Security Service Specification

Version1.7
March 2001

Copyright 1995 AT&T Global Information Solutions Company
Copyright 1995 Digital Equipment Corporation

Copyright 1995 Expersoft Corporation

Copyright 1995 Groupe Bull

Copyright 1995 Hewlett-Packard Company

Copyright 1995 IBM (in collaboration with Taligent, Inc.)
Copyright 1995 International Computers Limited

Copyright 2000 Object Management Group, Inc.

Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited

Copyright 1995 Novell, Inc.

Copyright 1995 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1997 SunSoft, Inc.

Copyright 1995 Tandem Computer Inc. (in collaboration with Odyssey Research Assoc., Inc.)
Copyright 1995 Tivoli Systems, Inc.

Copyright 1997 Visigenic Software, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ve
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyrigh
the included material of any such copyright holder by reason of having used the specification set forth herein or having con
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for prote
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-

MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE

OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-

LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable f
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including Idss of profi
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Obje
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize de\
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to inc
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--grapt
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in sut
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB,
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a
trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface Vil
1. Service Description i 1-1
1.1 Introductionto Security e 1-2
1.1.1 Why Security? 1-2
1.1.2 Whatls Security? 1-2
1.1.3 Threats in a Distributed Object System 1-3
1.1.4 Summary of Key Security Features 1-3
115 Goals 1-4
1.2 Introduction to the Specification 1-8
1.2.1 Normative and Non-normative Material 1-9
1.2.2 CORBA Security and Secure Inteeogbility
Feature Packages 1-10
1.2.3 Feature Packages and Modules. 1-13
2. Interfaces 2-1
2.1 Security Reference Model 2-1
2.1.1 Definition of a Security Reference Model 2-1
2.1.2 Principals and Their Security Attributes. 2-3
2.1.3 Secure Object Invocations 2-4
2.1.4 Access Control Model 2-7
215 Auditing 2-11
216 Delegation 2-13
2.1.7 Non-repudiation 2-18
21.8 Domains......... ... 2-21
2.1.9 Security Management and Administration 2-27
2.1.10 Implementing the Model. 2-28

Security Service, v1.7 March 2001 i

Contents

2.2 Security Architecture 2-28
2.2.1 Different Users’ View of the Security Model .. 2-29
2.2.2 StructuralModel. L. 2-32
2.2.3 Security Technology. 2-38
2.2.4 Basic Protection and Communications. 2-39
2.25 Security ObjectModels 2-41
2.3 Application Developer’'s Interfaces 2-71
2.3.1 Introduction 2-71
2.3.2 Finding Security Features. 2-73
2.3.3 Authentication of Principals............... 2-73
2.3.4 The Credentials Object. 2-77
2.3.5 The ReceivedCredentials Object. 2-84
2.3.6 The TargetCredentials Object. 2-85
2.3.7 Operations on Object Reference............ 2-86
2.3.8 Operations on Security Manager 2-93
2.3.9 Security Operationson Current 2-97
2.3.10 Security Audit 2-99
2.3.11 Administering Security Policy 2-102
2.3.12 AccessControl......... 2-102
2.3.13 Delegation Facilities. 2-105
2.3.14 Non-repudiation 2-106
2.4 Administrator's Interfaces 2-115
241 CONCePtS. . vt 2-116
2.4.2 Domain Management.................... 2-117
2.4.3 Security Policies Introduction 2-117
244 AccessPolicies........... 2-118
245 AuditPolicies. L. 2-129
2.4.6 Secure Invocation and Delegation Policies. . .. 2-134
2.4.7 Non-repudiation Policy Management. 2-139
2.5 Implementor’'s Security Interfaces 2-142
2.5.1 Security Interceptors. 2-142
2.5.2 Implementation-Level Security
Object Interfaces 2-148
2.5.3 Replaceable Security Services 2-171
3. Protocols and Mechanisms 3-1
3.1 Security Interoperability Protocols. 3-1
3.1.1 Introduction 3-1
3.1.2 Interoperability Model 3-2
3.1.3 Protocol Enhancements 3-7

ii Security Service, v1.7

March 2001

Contents

3.1.4 CORBA Interoperable Object Reference
with Security 3-7
3.1.5 Common Secure Interoperability Levels 3-13
3.1.6 Key Distribution Types. 3-13
3.1.7 Security Mechanisms Hosted on SECIOP 3-14
3.1.8 Security Mechanisms Hosted Directly on IIOP 3-15
3.1.9 Choices of Protocols, Cryptographic Profiles
and Key Technologies. 3-15
3.1.10 Common Secure Interoperability Requirements 3-16
3.1.11 Relation to CORBA Security Facilities
andlInterfaces. 3-21
3.1.12 Security Functionality 3-23
3.1.13 Model for Use and Contents of Credentials . .. 3-26
3.1.14 CORBAInterfaces 3-30
3.1.15 Support for CORBA Security Facilities
and Extensibility.o L. 3-32
3.1.16 Security Replacedity for ORB
Security Implementors 3-33
3.2 Secure Inter-ORB Protocol (SECIOP) 3-34
3.2.1 Architectural Assumptions. 3-35
3.2.2 SECIOP Sequencing Layer. 3-36
3.2.3 SECIOP Context Management Layer........ 3-42
3.2.4 SECIOP Context Management Finite State
Machine Tables. 3-48
3.3 The SECIOP Hosted CSl Protocols 3-55
331 IOR. .. 3-55
3.32 MechanismTags...........covviiunno... 3-56
3.3.3 AssociationOptions 3-57
3.3.4 Cryptographic Profiles 3-57
3.3.5 SecurityName 3-59
3.3.6 Security Administration Domains 3-59
3.3.7 Mapping of Common Elements to the
SECIOP Protocol 3-59
3.3.8 CSlProtocols 3-61
3.4 SPKMProtocol 3-63
3.4.1 Cryptographic Profiles 3-63
3.42 IORENncoding............. ... 3-64
3.4.3 Using SPKM for SECIOP 3-64
3.5 GSS Kerberos Protocol 3-65
3.5.1 Cryptographic Profiles 3-66
3.5.2 Mandatory and Optional Cryptographic Profiles 3-66

Security Service, v1.7

March 2001 iii

Contents

3.5.3 IORENncoding............viiiuiiin... 3-66
3.5.4 SECIOPTokens 3-67
3.6 CSI-ECMAProtocol 3-68
3.6.1 ConCeptS. . ..ot 3-69
3.6.2 Security Attributes L 3-69
3.6.3 Target Access Enforcement Function. 3-70
3.6.4 Basic and DialogueKeys 3-70
3.6.5 Key Distribution Schemes 3-71
3.6.6 Cryptographic Algorithms and Profiles 3-72
3.6.7 PAC Protection and Delegation - Outline 3-74
3.6.8 PPIDMethod 3-74
3.6.9 PV/CV Delegation Method. 3-75
3.6.10 Mechanism ldentifiers and IOR Encoding 3-75
3.6.11 SecurityNames..............c.cciviun... 3-76
3.6.12 SECIOP Tokens When Using CSI-ECMA 3-77
3.6.13 Initial Context Token 3-78
3.6.14 TargetResultToken 3-81
3.6.15 ErrorToken i, 3-82
3.6.16 PerMessageTokens..................... 3-83
3.6.17 ContextDeleteToken..................... 3-85
3.6.18 Security Attributes oL, 3-86
3.6.19 Privilege and Miscellaneous Attribute
Definitions 3-88
3.6.20 Qualifier Attributes. 3-89
3.6.21 TargetNames 3-89
3.6.22 PACFormat 3-89
3.6.23 Common Contentsfields 3-90
3.6.24 Specific Certificate Contents for PACs. 3-91
3.6.25 CheckValue 3-95
3.6.26 Basic Key Distribution. 3-97
3.6.27 Keying Information Syntax 3-97
3.6.28 Summary of Key Distribution Schemes 3-98
3.6.29 CSI-ECMA Secret Key Mechanism......... 3-99
3.6.30 CSI-ECMA Hybrid Mechanism............ 3-100
3.6.31 CSI-ECMA Public Mechanism. 3-105
3.6.32 Dialogue Key Block..................... 3-106
3.7 Integrating SSL with CORBA Security 3-108
3.7.1 Introduction 3-108
3.7.2 Cryptographic Profiles 3-108
3.73 IORENncoding........... ..., 3-108
iv Security Service, v1.7 March 2001

Contents

3.7.4 RelationtoSECIOP 3-109
3.8 DCE-CIOP with Security. 3-109
3.8.1 Goals of Secure DCE-CIOP 3-109
3.8.2 Secure DCE-CIOP Overview 3-109
3.8.3 DCE RPC Security Services. 3-114
Appendix A - References. A-1
Appendix B - Consolidated OMG IDL B-1
Appendix C - Relationship to OtherServices. C-1
Appendix D - Conformance Details and Statement D-1
Appendix E - Guidelines for a Trustworthy System. E-1
Appendix F - Facilities Not in This Specification F-1
Appendix G - Interoperability Guidelines. G-1
Glossary 1

Security Service, v1.7 March 2001 v

Contents

Vi

Security Service, v1.7

March 2001

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Security Service, V1.7 March 2001 Vii

OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the follow-
ing publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed object
systems. The specification includes the formal definition of a common Object Analysis
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that sup-
ports model interchange between OA&D tools and metadata repositories. The UML pro-
vides the foundation for specifying and sharing CORBA-based distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces

that can be used to define and manipulate a set of interoperable metamodels and their cor
responding models. The MOF provides the infrastructure for implementing CORBA-
based design and reuse repositories. The MOF specifies precise mapping rules that enabl
the CORBA interfaces for metamodels to be automatically generated, thus encouraging
consistency in manipulating metadata in all phases of the distributed application develop-
ment cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including both
model and metamodel information. The specification supports the encoding of metadata
consisting of both complete models and model fragments, as well as tool-specific exten-
sion metadata. XMI has optional support for interchange of metadata in differential form,
and for metadata interchange with tools that have incomplete understanding of the meta-
data.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes the

conceptual models upon which OMG standards are based. It defines the umbrella architec
ture for the OMG standards. It also provides information about the policies and procedures
of OMG, such as how standards are proposed, evaluated, and accepted.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA objects.
The IDL definition is the contract between the implementor of an object and the client.

IDL is a strongly typed declarative language that is programming language-independent.
Language mappings enable objects to be implemented and sent requests in the developer’
programming language of choice in a style that is natural to that language. The OMG has
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Java,
Java to IDL, Lisp, and Smalltalk.

viii Security Service, V1.7 March 2001

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a uni-
versal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Compliant
objects can be combined in many different ways and put to many different uses in applica-
tions. They can be used to construct higher level facilities and object frameworks that can
interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include Col-
lection, Concurrency, Event, Externalization, Interoperable Naming, Licensing, Life
Cycle, Notification, Persistent Object, Property, Query, Relationship, Security, Time,
Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable to
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilities
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Domain
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telecoms,
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhereCtORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to iemmon Object Request Broker: Architecture
and Specificationinterworking Architecturehapter.

Security Service V1.7 March 2001 ix

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only whe
representatives of the OMG membership accept them as such by vote. (The policies and
procedures of the OMG are described in detail ifQbgect Management Architecture

Guide)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.fiorobtain print-on-demand
books in the documentation set or other OMG publications, contact the Object Manage-
ment Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:
 Alcatel

FUJITSU LIMITED

 International Business Machines Corporation

IONA Technologies, Plc.

NEC Corporation

Nippon Telegraph and Telephone (NTT) Corporation

X Security Service, V1.7 March 2001

Service Description 1

This chapter incorporates material that was adopted in three separate specifications
related to security:

® CORBA Security Rev 1.1 (formal/97-12-22)

® Common Secure Interoperability 1.0 (orbos/96-06-20)

® CORBAsecurity/SSL Interoperability (orbos/97-02-04)

All these documents are therefore superseded by this chapter.

Associated with this document, are documents ptc/98-01-03, and ptc/98-01-04, which
contain associated changes to the CORBA Core that have been recommended jointly
by the Security RTF and the Core RTF. Also associated with this document are the
outputs of the C++ and Java language mapping RTFs that had co-terminus delivery
dates with the Security 1.2 RTF.

Contents

This chapter contains the following topics, separated into sections.

Topic Page
“Introduction to Security” 1-2
“Introduction to the Specification” 1-8

Security Service, v1.7 March 2001 1-1

1.1 Introduction to Security

1.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support their
business activities. Compromise of these systems either in terms of loss or inaccuracy
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system, such
as users accidentally gaining unauthorized access to information. Commercial as well
as government systems may also be subject to malicious attacks (for example, to gain
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more traditional
systems, as there are more places where the system can be attacked. Therefore, securi
is needed in CORBA systems, which takes account of their inherent distributed nature.

1.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

® Confidentiality - Information is disclosed only to users authorized to access it.

® |Integrity - Information is modified only by users who have the right to do so, and
only in authorized ways. It is transferred only between intended users and in
intended ways.

® Accountability - Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action cannot
be denied.

® Availability - Use of the system cannot be maliciously denied to authorized users.

Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefore,
this specification does not address all availability requirements.

Security is enforced using security functionality as described below. In addition, there
are constraints on how the system is constructed. For example, to ensure adequate
separation of objects so that they don't interfere with each other and separation of
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some that are
not directly security related. Also, specialist components, such as an authentication
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The amour
of protection the enterprise is prepared to pay for depends on the value of the assets,
and the threats that need to be countered. The security policy needed to protect agains

Security Service, v1.7 March 2001

1

these threats may also depend on the environment and how vulnerable the assets are i
this environment. This document specifies a security architecture which can support a
variety of security policies to meet different needs.

1.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provide
protection against the following:

® An authorized user of the system gaining access to information that should be
hidden from him.

® A user masquerading as someone else, and so obtaining access to whatever that use
is authorized to do, so that actions are being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act on
his behalf. This adds the threat of rights being delegated too widely, again causing a
threat of unauthorized access.

® Security controls being bypassed.
® Eavesdropping on a communication line, so gaining access to confidential data.

® Tampering with communication between objects - modifying, inserting, and
deleting items.

® Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementation
being constructed in the right way according to assurance criteria (as specified in the
"Guidelines for a Trustworthy System" appendix) and using security mechanisms with
the right characteristics. Conformance to the CORBA security interfaces is not enough
to ensure that this protection is provided, just as conformance to the transactional
interfaces (for example) is not enough to guarantee transactional semantics.

This specification does not attempt to counter all threats to a distributed system. For
example, it does not include facilities to counter breaches caused by analyzing the
traffic between machines.

More information about security threats and countermeasures is given in the
"Guidelines for a Trustworthy System" appendix.

1.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

® |dentification andauthentication of principals (human users and objects that need
to operate under their own rights) to verify they are who they claim to be.

® Authorization andaccesscontrol - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object (stating which principals, or principals with which attributes) can access it.

Security Service, v1.7 Introduction to Security March 2001 1-3

1-4

Securityauditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user correctly, even after a chain of calls through many
objects.

Security of communicatiorbetween objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may require authentication of clients to targets and authentication of
targets to clients. It also requires integrity protection and (optionally) confidentiality
protection of messages in transit between objects.

Non-repudiationprovides irrefutable evidence of actions such as proof of origin of
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not visible
outside the Security services. No direct use of cryptography by application objects is
proposed in this specification, nor are any cryptographic interfaces defined.

1.1.5 Goals

The security architecture and facilities described in this document were designed with
the following goals in mind. Not all implementations conforming to this specification
will meet all these goals.

1.1.5.1 Simplicity

The model should be simple to understand and administer. This means it should have
few concepts and few objects.

1.1.5.2 Consistency

It should be possible to provide consistent security across the distributed object system
and associated legacy systems. This includes:

Support of consistent policies for determining who should be able to access what
sort of information within a security domain that includes heterogeneous systems.

Fitting with existing permission mechanisms.

Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecure.

Fitting with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Security Service, v1.7 March 2001

1.1.5.3 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:

® Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs.

®* Have a number of security domains, which enforce different security policy details
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

® Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

1.1.5.4 Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.

1.1.5.5 Usability for Administrators

The model should be simple to understand and administer and should provide a single
system image. It should not be necessary for an administrator to specify controls for
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

1.1.5.6 Usability for Implementors

Application developers must not need to be aware of security for their applications to
be protected. However, a developer who understands security should be able to protect
application specific actions.

1.1.5.7 Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of security
features should be allowed. An enterprise should only pay for the level of protection it
requires, reducing the level (and therefore costs) for less sensitive information or when
the system is less vulnerable to threats. The enterprise should be able to balance the
costs of providing security, including the resources required to implement, administer
and run the system, against the perceived potential losses incurred as the result of
security breaches.

Particular types of flexibility required include:

Security Service, v1.7 Introduction to Security March 2001 1-5

® Choice of access control policyThe interfaces defined here allows for a choice of
mechanisms, ACLs using a range of privilege attributes such as identities, roles,
groups, or labels. Details are hidden except from some administrative functions and
security aware applications that want to choose their own mechanisms.

® Choice of audit policy- The event types which are to be audited is configurable.
This makes it possible to control the size of the audit trail, and therefore the
resources required to store and manage it.

® Support forsecurity functionality profilesas defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, is
required.

1.1.5.8 Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for some
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.

It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems. For
example, the system should not require introduction of new cryptosystems, access
control repositories, or user registries. If the system is installed in an environment that
also includes a procedural security regime, the composite system should not require
dual administration of the user or authorization policy information.

1.1.5.9 Application Portability

An application object should not need to be aware of security, so it can be ported to
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services should
hide the particular security mechanisms used (e.g., for authentication). The application
security policy (for example, to control access to its own functions and state) should be
consistent with the system security policy. For example, use should be made of the
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

1.1.5.10 Interoperability

The security architecture should allow interoperability between objects including:

® Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

® |nteroperating between secure systems and those without security.

Security Service, v1.7 March 2001

1

Interoperating between domains of a distributed system where different domains
may support different security policies, for example, different access control attributes.

Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outline,
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementations,
and interoperability between security mechanisms is not expected to be supported.

1.1.5.11 Performance

Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

1.1.5.12 Object Orientation

The specification should be object-oriented:

The security interfaces should be purely object-oriented.

The model should use encapsulation to promote system integrity and to hide the
complexity of security mechanisms under simple interfaces.

The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

1.1.5.13 Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take into
account:

Regulatory requirements The security model must conform to national

government regulations on the use of security mechanisms (i.e., cryptography).
There are several types of controls, for example, controls on what can be exported
and controls on deployment and use such as limitations on encryption for
confidentiality. Details vary from country to country; examples of requirements to
satisfy a number of these are:

¢ Allowing use of different cryptographic algorithms.

« Keeping the amount of information encrypted for confidentiality to a minimum.

« Using identities for auditing which are anonymous, except to the auditor.

Evaluation criteria for assurance The security functionality and architecture must
allow implementations to conform to standard security evaluation criteria such as
TCSEC, ITSEC, or Common Criteria (C&r security functionality and assurance
(which gives the required level of confidence in the correctness and effectiveness of
the security functionality). It should allow assurance and security functionality

Security Service, v1.7 Introduction to Security March 2001 1-7

classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

1.1.5.14 Security Architecture Goals

The security architecture should confine key security functionality to a trusted core,
which enforces the essential part of the security policy such as:

® Ensuring that object invocations are protected as required by the security policy.
® Requiring access control and auditing to be performed on object invocation.

® Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypassed,
and kept small to reduce the amount of code which needs to be trusted and evaluated in
more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.

It should also be possible to construct systems where particular Security services can
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using them
(unless these objects have chosen to do this in a mechanism or policy-specific way).

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

1.2 Introduction to the Specification

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itself
provide security in an object environment; security is pervasive, so introducing it has
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensure a
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

® A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this counters
security threats.

1.Version 1 or 2.

Security Service, v1.7 March 2001

1

® The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

® The security facilities and interfaces available for performing essential security
administration.

® The security facilities and interfaces available to ORB implementors, to be used in
the production of secure ORBSs.

® A description of how Security services affect the CORBA 2 ORB interoperability
protocols.

® A description of different levels of secure interoperability that are possible.

® A description of how these levels of interoperability can be provided using a select
set of popular security mechanisms and protocols.

® |tems not included in this specification are:

® Support for interoperability between ORBs using different security mechanisms,
though interoperability of different ORBs using the same security mechanism is
supported.

® Audit analysis tools, though an audit service that both the system and applications
can use to record events is included.

®* Management interfaces other than essential security policy management interfaces,
as management services are beyond the scope of this chapter. The security policy
management interfaces were viewed as a necessary feature of this specification as it
is not possible to deploy a secure system without defining and managing its policy.

® |nterfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for two
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers; and
second, providing a cryptographic interface would require addressing a variety of
difficult regulatory and import/export issues.

® Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of further
security facilities later.

1.2.1 Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. Only
Section 2.3, “Application Developer’s Interfaces” through Section 3.8, “DCE-CIOP
with Security” and Appendices B and D are normative.

Security Service, v1.7 Introduction to the Specification March 2001 1-9

1-10

1.2.2 CORBA Security and Secure Interoperability Feature Packages

CORBA security and Secure Interoperability is structured into several feature packages
which are enumerated below. These are used to structure the specification as well as to
specify the conformance requirements.

1.2.2.1 Main Security Functionality Packages

There are two packages:

e Level 1 This provides a first level of security for applications which are unaware
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

e Level 2 This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be a
Secure ORB. For a definitive conformance requirement see the “Conformance
Details” appendix.

Optional SecurityFunctionality Packages

These provide functions that are expected to be required in several ORBs, so are worth
including in this specification, but are not generally required enough to form part of
one of the main security functionality packages specified above. There is only one such
option in the specification.

« Non-repudiation This provides generation and checking of evidence so that
actions cannot be repudiated.

1.2.2.2 Security Replaceability Packages

These packages specify if the ORB is structured in a way that allows incorporation of
different Security services, and if so how they can be incorporated. There are two
possibilities:

1.

ORB Services replaceability packagéhe ORB uses interceptor interfaces to call
on object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security specific code, as that is in the
interceptors.

Security Service replaceability packagéhe ORB may or may not use interceptors,

but all calls on Security services are made via the replaceability interfaces specified
in Section 2.5, “Implementor’s Security Interfaces,” on page 2-142. These interfaces
are positioned so that the Security services do not need to understand how the ORB
works (for example, how the required policy objects are located), so they can be
replaced independently of that knowledge.

Security Service, v1.7 March 2001

1

An ORB can provide Security by directly implementing the Security feature
package 1 or 2 into it without making use of any of the facilities provided by the
Replaceability feature packages. But in that case, the standard security policies
defined in this specification cannot be replaced by others, nor can the
implementation of the Security services be replaced. For example, it would not be
possible to replace the standard access policy by a label-based policy if at least one
of the replaceability packages is not supported. Note that some replaceability of the
security mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services such as
GSS-API[11].

An ORB that supports one or both of these replaceability packages together with a
couple of basic ORB operations as discussed in the "Conformance Details"
appendix is said to b8ecurity Read"y Such an ORB does not in itself support any
security functionality but is ready to host security functionality that is implemented
to use the facilities of the Security Replaceability package to hook Security into it.

1.2.2.3 Common Secure Interoperability (CSI) Feature packages

These feature packages each provide different levels of secure interoperability. There
are three functionality levels for Common Secure Interoperability (CSl). All levels can
be used in distributed secure CORBA compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all levels,
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity, and
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSl level 2 can support all the security functionality described
in the CORBA Security specification. Facilities are more restricted at levels 0 and 1.
The three levels are:

1. Identity based policies without delegation (CSI levelA3)this level, only the
identity (no other attributes) of the initiating principal is transmitted from the client
to the target, and this cannot be delegated to further objects. If further objects are
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

2. Identity based policies with unrestricted delegation (CSI leveht}his level, only
the identity (no other attributes) of the initiating principal is transmitted from the
client to the target. The identity can be delegated to other objects on further object
invocations, and there are no restrictions on its delegation, so intermediate objects
can impersonate the user. (This is the impersonation form of simple delegation
defined in Section 2.1.6, “Delegation,” on page 2-13.)

2.While this may sound strange, it is still true that a Secure ORB need not be a Security Ready
ORB.

Security Service, v1.7 Introduction to the Specification March 2001 1-11

1-12

3.

Identity & privilege based policies with controlled delegation (CSI leveAR}his

level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and
groups. Delegation of these attributes to other objects is possible, but is subject to
restrictions, so the initiating principal can control their use. Optionally, composite
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packages.
For the definitive statement on conformance requirements see Appendix D.

1.2.2.4 SECIOP Interoperability package

An ORB with the SECIOP Interoperability package can generate and use security
information in the IOR and can send and receive secure requests to/from other ORBs
using the GIOP/IIOP protocol with the security (SECIOP) enhancements defined in
Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34 (if necessary), if
they both use the same underlying security technology.

1.2.2.5 Security Mechanism packages

The choice of mechanisms and protocol to use depends on the mechanism type
required and the facilities required by the range of applications expected to use it. This
specification defines how the following four security protocols can be used as the
medium for secure interoperability under CORBA:

1.

SPKM Protocal This protocol supports identity based policies without delegation
(Csl level 0) using public key technology for keys assigned to both principals and
trusted authorities. The SPKM protocol is based on the definition in [20]. The use
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIOP.

. GSS Kerberos ProtocoT his protocol supports identity based policies with

unrestricted delegation (CSI level 1) using secret key technology for keys assigned
to both principals and trusted authorities. It is possible to use it without delegation
(providing CSl level 0). The GSS Kerberos protocol is based on [12] which itself is
a profile of [13]. The use of Kerberos in CORBA interoperability is based on the
SECIOP extensions to [IOP.

CSI-ECMA Protocal This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no other
privileges and without delegation restrictions if the administrator permits this (CSI
level 1) and can be used without delegation (CSI level 0). For keys assigned to
principals, it has two options:

« It can use either secret or public key technology.

« It uses public key technology for keys assigned to trusted authorities.

Security Service, v1.7 March 2001

1

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profile
as defined in [16]. It is designed to allow the addition of new mechanism options
in the future; some of these are already defined in ECMA 235. The use of CSI-
ECMA in CORBA interoperability requires the SECIOP extensions to IOP.

4. SSL protocal This protocol supports identity based policies without delegation (CSI
level 0). The SSL protocol is based on the definition in [21]. The use of SSL in
CORBA interoperability does not depend on the SECIOP extensions to [IOP.

1.2.2.6 SECIOP Plus DCE-CIOP Interoperability

An ORB with the Standard plus DCE-CIOP secure interoperability package supports
all functionality required by standard secure interoperability package, and also
provides secure interoperability (using the DCE Security services) using the DCE-
CIOP protocol.

An ORB that interoperates securely must do so using one of these protocol packages.
For the definitive statement on conformance requirements see Appendix D.

The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix D. The conformance statement required for a CORBA conformant security
implementation is defined in Appendix D. This includes a table that can be filled to
show what the ORB conforms to.

1.2.3 Feature Packages and Modules

The IDL specified in this chapter is partitioned into modules that closely reflect the
feature packaging scheme described above. The Security module holds definitions of
common data structures and constants that most other modules depend on. The
relationship is as shown in Table 1-1.

Table 1-1 Feature Packages and Modules

Feature Package Primary Module | Also Depends on
Security Functionality Level 1 SecurityLevell Security
CORBA, TimeBase
Security Functionality Level 2 SecurityLevel2 Security, CORBA,
TimeBase

SecurityLevell
SecurityAdmin

Non Repudiation NRservice Security,
SecurityLevel2
CORBA, TimeBase

Security Service SecurityReplaceable| Security, CORBA,
Replaceability TimeBase
SecurityLevel2

Security Service, v1.7 Introduction to the Specification March 2001 1-13

Table 1-1 Feature Packages and Modu({€ontinued)

Feature Package

Primary Module

Also Depends on

ORB Service Replaceability Interceptor

CORBA

CSl Level 0, 1 and 2 SECIOP CORBA
SECIOP SECIOP Security, CORBA,
TimeBase, IOP
SPKM, Kerberos, SECIOP Security, CORBA,
CSI-ECMA TimeBase, IOP
SSL SSL Security, CORBA,

TimeBase, I0OP

DCE-CIOP DCE_CIOPSecurity| Security, CORBA,
TimeBase, |IOP

The specification is based on a general three layer architecture as shown in Figure 1-1,
with the interfaces defined in each module positioned as shown in the figure.

Applications (clients of CORBA Security Service)

Interfaces provided
the Security Service
and used by Application
rogrammers

(SecurityLeveIl, SecurityLevel2, SecurityAdmin, NRseBice

CORBA Security Services

Interfaces provided
the Infrastructure

and used by Security
Service Implementor.

(SecurityRepIaceability) C CORBA >

Security Infrastructure

ORB Infrastructure

Figure 1-1 Modules and Their Relation to Layers of the Architecture

The SecurityReplaceability module defines the interfaces that must be used,
together with certain interfaces defined in 8ecurityLevel2 module, to encapsulate
the underlying security infrastructure so as to enable components of the Security
Service to use them interchangeably.

1-14 Security Service, v1.7 March 2001

Interfaces 2

Contents

This chapter contains the following topics.

Topic Page
“Security Reference Model” 2-1
“Security Architecture” 2-28
“Application Developer’s Interfaces” 2-71
“Administrator’s Interfaces” 2-115
“Implementor’s Security Interfaces” 2-142

2.1 Security Reference Model

This chapter describes a security reference model that provides the overall framework
for CORBA security. The purpose of the reference model is to show the flexibility for
defining many different security policies that can be used to achieve the appropriate
level of functionality and assurance. As such, the security reference model functions as
a guide to the security architecture.

2.1.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security policies.
Security policies define:

® Under what conditions active entities (such as clients acting on behalf of users) may
access objects.

Security Service, v1.7 March 2001 2-1

2-2

® What authentication of users and other principals is required to prove who they are,
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system.)

® The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them.

® What accountability of which security-relevant activities is needed.

Figure 2-1 depicts the model for CORBA secure object systems. All object invocations
are mediated by appropriate security functions to enforce policies such as access
controls. These functions should be tamper-proof, always be invoked when required by
security policy, and function correctly.

Target

request requesw

Security Implementation
enforcing security policy

Figure 2-1 A Security Model for Object Systems

Many application objects are unaware of the security policy and how it is enforced.
The user can be authenticated prior to calling the application client and then security is
subsequently enforced automatically during object invocations. Some applications will
need to control or influence what policy is enforced by the system on their behalf, but
will not do the enforcement themselves. Some applications will need to enforce their
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecure
systems. The ORB is assumed to at least handle requests correctly without violating
security policy, and to call Security Services as required by security policy.

A security model normally definesspecificset of security policies. Because the OMG
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instance of a
security model is not appropriate for the OMA. Instead, a security reference model is
defined that provides a framework for supporting many different kinds of policies. The
security reference model &meta-policybecause it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functions
that are defined as well as the information available. In this manner, the meta-policy

Security Service, v1.7 March 2001

2

provides guidance on the permitted flexibility of the policy definition. The remaining
sections describe the elements of the meta-model. The description is kept deliberately
general at this point.

2.1.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must either
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to the
system. Initiating principals are the ones that initiate activities. An initiating principal
may be authenticated in a number of ways, the most common of which for human users
is a password. For systems entities, the authentication information such as its long-term
key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represented in
the system by attributes) which may be used as a means of:

®* Making the principal accountable for its actions.

® Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

® |dentifying the originator of a message.

® |dentifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example, the
audit identity may need to be anonymous to all but the audit administrator, but the
access identity may need to be understood so that it can be specified as an entry in ar
access control list. The same value of the identity can be used for several of the above

The principal may also have privilege attributes, which can be used to decide what it
can access. A variety of privilege attributes may be available depending on access
policies (see Section 2.1.4.3, “Access Policies,” on page 2-9). The privilege attributes,
which a principal is permitted to take, are known by the system. At any one time, the
principal may be using only a subset of these permitted attributes, either chosen by the
principal (or an application running on its behalf), or by using a default set specified
for the principal. There may be limits on the duration for which these privilege
attributes are valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, caldlic.

2. Some attributes are acquired through authentication; identity attributes and privilege
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.

When a user or other principal is authenticated, it normally supplies:

® |ts security name.

Security Service, v1.7 Security Reference Model March 2001 2-3

® The authentication information needed by the particular authentication method used.

® Requested privilege attributes (though the principal may change these later).

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 2-2.

Credentials - containing security attributes

unauthenticated authenticated attributes
attributes
- Public identity privilege
attributes attributes

Figure 2-2 Credential Containing Security Attributes

2.1.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on their
behalf). For example, after the user logs onto the system, the client invokes a target
object via an ORB as shown in Figure 2-3.

! request
/| ORB

/ \

request

client-side security on invocatio target-side security on invocatio
security association, access control security association, access control
message protection, audit message protection, audit

Figure 2-3 Invocation of Target Object via ORB

What security functionality is needed on object invocation depends on security policy.
It may include:

® Establishing a security association between the client and target object so that each
has the required trust that the other is who it claims to be. In many implementations,
associations will normally persist for many interactions, not just a single invocation.
(Within some environments, the trust may be achieved by local means, without use
of authentication and cryptography.)

2-4 Security Service, v1.7 March 2001

2

2.1.3.1

® Deciding whether this client (acting for this principal) can perform this operation on
this object according to the access control policy, as described in Section 2.1.4,
“Access Control Model,” on page 2-7.

® Auditing this invocation if required, as described in Section 2.1.5, “Auditing,” on
page 2-11.

® Protecting the request and response from modification or eavesdropping in transit,
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target object
sides of the invocation. For example, protecting a request may require integrity sealing
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the client, a
new association is formed. It is possible for a client to have more than one association
with the same target object. The application is unaware of security associations; it sees
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it will not
be possible to establish trust between the systems, and the client system may restrict
the requests passed to the target.

Establishing Security Associations

The client and target object establish a secure association by:

® Establishing trust in one another’s identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating the
target's security name.

®* Making the client’s credentials (including its security attributes) available to the
target object.

® Establishing the security context which will be used when protecting requests and
responses in transit between client and target object.

The way of establishing a security association between client and object depends on
the security policies governing both the client and target object, whether they are in the
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as whether
one-way or mutual authentication is wanted between client and target, and the quality
of protection of data in transit between them.

The security policy is enforced using underlying security mechanisms. This model
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not visible
in the model.

Security Service, v1.7 Security Reference Model March 2001 2-5

2.1.3.2 Message Protection

Requests and responses can be protected for:

® Integrity - This prevents undetected, unauthorized modification of messages and
may detect whether messages are received in the correct order and if any message:
have been added or removed.

® Confidentiality - This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, such a
TP, might cause a message to be constructed to send to the target as shown in Figure
2-4. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply returned
follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protected.

operation

parameters [\

always protected
if any message protection is done

operation(parameters)

/‘ on target object reference
ORB/OA

parameters

. always protected, so parameters can
operation parameters pe ysed only in specified operations

protected, so operation is on the right
target id operation parameters object (implies message must be back in
clear before routing to target object)

service . . service info like GIOP service context
info_ | target id operation parameters added by services such as TP.
service info should be protected

host service i ; the host address cannot be encrypted
address | _info | target i operatio) parameters as this would prevent correct routing

N message header and protected mess#e M

Figure 2-4 Message Protection

Security Service, v1.7 March 2001

2

Messages are protected according to the quality of protection required which may be
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and response ma
be protected differently.

The CORBA security model can protect messages even when there is no security in the
underlying communications software. In this case, the message protected by CORBA
security includes the target id, operation and parameters, and any service information
included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this case, ar
ORB that knows such security is available will not need to provide its own message
protection.

Note that as messages will normally be integrity protected, this will limit the type of
interoperability bridge that can be used. Any bridge that changes the protected part of
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to re-
protect the message.

2.1.4 Access Control Model

The model depicted in Figure 2-5 on page 2-8 provides a simple framework for many
different access control security policies. This framework consists of two layers: an
object invocation access policy, which is enforced automatically on object invocation,
and an application access policy, which the application itself enforces.

The object invocation access policy governs whether this client, acting on behalf of the
current principal, can invoke the requested operation on this target object. This policy
is enforced by the ORB and the Security services it uses, for all applications, whether
they are aware of security or not.

The application object access policy is enforced within the client and/or the object
implementation. The policy can be concerned with controlling access to its internal
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the ORB
to enforce the access policy. Even in architectures where the access control mediation
occurs solely within the client and target objects, the ORB is still required to validate
the request parameters and ensure message delivery as described above.

Security Service, v1.7 Security Reference Model March 2001 2-7

2-8

client application
access decision

target application
access decision

request

 ——
/ \

request

Glient-side invocation access dec@n Garget-side invocation access dec@)n

21.4.1

Figure 2-5 Access Control Model

The access control model shows the client invoking an operation as specified in the
request, and also shows application access decisions, which can be independent of this

Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request only if
this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One or
both of these may not exist. Some systems may support target side controls only, and
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision functions,
which just provide a yes/no answer when asked to check if access is allowed. A range
of access policies can be supported as described in Section 2.3.12, “Access Control,”
on page 2-102.

The access decision function used on object invocation to decide whether access is
allowed bases its decision on:

® The current privilege attributes of the principal (see Section 2.1.2, “Principals and
Their Security Attributes,” on page 2-3). Note that these can include capabilities.

® Any controls on these attributes, for example, the time for which they are valid.
® The operation to be performed.

® The control attributes of the target object (see Section 2.1.4, “Access Control
Model,” on page 2-7).

Security Service, v1.7 March 2001

2

2.1.4.2

2.1.4.3

The first three of these functions are available as part of the environment of the object
invocation.

The control attributes for the target object are associated with the object when it is
created (though may be changed later, if security policy permits).

Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access policy
enforced by the ORB, and taking into account other items such as the value of the
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforce the
required access control rules.

Access Policies

The general access control model described here can be used to support a wide range
of access policies including Access Control List schemes, label-based schemes, and
capability schemes. This section describes the overall authorization model used for all
types of access control.

The authorization model is based on the use of access decision functions, which decide
whether an operation or function can be performed by applying access control rules
using:

® Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

® Control attributes of the target (sometimes known as the target ACI).

® Other relevant information about the action such as the operation and data, and
about the context, such as the time.

Action and Initiator
context info privilege attributes

\ \

access allowed? - .
Access Decision Function Target

< - enforcing <&@ (ontrol attributes

yes/no access control rules

Figure 2-6 Authorization Model

The privilege and control attributes are the main variables used to control access;
therefore, the following sections focus on these.

Security Service, v1.7 Security Reference Model March 2001 2-9

2-10

2.1.4.4 Privilege Attributes

2.1.4.5

A principal can have a variety of privilege attributes used for access control such as:
® The principal’'s access identity.
®* Roles, which are often related to the user’s job functions.

® Groups, which normally reflect organizational affiliations. A group could reflect the
organizational hierarchy, for example, the department to which the user belongs, or
a cross-organizational group, which has a common interest.

® Security clearance.

® Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

® Other privileges that an enterprise defines as being useful for controlling access.

In an object system, which may be large, using individual identities for access control
may be difficult if many sets of control attributes need to be changed when a user joins
or leaves the organization or changes his job. Where possible, controls should be based
on some grouping construct (such as a role or organizational group) for Scalability.

The security reference model does not dictate the particular privilege attributes, that
any compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note —In this specificationprivilege is often used as shorthand fanivilege attribute.

Control Attributes

Control attributes are associated with the target. Examples are:

® Access control lists, which identify permitted users by name or other privilege
attributes, or

® |nformation used in label-based schemes, such as the classification of an object,
which identifies (according to rules) the security clearance of principals allowed to
perform particular operations on it.

An object system may have many objects, each of which may have many operations, so
it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the system,
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. However,
they could be associated with an individual object.

Security Service, v1.7 March 2001

Rights

Control attributes may be associated with a set of operations on an object, rather than
each individual operation. Therefore, a user with specified privileges mayrigate
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

2.1.4.6 Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can group
subjects (using privileges), objects (using domains), and operations (using rights).

This specification defines a particular access policy type and associated management
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 2.4.4, “Access Policies,” on

page 2-118

Regardless of the access control policy management interface used (i.e., regardless of
whether the particular Level 2 access policy interfaces or other interfaces not defined
in this specification are used), all access decisions on object invocation are made via a
standard access decision interface, so the access control policy can be changed either
by administrative action on, or substitution of, the objects that define the policy and
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

2.1.5 Auditing

Security auditing assists in the detection of actual or attempted security violations.
This is achieved by recording details of security relevant events in the system.
(Depending on implementation, recording an audit event may involve writing event
information to a log, generating an alert or alarm, or some other action.) Audit policies
specify which events should be audited under what circumstances.

There are two categories of audit policisgstem audit policiesyhich control what
events are recorded as the result of relevant system activitieapptidation audit
policiesthat control which events are audited by applications.

