementKind Name ‘]’

BindableTarget ::= VarRef | IndividualRef

VarRef ::= Name

IndividualRef ::= ‘{‘ [#”] Name [#”] ‘:’ VocabularyName ‘}’

VocabularyName ::= Name

 Software Fault Pattern Metamodel (SFPM), v1.0 111

Clause ::= Identificator LogicalFormulation

Identificator ::= Name

LogicalOperation ::= LogicalNegation | LogicalBinaryOperation

LogicalNegation ::= ‘not’ LogicalFormulation

LogicalBinaryOperation ::= Disjunction | Conjunction

Disjunction ::=’Disjunction’ Clause+ ‘End’ ‘Disjunction’

Conjunction ::= Clause+

Quantification ::= UniversalQuantification | ExistentialQuantification |

BoundedQuantification

UniversalQuantification ::= ‘for’ ‘all’ Variable+ ‘where’ LogicalFormulation

ExistentialQuantificaiton ::= Variable+ ‘where’ LogicalFormulation

BoundedQuantification ::= Bound Variable ‘where’ LogicalFormulation

Bound ::= AtLeastNBound | AtMostNBound | ExactlyNBound | ExactlyOneBound |

NumericRangeBound

AtLeastNBound ::= ‘at’ ‘least’ Number

AtMostNBound ::= ‘at’ ‘most’ Number

ExactlyNBound ::= ‘exactly’ Number

ExactlyOneBound ::= ‘exactly’ ‘one’

NumericRangeBound ::= ‘exists’ ‘range’ MinNumber MaxNumber

MinNumber ::= Number

MaxNumber ::= Number

Instantiation ::= `instance of’ NounRef BindableTarget

Objectification ::= BindableTarget ‘objectifying’ LogicalFormulation

AggregationFormulation ::= BindableTarget ‘representing’ ‘set’ ‘of’

Projection

VerbConceptNominalization ::= BindableTarget ‘representing’ Projection

PropositionNominalization ::= BindableTarget ‘representing’ LogicalFormulation

NCName ::= [http://www.w3.org/TR/xml-names/#NT-NCName]

Name ::= NCNAME | (NCNAME (#x20)* NCNAME)*

http://www.w3.org/TR/xml-names/#NT-NCName
http://www.w3.org/TR/xml-names/#NT-NCName

112 Software Fault Pattern Metamodel (SFPM), v1.0

Text ::= NCNAME | (NCNAME S NCNAME)*

Number ::= [0-9]*

VerbFormWithRoles ::= Name

VariantId ::= [0-9.]+

CWEID ::= [0-9]+ [a-z]*

SFPID ::= [0-9]+

URL ::= [^#x5D:/?#]+ '://' [^#x5D#]+ ('#' NCName)?

Whitespace

::= S | Comment

S ::= #x9 | #xA | #xD | #x20

Comment ::= ('#' | '#') ([^#xA #xD])* [#xA #xD]

	Preface
	About the Object Management Group
	OMG Specifications
	Issues

	1 Scope
	1.1 SFP and CWE
	1.2 SFP Applications
	1.3 SFP Apparatus
	1.3.1 Semantics of Dataflows
	1.3.2 Formalization of dataflows in SFP
	1.3.3 SFP-enabled capabilities
	1.3.4 The role of the SFP Metamodel

	2 Conformance
	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to Read this Specification
	6.2 Acknowledgements

	7 SFP Exchange Format
	7.1 Objectives

	8 Software Fault Pattern Metamodel
	8.1 Core Elements of the SFP Catalog
	8.1.1 SFP Catalog Diagram
	8.1.1.1 SFPCatalog Class
	Superclass Attributes
	Associations

	Example 1. SFPM XMI
	Example 2 Readable SFP language
	8.1.1.2 Cluster Class
	Superclass Attributes
	Associations
	Constraints
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.1.1.3 SFP Class
	Superclass Attributes
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.1.1.4 CWE Class
	Example 2. Readable SFP language

	8.1.1.5 Note Class
	Superclass Attributes
	Example

	8.1.1.6 CWESection Class
	Superclass
	Associations
	Example

	8.1.1.7 DiscernibilityLevel Enumeration
	Literals
	Example

	8.1.1.8 Status Enumeration
	Literals
	Example

	8.1.2 SFP Variations Class Diagram
	8.1.2.1 Parameter
	Superclass Attributes
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language
	8.1.2.2 Variant Class
	Superclass Attributes
	Associations

	Example 1. SFPM XMI
	Example 2. Readable SFP language
	8.1.2.3 Variation Class
	Superclass Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language
	8.1.2.4 Property Class
	8.1.3 SFP Causal Context Class Diagram
	8.1.3.1 RootCause Class
	Superclass Attributes
	Example 1. SFPM XMI
	Example 2. Readable SFP language
	8.1.3.2 Injury Class
	Superclass Attributes

	Example 1. SFPM XMI
	Example 1. Readable SFP language
	8.1.4 SFP Variant Mappings Class Diagram
	8.1.4.1 InjuryMapping Class
	Superclass Associations
	Constraints
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.1.4.2 CWEMapping Class
	Superclass Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2 Sections of the SFP Catalog
	8.2.1 All Sections Class Diagram
	8.2.1.1 Section Class (abstract)
	Superclass Attributes
	8.2.1.2 CommonSection Class (abstract)
	Superclass