System events, which should be auditable, include events such as authentication of
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or in
security or other services, and these components generate the required audit records.

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money transfers
might audit who transferred how much money to whom.

Security Service, v1.7 Security Reference Model March 2001 2-11

2-12

Events can be categorized by event family (e.g., system, financial application service),
and event type within that family. For example, there are defined event types for
system events.

{ client application,
audit '

request request

/I ORB |\ >
security association ~ security association
invocation access control etc. invocation access control etc.

Figure 2-7 Auditing Model

Potentially a very large number of events could be recorded; audit policies are used to
restrict what types of events to audit under which circumstances. System audit policies
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target object
and operation for the request are known, and the reply status is known. The model
supports audit policies where the decision on whether to audit an event can be based or
the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (only failures may be
audited), the object and the operation being invoked, the audit id of principal on whose
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decisions
on whether to audit an invocation to depend on the object type, operation, event type,
and success or failure of this.

The specification also defines a particular audit policy type for application auditing,
which allows decisions on whether to audit the event to be based on the event type and
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deemed to
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are generated

Security Service, v1.7 March 2001

2

and then written to audit channels, but not how these records are filtered later, how
audit trails and channels are kept secure, and how the records can be collected and
analyzed.

2.1.6 Delegation

In an object system, a client calls on an object to perform an operation, but this object
will often not complete the operation itself, so will call on other objects to do so. This
will usually result in a chain of calls on other objects as shown in Figure 2-8.

Target
Object

Target

Target
Object

This complicates the access model described in Section 2.1.4, “Access Control Model,”
on page 2-7, as access decisions may need to be made at each point in the chain.
Different authorization schemes require different access control information to be
made available to check which objects in the chain can invoke which further operations
on other objects.

Figure 2-8 Delegation Model

In privilege delegation, the initiating principal’s access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the recipient
the rights to act on its behalf under specified circumstances.

Another authorization scheme is reference restriction where the rights to use an object
under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in this specification, though described
as a potential future security facility in the “Facilities Not in This Specification”
appendix.

The following terms are used in describing delegation options:
® |nitiator - the first client in a call chain.

® Final target - the final recipient in a call chain.

Security Service, v1.7 Security Reference Model March 2001 2-13

®* |Intermediate- an object in a call chain that is neither the initiator nor the final
target.

®* Immediate invoker- an object or client from which an object receives a call.

2.1.6.1 Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of object
invocations. In such cases, the initiator needs to delegate some or all of its privilege
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have received
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can obtain
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and delegated
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator. The
target may also want to verify that the request comes from an authorized intermediate
(or even check the whole chain of intermediates). In these cases, it must be possible to
distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of objects
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used, this
case is called impersonation.

When restrictions are placed, additional information is used so that objects can verify
whether or not their characteristics (e.g., their name or a part of their name) satisfy the
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g., their
name).

2.1.6.2 Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captured
using the following sentence.

An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s) (target restrictions)
c. any object (no target restrictions)

2-14 Security Service, v1.7 March 2001

2.1.6.3

(no privileges
using (a subset of the initiator’s privileges (simple delegation)

(both the initiator's and its own (composite delegation)
privileges (combined or traced delegation,
(received privileges and its own depending on whether privileges
privileges are combined or concatenated)
during some validity period (part of time constraints)
for a specified number of invocations (part of time constraints)

When delegating privileges through a chain of objects, the caller does not know which
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the target's control
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no one
scheme is likely to provide all of them.

Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may allow
support of the following facilities.

® Control of privileges delegatedAn initiator (or an intermediate) can restrict which
of its own privileges are delegated.

® Control of target restrictions An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects, or
some grouping of objects. It may restrict the target objects, which may use some
privileges for access control, and the intermediates, which can also delegate them.

® Control of privileges used As previously described, there are several options for
deciding which privileges an intermediate object may use when invoking another
object. Note that delegated privileges are not actually delegated to a single target
object; they are available to any object running under the same identity as the target
object in the target object’s address space (since any objects in the target’s address
space may retrieve the inboufidedentials and any object sharing the target’s
identity may successfully become the caller’'s delegate).

The specified interfaces allow the following.

Security Service, v1.7 Security Reference Model March 2001 2-15

2-16

No delegation

The client permits the intermediate to use its privileges for access control decisions,
but does not permit them to be delegated, so the intermediate object cannot use these
privileges when invoking the next object in the chain.

client credentials i intermediate, Target

Client ;
credentials Object

Figure 2-9 No Delegation

Simple delegation

The client permits the intermediate to assume its privileges, both using them for access
control decisions and delegating them to others. The target object receives only the
client's privileges, and does not know who the intermediate is (when used without
target restrictions, this is known as impersonation).

client credentials /' |ntermediate\client credentialé Target

Client Object

Figure 2-10 Simple Delegation

Composite delegation

The client permits the intermediate object to use its credentials and delegate them.
Both the client privileges and the immediate invoker’s privileges are passed to the
target, so that both the client privileges and the privileges from the immediate source of
the invocation can be individually checked.

_client and
client credentials ' intermediate Target

Client -
credentials Object

Figure 2-11 Composite Delegation

Security Service, v1.7 March 2001

Combined privileges delegation

The client permits the intermediate object to use its privileges. The intermediate
converts these privileges into credentials and combines them with its own credentials.
In that case, the target cannot distinguish which privileges come from which principal.

client and
intermediate’s
Client client credentials privileges Target
Object

in a single
credential

Figure 2-12 Combined Privileges Delegation

Traced delegation

The client permits the intermediate object to use its privileges and delegate them.
However, at each intermediate object in the chain, the intermediate's privileges are
added to privileges propagated to provide a trace of the delegates in the chain.

intermediate
objects

chain of Target

Object

credentials

Figure 2-13 Traced Delegation

A client application may not see the difference between the last three options, it
may just see them all as some form of “composite” delegation. However, the target
object can obtain the credentials of intermediates and the initiator separately if they
have been transmitted separately.

® Control of time restrictions Time periods can be applied to restrict the duration of
the delegation. In some implementations, the number of invocations may also be
controllable.

Facilities Used on Accepting Object Invocations
An intermediate or a target object should be able to:

® Extract received privileges and use them in local access control decisions. Often
only the privileges of the initiator are relevant. When this is not the case, only the
privileges of the immediate invoker may be relevant. In some cases, both are
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain. In addition,
some targets may need to obtain the miscellaneous security attributes (such as audit
identity, charging identity) and the associated target restrictions and time
constraints.

® Extract credentials (when permitted) for use when making the next call as a
delegate.

Security Service, v1.7 Security Reference Model March 2001 2-17

2-18

2.1.6.4

2.1.6.5

® Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Specifying Delegation Options

The administrator may specify which delegation option should be used by default when
an object acts as an intermediate. For example, he may specify whether a particular
intermediate object normally delegates the initiating principal’s privileges or uses its
own, or both if needed. Also, the access policy used at the target could permit or deny
access based on more than one of the privileges it received (e.g., the initiator's and the
intermediate's). This allows many applications to be unaware of the delegation options
in use, as many of the controls for delegation are done automatically by the ORB when
the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation it
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no one
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mode of
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, nalgelegatiorandimpersonation
(simple delegation without any target restrictionspdto be supported.

In Security Functionality Level 2, applications may use any of the interfaces specified,
but may get &£LORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions. the
“Facilities Not in This Specification” appendix, includes potential future advanced
delegation facilities, which include such controls.

2.1.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action is
generated and can be checked to provide proof of the action. It can also be stored in
order to resolve later disputes about the occurrence or the non-occurrence of the event
or action.

The non-repudiation services specified here are under the control of the applications
rather than used automatically on object invocation, so are only available to
applications aware of this service.

Security Service, v1.7 March 2001

2

Depending on the non-repudiation policy in effect, one or more pieces of evidence may
be required to prove that some kind of event or action has taken place. The number and
the characteristics of each depends upon that non-repudiation policy. As an example,
evidence containing a timestamp from a trusted authority may be required to validate
evidence.

There are many types of non-repudiation evidence, depending on the characteristics of
the event or action. In order to distinguish between them, the types are defined and are
part of the evidence. Conceptually, evidence may thus be seen as being composed of
the following components:

® non-repudiation policy (or policies) applicable to the evidence
® type of action or event

® parameters related to the type of action or event

A date and time are also part of the evidence. This shows when an action or event took
place and allows recovery from some situations such as the compromise of a key.

The evidence includes some proof of the origin of data, so a recipient can check where
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of types
of actions or events. Two common types of non-repudiation evidence are the evidence
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may be
sent to a recipient to verify who created the message, and can be stored and then mad
available for subsequent evidence retrieval.

Non-repudiation of Receipt protects against a recipient's false denial of having received
a message (without necessarily seeing its content). It is achieved at the recipient by
constructing and generating evidence of Proof of Receipt using the non-repudiation
services. This is shown in Figure 2-14.

evidence of creation ———p»
(plus message)

Originator Recipient

< evidence of receipt

Figure 2-14 Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice of
mechanism or policy.

Non-repudiation services may include:

® Facilities to generate evidence of an action and verify that evidence later.

Security Service, v1.7 Security Reference Model March 2001 2-19

* A delivery authority which delivers the evidence (often with the message) from the
originator to the recipient. Such a delivery authority may gengnatef of origin
(to protect against a sender's false denial of sending a message or its content) and
proof of delivery(to protect against a recipient's false denial of having received a
message or its content). Non-repudiation of Origin and Delivery are defined in ISO
7498-2.

® An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evidence.

Object
B =
Service Reg/Resp Dispute/Judgement

Non-repudiation service

Evidence Evidence . -
Generation | Storage | | PelVerY | g | Adjudicator
and and Authority

Verification| | Retrieval

Service Reg/Resp

Figure 2-15 Non-repudiation Services

The non-repudiation services illustrated in Figure 2-15 are based on the ISO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

® Generation of evidence of an action.

® Verification of evidence of an action.

® Generation of a request for evidence related to a message sent to a recipient.
® Receipt of a request for evidence related to a message received.

® Analysis of details of evidence of an action.

® Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types of
evidence, not just the non-repudiation of creation and receipt previously described.

No Non-repudiation Evidence Delivery Authority is defined by this specification; it is
anticipated that vendors will want to customize these authorities (which are responsible
for delivering messages and related non-repudiation evidence securely in accordance
with specific non-repudiation policies) to meet specialized market requirements. Also,
no evidence storage and retrieval services are specified, as other object services can b
used for this.

2-20 Security Service, v1.7 March 2001

2

Note that this specification does not provide evidence that a request on an object was
successfully carried out; it does not require use of non-repudiation within the ORB.

2.1.8 Domains

2.1.8.1

A domain (as specified in the ORB Interoperability Architecture) is a distinct scope,
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

® Security policy domain. The scope over which a security policy is enforced. There
may be subdomains for different aspects of this policy.

® Security environment domain. The scope over which the enforcement of a policy
may be achieved by some means local to that environment, so does not need to be
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferred
between objects in the same machine.

® Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.

Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a set
of security related activities and is administered by a security authority. (Note that this
is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to make
the domain secure. Security policies concern access control, authentication, secure
object invocation, delegation and accountability. An access control policy applies to the
security policies themselves, controlling who may administer security-relevant policy
information.

Security Authority

security
O policy
management

Figure 2-16 Security Policy Domains
Security policy domains provide leverage for dealing with the problem of scale in

security policy management (by allowing application of policy at a domain granularity
rather than at an individual object instance granularity).

Security Service, v1.7 Security Reference Model March 2001 2-21

2-22

Security policy domains permit application of security policy information to security-
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objects to
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators’ authorities.

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to be
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies are
applied.

Subdomains may reflect organizational subdivisions or the division of responsibility
for different aspects of security. Typically, organization-related domains will form the
higher-level superstructure, with the separation of different aspects of security forming
a lower-level structure.

For example, there could be:
®* An enterprise domain, which sets the security policy across the enterprise.

® Subdomains for different departments, each consistent with the enterprise policy but
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:
® Authority for auditing could be the preserve of an audit administrator.

® Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administrators
duties) while reflecting established organizational structures.

Figure 2-17 Policy Domain Hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreement
records:

Security Service, v1.7 March 2001

® The rights given to both sides, such as the kind of access allowed.

® The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, the
mapping of roles in one domain to roles in the other.

Security Policy
Manager

Figure 2-18 Federated Policy Domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed ORB
and the Security services it uses and the underlying operating systems that support it.
This is the only policy that applies to objects unaware of security.

The application security policy is enforced by application objects, which have their
own security requirements. For example, they may want to control access to their own
functions and data at a finer granularity than the system security policy provides.

Security Policy
Manager

o © o
application security
policy domain

0
system security policy domain

Figure 2-19 System- and Application-enforced Policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

e}

o o
access control o °
domain

. O.
audit domain

Figure 2-20 Overlapping Policy Domains

Security Service, v1.7 Security Reference Model March 2001 2-23

2-24

2.1.8.2

In some cases, there may even be overlapping policies of the same type (however, this
specification does not require implementations to support overlapping policy domains
of the same type).

Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies may be
achieved by means local to the environment. The environment supporting the object
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains are by
definition implementation-specific, as different implementations run in different types
of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce security at
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

® Preventing objects from interfering with each other might require them to execute in
separate system processes or virtual machines (assuming the generation procedure
could not ensure this protection) but, in most object systems, this would be
considered an unacceptable overhead, if applied to each object.

® Authenticating every object individually could also impose too large an overhead,
particularly where:

e There is a large object population.
e There is high connectivity, and therefore a large number of secure associations.

* The object population is volatile, requiring objects to be frequently introduced to
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domainsThese are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists, can
exploit it, rather than provide its own message protection.

2. ldentity domains Objects in an identity domain can share the same identity.
Objects in the same identity domain:

« when invoking each other, do not need authentication to establish who they are
communicating with.

« are equally trusted by others to handle credentials received from a client. For
example, if a client is prepared to delegate its rights to one object in the domain,
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust the
calling object based on the identity of its identity domain.

Security Service, v1.7 March 2001

2

2.1.8.3

2.1.8.4

Note that neither of these affect what access controls apply to the object (except in that
if trust is required and is not established with this domain, then access will be denied).

Security Technology Domains

These are domains that use the same security technology for enforcing the security
policy. For example:

® The same methods are available for principal authentication and the same
Authentication services are used.

® Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

® The same types of access control are used. For example, a particular domain may
provide discretionary access control using ACLs using the same type of identity and
privilege attributes.

® The same audit services are used to collect audit records in a consistent way.

A particular security technology is normally used to authenticate principals and to

form security associations between client and object and handle message protection.
(Different technologies may be able to use the same privilege attributes, for example,
the same access id and also the same audit id.) An important part of this is the security
technology used for key distribution. There are two main types of security technology
used for key distribution, both of which are available in commercial products:

® Symmetric key technology where a shared key is established using a trusted Key
Distribution Service.

®* Asymmetric (or “public”) key technology where the client uses the public key of the
target (certified by a Certification Authority), while the target uses a related private
key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail products.

The CORBA security interfaces specified here are security mechanism neutral, so they
can be implemented using a wide variety of security mechanisms and protocols.

Domains and Interoperability

Interoperability between objects depends on whether they are in the same:
® Security technology domain

® ORB technology domain

® Security policy domains

® Naming and other domains

The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.

Security Service, v1.7 Security Reference Model March 2001 2-25

2-26

Domain A

Security Technology Domain 1

The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

CORBA 2 Security Security
interoperability Technology Technology
Gateway Domain 2

Figure 2-21 Framework of Domains

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technology
domains is only possible if:

® The communication between the objects does not need to be protected, so security
is not used between them, or

® A security technology gateway has been provided, which allows messages to pass
between the two security technology domains. A gateway could be as simple as a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over the
link. On the other hand, it could be a very complicated affair including a protocol
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. This is mainly because the technology is immature and appropriate common
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows an
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, they
should be able to interoperate via a CORBA 2 interoperability bridge. However, there
may still be restrictions on interoperability when:

® The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other domain.
As previously described, crossing a security policy boundary can be handled by a
security policy federation agreement. This can be enforced in either domain or by a
gateway.

® The ORBs are in different naming or other domains, and messages would normally
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any

Security Service, v1.7 March 2001

2

changes to object references in them). In general, crossing of such domains without
using a Security Technology gateway is not possible if policy requires even integrity
protection of messages.

2.1.9 Security Management and Administration

2.1.9.1

2.1.9.2

Security administration is concerned with managing the various types of domains and
the objects within them.

Managing Security Policy Domains
For security policy domains, the following is required:

® Managing the domains themselves - creating, deleting them including controlling
where they fit in the domain structure.

® Managing the members of the domain, including moving objects between domains.

® Managing the policies associated with the domains - setting details of the security
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, managing
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain, the
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For example,
different administration is needed for ACL-based policies and label-based policies.
However, the administration of the stand&amainAccessPolicy is defined.

Access policies may usgghts to group operations for access control. Administration
of the mapping of rights to operations is included in this specificaBaoh mapping

of rights to operations is used by the standaodhainAccessPolicy , and can also be
used by other access policies.

Interfaces for federation agreements allowing interaction with peer domains is left to a
later security specification.

Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristics of
the environment and which objects are members of the domain. This will often be done
in an environment-specific way; therefore, no management interfaces for it are
specified here.

Security Service, v1.7 Security Reference Model March 2001 2-27

2.1.9.3 Managing Security Technology Domains

For security technology domains, administration may include:
® Setting up and maintaining the underlying Security services required in the domain.

® Setting up and maintaining trust between domains in line with the agreements
between their management.

® Administering entities in the way required by this security technology. Entities to be
administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security technology specific. Also, it may be done outside
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as other
applications. This specification does not include such security technology specific
administration.

2.1.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of security
policies and application domains to allow conformant implementations to be provided
to meet a wide variety of commercial and government secure systems in terms of both
security functionality and assurance. (Any implementation of this model will need to
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a secure
object system to address different requirements. There are a number of implementation
choices on how to ensure that the security enforcement cannot be bypassed. This
enforcement could be performed by hardware, the underlying operating system, the
ORB core, or ORB services. The “Guidelines for a Trustworthy System” appendix
describes some of these options. (It is important when instantiating this architecture for
a particular ORB product, or set of Security services supporting one or more ORBS, to
identify what portions of the model must be trusted for what. This should be included
in a conformance statement as described in the “Conformance Details and Statement”
appendix.

2.2 Security Architecture

2-28

This section explains how the security model is implemented. It describes the complete
architecture as needed to support all feature packages described in Section 1.2.2,
“CORBA Security and Secure Interoperability Feature Packages,” on page 1-10. Not
all of these packages are mandatory for all implementors to support. See the
“Conformance Details” appendix for a definitive statement of conformance
requirements.

This section starts by reviewing the different views that different users have of security
in CORBA-compliant systems, as the security architecture must cater to these.

Security Service, v1.7 March 2001

2

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 to
support interoperability between ORBs.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

2.2.1 Different Users’ View of the Security Model

22.1.1

The security model can be viewed from the following users’ perspectives:
® Enterprise management

® The end user

® The application developer

® Administration of an operational system

® The object system implementors

Enterprise Management View

Enterprise management is responsible for business assets including IT systems;
therefore they have ultimate responsibility for protecting the information in the system.
The enterprise view of security is therefore mainly about protecting its assets against
perceived threats at an affordable cost. This requires assessing the risks to the assets
and the cost of countermeasures against them as described in the “Guidelines for a
Trustworthy System” appendix. It will require setting a security policy for protecting
the system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each other and
what access they will provide to their assets. For example, when a user in domain A
accesses objects in domain B, what rights should he have? One enterprise may also
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization and the
security policies needed in different parts of it. Security policy options supported by
the model include:

® A choice of access control policies. For example, controls can be based on job roles
(or other attributes) and use ACL, capabilities, or label-based access controls.

® Different levels of auditing so choosing which events to be logged can be flexibly
chosen to meet the enterprise needs.

® Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.

Security Service, v1.7 Security Architecture March 2001 2-29

2-30

2.2.1.2

2.2.1.3

End User View

The human user is an individual who is normally authenticated to the system to prove
who he or she is.

The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also belong
to one or more groups (within and across organizations) which again imply rights to
access objects. A user may also have other privileges such as a security clearance tha
permits access to secret documents, or an authorization level that allows the user to
authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privilege
attributes such as roles and groups and others privileges valid to this organization.

The user invokes objects to perform business functions on his behalf, and his privilege
attributes are used to decide what he can access. His audit identity is used to make him
individually accountable throughout the system. He has no idea of what further objects
are required to perform the business function.

The user view is described further in the security model in Section 2.1, “Security
Reference Model,” on page 2-1.

Application Developer View

The application developer is responsible for the business objects in the system: the
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though their
applications are protected by it. So much of the security in the system is hidden from
the applications. ORB security services are called automatically on object invocation,
and both protect the conversation between objects and control who can access them.

Some application objects need to enforce some security themselves. For example, an
application might want to control access based on the value of the data and the time as
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

The model includes a range of security facilities available for those applications that
want to use them. For example:

® The quality of protection for object invocations can be specified and used to protect
all communication with a particular target or just selected invocations.

® Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

® Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations on the
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.

Security Service, v1.7 March 2001

2

2.2.1.4

2.2.1.5

One special type of application developer is also catered for. The “application” that
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the model
also allows authentication to be done before calling the object system.

The application view is described in Section 2.3, “Application Developer’s Interfaces,”
on page 2-71.

Administrator’s View

Administrators, like any other users, know about their job roles and other privileges,
and expect these to control what they can do. In many systems, there will be a number
of different administrators, each responsible for administering only part of the system.
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other users
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies that
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the object
system. This would include administration of privilege attributes about users, but might
also include other controls. For example, they might constrain the extent to which the
user’s rights can be delegated.

The model does not include explicit management interfaces for managing domains or
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant management
actions, particularly those changing security information, need to be audited.

The administrator’s view is further described in Section 2.4, “Administrator’s
Interfaces,” on page 2-115.

Object System Implementor’s View

Secure object system developers must put together:
®* An ORB.
® Other Object Services and/or Common Facilities.

® The security services these require to provide the security features.

Security Service, v1.7 Security Architecture March 2001 2-31

The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 2.2.2, “Structural Model,” on page 2-32.
In addition, protection boundaries are required to prevent interference between objects
and will need controlling by the ORB and associated Object Adapter and ORB
services.

Certain interfaces are identified hecality Constrained . These interfaces are

intended to be accessible only from within the context (e.g., process or RM-ODP
capsule) in which they are instantiated (i.e., from within the protection boundary
around that context). No object reference to these interfaces can therefore be passed
meaningfully outside of that context. The exact details of how this protection boundary
is implemented is an implementation detail that the implementor of the service will
need to provide in order to establish that the implementation is sémaadity
Constrained objects may not be accessible through the DII/DSI facilities, and they
may not appear in the Interface Repository. Any attempt to pass a reference to a
locality constrained object outside its locality, or any attempt to externalize it using
ORB::object_to_string will result in the raising of th€EORBA::NO_MARSHAL
exception.

Object Service and Common Facilities developers may need to be security aware if
they have particular security requirements (for example, functions whose use should be
limited or audited). However, like any application objects, most should depend on the
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for security
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares some
application visible security objects such as a principal’'s credentials, and also sees the
security objects used in making security associations. The Security services should use
the Security Policy and other security objects defined in this model to decide what
security to provide.

While these security objects may provide all the security required themselves, they will
often call on external security services, so that consistent security can be provided for
both object and other systems. The Security services defined in this specification are
designed to allow for convenient implementation using generic APls for accessing
external security services so it is easier to link with a range of such services. Use of
such external security services may imply use of existing, non-object databases for
users, certificates, etc. Such databases may be managed outside the object system.

The Implementor’s view is specified in Section 2.5, “Implementor’s Security
Interfaces,” on page 2-142. The implications of constructing the system securely to
meet threats are described in the “Guidelines for a Trustworthy System” appendix.

2.2.2 Structural Model

The architecture described in this section sets the major concepts on which the
subsequent specifications are based.

2-32 Security Service, v1.7 March 2001

2221

The structural model has four major levels used during object invocation:
1. Application-level components, which may or may not be aware of security.

2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different security
technologies to be accommodated within the architecture.) These components are:

« The ORB core and the ORB services it uses.
e Security services.
« Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Target
Object
request request
ORB ORB
Services Services
I ORB Core I

security technology

‘ Basic Protection and Communications ‘

Figure 2-22 Structural Model

Figure 2-22 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation of an
operation on a target object is shown.

Application Components

Many application components are unaware of security and rely on the ORB to call the
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see The
Model as Seen by Applications, under Section 2.2.5, “Security Object Models,” on
page 2-41). As in the OMA, the client may, or may not, be an object.

Security Service, v1.7 Security Architecture March 2001 2-33

2-34

2.2.2.2 ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB that
provides the basic representation of objects and the communication of requests.” The
ORB Core therefore supports the minimum functionality necessary to enable a client to
invoke an operation on a target object, with the distribution transparencies required by
the CORBA architecture.

An object request may be generated within an implicit context, which affects the way
in which it is handled by the ORB, thouglot the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Core
but, from the application view, logically present in the ORB.

Logical Object Request Target
Object
ORB ORB
Services Services
I ORB Core I

Figure 2-23 ORB Services

Selection of ORB Services
The ORB Services used to handle an object request are determined by:
® The security policies that apply to the client and target object because of the

domains to which they belong, for example the access policies, default quality of
protection.

® Other static properties of the client and target object such as the security
mechanisms and protocols supported.

®* Dynamic attributes, associated with a particular thread of activity or invocation; for
example, whether a request has integrity or confidentiality requirements, or is
transactional.

Security Service, v1.7 March 2001

2

A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target's ORB determines which ORB Services to use
at the target. If one ORB does not support the full set of services required, then either
the interaction cannot proceed or it can only do so with reduced facilities, which may
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

Before a client can use an object reference to invoke an operation of the target object
in a secure way, a security association needs to be established associating the client tc
the target object, through the particular object reference. This security association is
sometimes referred to as the binding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depend on
is that a binding is established before an invocation takes place.

The ORB determines how to establish the binding using the policies, static properties,
and dynamic properties associated with the client and target. At the client, the client
environment together with an object reference of the target object has associated with
it, those policies and static properties of the target object (e.g., the quality of protection
needed) that affect how the client's ORB establishes a binding to the object.

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

® Each object reference of the target object that is held by the client.

® State information that is unique to the association between the target object and the
client through the specific object reference (e.g., access policy domain, security
context).

®* An ORB instance in a process or capsule (cf., RM-ODPJ[15]) in which the client is
located.

A binding is distinct from the target object, though uniquely associated with it through
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

There is state information associated with the binding at both the client and the server
ends. This state information is local to the process or capsule in which the client and
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitness of
the binding and the uncertainty about its life-style makes such information of
guestionable value anyway. On the server side, some of this information is accessible
through operations of th€urrent object.

Security Service, v1.7 Security Architecture March 2001 2-35

2-36

2.2.2.3

2224

Object Reference

Request

target obj ref

P - T~ - N
binding ‘<@ -p bindin

g
s

_— .\/
ORB ’
Services

I ORB Core I

Figure 2-24 Object Reference

If a client requires to invoke operations of the same target object with different
invocation policies, it can do so by using bject::set_policy_overrides

operation to create new object references with the desired policies (that differ from
those associated with the client’s environment througiCtiveent object) installed as
overrides, and then use those new object references to carry out the invocations.

Security Services

In a secure object system, the ORB Services called will include ORB Security Services
for secure invocation and access control.

ORB Security Services and applications may call on underlying security mechanisms
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies apply
as described in Security Policy Domains, under Section 2.1.8, “Domains,” on

page 2-21. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when finding
and managing the policies that apply to the domain. The ORB and security services use
these to enforce the security policies relevant to object invocation.

Security Service, v1.7 March 2001

2

When an object reference is created by the ORB, it implicitly associates the object
reference with one or more Security Policy domains as described in Administrative
Model, under Section 2.2.5, “Security Object Models,” on page 2-41. An
implementation may allow object references to be moved between domains later. Since
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the said
policies with the object associated with the object reference. Care should be taken by
the application that is creating object references using POA operations (See the
Portable Object Adapter chapter of tiemmon Object Request Broker: Architecture

and Specificationto ensure that object references to the same object are not created by
the server of that object with different domain associations.

There may be several security policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with each policy domain.
(See Section 2.2.5.2, “Administrative Model,” on page 2-58, for a list of policy types.)
These policy objects are shared between objects in the domain, rather than being
associated with individual objects. (If an object needs to have an individual policy, then

there must be a domain manager for it.)

enclosing
domain managers

Figure 2-25 Domain Objects

Where an object reference is a member of more than one domain, for example, there is
a hierarchy of domains, the object reference is governed by all policies of its enclosing
domains. The domain manager can find the enclosing domain’s manager to see what
policies it enforces.

The reference model allows an object reference to be a member of multiple domains,
which may overlap for the same type of policy (for example, be subject to overlapping
access policies). This would require conflicts among policies defined by the multiple
overlapping domains to be resolved. The specification does not include explicit support
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

® The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own security policies.

Security Service, v1.7 Security Architecture March 2001 2-37

2-38

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy (as described in
Section 2.2.5.3, “The Model as Seen by the Objects Implementing Security,” on
page 2-62). The caller finding a policy and then enforcing it does not see the
domain manager objects and the domain structure.

® The administrative interfaces used to set security policies (e.g., specifying which
events to audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so is aware of the scope of
what he is administering. (Administrative interfaces are described in
Section 2.2.5.2, “Administrative Model,” on page 2-58.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and when it
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection of
messages to increase protection for particular messages. (Application interfaces are
described in Section 2.2.5.1, “The Model as Seen by Applications,” on page 2-41.)

Note that this specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them, moving objects between them,
changing the domain structure and adding, changing, and removing policies applied to
the domains. Such interfaces are expected to be the province of other object services
and facilities.

2.2.3 Security Technology

The object security services previously described insulate the applications and ORBs
from the security technology used. Security technology may be provided by existing
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components, which actually implement the
security services. It is envisaged that various technologies may be used to provide these
and, furthermore, that a (set of) generic security interface(s) such as the GSS-API will
be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and corresponding
APIs) includes:

® The means of creating and handling the security information required to establish
security associations, including keys.

® Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services not
only allows interchangeability of security mechanisms, but also enables exploitation of
existing, proven implementations of such mechanisms.

Security Service, v1.7 March 2001

2.2.4 Basic Protection and Communications

2241

2.2.4.2

Environment Domains

As described in Section 2.1.8.2, “Security Environment Domains,” on page 2-24, the
way security policies are enforced can depend on the security of the environment in
which the objects run. It may be possible to relax or even dispense with some security
checks in the object system on interactions between objects in the same environment
domain. For example, in a message protection domain where secure transport or lower
layer communications is provided, encryption is not needed at the ORB level. In an
identity domain, objects may share a security identity and so dispense with
authenticating each other. Environment domains are implementation concepts; they do
not have domain managers.

Environment domains can be exploited to optimize performance and resource usage.

Component Protection

The maintenance of integrity and confidentiality in a secure object system depends on
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protection
Domains, supported by a combination of hardware and software, provide a means of
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided by
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled and
implemented in terms of additional objects. However, security services can only be
effective if there is some means of ensuring that they are always invoked as required by
security policies: it must be possible to guarantee, to any required level of assurance,
that applications cannot bypass them. Moreover, security services themselves, like
other components, must be subject to security policies.

The general approach is to establish protection boundaries around groups of one or
more components, which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interactions
between them need not be mediated by security services, whereas interactions across
boundaries may be subject to controls. In addition, it is necessary to provide a means
of establishing a trust relationship between components, allowing them to interact
across protection boundaries, in a controlled way, mediated by security services.

Security Service, v1.7 Security Architecture March 2001 2-39

2-40

Controlled
Relationship

O Protection
Domain B O

O

@) Protection
Domain A O

@)

Figure 2-26 Controlled Relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in Section 2.2.5.3, “The Model as Seen by the
Objects Implementing Security,” on page 2-62. Clearly, objects that encapsulate
sensitive security information must be protected to ensure that they can only be
accessed in an appropriate way.

O Protection ©
Domain B,

Security Service

@) O

O Protection ©
Domain A 0

0=

Figure 2-27 Object Encapsulation

Protection boundaries and the controlled relationships that cross those boundaries must
inevitably be supported by functionality more fundamental than that of the Security
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes part of
the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess boundaries,
or within process access control mechanisms (e.g., multilevel “onionskin” hardware-
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for example,
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possible for
implementations to create protection boundaries between:

® Application components, which do not trust each other;
® Components supporting security services and other components;

® Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be required.
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths).
Such communication may take many forms, ranging from explicit message passing to
implicit sharing of memory.

Security Service, v1.7 March 2001

2.2.5 Security Object Models

2.25.1

This section describes the objects required to provide security in a secure CORBA
system from three viewpoints:

1. The model as seen by applications.
2. The model as seen by administrators and administrative applications.
3. The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships between
them, and outlines the operations they support. A summary of all objects is also given.

The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and therefore
do not call on the security interfaces. This subsection is therefore mainly relevant to
those applications that are aware of and utilize security. Facilities available to such
applications are:

®* Finding what security features this implementation supports.

® Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

® Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

® Making a secure invocation.

® Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

® Auditing application activities.

®* Non-repudiation facility -- generation and verification of evidence so that actions
cannot be repudiated.

® Finding the security policies that apply to this object.

The Security Service interfaces that are available to the application writer are primarily
found in theSecurityLevell , SecurityLevel2 , NRservice , andSecurityAdmin
modules.

Finding Security Features

An application can find out what security features are supported by this secure object
implementation. It does this by calling on the ORBy&t_service_information

Information returned includes the security functionality level and options supported
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).

Security Service, v1.7 Security Architecture March 2001 2-41

2-42

Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained fror@urrent .

If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileg€sedentials object
may be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need him to
be, then authentication is needed as shown in Figure 2-28.

— — —

/ User

\
—. Sponsor T
\ %

~

user

request

Principal

Authenticator Current

create (Credential

Figure 2-28 Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is described
here so that the process @fedentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the user
sponsor, and this calls on tReincipal Authenticator object, which authenticates

the principal (in this case, the user) and obt&nedentials for it containing
authenticated identity and privileges.

The user sponsor represents the entry point for the user into the secure system. It may
have been activated, and have authenticated the user, before any client application is
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

Security Service, v1.7 March 2001

Principal Authenticator

The Principal Authenticator object is the application-visible object responsible for
the creation ofCredentials for a given principal. This is achieved in one of two ways.
If the principal is to be authenticated within the object system, the user sponsor
invokes the authenticate operation of Bréncipal Authenticator object (and
continue_authentication if needed for multi-exchange authentication dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges and
information for establishing security associations. It provides operations to obtain and
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active object.
Credentials are used on invocations and for non-repudiation.

There is ans_valid operation to check if the credentials are valid amefi@sh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context at both client (both for
object or non-object clients) and target objects. In a secure environment, the interfaces
SecurityLevell::Current , which is derived fronrCORBA::Current and
SecurityLevel2::Current , which is derived fronSecurityLevell::Current , give

access to security information associated with the execution co@Giexent gives

access to th€redentials associated with the execution environment. Object
invocations us€redentials in SecurityManager , unless they have been overridden,

by a security aware client, in the specific object reference being used for the
invocation. If a user sponsor is used, it should set the user’s credentials for subsequent
invocations inCurrent . This may also be done as the result of initializing the ORB
when the user has been authenticated outside the object system. This allows a security
unaware application to utilize the credentials without having to perform any explicit
operation on them.

At target and intermediate objects, oti@redentials are also available vi@urrent .
Handling Multiple Credentials

An application object may use differe@tedentials with different security
characteristics for different activities.

Security Service, v1.7 Security Architecture March 2001 2-43

2-44

Object
(client or

target)

InvocationCredentialsPolicy

Credentials copy Credentials

Figure 2-29 Multiple Credentials

The Credentials::copy operation can be used to make a copy ofGhedentials
object. The nevCredentials object (i.e., the copy) can then be modified as necessary,
using its interface, before it is used in an invocation.

When all required changes have been made the credentials may be specified as the
credentials for all subsequent invocations by the setting of an
InvocationCredentialsPolicy on PolicyCurrent .

At any stage, a client or target object can find the default credentials for subsequent
invocations by callingPolicyCurrent::get_policy_overrides , asking for the
InvocationCredentialsPolicy . These default credentials will be used in all
invocations using object references in which the invocation credentials have not been
overridden.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforce a
least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations with
different targets differently.

There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on the
credentials, these apply to subsequent object invocations using those credentials. It
can therefore apply to invocations of many target objects.

2. OverridinglnvocationCredentialsPolicy on the target object reference. The
policies thus set apply to subsequent invocations, which this client makes using this
reference.

Security Service, v1.7 March 2001

2

In both cases, the change applies immediately to further object invocations associated
with these credentials or this object reference.

set_attributes
Client Credentials

set_policy_overrides

Object
for QOP Policy and Invocation Credentials Polic

Figure 2-30 Changing Security Attributes

Setting any of these attributes may result in a new security association being needed
between this client and target.

Note —This specification does not contain an operation to restrict when and where
these privileges can be used in target objects or delegated, though this may be specified
in the future (see “Target Control of Message Protection” in Appendix F).

A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with

that target, and then use the object reference thus obtained to carry out the invocation.

A client may want to specify that a particular quality of protection applies only to
selected invocations of a target object. For example, it may want confidentiality of
selected messages. The client can do this by w&ihgolicy_overrides , specifying

a QOP Policyon the new object reference. It can continue to use the original object
reference for those invocations where confidentiality is no longer required.

The set_policy_overrides operation returns a new object reference to the same

target object as the one on which this operation is invoked. This new reference has the
policy overrides set in it. Any invocations through this new reference will use the
overrides set in the reference. The creation of this newly annotated object reference has
no effect on the target object.

Equivalentget_ operations are also provided to permit an application to determine the
security specific options currently requested, for exarmgple attributes (privileges,
and other attributes such as audit id).

The security features, invocation credentials, gapdmechanisnrelated policies that
are in effect on a given object reference can be obtained by usiggtthmlicy
operation asking for the appropriate type of policy object.

Security Service, v1.7 Security Architecture March 2001 2-45

2-46

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but the
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current, and hence th€redentials there.

request request

target obj re

ORB
Security
Services

ORB
Security
Services

IORBCore - : - I

F—— —

Figure 2-31 Making a Secure Invocation

Note —For any given invocation, it is target and client security policy that determines
which (if any) ORB Security Services mediate that invocation. If the policy for a given
invocation requires no security, then no services will be used. Similarly, if only access
control is required, then only the ORB Security Service responsible for the provision
of access control will be invoked.

Security at the Target

At the target, as at the client, tlairrent object is the representative of the local
execution context within which the target object’'s code is executing Clinent

object can be used by the target object, or by ORB and Object Service code in the
target object’'s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Security Service, v1.7 March 2001

Target application

access decision

get_attributes

Credential

Figure 2-32 Target Object Security

A security-aware target application may obtain information about the attributes of the
principal responsible for the request by invoking @arent::get_attributes

operation. The target normally usgst_attributes to obtain the privilege attributes it
needs to make its own access decisions.

WhenCurrent::get_attributes is invoked from the target object it returns the
attributes from the incomin@redentials from the client. When
Current::get_attributes is invoked by a client the attributes from tBesdentials

of the user (e.g., the one that was created bythecipalAuthenticator) is returned.
Invoking Credentials::get_attributes always returns the attributes contained in that
Credentials object.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object often
calls another object to perform some function, which calls another object and so on.

Each intermediate object in such a chain acts first as a target, and then as a client, as
shown in Figure 2-33 on page 2-48.

Security Service, v1.7 Security Architecture March 2001 2-47

Intermediate Object
(acts as target, then client)

incomin request
request to next target

(delegated and/o
object’s own)

Figure 2-33 Security-unaware Intermediate Object

For a security-unaware intermediate objé&tyrent has a reference to the security
context established with the incoming client. When this intermediate object invokes
another target, either the delegated credentials from the client or the credentials for the
intermediate object’s principal (or both) become the current ones for the invocation.
The security policy for this intermediate object governs which credentials to use, and
the ORB Security Services enforce the policy, passing the required credentials to the
target, subject to any delegation constraints. The intermediate object’s principal will be
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:
® Use the privileges of any delegated credentials for access control.
® Decide which credentials to use when invoking further targets.

® Restrict the privileges available via these credentials to further clients (where
security technology permits).

2-48 Security Service, v1.7 March 2001

Intermediate Object
(acts as target, then client)

get_credentials set_credentials

incomin request
request to next target

Current

invocation
credentials

received
credential

Figure 2-34 Security-aware Intermediate Object

After a chain of object calls, the target can €lirrent::get_attributes as
previously described. Note that this call always obtains the privilege and other
attributes associated with the first of the received credentials.

The target can use thieceived_credentials attribute ofCurrent to get the

incoming credentials. After a composite delegation (see Section 2.1.6, “Delegation,” on
page 2-13), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as the
initiator). If a target object receives a request which includes credentials for more than
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, modify
and then delegate them, though not all implementations will support this modification.
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute ofCurrent), and then use

Credentials::set_attributes to modify them. Finally, the intermediate object can
place the received credentials inlamocationCredentialsPolicy for use in making
subsequent invocations.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using tk¥bject::set_policy_overrides operation to create a
copy of the object reference to the target with the required QOP set as override in the
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

Security Service, v1.7 Security Architecture March 2001 2-49

2-50

The intermediate object may be a principal and wish to use its own identity and some
specific privileges in further invocations, rather than delegating the ones received. In
this case, it can call authenticate operation ofRhacipalAuthenticator to obtain

the appropriate credential, and then &édentials::set_attributes to establish the
appropriate rights.

If the intermediate does not have its own individ@egdential object (for example, as

it does not have an individual security name) but instead shares credentials with other
objects, it can us thewn_credentials attribute ofCurrent to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then &Lredentials::set_attributes , etc. on these, as
appropriate and then use it to obtain a new object reference for the object it intends to
invoke, with invocation credentials policy overridden using @redentials

constructed above.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocations.
The secure object system is aware of the mechanisms available to both client and target
object and can choose an acceptable mechanism. However, some security-sophisticatec
applications may need to know about, or even control the choice of mechanisms. They
can get information on the currently in effect mechanism policy by using the

get_policy operation of the object reference. They can do invocations using a

different mechanism from the default by usisef_policy overrides operation of

the object reference to obtain a new object reference with the desired mechanism
policy set as override in it and use it for invocations that need the new mechanism.

Application Access Policies

Applications can enforce their own access policies. No standard application access
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to take
into account data values such as the amount of money involved in a funds transfer.

However, it is recommended that the application use an access decision object similar
to the one used for the invocation access policy. This is to isolate the application from
details of the policy. Therefore, the application should decide if access is needed as
shown in Figure 2-35 on page 2-50.

Access
Decision
Object

L access_allowed
Application

Figure 2-35 access_allowed Application
The application can specify the privileges of the initiating principal and a variety of

authorization data, which could include the function being performed, and the data it is
being performed on.

Security Service, v1.7 March 2001

2

An application access policy can be used to supplement the standard invocation access
policy with an application-defined policy. Such a policy might, for example, take into
account the parameters to the request. In this case, the authorization data passed to th
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed using
the domain structure as for other policies (see Section 2.2.5.2, “Administrative Model,”
on page 2-58). In this case, the application obtaing\tloess Policy object as shown

in Figure 2-36.

get_security_policy()

Security

Application

Manager

Figure 2-36 get_security_policy Application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Audit
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated with
domains and managed via the domain structure. No standard application level audit
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to object
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event type
and its success or failure, thadit_id , and the time. (Management of such policies

can generally be done using the interfaces for audit policy administration defined in
Section 2.4.5, “Audit Policies,” on page 2-129, by specifying new selectors,
appropriate to the application concerned.)

Whether or not the application uses an audit policy, it usesudit Channel object

to write the audit records. Orfaudit Channel object is created at ORB initialization
time, and this is used for all system auditing. Applications can use different audit
channels. The way atudit Channel object handles the audit records is not visible to
the caller. It may filter them, route them to appropriate audit trails, or cause event
alarms. DifferentAudit Channel objects may be used to send audit records to
different audit trails.

Security Service, v1.7 Security Architecture March 2001 2-51

2-52

Applications and system components both invokeatindit write operation to send
audit records to the audit trail.

it wri .
Application audit_write Audit Channel

Figure 2-37 audit_write Application

If an application is using an audit policy administered via domains, it usAadin
Decision object (see Section 2.3.10, “Security Audit,” on page 2-99) to decide
whether to audit an event. It can find the appropratéit Decision object using the
audit_decision attribute ofCurrent as follows.

audit_needed Audit Decisio
audit_channel Object

Application

audit_decision

Figure 2-38 Audit Decision Object

The application invokes thaudit needed operation of theAudit Decision object,

passing the values required to decide whether auditing is needed. (This set of selectors
could include, for example, the type of event, its success or failure, the identity of the
caller, the time, etc. See administration of audit policies in Section 2.3.10, “Security
Audit,” on page 2-99.)

The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. Abdit Decision

object uses this Audit Channel Id to gain access to the corresponding Audit Channel
and return it to the user. Thus the application can use an Audit Channel associated with
the application (and these can link into the system audit services). If so, the application
uses thaudit_channel attribute of theAudit Decision object to find theAudit

Channel object to use. However, applications can create their own Audit Channels
with the help of the underlying audit service, and register their Audit Channel Ids with
the appropriatédudit Policy object. The association between the Audit Channel Id

and the audit channel is maintained by the underlying audit service, which is not
specified in this chapter.

Security Service, v1.7 March 2001

Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be used
by default for messages or for non-repudiation evidence.

To do this, it can calSecurityManager::get_security_policy , and then the
appropriateget_ operation of the policy object obtained as defined in Section 2.4,
“Administrator’s Interfaces,” on page 2-115 (if permitted).

Non-repudiation

The non-repudiation services in this specification provide generation of evidence of
actions and later verification of this evidence, to prove that the action has occurred.
There is often data associated with the action, so the service needs to provide evidence
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It is
envisioned thatlelivery servicesvill be implemented to deliver this evidence to where

it is needed aneévidence storewill be built for use by adjudicators. As different

services may have different requirements for these, interfaces for them are not included
in this specification.

Non-repudiation Credentials and Policies

Non-repudiation operations are performedMRCredentials . As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s key (or
provide access to it) as needed to sign the evidence.

An application can set security attributes related to non-repudiation using the
NRCredentials::set NR_features operation.

. set_NR_features)
Application NRCredential

Figure 2-39 set_NR_features Operation

Theset NR_features can be used to specify, for example, the quality of protection
and the mechanism to be used when generating evidence using these credentials.

By default, the features are those associated with the non-repudiation policy obtained
by invoking SecurityManager::get_security_policy specifying
Security::SecNonRepudiation . However, non-repudiation policies may come from
other sources. For example, the policy to be used when generating evidence for a
particular recipient may be supplied by that recipient.

Security Service, v1.7 Security Architecture March 2001 2-53

2-54

There is arfNRCredentials::get NR_features operation equivalent to
set NR_features .

Evidence generation and verification operations are also performed on
NRCredentials objects. These are described next.

Using Non-Repudiation Services

An application can generate evidence associated with an action so that it cannot be
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and calls the
generate_token operation of amNRCredentials object.

generate_token
(e.g., proof of creation)

Application NRCredential

Figure 2-40 generate_token Operation

This evidence is created in the form of a non-repudiation token rendered unforgeable.
Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

Depending on the underlying cryptographic techniques used, the evidence is generated
as:

® A secure envelope of data based on symmetric cryptographic algorithms requiring
what is termed to be a trusted third party as the evidence generating authority.

® A digital signature of data based on asymmetric cryptographic algorithms which is
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and the
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiation
token. A Notary service may be required to provide assurance about the properties of
the data.

Complete Evidence

Non-repudiation evidence may have to be verified long after it is generated. While the
information necessary to verify the evidence (e.g., the public key of the signer of the
evidence, the public key of the trusted time service used to countersign the evidence,
the details of the policy under which the evidence was generated, etc.) will ordinarily
be easily accessible at the time the evidence is generated, that information may be
difficult or impossible to assemble a long time afterward.

Security Service, v1.7 March 2001

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence inside
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain “complete” evidence.

There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition of
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signature.

To facilitate the generation of complete evidence, the information returned from the
calls which verify evidence and request formation of complete evidence, includes two
indicators ¢omplete_evidence_before andcomplete_evidence_after)

indicating the earliest time at which complete evidence may usefully be requested and
the latest time at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in a
response declaring the evidence to be “conditionally valid.” This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer declaring
his key compromised) might cause the evidence to be invalid when complete.

Figure 2-41 on page 2-56 illustrates the policy considerations relating to generation of
complete evidence, and the sequence of actions involved in generating and using
complete evidence.

Security Service, v1.7 Security Architecture March 2001 2-55

2-56

user key repudiation window

trusted time service

|
|
countersignature |
|
|
|

window
r— - - — — al
| | '
| | Time
(< > >
¢ complete_evidence_before complete_evidence_after
event Qi
data A
evidence evidence complete
token token evidence
A with token
trusted
generate | timestamp form_complete_evidence vefify
token evjdence
form
complete_
evidence

Non-Repudiation Service

Figure 2-41 Non-repudiation Service

An application may receive a token and need to know what sort of token it is. This is
done usingget_token_details . When the token contains evidence,

get_token_details can be used to extract details such as the non-repudiation policy,
the evidence type, the originator’'s name, and the date and time of generation. These
details can be used to select the appropriate non-repudiation policy and other features
(usingset_NR_features), as necessary for verifying the evidence. When the token
contains a request to send back evidence to one or more recipients, then if appropriate,
evidence can be generated.

Security Service, v1.7 March 2001

An application verifies the evidence using trexify _evidence operation.

verify_evidence NRCredential

Application

Figure 2-42 verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

An application receiving a message with proof of origin may handle it as shown in
Figure 2-43.

Application
Object

<

incoming request
with message plu
evidence (e.g., pr
of origin)

f

deliver messageget_token_details
and evidence to & verify_evidence
originator (e.g., (e.g., proof of
proof of receipt) origin)

generate_evidence
(e.g., proof of
receipt)

Figure 2-43 Proof of Origin Message

® The application receives the incoming message with a non-repudiation token that
has been generated by the originator.

® The application now wishes to know the type of token that it has received. It does
this by calling theNRCredentials::get_token_details operation. The token may
be:
« A request that evidence be sent back (such as an acknowledge of receipt)
« Evidence of an action (such as a proof of creation)
* Both evidence and a request for further evidence.

® The application’s next action depends on which of the three cases applies.

« In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using
NRCredentials::generate_token

Security Service, v1.7 Security Architecture March 2001 2-57

2-58

2.25.2

« In the second case, the application retrieves the data associated with the evidence
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence , presenting the token alone or the
concatenation of the token and the data.

 In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence , and then generating evidence if appropriate,
as in the first case.

® |f the application receives a token that contains valid evidence, and wishes to store
it for later use, it needs to make sure that it holds all the necessary information. It
may need to calNRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

® When the application has generated evidence as the result of a request from the
originator of the message, the application must send it to the various recipients as
indicated in the NR token received.

Using Non-repudiation Services for Adjudication

Adjudication applications use th¢RCredentials::verify_evidence operation,
which must return complete evidence to settle disputes.

Administrative Model

The administrative model described here is concerned with administering security
policies.

® Administration of security environment domains and security technology domains
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

® Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

® Creating objects in a secure environment subject to the security policies
®* Finding the domain managers that apply to this object.

® Finding the policies for which these domain managers are responsible.

® Setting security policy details for these policy objects.

® Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies described
are security policies.

Security Policies
Security policies may affect the security enforced:

Security Service, v1.7 March 2001

2

® By applications. In general, enforcing policy within applications is an application
concern, so it is not covered by this specification. However, where the application
uses underlying security services, it will be subject to their policies.

®* By the ORB Security Services during object invocation (the main focus of this
specification).

® |n other security object services, particularly authentication and audit.

® |n any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

This specification defines the following security policy types:

Invocation access policy

The object that implements the access control policy for invocations of objects in this
domain.

Invocation audit policy

This controls which types of events during object invocation are audited, and the
criteria controlling auditing of these events.

Secure invocation policy
This specifies security policies associated with security associations and message
protection. For example, it specifies:

« Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

* Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and those
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objects in
the domain.

Invocation delegation policy

This controls whether objects of the specified type in this domain, when acting as an
intermediate in a chain, by default delegate the received credentials, use their own
credentials, or pass both.

Application access policy

This policy type can be used by applications to control whether application functions
are permitted. Unlike invocation policies, it does not have to be managed via the
domain structure, but may be managed by the application itself.

Application audit policy

This policy type can be used by applications to control which types of application
events should be audited under what circumstances.

Security Service, v1.7 Security Architecture March 2001 2-59

2-60

Non-repudiation policy

Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

Construction policy

This controls whether a new domain is created when an object of a specific type is
created.

Domains at Object Creation

Any object that is accessible through an ORB must have an object reference created for
it. This is often done as a part of the procedure for creating the object by a factory
object. When a new object reference is created in a secure environment, the ORB
implicitly associates the object reference, and hence the associated object, with the
following elements forming its environment.

® One or moreSecurityPolicy Domains defining all the policies to which the object
is subject.

® The SecurityTechnologyDomains,characterizing the particular variants of security
mechanisms available in the ORB.

® ParticularSecurity Environmenbomainswhere relevant.

The application code involved in the creation of an object, and its reference may not
need to be aware of security to protect the objects it creates, if the details are
encapsulated in Bactory object. Automatically making an object reference and hence
the associated object a member of policy domains on creation ensures that mandatory
controls of enclosing domains are not bypassed.

The ORB will establish these associations when the creator of the object calls
PortableServer::POA:.create reference or
PortableServer::POA::create_referece_with_id (see the Portable Object Adapter
chapter of th&Common Object Request Broker: Architecture and Specifigatioan
equivalent. Some or all of these associations may subsequently be explicitly referenced
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

In some cases, when a new object reference is created, a new domain is also needed.
For example, in a banking system, there may be a domain for each bank branch, which
provides policies for bank accounts at that branch. Therefore when a bank branch is
created, a new domain is needed. As for a newly created object’s domain membership,
if the application code creating the object and the object reference to it is to be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this type
in this domain require a new domain.

Security Service, v1.7 March 2001

2

This construction policy is enforced at the same time as the domain membership (i.e.,
by POA::create_reference * or equivalent). For details, see the Portable Object
Adapter chapter of th€Eommon Object Request Broker: Architecture and

Specification

Other Domain and Policy Administration

Once an object reference has been created as a member of a policy domain, it may be
moved to other domains using the appropriate domain management facilities (not
specified in this chapter).

Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These security
policy objects are administered as defined in this specification.

The following diagram shows the operations needed by an administrative application to
manage security policies.

)

get_domain_managers

Application
Object

get_domain_managers set_policy_option
get_domain_policy(policy type)

Object

Domain Polic
Reference p

Manager Object

Figure 2-44 Managing Security Policies

Finding Domain Managers

An application can invoke thget_domain_managers operation on an object

reference to obtain a list of the immediately enclosing domain managers for that object
(i.e., the object associated with the object reference). If these do not have the type of
policy required, a call can be madeget_domain_managers on one of these

domain managers to find its immediately enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calliey domain_policy on the
domain manager specifying the type of policy it wants (e.g., client secure invocation
policy, application audit policy). This returns tRelicy object needed to administer
the policy associated with this domain. E&dilicy object supports the operations
required to administer that policy.

Security Service, v1.7 Security Architecture March 2001 2-61

2-62

2.2.5.3

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include default
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See the “Facilities Not in This Specification” appendix.)

If the policy that applies to the domain manager’s own interface is required (rather than
the one for the objects in the domain), tlggt_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details

Having found the required securiBolicy object, the application uses its interface to
set the policy.

The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to specify
delegation mode used when the object acts as an intermediate in a chain of object
invocations, whereas an access policy will need to have an operation that makes it
possible to specify who can access the objects.

Administrative interfaces are defined in Section 2.4, “Administrator’s Interfaces,” on
page 2-115, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

Different administration may be needed if standard policies are replaced by different
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operationckess

The access policy is used to decide whether a user with specified privileges has
specifiedrights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operations
of an interface. The administrator cset_required_rights on this object.

The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation level security
objects, which are not directly accessible to applications. These same implementation
objects are also used to support the application-visible security objects and interfaces
described in “The Model as Seen by Applications” on page 2-41 and “Administrative
Model” on page 2-58.

There are two places where security is provided for applications, which are unaware of
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a domain,
and therefore subject to the domain’s policies.

Security Service, v1.7 March 2001

Policies

Implementor’s View of Secure Invocations

Figure 2-45 shows the implementation objects and services used to support secure
invocations.

Target
Object
request reques‘
- ~
target obj ref]
~

>

~

" Target

Binding Binding Policies

Security \’

Services

ORB Security
(and other)

Services

ORB Securit
(and other)

Services

Security
Services

4

I ORB Core

Figure 2-45 Securing Invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target object
to handle the security of the object invocation. They may be interspersed with other
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the client
and target object, and hence the invocation. The ORB and ORB Services establish the
binding between client and target object as defined in ORB Services, under

Section 2.2.2.2, “ORB Services,” on page 2-34. The ORB Security Services call on the
security services to provide the required security.

Security Policy

At the client, the security policies associated with it are accessed by the ORB Security
Services using th8ecurityManager::get_security_policy = operation specifying

the type of policy required. At the client, the invocation policies that will be used for a
specific invocation through a specific object reference can be inspected using the

Security Service, v1.7 Security Architecture March 2001 2-63

2-64

get_policy operation on that object reference. At the target,
SecurityManager::get_security _policy is used in a similar way to obtain the
policy associated with the target object.

ORB
Security
Service

manipulate policy

get_security_policy(type of policy)

Policy
Object

Security
Manager

Figure 2-46 get_security_policy Operation

Once the policy object has been obtained, the ORB Service uses it to enforce policy.
The operations used to enforce the policy depend on the type of policy. In some cases,
such as secure invocation or delegation, the ORB Service invajets aperation of

the appropriaté®olicy object (e.g.,

SecurelnvocationPolicy::get_association_options ,
DelegationPolicy::get_delegation_mode) specifying the particular policy options
required (e.g., whether confidentiality is required, and the delegation mode,
respectively). It then uses this information to enforce the policy, for example, pass the
required policy options to the Vault to enforce.

Decision objects corresponding to certain policy objects include rules, which enforce
the policy. For example, an access decision object corresponding to the access policy
object has theccess_allowed operation, which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 2-47 on page 2-65.

Security Service, v1.7 March 2001

reply Security Services
request

Access | per request 'Xiggeests _ | Access
Control Decisio Control

to set up >
o Securit
| Secunty - Vault Context)~
associlation
Secure Secure
Invocation create create Invocation

per message’ Security { Vault]
to protect \ Context
message

||

I ®._ ORB Core B /4

-
| T

ORB Security Service{

Figure 2-47 ORB Security Services

Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation is
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the client’s initial use of this object, it may need
to establish a security association between client and target object. It also protects
the application requests and replies between client and target object.

The security services they use are discussed next.

Access Policy

An Access Decision object is used to determine if a given operation on a specific
target object is permitted. It is obtained by the ORB service using the
access_decision attribute of theCurrent object. Since théccess Decision

objects are locality constrained, of necessity the access decision objects at the client
and target are distinct.

Security Service, v1.7 Security Architecture March 2001 2-65

2-66

The ORB service invokes treecess_allowed operation on thé\ccess Decision

object specifying the operation required, the principal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access control
policy, which may be discretionary using ACLs or capabilities, mandatory labels
usage, etc.

The Access Decision object uses the access policy to decide what rights the
principal has by invoking thget_effective_rights operations on the appropriate
Access Policy object.

If the access policies usi@ghts (rather than directly identifying that this operation is
permitted), theAccess Decision object now invokeget required_rights on the
RequiredRights object to find what rights are needed for this operation. It compares
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the future
to handle overlapping access policy domains as described in the “Facilities Not in This
Specification” appendix.

Required
Access Rights

Policy

get_effective_rights . get_required_rights

access_allowed Access

Decision

Figure 2-48 Access Decision Object

Vault

The Vault object is responsible for establishing the security association between client

and target. It is invoked by the Secure Invocation ORB Service at the client and at the
target (usingnit_security _context andaccept_security_context). The Vault

creates the security context objects, which are used for any further security operations
for this association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 2.3.3, “Authentication of Principals,” on
page 2-73. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by the Vault when an intermediate
object invokes another object.

The Vault, like the security context objects it creates, is invisible to all applications.

Security Service, v1.7 March 2001

Security Context

For each security association, a paiSeturity Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Security Context objects maintain the state of the association, such as the credentials
used, the target’s security name, and the session keysTvadid andrefresh
operations are supported to check the validity of the context and refresh it if possible.

Security Context objects provide operations for protecting messages for integrity and
confidentiality such aprotect_message , reclaim_message .

They also have theeceived_credentials attribute, which is made available via the
Current object.

A security context can persist for many interactions and may be shared when a client
invokes several target objects in the same trusted identity domain. Although neither the
client nor target is aware of an “association,” it is an important optimizing concept for
the efficient provision of security services.

Relationship between Implementation Objects for Associations

There is not always a one-for-one relationship between client-target object pairs and
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a security
context may be shared between this client’s calls on more than one target object. This
is normally the case if the target objects share a security name, as shown in Figure 2-49
on page 2-68. Note that the Vault decides whether to use the same or a different
security context based on the target security name (which may be the name of an
object or trusted identity domain).

Security Service, v1.7 Security Architecture March 2001 2-67

2-68

obj ref obj ref
for T1 for T2

obj ref
for T3

Securit
context for

C-S1

Securit
context for

C-T3

T3 messages

Object sharing
security name S1

Target
Object
T3

Current

Securit
context for

C-s1

T2 messages

T1 messages

Figure 2-49 Target Objects Sharing Security Names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security

Policy, Environment, and Technology domains as described in Section 2.2.5.2,
“Administrative Model,” on page 2-58.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

For policy domains, the construction policy of the application or factory creating the

object is used as shown in Figure 2-50 on page 2-69.

Security Service, v1.7

March 2001

Application

BOA::create or equivalent

use policy

ORB

construction

policy
object

get_policy(construction policy)

application’s
own object
reference

Figure 2-50 Object Created by Application or Factory

The application (which may be a generic factory) object calls

POA::create_reference or equivalent to create the new object reference. The ORB
obtains the construction policy associated with the object reference to be created. If the
application that is attempting to create the object reference is itSS0fRBA object,

then the ORB attempts to obtain the construction policy associated with it. If the ORB
is unable to obtain a construction policy for the object reference to be created, it uses a
default construction policy, which does not create a new domain.

The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object.

If a new domain is not needed and the application is itself not an object and hence has
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associated
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created object’s reference (See the ORB
Interface chapter of thEommon Object Request Broker: Architecture and

Specificatioi.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain, or an ORB specific default set of policies in the case that the object
reference was created in a situation where there is no enclosing domain (e.g., by an
application that is itself not @ORBA object and hence has no domain associated with

it).

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management operations. Please note:
these operations do not form a part of this specification.

Security Service, v1.7 Security Architecture March 2001 2-69

2-70

2.25.4

application
visible objects

implementation
ORB services

implementation
security objects

administration
objects

Summary of Objects in the Model

The previous sections have described the various security-related objects, which are
available to applications, administrators, and implementors.

Figure 2-51 shows the relationship between the main objects visible in different views
for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation to
generate and check evidence of actions.

authentication and authorization and accountability
security association access control
Principal Application i Audit
s Current pp 4 Audit uai
Authenticator Access Decision Decision || Channel
| |
Credentials Non-repud.iation
Credentials
Secure Invocation Access Control
Securit - Audit Audit
Vault Contex¥ Access Decision Decision || Channel
i ici . Invocation '
Secure Invocation Policies Access Policies o ﬁgg:tn
Policy Policy

Delegation Policy ‘

Domain Manager

Figure 2-51 Relationship Between Main Objects

Credentials are visible to the application after authentication, for setting or obtaining
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management operations to allow policies to be maintained. These
operations depend on the type of policy. For example, management of a mandatory
access control policy using labels is different from management of an ACL. However,
at run-time, an access decision object is used, which has a standard “check if access is

Security Service, v1.7 March 2001

2

allowed” operation, whatever the access control policy used. The access policy object
has the management operations, whereas the access decision object has the runtime
decision operations.

The diagram does not show:
® Application objects (client, target object, target object reference at the client).
® The ORB core (though the security ORB services it calls are shown).

® The construction policy object.
2.3 Application Developer’s Interfaces

2.3.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see Section 2.2.1.3, “Application Developer View,” on page 2-30.

Please note that applications may be completely unaware of security, and therefore not
need to use any of these interfaces. In general, applications may have different levels of
security awareness. For example:

® Applications unaware of security, so that an application object, which has not been
designed with security in mind, can participate in a secure object system and be
subject to its controls such as:

® Protection default quality of protection on object invocations.
¢ Control of who can perform which operations on which objects.
¢ Auditing of object invocations.

® Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

® Applications wanting some control of the security of its requests on other objects,
for example, the level of integrity protection of the request in transit.

® Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

® Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invocation
that fails because the security infrastructure does not permit it, will raise the standard
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is not supported in this implementation will raise a
CORBA:NO_IMPLEMENT exception. Any parameter that has inappropriate

values should be flagged by raising 6®RBA::BAD_PARAM exception. No
security-specific exceptions are specified.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-71

2-72

23.1.1

2.3.1.2

Security Functionality Packages

Two security functionality packages and one optional security functionality package
are defined in this specification. In addition, the Security Ready functionality packages
are also described in this and the two following sections.

Security Functionality Level 1 Package

Security functionality Package 1 provides an entry level of security functionality that
applies to all applications running under a secure ORB, whether aware of security or
not. This includes security of invocations between client and target object, message
protection, some delegation, access control, and audit.

The security functionality is in general specified by administering the security policies
for the objects, and is mainly transparent to applications.

Security Functionality Level 1 Package includes operations for applications as follows:
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 2.3.4, “The Credentials
Object,” on page 2-77, and Section 2.3.12, “Access Control,” on page 2-102).

Security Functionality Level 2 Package

This security functionality level provides further security functionality such as more
delegation options.

It also allows an application aware of security to have more control of the enforcement
of this security. Most of the interfaces specified in this section are only available as
part of this functionality level. Note that although implementations must support all
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, while
maintaining the same core semantics; some implementations will therefore be capable
of enforcing a wider variety of policies than others.

Optional Functionality Package
The only specified optional facility specified here is non-repudiation. The interfaces
for this are specified in Section 2.3.14, “Non-repudiation,” on page 2-106.

It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice of
security policies and mechanisms. Where possible, they are based on international
standard interfaces. Several of the operations irCtieglentials interface are based

on those of GSS-API.

Security Service, v1.7 March 2001

Data Types

Many of the security data types used by applications are also used for implementation
interfaces; therefore, these are defined in a separate module called Security. See
Appendix B, “General Security Data Module,” on page B-1 for the details of the data
types used by the interfaces.

Some data types, such as security attributes and audit events, have an extensible set o
values, so the user can add values as required to meet user-specific security policies. In
these cases, a family is identified, and then a set of types or values for this family.
Family identifiers 0-7 are reserved for OMG-defined families, and therefore standard
values. More details of these families and associated data types are given in the
“Values for Standard Data Types” in Appendix B.

In the interface specifications in the rest of this section, data types defined in module
Securityare included without the qualifyin§ecurity:: for ease of readability. The full
definitions are included in Appendices B and C.

2.3.2 Finding Security Features

2.3.2.1 Description of Facilities

An application can find out what security facilities this implementation supports, for
example, which security functionality level and options it supports. It can also find out
what security technology is used to provide this implementation.

The CORBA::ORB::get_service_information operation is used to determine what
security features are supported by this ORB (see the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specifidatianrequest
information about Security service tREORBA::ServiceType constant value,
CORBA::Security should be used. To see what the definition of various service
options relevant to security are see the constant definitions of type
CORBA::SecurityOptions in the IDL Security module located in Appendix B.

2.3.3 Authentication of Principals

2.3.3.1 Description of Facilities

A principal must establish its credentials before it can invoke an object securely. For
many clients, there are default credentials, created when the user logs on. This may be
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the business
application client, so that business applications can remain unaware of security.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-73

2-74

2.3.3.2

In most cases, principals must be authenticated to establish their credentials. However,
some services accept requests from unauthenticated users. In this case, if the principal
has no credentials at the time the request is made, unauthenticated credentials are
created automatically for it.

If the user (or other principal) requires authentication and has not been authenticated
prior to calling the object system, the (login) client must invokePtecipal

Authenticator object to authenticate, and optionally select attributes for, the principal
for this session. This creates the requiGeddentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can be
used for other operations on tBeedentials . If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations as
specified in Section 2.3.14, “Non-repudiation,” on page 2-106.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multi-step authentication method is used. In this case, the
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there are
bothauthenticate andcontinue_authentication operations of thé&rincipal
Authenticator object.

There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the object
wants to specify particular attributes.

The Principal Authenticator object creates &redentials object and places it on
the Current object’sown_credentials list only afterauthenticate or
continue_authentication returns a value ofSecAuthSuccess ." The Principal
Authenticator always places new credentials at the beginning afathecredentials
list. The application may removeredentials objects from thewn_credentials list
with the SecurityManager::remove_own_credentials operation.

The Principal Authenticator object is a locality constrained object.

The SecurityLevel2::PrincipalAuthenticator Interface

This section describes thincipalAuthenticator interface that has following
operations.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that th@ault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(

in MechanismType mechanism

);

Security Service, v1.7 March 2001

Parameters

mechanism

are valid.

Contains the mechanism for which the authentication methods

Return Value

The list of authentication methods supported by BriacipalAuthenticator object
for the particular mechanism.

authenticate

This operation is called to authenticate the principal and optionally request privilege
attributes that the principal requires during its capsule specific session with the system.
It creates a capsule specificedentials object including the required attributes and is
placed on the&SecurityManager object'sown_credentials list according to the
credential’'s mechanism type.

AuthenticationStatus authenticate(

in AuthenticationMethod method,
in MechanismType mechanism;
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data
);
Parameters
method The identifier of the authentication method used.
mechanism The security mechanism with which to create ¢hedentials .

security_name

The principal’s identification information (e.g., login name).

auth_data The principal’'s authentication information such as password or |
term key.

privileges The privilege attributes requested.

creds This parameter contains the locality constrained object referenc

the newly create@redentials object. It is usable and placed on the

Current object'sown_credentials list only if the return value is
‘SecAuthSuccess .

ong

e of

auth_specific_data

Information specific to the particular authentication service used.

)

continuation_data

If the return parameter from the authenticate operation is
‘SecAuthContinue |’ then this parameter contains challenge

information for authentication continuation.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-75

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’

Indicates that the object reference of the newly created
initialized credentials object is available in ttreds
parameter.

‘SecAuthFailure’

Indicates that authentication was in some way inconsist
or erroneous, and therefore credentials have not been
created.

‘SecAuthContinue’

Indicates that the authentication procedure uses a
challenge/response mechanism. Thals contains the
object reference of a partially initializextedentials object.
The continuation_data indicates details of the challenge.

‘SecAuthExpired’

Indicates that the authentication data contained some
information, the validity of which had expired (e.qg., expir
password)Credentials have therefore not been created.

continue_authentication

This operation continues the authentication process for authentication procedures that
cannot complete in a single operation. An example of this continuation is a
challenge/response type of authentication procedure.

AuthenticationStatus continue_authentication(

in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data
)i
Parameters
response_data The response data to the challenge.
creds Reference of the partially initializedredentials object. The
Credentials object is fully initialized only when return parameter|is
‘SecAuthSuccess .
continuation_data If the return parameter from thlentinue_authentication operation
is ‘SecAuthContinue ,’ then this parameter contains challenge
information for authentication continuation.
auth_specific_data Information specific to the particular authentication service used.

2-76 Security Service, v1.7

March 2001

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’ Indicates that th€redentials object whose reference was
identified by thecreds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a further
challenge/response. Tiieedentials object whose reference
was identified in thereds parameter is still only partially
initialized. Thecontinuation_data indicates details of the
next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). Th€redentials object referred to by thereds
parameter is not valid.

2.3.3.3 Portability Implications

The authenticate andcontinue_authentication operations allow different
authentication methods to be used. However, methods available are dependent on
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mechanisms,
(e.g., those involving hardware such as smart cards or finger print readers) may also
require use of device-specific objects so the client using such objects will not be
portable to systems which do not support such devices. It is therefore recommended
that use of both the authenticate operations described here and any device-specific one:
be confined to a user sponsor or login client, or that such authentication is done prior
to calling the object system, where the credentials resulting from this can be used in
portable applications.

2.3.4 The Credentials Object

2.3.4.1 Description of Facilities

A Credentials object represents a particular principal’s credential information
specific to the capsule. It includes information such as that principal’s privilege and
identity attributes, such as an audit id. (It also includes some security-sensitive data
required when this principal is involved in peer entity authentication. However, such
data is not visible to applications.)

EachCredentials object is mandated to carry at least one and only one attribute of
type Public. The Public attribute has a defining authority of OMG, its value is empty,
and it serves only to mark tl&redentials with an attribute stipulating that the

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-77

2-78

2.3.4.2

principal, authenticated or not, is a member of the “general public.” This requirement
allows access policies to be specified for the general public in much the same way as
policies based on other attributes are specified.

The Credentials object is a locality constrained object.

An application may want to:

® Specify security invocation options to be used by default whenever these credentials
are used for object invocations.

®* Modify the privilege and other attributes in the credentials, for example, specify a
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of tleedentials object first, and then modify the
new copy.

® |nquire about the security attributes currently in the credentials, particularly the
privilege attributes.

® Check if the credentials are still valid or if they have timed out, and if so, refresh
them.

Credentials objects are created as the result of:
® Authentication (see Section 2.3.3, “Authentication of Principals,” on page 2-73).
® Copying an existingCredentials object.

® Asking for aCredentials object viaCurrent (see Section 2.3.9, “Security
Operations on Current,” on page 2-97).

The way these credentials are made available for use in invocations is described in
Section 2.2, “Security Architecture,” on page 2-28, and defined in detail in

Section 2.3.7, “Operations on Object Reference,” on page 2-86, and Section 2.3.9,
“Security Operations on Current,” on page 2-97.

Credentials used for non-repudiation also support further facilities as described in
Section 2.3.14, “Non-repudiation,” on page 2-106.

The SecurityLevel2::Credentials Interface

The following operations are in th&redentials interface.

copy
This operation creates a n@vedentials object, which is an exact duplicate (a “deep

copy”) of theCredentials object which is the target of the invocation. The return
value is a reference to the newly created copy of the ori@iredentials object.
Credentials copy();

Parameters

None

Security Service, v1.7 March 2001

Return Value

An object reference to a copy of tieedentials object, which was the target of the
call.

destroy

This operation destroys th@éredentials object that it is invoked on. In general, the
caller is always responsible for destroying its copy ofChedentials object after it is

done with it. WherCredentials are used as “in” parameters the callee always makes
a copy if needed. Then onwards the callee is responsible for managing the life-style of
the copy that it makes. In case ©fedentials objects that are returned as result, the
caller is responsible for destroying it. In case of “out” parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The caller is
responsible for providing thread safety foredentials parameters that are passed as
“in” parameters. They must ensure that no other thread modifies the object until the
invoked operation is completed.

void destroy();

Parameters

None

Results

None. TheCredentials object is destroyed.

set_attributes

This operation is used to set the attributes f@redentials object. The operation
set_attributes is used in conjunction withet_attributes to constrain the attributes
associated with €redentials object.

Some attributes may be tightly bound to twedentials object based on the

underlying mechanism. If the mechanism supports it, setting those attributes may cause
mechanism specific communication with a credentialing party. If the operation fails
because the mechanism underlying@redentials object does not support modifying

the attributes, £ ORBA::BAD_OPERATION exception is raised.

boolean set_attributes(
in AttributeList requested_attributes,
out AttributeList actual_attributes

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-79

Parameters

requested_attributes The complete attribute list to be associated with the
Credentials object. Only the attributes in the
requested_attributes parameter will be associated with
the Credentials object upon successful completion of the
operation. Passing an empty list means that all attributes
that can be removed will be removed.

actual_privileges The list of attributes actually associated with the
Credentials object after attempting to set the requested
attributes. This list is equivalent to the result obtained (if
get_attributes were called with an empty list of attribute
types as its parameter immediately after calling
set_attributes .

Return Value

TRUE Indicates thatequested_attributes andactual_attributes
are the same length and have the same values (All
requested attributes were accepted).

FALSE Indicates that one or more of tleguested_attributes
could not be removed.

get_attributes
This is used to get privilege and other attributes fromQtedentials as follows:

® Privilege attributes, including capabilities, for use in access control decisions.
® Other attributes such as audit or charging identities, if available.

AttributeList get_attributes(
in Attribute TypelList attributes

);
Parameters

attributes - The set of security attributes (privilege attributes and identities) whose
values are desired. If this list is empty, all attributes are returned.

Return Value

The requested set of attributes reflecting the state ofthdentials .
is_valid

Credentials objects may have limited lifetimes. This operation is used to check if the
Credentials are still valid.

2-80 Security Service, v1.7 March 2001

boolean is_valid(

out UtcT expiry_time
)i
Parameters
expiry_time The time that th&redentials expire.

Return Value

TRUE TheCredentials are still valid.
FALSE TheCredentials are not valid anymore.
refresh

This operation allows the application to upd@edentials . Depending on the
mechanism, som€redentials may need to be refreshed before they expire; may be
able to be refreshed after they expire; or may not be able to be refreshed.

® |f Credentials cannot be refreshed due to the limitations of the implementation, a
CORBA::NO_IMPLEMENT exception is raised.

® |f the Credentials object cannot be refreshed due to the limitations of the security
mechanism, £ORBA::BAD_OPERATION exception is raised.

® |f the Credentials object cannot be refreshed due to invagftesh_data (i.e.,
stipulating a new expiry time beyond a legal limit\C&®RBA::BAD_PARAM
exception is raised.

boolean refresh(
in Opague refresh_data

);

Parameters

refresh_data Data needed to refre€®redentials , which is specific to the
mechanism type.

get_security_feature

This operation returns a boolean value that represents the value of the given security
feature for the given communication direction that @redentials object is
supporting.

The communication direction parameter indicates which set of security features (i.e.,
those set for the request direction, the reply direction, or both) should be returned.
Conforming implementations are not required to support the “request” and “reply”
directions. If an unsupported direction is passedeto security_feature , the
CORBA::BAD_PARAM exception is raised.

The get_security_feature operation has the following definition:

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-81

boolean get_security feature(
in CommuncationDirection direction,

in SecurityFeature feature
)i
Parameters
direction The communication direction (i.e., both, request, or reply) jto
which the security feature is applicable. Normally set to both.
feature The feature for which the value is sought.

Return Value

The boolean value of the security feature supported bZtedentials object.

credentials_type

This readonly attribute specifies whether @wdentials object is of the “own”
credentials type (i.e., created by fRencipalAuthenticator) or it is of the

“received” credentials type (i.e., established as the result of a thread specific secure
association with a client in the context of servicing a request). It has the following

definition:

readonly attribute Security::InvocationCredentialsType credentials_type;

authentication_state

This readonly attribute specifies the authentication stat€thdentials object. For
Credentials that are created by therincipalAuthenticator this attribute tells
whether theCredentials are partially initialized. It has the following definition:

readonly attribute Security::AuthenticationStatus authentication_state;

Values

'SecAuthSuccess’

Credentials are fully initialized.Credentials may be valid.

'SecAuthFailure’

Authentication has failedCredentials are invalid.Credentials may
be in this state if they were partially initialized in a call to
PrincipalAuthenticator::authenticate ~ and then failed in the
PrincipalAuthenticator::continue_authentication operation.

'SecAuthContinue’

Credentials are partially initializedCredentials that are not yet
valid for use.

'SecAuthExpired’

Credentials initialization has expiredCredentials are invalid.

mechanism

This readonly attribute specifies the mechanismGhedentials object represents. It
has the following definition:

2-82 Security Service, v1.7 March 2001

readonly attribute MechanismType mechanism;

accepting_options_supported and@epting_options_required

These two attributes are the options that@hedentials object support and require to
accept secure associations from clients. These two attributes can be thought of as
directly relating to thearget_supports andtarget_requires association options
attributes that may be advertised in a security mechanism component in a target
object’s IOR. Section 3.1.4.1, “Security Components of the IOR,” on page 3-8.

Note —Not all mechanisms may use such a security component in IOR.

When theCredentials are created by therincipalAuthenticator these options will

be set to default values depending on the initialization scheme of the particular
mechanism. Authentication data may contain constraints on the supported/required
association options as well as constraints on the mechanism itself.