	Constraints
	8.2.1.3 ClusterSection Class (abstract)
	Superclass

	Constraints
	8.2.1.4 SFPSection Class (abstract)
	Superclass

	Constraints
	8.2.2 SFP Sections Class Diagram
	8.2.2.1 InjuryMappingSection Class
	Superclass
	Associations

	Constraints
	Example
	8.2.2.2 CWEMappingSection Class
	Superclass
	Associations

	Constraints
	Example

	8.2.2.3 ParameterSection Class
	Superclass
	Associations
	Example

	8.2.2.4 VariationSection Class
	Superclass
	Associations
	Example

	8.2.2.5 ElementSection Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.2.6 CanonicalSection Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.2.7 SFP Class (additional properties)
	Superclass Associations
	Example

	8.2.3 Common Sections Class Diagram
	8.2.3.1 RootCauseSection Class
	Superclass
	Associations
	Example

	8.2.3.2 InjurySection Class
	Superclass
	Associations
	Example

	8.2.3.3 IndicatorSection Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.3.4 PropertySection Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.3.5 ContextSection Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.3.6 VocabularySection Class
	Superclass
	Associations

	8.2.3.7 SFPCatalog Class (additional properties)
	Superclass
	Example

	8.2.4 Characteristic Sections Class Diagram
	8.2.4.1 CharacteristicSection Class
	CharacteristicSection class is a container for zero or more ReferencedContextElement. Local ReferencedContextElement are owned by CharacteristicSection of SFP or one of the Cluster elements that owns the SFP directly or through another Cluster. The se...
	Superclass
	Associations
	Constraints
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.2.4.2 Cluster Class (additional properties)
	Superclass Associations
	Example

	8.2.4.3 SFP Class (additional properties)
	Superclass Associations
	Example

	8.3 SFP Defined Elements
	8.3.1 SFP Defined Elements Class Diagram
	8.3.1.1 Property Class
	Superclass
	Attributes
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.1.2 Indicator Class
	Superclass
	Attributes
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.1.3 ReferencedContextElement Class
	Superclass
	Attributes
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.2 SFP Dataflow Elements Class Diagram
	8.3.2.1 DataflowElement Class (abstract)
	Superclass

	8.3.2.2 PrimaryDataStatement Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.2.3 SinkStatement Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.2.4 SourceStatement Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.2.5 Condition Class
	Superclass

	8.3.3 SFP Canonical Elements Class Diagram
	8.3.3.1 CanonicalElement Class (abstract)
	Superclass

	8.3.3.2 CanonicalForm Class
	Superclass

	Example 1. SFPM XMI
	Example 2. Readable SFP language
	8.3.3.3 CanonicalSegment Class (abstract)
	Superclass

	8.3.3.4 SinkSegment Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.3.5 SourceSegment Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.3.6 PrimaryDataSegment Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.3.7 MitigatedSinkSegment Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.3.8 MitigatedSourceSegment Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.4 SFP Context Elements Class Diagram
	8.3.4.1 ContextElement Class (abstract)
	Superclass
	Attributes

	8.3.4.2 Resource Class
	Superclass
	Attributes
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.4.3 Operation Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.4.4 DataType Class
	Superclass
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.4.5 DataElement Class
	Superclass
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.3.4.6 API Class
	Superclass

	8.3.4.7 Decision Class
	Superclass
	Associations

	8.4 Semantic Formalization Apparatus
	8.4.1 Semantic Elements Class Diagram
	8.4.1.1 SemanticElement Class (abstract)
	Superclass Associations

	8.4.1.2 SemanticFragment Class
	Superclass Associations

	8.4.1.3 Verbalization Class
	Superclass Attributes

	8.4.2 Statements Class Diagram
	8.4.2.1 SemanticFormulation Class
	Superclass Attributes
	Associations
	Constraints
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.4.2.2 SemanticFormulationKind Enumeration
	Literals

	8.4.2.3 ClauseReference Class (abstract)
	ClauseReference class represents the proposition based on a formally defined “clause” instead of a “VerbConcept” from one of the referenced vocabularies. A “clause” is a proposition that is part of one of the formally defined elements of the SFP Catal...

	8.4.2.4 VerbForm Class (abstract)
	8.4.2.5 Variable Class
	Superclass
	Associations
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language

	8.4.3 Variable Bindings Class Diagram
	8.4.3.1 RoleBinding Class
	Superclass Attributes
	Associations
	Example 1. SFPM XMI
	Example 2. Readable SFP language
	Example 3. SFPM XMI
	Example 4. Readable SFP language
	Example 5. SFPM XMI
	Example 6. Readable SFP language

	8.4.3.2 BindableTarget Class (abstract)
	Superclass Example

	8.5 Referenced Vocabularies
	8.5.1 Vocabularies Class Diagram
	8.5.1.1 NounConcept Class
	Superclass
	Attributes
	Example 1. SFPM XMI

	8.5.1.2 VerbConcept Class
	Superclass
	Attributes
	Example 1. SFPM XMI
	Example 2. SFPM XMI
	Example 3. Readable SFP language

	8.5.1.3 IndividualConcept Class
	Superclass
	Attributes
	Example 1. SFPM XMI

	8.5.1.4 Vocabulary Class
	Superclass Attributes

	8.5.1.5 VocabularyElement Class (abstract)
	Superclass

	9 Appendix A (Informative)