Setting these attributes to values that are invalid for the mechanism raises a
CORBA::BAD_PARAM exception. In general, theccepting_options_required
cannot be set to have “more” capability than #lceepting_options_supported

and theaccepting_options_supported cannot be set to have “less” capability than
the accepting_options_required

These attributes have the following definition:

attribute AssociationOptions accepting_options_supported;
attribute AssociationOptions accepting_options_required;

invocation_options_supported and invocation_options_required

This attribute is used to control the security characteristics of the secure association by
which theseCredentials are used to make an invocation on a target object. These
association options affect the characteristics of a secure association setup, such as the
delegation mode to use, whether trust in the target is needed, and the message
protection is required.

Setting this attribute to an invalid value, which may be constrained by the mechanism
or the internal state of th@redentials , will raise aCORBA::BAD_PARAM
exception.

These attributes have the following definition:

attribute AssociationOptions invocation_options_supported,;
attribute AssociationOptions invocation_options_required;

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-83

2.3.5 The ReceivedCredentials Object

2.3.5.1 Description of Facilities

A ReceivedCredentials object represents a remote principal’s credential information
for a secure association and therefore includes much of the same information as in an
“own” type Credentials object, such as the principal’s privilege attributes and
identities.ReceivedCredentials may also be used for invocations (delegation).
Therefore, theReceivedCredentials interface inherits from th€redentials

interface.

A ReceivedCredentials object represents the secure association to the application.
Therefore, theReceivedCredentials object contains the properties of that
association, such as ti@redentials local to the capsule used for the association, the
association options in effect, the delegation state of the remote principal, and the
delegation mode of thReceivedCredentials .

A ReceivedCredentials object, since it represents a secure association, may have a
lifetime associated with a single thread of execution servicing a request. It is retrieved
from the securityCurrent object through theeceived_credentials attribute.

ReceivedCredentials object is a locality constrained object, and it contains a
credentials_type value ofSecReceivedCredentials .

2.3.5.2 The SecurityLevel2::ReceivedCredentials Interface

The ReceivedCredentials interface is defined as follows:

interface ReceivedCredentials : Credentials { / Locality Constrained

readonly attribute Credentials accepting_credentials;
readonly attribute AssociationOptions association_options_used;
readonly attribute DelegationState delegation_state;
readonly attribute DelegationMode delegation_mode;

b

accepting_credentials

This readonly attribute contains the reference tatedlentials object that is used on
the accepting side of the negotiation of the secure association with the remote
principal.

association_options_used

This readonly attribute contains the association options in effect for the secure
association with the remote principal.

delegation_state

This readonly attribute tells the delegation state of the remote principal for these
credentials. It has the following values:

2-84 Security Service, v1.7 March 2001

Values
‘Seclnitiator’ The remote principal is the acting in his own behalf.
'SecDelegate’ The remote principal is acting in behalf of another principal.

Note —Not all security mechanisms may be able to indicate if the remote principal is a
delegate. For example, with unrestricted delegation, sometimes known as
impersonationthe value of this attribute would always 8eclinitiator .

delegation_mode

This readonly attribute indicates the delegation mode of the credentials. It has the
following values.

Values
‘SecDelModeNoDelegation’ The credentials cannot be used to make invocations.
‘SecDelModeSimpleDelegation’ The credentials can be used to make invocations
with no traced capability.
‘SecDelModeCompositeDelegation’ The credentials can be used to make invocations
with some composite delegation scheme.

2.3.5.3 Portability Implications

The PrincipalAuthenticator::authenticate andCredentials::set_attributes

operations allow particular privilege attributes to be specified. The attributes supported
by different systems may vary according to security policies supported. It is
recommended that use of these interfaces be limited, so business application objects
are not exposed to particular policy details (unless they need to be, as they are
enforcing compatible security policies directly).

2.3.6 The TargetCredentials Object

2.3.6.1 Description of Facilities

A TargetCredentials object is the dual of thReceivedCredentials object as it
represents a remote principal’s authentication information for the client’s secure
association with a target. THargetCredentials object may not be used for
invocations.

The TargetCredentials object represents the secure association to the application.
Therefore, thélargetCredentials object contains the properties of that association,
such as th€redentials local to the capsule used to initiate the association and the
association options in effect for the association.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-85

2-86

The TargetCredentials object is a locality constrained object, and it contains a
credentials_type value ofSecTargetCredentials .

interface TargetCredentials : Credentials { // Locality Constrained
readonly attribute Credentials initiating_credentials;
readonly attribute AssociationOptions association_options_used;

h

initiating_credentials

This readonly attribute contains the reference tatedlentials object that is used on
the initiating side of the negotiation of the secure association with the remote principal.

association_options_used

This readonly attribute contains the association options in effect for the secure
association with the remote principal.

2.3.7 Operations on Object Reference

2.3.7.1 Description of Facilities

If the client application is unaware of security (for example, was written to use an ORB
without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is specified
by:

® The security policy set at the client by administrative action.

® The credentials used by the client.

® The security policy for the target object. Relevant security information about this is
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client can
perform this operation on this target, and the quality of protection of messages.

The only visibility of security to most applications is that some operations will now
fail because they would breach security controls.

An application client unaware of security can communicate with a security aware one
and vice versa.

A client application aware of security can also specify what security policy options it
wants to apply when communicating with this target object by performing operations
on the target object’s reference and the binding object associated with it. The following
operations are available on the target object reference.

® get_policy is used to find the policy of the specified type (including those relevant
to security) for this object.

® get_domain_managers is used to obtain a list of domain managers that the given
object is associated with.

Security Service, v1.7 March 2001

2

® set policy_overrides is used to set overrides of default policies on individual
object references.

Although these operations are on the target object reference, the scope of the effect of
the operation is the use of that reference itself, and not the object that it represents.
That is, the act of obtaining a copy of an object reference with new set of override
policies set on it in no way affects the target object that the object reference in question
is associated with.

A target object can influence the security policy for incoming invocations by setting
security policies using the administrative operations in Section 2.4, “Administrator’s
Interfaces,” on page 2-115. This will affect the security information exported as part of
its object reference.

The default policies that can be overridden usingsttepolicy_overrides operation
are:

® QOP - the quality of protection that will be provided to any successful invocation
using that object reference. TREOPPolicy object is the bearer of this policy.

® Invocation Credentials- the Credentials that will be used in invocations using
that object reference. THavocationCredentialsPolicy object is the bearer of
this policy.

® Security Mechanisms the mechanisms (one of) which must be used for successful
invocation using the object reference. TWechanismsPolicy object is the bearer
of this policy.

® Establish Trust- the directive for the establishment of trust of client by target and
target by client. Thé&stablishTrustPolicy object is the bearer of this policy.

® Delegation Directive- the directive telling whether delegation should be used
during the invocation. ThBelegationDirectivePolicy object is the bearer of this

policy.

The above policy objects can be created usingR8::create_policy operation.
The above policy objects must be put iRPalicyList and given to the
set_policy_overrides operation on the target object reference. If successful, the
operation returns a new object reference that uses the new policy overrides for
subsequent invocations.

The policies currently associated with the object reference, including overridden ones
can be accessed using tpet_policy operation. This operation returndalicy

object of the appropriate type containing the current policy, which can be extracted
from the readonly attribute in theplicy object interface.

Note —The application states its minimum security requirements. A higher level of
security may still be enforced as this may be required by security policy. Thus
operationally the default policies will actually be overridden only if the requested
overrides are consistent with the overall security policy.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-87

2-88

2.3.7.2 Client Side Invocation Policy Objects

There are a number &licy objects that are bearers of the client side invocation
related policies. They are as follows:

QOP Policy

The QOP Policy object has a policy type &ecurity::SecQOPPolicy and has the
QOPPolicy interface, which is shown below.

interface QOPPolicy : CORBA::Policy { /I Locality Constrained
readonly attribute Security::QOP qop;

h

This interface has a single readonly attribgé@ which represents the policy in the
form of an enum value of typ®ecurity::QOP .

This object can be passedset_policy_overrides to specify that a particular quality

of protection is required for messages sent using the object reference returned by the
set_policy_overrides operation. When this object is returned by ¢fe¢ policy

operation it contains the quality of protection policy associated with this object
reference.

Mechanism Policy

The Mechanism Policy object has a policy type of
Security::SecMechanismPolicy and has théMechanismPolicy interface, which
is shown below.

interface MechanismPolicy : CORBA::Policy {// Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

h

This interface has a single readonly attribubechanisms , which represents the
policy in the form of éSecurity::MechanismTypeList

This object can be passeddet policy overrides to request the use of one of a
specific set of mechanisms in invocation through the object reference returned by the
set_policy_overrides operation. When this object is returneddst_policy it

contains the security association mechanisms available through this object reference.

Invocation Credentials Policy

The Invocation Credentials Policy object has a policy type of
Security::SeclnvocationCredentialsPolicy and has the
InvocationCredentialsPolicy interface, which is shown below.

interface InvocationCredentialsPolicy : CORBA::Policy {
/I Locality Constrained
readonly attribute CredentialsList creds;

h

Security Service, v1.7 March 2001

This interface has a single readonly attribateds , which returns a list of
Credentials objects which will be used as invocation credentials for invocations
through this object reference.

This object can be passeddet policy overrides to specify one or more
Credentials objects to be used when calling this target object using the object
reference returned bget_policy_overrides . For example, the client may want to
make different privileges available to different targets by chooSimglentials with
the required privileges. When this object is returnedély policy it contains the
active credentials that will be used for invocations via this target object reference.

Establish Trust Policy

The Establish Trust Policy object has a policy type of
Security::EstablishTrustPolicy and has thé&stablishTrustPolicy interface,
which is shown below.

interface EstablishTrustPolicy : CORBA::Policy {// Locality Constrained
readonly attribute EstablishTrust trust;

I3

This interface has two readonly attributes:

trust This attribute is a structure that contains two attributes each
stipulating whether trust in client and trust in target is enabled. The
trust_in_client element of this attribute stipulates whether the
invocation must select credentials and mechanisms that will allow
the client to be authenticated to the target. (Some mechanisms may
not support client authentication). Ttrast_in_target element of
this attribute stipulates whether the invocation must first establish
trust in the target.

This object can be passeddet policy overrides to specify that a particular trust
policy be followed for invocations using this object reference. When this object is
returned by theyet policy operation it contains the trust policy associated with this
object reference.

Delegation Directive Policy

The Delegation Directive Policy object has a policy type of
Security::DelegationDirective and has th®elegationDirectivePolicy interface,
which is shown below.

interface DelegationDirectivePolicy : CORBA::Policy {
/I Locality Constrained
readonly attribute Security::DelegationDirective delegation_directive;

h

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-89

2-90

2.3.7.3

This interface has a single readonly attribdééegation_directive that represents the
policy stating whether delegation should be used when making invocations on an
object. If the policy states that delegation should be used, the@ré¢ldentials object
selected for the invocation must support delegation.

This object can be passedset policy _overrides to specify that a delegation policy

be followed for invocations using this object reference. When this object is returned by
the get_policy operation it contains the delegation policy associated with this object
reference.

Semantics of Combined Client Policies

The client side policies that are defined for a particular object reference employ a
particular semantics in determining the security characteristics of invocations made
with that object reference. When applied to an object reference, the ORB performs a
decision procedure to determine the security characteristics that are compatible
between the security mechanisms that the target object supports and the client side
security policies that are attached to the target object’s reference. It is entirely possible
that the set of policies when applied to the object reference may be inconsistent. The
basic thrust of this decision procedure is to select the p@petentials object from

the list of credentials supplied in th@/ocationCredentialsPolicy object.

The following decision procedure is applied by the security service to eliminate the
Credentials made available for invocation by list Gfedentials objects in the
InvocationCredentialsPolicy . The decision procedure is used amongst this list of
Credentials objects, the other client side security policies, and the target objects’s
IOR. This decision procedure determines the security mechanism, a compatible
Credentials object, and a security component from the target's IOR to use for the
invocations made on that object reference. It should be note€tedéntials are
selected from sequence Gfedentials returned by thereds attribute selector of the
InvocationCredentialsPolicy object. These credentials are examined first by their
mechanism by virtue of thdechanismPolicy object, then by th€redentials being
able to support other policies that may apply.

It is the goal of the decision procedure to select a si@géelentials object with

which to make the invocation. However, it is entirely possible that constraints provided
by other client polices, (such as thlechanismsPolicy) and the target object’s IOR
eliminate allCredentials objects from the list, thereby raising a
CORBA::NO_RESOURCES exception. Also, it is possible that the elimination
procedure leaves more than dbeedentials object. In this case, any of the

Credentials objects are viable for making the invocation. However, a selection of a
singleCredentials object still needs to be made. At this point, it is left up to the ORB
to select &Credentials object from a list of remaining available credentials.

The elimination decision procedure is as follows:
For each mechanism type in thMechanismPolicy {

Select a matching security component in the target's IOR by the mechanism

type.
If a matching component is found {

Security Service, v1.7 March 2001

Find aCredentials object in the credentials list that supports the
mechanism.
If a Credentials object is found and it supports
the QOP Policy,
the Delegation Directive Policy,
and the Establish Trust Policy {
If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {
Use the selected Credentials and selected attributes to set up the secure
association.
} else {
Find the next credentials object that supports the selected mechanism and
continue.
}
} else {
Find the next credentials object that supports the selected mechanism and
continue.
}
} else {
Get the next mechanism type from tdechanismPolicyand continue.
}
}

If no mechanism can be found {
A CORBA::NO_RESOURCES exception is raised with an informative message.

}

2.3.7.4 Security Relevant Operations in the CORBA::Object Interface

These operations are defined in detail in the ORB Interface chapter Gbthmon
Object Request Broker: Architecture and Specificatidrbrief description is included
here to help users of the Security Services.

get_policy
This gets the security policy object of the specified type, which applies to this object.

Theget_policy operation is used on object references during administration. For
example, it may be used to get the policy for a domain.

CORBA::Policy get_policy(

in CORBA::PolicyType policy type
);
Parameters
policy_type The type of policy to be obtained.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-91

2-92

Return Value

policy A policy object of the type specified by tipelicy_type

parameter.

Exceptions

CORBA::BAD_PARAM | Raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that type

is not associated with this Object.

get_domain_managers

get_domain_managers allows administration services (and applications) to retrieve
the domain managers, and hence the security and other policies applicable to
individual objects that are members of the domain.

DomainManagersList get_domain_managers ();

Parameters

None.

Return Value

A list of immediately enclosing domain managers of this domain manager. At least one
domain manager is always returned in the list since by default each object is associated
with at least one domain manager at creation.

set_policy_overrides

set_policy_overrides makes it possible to override a subset of the policies that apply
to a specific object reference. It takes two input parameters. The first parameter
policies is a sequence of reference®tdicy objects. The second parameset_add

of type CORBA::SetOverrideType indicates whether these policies should be added
onto any other overrides that already ext®DRBA::ADD_OVERRIDE) in the object
reference, or they should be added to a clean override free object reference
(CORBA::SET_OVERRIDE). This operation associates the policies passed in the first
parameter with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object reference
is destroyed or the process/capsule/ORB instance in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with

Security Service, v1.7 March 2001

2

current is changed. It is always possible that the effective policy on an object reference
at any given time will fail to be successfully applied, in which case the invocation
attempt will fail and return £ORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(

in PolicyList policies,
in SetOverrideType set_add
);
Parameters
policies A sequence ofolicy objects that are to be associated with ﬂhe
new copy of the object reference returned by this operation.
set_add Whether the association is in addition &00_OVERRIDE) or
as replacement oSET_OVERRIDE) any existing overrides
already associated with the object reference.

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value eét_add .

2.3.7.5 Portability Implications

The security features that can be set are generally ones supported by a variety of
security mechanisms. Applications using them will therefore be portable between any
systems where the security mechanisms support these features. However, some securit
mechanisms will not support all features, for example, they may not provide replay
protection, or may not support confidentiality of application data (owing to regulatory
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

2.3.8 Operations on Security Manager

2.3.8.1 Description

The Security Manager object represents capsule specific security information. The
attributes and operation of ti@ecurityManager object are relevant to the capsule
regardless of the thread of execution.

A reference to th&ecurityManager object is retrieved using the
ORB::resolve_initial_references("SecurityManager") operation.

The attributes and operations on ®ecurityManager object are described in this
section and provide access to the following information:

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-93

2-94

2.3.8.2

® supported_mechanisms - A sequence of security mechanisms supported by the
security service.

® principal_authenticator - A reference to th@rincipalAuthenticator object,
which is used to authenticate principals and thus olagdentials objects for
them.

® own_credentials - The list ofCredentials objects associated with the active
application (capsule). A capsule’s own credentials are set up as the result of the
application being initialized or explicitly by calling on the
PrincipalAuthenticator object.

The operations provided on the Security Manager are the following:

® remove_own_credentials - This operation allows the application to perform
credentials management of tbesn_credentials list.

® get_target _credentials - This operation allows the application to discover the
principal of a target object.

The SecurityLevel2::SecurityManager Interface

The following attributes and operations are available on the
SecurityLevel2::SecurityManager interface.

supported_mechanisms

This readonly attribute returns the list of supported mechanisms and options supported
by the ORB security service. It has the following definition:

readonly attribute MechandOptionsList supported_mechanisms;

principal_authenticator

This readonly attribute is a reference to BrencipalAuthenticator that can be used
by the application to authenticate principals and ob@aidentials .

readonly attribute PrincipalAuthenticator principal_authenticator;

Return Value

The object reference toRrincipalAuthenticator object. The operations in the
interface of this object are defined in Section 2.1.2, “Principals and Their Security
Attributes,” on page 2-3.

required_rights_object

This readonly attribute is thRequiredRights object available in the environment.
This object is rarely used by applications directly. It could be used directly by the
application if it wishes to do all its own access control based on rights.

Security Service, v1.7 March 2001

readonly attribute RequiredRights required_rights_object;

Return Value

An object references toRequiredRights object. The operations in the interface of
this object are defined in Section 2.4.4, “Access Policies,” on page 2-118.

access_decision

This capsule specific read only attribute is AezessDecision object available in
the environment. It can be used by the application to obtain decisions regarding
accessibility of specific objects from this environment.

readonly attribute AccessDecision access_decision;

Return Value

An object references to a@ccessDecision object. The operations in the interface of
this object are defined in Section 2.3.12, “Access Control,” on page 2-102.

audit_decision

This readonly attribute is th&uditDecision object available in the environment. It
can be used by the application to obtain information about what needs to be audited for
the specified object/interface in this environment.

readonly attribute AuditDecision audit_decision;

Return Value

An object references to auditDecision object. The operations in the interface of
this object are defined in Section 2.3.10, “Security Audit,” on page 2-99.

own_credentials

Any application owns a set of credentials which it obtains through the process of
authentication of the principal that initiates the execution of the program, and further
from other credentials that such a principal might bestow upon the application. This
attribute returns this set of credentials.

readonly attribute CredentialsList own_credentials;

Return Value

A sequence o€redentials object references owned by the application.

remove_own_credentials

This operation is used by applications that wish to remove credentials that were put on
the own_credentials list by virtue of thePrincipalAuthenticator . This operation
does not manipulate or destroy the objects in any way. The @kegtentials object

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-95

2-96

(as opposed to one produced bgopy operation) must reside on the list of the
Current object'sown_credentials , otherwise &£ORBA::BAD_PARAM
exception is raised.

void remove_own_credentials(

in Credentials creds
)
Parameters
creds The Credentials object to be removed from the list.

Return Value

None.

get_target_credentials

This operation is used by applications that wish to authenticate a principal “behind” the
object reference.

TargetCredentials get_target_credentials(

in Object target;
8
Parameters
target The object reference in question.

Return Value

The TargetCredentials object that represents the secure association established with
the remote principal.

get_security_policy

This operation returns the security policy object of the specifidity type in effect
for the capsule.

Policy get_security _policy(
in CORBA::PolicyType policy type
)i

Parameters

policy_type The type of policy to be obtained.

Security Service, v1.7 March 2001

Return Value

A policy object, which can be used to interrogate the policy in force as defined in
Section 2.4, “Administrator’s Interfaces,” on page 2-115. For example, the secure
invocation policy would give the secure associations defaults for this object, and the
delegation policy would say which credentials were delegated on invocations by this
object.

2.3.9 Security Operations on Current

2.3.9.1 Description

The Current object represents service specific state information associated with the
current execution context (see the ORB Interface chapter atdhemon Object
Request Broker: Architecture and Specificajidmoth clients and targets ha@airrent
objects representing state associated with the thread of execution and the
process/capsule in which the thread is executing (their execution contexts).

The operations of th€urrent object is intended to return information pertaining to

the state associated with the current execution context. This includes information
specific to both the thread of execution that is used to invoke the operation, as well as
the process or capsule to which the thread belongs. State changes affecting state that i
associated purely with the thread and not with any broader execution context like
capsule (i.e., thread specific) is lost, once the operation within the execution of which
this was done completes its execution, thus returning the thread to the ORB. State
changes to state associated with a broader execution context like a capsule (i.e.,
capsule specific) on the other hand persists across multiple invocation of operations in
the target object, until it is further modified through operations ofCiheent object

or by other means.

The SecurityLevell::Current and theSecurityLevel2::Current interfaces
described in this section contains operations of both types. In this section, each
operation is identified to be either thread specific or process specific to distinguish
their behavior.

Note that a reference to ti@urrent object representing the active execution context
can be retrieved using tl@RB::resolve_initial_references(“SecurityCurrent”)
operation (see the ORB Interface chapter ofGoenmon Object Request Broker:
Architecture and Specificatignin a secure ORB, th€urrent object includes
operations relevant to Security. TB®RBA::Current object returned by the
resolve_initial_references operation can be narrowed to

SecurityLevell::Current or SecurityLevel2::Current as desired.

The operations on th@urrent object are described in this section and provide access
to information about one or more of the following credentials:

® received credentialsthe credentials received from the client of the invocation as
seen at the target object.

The operations provided are the following:

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-97

2-98

2.3.9.2

2.3.9.3

® get_attributes (thread specific) obtain privilege and other attributes associated
with received credentials (which should be the user’s privileges when at the
workstation).

It should be noted that if the policies associated with any individual object reference
has been overridden using tBéject::set_policy_overrides operation, then the
overridden policies take precedence over the corresponding thread policies, when the
said thread is used to carry out an object invocation using the said object reference.

The SecurityLevell::Current Interface

The following operations are available in t8ecurityLevell::Current interface.

get_attributes

This is a thread specific operation that is used to get privilege (and other) attributes
from the client’s credentials. It is available in the security functionality Level 1 to
allow applications to enforce their own security policies without these applications
having to perform operations on credentials.

This operation can be used to get:
® Privilege attributes for use in access control decisions.

® Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the
target, it gets the received privileges.

AttributeList get_attributes(

in Attribute TypelList attributes
)i
Parameters
attributes The set of security attributes (privilege attributes and

identities) whose values are desired. if this list is empty, all
attributes are returned.

Return Value

The set of attributes or identities reflecting the state ofCttealentials .

The SecurityLevel2::Current Interface

The following operations are to be found in ®ecurityLevel2::Current interface.
received_credentials

At a target object, this thread specific attribute is the credentials received from the
client. They are the credentials of the principal identified that made the invocation.

Security Service, v1.7 March 2001

2

In the case of a pure client (e.g., an application that is not servicing an invocation on
one of its objects (if any)), accessing tieeeived_credentials attribute causes a
CORBA::.BAD_OPERATION exception to be raised.

readonly attribute ReceivedCredentials received_credentials;

Return Value

The ReceivedCredentials object reference received from the requestor.

2.3.10 Security Audit

2.3.10.1 Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the audit
invocation policies $ecurity::SecClientlnvocationAudit and
Security::SecTargetlnvocationAudit) for this application.

Applications can also audit their own security relevant activities, where the auditing
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit policy. It
uses araudit_needed operation on théudit Decision object for the policy to
decide which activities to audit.

Audit information is passed to audit Channel object in the form of an audit
record. The audit record must contain, or be sufficient to identify:

® The type of event.
® The principal responsible for the action, identified by its credentials.

® Event-specific data associated with the event type. This will vary, depending on the
event type.

® The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit the
event, for example, its success or failure.

An application audit policy will specify the event families and event types as defined in
Section 2.4.5, “Audit Policies,” on page 2-129.

2.3.10.2 The SecurityLevel2::AuditDecision Interface

The Audit Decision object has th&ecurityLevel2::AuditDecision interface. Its
operations described below help specify what to audit. It is a locality constrained
object.

The Audit Decision object is a locality constrained object.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-99

2-100

audit_needed

This operation on thaudit Decision object is used to decide whether an audit record
should be written to the audit channel. The application specifies the event type to be
checked and the values for the selectors, which the audit policy requires to make the
decision. This operation identifies the interface associated with the audit event using
the InterfaceName selector value withiwvalue_list , if defined. If the

InterfaceName selector value is the empty string, the most derived interface in the
ObjectRef selector value is use@bjectRef is also used to find the domain
containing the relevant audit policy. TbjectRef is not definedaudit_needed will

not be able to match arAuditPolicy and will return false. To ensure that
audit_needed can match against any potenthalditPolicy , the caller must supply

all selector valuesGbjectRef , Operation , Initiator , andSuccessFailure) in

value_list .

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

Return Value

TRUE If an audit record should be created and sent to the audit
channel.
FALSE If an audit record is not needed.

audit_channel

This attribute of théudit Decision object provides the audit channel associated with
this audit decision object.

readonly attribute AuditChannel audit_channel;

Return Value

The Audit Channel object associated with thsudit Decision object.

A standard audit policy is specified in Section 2.4, “Administrator’s Interfaces,” on
page 2-115, but if this is to be replaceable without ORB/interceptor changes, a
standard interface needs to be available for the ORB or interceptor to call. Therefore,
for replaceability, the selectors used on audit needed during invocation must always be
the same (seealue_list above), though not all of these need to be used in taking the
decision to audit, depending on policy. Note that the time is not passed over this
interface. If the selectors specified in the audit policy use time to decide on whether to
audit the event, thAudit Decision object should obtain the current time itself.

Security Service, v1.7 March 2001

2.3.10.3 The SecurityLevel2::AuditChannel Interface

The single operation in thgecurityLevel2::AuditChannel interface is used to write
the audit records. Thaudit Channel object is a locality constrained object.

audit_write

This operation writes an audit record to #hedit Channel object, and hence the

audit trail. The audit trail is implementation-specific and outside the scope of this
chapter. It is expected to be an event service of some sort, such as a CORBA Event
Service.

void audit_write(

in AuditEventType event_type,
in CredentialsList creds,
in UtcT time,
in SelectorValuelList descriptors,
in Opaque event_specific_data
);
Parameters
event_type The type of event being audited.
creds The credentials of the principal responsible for the event.
If no credentials are specified, then_credentials
attributeassociated wittsecurityManager are used.
time The time the event occurred.
descriptors A set of values to be recorded associated with the event in
the audit trail. These are often the same values as thase
used to select whether to audit the event.
event_specific_data Data specific to a particular type of event, to be recorded
in the audit trail.

Return Value

None.

audit_channel_id

This is a readonly attribute that contains the id of this audit channel, which is used to
identify it in the corresponding audit policy object. This is necessary because the audit
channel object itself has to be a locality constraimigigct by virtue of the fact that the
audit_write operation passes a list Gfedentials , a locality constrained object, as a
parameter, while the audit policy object needs to be not thus constrained.

The audit channel identified by tlaidit_channel_id in the Audit Policy object is
actually associated with thisudit Channel interface by theAudit Decision object
when itsaudit_channel attribute is accessed.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-101

2-102

readonly attribute AuditChannelld audit_channel_id;

Return Value

audit_channel_id The channel id of the audit channel.

2.3.10.4 Portability Implications

An application relying on the system audit policies enforced at invocation time is
portable to different environments, although the audit policies themselves may need
changing.

Applications with their own application audit policies are portable, providing the audit
policy itself is portable and the selectors used are available in these environments. For
example, if selectors use privileges, the same ones must be available.

2.3.11 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 2.4, “Administrator’s
Interfaces,” on page 2-115.

2.3.12 Access Control

2.3.12.1 Description of Facilities

Access policies for applications may be enforced the following ways:

* Automatically by the ORB services on object invocation, to determine whether the
caller has the right to invoke an operation on an object.

® By the application itself, to enforce further controls on who can invoke it to do
what.

® By the application to control access to its own internal functions and state.

This section is concerned with applications that wish to enforce their own access
controls, either supplementing the automatic controls on invocation or controlling
internal functions.

As explained in Access Policies under Section 2.1.4, “Access Control Model,” on
page 2-7, the decision on whether to allow such access may use the following:

® The principal’'s credentials (which either contain its privilege attributes, or identify
the principal so these can be obtained). Using only the principal’s identity generally
requires that identity to be known at all targets, and leads to scalability problems, so

Security Service, v1.7 March 2001

2

its use is depreciated. Use of the principal’s role or group(s) are more likely to give
easier administration in large systems, as would security clearance. Enterprise-
defined attributes can also be used when supported.

® The target’s control attributes such as an ACL or security classification.

® Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in
Section 2.4.3, “Security Policies Introduction,” on page 2-117) rather than specify
controls for individual operations.

® The security policy rules using this information as enforced by the access decision
function.

The access policies enforced automatically by the ORB during object invocation can
take into account the principal’s credentials, the target’s control attributes, the
operation and the time (though the time is not used in the standard access policy
defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115). However, the
ORB does not use the parameters to the operation for controlling access. So, for
example, if there is a rule that only senior managers can authorize expenditure over
$5000, the application is likely to need its own function to perform the required check.

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wishes
to protect. It can do this in a way specific to its own particular functions or data, but in
some cases, it is possible to have a more generic way of handling access decisions, an
in these cases, it may be possible to use a common access decision object with
common administration of the ACLs or other control attributes.

2.3.12.2 The Access Decision Object

The access decision functionality is encapsulatefictess Decision objects. These
may require different information depending on, for example, the action or data to be
controlled and the security policy rules as previously described Atbess

Decision object is a locality constrained object.

The Access Decision object has thaccess_allowed operation as is used for
enforcing access policies in the ORB (see below). The input parameters to this should
normally specify:

®* The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

e The privileges of the initiator as supplied bget_attributes operation on
Current (see Section 2.3.9.2, “The SecurityLevell::Current Interface,” on
page 2-98).

« A credentials object, which represents principal.

® Other information required by the access decision function, including:

« Application-level decisions on whether an invocation is permitted, the operation
and parameters passed in the request, and the object reference.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-103

* Control of access to internal functions and data, the action, and relevant

parameters.

The return value from thaccess_allowed operation is eitheTRUE signifying
access is permitted, ®ALSE signifying that it is not.

It is recommended that where possible, access decisions are made B\ceesh

Decision objects (or at least separate internal functions) that hide details of the actual
security policy used, so the application does not need to know, for example, whether an

ACL or label-based policy is used.

2.3.12.3 The SecurityLevel2::AccessDecision Interface

The Access Decision object is a locality constrained object. ThecessDecision
interfaces have the following single operation:

access_allowed

boolean access_allowed(

in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name
)i
Parameters
cred_list The list ofCredentials associated with the request. The
list may be empty (in the case of unauthenticated
requests), it may contain only a single credential, or it
may contain several credentials (in the case of
delegated or otherwise cascaded requests)Attess
Decision object is presumed to have rules for dealing
with all these cases.
target The reference used to invoke the target object. The

method invoked.

operation_name

The name of the operation being invoked on the target.

target_interface_name

The name of the interface to which the operation bejing

invoked belongs. This may not be required in some
implementations and will only be required in cases
which the operation being invoked does not belong
the interface of which the target object is a direct
instance.

in

2-104 Security Service, v1.7

March 2001

Return Value

boolean A return value of TRUE indicates that the request should

be allowed, otherwise FALSE.

2.3.12.4 Portability Implications

Portability of applications enforcing their own access controls is improved by use of
Access Decision objects as previously described. The application then does not need
to know the particular rules used, and even which principal and object attribute types
are used to decide whether access should be permitted. It can also hide whether the
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.

Different systems may need to support different access control policies. By hiding
details of the access control rules used to enforce the policy behind a standard
interface, the application will generally be portable to environments with different
policies.

Applications that use their own specific code to make access decisions will only be
portable to systems that support the identity and privilege attribute types used in those
decisions with the same syntax.

2.3.13 Delegation Facilities

2.3.13.1 Description of Facilities

An operation on a target object may result in calls on many other objects as described
in Section 2.1.6, “Delegation,” on page 2-13. An intermediate object in this chain of
objects may:

® Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target may be
based on that principal’s privileges.

® Act on its own behalf, so use its own credentials when invoking another object in
the chain.

® Supply privileges from both, so access decisions at the target object can take into
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. For
example, a user might call a database object asking for some data, and this may obtain
the data from a file that also contains data belonging to other users. In this example,
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-105

2-106

In general, the delegation mode used is specified by the administrator in the delegation
policy for objects of this type in this domain. However, a security aware application
can also specify the delegation mode it wants to use, as it may want different modes
when invoking different objects.

2.3.13.2 Operations

All the operations used for delegation are specified elsewhere. This section describes
how they are used during delegation.

The way the received and intermediate’s own credentials are combined in
SecCompositeDelegation is not defined. Depending on the implementation:

® The initiating principal’s and the intermediate’s own credentials are passed, and are
available separately at the target.

® The received credentials and intermediate’s own credentials are combined, so the
target sees only a single credentials object with privileges from each of these.

® Credentialdrom all objects in the delegation chain are passed and are available
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
Current::received_credentials (see Section 2.3.9.3, “The SecurityLevel2::Current
Interface,” on page 2-98), which a target object uses to find out who called it. The
target normally uses this to get privileges for use in access control decisions.

2.3.13.3 Portability Implications

Where possible, the delegation mode should be set using the administrative interfaces
to the delegation policy, so applications may delegate privileges (or not) without any
application level code, and so be portable.

If an application sets its own delegation mode, it should be able to handle a
CORBA:NO_IMPLEMENT exception ifSecCompositeDelegation is specified,
as this may not be supported.

If the application wants to enforce its own access policy, it should usecess

Decision object (as described in Section 2.3.12, “Access Control,” on page 2-102),
which hides whether access decisions utilize the initiator’s privileges separately from
the delegate’s privileges.

However, where an application wants to provide specific checks which intermediates
have been involved in performing the original user’'s operation, such checks are likely
to depend on the delegation scheme and its implementation, and so not be portable.

2.3.14 Non-repudiation

Non-repudiation is an optional facility.

Security Service, v1.7 March 2001

2.3.14.1 Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form that
cannot be repudiated later. This evidence is associated with some data (for example,
the amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

® Token including the associated data.

® Token without included data (but with a unique reference to the associated data).

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudiation
token (and the associated data, if not included in the token) can use the non-repudiation
Service to verify the evidence. Any holder of a non-repudiation token may store it
(along with the associated data, if not included in the token) for later adjudication.

The non-repudiation interfaces support generation and verification of tokens
embodying several different types of evidence. It is anticipated that the following will
be the most commonly used non-repudiation evidence token types:

®* Non-repudiation of Creation prevents a message creator's false denial of creating a
message.

®* Non-repudiation of Receipt prevents a message recipient's false denial of having
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information
(particularly keys) needed to generate and/or verify the evidence. Most operations
provided by the Non-repudiation Service are performe®lBCredentials objects.

Non-repudiation Service operations supported byNR€redentials interface are as
follows.

®* set NR_features specifies the features to apply to future evidence generation and
verification operations.

® get NR_features returns the features which will be applied to future evidence
generation and verification operations.

® generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

* Non-repudiation evidence.

« A request, containing information describing how a partner should use the Non-
repudiation Service to generate an evidence token.

* Both evidence and a request.

* verify_evidence verifies the evidence token using the current non-repudiation
features.

® get_token_details returns information about an input non-repudiation token. The
information returned depends upon the type of the token (evidence or request).

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-107

* form_complete_evidence is used when the evidence token itself does not
contain all the data required for its verification, and it is anticipated that some of the
data not stored in the token may become unavailable during the interval between
generation of the evidence token and verification unless it is stored in the token.
The form_complete_evidence operation gathers the “missing” information and
includes it in the token so that verification can be guaranteed to be possible at any
future time.

Theverify_evidence operation returns an indicat@vid_complete), which can

be used to determine whether the evidence contained in a token is complete. If a
token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the cafioton_complete_evidence

can, in some cases, be avoided by settinddire_complete request flag on the
call toverify_evidence ; this will result in a complete token being returned via the
evid_out parameter.

2.3.14.2 Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

module NRservice {

typedef MechanismType NRMech,;

typedef ExtensibleFamily NRPolicyld;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

h

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

h

typedef unsigned long DurationinMinutes;

const DurationInMinutes DURATION_HOUR = 60;

const DurationInMinutes DURATION_DAY = 1440;

const DurationInMinutes DURATION_WEEK = 10080;

const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days
typedef long TimeOffsetinMinutes;

struct NRPolicyFeatures {

NRPolicyld policy id;
unsigned long policy version;
NRMech mechanism;

2-108 Security Service, v1.7 March 2001

h

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;
/I features used when generating requests

struct RequestFeatures {

NRPolicyFeatures requested_policy;

EvidenceType requested_evidence;

string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

2.3.14.3 The NRservice::NRCredentials Interface

This section describes the Non-repudiation Service operations that are provided by the
NRCredentials interface.

set NR_features

When anNRCredentials object is created, it is given a default set of NR features,
which determine what NR policy will be applied to evidence generation and
verification requests.

Security-aware applications may set NR features to specify policy affecting evidence
generation and verification. The interface for setting NR features is:

boolean set NR_features(
in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actual_features

);

Parameters

requested_features The non-repudiation features required.

actual_features The NR features that were set (may differ from those
requested depending on implementation).

Return Value

TRUE The requested features were equivalent.

FALSE If the actual features differ from the requested features.

get_ NR_features

This operation is provided to allow security-aware applications to determine what NR
policy is currently in effect:

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-109

NRPolicyFeaturesList get NR_features ();

Parameters

None

Return Value

The current set oNR features in use in thisNRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed in ar
input buffer. Environmental information (for example, the calling principal’s name) is
drawn from theNRCredentials object.

If the data for which non-repudiation evidence is required is larger than can
conveniently fit into a single buffer, it is possible to issue multiple calls, passing a
portion of the data on each call. Only the last call (i.e., the one on which
input_buffer_complete = true) will return an output token and (optionally) an
evidence check.

void generate_token(

in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check
)i
Parameters
input_buffer Data for which evidence should be generated.
generate_evidence_type Type of evidence token to generate (maySeeNoEvidence).
include_data_in_token If set TRUE, data provided imput_buffer will be included in
generated token; otherwise FALSE.
generate_request The output token should include a request, as described in the
request_features parameter.
request_features A structure describing the request. Its fields are listed below:

2-110 Security Service, v1.7 March 2001

request_featurelsields:

requested_policy Non-repudiation policy to use when generating evidence tokens
in response to this request

requested_evidence Type of evidence to be generated in response to this request.

requested_evidence_generators Names of partners who should generate evidence in response to

this request.

requested_evidence_recipients Names of partners to whom evidence generated in response to
this request should be sent.

include_this_token_in_evidence If set true, the evidence token incorporating the request will be
included in the data for which partners will generate evidence.
If set false, evidence will be generated using only the
associated data (and not the token incorporating the request).

input_buffer_complete True if the contents of the input buffer complete the data for
which evidence is to be generated; false if more data will be
passed on a subsequent call.

nr_token The returned NR token.

evidence_check Data to be used to verify the requested token(s) (if any) w
they are received.

=)

en

Return Value

None.

verify_evidence
Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling
application by a partner responding to the calling application’s request, then the calling
application should pass the evidence check it received when it generated the request as
a parameter toerify_evidence along with the token it received from the partner.

It is possible to request the generation of complete evidence. This may succeed or fail;
if it fails, a subsequent call form_complete_evidence can be made. Output
indicators are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by
complete_evidence_before may be earlier than that specified by
complete_evidence_after ; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitivBecNRValid ” or
“SecNRInvalid ”; sometimes SecNRConditionallyValid " may be returned,
depending upon the policy in use&s¢cNRConditionallyValid " will be returned if:

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-111

® the interval during which the generator of the evidence may permissibly declare his
key invalid has not yet expired (and therefore it is possible that the evidence may be
declared invalid in the future), or

® trusted time is required for verification, and the time obtained from the token is not
trusted.

NRVerificationResult verify _evidence(

in Opaque input_token_buffer,
in Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Opaque output_token,
out Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after
)i
Parameters
input_token_buffer Buffer containing (possibly a portion, possibly all of) evidence token
to be verified; buffer may also contain data associated with evidence
token (parsing of buffer in this case is understood only by NR
mechanism, seget_token_details).
evidence_check The evidence check.
form_complete_evidence Set TRUE if complete evidence is required; otherwise FALSE.
token_buffer_complete Set TRUE if theinput_token_buffer completes the input token;
FALSE if more input token data remains to be passed on a
subsequent call.
output_token If form_complete_evidence was set to TRUE, this parameter will
contain complete evidence (and the Return Value will be
SecNRValid) or an “augmented” but still incomplete evidence token,
in which casesecNRConditionallyValid is returned.
data_included_in_token Data associated with the evidence, extracted from input token (may
be a zero length sequence).
evidence_is_complete TRUE if evidence in input token is complete, otherwise FALSE.

2-112 Security Service, v1.7 March 2001

trusted_time_used TRUE if the evidence token contains a time considered to be trusted
according to the rules of the non-repudiation policy. FALSE indicates

that the security policy mandates trusted time and that the time in the
token is not considered to be trusted.

complete_evidence_before If evidence_is_complete is FALSE and the return value from
verify_evidence is SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output token before this
time. This may be required, for example, in order to ensure that the
time skew between the evidence generation time and the trusted time
service’s countersignature on the evidence falls within the interval
allowed by the current NR policy.

complete_evidence_after If evidence_is_complete is FALSE and the return value from

verify_evidence is SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output token after this
time. This may be required, for example, to ensure that all authorities
involved in generating the evidence have passed the last time at
which the current NR policy allows them to repudiate their keys.

Return Value

SecNRInvalid Evidence is invalid.
SecNRValid Evidence is valid.
SecNRConditionallyValid Evidence cannot yet be determined to be invalid

get_token_details

The information returned depends upon the type of the token (evidence or request).
The mechanism that created the token is always returned.

® |f the input token contains evidence, the following is returned: the non-repudiation
policy under which the evidence has been generated, the evidence type, the date anc
time when the evidence was generated, the name of the generator of the evidence,
the size of the associated data, and an indicator specifying whether the associated
data is included in the token.

® |f the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence to
send back should be generated, the evidence type to send back, the names of the
recipients who should generate and distribute the requested evidence, and the name:
of the recipients to whom the requested evidence should be sent after it has been
generated.

® |f the input token contains both evidence and a request, an indicator describing
whether the partner’s evidence should be generated using only the data in the input
token, or using both the data and the evidence in the input token.

Security Service, v1.7 Application Developer’s Interfaces March 2001 2-113

2-114

void get_token_details(
in Opaque
in boolean
out string
out NRPolicyFeatures
out EvidenceType
out UtcT
out utcT
out DurationInMinutes
out boolean
out boolean
out RequestFeatures

);

Parameters

token_buffer,
token_buffer_complete,
token_generator_name,
policy features,
evidence_type,
evidence_generation_time,
evidence valid_start_time,
evidence_validity_duration,
data_included_in_token,
request_included_in_token,
request_features

token_buffer

Evidence token to parse.

token_buffer_complete

Indicator when the token has been fully
provided.

token_generator_name

Principal name of token generator.

policy_features

Describes the policy used to generate the tok

evidence_type

Type of evidence contained in the token (may
SecNoEvidence).

evidence_generation_time

Time when evidence was generated.

evid_validity_start_time

Beginning of evidence validity interval.

evidence_validity_duration

Length of evidence validity interval.

data_included_in_token

TRUE if the token includes the data for whichii

contains evidence, otherwise FALSE.

request_included_in_token

TRUE if the token includes a request, otherwi
FALSE.

se

evidence_generation_time

Time when evidence was generated.

Return Value

None.

form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be verified

successfully with no additional data at any time during its validity period.

boolean form_complete_evidence(
in Opaque input_token,
out Opague output_token,
out boolean trusted time_used,

Security Service, v1.7

March 2001

out TimeT complete_evidence_before,
out TimeT complete_evidence_after
);
Parameters
token_buffer Evidence token to be completed..
output_token The “augmented” evidence token may be complete.
trusted_time_used TRUE if the token’s generation time can be trusted,

otherwise FALSE. If trusted time is required by the
policy under which the evidence will be verified,
and if this indicator is not set, the evidence will not
be considered complete.

complete_evidence_before If the return value is FALSE,
form_complete_evidence should be called before
this time.

complete_evidence_after If the return value is FALSE,
form_complete_evidence should be called after this
time.

Return Value

TRUE Evidence is now complete.

FALSE Evidence is not yet complete.

2.4 Administrator’s Interfaces

This section describes the administrative features of the specification. Administration
specifies the policies that control the security-related behavior of the system. These
features form an ‘Administrator’'s View,” encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventional
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 security
does not include administration interfaces.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-115

2-116

2.4.1 Concepts

24.1.1

2.4.1.2

2.4.1.3

Administrators

This specification imposes no constraints on how responsibilities are divided among
security administrators, but in many cases an enterprise will have a security policy that
restricts the responsibilities of any one individual. Also, legal requirements may dictate
a separation of roles so that, for example, there are different administrators for access
control and auditing functions.

Administrators are subject to the same security controls as other users of the system. It
is expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls and
auditing in the same way as other object invocations, so only administrators with the
required administrative privileges will be able to invoke administrative operations.

This specification does not define administrative functions concerning the management
of underlying mechanisms supporting the security services, such as an Authentication
Service, Key Distribution Service, or Certification Authority.

Policy Domains

Securityadministrators specify securitypolicies for particular security policy
domains (for brevity, only the words in bold are used for the remainder of this
section).

A domain includes an object, called themain manager which has associated with
it the policy objects for this domain, and notionally contains zero or more other
objects, which are domamembersand subject to the policies specified by the policy
objects associated with the domain manager.

The domain manager records the membership of the domain and provides the means tc
add and remove members. The domain manager is itself a member of a domain,
possibly the domain it manages.

There are different types of policy objects for administering different types of policy.
As described in Section 2.1.8.1, “Security Policy Domains,” on page 2-21, domains
may be members of other domains, forming containment hierarchies. Because different
kinds of policy affect different groups of objects, objects (and domains) may be
members of multiple domains.

The policies that apply to an object are those of all its enclosing domains.

Security Policies

This specification covers administration of security policies, which are enforced by a
secure object system in either of the following ways:

Security Service, v1.7 March 2001

2

® Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’'s credentials can be delegated.

® By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security policies,
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when this object is acting
as a client, only when it is a target object, or whenever it is acting as either.

Security policies may be administered by any application with the right to use the
security administrative interfaces. This is subject to the invocation access control
policy for the administrative interface.

2.4.2 Domain Management

The Domain Management facilities (defined in the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specificatimused by the
Security Service as described in the following sections.

2.4.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during object
invocation. These are:

® Invocation accesolicies Security::SecClientinvocationAccess and
Security::SecTargetinvocationAccess , interface
SecurityAdmin::AccessPolicy) for controlling access to objects.

® Invocation audit policies Security::SecClientinvocationAudit and
Security::SecTargetinvocationAudit , interfaceSecurityAdmin::AuditPolicy)
control which operations on which objects are to be audited.

® Invocation delegationpolicies Security::SecDelegation , interface
SecurityAdmin::DelegationPolicy) for controlling the delegation of privileges.

® Secure invocationpolicies Security::SecClientSecurelnvocation and
Security::SecTargetSecurelnvocation , interface
SecurityAdmin::SecurelnvocationPolicy) for security associations, including
controlling the delegation of client’s credentials, and message protection.

Different policies generally apply when an object acts as a client from when it is the
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which
apply independently of object invocation. These are:

® Application accesspolicy (Security::SecApplicationAccess , interface
SecurityAdmin::AccessPolicy), which applications may use to manage and
enforce their access policies.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-117

® Application audit policy (Security::SecApplicationAudit , interface
SecurityAdmin::AuditPolicy), which applications can use to manage and enforce
their audit policies.

® Non-repudiation policies Security::SecNonRepudiation , interface
SecurityAdmin::NRPolicy) determine the rules for the generation and use of
evidence.

There is also a policy concerned with creation of object references, which is enforced
by POA::create_reference and variants thereof or equivalent operation. This is the
construction policy (CORBA::SecConstruction), which controls whether a new

domain is created when an object of a specified type is created. (See the ORB Interface
chapter of th&Common Object Request Broker: Architecture and Specificition

Note —Policies associated with underlying security technology are not included. For
example, there are no policies for principal authentication as this is often done by
specific security services.

Operations are provided for setting all the types of security policies previously listed.
In each case, these management operations permit administration of standard policy
semantics supported by the interfaces defined in this specification. It is also possible
for implementors to replace the policy objects, the operations of which are defined in
this specification, with different policy objects supporting different semantics. In
general, such policy objects will also have management operations that are different
from those defined in this specification.

2.4.4 Access Policies
There are two types of invocation access policies:

1. The Client Invocation Access polic$écurity::SecClientlnvocationAccess),
which is used at the client side of an invocation, and

2. The Target Invocation Access policgecurity::SecTargetinvocationAccess),
which is used at the target side.

There is one policy type for application access. However, no standard administrative
interface to this is specified, as different applications have different requirements.

Access Policies control access fybjects(possessing Privilege Attributes), to objects,
usingrights. Privilege Attributes have already been discussed (in Section 2.3,
“Application Developer’s Interfaces,” on page 2-71); rights are described in the next
section.

2.4.4.1 Rights

The standard\ccess Policyobjects in a secure CORBA system implement access
policy usingrights (though implementations may define alternative, non-rights-based
Access Policyobjects).

2-118 Security Service, v1.7 March 2001

2

2.4.4.2

In rights-based systemBgccess Policyobjectsgrant rights to PrivilegeAttributes. For
each operation in the interface of a secure object, some set of rigdgsiied Callers
must be granted these required rights in order to be allowed to invoke the operation.

Secure CORBA systems provideRaquiredRights interface, which allows:

® Object interface developers to express the “access control types” of their operations
using standardights, which are likely to be understood by administrators, without
requiring administrators to be aware of the detailed semantics of those operations.

® Access-control checking code to retrieve the rights required to invoke an interface’s
operations.

Note that required rights are characteristics of interfaw@xf instances. All instances
of an interface, therefore, will always have the same required rights.

Note also that because required rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in order
to assign required rights to their operations.

Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined later in this section. These rights may not
satisfy all access control requirements. However; to allow for extensibility, rights are
grouped into Rights Families. ThRightsFamily containing the standard rights is
called ‘corba,” and contains four rights:g® (interpreted to meangdet’), “s’

(interpreted to meansét’), “m” (interpreted to meanrfhanag€) and “u” (interpreted

to mean tis€’). Implementations may define additional Rights FamilRights are
always qualified by th&®ightsFamily to which they belong.

The SecurityLevel2::RequiredRights Interface

A Required Rights object can be thought of as a table (an example Required Rights
table appears later in this section). Note that implementations need not manage
required rights on an interface-by-interface baRisquired Rights objects should be
thought of as databases of policy information, in the same way as Interface Repositories
are databases of interface information. Thus in many implementations, all calls to the
RequiredRights interface will be handled by a single Required Rights object

instance, or by one of a number of replicated instances of a master Required Rights
object instance.

The value returned for a particular operation iRexqjuired Rights object is a list of
rights and a rights combinator. The rights combinator specifies the interpretation of
multiple rights in conjunction with a list of granted rights. This specification specifies
two rights combinatorsSecAllRights andSecAnyRights . Each combinator defines

a predicate on a list of required rights and a list of granted rights.

Given a list of granted right$;, and a list of required right®, the definition of the
SecAllRights combinator forms the following predicate:

Orr ORO r oG

Security Service, v1.7 Administrator’s Interfaces March 2001 2-119

The definition of theSecAnyRights combinator forms the following predicate:
(rOr OROrdG

These definitions have important ramifications when an empty list of required rights is
specified with each combinator. Regardless of the granted rights, if the required rights,
R, is empty, then the predicate formed with BecAllRights combinator results in

true, and the predicate formed with tBecAnyRights combinator results ifalse

Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

® Assignment of initial required rights to newly created interfaces.

® |nheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operation_name of the interface specified bgbj. Theobj’s interface will be

determined and used to retrieve required rights. The returned values are a list of rights
and a combinator describing how the list of rights should be interpreted if it contains
more than one entry.

void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
out RightsList rights,
out RightsCombinator rights_combinator
)i
Parameters
obj The object for which required rights are to be returned.
operation_name The name of the operation for which required rights are|to
be returned.
interface_name The CORBARepositoryld of the interface implemented by
the object, which is used as a default only if the ORB carnnot
determine the name of the most derived interface
implemented by the object in tlbj parameter.
rights The returned list of required rights.
rights_combinator The returned rights combinator.

Return Value

None.

2-120 Security Service, v1.7 March 2001

2.4.4.3

set_required_rights

This operation updates the rights required to execute the operation specified by the
operation_name of the interface specified bpterface_name . The caller must
provide a list of rights and a combinator describing the interpretation of multiple
rights.

void set_required_rights(

in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
in RightsList rights,
in RightsCombinator rights_combinator
)i
Parameters
operation_name The name of the operation for which required rights are|to
be updated.
interface_name The name of the interface whose required rights are to be
updated.
rights The desired new list of required rights.
rights_combinator The desired newRightsCombinator .

Return Value

None.

The SecurityAdmin::AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. This
interface supports querying of the effective access granted by a set of attributes by an
invocation access policy. It inherits tEORBA::Policy interface and has a single
operation,get_effective_rights

get_effective_rights

This operation returns the current effective rights (of farRilghtsFamily) granted
by this Access Policyobject to the subject possessing all privilege attributes in the list
of attributesattrib_list .

RightsList get_effective_rights(

in AttributeList attrib_list,
in ExtensibleFamily rights_family

Security Service, v1.7 Administrator’s Interfaces March 2001 2-121

2-122

24.4.4

Parameters
attrib_list A list of attributes obtained from one or maZesdentials
using theget_attributes operation.
rights_family The family of rights to be affected, filtering rights that do
not that matchights_family .

Return Value

A list of effective rights that are consistent with #iérib_list and the access policy,
of the family specified byights_family . If the rights cannot be mapped from one or
more attributes, the attribute is silently ignored.

get_all_effective_rights

This operation returns the current effective rights (for all rights families) granted by
this Access Policyobject to the subject possessing all privilege attributes in the list of
attributesattrib_list .

RightsList get_all_effective_rights(
in AttributeList attrib_list
);

Parameters

attrib_list A list of attributes obtained from one or ma@edentials
using theget_attributes operation.

Return Value

A list of effective rights that are consistent with #iterib_list and the access policy.

Note that this specification does not define howAaness Policyobject combines

rights granted through different Privilege Attribute entries, in case a subject has more
than one Privilege Attribute to which the Access Policy grants rights. However, this call
will cause theAccess Policyobject to combine rights granted to all privilege attributes
in the inputAttributeList (using whatever operation it has implemented), and return
the result of the combination.

Access Decisiorobjects, and applications that check whether access is permitted
without using amccess Decisiorobject, should use this operation to retrieve rights
granted to subjects.

Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided through
specialization of thé\ccessPolicy interface.

Security Service, v1.7 March 2001

2

2.4.4.5

The provider of each specific Invocation Access policy is responsible for defining its
own administrative operations. This specification defines a standard Invocation Access
policy interface, including administrative operations, presented in the next section. This
standard policy may of course be replaced by, or augmented with, other policies.

The Domain AccessPolicy Object

The Domain Access Policyobject with theSecurityAdmin::DomainAccessPolicy
interface provides discretionary access policy management semantics. CORBA
implementations with policy requirements, which cannot be met bRdngain Access
Policy abstraction, may choose to implement differ&aotess Policyobjects. For
example, they may choose to implement access control policy management using
capabilities.

Domains

This specification defines interfaces for administration of access policy on a domain
basis. Each domain may be assigned an access policy, which is applied to all objects in
the domain. Each access-controlled object in a CORBA system must be a member of at
least one domain.

A Domain Access Policyobject defines the access policy, which grants a set of named
“subjects” (e.g., users), a specified set of “rights” (eggs, m, u) to perform

operations on the “objects” in the domain. A Domain Access Policy can be represented
by a table whose row labels are the names of subjects, and whose cells are filled with
the rights granted to the subject named in that row’s label, as in Table 2-1. Note that
the use of the Delegation State is discussed in “Delegation State” on page 2-124.

Table 2-1 DomainAccessPolicy

Subject Delegation State Granted Rights
alice initiator corba:gs--

bob initiator corba:g---

cathy initiator corba:g---

zeke initiator corba:gs--

This Domain Access Policy grants the rightg and “s’ to Alice and Zeke, and the

right “g” to Bob and Cathy. (The annotationdtba’ prefixing the granted rights

indicates which Rights Family, as defined in the previous section, each of the rights in
the table is drawn from. In this case, all rights are drawn from Domain Access Policy’s
standard €orba” Rights Family. The delegation state column is described under
“Delegation State” on page 2-124.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-123

2-124

Domain Access Policy Use of Privilege Attributes

Administration of principals by individual identity is costly, so the Domain Access
Policy aggregates principals for access control. A common aggregation is called a
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes”(as defined in Section 2.1.4.3, “Access Policies,” on page 2-9).
Users may have many kinds of privilege attributes, including groups, roles, and
clearances (note that user access identities, often referred to simply as “user identities”
or “userids,” are considered to be a special case of privilege attributesponain

Access Policyobject uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attributes;
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege Attribute. An implementor
might provide a user privilege attribute table, shown next.

Table 2-2 User Privilege Attributes (not defined by this specification)

Users Privilege Attributes
bob, cathy group:programmers
zeke group:administrators

Given the definitions in this table, we can simplify dwmain Access Policyas
follows (note that, for convenience, edehvilegeAttribute entry is annotated in the
table with itsPrivilegeAttribute type).

Table 2-3 Domain Access Policy (with Privilege Attributes)

Privilege Attribute Delegation State Granted Rights
access_id:alice initiator corba:gs--
group:programmers initiator corba:g---
group:administrators initiator corba:gs--

Delegation State

The Domain Access Policyabstraction allows administrators to grant different rights
when a Privilege attribute is used by a delegate than those granted to the same Privilege
attribute when used by an initiator (note that “initiator” means the principal issuing the
first call in a delegated call chain; that is, the only client in the call chain that is not
also a target object). TH2omain Access Policyshown next illustrates the use of this
feature.

Table 2-4 Domain Access Policy (with Delegate Entry)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

Security Service, v1.7 March 2001

Table 2-4 Domain Access Policy (with Delegate Entry)

access_id:alice delegate corba:g---
group:programmers initiator corba:g---
group:administrators initiator corba:gs--

This Domain Access Policygrants Alice the §” and “s’ rights when she accesses an
object as an initiator, but only thg™right when a delegate using her identity accesses
the same object.

Domain Access Policy Use of Rights and Rights Families

The rights granted to a Privilege Attribute bypamain Access Policyentry must each
be “tagged” with the RightsFamily to which they belong. EBdmain Access Policy
entry can grant its rowBrivilegeAttribute rights from any number of different Rights
Families.

Implementations may define new Rights Families in addition to the standauio&”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’'s model of the system.

Access Decision Use of AccessPolicy and RequiredRights

The Access Decisiorobject is described in Section 2.3.12.2, “The Access Decision
Object,” on page 2-103. It is used at run-time to perform access control cAeckss
Decisionobjects rely upomccess Policyobjects to provide the policy information
upon which their decisions are based.

To complete the example, imagine that we have the following set of object instances.

Table 2-5 Interface Instances

Objects Interface
obj_1, obj_8, obj_n cl
obj_2, obj_5 c2
obj_12 c3

The Domain Access Policyobject illustrated next has been updated to include a list of
rights of type “other” granted to each of the Privilege attributes.

Table 2-6 Domain Access Policy

Privilege Attribute

Delegation State

Granted Rights

access_id:alice

initiator

corba: gs--
other: -u-m-s

Security Service, v1.7

Administrator’s Interfaces

March 2001

2-125

2-126

Table 2-6 Domain Access Policy

access_id:alice delegate corba: g---
other: ------

group:programmers initiator corba: g---
other: -u----

group:administrators initiator corba: gs--
other: ------

Table 2-7 shows Required Rights for three object interfaces (c1, c2, and c3), using the
standard Rights Familycbrba” and a second Rights Family, “other,” whose rights set

is assumed to be {g, u, 0, m, t, s}.

Table 2-7 Required Rights for Interfaces c1, c2, and c3

Required Rights Rights Operation Interface
Combinator

corba:s all m1l cl
corba:gs any m2

other:u all m3 c2
other:ms all m4

other: s all m5 c3
corba:gs all m6

Using this, we can calculate the effective access granted by this Domain Access Policy.

alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as an
initiator, but may execute only m2 as a delegate.

alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an initiator,
but may execute no operations of obj_2 and obj_5 as a delegate.

alice can execute operations m5 and m6 of object obj_12 as an initiator, but may
execute no operations as a delegate.

“programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n as an
initiator, but no operations as a delegate.

“programmers” can execute operation m3 of objects obj_2 and obj_5 as an initiator,
but no operations as a delegate.

“administrators” can execute operations m1 and m2 of objects obj_1, obj_ 8, and
obj_n as an initiator, but no operations as a delegate.

“administrators” can execute operations m5 and m6 of object obj_12 as an initiator,
but no operations as a delegate.

Security Service, v1.7 March 2001

2.4.4.6 The SecurityAdmin::DomainAccessPolicy Interface

The Domain Access Policyobject provides operations for managing access policy
through theDomainAccessPolicy interface.

Each domain manager may have at mostAceess Policyobject, and therefore at
most oneDomain Access Policy(though an object instance may have more than one
domain manager, and therefore, more than Domain Access Policy. The
DomainAccessPolicy interface inherits théccessPolicy interface and defines
operations to specify which subjects can have which rights as follows.

grant_rights

This operation grants the specifigghts to the privilege attributeriv_attr in
delegation stateel_state .

Utilities that manage access policy should use this operation to grant rights to a single
privilege attribute.

void grant_rights(

in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights
);
Parameters
priv_attr Privilege attributes to be affected.
del_state Delegation state to be set.
rights The list of rights to be granted.

Return Value

None.

revoke_rights

This operation revokes the specifieghts of the privilege attributgriv_attr in
delegation stateel_state .

Utilities that manage access policy should use this operation to revoke rights granted to
a single privilege attribute.

void revoke_rights(

in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

Security Service, v1.7 Administrator’s Interfaces March 2001 2-127

2-128

Parameters
priv_attr Privilege attributes to be affected.
del_state Delegation state to be set.
rights The list of rights to be revoked.

Return Value

None.

replace_rights

This operation replaces the current rights of the privilege attrimineattr in
delegation stateel_state with therights provided as input.

Utilities that manage access policy should use this operation to replace rights granted
to a single privilege attribute in cases where ugjrant_rights andrevoke_rights

is inappropriate. For examplegplace_rights might be used to change an

access_id 's authorizations to reflect a change in job description (since the change in
authorization in this case is related to the duties of the new job rather than to the
current authorizations granted to the user owningatteess_id).

void replace_rights(

in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights
);
Parameters
priv_attr Privilege attributes to be affected.
del_state Delegation state to be set.
rights The list of rights to be replaced.

Return Value

None.

get_rights
This operation returns the current rights (of tyfightsList) of the privilege attribute
priv_attr in delegation statdel_state .

Utilities that manage access policy should use this operation to retrieve rights granted
to an individual privilege attribute.

RightsList get_rights(

in SecAttribute priv_attr,
in DelegationState del_state,

Security Service, v1.7 March 2001

in ExtensibleFamily rights_family
);
Parameters
priv_attr Privilege attributes to which the requested rights aJre
granted.
del_state Delegation state to be set.
rights_family The family of rights to be affected, filtering rights that
do not that matchights_family .

Return Value

A list of rights granted to the specified privilege attribute of the specified rights family
in the specified delegation state. If the rights cannot be mapped from one or more
attributes, the attribute is silently ignored.

get_all_rights

This operation returns the current rights (for all rights families) of the privilege
attributepriv_attr in delegation stateel_state .

Utilities that manage access policy should use this operation to retrieve rights granted
to an individual privilege attribute.

RightsList get_all_rights(

in SecAttribute priv_attr,
in DelegationState del_state
);
Parameters
priv_attr Privilege attributes to which the requested rights aJre
granted.
del_state Delegation state to be set.

Return Value

A list of rights granted to the specified privilege attribute in the specified delegation
state.

2.4.5 Audit Policies

There are two invocation audit policies:

1. TheSecClientlnvocationAudit policy, which is used at the client side of an
invocation.

2. TheSecTargetlnvocationAudit policy, which is used at the target side.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-129

2-130

245.1

There is also an application audit policy type.

Audit policy administration interfaces are used to specify the circumstances under
which object invocations and application activities in this domain are audited. As for
access policies, this specification allows different audit policies to be specified, which
may have different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of options of
what to audit. Some of these are needed to respond to the problem of getting the useful
information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:
® Specified operations on objects.

® Failed operations (i.e., those that raise an exception) on specified object types in a
domain.

® Use of certain operations during certain time intervals (e.g., overnight).
® Access control failures on specified operations.
® Operations done by a specified principal.

® Combinations of these.

Note that many of these events may be related to the business application. For
example, an operation ofpdate_bank_accounis a business, rather than system,
operation. However, some events are mainly of interest to a Privilege administrator
(e.g., access failures to systems objects).

Application audit policies may audit similar types of events, though these are often
related to application functions, not object invocations.

The SecurityAdmin::AuditPolicy Interface

The AuditPolicy interface can be used to administer both client and target invocation
audit policies.

This standard audit policy is used to specify, for a set of event families and event types,
the selectors to be used to define which events are to be audited.

Security Service, v1.7 March 2001

2

These are related to the selectors useauitit needed (of Audit Decision object,
interfaceAuditDecision) andaudit_write (of Audit Channel object, interface
AuditChannel) as follows..

Table 2-8 Standard Audit Policy

Selector Type Value on audit_needed Value Administered
and audit_write
InterfaceName interface name CORBA::Repositoryld
ObjectRef object reference none - the policy applies to all objects in the
domain
Operation op_nhame operation
Initiator credential list security attributes (audit_id and privileges)
Success boolean boolean
Failure
Time utc when event occurred time interval during which auditing is needed
DayOfWeek DayOfTheWeek day of the week on which audit is to be done

Note that audit policy is managed on an audit policy domain basis. Assignment of
initial audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The audit policy also specifies an Audit Combinator for each event type. The Audit
Combinator defines how, for a given event typadit needed matches its selector
value list against the selectors in an audit policy. This specification defines two Audit
CombinatorsSecAllSelectors (which means that if all selectors in an audit policy
match the selectors supplieddadit_needed , audit_needed will return TRUE),

and SecAnySelector (which means that if any selector in the audit policy matches a
selector inaudit_needed , audit_needed will return TRUE).

The following operations are available on the Audit Policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the specified
event families and types.

void set_audit_selectors(

in CORBA::Repositoryld object type,

in AuditEventTypelList events,

in SelectorValuelList selectors,

in AuditCombinator audit_combinator

Security Service, v1.7 Administrator’s Interfaces March 2001 2-131

2-132

Parameters

object_type The type of objects for which an audit policy is being sgt.
If this is the empty string, the default policy for all object
types is implied.

events Event types are specified as family and type ids. If the type
id is zero AuditAll), the selectors apply to all event type
in that family.

2}

selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each of
the specified events. (Selectors for all other events remain
unchanged.)

audit_combinator The value for the combinator to be set for the specified
events.

Return Value

None.

clear_audit_selectors
This clears all audit selectors for the specified event families and types.

void clear_audit_selectors(

in CORBA::Repositoryld object type,
in AuditEventTypelList events
)i
Parameters
object_type The type of objects for which an audit policy is being cleared. If
this is the empty string, the default policy for all object types is
implied.
events Event types are specified as family and type ids. If the type id is
zero QuditAll), the selectors apply to all event types in that
family.

Return Value

None.

replace_audit_selectors
This replaces the specified selectors.

void replace_audit_selectors(

in CORBA::Repositoryld object type,
in AuditEventTypelList events,

Security Service, v1.7 March 2001

in SelectorValueList selectors
in AuditCombinator audit_combinator
);
Parameters
object_type The type of objects for which an audit policy is being
replaced. If this is the empty string, the default policy for
all object types is implied.
events Event types are specified as family and type ids. If the type
id is zero AuditAll), the selectors apply to all event typesi|in
that family.
selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each|of
the specified events. Selectors for all events not in the
specified events list are reset to empty lists.
audit_combinator The value for the combinator to be set for the specified
events.

Return Value

None.

get_audit_selectors
This obtains the current values of the selectors for the specified event family or event.

void get_audit_selectors(

in CORBA::Repositoryld object type,
in AuditEventType event_type
out SelectorValueList selectors
out AuditCombinator audit_combinator
)i
Parameters
object_type The type of objects for which an audit policy is being
obtained. If this is the empty string, the default policy for
all object types is implied.
event_type The requested event type.
selectors The list of selector values for the specifi@nt_type .
audit_combinator The audit combinator for the specifiedent_type .

Return Value

None.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-133

2-134

set_audit_channel

This specifies the identity of the audit channel to be used with this audit policy. The
actual audit channel object corresponding to this id is provided to the user by the
correspondinddudit Decision object.

void set_audit_channel(

in AuditChannelld audit_channel_id
);
Parameters
audit_channel_id A unique identifier associated with an audit channel.

Return Value

None.

2.4.6 Secure Invocation and Delegation Policies

2.4.6.1

These policies affect the way secure communications between client and target are set
up, and then used. There are three policies here:

1. Security::SecClientSecurelnvocation policy, which specifies the client policy
in terms of trust in the target’s identity and protection requirements of the
communications between them.

2. Security::SecTargetSecurelnvocation policy, which specifies the target policy
in terms of trust in the client’s identity and protection requirements of the
communications between them.

3. Security::SecDelegation policy, which specifies whether credentials are
delegated for use by the target when a security association is established between
client and target. This is a client side policy.

In all of these cases, there is a standard policy interface for administering the policy
options. Unlike access and audit policies, this is not replaceable. The standard policy
administration operations allow support of a range of policies.

Secure Invocation Policies

These are used to set client and target invocation policies, which specify both a set of
required secure association options and a set of supported options that control how:

® The security association is made, for example, whether trust between client and
target is established (implying authentication if the client and target are not in the
same identity domain).

® Messages using that association are protected, for example, the levels of integrity
and confidentiality.

Security Service, v1.7 March 2001

2

2.4.6.2

The administrator should specify the required association options, but will often not
need to specify the supported options as these default to the ones supported by the
security mechanism used. However, the administrator could choose to restrict what is
supported, and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction (e.g., for an application
that requires no protection on the request, but confidentiality on the reply). Conforming
implementations are not required to support this unidirectional feature. Some
selectable policy options may not be meaningful to set for a certain direction (e.g., the
EstablishTrustinTarget option is not meaningful for a reply).

Both SecClientSecurelnvocation andSecTargetSecurelnvocation type policy
objects support the same interface, though not all of the selectable policy options are
meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both theSecClientSecurelnvocation andSecTargetSecurelnvocation

policies, a separate set of secure association options may be established to indicate
required policy andsupported policy. Therequired policy indicates the options that

an object requires for communications with a peer. Sumported policy specifies the
options that an object can support if requested by a communicating peer.

Therequired options indicate the minimum requirements of the object, stronger
protection is not precluded.

Secure Association Options

The selectable secure association opti@ec(rity::AssociationOptions) are listed
next with a description of their semantics fequired policy andsupported policy.

NoProtection

® Required semantics: the object’s minimal protection requirement is unprotected
invocations.

® Supported semantics: the object supports unprotected invocations.

Integrity
® Required semantics: the object requires at least integrity-protected invocations.

® Supported semantics: the object supports integrity-protected invocations.

Confidentiality

® Required semantics: the object requires at least confidentiality-protected
invocations.

® Supported semantics: the object supports confidentiality-protected invocations.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-135

2-136

2.4.6.3

DetectReplay
® Required semantics: the object requires replay detection on invocation messages.

® Supported semantics: the object supports replay detection on invocation messages.

DetectMisordering

® Required semantics: the object requires sequence error detection on fragments of
invocation messages.

® Supported semantics: the object supports sequence error detection on fragments of
invocation messages.

EstablishTrustInTarget

® Required semantics: On client policy, the client requires the target to authenticate its
identity to the client. On target policy, this option is not meaningful.

® Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient

® Required semantics: On client policy, this option is not meaningful. On target
policy, the target requires the client to authenticate its privileges to the target.

® Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

Note that on an invocation, if both the client and target policies specify that peer trust
is needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustinClient option may be set f@upported policy, but not forequired

policy. This allows unauthenticated clients to use this target (subject to access
controls); the target can still insist on only authenticated users for certain operations by
using access controls.

The SecurityAdmin::SecurelnvocationPolicy Interface

The SecurelnvocationPolicy interface provides the following operations:

set_association_options

This operation of th&ecurityAdmin::SecurelnvocationPolicy interface
(PolicyTypeSecClientSecurelnvocation andSecTargetSecurelnvocation) is

used to set the secure association options for objects in the domain to which the policy
applies. Separate options may be set for particular object types by using the
object_type parameter.

Security Service, v1.7 March 2001

2

This call allows requesting a different set of association options for communication in
the request direction versus the reply direction, although conforming implementations
are not required to support this feature. Thegliest’ and “reply” options sets are

treated as overrides to thbdth” options set when evaluating policy for a single
communication direction. Implementations should rais€GERERBA::BAD_PARAM
exception if an unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For example,
EstablishTrustinClient , which is meaningful for th&ecTargetSecurelnvocation

policy, is not meaningful as a requirement for 8exClientSecurelnvocation

policy. Likewise, certain association options do not make sense when applied to only a
single direction (e.gEstablishTrustinTarget is not meaningful for communication

in the reply direction). An implementation may choose whether to raise an exception or
silently ignore requests for invalid association options.

void set_association_options(

in CORBA::Repositoryld object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options
)i
Parameters
object_type The type of objects that the association options apply to. If
this parameter is an empty string, all object types are
implied.
requires_supports Indicates whether the operation applies to the required
options or the supported options.
direction Indicates whether the options apply to only the request, only
the reply, or to both directions of the invocation.
options Indicates requested secure association options by setting the
corresponding options flags.

Return Value

None.

get_association_options

This is used to find what secure association options apply on
SecClientSecurelnvocation andSecTargetSecurelnvocation policy objects for
the required or supported policy, for the indicated direction, and for the specified
object type.

Implementations should raise ttEORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-137

AssociationOptions get_association_options(

in CORBA::Repositoryld object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction
)i
Parameters
object_type The type of objects that the association options apply to. If
this parameter is an empty string, all object types are
implied.
requires_supports Indicates whether the operation applies to the required
options or the supported options.
direction Indicates whether the options apply to only the request
only the reply, or to both directions of the invocation.

Return Values

The association options flags set for this policy.

2.4.6.4 The SecurityAdmin::DelegationPolicy Interface

The Delegation Policyobject, which has th8ecurityAdmin::DelegationPolicy
interface, controls which credentials are used when an intermediate object in a chain
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated by
default at an intermediate object in a chain where objects invoke other objects. This
default can be overridden by the object at run time.

void set_delegation_mode(

in CORBA::Repositoryld object_type,
in DelegationMode mode

)i

Parameters

object_type | The type of objects to which this delegation policy applies.

mode The delegation mode. Options are listed below:

2-138 Security Service, v1.7 March 2001

SecDelModeNoDelegation The intermediate’s own credentials are used
for future invocations.

SecDelModeSimpleDelegation The initiating principal credentials are
delegated.
SecDelModeCompositeDelegation Both the received credentials and the

intermediate object’'s own credentials are
passed (if the underlying security mechanism
supports this). The requester’s credentials
and the intermediate’s own credentials may
be combined into a single credential, or kept
separate, depending on the underlying
security mechanism.

Return Value

None.

get_delegation_mode
This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode(

in CORBA::Repositoryld object_type
)i
Parameters
object_type The type of object for which delegation mode is requested.

Return Value

The delegation mode of the object type specified byotfject_type parameter.

2.4.7 Non-repudiation Policy Management
This section defines interfaces for management of non-repudiation policy.

Non-repudiation policies define the following:

® Rules for the generation of evidence, such as the trusted third parties which may be
involved in evidence generation and the roles in which they may be involved and the
duration for which the generated evidence is valid

® Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised or
revoked.

® Rules for adjudication, for example, which authorities may be used to adjudicate
disputes.

Security Service, v1.7 Administrator’s Interfaces March 2001 2-139

The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted time
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third parties
(“authorities”), which may be used by the mechanism. A policy also defines, for each
mechanism, the maximum allowable “skew” between the time of generation of
evidence and the time of countersignature by a trusted time service; if the interval
between these two times is larger than the maximum skew, the time is not considered
to be trusted.

For each authority, a policy defines which roles the authority may assume, and a time
offset, relative to evidence generation time, which allows computation of the last time
at which the authority can legitimately declare its key to have been compromised or
revoked. For example, if an authority has a defilaadl_revocation_check_offset

of negative one hour, then all revocations taking effect earlier than one hour before the
generation of a piece of evidence will render that evidence invalid; no revocation
taking place later than one hour before the generation of the evidence will affect the
evidence’s validity. Note that tHast_revocation_check offset is inclusive, in the
sense that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.

2.4.7.1 Data Types for Non-repudiation Policy Management Interfaces

The following data types are used by the NR policy management operations.
module NRservice {

struct EvidenceDescriptor {

EvidenceType evidence_type,
DurationIinMinutes evidence_validity_duration,
boolean must_use_trusted_time

h
typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;
struct AuthorityDescriptor {

string authority_name,
string authority_role,
TimeOffsetinMinutes last_revocation_check_offset

/I may be >0 or <0; add this to evid. gen. time to
/I get latest time at which mech. will check to see
/I if this authority’s key has been revoked.

h

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;
struct MechanismDescriptor {

NRMech mech_type,
AuthorityDescriptorList authority_list,

2-140 Security Service, v1.7 March 2001

TimeOffsetinMinutes

max_time_skew

/I max permissible difference between evid. gen. time
/l and time of time service countersignature

I ignored if trusted time not reqd.

3

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

h

2.4.7.2 The NRservice::NRPolicy Interface

The NRPolicy interface has thget NR_policy_info andset NR_policy_info
operations, and like all oth&olicy interfaces it derives from theORBA::Policy

interface.

get_ NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info(

out ExtensibleFamily NR_policy_id,
out unsigned long policy version,
out TimeT policy_effective_time,
out TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

NR_policy_id The identifier of this non-repudiation policy.

policy_version

The version number of this non-repudiation
policy.

policy_effective_time

The time at which this policy came into effect.

policy_expiry_time

The time at which this policy expires.

nder

D

supported_evidence_types The types of evidence that can be generated ur
this policy.
supported_mechanisms The non-repudiation mechanisms which can b
used to generate and verify evidence under th
policy.
Return Value
None.
set NR_policy_info
Updates non-repudiation policy information.

Security Service, v1.7

Administrator’s Interfaces

March 2001

2-141

boolean set_ NR_policy_info(
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

)i
Parameters
requested_mechanisms The non-repudiation mechanisms to be supported under
this policy.
actual_mechanisms The non-repudiation mechanisms now supported under
this policy.
Return Value
TRUE The requested mechanisms were all set.
FALSE If the actual mechanisms returned differ from those
requested.

2.5 Implementor’s Security Interfaces

This section addresses Security Service replaceability. This section defines the security
service interfaces that allow different security service implementations to be
substituted, whether or not the generic ORB service interfaces are supported (see
Section 2.5.2, “Implementation-Level Security Object Interfaces,” on page 2-148, for
details).

The "Guidelines for a Trustworthy System" appendix offers additional guidance to
implementors of secure ORBs, including a discussion of using protection boundaries to
separate components, depending on the level of security required.

The description of security interceptors in Section 2.5.1, “Security Interceptors,” on
page 2-142 (particularly that in Invocation Time Policies), specifies how client and
target side policies and client preferences are used to decide what policy options to
enforce. This definition of how the options are used applies whether the ORB conforms
to the replaceability options or not. The interceptor facility that this is based on is
defined in the Interceptors chapter of emmon Object Request Broker: Architecture
and Specification

None of the interfaces defined in this section affect the application and administrator's
views described in Section 2.3, “Application Developer’s Interfaces,” on page 2-71,
and Section 2.4, “Administrator’'s Interfaces,” on page 2-115.

2.5.1 Security Interceptors

This section describes the interceptors that can be used for implementing the security
services.

2-142 Security Service, v1.7 March 2001

2

The ORB Services replaceability package requires implementation of two security
interceptors (see the Interceptors chapter ofGbexmon Object Request Broker:
Architecture and Specificatign

® Secure Invocation InterceptorThis is a message-level interceptor. At bind time,
this establishes the security context required to support message protection. When
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

® Access Control InterceptorThis is a request-level interceptavhich determines
whether an invocation should be permitted. This interceptor also handles auditing of
general invocation failures, but not related to denial of access (access-control denial
failures are audited within th&ccess Decisiorobject, which is called by this
interceptor to check access control).

This specification does not define a separate audit interceptor, as the other interceptors
implementations or the security service implementations call Audit Service interfaces
directly if the events for which they are responsible are to be audited.

The security interceptors implement security functionality by calling the replaceable
security service objects (defined later in this section) as shown in Figure 2-52.

reply reques
request reply

I |
_ ; Tari
Client | per request ggggés A?:Cgeests
Access Decisio Control
Control Interceptors
Interceptors I
I tosetup i
: r
association Target
Client Secure
Secure create create Invocatior]
Invocation Interceptors
Interceptors per message Security
Context
X _ I
I ORB Core I
=
[[

Figure 2-52 Security Functionality Implemented by Security Service Objects

The diagram shows the order in which security interceptors are called. Other
interceptors may also be used during the invocation. The order in which other
interceptors are called in relationship to security interceptors depends on the type of
interceptor.

At the client:

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-143

2-144

® |n general, the access control interceptor should be called first (to avoid unnecessary

processing of the request by other interceptors when permission to perform the
request is denied).

All request level interceptors (e.g., transaction or replication ones) are called before
the secure invocation interceptor, as the secure invocation interceptor is a message-
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invoked
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered in
any way. Note that data compression and data fragmentation should be applied
before the message-protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

® They call theSecurityLevel2::SecurityManager::get_security policy

operation defined in Section 2.3, “Application Developer’s Interfaces,” on
page 2-71, to find what policies apply to this client (at the client side) or this target
(at the target side).

At the client side, the security hints in the target object reference are used to find
what policies apply to the target object and what security mechanisms and protocols
are supported. This uses operations on the object reference.

At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client's environment
are taken into account.

The SecurityManager::get_security_policy operation may be used to get any of
the following policies:

® The invocation access policies of the current execution context. These are used by

the access control interceptor to check whether access is permitted.

The invocation audit policy. This is used by interceptors and security services to
check whether to audit events during an invocation.

The secure invocation policy. This is used by the secure invocation interceptor at
bind time. It useSecurelnvocationPolicy::get_association_options as

defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115. The secure
invocation policies (and hints in the object reference) specify required and
supported values. The interceptor checks that the required values can be supported,
and will not continue with the invocation if the client’s requirements are not met. If
the target’s requirements are not met, the invocation may optionally proceed,
allowing policy enforcement at the target.

Security Service, v1.7 March 2001

2

® The invocation delegation policy. This is used by the secure invocation interceptor
at bind time. The interceptor calls
SecurelnvocationPolicy::get_delegation_mode to retrieve this information.

2.5.1.2 Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, which the
client initiating the binding can use to securely invoke the target object designated by
the object reference used in establishing the binding. At object invocation time, the
secure invocation interceptor is called to use the (previously established) security
context to protect the message data transmitted from the client to the invoked target
object.

Please note that the remainder of this section assumes that security interceptors are
implemented using the security services replaceability interfaces defined in this
specification; interceptors built for implementations which do not provide the security
services replaceability interfaces will have similar responsibilities, but will obviously
make different calls.

It should also be noted that binding takes place implicitly and the exact point at which
it occurs can vary from one ORB to another. All that one can be certain of is that a
binding exists when an invocation of an operation takes place. There is no certainty
that the same binding will be used in subsequent invocations. Consequently, the
discussion that follows is about binding states and what must happen when the act of
implicit binding is executed by the ORB. All reference to the term “Bind” should be
interpreted as such.

Bind Time - Client Side
The Secure Invocation interceptor’s client bind time functions are used to:

®* Find what security policies apply.

® Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security context
occur.

Security policies relevant to this interceptor are the client secure invocation and
delegation policies. To retrieve the invocation policy objects, the Secure Invocation
interceptor calls th&ecurityManager::get_security_policy operation.

The interceptor checks if there is already a suitable security context object for this
client’s use of this target. If a suitable context already exists, it is used. If no suitable
context exists, the interceptor establishes a security association between the client and
target object (see Section 2.1.3.1, “Establishing Security Associations,” on page 2-5).

The client interceptor callgault::init_security_context to request the security
features (such as QOP, delegation) required by the client policy, client overrides and
target (as defined in its object reference). Vhelt returns a security token to be sent

to the target, and indicates whether a continuation of the exchange is needed. It also
returns a reference to the newly-creaSsturity Context object for this client-target
security association. (The way trust is established depends on policy, the security

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-145

2-146

technology used, and whether both client and target objects are in the same identity
domain. It may involve mutual authentication between the objects and negotiation of
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the
security token, which must be transferred to the target to permit it to establish the
target-sideSecurity Context object). The association establishment message may be
constructed in one of two ways:

1. When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in the
buffer (i.e., the request) supplied to the interceptor when it was invoked by
send_message . After constructing the association establishment message, the
interceptor invokesend, which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind time
calls Vault::accept_security_context to create the targ&8ecurity Context
object (if needed).

2. When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does not
include the object invocation in the buffer (i.e., the request), again ssirdy. This
message is intercepted in the target and the Vault called to cres@edhety
Context object. However, in this case, the target interceptor must generate another
security token and send it back to the client interceptor. The client interceptor calls
the Security Context object with acontinue_security_context operation
passing the token returned from the target to check if trust has now been
established. There may be several exchanges of security tokens to complete this.
Once the security association has been established, the original client object
invocation (i.e., request) is sent in a separate association establishment message.

Details of the transformation to the request and the association establishment message
formats appear in Section 3.1, “Security Interoperability Protocols,” on page 3-1.

Bind Time - Target Side
The secure invocation interceptor’s target bind functions:

®* Find the target secure invocation policies.

® Respond to association establishment messages from the client to establish security
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request message anc
uses the/ault (if there is no security context object yet) or the appropSateurity

Context object to process the security token. As previously described, this may result
in exchanges with the client. Once the association is established, the message
protection function described next is used to reclaim the request message and protect
the reply.

Security Service, v1.7 March 2001

2.5.1.3

Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses,
according to quality of protection requirements specified for this security association in
the activeSecurity Context object.

The Secure Invocation Interceptosend_message method calls
SecurityContext::protect_message , and itsreceive_message method calls
SecurityContext::reclaim_message , in each case using the approprig8ecurity
Context object.

Access Control Interceptor

Bind Time

At bind time, the client access control interceptor uses
SecurityManager::get_security_policy to get theSecClientinvocationAccess
policy andSecClientinvocationAudit policy. The target access control interceptor
uses theSecurityManager::get_security_policy ~ operation to get the
SecTargetinvocationAccessPolicy andSecTargetinvocationAudit policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client access
control policy, and at the target side depending on the target's access control policy.
Target side access controls are the norm; client-side access controls can be used to
reduce needless network traffic in distributed ORBs. Note that in some ORBs, system
integrity considerations may make exclusive reliance on client-side access control
enforcement undesirable.

The Access Control Interceptolient_invoke andtarget_invoke methods invoke the
access_allowed method of theAccess Decisiorobject, specifying the appropriate
authorization data. The access decision returns a boolean specifying whether the
request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policyAtiess Decision
object supports. It may be ACL-based, capability-based, label-based, etc. It also does
not know if theAccess Decisiombject uses the credentials exactly as passed, or takes
the identity from the credentials and uses these to find further valid privileges if needed
for this principal from a trusted source.

The Access Control Interceptor may also check if this invocation attempt should be
audited,by calling theaudit_needed operation on théudit Decision object; if this
call indicates that the invocation attempt should be audited, the Access Control
Interceptor uses th&uditChannel interface to write the appropriate audit record.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-147

2-148

This interceptor does not transform the request. It either passes the request unchangec
to continue processing the request, or it aborts the request by returning with an
appropriate exception (e.dSORBA::NO_PERMISSION if AccessDecision::
access_allowed returns False).

2.5.2 Implementation-Level Security Object Interfaces

2.5.2.1

2.5.2.2

The interfaces described in this section are all provided by the underlying security
infrastructure and the Object Security Service is a client of these interfaces. Since the
interfaces are internal to the ORB Security implementation, all these interfaces are
locality constrained.

This specification defines the following implementation-level security object interfaces
to support security service replaceability:

® Vault is used to create a security context for a client/target-object association.

® Security Contexbobjects hold security information about the client-target security
association and are used to protect messages.

® Credentialsobject is used for passir@redentials information between the
security infrastructure and the ORB Security Services.

® Access Decisiombjects are used (usually by Access Control Interceptors) to decide
if requests should be allowed or disallowed.

® Audit Decisionobjects are used to decide if events are to be audited.
® Audit Channelobjects are used to write audit records to the audit trail.
® Principal Authenticator object is used for authenticating a principal.

®* NRCredentialsobject is used for passing non repudiation credentials informations.

The Vault Object

The Vault object with th&ecurityReplaceable::Vault interface facilitates creating
credentials objects and establishing security contexts between clients and targets when
they are in different trust domains. Authentication is required to establish trust. The
Vault is alocality constrained object. Implementations of théault are responsible for
calling AuditDecision::audit_needed to determine whether the audit policy

requires auditing of successful and/or failed access control checks, and for calling
AuditChannel::audit_write whenever audit is needed.

The SecurityReplaceable::Vault Interface

The Vault operations are described below. Note that if an invocation of a Vault
operation results in an incomplesecurity Context (i.e., one that requires continued
dialogue to complete), the continuation of the dialogue is accomplished using the
interface of the incomplet8ecurity Context object rather than theault interface.

Security Service, v1.7 March 2001

acquire_credentials

This operation is called to authenticate the principal and optionally request privilege
attributes that the principal requires during its capsule specific session with the system.
It creates a capsule specifizedentials object including the required attributes.

AuthenticationStatus acquire_credentials(
in AuthenticationMethod method,
in MechanismType mechanism,
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

method Contains the identifier of the authentication method used.

mechanism Contains the security mechanism with which to createCtidentials .

security_name Contains the principal’s identification information (e.g., login name).

auth_data Contains the principal’'s authentication information such as password or
long term key.

privileges Contains the privilege attributes requested.

creds Contains the locality constrained object reference of the newly created
Credentials object. It is usable and placed on tharent object's
own_credentials list only if the return value is ‘SecAuthSuccess.’

auth_specific_data Information specific to the particular authentication service used.

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue |’ then this parameter contains challenge informatio
for authentication continuation.

>

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’ Indicates that the object reference of the newly created initialized credentials
object is available in thereds parameter.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-149

‘SecAuthFailure’

Indicates that authentication was in some way inconsistent or erroneous, and

therefore credentials have not been created.

‘SecAuthContinue’

Indicates that the authentication procedure uses a challenge/response

mechanism. The creds contains the object reference of a partially initialized

Credentials object. Thecontinuation_data indicates details of the challenge.

‘SecAuthExpired’

Indicates that the authentication data contained some information, the validity

of which had expired (e.g., expired passwoftipdentials have therefore not
been created.

continue_credentials_acquistion

This continues the authentication process for authentication procedures that cannot
complete in a single operation. An example of this might be a challenge/response type

of authentication procedure.

AuthenticationStatus continue_credentials_acquisition(

in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data
)i
Parameters
response_data Contains the response data to the challenge.
creds Contains the reference of the partially initializécdentials
object. TheCredentials object is fully initialized only when return
parameter isSecAuthSuccess .
continuation_data If the return parameter from thentinue_authentication
operation is SecAuthContinue ,’ then this parameter contains
challenge information for authentication continuation.
auth_specific_data Contains information specific to the particular authentication
service used.

Return Value

The return parameter is used to specify the result of the operation.

2-150 Security Service, v1.7 March 2001

‘SecAuthSuccess’ Indicates that th€redentials object whose reference was identified
by thecreds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way inconsistent |or
erroneous, and that therefore credentials have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a further

challenge/response. Tl@edentials object whose reference was
identified in the creds parameter is still only partially initialized. The
continuation_data indicates details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some information
whose validity had expired (e.g., expired password).rkrdentials
object referred to by theeds parameter is not valid.

init_security _context

This operation is used by the association interceptor (or the ORB if separate
interceptors are not implemented) at the client to initiate the establishment of a security
association with the target. This operation createllemntSecurityContext object

that represents the client’s view of the shared security context.

AssociationStatus init_security_context(

in Credentials creds,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque comp_data,
in ChannelBindings chan_bindings,
out OpaqueBuffer security _token,
out ClientSecurityContext security _context
);
Parameters
creds The credentials to be used to establish the security association.
target_security_name The security name of the target as set in its object reference.
target The target object reference.
delegation_mode The mode of delegation to employ. The value is obtained by combining
client policy and application preferences as describagvagation Time
Policies under Section 2.5.1, “Security Interceptors,” on page 2-142.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-151

association_options A sequence of one or more pairs of secure association options and
direction. The options include such things as required peer trust and
message protection. Normally, one pair will be specified, for the “both”

direction. Implementations that support separate association options for
requests and replies may supply an additional options set for each
direction supported. These values are obtained from a combination of the
client’s security policy, the hints in the target object reference, and any

requests made by the application.

mechanism Normally the empty string, meaning use default mechanism for security
associations. Otherwise, it contains the security mechanism(s) requested.
(These may have been obtained from the target object reference.)

comp_data The component data from the specifi®®::TaggedComponent the ORB
has selected from a target’s object reference..

chan_binding The channel bindings for the security context. These are the channe
bindings defined for the GSS-API.

security_token The token to be transmitted to the target to establish the security
association. Note that this may take several exchanges, but operations

required at the client to continue the establishment of the association are
on theSecurity Context object.

security_context The initialized security context.

Return Value

The return value is used to specify the result of the operation.

SecAssocSuccess Indicates that the security context has been successfully
created and that no further interactions with it are needed
to establish the security association.

SecAssocFailure Indicates that there was some error, which prevents
establishment of the association.

SecAssocContinue Indicates that the association procedure needs more
exchanges.

accept_security _context

This operation is used by the association interceptor (or ORB) at the target to accept a
request from the client to establish a security association. This operation creates the
ServerSecurityContext object that represents the target’s view of the shared security
context.

AssociationStatus accept_security _context(

in CredentialsList creds_list,

in ChannelBindings chan_bindings,
in OpaqueBuffer in_token,

out OpaqueBuffer out_token,

2-152 Security Service, v1.7 March 2001

out ServerSecurityContext security_context

);
Parameters
creds_list The credentials of the target. Note that this may be the
credentials of the trust domain, not the individual object.
chan_bindings The channel bindings for the security context. They are the
channel bindings as specified for the GSS-API.
in_token The security token transmitted from the client.
out_token If establishment of the security association is not yet complete,
this contains the security token to be transmitted to the client
to continue the security dialogue. Note that any further
operations needed to complete the security association are on
the security context object.
security_context The Security Context object at the target which represents the
shared security context between client and target.

Return Value

SecAssocSuccess Indicates that the security context has been successfully
created and no further interactions with it are needed to
establish the security association.

SecAssocFailure Indicates that there was some error that prevents
establishment of the association.

SecAssocContinue The first stage of establishing the security association hias
been successful, but it is not complete. bhe token
contains the token to be returned to continue it.

get_supported_mechs

This operation returns the mechanism types supported bydhis object and the
association options these support.

MechandOptionsList get_supported_mechs ();

Parameters

None.

Return Value

The list of mechanism types supported by Waslt object and the association options
they support.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-153

supported_mech_oids

This readonly attribute contains a sequence of OIDs each of which identifies a
particular GSS mechanism that tWgult supports.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that th@ault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(

in MechanismType mechanism
);
Parameters
mechanism Contains the mechanism for which the authentication methods
are valid.

Return Value

The list of authentication methods supported by Yaslt object for the particular
mechanism.

create_ior_components

This operation is called to create a set of security refeagded Components that
indicate the security mechanisms supported by the Vault and the given set of
Credentials objects.

IOP::TaggedComponentSeq create_ior_components(

in CredentialsList creds_list
);
Parameters
creds_list This argument lists the credentials that are to be considered in

creating theTagged Components .

Return Value

This operation returns the Tagged Components.

2.5.2.3 The Security Context Object

A Security Context object with theSecurityReplaceable::SecurityContext
interface represents the shared security context between a client and a target. It is a
locality constrained object. It is used as follows:

2-154 Security Service, v1.7 March 2001

2

® By the security association interceptors to complete the establishment of a security
association between client and target after\thelt has initiated this.

® By the message protection interceptors in protecting messages for integrity and/or
confidentiality.

® In response to a target object’s request to Current for privileges and other
information (sent from the client) about the initiating principal.

® |n response to a target object’s request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

® To check if the security context is valid, and if not, try and refresh it.

The Security Context object is a stateful object that goes through state transitions based
on the result of calls on its operations. It also may go through state transitions based on
environmental concerns such as an amount of time that has expired. An
implementation of a Security Context must model the following states:

Initial - Initial state of any Security Context.

Continued- The Security Context is in the process of negotiation and not yet
established. This state corresponds to SECIOP state S1 and S3.

ClientEstablished- The Security Context is established on the client side. This means
evidence from the target may not need to be processed before messages can be
protected and sent to the target side. This state corresponds to SECIOP state S2.

Established-The Security Context is fully established. It is able to process all
messages. This state corresponds to SECIOP state S3.

EstablishExpired- The negotiation has expired.
Expired - The Security Context has expired.
Invalid - The Security Context is invalid.

The state transitions are modeled by the following diagram:

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-155

Invalid

————» Operation Transition refresh_security_context

2-156

$ Environmental Transition

Figure 2-53 Security Context State Transition Diagram

An implementation of a Security Context that transitions intoCGhentEstablished
state, which must only be on the client side of the context, must allow successful
processing oprotect_message operations.

From any state, a context may enter Exgired or Invalid (not pictured) states due to
environmental events or bad operations. Contexts iClieatEstablishedEstablished

and Expired state may be refreshed, although, it is not a requirement that refresh be
successful for all those states (i.e., some mechanisms may only allow refresh of
unexpired contexts). If refresh is not supported for this context, then the
supports_refresh attribute must be false.

2.5.2.4 The SecurityReplaceable::SecurityContext Interface

The SecurityReplaceable::SecurityContext interface has the following attributes
and operations:

context_type

The context_type readonly attribute returns the orientation type of the security
association. It has the following definition:

Security Service, v1.7 March 2001

readonly attribute SecurityContextType context_type;

Return Value

‘SecClientSecurityContext’ This security context has a client orientation. |
was created by theault:init_security_context
operation.

‘SecServerSecurityContext’ This security context has a server orientation. |t
was created by the
Vault::accept_security_context — operation.

context_state

The context_state readonly attribute returns state of the security association. A
security context goes through a number of different states during the establishment and
use of the secure association. It has the following definition:

readonly attribute SecurityContextState context_state;

Return Value

‘SecContextlnitialized’ This security context has been initialized.

‘SecContextContinued’ This security context is awaiting more negotiation to
become established.

‘SecContextClientEstablished’ This security context is established on the client side
and the client has the ability to send protected
messages to the server side. However, the context jis
still waiting for the server side to complete the
establishment of the association.

‘SecContextEstablished’ This security context is fully established.

‘SecContextEstablishExpired’ This security context has expired during establishment
negotiation.

‘SecContextExpired’ This security context has expired. It may be possible to
refresh it

‘SecContextinvalid’ This security context is invalid. It cannot be used of
refreshed.

mechanism

The mechanism readonly attribute returns security mechanism used by security
association. It has the following definition:

readonly attribute MechanismType mechanism;

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-157

Return Value

The value of the mechanism that created the security context.

supports_refresh

The supports_refresh readonly attribute returns whether the mechanism and the
implementation of thiSecurityReplaceable::SecurityContext object can support
refreshment of the security context.

readonly attribute boolean supports_refresh;

Return Value

FALSE Refresh is not supported.
TRUE Refresh is supported.
chan_binding

The chan_binding readonly attribute returns channel bindings that were used when
the security context was created. It has the following definition:

readonly attribute ChannelBindings chan_binding;

Return Value

The channel binding that was used when the security context was created.

received_credentials

Thereceived_credentials readonly attribute returns thiReceivedCredentials that
are received from the invoker.

readonly attribute ReceivedCredentials received_credentials;

Return Value

Object reference to received credentials.

continue_security_context

This operation is invoked by the association interceptor to continue establishment of
the security association. It can be called by either the client or target interceptor on the
local security context object.

AssociationStatus continue_security _context(

in OpaqueBuffer in_token,
out OpaqueBuffer out_token

2-158 Security Service, v1.7 March 2001

Parameters
in_token The security token generated by the other one of the client-target
pair and sent to thiSecurity Context object to be used to continue
the dialogue between client and target to establish the security
association.
out_token If required, a further security token to be returned to the other
Security Context object to continue the dialogue.

Return Value

SecAssocSuccess The security association has been successfully established.

SecAssocFailure The attempt to establish a security association has failed.

SecAssocContinue The context is only partially initialized and further
operations are required to complete authentication.

protect_message

The protect_message operation of theSecurity Context object provides the

means whereby the client message protection interceptor may protect the request
message, or the target interceptor may protect the response message for integrity and/o
confidentiality according to the Quality of Protection required.

void protect_message(

in OpaqueBuffer message,
in QOP gop,
out OpaqueBuffer text_buffer,
out OpaqueBuffer token
)i
Parameters
message The message for which protection is required.
gop Required message protection options.
text_buffer The protected message, optionally encrypted.
token The integrity checksum, if any.

Return Value

None.
reclaim_message

Thereclaim_message operation on th&ecurityContext object provides the means
whereby a protected message may be checked for integrity and decrypted if necessary

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-159

2-160

boolean reclaim_message(

in OpaqueBuffer text_buffer,
in OpaqueBuffer token,
out QOP qop,
out OpaqueBuffer message
)i
Parameters

text_buffer

The message for which the check is required and optionally
message to be decrypted.

token The integrity checksum, if any. Will typically be zero length if
QOP indicates that confidentiality was applied.

gop The quality of protection that was applied to the protected
message.

message The unprotected message, decrypted if required.

Return Value

the

If the reclaim_message operation returns a value BALSE, then the message has
failed its integrity check. ITRUE, the integrity of the message can be assured.

is_valid

Theis_valid operation of théSecurity Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid(

out UtcT expiry_time
);
Parameters
expiry_time The time at which this context is no longer valid.

Return Value

FALSE

The context is no longer valid.

TRUE

The context is still valid.

refresh_security context

This operation may extend the useful lifetime of 8exurityContext . It takes one

input argument of data specific to the mechanism that may be needed to complete a
refresh of the context. The output token should be given as evidence to the opposite
side of the refresh. Theefresh_security _context

valid and expired contexts.

Security Service, v1.7 March 2001

operation may be called on both

Note —Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of the
security context to determine if calls ¢ontinue_security_context may be needed

to complete refreshment of the security context.

boolean refresh_security_context (

in any refresh_data,
out OpaqueBuffer out_token
)i
Parameters
refresh_data Data specific to the mechanism that may be needed to
refresh the security context.
out_token Evidence of the refresh request that is to be delivered|to
the opposite side of the context.

Return Value

FALSE The context has not been successfully refreshed. The
parameteput_token does not contain a valid value.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent
calls tocontinue_security_context . The parameter
out_token contains the evidence token.

process_refresh_token

This operation may extend the useful lifetime of 8exurityContext based on a
token from the opposite side of the shared association. The
refresh_security_context operation may be called on both valid and expired
contexts provided that they have not yet been destroyed or discarded.

Note —Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of the
security context to determine if calls ¢ontinue_security_context may be needed

to complete refreshment of the security context.

boolean process_refresh_token (

in OpaqueBuffer refresh_token,
)i
Parameters
refresh_token Evidence token supporting refresh of this context.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-161

2-162

Return Value

FALSE The context has not been successfully refreshed.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent
calls tocontinue_security_context

discard_security_context

This operation is invoked by the association interceptor to discard a security
association. It takes one input argument of data specific to the mechanism that may be
needed to discard the context. The output token may be given as evidence to the
opposite side of the discard.

boolean discard_security_context (

in Opaque discard_data,
out OpaqueBuffer out_token
)i
Parameters
refresh_data Data specific to the mechanism that may be needed to
discard the security context.
out_token Evidence of the discard to be delivered to the opposite
side.
Return Value
FALSE The context has not been discarded. The parameter

out_token does not have a valid value.

TRUE The context has been discarded. The parametenken
contains the evidence token.

process_discard_token

This operation may discard ti8ecurityContext based on a token from the opposite
side of the shared association. Tgrecess_discard_token operation may be called
on both valid and expired contexts.

boolean process_discard_token (

in OpaqueBuffer discard_token,
)i
Parameters
discard_token Evidence token supporting discard of this context.

Security Service, v1.7 March 2001

2.5.2.5

2.5.2.6

Return Value

FALSE The context has not been discarded. Discard token may be
invalid for context.

TRUE The context has been successfully discarded.

The Client Security Context Object

A Client Security Context object with the
SecurityReplaceable::ClientSecurityContext interface represents the client's
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a locality
constrainedbiject.

The SecurityReplaceable::ClientSecurityContext Interface

The SecurityReplaceable::ClientSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern client
side initialization arguments and target side information. It has the following attributes:

association_options_used

The association_options_used readonly attribute returns the association options
used and to create the security context Wislult::init_security _context . These
options may also have been negotiated during set up to something other than the
association options supplied YMault::init_security_context . Nonetheless, it is the
current state of the security context that is reflected in this attribute.

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

The delegation readonly attribute returns the delegation mode used and to create the
security context with/ault::init_security_context . This option may have been
negotiated during set up to something other than the association options supplied to
Vault::init_security_context . Nonetheless, it is the delegation mode of the security
context that is reflected in this attribute.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-163

2-164

mech_data

The mech_data readonly attribute returns the value of thech_data argument
used to create the security context witwlt::init_security _context

readonly attribute Opaque mech_data;

Return Value

The mechanism data used to create the context.

client_credentials

The client_credentials readonly attribute returns ti&redentials object used to
create the security context witfault::init_security _context

readonly attribute Credentials client_credentials;

Return Value

The credentials used to create the security context.

target_credentials

Thetarget_credentials readonly attribute returns th&redentials object used to
create the security context with the target.

readonly attribute TargetCredentials target_credentials;

Return Value

The credentials representing authentication of the principal of the target.

server_options_supported

The server_options_supported readonly attribute returns the association options
that the server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that the server supports.

server_options_required

Theserver_options_required readonly attribute returns the association options that
the server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that the server requires.

Security Service, v1.7 March 2001

2.5.2.7

2.5.2.8

server_security_name

The server_security_name readonly attribute returns the security name that the
server side of the security context represents.

readonly attribute Opaque server_security_name;

Return Value

The security name of the target side.

The Server Security Context Object

A Server Security Context object with the
SecurityReplaceable::ServerSecurityContext interface represents the target's
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a locality
constrained object.

The SecurityReplaceable::ServerSecurityContext Interface

The SecurityReplaceable::ServerSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern target
side initialization arguments and target side information. It has the following attributes:

association_options_used

The asscociation_options_used readonly attribute returns the association options
that have been negotiated during set upMaalt::accept_security _context

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

The delegation readonly attribute returns the delegation mode in effect for this
security context.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

server_credentials

The server_credentials readonly attribute returns the server credentials selected
from the list of credentials used to create the security context with
Vault::accept_security _context

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-165

2-166

2.5.2.9

readonly attribute Credentials server_credentials;

Return Value

The credentials used to create the security context.

server_options_supported

The server_options_supported readonly attribute returns the association options
that this server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that this server supported for negotiation of this security
context.

server_options_required

Theserver_options_required readonly attribute returns the association options that
this server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that this server required for negotiation of this security context.

server_security_name

The server_security_name readonly attribute returns the security name for which
this server used to accept and negotiate the security context.

readonly attribute Opaque server_security_name;
Return Value

The target security name of the security context.

The Credentials Object

The Credentials object with theSecurityLevel2::Credentials interface, as defined
in Section 2.3.4, “The Credentials Object,” on page 2-77, is used tadQuedsentials
information between the underlying security mechanisms and the ORB Security
Services.

Security Service, v1.7 March 2001

2.5.2.10 The Access Decision Object

The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on a target object. It uses access
control attributes for the target object to determine whether the principal’s privileges,
obtained from the&Security Context are sufficient to meet the access criteria for the
requested operation.

2.5.2.11 The SecurityReplaceable::AccessDecision Interface

The SecurityReplaceable::AccessDecision object is a locality constrained object.
This object has the following interface:

interface AccessDecision {
boolean access_allowed(
in SecurityLevel2::ReceivedCredentials creds,
in CORBA::Identifier operation_name,
in CORBA::Repositoryld target_interface_name
);
h

Parameters

creds The credentials of the client principal.

operation_name The name of the requested operation.

target_interface_name The name of the interface.

Return Value

FALSE Access is to be denied.

TRUE Access is to be allowed.

2.5.2.12 The Required Rights Object

The Required Rights object has an operation for retrieving and setting the rights
required for operations on interfaces. It is replaceable since the replageabks
Decisiondepends upon its implementation, if the acdessision object uses
RequiredRights .

2.5.2.13 The SecurityReplaceable::RequiredRights Interface

The SecurityReplaceable::RequiredRights object has the following operations:

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-167

2-168

get_required_rights

This operation retrieves the rights required for access to the operation specified by
operation_name from the interface specified bgterface_name . The returned
values are a list of rights and a combinator describes the interoperation of multiple
rights.

get_required_rights(

in CORBA::Identifier operation_name,
in CORBA::Repositoryld target_interface_name,
out RightsList rights,
out RightsCombinator rights_combinator
);
Parameters
operation_name The name of the operation for which required rights
are returned.
target_interface_name The CORBA Repository identifier which names the
interface to which the operation belongs.
rights The returned list of rights.
rights_combinator The returned rights combinator.

Return Value

None.

set_required_rights

This operation updates the rights required for access to the operation specified by
operation_name from the interface specified bgterface_name . The caller must
provide a list of rights and a combinator describing the interpretation of multiple
rights.

set_required_rights(

in CORBA::Identifier operation_name,
in CORBA::Repositoryld target_interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

)i

Parameters

operation_name The name of the operation for which required rights
are set.

Security Service, v1.7 March 2001

target_interface_name The CORBA Repository identifier which name the
interface to which the operation belongs.

rights The list of rights.

rights_combinator The rights combinator.

Return Value

None.

2.5.2.14 The Audit Decision Object

The Audit Decision object is used to determine if an event needs to be audited.

2.5.2.15 The SecurityReplaceable::AuditDecision Interface
The AuditDecision object has the following attributes and operations:

audit_needed

This operation is used to determine if an audit record is to be written to the audit
channel. The caller specifies an event type and values for the selectors. It has the
following definition:

boolean audit_needed(

in AuditEventType event_type,
in SelectorValueList value_list
)i
Parameters
event_type The event type.
value_list A list of zero or more selector value pairs.

Return Value

FALSE An audit record need not be written to the audit channel.

TRUE An audit record needs to be written to the audit channel.

audit_channel
This attribute provides the audit channel associated with the audit decision object:

readonly attribute AuditChannel audit_channel;

Return Value

The audit channel object.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-169

2.5.2.16 The Audit Channel Object

The Audit Channel object contains the operations necessary to generate audit records.

2.5.2.17 The SecurityReplaceable::AuditChannel Interface

The AuditChannel object has the following attributes and operations:

audit_channel_id

This attribute provides the contains an identifier with which to identifiy the particular
audit channel object:

readonly attribute AuditChannelld audit_channel_id;

Return Value

The audit channel identifier.

audit_write
This operation writes an audit record to the audit channel.

void audit_write(

in AuditEventType event_type,
in CredentialsList creds_list,
in UtcT time,
in SelectorValueList descriptors,
in any event_specific_data
)i
Parameters
event_type The type of event.
creds_list The list ofCredentials objects of the principal
responsible for the event.
time The time the event occured
descriptors The set of values to be recorded that are associated
with the event.
event_specific_data Data specific to the particular type of event.

Return Value

None.

2-170 Security Service, v1.7 March 2001

2.5.2.18 Principal Authentication

The Principal Authenticator object with the

SecurityLevel2::PrincipalAuthenticator interface, defined in Section 2.3.3,
“Authentication of Principals,” on page 2-73, provides the facility for authenticating a
principal. It may also be used by implementation security objects, specifically the
Vault.

2.5.2.19 Non-repudiation

The Non-repudiation services are accessible througNRezrvice::NRCredentials
interface. Its functionality and operations are defined in Section 2.3.14, “Non-
repudiation,” on page 2-106.

2.5.3 Replaceable Security Services

2.5.3.1

2.5.3.2

2.5.3.3

It is possible to replace some security services independently of others.

Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message
protection services underlying a secure ORB implementation can be accomplished by
replacing thePrincipal Authenticator, Vault, Credentials, andSecurity Context

objects with implementations using the new underlying technology.

Note that if theVault uses GSS-API to link to external security services, it may be
substantially security technology independent, and so may require no changes or minor
changes in order to accommodate a new underlying authentication technology (though
it may also have to use technology independent interfaces for principal authentication
in some circumstances, as this is not always hidden under GSS-API).

The Vault is replaced by changing the version in the environment.

Replacing Access Control Policies

Access control policies can be changed by replacing\titess Policyand Access
Decisionobjects, which define and enforce access control policies (for example,
substituting anotheAccess Policyobject forDomainAccessPolicy).

Applications may also change their access control policies. If the application access
policy object(s) is similar to the invocation access policy object(s), then they can be
replaced in a similar way.

Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocation
audit policy not supported by the standard audit policy objects. In this case, the policy
objects are replaced in a similar way to the access policy objects.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-171

2-172

2.5.3.4

2.5.3.5

2.5.3.6

Also, Audit Channel objects may be replaced to change how audit records are routed
to a collection point or filtered.

The Audit Channel object used for object system auditing is replaced by replacing the
Audit Channel object in the environment. Othdudit Channel objects may be
replaced by associating a different channel object with the appropriate audit policy.

Application auditing objects can be replaced by the application.

Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associated
with NRCredentials andNRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service using
symmetric encipherment techniques may be replaced by a service using asymmetric
encipherment techniques.

The same credentials and authentication method may be used for non-repudiation and
for other secure invocations, so when replacing either of these, the effect on the other
should be considered.

Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

Linking to External Security Services

The security service interfaces specified in this section may encapsulate calls to
external security services via APIs.

The external services used may include:
® Authentication Servicego authenticate principals.

® Privilege (Attribute) Servicedor selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well as on
individual identity).

® Security Association Servicder establishing secure associations between
applications. These services may themselves use other security services such as:
« Key Distribution Servicegif secret keys are used),
« Certification Authority for certifying public keys, and

« Interdomain Servicedor handling communications between security policy
domains.

® Audit (andEvenf) Services

® Cryptographic Support Facilitieso perform cryptographic operations (perhaps in an
algorithm-independent way).

Security Service, v1.7 March 2001

2

This specification does not mandate which interfaces are used to access external
security services, but notes the following possibilities:

® The GSS-API is used for security associations and for the majorityeafentials
and Security Context operations, as this allows easy security service replacement.
With this in mind, several interfaces in this specification have been designed to
allow easy mapping to GSS-API functions, and @redentials and Security
Context objects are consistent with GSS-API credentials and contexts.

® |IDUP GSS-API may be used for independent data unit protection and evidence
generation and verification.

® Cryptographic operations performed by a Cryptographic Support Facility (CSF) to
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/Open
and other international bodies, and standards are not yet stable.

Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-173

2-174 Security Service, v1.7 March 2001

Protocols and Mechanisms 3

Contents

This chapter contains the following topics.

Topic Page
“Security Interoperability Protocols” 3-1
“Secure Inter-ORB Protocol (SECIOP)” 3-34
“The SECIOP Hosted CSI Protocols” 3-55
“SPKM Protocol” 3-63
“GSS Kerberos Protocol” 3-65
“CSI-ECMA Protocol” 3-68
“Integrating SSL with CORBA Security” 3-108
“DCE-CIOP with Security” 3-109

3.1 Security Interoperability Protocols

3.1.1 Introduction

This section specifies a model for secure interoperability between ORBs, which
conforms to the CORBA 2 interoperability specification and employ a common
security technology.

The interoperability model also describes other interoperability cases, such as the
effect on interoperability of crossing security policy domains. However, detailed
definitions of these are not given in this specification.

Security Service, v1.7 March 2001 3-1

3-2

It then defines the extensions required to the interoperability protocol for security. This
includes:

® Specification of tags in the CORBA 2 Interoperable Object Referd@®d®) (so this
can carry information about the security policy for the target object and the security
technology, which can be used to communicate securely with it.

® A security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2 General
Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide this
protection.

® Security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally independent
of which ORB interoperability protocol is used, other Environment-Specific Protocols
(ESIOPs) may support security in a similar way to that described for GIOP. However,
the specification only addresses DCE-CIOP, which supports only DCE security.

The security protocol specified does not define details of the contents of the security
tokens exchanged to establish a security association, the integrity seals for message
integrity, or the details of encryption used for confidentiality of messages, as these
depend on the particular security mechanism used. This specification does not specify
mechanisms.

3.1.2 Interoperability Model

This section describes secure interoperability when:
®* the ORBs share a common interoperability protocol,
® consistent security policies are in force at the client and target objects, and

®* the same security mechanism is used.

All other options build from this.

Security Service, v1.7 March 2001

3.1.2.1

The model for secure interoperability is shown in the following diagram.

request

ORB
Security
Services

ORB
Security
Services

I security token at association setup I
ORB Core protected message
OrBlore PREREZMESSESE

Figure 3-1 Model for Secure Interoperability

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

® |f there is not already a security association between the client and target, one is
established by transmitting security token(s) between them (transparently to the
application).

® Requests and responses between client and target are protected in transit between
them. Protection includes not only ensuring that individual messages are inviolate
and private, but that message streams are as well.

Security Information in the Object Reference

When an object is created in a secure object system, the security attributes associated
with it depend on the security policies for its domain and object type and the security
technology available. A client needs to know some of this information to communicate
securely with this object in a way the object will accept. So the object reference
transferred between two interoperating systems includes the following information:

® A security name or names for the target so the client can authenticate its identity.

® Any security policy attributes of the target relevant to a client wishing to invoke it.
This covers policies such as the required quality of protection for messages and
whether the target requires authentication of the clients identity and supports
authentication of its identity.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-3

3-4

3.1.2.2

3.1.2.3

® |dentification of the security technology used for secure communication between
objects this target supports and any associated attributes. This allows the client to
use the right security mechanism and cryptographic algorithms to communicate
with the target.

Establishing a Security Association
The contents of the security tokens exchanged depend on the security mechanism usec

A particular security mechanism may itself have options on how many security tokens
are used. The minimum is @mtial contexttoken (a term used in GSS-API), sent from
the client to the target object to establish the security association. This typically
contains:

® an identification of the security mechanism used,

® security information used by this mechanism to establish the required trust between
client and target and to set up the security context necessary for protecting messages
later,

® the principal’'s credentials, and

® information for protecting this security data in transit.

In addition to this token, subsequent security tokens may be needed if:
® mutual authentication of client and target object is required, or

® some negotiation of security options for this mechanism is required (for example,
the choice of cryptographic algorithms).

Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case, the
messages forming the request and reply are first wrapped in a sequencing layer
envelope and then cryptographically protected by the ORB security services. For
integrity, extra information (e.g., an integrity seal) is added to the message so the target
ORB security services can check that the message has not been changed.

For confidentiality, the message itself is encrypted so it cannot be intercepted and read
in transit.

Details of how messages are protected are again mechanism-dependent. Note, howevel
that messages cannot be changed once they have been protected, as they cannot be
understood once confidentiality protected and the integrity check will fail if they are
altered in any way.

In SECIOP message stream protection is provided by encapsulating all SECIOP data
payloads (e.g., IIOP messages or message fragments) in a sequencing protocol frame.
The sequencing protocol ensures that data payloads are not duplicated (replayed),
dropped (deleted), or received out-of-sequence (reordered). The sequencing protocol
frame is protected by the ORB security services to ensure the state it contains is not
modified by an intruder.

Security Service, v1.7 March 2001

3.1.2.4

3.1.2.5

Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security
mechanisms.

This specification does not define a standard security mechanism to be supported by all
secure ORBs. It therefore does not specify a particular set of security token formats
and message protection details for a particular security mechanism.

Security Mechanism Types

There are two major types of security mechanisms used in existing systems for security
associations. They are those using:

®* Symmetric (secret) key technology where a shared key is used by both sides, and a
trusted third party (a Key Distribution Service) is used by the client to obtain a key
to talk to the target.

®* Asymmetric (public) key technology where the keys used by the two sides are
different, though linked. In this case, long term, public keys are normally freely
available in certificates that have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT's Kerberos product.
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and inter-enterprise working. The
number of public key based systems are growing and the use of public key technology
is standard for non-repudiation, which is an optional component in this specification,
and increasingly needed in commercial systems so any OMG security specification
must not preclude its use. Also, the use of smart cards with public key technology is
increasing. However, non-repudiation is not a service required for secure
interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s)
supported by the target. Where a client or target supports more than one mechanism,
and there is at least one mechanism in common between client and target, the client
can choose one which they both support.

Some security mechanisms may support a number of options, for example:
® a choice of cryptographic algorithms for protecting messages,

® a choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosing the
basic mechanism, via the client security policy and information in the target’s object
reference. However, some mechanisms will be able to negotiate options using extra
exchanges at association establishment, which are specific to the particular
mechanisms.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-5

3-6

3.1.2.6

Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security services for
authentication, privilege acquisition, key distribution, certificate management, and
audit. Under some circumstances, these need to inter-operate. For example, key
distribution services may need to communicate with each other, and audit services may
need to transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of this
specification, as they are mechanism dependent.

Interoperating between Security Policy Domains

The sections above consider interoperability within a security policy domain where
consistent security policies apply to access control, audit and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains,
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the principal’s
credentials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly based on
the principal’s certified identity and privilege attributes. The policy for this could be:

1. The target domain trusts the client domain to identify principals correctly, but does
not trust their privilege attributes, so treats all principals from other domains as
guest users.

2. The administrators of the two domains have agreed some privilege attributes in
common, and trust each other to give these only to suitably authorized users. In this
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

3. The administrators of the two domains agree what particular privilege attributes in
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictions
about which privilege attributes may be used there. This would not necessarily affect
the interoperability protocols - thget_attributes operation will simply not return all

of the privileges. But even in this case, some security mechanisms will choose to
modify the principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used in the
target domain. If this translation is to be done only once, an interdomain service is
likely to be used which both translates the credentials and reprotects them so they can
be delegated between nodes in the target domain.

Security Service, v1.7 March 2001

3

Such an interdomain service may be invoked by the ORB Security Services, but may
be invoked by a separate interoperability bridge between the ORB domains. If invoked
by an ORB service, it extends the implementation of\taglt object described

previously and this will probably call on a mechanism specific Interdomain Service.

3.1.2.7 Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architecture,
as in future, they may be specified as part of some secure CORBA compliant systems.
However, this section does not describe how to build such bridges.

Secure interoperability bridges may be needed for:

®* ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

® Translating between security mechanisms (technology domains).

®* Mapping between security policy domains.

In all these cases, both the system and application data being passed will need to be
altered, affecting its protected status. This needs to be re-established using security
services trusted by both client and target domains.

3.1.3 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2
interoperability specification for security.

Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-7
defines the enhancements needed to the Interoperable Object Reference (IOR).

Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34 defines the
enhancements needed to secure GIOP messages and Section 3.8, “DCE-CIOP with
Security,” on page 3-109 defines the DCE-CIOP with security.

3.1.4 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Referenk®R) comprises a sequence of ‘tagged
profiles.” A profile identifies the characteristics of the object necessary for a client to
invoke an operation on it correctly, including naming/addressing information. The tag
is a standard, OMG-allocated identifier for the profile which allows the client to
interpret the profile data, but although the tag is OMG-allocated, the profile itself may
not be OMG-specified.

A multi-component profile is a profile that itself consists of tagged components. This
specification defines TAGS for use in such multi-component profiles as follows.

The following TAGs are defined:

® [IOP components , which can be used in a multi component profile (see “Secure
Inter-ORB Protocol (SECIOP)” in Appendix B).

Security Service, v1.7 Security Interoperability Protocols March 2001 3-7

3-8

3.1.4.1

® Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism specific data.

® Aspects of the target object policy that cover the dependencies between and overall
use of components (for example, the quality of protection required) may be
specified in separatgolicy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Use of tagged components within the multi component profile to carry IIOP, security
and other data may cause performance degradations in certain situations. For example,
if an IOR carries many tagged components that are unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probability of
being recognized and used by many clients. Consequently, implementations with an
objective to optimizdOR processing will place such components at the beginning of
the tagged component sequence.

Security Components of the IOR

The following new tags are used to define the security information required by the
client to establish a security association with the target. Note that a tag may occur more
than once, denoting that the target allows the client some choice. All tag component
data must be encapsulated us@@R encoding.

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered security association
mechanisms. The mechanism is identified by the TAG value. The component data for
TAGs of this kind is defined by the person who registers the TAG. The confidentiality
and integrity algorithms to be used with the mechanism may either be encoded into the
TAG value or in mechanism specific data (see “Guidelines for Mechanism TAG
Definition in IORs” in Appendix G).

If this definition includes,

sequence <TaggedComponent> components;

the components field can contain any of the other component TAGs, whose values can
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the security

mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both
client and target to be used with the standard interoperability protocol. Its definition is:

Security Service, v1.7 March 2001

struct GenericMechanisminfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

I3

The first part of this TAG is theecurity_mechanism_type , which identifies the
type of underlying security mechanism supported by the target including
confidentiality and integrity algorithm definition. It is an ASN.1 Object Identifier
(OID) as described for use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism specific information to be passed
by the target to the client.

The components field can contain any of the other component TAGs, whose values can
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate the
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS
This TAG is used to define the association properties supported and required by the

target. Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;

h

target_supports

D
—

Gives the functionality supported by the target.

target_requires

Defines the minimum that the client must use
when invoking the target, although it may us
additional functionality supported by the targ

(OB

—

The following table gives the definition of the options.

Table 3-1 Definition of Association Options

Association Options target_supports

target_requires

NoProtection The target supports unprotected | The target’s minimal protection
messages. requirement is unprotected invocations.

Integrity The target supports integrity The target requires messages to be
protected messages. integrity protected.

Security Service, v1.7

Security Interoperability Protocols March 2001 3-9

3-10

Table 3-1

Definition of Association Option€Continued)

Association Options

target_supports

target_requires

Confidentiality

The target supports confidentiality The target requires invocations to be

protected invocation.

protected for confidentiality.

DetectReplay

The target can detect replay of

The target requires security associatio

requests (and request fragments) to detect message replay

DetectMisordering

Target can detect sequence errors The target requires security associatio
of requests and request fragmentsto detect message mis-sequencing.

EstablishTrustinTarget

The target is prepared to
authenticate its identity to the
client.

This option is not defined.

EstablishTrustInClient

The target is capable of
authenticating the client.

The target requires establishment of
trust in the client’s identity.

NoDelegation

Target supports no delegation.

The target states that delegation wi
be supported.

Il not

SimpleDelegation

The target supports simple
delegation.

This option is not defined.

CompositeDelegation

The target supports composite
delegation.

This option is not defined.

TAG_SEC_NAME

The target security name component contains the security name used to identify and
authenticate the target. It is an octet sequence, the content and syntax of which is
defined by the authentication service in use at the target. The security name is often the
name of the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

Security Service, v1.7

March 2001

3.1.4.2

IOR Example

Table 3-2 IOR Example

tag

value mech specific tag value

tag_sec_name

“Manchester branch”

tag_association_options Supports and requires

integrity and to establish
trust in the clients

privileges.
tag_generic_sec_mech mech 1 oid
tag_sec_name “MBn1”
tag_association_options Supports and requires
integrity, replay detection,
misordering detection, and
to establish trust in the
client’s security attributes.
tag_generic_sec_mech mech 2 oid

tag_association_options Target requires and

supports confidentiality
and to establish trust in the
client’s security attributes.

3.1.4.3

In this example, if mechanism “mech 1" is used, the target security name is “MBn1”
while the association must use integrity replay and misordering options. If mechanism
“mech 2" is used, no mechanism specific security name has been specified and so
“Manchester branch” is used as the security name. The association options are
EstablishTrustInClient and Integrity.

Operational Semantics

This section describes how an ORB and associated ORB services should use the IOR
security components to provide security for invocations and how the target object
information should be provided.

Client Side

During a request invocation, the non-security tagged components i@Eheulti-
component profile indicate whether the target supports IIOP and/or some other
environment specific protocol such as DCE-CIOP. Security mechanism tag components
specify the security mechanisms (and associated integrity and confidentiality
algorithms) this target can use. The ORB selects a combination of interoperability
protocol and security mechanism that it can support.

If there is a common interoperability protocol, but no common security mechanism,
then a secure request on tHBR cannot be assured.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-11

3-12

If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies no protection is needed or no
SEC_MECH is specified, then unprotected requests are supported by the target, and
the request can be made without using security services. If the target requires protected
requests, then the ORB must choose an alternative transport and/or security
mechanism.

TheIOR tags and the client’s policies and preferences are used together to choose the
security for this client's conversation with the target.

The specific security service used may not understand the CORBA security values, and
so may require them to be mapped into values it can understand.

Determining Association Options
The Association Options Table 3-1 on page 3-9, lists possible association options
such asdNoProtection , Integrity , DetectReplay .

The actual association options used when a client invokes a target objectl@@& an
depend on:

® The client-side secure invocation policy and environment.

® Client preferences as specified $8t_association_options on theCredentials
or set_policy_overrides of the object reference invoked withQODPPolicy
object as one of the Policies to be overridden.

® The target-side secure invocation policy and environment (as indicated by
information in theTAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client requires
it and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client's requirements, then a
CORBA::NO_PERMISSION exception should be raised. If the client cannot meet
the requirements of the target, then the invocation may optionally proceed, allowing
policy enforcement on the target side.

Target Side

The security information required in th®R for this target must be supplied from the
target (or its environment). This specification does not define exactly when particular
information is added, as some of it may only be needed when the object reference is
exported from its own environment.

The security information may come from a combination of:

® The object'sown credential{see Section 2.3.9, “Security Operations on Current,”
on page 2-97). This includes for example, the target’s security name. It could
include mechanism specific information such as the target’s public key if it has one.

® Policy associated with the object. This includes, for example, the QOP.

® The environment. This includes, for example, the mechanism types supported.

Security Service, v1.7 March 2001

3

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information for
the target’s own credentials are set up on object creation.

As at the client, the specific security service used may require CORBA security values
to be mapped into those it understands.

If when the client invokes the target identified by tbd, anlnvoke Response

message is returned for the request with the status
INVOKE_LOCATION_FORWARD, then the returned multiple component profile

must contain security information as well as the new binding information for the target
specified in the originalnvoke Request message.

Any security information in the returned profile applies to the new binding information
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of
updated security information (even if the address information hasn’t changed).

3.1.5 Common Secure Interoperability Levels

Three Common Secure Interoperability Levels are defined to help in classifying and
positioning the various interoperability facilities that are defined, and also to help in
concisely stating the conformance requirements. The three CSI levels are:

CSIl Level 0- supports only identity based policies without delegation.
CSIl Level 1- supports identity based policies with or without unrestricted delegation.

CSI Level 2- supports identity and privilege based policies with controlled
delegation.

A complete description of the these CSI levels of interoperability can be found in
“Common Secure Interoperability Levels” in Appendix D.

3.1.6 Key Distribution Types

Security mechanisms use cryptography in the establishment of a secure association
between a client and target and in protecting the data between them. Security
mechanisms differ in the type of cryptography they use, particularly for distribution of
keys. (Keys are assigned to clients, targets, and trusted authorities). Three types of key
distribution are defined in this specification:

® Secret keys use secret key technology for distribution of keys for principals.

® Public keys- use public key technology for distribution of keys for principals,
though may use secret key technology for message protection.

® Hybrid - use secret key technology for key distribution for principals within an
administration domain, and public key technology for key distribution for trusted
authorities, and hence between domains.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-13

3-14

All types of key distribution can be used to support all the facilities in CORBA
Security for secure object invocations (though public key is almost universally used for
non-repudiation). The choice of mechanism to use depends on a customer’s
requirements. For example, to fit with other systems and for scalability to inter-
enterprise working.

3.1.7 Security Mechanisms Hosted on SECIOP

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. How the mechanisms
underlying the following three security protocols are hosted on SECIOP are specified.

1. SPKM Protocol

Supports identity based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20].

2. GSS Kerberos Protocol

Supports identity based policies with unrestricted delegation (CSI level 1) using secret
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0).

The GSS Kerberos protocol is based on the [12] which itself is a profile of [13].

3. CSI-ECMA protocol

Supports identity and privilege based policies with controlled delegation (CSI level 2).
It can be used with identity, but no other privileges and without delegation restrictions
if the administrator permits this (CSl level 1) and can be used without delegation (CSI
level 0).

For keys assigned to principals, it has two options:
® |t can use either secret or public key technology.

® |t uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined in
ECMA 235, but is a significant subset of this - the SESAME profile as defined in [16].
It is designed to allow the addition of new mechanism options in the future; some of
these are already defined in ECMA 235.

Security Service, v1.7 March 2001

3

The following table shows which CSI functionality is supported with which protocols.

Table 3-3 CSI Functionality and Protocols

Protocol SPKM GSSKerberos CSI-ECMA
CSI Level

0 Supported Supported Supported
1 Not supported Supported (Mandatory) Supported
2 Not supported Not supported Supported

3.1.8 Security Mechanisms Hosted Directly on IIOP

The SSL [21] protocol, which provides for confidentiality and integrity within the IP
sockets paradigm can be used to provide interoperability based on this protocol hosted
directly on IIOP. How this is done is specified in Section 3.7, “Integrating SSL with
CORBA Security,” on page 3-108. It supports identity based policies without
delegation.

3.1.9 Choices of Protocols, Cryptographic Profiles and Key Technologies

What combination of Security Protocols, Key Technologies, and Cryptographic

Profiles are the most desirable has been the subject of debate both inside and outside
OMG. In this specification, certain choices have been made based on the belief that
these choices best meet OMG’s current needs given the other constraints.

3.1.9.1 Choice of Protocol and Key Technology

GSS Kerberos is specified as the mandatory protocol for common secure
interoperability, as Kerberos is widely available and most vendors can support it.
However, it does not provide all facilities required and is secret key only.

Several other protocols are specified as non-mandatory options, as follows:

® CSI-ECMA is specified as a protocol to provide support for the full set of CORBA
security facilities using public key or secret key technology.

® SPKM is specified as a simpler public key protocol suitable for applications where
¢ access and audit policies are static, and

e at each stage in a chain of object invocations, the policies depend only on the
identity of the immediate invoker, not the initiator of the chain.

® SSL is specified for use in the web market.

3.1.9.2 Cryptographic Profiles

Security mechanisms use cryptography in the establishment of a secure association
between a client and target and in protecting the data between them. Different
cryptographic algorithms are used to support particular security functions depending

Security Service, v1.7 Security Interoperability Protocols March 2001 3-15

on the type of mechanism used and also the regulations on use of cryptography. The
combination of algorithms used to provide particular security using a particular
mechanism is called a cryptographic profile.

Currently, different cryptographic algorithms, and/or different key lengths are required
to meet export controls and regulations on use of cryptography in various countries
(see Section 3.1.10.2, “International Deployment,” on page 3-17). Although some
vendors produce more than one version of secure products for different markets, they
are increasingly reluctant to do this. For common secure interoperability, a particular
cryptographic profile is needed. Some options are to standardize:

® Integrity only for user data, not confidentiality. If done usMB5, this is likely to
be exportable and generally deployable, but doesn’t provide confidentiality when
interoperating. This does not provide the functionality that some users will want.

® |Integrity and confidentiality using weak keys only. This provides the required
functionality in a way that can generally be exported, but does not provide the
strength of protection needed by some customers. Also, products using it may be
subject to import controls or other regulations in some countries.

® On strong confidentiality and integrity, which customers want, but will be subject to
export controls in most countries and to deployment regulations in some. Leave
vendors and customers to sort out the problems.

This chapter makes only the first of these options mandatory; however, implementors
of all profiles may choose to support other profiles also.

3.1.9.3 Conformance to External Security Mechanisms

This specification uses protocols defined in other standards documents. It refers to
particular versions of these standards, which is needed for interoperability. If the
versions of these external documents change in future, there may be a need to update
this specification so that it is in line with the most accepted external version of these
standards.

3.1.10 Common Secure Interoperability Requirements

This section describes the requirements that Common Secure Interoperability is
expected to meet.

The Common Secure Interoperability specification is required to provide for standard
security mechanisms, simple delegation, and international deployment. This section
discusses the key requirements for common secure interoperability that have driven the
design of this specification and how this specification responds to these requirements.

3.1.10.1 CORBA Standard Security Mechanisms

Standard CORBA security mechanisms are required so that ORBs can interoperate
securely at all.

3-16 Security Service, v1.7 March 2001

3

Four popular security mechanisms to meet different circumstances, as described above,
can be used to host CORBAsecurity in a standard way. One of the four described in
this chapter is mandatory and all conformant ORBs must support it. Interoperability
between conformant ORBs is always possible using this; however, the facilities
supported when using it are limited.

Interoperability also requires common use of cryptographic algorithms. A number of
cryptographic profiles are specified to meet the needs of different markets and
countries. One is mandatory and interoperability between conformant ORBs is always
possible using this; however, it provides data integrity but not confidentiality.

Where multiple mechanisms and cryptographic profiles are supported by both ORBSs,
the client and target object must agree which to use. In this specification, this is done
by the client looking at the security mechanism tag in the target object reference and
choosing an appropriate mechanism and profile that both support. (In future,
negotiation of mechanisms may be supported.)

3.1.10.2 International Deployment

International deployment requires that the security mechanisms and algorithms chosen
can be used worldwide in countries that are subject to different national regulatory
controls on the use of cryptography. It also requires that they can be used across
international boundaries. International deployment may also be affected by export
control regulations and other issues.

Requirements distilled from the key regulations affecting international deployment
include:

® Keeping the amount of information that must be encrypted for confidentiality to a
minimum. In general, encryption of keys is acceptable, but encryption of other data
may not be. For this reason, encryption of security attributes is undesirable. At CSI
level 2, where more attributes are generally needed, the part of the security tokens
concerned with key distribution is separated from the part used to carry privileges
(e.g., in CSI-ECMA); therefore, the latter part does not have to be encrypted.

® Being able to use identities for auditing that are anonymous, except to the auditor.
For this reason, identities used for access control and audit may need to be different.
A separateAuditld can be transmitted at level 2.

® Allowing use of different cryptographic algorithms, with different lengths of keys
for specified functions to meet export and use regulations in different countries.
The specification defines cryptographic profiles that allow for different cases. The
mandatory one provides data integrity only, as this is generally easier to deploy
internationally.

There may be further requirements on secure ORB products to ensure that they are
exportable. For example, they must not allow easy/uncontrolled replacement of
cryptographic algorithms. This affects the construction of the system, but not this
interoperability standard, so is not considered further here.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-17

3-18

3.1.10.3

3.1.10.4

Other restrictions on the use of algorithms and security mechanisms are highlighted in
Section 3.1.10.9, “Identifying Encumbered Technology,” on page 3-20. For example,
the DES algorithm is subject to export controls, whRSA requires licensing in some
countries. The MIT version of the Kerberos technology, widely used in the USA, is
also subject to export controls.

Consistency

It should be possible to provide consistent security across the distributed object system
and with associated legacy and other non-object systems. This includes:

® Support of consistent policies for which principals should be able to access the sort
of information, within a security domain, that includes heterogeneous systems.

For this specification, it requires the ability to transmit consistent privilege and

other attributes between ORBSs to support these policies. Level 0 and 1 conformant
ORBs can transmit identities, level 2 conformant ORBs can transmit a range of
privilege attributes. These can be the ones used in existing systems, though system
specific ones will not be usable in other systems.

® Fit with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Log on needs to result in credentials, which include the information required to
support the specified security mechanisms. Note that single logon with secure
messaging, web, etc. generally requires use of public key based mechanisms. Also,
if non-repudiation is supported, they will also need to include the security
information required to support the non-repudiation mechanism (normally, a public
key mechanism).

Also, interoperating with non-object systems may require, for example, a CORBA
object implementation, which calls a non-CORBA application to be able to delegate
incoming credentials (assuming compatible security mechanisms.)

® Fit with all non-object systems is clearly not possible if such a system uses security
mechanisms that are incompatible with the one used in the object system. Such
systems may be able to use CORBA Security, but will not be able to interoperate
using the common secure interoperability standard.

This specification includes an interoperability level that supports privileges and a
public key (as well as a secret key) mechanism to support these requirements.

Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise systems. For larger systems, it should be
possible to:

® Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs. This specification
includes the transmission of such privilege attributes in CSI level 2.

Security Service, v1.7 March 2001

3

®* Have a number of security domains that enforce different security policy details, but
support interworking between them subject to policy. (This specification includes
the architecture for such inter-domain working, though this specification does not
define interface for this.) Use of public key technology helps large scale,
particularly inter-enterprise interoperability.

® Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

3.1.10.5 Flexibility of Security Policy

The security policies required varies from enterprise to enterprise, so choices should be
allowed, though standard policies should be supported for common secure
interoperability.

Access Policies

At CSl levels 0 and 1, thAccessld is the only privilege attribute supported. The
standarddomainAccessPolicy defined in “Access Policies” on page 3-19 (or other
access policies) can be used with only this privilege.

At CSl level 2, conformant ORBs are able to transmit further privilege attributes (such
as role and group), so ti@™mainAccessPolicy (and other access policies) can be
used with these privileges also.

CSl level 2 is designed to allow transmission of further privileges, including user
defined privileges and security clearances as needed for multi-level secure systems. If
received by a conformant ORB, they will be available for access control at the target.
However, conformant ORBs need not transmit them, so use of such privileges is
subject to the agreement between the systems.

The mechanisms defined here also allow a wider range of privileges, etc. to be
supported and other access policies to be used. However, interoperability with all other
conformant ORBSs is not guaranteed in this case.

Audit Policies

All CSlI levels provide arfuditld that can be used in audit policies. CSl level 2 can
transmit anAuditld that is anonymous to all but audit administrators.

3.1.10.6 Application Portability

Application portability is an important OMG requirement. The many applications that
are unaware of security will continue to be portable.

Applications that enforce their own security policies should still be portable across
ORBs supporting common secure interoperability if the access and audit policies they
use rely only on security attributes that are mandatory in the chosen CSI level.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-19

3-20

Applications should be unaware of the security mechanism used to enforce the
security, unless they specifically ask what it is (e.g., ugegtgservice_information
see Section 2.3.2, “Finding Security Features,” on page 2-73).

3.1.10.7 Security Services Portability/Replaceability

The CORBA Security specification includes replaceability conformance options.

The objects supporting the security mechaniBmingipalAuthenticator , Vault, and
Security Context) can be replaced to support the mechanisms in this specification.
However, if logon outside the object system is supported, this will need to provide
credentials including the security information needed by the CSI mechanism(s) used.

If the invocation access policy is replaced, this can utilize privileges transmitted using
CSI protocols. However, if an ORB wishes to control access on invocations using local
(e.g., operating system) attributes, then mapping of attributes prior to calling the
Access Decision object is needed.

3.1.10.8 Performance

Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

Details of the performance overhead depend on the mechanism used and its
implementation; however, in this specification:

¢ Sufficient information can be carried in th@R so that the client knows what
security the target supports and does not have to negotiate protocols and options
with it.

® The mechanisms used allow tinétial _context_token to be transmitted with first
message, if mutual authentication is not required.

3.1.10.9 Identifying Encumbered Technology

This specification includes technology that is encumbered to some extent.

® The Kerberos V5 technology is licensable from the Massachusetts Institute of
Technology without cost and is widely deployed within the USA. However, it is
subject to export control from the USA; therefore, [12] is the definition of the
protocol used here, as this can be implemented independently of the MIT Kerberos
code.

® SPKM implementations are available, though not free. As for other mechanisms, the
(draft) standard is the basis of this specification.

® SESAME implementation is available, but is not free for commercial use, and has
restrictions on cryptography for export reasons (the public version does not include
commercial cryptographic profiles - it has the secret key algorithm replaced by
XOR for export control reasons).

Security Service, v1.7 March 2001

3

® There are two patents associated with the CSI-ECMA protocol. These are usable
free of charge for implementations conformant with this specification under fair
conditions (formal definition of these are available from Bull and ICL).

® The DES algorithm is widely deployed internationally, but is subject to export
controls. Export with key lengths that provide strong confidentiality is not generally
permitted.

® |Increasingly, the RSA algorithm is widely deployed internationally; however, it is
subject to licensing in the USA. It is also subject to export controls, though where it
can be shown that it is not used for confidentiality, products using it are more likely
to be exportable.

® Any other cryptographic algorithms used are generally subject to export controls, as
is any interface that makes it easy to replace algorithms.

3.1.11 Relation to CORBA Security Facilities and Interfaces

3.1.111

3.1.11.2

This section describes how the security facilities and interfaces defined in Sections 2.3
through 2.5 map to various elements of security protocol mechanisms. It is aimed at:

® Object implementors developing applications using a secure object system who
need to know what security is available.

®* |Implementors of security policies who may be constrained by the security attributes
available when interoperating according to this standard.

®* ORB implementors supporting replaceable security policies.

Functionality

The security information that is transmitted between ORBs, and which security
facilities and policies are supported in an interoperable environment, is described in
these sections. Three levels of secure interoperability are defined specifying the
particular security attributes that conformant ORBs must support.

Note that the interoperability defined here is for interoperability of requests/responses
between ORBs. It does not include interoperability of the evidence tokens used for
non-repudiation.

Replaceability

In replaceability, options that allow ORB implementors to support a wide range of
security policies and mechanisms is defined. For example, the standard
DomainAccessPolices can be replaced by other policies where ORBs support the
appropriate replaceability option. This specification still allows this replaceability,
though the policy being added may be restricted by the security information guaranteed
to be available.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-21

3-22

This specification allows replaceability of security mechanisms by replacement of the
Vault andSecurity Context objects. It specifies mechanisms and protocols that can
be implemented via a GSS-API interface. This adds the potential for having a single
implementation of th&ault andSecurity Context objects, which by using GSS-

API, would be able to use different security mechanisms.

3.1.11.3 Levels of Interoperability

This specification includes three interoperability levels, as described more completely
in “Common Secure Interoperability Levels” in Appendix C. This section gives
information about these levels and an example showing the difference in the way they
handle a particular problem.

Common Secure Interoperability Level 0

CSl level 0 supports identity based policies without delegation. It requires ORBSs to
support the following:

® Authentication of principals using security functions under one ORB, and then use
of the resultant credentials when making a secure invocation to an object under a
different ORB.

® Secure associations to establish trust between client, target, and protect messages.

® As part of the secure association, the security name of the client is passed to the
target and used to set batlkcessld andAuditld so that identity based access and
audit policies can be supported.

The identity is always that of the immediate invoker of an object in a chain of object
invocations, this is only the same as the initiator of the chain at the point of entry to
the chain.

Common Secure Interoperability Level 1

CSl level 1 supports identity based policies with unrestricted delegation. It requires
ORBs to support the mandatory part of the CORBA Security when two conformant
ORBs interoperate (using the same security mechanism). It provides the CSI level 0
facilities plus security information (in particular, the security name) of a principal in
the call chain can be delegated to objects (subject to security policy).

Once this security information has been delegated, the intermediate object has the
choice of acting under its own identity or delegating the initiating principal’s identity
when invoking another object. When delegating another principal’s identity, the
delegated identity (rather than the immediate invoker’s identity) is used to set both the
Accessld andAuditld at the target.

Common Secure Interoperability Level 2

CSl level 2 supports identity and privilege based policies with controlled delegation.
ORBSs supporting this level must support interoperability of all facilities in Sections 2.3
through 2.5 concerned with object invocation. CSI level 2 provides the CSI level 0 and
level 1 facilities plus:

Security Service, v1.7 March 2001

3

® The security information of the immediate invoker or the delegated information of
the initiating principal can include more security attributes, as follows:

« an extensible range of privilege attributes (e.g., roles, groups, enterprise defined
attributes) to support a wider range of policies. Generally, these attributes include
anAccessld that is independent of the security name (and the mechanism type
used) and is used to set tAecessld at the target. Interoperability using
particular types of privileges depends on these privileges being common to both
ORBs. This CSI specification defines which privileges a CSlI level 2 conformant
ORB must support (see “Common Secure Interoperability Levels” in Appendix
D).

e a separatduditld can be transmitted. This may be anonymous (except to the
audit administrator). It will always represent the actual principal using the system,
even when théccessld represents someone who has allowed another user to
access the system on his behalf.

® The delegation of a principal’s attributes can be controlled (for example, usable at
only identified (groups of) targets). Intermediate receiving delegated security
attributes of a principal will not always be able to delegate them.

® Composite delegation is allowed for, but support for this is not mandatory.

Example

This section looks at an example of a secure object system, which highlights the
difference between the delegation facilities of the three CSI levels. In this example,
Bob wants to close his bank account and is prepared to give Dan power of attorney to
do this.

® At CSl level 0, no delegation is possible; therefore, Bob has to go to the bank and
close the account himself.

® At CSl level 1, Bob gives Dan unlimited power of attorney to act for him (as
delegation is unrestricted). Dan can close Bob’s bank account. As the power of
attorney is unlimited, Dan can also read Bob’s medical records and pass on the
power of attorney to Mark - who can also close Bob’s bank account, read Bob’s
medical records, etc.

® At CSl level 2, Bob gives Dan the power of attorney to close his bank account;
therefore, Dan can close the account. But this does not include the right to read
Bob’s medical records (as only limited privileges were given to Dan) and does not
include the right to give the power of attorney to Mark (as delegation was restricted
to Dan).

3.1.12 Security Functionality

This section reviews the security functionality in Section 2.3 through 2.5 and specifies
which functionality is supported interoperably at which CSI level. Some security
functionality is supported at all CSl levels, some only at CSl level 1 or 2.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-23

3-24

3.1.12.1 Authentication

The CSI mechanisms do not specify authentication of principals, but use the result of
such authentication. Principal authentication must result in credentials that contain the
security information needed by the security mechanisms supported by this conformant
ORB.

CSI mechanisms require authenticated principals (see Section 2.3.3, “Authentication of
Principals,” on page 2-73).

3.1.12.2 Access Control

Access controls depend upon the privileges of the principal.

At CSl levels 0 and 1, only the principal’s identity is available at the target; therefore,
Access Policies using this level must either:

® use only the principal’s identity for access control, or

® retrieve other attributes for that principal prior to taking the access decision (the
“pull” model).

The standarddomainAccessPolicy assumes all privileges required have been

“pushed” from the client; therefore, they will be restricted to using identity only.
Access policies using the pull model will not be portable, if the source of such
attributes is system dependent.

At CSl level 2, theAccessPolicies can use any of the privilegesipported by both
ORBs.All CSl level 2 conformant ORBs suppoktcessld , Groupld , andRole.

They may also transmit user defined privileges, where the user enterprise concerned
has a CORBA attribute family definer, and defines its own families of attributes.
However, some attribute types defined outside the object system may not be
understood at all targets; therefore, portability of these may not be possible to all
environments

3.1.12.3 Audit

Auditing is as defined in Section 2.1.5, “Auditing,” on page 2-11, and is possible at all
CSl levels. A separatauditld (which may be anonymous) can be transmitted at CSI
level 2.

3.1.12.4 Secure Invocation

Conformant implementations (all CSl levels) must support all the association options
defined in Table 3-1 on page 3-9.

Channel bindings, as defined in GSS-API and all protocols defined here, are not part of
the mandatory specification.

Conformant implementations at level 2 allow use of algorithms with different strengths
for integrity and confidentiality.

Security Service, v1.7 March 2001

3.1.12.5 Delegation Facilities
® At CSl level 0, no delegation is supported.

® At CSl level 1, the initiating principal’s identity can be delegated to the target. It is
either delegated or not - there are no other restrictions on delegation.

® At CSl level 2, the initiating principal’s privileges, as well as identity, can be
delegated to the target. Delegation can be controlled further, restricting the targets to
which the attributes can be delegated. These restrictions must be specified by
administrative action, as there are no interfaces specified in to do this in this
specification.

Level 2 protocols are also defined that allow support of composite delegation; however,
support of this is not required by conformant ORBs.

3.1.12.6 Non repudiation

Non-repudiation relies on NR credentials for handling NR evidence tokens. The same
credentials can be used for secure invocations and non-repudiation. This will only be
possible if compatible security technology is used for non-repudiation and secure
invocation. While no specific security technology is mandated for non-repudiation, it is
expected that this will use public key technology. Common credentials usable for both
purposes are expected to use public key technology, to fit with public key mechanisms
(SPKM or the CSI-ECMA public key option), rather than with secret key mechanisms.

3.1.12.7 Security Policies

Security policies are potentially sharable between ORBs if they use only identities and
privileges that are available at both ORBs and can be transmitted between them. For
example, @omainAccessPolicy that uses roles must receive requests from an ORB
that can generate them via a CSl level 2 protocol that can transmit roles.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-25

3-26

3.1.13 Model for Use and Contents of Credentials

user

The CORBA Security model includes security functionality enforced during object
invocations and by applications, as shown in Figure 3-2.

application application
- security security
controls controls
/
logon s N
authentication v request request\
\ Credential$

Credential$

ORB ORB
Security Security
Services Services

credentials info in token

Figure 3-2 Security Functionality Enforced During Object Invocations and Applications

Most of the security services utilize the principal’s credentials either at the client
(before invoking the target object) or at the target. For example, the ORB security
services use these credentials for secure associations, access control, and auditing.

To fit with the standard CSI security mechanisms, user/principal authentication must
produce credentials suitable for both client side security controls and to fit with the
security mechanisms used for secure invocations. A single credential’'s object may have
security context information for more than one mechanism. Security services at the
client application use these credentials to enforce security there.

Access control policies at the target generally depend on the initiating principal’s
privilege attributes (which generally includes an identity). Normally they rely on
information from the credentials being passed from the client to the target. Other
access policies may use the pull model for obtaining privileges at the target. For
example, an access policy at the target could obtain the access identity using the
get_attributes function. It could then call, in a non-standard way, on whatever
service provides privileges in this case. Alternatively, an attribute Mapper (see
Section 3.1.13.3, “Attributes at the Target,” on page 3-27) could be used before calling
the access policy (if this optional facility is supported).

Audit policies generally require an audit id, though this may be derived like the access
id from a single identifier.

This specification allows unauthenticated and authenticated users.

Security Service, v1.7 March 2001

The privilege and other attributes, as seen byAtteessDecision object at the
target, may not be those passed from the client because the security mechanism may
have moderated what is available to the object system.

3.1.13.1 Credential Content at the Client

Credentials are made available to the client as the result of authenticating the user (or
other principal), though they may be modified later. Authenticated users have two
types of attributes visible to applications and relevant to secure interoperability.

1. Privilege attributes used for access control. These includacttessid (the
principal’s identity as used for access control); other standard CORBA security
attributes such aGroupld , Role, Clearance, and enterprise defined attributes.

2. ldentity attributes used for purposes other than access control. Only the audit
identity is relevant here.

At CSl levels 0 and 1, the only attributes that must be visible to the client and target
are theAccessld andAuditld . These will normally be the user’s security name.

At CSlI level 2, a wider range of privilege attributes is supported:
« All conformant ORBs can generate (via security services) credentials with the
following privilege attributes:
* Accessld
¢ Auditld
¢ Role
e Grouplds - a primary group and other groups
¢ There may be a single identity (e.g., the access identity) that can also be used for
auditing, or separataccessld andAuditld may be generateduditld may be
anonymous.
« Optionally, there may also be other privilege attributes including user defined
attributes.

3.1.13.2 Attributes During Transmission

At levels 0 and 1, only the principal’s identity is transmitted. No other attributes are
transmitted.

At level 2, a wide range of privileges can be transmitted including standard CORBA
attributes and optionally user defined ones. Attributes may have individual defining
authorities, as at the IDL interface, or share a defining authority.

3.1.13.3 Attributes at the Target

At CSl levels 0 and 1, when only a single identity (e.g., the security name) is
transmitted, that single identity is used to generateAttoessld and theAuditld at
the target. When using the CSI-ECMA protocol at level 0 or 1, principal identity
attributes are transmitted separately from the security name; therefofeciesid
andAuditld do not have to be generated from the security nhame.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-27

3-28

At CSI level 2, all conformant ORBs can accept:
® Separate access and audit ids or a single identity used for both purposes.

® Transmission of any privileges defined in “Security Attributes” in Appendix B, and
any privileges with Object Identifiers that can be mappe8edourityAttributes

This range of privileges can be used in access decisions at the target. Even if these
privileges are not used by the invocation access policy to control access to the target
object, they may be obtained by the application uSingent::get_attributes or
Credentials::get_attribute and used in application access decisions.

The attributes at the target appear as defined in Section 3.6.2.1, “Privilege Attributes,”
on page 3-69. For example, they have:

® an Attribute type (family definer, family, and the type within this family),
® a defining authority, and

® the attribute value.

The attributes may need to be mapped from their form in transit to the form used at the
IDL interface in response fget_attribute calls. An attribute mapper may be needed,
as shown in Figure 3-3.

- . T 7

application
Target security
Object controls

request as seen at the

request

ORB Security Servi}c?
Access

Decision
Object

Optional
Attribute Mapper

Figure 3-3 Attribute Mapper Diagram

This mapping depends on:

® Which functionality level is supported. At levels 0 and 1, a single nhame must be
mapped to provide bothAccessld andAuditld . This will be the security name if
the protocol does not carry a separateessid or Auditld ; both the SPKM and
GSS-Kerberos protocols use the security hame.

® Whether the access control decisions at the target use attribute values that are valid
externally from the ORB/operating system (for example, in a domain of
heterogeneous systems), or whether the Access policies use local attributes (such as

Security Service, v1.7 March 2001

operating system ids).

In line with the OMG requirement for portability, externally valid attributes are the
norm, and must be supported in conformant ORBs (so that an application that
includes administration of its access policy is portable between unlike systems).
Mapping to local attributes may also be provided, but is not standardized in this
specification.

3.1.13.4 Mapping Security Names to Externally Valid Identities

Where the only client attribute transmitted is the security name, CSI conformant ORBs
map this onto both thAccessld andAuditld in the received credentials. These both
have the same value.

When using the GSS-Kerberos, the security nhame protocol has two components: a
realm name and a principal name. The security hame is of thepiamoipal@realm.

The principal name may be a multi-component name with components separated by slash
(/) - see [12] section 2.1.1.

When using a public key based mechanism, the security name is a directory name. This
is a multi-part name (e.g., country, organization, organization unit, surname, and
common name). The security name is returned from the security mechanism in the
form of a string complying with [4] for the string representation of distinguished
names. The separators between components of the name may be commas or
semicolons.

In both cases, the full Security name is used as the value fécttessld and

Auditld in the IDL SecurityAttributes . This means the form of these attributes are
dependent on the security mechanism used, as Kerberos and X.500 names have
different forms.

3.1.13.5 Mapping Other Attributes to Externally Valid IDL Attributes

Other security attributes may also be transmitted from the client when using the CSI-
ECMA protocol. For example, at level 2, there could bRo#&e , Groupld , and

enterprise specific attributes as wellAscessld and/orAuditld . Also, separate
Accessld andAuditlds may be transmitted.

In general, these will already have values that are valid outside a particular ORB and
operating system; therefore, the mapping is mainly to put these in the form of an IDL
SecurityAttribute . However, if a separatéuditld has not been transmitted, the
Auditld value will be copied from thAccessld . Also, if a separate defining

authority is not transmitted for an attribute, the defining authority for the attribute in
IDL is set from the issuer Domain of the authority who generated the Privilege
Attribute Certificate containing the privileges. Note also that the target security policy
may restrict which of the attributes are available to the application.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-29

Attribute types in transmission are identified by Object Identifiers. For the standard
attribute types such dole or Groupld (as defined in “Security Attributes” in
Appendix B), the type is automatically translated to the appropriate CORBA family
and attribute type. The value is also re-encoded, if needed, from ASN.1 to the
equivalent IDL type.

We propose that OMG should register itself in the ISO Object Identifier space. A
SecurityAttribute type where there is a family definer registered with OMG (see
“Values for Standard Data Types” in Appendix B) can then be transmitted with an
Object Identifier of:

<iso0>..<omg>.<security>.<family_definer>.<family>.<attribute type>

which then can be mapped automatically onto the COBBAurityAttribute
structure.

Attributes other than the standard attributes and those with CORBA family Object
Identifiers are not guaranteed to be understood at the target; therefore, they may not be
automatically mapped to CORBA families and types. Such mapping can be done by an
optional attribute mapper that understands these attribute types.

3.1.13.6 Mapping to Local Attribute Values

An ORB can support mapping of the security name and other attributes to local
operating system values such as UNIX uids and gids. This mapper could generate
differentAccesslds andAuditlds . Note that when using local values, the application
(particularly the access policy administration) will not be portable to other types of
system.

Mapping of these values is specific to the ORB and/or operating system. This standard
does not specify how this mapping is done, whether it calls on other software to do it,
or what types of values it generates. However, the defining authority in the IDL
SecurityAttribute must identify the local environment responsible for the meanings

of these values, so the application can determine where these values are valid.

Mapping to local attributes may be done by an optional attribute mapper (see
Section 3.1.16.1, “Attribute Mapping,” on page 3-33).

3.1.14 CORBA Interfaces

In this section:
® Profiles of the interfaces defined in sections 2.3 through 2.5 are defined.
® Values of certain IDL constants relevant to these profiles are defined.

® Restrictions that application that use the Security interfaces must adhere to for
conforming to this Common Secure Interoperability standard are identified.

3-30 Security Service, v1.7 March 2001

3.1.14.1 Service Options for Common Secure Interoperability

The following Service Options are returned ®RB::get_service_information
representing the level of CSI that is supported by the ORB:

module Security {
const CORBA::ServiceOption CommonlnteroperabilityLevelO = 10;
const CORBA::ServiceOption CommoninteroperabilityLevell = 11;
const CORBA::ServiceOption CommonlnteroperabilityLevel2 = 12;
h

The common interoperability protocols supported are identified us8edceDetail
structure with &ServiceDetailType of Security::SecurityMechanismType , as
described in Section 2.3.2, “Finding Security Features,” on page 2-73. The values for
the CSI mechanisms are defined in “General Security Data Module” in Appendix B.

3.1.14.2 Mechanism Types

The mechanism at the application interface is defineSleasirity::MechanismType

(a string). CSI mechanisms are encoded inMleehanismType string by

concatenating a mechanism id and zero, one, or more cryptographic profiles separated
by commas.

The mechanisms supported by an object are identified by tagsi@Rtsin the
MechanismType , the mechanism is identified by a “stringified” form (e.qg., the
integer value 123 represented as the string “123") off&@& x SEC_MECH id

value for that mechanism. Mechanisms supported by SECIOP based protocols are:

® SPKM_1 or SPKM_2: the level O public key mechanisms using the SPKM
protocol.

® KerberosVs : the level 1 secret key mechanism using GSS Kerberos protocol.
® CSI_ECMA_Secret: the CSI-ECMA secret key mechanism, using Kerberos V5.

® CSI_ECMA_Hybrid : the CSI-ECMA mechanism that uses secret key technology
for key distribution within a domain, but public key between domains.

® CSI_ECMA_Public : the CSI-ECMA public key mechanism.

Cryptographic profiles are identified by a “stringified” form of the
CryptographicProfile value as used in tHOR.

Mechanism tags in thEOR and mechanism type Object Identifiers (as in GSS-API) in
SECIOP messages are also used as appropriate.

A MechanismType identifier for a generic security mechanism is the stringified value
of SECIOP::TAG_GENERIC_SEC_MECH concatenated with a colon ":",
concatenated with the stringified hexadecimal encoding of the octet sequence of the
security_mechanism_type field in the component’s associated
SECIOP::GenericMechanisminfo structure.

MechanismType is used in a number of operations. These include operations that:

Security Service, v1.7 Security Interoperability Protocols March 2001 3-31

3-32

® Deal with the mechanisms and cryptographic profilesléchanismsPolicy
object for use witlget_policy andset_policy_overrides on an object reference.
In this case, thenechanisms attribute of theMechanismPolicy object (see
Section 2.3.7.2, “Client Side Invocation Policy Objects,” on page 2-88), contains all
the Cryptographic profiles available with that mechanism to communicate with that
target.

® Specify a security mechanism to use when talking to a target (e.g., using the
MechanismPolicy object with theset _policy_overrides on an object reference
andVault::Init_security_context on theVault). In this case, either just the
mechanism name may be specified (in which case, a default cryptographic profile
will be used) or a mechanism name and cryptographic profile may be specified.

Theget_service_information operation on the ORB can also return the mechanism,
though in this case, it is in the form okaquence<octet> .

3.1.14.3 Delegation Related Interfaces

Interfaces to handle no delegation, simple delegation, and composite delegation (hence
delegation interfaces for CSl levels 0, 1, and part of 2) are defined in Section 2.3.13,
“Delegation Facilities,” on page 2-105).

CSl level 2 also supports controls on the delegation of credentials. How to specify
these controls is not included in this specification. It is assumed that it is handled by
administrative action. For example, it may be done by associating the delegation
controls with a user or an attribute set selected when the user logs on or selects
attributes at other times. Management of attributes associated with a principal is
considered out-of-scope of this specification.

No facilities are currently defined for an application object to specify controls it wishes
to apply on delegating its credentials. In future, such facilities may be considered for
CORBA Security - see “Advanced Delegation Features” in Appendix F.

3.1.15 Support for CORBA Security Facilities and Extensibility

This CSI specification assumes that the ORB conforms to at least CORBA Security
mandatory facilities (except for delegation at CSl level 0), and requires that this
functionality can be supported across different ORBs using any of the CSI level
specified here.

The CORBA Security specification allows use of a wide range of security policies,
facilities, and mechanisms. Conformant ORBs can restrict which of these can be used
during interoperability, as follows:

® The protocol may not carry the privileges the target needs for some of its access
policies. For example, at CSl levels 0 and 1 only an identity is supported.

® |t may not carry the type of audit identity needed for the audit policy. For example,
it may not be able to carry an anonymauslitid .

® |t may not support composite delegation. (CSl levels 0 and 1 do not; in CSI level 2
it is not mandatory).

Security Service, v1.7 March 2001

3

® There are restrictions on the SECIOP exchanges (e.g., separate request and respons
protection is not supported).

® Unauthenticated users may not be supported (All CSI levels).

3.1.16 Security Replaceability for ORB Security Implementors

Security policy implementations could be replaced to provide new security policies as
discussed in Section 2.5.3, “Replaceable Security Services,” on page 2-171.

This common Interoperability specification affects replaceability in two areas:

1. Mapping of attributes as described in Section 3.1.13, “Model for Use and Contents
of Credentials,” on page 3-26 affects replaceable security policies that use these
attributes.

2. Use of the Generic Security Services APl (GSS-API) withinvdagt and
Security Context implementation objects described in Section 2.5.2,
“Implementation-Level Security Object Interfaces,” on page 2-148, should make
these objects independent of the particular security mechanisms used.

3.1.16.1 Attribute Mapping

As described in Section 3.1.13.3, “Attributes at the Target,” on page 3-27, the form of
attributes may need to be mapped before being made available to a target security
policy (AccessPolicy or AuditPolicy) or to the target object.

No interface for an attribute mapper is currently defined; therefore, it is not possible to
replace attribute mapping independently of the ORB/security mechanism. Such an
interface may be defined in the future.

3.1.16.2 Use of GSS-API

The choice of security mechanism is not visible outside/thdt andSecurity
Context objects, except for the identification of tMechanism (and associated
cryptographic profiles) in th€OR and in theMechanismPolicy object (see
Section 2.3.7.2, “Client Side Invocation Policy Objects,” on page 2-88).

The Vault andSecurity Context can use GSS-API to implement their security
functions, and so remain independent of security mechanism.

If only CSI level 0 or 1 facilities are used, the standard GSS-API interface (as defined
in RFC 1508) can be used. If CSI level 2 facilities are needed, this requires use of
attributes other than the security name, and may also use delegation controls.
Therefore, it requires use of an extended GSS-API, such as [12].

Use of GSS-API is a recommendation, but is not proposed as a conformance option for
this CSI specification or for the CORBA Security specification.

Security Service, v1.7 Security Interoperability Protocols March 2001 3-33

3.2 Secure Inter-ORB Protocol (SECIOP)

3-34

To provide a flexible means of securing interoperability between ORBs, a new protocol
is introduced into the CORBA Interoperability Architecture. This protocol sits below
the GIOP protocol and provides a means of transmitting GIOP messages (or message
fragments) securely.

GIOP GIOP
i fragmentation i fragmentatior

| I1OP| SECIOR SSLIOP | 1IOP| SECIOR SSLIOP

‘ transport ‘

Figure 3-4 Position of SECIOP Protocol

SECIOP messages support the establishme8eofirity Context objects and

protected message passing. Independence from GIOP allows the GIOP protocol to be
revised independently of SECIOP (e.g., to support request fragmentation). A
synchronized pair oSecurity Context objects and their corresponding sequencing
state is called aecurity association

SECIOP is sub-layered into a Sequencing Layer and Context Management Layer.

GIOP
GIOP Fragmentation

SECIOP Sequencing Layer

SECIOP Context Management
Layer

Transport Data Protection

Figure 3-5 Sublayers of SECIOP

This specification assumes that SECIOP provides services to the GIOP Fragmentation
Layer. Providing the interface to GIOP fragmentation is the SECIOP Sequencing
Layer. It has responsibility to securely and reliably deliver GIOP fragments to the
correspondent. It encapsulates GIOP fragments into frames for protection by the
SECIOP Context Management Layer. It also uses frames that do not carry fragments to
coordinate the distributed sequence number state bound to the security association.
SECIOP frames are encoded in CDR and delivered to the SECIOP Context
Management Layer.

Security Service, v1.7 March 2001

3

The SECIOP Context Management Layer accepts frames from the Sequencing layer
and encapsulates them in a Context Management message. These messages are
cryptographically protected by tokens, which are the product of the Data Protection
layer, normally GSSAPI. The Context Management Layer carries Data Protection
tokens in SECIOP messages for the purpose of both managing security associations
and for securing frames moving between it and the correspondent. The Context
Management layer uses the Transport layer to communicate with the correspondent.
The Context Management layer is driven by the finite state machine defined in

Table 3-4 on page 3-49 and Table 3-5 on page 3-52.

3.2.1 Architectural Assumptions

SECIOP is designed to support a rich variety of different software implementation
architectures. In order to operate in the most sophisticated of these, the design assume:
both clients and targets are multi-threaded and that a single TCP connection can
support multiple security associations.

SECIOP SECIOP

TCP Connection

'\/

Multiple Security
Associations

Figure 3-6 Architectural Assumptions

This specification assumes the following environmental and implementation
characteristics:

® Each SECIOP secure association is bound to a single transport connection. This
ensures that GIOP fragments are not reordered due to thread scheduling anomalies.
It also guarantees that a response to a GIOP request returns on the same transport
connection as the request, which is required by the GIOP specification.

®* SECIOP may use multiple security associations over the same transport connection.
This allows implementations to multiplex SECIOP traffic, which can improve
performance.

® SECIOP ensures that fragments are sent over transport connections in their
sequence number order. This means that once an SECIOP sequence number is
assigned to a fragment, the fragment will be processed by the Data Protection layer
and sent over transport before any other fragment with a larger sequence number
protected by the same security association.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-35

3-36

When a transport connection is closed, all SECIOP secure associations using it are
closed as well. This may require discarding fragments on the Sequencing layer
retransmission queue that have not yet been acknowledged. This is acceptable, since
closing a transport connection forces GIOP to mark any outstanding Requests as
MAYBE. Furthermore, closing a transport connection must be visible to both sides
of the connection, so both sides of the security association will follow this rule.

There is always a listener at the client and server prepared to receive and process
SECIOP messages. This is necessary, since the loss of security context information
by one side or the other requires a re-establishment of the security association. This
in turn requires both client and server to be listening for security context
management messages.

Both the client and server may initiate security context establishment (i.e., send the
EstablishContext message). This is necessary when a server needs to return a
response to the client but discovers that the security association is no longer valid
(e.g., it has timed out).

SECIOP sequence numbers should never wrap around to zero. If they did, it would
introduce a replay threat. Consequently, when the SECIOP Sequencing Layer
receives an acknowledgment to a fragment with a sequence number equal to 1/2 the
precision of an unsigned long (the type used for sequence numbers), it must discard
the existing security association and establish a new one. This rule derives from the
sequencing algorithm property that up to 1/2 of the possible sequence numbers in
the higher 1/2 of the sequence number space may be used for new fragments before
the fragment associated with the last sequence number in the lower 1/2 of the space
is acknowledged. Note that the SECIOP sequencing state should not be discarded
when a new security context is established.

There is Data Protection protocol information (e.g., GSSAPI tokens) carried within
SECIOP messages. This protocol should be configured so it does not itself provide
sequencing services. Otherwise, there could be interference between the two layers,
causing unnecessary lost service.

3.2.2 SECIOP Sequencing Layer

SECIOP sequencing uses a modified data link layer protocol based on one in
production at Lawrence Livermore National Laboratory for over 10 years. This
protocol, called modified ALP, is described below.

SECIOP Sequencing layer frames are carrieM@ssagelnContext messages (see
“Message Definitions” on page 3-44). Theessage_protection_token in this

message is defined to be an opaque sequence of octets. In order to support sequencing
however, the Sequencing layer defines the structure of these octets as follows (the
definition of MessagelnContext is repeated here for completeness):

struct MessagelnContext {

ContextldDefn message_context_id_defn;
TokenType message_protection_token_type;
Contextld message_context_id;

sequence<octet> message_protection_token;

Security Service, v1.7 March 2001

h

message_protection_token is obtained by processing the frame header encoded in
CDR as aSequencingHeader followed by the octets of the frame dafde
combination of frame header and frame data is callSdquencedDataFrame .

The frame_header field is always present in @equencedDataFrame ; however,

the frame_data field may or may not be present. If not present, the length of the
MessagelnContext message includes only the octets up to and including the frame
header.

The SequencingHeader has the following definition:

struct SequencingHeader {

octet control_state;

unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

h

The control_state field contains information necessary for the reliable delivery of
frame data between the correspondents. It is encoded as foomtso{_state[x] is
bit x in the octet, where bl is the least significant bit):

control_state[0] : direct_phase
control_state[1] : direct_fragment
control_state[2] : direct_reply
control_state[3] : reverse_phase

3.2.2.1 Protocol State

The new version of SECIOP uses a variant of ALP (A Link Protocol), a data link-layer
protocol. Its design relies on the principal of state-exchange, a coherent design strategy
that produces protocols that are easy to understand, clearly documented, and lend
themselves to rigorous analysis.

It is assumed that the reader is familiar with this link-layer protocol. Those unfamiliar
with it are referred to the paper [18]. The main body of this paper establishes the
rationale for the state-exchange model, while Appendix A documents the ALP protocol
itself.

To embed ALP within SECIOP, each participant in a security association maintains the
state used for sequencing. This state is embodied in several variables that the
participant manages as well as a queue of data fragments.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-37

3-38

These variables are:

output_queue

A queue of fragments. SECIOP is responsible for securely and rel
moving them to the correspondent.

ably

output_phase

A boolean indicating a stream of transmissions.

output_sequence_number The sequence number associated with the oldest fragment on

output_queue .

output_count

The number of fragments wutput_queue that have been transmitte
but not yet accepted or rejected.

output_window

The window size for output fragments.

output_length

The length of theutput_queue .

input_phase

The phase expected with the next input fragment.

input_sequence_number The sequence number expected for the next fragment.

input_window

The window size for input fragments.

nt.

input_reply A boolean, which if set indicates at least one frame should be ser
In addition to these variables, the SECIOP Sequencing layer has available the
following functions and procedures:

receive() Returns a received frame.

newframe() Returns an empty frame buffer (i.e.SaquencedDataFrame struct).

send(f) Sends the framé

discard(f) Discards the framé

pop(q) Removes and discards the leading elenyggit of the queue. The index of

the remaining elements is decremented by one.
forward(d) Forwards the fragment to the GIOP fragmentation layer.
mod(n,m) Returns the remainder from the division of the integéy the positive integer

m.

min(nl,n2,..., nx)

Returns the smallest of the integersthroughn,.

resync()

Signals the SECIOP Context Management layer to discard the old security

association bound to the sequencing state and establish a new one. [NB:
not included in the original ALP definition, since the notion of a security
context is not germane to its original purpose].

frame_data(f)

Theframe_data field of aSequencedDataFrame messagé.

this is

Finally, the valueM is defined to be the number of values that can be carried by an
unsigned long .

Security Service, v1.7 March 2001

3.2.2.2 Protocol Initialization

The next three sections describe the operation of the Sequencing layer. The algorithms
are expressed in a pseudo-ALGOL syntax (with slight modifications from the C
programming language to facilitate writing conditional expressions).

When the GIOP fragmentation layer requests the transport of a fragment to a
destination for which no SECIOP secure association exists, the SECIOP Sequencing
layer creates a state record consisting of the variables defined in the last section and
initializes them as follows:

output_queue= empty;

output_phase= 0;

output_sequence_number 0;

output_count= 0;

output_window.= 0;

output_length:= 0;

input_phase= 0;

input_sequence_numbex O;

input_window:= [an implementation defined value < M/2 |;
input_reply:= 1;

In the original definition of ALP, the initial values of some of these variables were
unspecified. This specification defines these initial values so that there need be no
handshaking activity between the correspondent's SECIOP Sequencing layer code in
order to move the first fragment. This facilitates transaction style operations in which a
security association is established without mutual authentication, thus allowing the first
fragment to be sent without waiting for an SECIOP reply.

Another slight change from the original definition of ALP is the requirement that the
window size must never be set greater than (M/2)-1. This restriction is necessary so
that two acknowledgments carrying equal sequence numbers referring to different
fragments are never protected using the same security context. Without this restriction,
there is a hazard that an intruder could replay an acknowledgment to a fragment not
received, thereby causing the fragment to be dropped.

Once a security context is established, the SECIOP Sequencing layer processes the
information in aSequencedDataFrame according to the algorithms given in the
next two sections.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-39

3-40

3.2.2.3 Upon Receipt of a SequencedDataFrame

Note —This text is taken directly from the cited paper and slightly modified to adapt it
to using security contexts. The code that has been modified is called out by a solid
black line on the left side.

The receiver code below is called on both the target and client sides when the SECIOP
Finite State Machine (FSM) is in state S3 andessagelnContext arrives.

begin commentThis algorithm should be executed after receipt of each non-
erroneous frame;
f := receive();
if direct_sequence_number(f) == input_sequence_number
and
direct_phase(f) == input_phase
then
if direct_fragment(f) == 1 and input_window >0
then commentAn input fragment has arrived in sequence. Accept it;
input_sequence_number := mod(input_sequence_number + 1, M);
forward(frame_data(f));
fi,
elsecommentAn input fragment has been lost. Prepare to accept retransmissions;
input_phase := 1 - direct_phase(f);
fi,
if mod(reverse_sequence_number(f)-output_sequence_number, M) <= output_count
then commentThe received reverse sequence number is not anomalous;
while reverse_sequence_number(f) != output_sequence_number
do commentDiscard accepted output fragments;
pop(output_queue);
output_sequence_number := mod(output_sequence_number + 1, M);
if mod(output_sequence_number, M/2) ==
then commentall fragments up to and including (M/2)-1 have been
acknowledged. Use a new security context for future fragments
to avoid replays. Resynchronizing the security context when
exactly half of the sequence number space has been “used”
achieves two objectives : 1) it ensures that no two fragments with
the same sequence number are protected by the same security
context, and 2) it ensures that two acknowledgments carrying the
same sequence number, but acknowledging different fragments
are not protected using the same security context. The latter

Security Service, v1.7 March 2001

3

objective requires the further limitation that the window size is
never set greater than (M/2)-1;

resync();
fi;
output_count := output_count - 1;
output_length := output_length - 1;
od;
output_window := reverse_window(f);

=

if reverse_phase(f) != output_phase

then commentPrepare to retransmit rejected output packets;
output_phase := reverse_phase(f);
output_sequence_number := reverse_sequence_number;
output_count :=0;

=

if direct_reply(f) == lor output_length >0

then comment State is unsatisfactory;
input_reply := 1;

fi,

discard(f)

end;

3.2.2.4 Sending a SequencedDataFrame

This sending code is called on the target and client side when the Sequencing Layer
caller has a fragment to send. Certain events within the Sequencing layer also cause
this algorithm to be executed. Specifically, the sending algorithm is executed when the
receiving code in the previous section is executed and a non-erroneous frame is
received. Alsojnput_reply should be set to 1 and the sending code executed:

when an erroneous frame is received;
when a new security context is established;
when arEstablishContext message is sent with messages allowed;

wheninput_window is changed by the implementation; and

o > 0w bp e

upon initialization of the Sequencing state.

begin

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-41

3-42

while output_count < min(output_window, output_lengdin)input_reply ==
do commentA frame should be sent;
f := newframe();
input_reply := 0;
direct_phase(f) := output_phase;
direct_sequence_number(f) := mod(output_sequence_number +
output_count, M);
if output_count < min(output_window, output_length)

then commentA fragment could be included in the frame.
direct_fragment(f) := 1;
frame_data(f) := output_queue[output_count];
output_count := output_count + 1;

fi,

if output_length > 0)

then commentNot all packets have as yet been accepted;

direct_reply(f) := 1

=

reverse_phase(f) := input_phase;
reverse_sequence_number(f) := output_sequence_number;
reverse_window(f) := output_window;

send(f);

end

3.2.3 SECIOP Context Management Layer

3.2.3.1

The SECIOP Context Management Layer establishes and controls a secure associatior
between a client and target. It also provides a means for the transmission of protected
messages between clients and targets.

SECIOP Context Management Layer Message Header

SECIOP Context Management messages share a common header format with GIOP
messages defined in tl@ommon Object Request Broker: Architecture and
Specification The fields of this header have the following definition.

® magic - identifies the protocol of the message. Each protocol (GIOP, SECIOP) is
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

® protocol_version - this contains the major and minor protocol versions of the
protocol identified by magic. The value for the version of SECIOP defined here is 1
major version, 1 minor version. This field is callédOP_version in
GIOP::MessageHeader_1 1.

Security Service, v1.7 March 2001

® byte order - as in the GIOP header definition.
® message_type - this is the protocol specific identifier for the message.

® message_size - as in the GIOP header definition.

3.2.3.2 SECIOP Context Management Layer Protocol

Where possible, SECIOP Context Management messages are sent with GIOP message
rather than as separate exchanges. However this is not always possible (e.g., when the
client wishes to authenticate the target before it is prepared to send a GIOP message).

The SECIOP Context Management Layer has the following message types:

module SECIOP

enum MsgType {
MTEstablishContext, MTCompleteEstablishContext,
MT ContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessagelnContext

h

typedef unsigned long long Contextld;

enum ContextldDefn {

CIDClient,
CIDPeer,
CIDSender
h
enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC
h

3.2.3.3 Contextld

This type is used to define the identifiers allocated by the client and target for the
association.

3.2.3.4 ContextldDefn

This enum is used to define the kind of context identifier held in an SECIOP message.
The context identifier will either be the one specified by the client that established the
context or it will be the identifier associated with the receiver of the message (i.e., the
request target for request or request fragment messages or the request client for reply
or reply fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false or the

message has not yet been exchanged. It must equal Peer if the value of
target_context_id_valid in the CompleteEstablishContext was true. The use of

peer identifiers allows the recipient of the message to more efficiently find its security
context. The values are defined as:

® CIDClient - the context id is that of the association’s client.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-43

® CIDPeer - the context id is that of the recipient of the message.

® CIDSender - the context id is that of the sender of the message. This is only used
with the DiscardContext message when the sender of BiscardContext
message has no context and has received a message that it cannot process.

3.2.3.5 TokenType

This type is used to indicate the typenoéssage_protection_token carried by a
MessagelnContext message. The valugecTokenTypeWrap indicates the token
was returned by &SS_Wrap() call, while the valuesecTokenTypeMIC indicates
the token was returned byGSS_GetMIC() call.

3.2.3.6 Message Definitions

EstablishContext

This message is passed by the client to the target when a new association is to be
established. Its definition is:

struct EstablishContext {
Contextld client_context_id;
sequence <octet> initial_context_token;

h
client_context_id This is the client’s identifier for the security
association. It is passed by the target to the client with
subsequent messages within the association. It enables
the client to link the message with the appropriate
security context.
initial_context_token This is the token required by the target to establish|the

security association. It contains a mechanism version
number, mech type identifier and mechanism specific
information required by the target to establish the
context. It may be sent with a protected message (for
example if the client does not wish to authenticate the
target).

CompleteEstablishContext

This message is returned by the target to indicate that the association has been
established. It is sent as a reply to an establish context or continue establish context. It
may be sent with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {
Contextld client_context_id;

3-44 Security Service, v1.7 March 2001

boolean target_context_id_valid;
Contextld target_context_id;
sequence <octet> final_context_token;
h
client_context_id This is the client’s identifier for the security
association. It is returned by the target to the client|to
enable the client to link the message with the
appropriate security context.
target_context_id_valid This indicates whether the target has supplied a
target_context_id for use by the client. True indicates
that the following field is valid.
target_context_id The targets identifier for the association. It is passed by
the client to the target with subsequent messages. |It
enables the target to associate a local identifier with|the
context to allow the target to identify the context
efficiently.
final_context_token This is the token required by the client to complete the
establishment of the security association. It may be
zero length.

ContinueEstablishContext

This message is used by the client or target during context establishment to pass further
messages to its peer as part of establishing the context. It may be the response to an
establish context or to another continue establish context. It is defined as:

struct ContinueEstablishContext {
Contextld client_context_id;
sequence <octet> continuation_context_token;

h
client_context_id The client’s identifier for the association. It is
used by both client and target to identify the
association during the establishment sequence.
continuation_context_token This is the security information required to
continue establishment of the security
association.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-45

DiscardContext

This message is used to indicate to the receiver that the sender of the message has
discarded the identified context. Once the message has been sent the sender will not
send further messages within the context. The message is used as a hint to enable
contexts to be closed tidily. Its definition is:

struct DiscardContext {

ContextldDefn message_context_id_defn;
Contextld message_context_id;
sequence <octet> discard_context_token;
h
message_context_id_defn The type of context identifier supplied in the
message_context_id field.
message_context_id The context identifier to be used by the recipient
of the message to identify the context to which
the message applies.
discard_context_token Optional token provided by the sender to assist
the receiver in cleaning up its security context
state.
MessageError

This message is used to indicate an error detected in attempting to establish an
association either due to a message protocol error or a context creation error. The
message is also used to indicate errors in use of the context.

struct MessageError {

ContextldDefn message_context_id_defn;
Contextld message_context_id;

long major_status;

long minor_status;

3-46 Security Service, v1.7 March 2001

message_context_id_defn The type of context identifier supplied in the
message_context_id field.

message_context_id The context identifier to be used by the recipient
of the message to identify the context to which
the message applies. It is either the client’s
identifier for the context (type client) or the
receiver of the messages identifier (type peer)

major_status The reason for rejecting the context. The values
used are those defined by the GSS API (RFC
1508) for fatal error codes.

minor_status This field allows mechanism specific error status
to further define the reason for rejecting the
context. It is not defined further here.

MessagelnContext

Once established messages are sent within the context usivgslsagelnContext
message. Its definition is:

struct MessagelnContext {

ContextldDefn message_context_id_defn;
TokenType message_protection_token_type;
Contextld message_context_id;
sequence <octet> message_protection_token;
h
message_context_id_defn The type of context identifier supplied in the
message_context_id field.
message_protection_token_type Indicates whether the
message_protection_token is a
SecTokenTypeWrap or SecTokenTypeMIC
token.
message_context_id The context identifier to be used by the
recipient of the message to identify the
context to which the message applies.
message_protection_token The sign or seal token for the message. This
is a self defining token that indicates how the
message is protected. If the message is not
protected the token will be zero length.

Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-47

For signed and unprotected messagesMbssagelnContext message is followed

by the higher level protocol message being transmitted within a security context (i.e.,
GIOP message or message fragment). The length of the higher level protocol message
is included in the length of thdessagelnContext message. For sealed messages the
length of the higher level protocol message is zero.

3.2.4 SECIOP Context Management Finite State Machine Tables

Table 3-4 on page 3-49 and Table 3-5 on page 3-52 present the state transition rules for
the Context Management Layer of SECIOP. The state transitions given in these tables
are intended to operate in an environment satisfying the following assumptions:

® Each FSM is associated with a unique pair of principals. When an SECIOP message
arrives it is delivered to the FSM associated with the principal from which the
message was sent and to which the message is delivered.

® There always exists a sequencing state machine (SSM) in the initialized state with
an FSM in state 0 at each end of a TCP connection for those principal pairs without
an active SSM/FSM.

® Each SSM is associated with exactly one FSM at a time, although an SSM may be
associated with multiple FSMs during its lifetime.

® Each TCP connection can be associated with multiple SSMs.

® Each FSM is associated with exactly dbentextld during its lifetime.

3.2.4.1 SECIOP Context Management Protocol State Tables

Note that some mechanisms may start in state S3.

3-48 Security Service, v1.7 March 2001

Table 3-4 SECIOP Context Management Finite State Machine -Table 1

Event

No Association (S0)

Association being
created, message
allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK &
context complete,

Send CompleteEstablish-
Context.

input_reply := 1.
Execute send algorithm.
S3.

Else if create context =
OK & context incomplete.

Send ContinueEstablish-
Context.

S2.

Else

Send MessageError.
Terminate SSM.

Terminate.

CompleteEstablish-
Context arrives

[A CompleteEstablish-
Context arriving in SO is
illegal]

Send MessageError.
Terminate SSM.

Terminate

[Target sent Estab-
lishContext at same
time Client did. Cli-
ent’s has precedence

SL

[Target sent Establish-
Context at same time
Client did. Client’s has
precedence]

S2.

[Target discarded context
without telling client]

Create a new FSM in state
S0.

Deliver EstablishContext
message to it.

Terminate.

Complete context
with target’s context
id.

If OK,

S3.

Else,

send MessageError.
Terminate SSM.
Terminate

Complete context with
target’s context id.

If OK,

input_reply := 1.
Execute send algorithm
S3.

Else,

send MessageError.
Terminate SSM.

Terminate

Security Service, v1.7

[A CompleteEstablishCon-
text arriving in S3 is illegal]

Send MessageError.
Terminate SSM.
Terminate

Secure Inter-ORB Protocol (SECIOP)

March 2001 3-49

Table 3-4 SECIOP Context Management Finite State Machine -Talj@obtinued)

Event

No Association (S0)

Association being
created, message

allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)

ContinueEstablish-
Context arrives

[A ContinueEstablishCon
text arriving in SO is ille-

gall

Send MessageError.
Terminate SSM.
Terminate

[A ContinueEstab-
lishContext arriving
in Sl is illegal]

Send MessageError.
Terminate SSM.
Terminate

update context state.

If OK & context com-
plete,

Send CompleteEstab-
lishContext.

input_reply := 1.
Execute send algorithm
S3.

Elself OK & context
incomplete,

Send ContinueEstab-
lishContext.

S2.

Else,

Send MessageError.
Terminate SSM.

[A ContinueEstablishCon-
text arriving in S3 is illegal]

Send MessageError.
Terminate SSM.
Terminate

Terminate
MessageError arrive [A MessageError arriving|| Terminate SSM. Terminate SSM. [target had trouble using its
in SO is illegal] Terminate Terminate security.con.text and couldn’
Terminate SSM. reestablish it]
Terminate Terminate SSM.
Terminate.
Send Frame If create context = OK, Send the frame. S2. If context valid,
Send EstablishContext S1. Send the frame.
[Normal send case.] message. S3.
If Message allowed, Else
Send the frame. Create a new FSM in state
S1. SO0.
Else Attach it to SSM.
s2. Deliver SendFrame to FSM
Else Terminate
Terminate SSM.
Terminate
3-50 Security Service, v1.7 March 2001

Table 3-4 SECIOP Context Management Finite State Machine -Talj@obtinued)

Event

No Association (S0)

Association being
created, message

allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)

MessagelnContext
arrives

[Normal receive
case.]

[Client has discarded corn
text, but target doesn’t
know it.]

Send DiscardContext.
SO

DiscardContext
arrives

[MessagelnContext
arriving in state S1 ig
illegall]

Send MessageError.
Terminate SSM.
Terminate

[MessagelnContext
arriving in state S2 is
illegall]

Send MessageError.
Terminate SSM.

Terminate

If message OK,

Execute receive algorithm.
Else If context timed out,
Send DiscardContext.

Create a new FSM in state
S0.

Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.

Else If message bad, but
context OK, drop message.

input_reply := 1.
Execute send algorithm.
Else

Send MessageError.
Terminate SSM.
Terminate.

[ignore]
SO

[Target doesn’t want
to create a security
association]

Terminate SSM.
Terminate

[Target doesn’t want to
create a security associ
ation]

Terminate SSM.
Terminate

[target’s context is no longer
valid]

Create a new FSM in state
S0.

Attach it to SSM.
input_reply := 1.
Execute send algorithm.

Terminate.

Resync Requested

[ignore. Resync will ocg
on next SendFrame
request]

SO

Terminate SSM.
Terminate

Terminate SSM.
Terminate

Send DiscardContext.

Create a new FSM in state
S0.

Attach it to SSM.
Execute send algorithm.

Terminate.

Security Service, v1.7

Secure Inter-ORB Protocol (SECIOP)

March 2001 3-51

Table 3-5 SECIOP Context Management Finite State Machine - Table 2

Event

No Association (S0)

Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK &
context complete,

Send CompleteEstablish-
Context.

input_reply := 1.
Execute send algorithm.
S3.

Else if create context =
OK & context incomplete,

Send ContinueEstablish-
Context.

S2.

Else

Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

CompleteEstablish-
Context arrives

[Client wants to start
over. Always allow
this.]

discard partial con-
text.

Create a new FSM in
state SO.

Deliver Establish-
Context frame to it.

Terminate.

[Client discarded context
without telling target.]

Create a new FSM in stat
S0.

Deliver EstablishContext
frame to it.

Terminate.

[A CompleteEstablish-
Context arriving in SO is
illegal]

Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

3-52

Complete context
with context id.

If OK,
input_reply := 1.

Execute send algo-
rithm.

S3.

Else,

send MessageError.
Terminate SSM.

Terminate

Security Service, v1.7

[A CompleteEstablish-
Context arriving in S3 is
illegal]

Send MessageError.
Terminate SSM.
Terminate

March 2001

Table 3-5 SECIOP Context Management Finite State Machine - Talft@oBtinued)

Event

No Association (S0)

Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

ContinueEstablish-
Context arrives

A ContinueEstablishCon-
text arriving in SO is ille-

gall

Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

update context state

If OK & context
complete,

Send CompleteEstak
lishContext.

input_reply := 1.
Execute send algo-
rithm.

S3.

Elself OK & context
incomplete,

Send ContinueEstab
lishContext.

S2.

Else,

Send MessageError.
Terminate SSM.
Terminate

[A ContinueEstablishCont|
text arriving in S3 is ille-

gall

Send MessageError.
Terminate SSM.
Terminate

MessageError arriveg

[A MessageErrort arriv-
ing in SO is illegal]

Terminate SSM.
Terminate

[illegal state at Target
Side]

Terminate SSM.

[target had trouble using
its security context and

Send Frame

[Normal send case.]

If create context = OK,
Send EstablishContext
message.

S2.

Else

Terminate SSM.
Terminate

[illegal state at Target
Side]

Security Service, v1.7

Terminate o
couldn't reestablish it]
Terminate SSM.
Terminate.

S2. If context valid

Send the frame (if not
already sent).

S3.

ElseCreate a new FSM in
state SO.

Attach it to SSM.

Deliver SendFrame to
FSM

Terminate.

Secure Inter-ORB Protocol (SECIOP)

March 2001 3-53

Table 3-5 SECIOP Context Management Finite State Machine - TalftgoBtinued)

Event

No Association (S0)

Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

MessagelnContext
arrives

[Normal receive
case.]

[Target has discarded cor
text, but client doesn't
know it.]

Send DiscardContext.
SO

DiscardContext
arrives

[ignore]
SO

[illegal state at Target
Side]

[MessagelnContext
arriving in state S2 ig
illegall]

Send MessageError.
Terminate SSM.
Terminate

If message OK,

Execute receive algorithm.

Else If context timed out,
Send DiscardContext.

Create a new FSM in stat
SO0

Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate

Else If message bad, but
context OK, drop mes-
sage.

input_reply := 1.
Execute send algorithm.
Else

Send MessageError.
Terminate SSM.

Terminate

[illegal state at Target
Side]

Resync Requested

[ignore. Resync will ocg
on next SendFrame
request]

SO

[Client doesn't want
to create a security
association]

Terminate SSM.

Terminate

[client’s context is no
longer valid.]

Create a new FSM in stat
S0.

Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.

[illegal state at Target
Side]

3-54

Terminate SSM.

Terminate

Send DiscardContext.

Create a new FSM in stat
S0.

Attach it to SSM.
Execute send algorithm.
Terminate.

Security Service, v1.7

March 2001

3.3 The SECIOP Hosted CSI Protocols

3.3.1 IOR

All the SECIOP hosted Common Secure Interoperable (CSI) protocols and
mechanisms use common elements as far as possible.

® All mechanisms use IOR tags of the foldG_x_SEC_MECH as defined in
Section 3.1.4.1, “Security Components of the IOR,” on page 3-8.

® The component data structure associated with these tags is common for all protocols
and mechanisms in this specification.

® Cryptographic profiles are defined in all cases that allow use of relevant algorithms
for confidentiality, integrity, etc. Different mechanisms support some of the same
algorithms and one way functions.

® The MechanismType as seen at the IDL interface also reflect the mechanism ids and
cryptographic profile values in the IOR tags.

® Privilege attributes when CSl level 2 is used are the same whether a secret or public
key mechanism is used.

® The basic SECIOP token format and some details (such as token types and ids) are
common for all protocols.

® All tag components must be encapsulated using CDR encoding.

These protocols are designed to allow use of GSS-API mechanisms. Use of level 2
facilities such as handling of privileges, as defined in “Values for Standard Data Types”
in Appendix B, imply use of an extended GSS-API such as [23].

The IORTAG_INTERNET_IOP profile contains the security tags needed for common
secure interoperability using GIOP/IIOP. These security tags may be shared with other
(non 1IOP) protocaols, including DCE-CIOP.
The 1IOP tag identifying the SECIOP security transport is
TAG_SECIOP_INET_SEC_TRANS. The tagged component data described below
must be encapsulated using CDR encoding. The data structure associated with this tag
is as follows:
struct SECIOP_INET_SEC_TRANS {

unsigned short port;
h

The port field contains the port number to be used instead of the port defined in the
encompassing IIOP profile body. It contains the TCP/IP port number on the specified
host where the target agent is listening for TCP/IP connection requests for the SECIOP
protocol.

The security tags describe what the security target supports and requires, and any
mechanism specific data required for secure interoperability using this mechanism.

Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-55

3-56

For common secure interoperability and for all CSI mechanisms and protocols, the
IOR must contain at least one approprigd&_x_SEC_MECH tag.

The IOR may also contain the following tags, as defined in Section 3.1.4.1, “Security
Components of the IOR,” on page 3-8:

® TAG_SEC_NAME provides the security name and may be shared between
mechanisms that use the same form of name. Conformant implementation must be
able to accept security names shared between such mechanisms.

® TAG_ASSOCIATION_OPTIONS may be shared between mechanisms.

® TAG_GENERIC_SEC_MECH whose component definition includesequence
<TaggedComponents> includes asecurity_mechanism_type and can include
a security name and association options.

If a mechanism is selected for use, and has a defined security name and/or association
option, these values are used in preference to any values defined at the higher level. If
no name or association options are defined for the mechanism, then the values of these
tags in the IIOP profile are used.

3.3.2 Mechanism Tags

The TAG_x_SEC_MECH tags for all the CSI mechanisms defined in this
specification have an associated component data structure of the same form:

struct <mechanism name> {

AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence <octet> security_name;

h

Names for the CSI mechanisms are:

SPKM_1

SPKM_2

KerberosV5

CSI_ECMA_Secret
CSI_ECMA_Hybrid
CSI_ECMA_Public

Tag ids for the mechanisms are:

TAG_SPKM_1_SEC_MECH
TAG_SPKM_2 SEC_MECH
TAG_KerberosV5 SEC_MECH
TAG_CSI_ECMA_Secret SEC_MECH
TAG_CSI_ECMA_Hybrid_ SEC_MECH
TAG_CSI_ECMA_Public SEC_MECH

® The association options required/supported by the target are defined in
Section 3.3.3, “Association Options,” on page 3-57.

Security Service, v1.7 March 2001

® The sequence afrypto_profiles defines one or more cryptographic profile
supported by this target using this mechanism as defined in Section 3.3.4,
“Cryptographic Profiles,” on page 3-57.

® The security name is defined in Section 3.3.5, “Security Name,” on page 3-59.

3.3.3 Association Options

With all CSI protocols and mechanisms, a secure ORB supporting a target object must
be able to put in the IOR any or all of the association options defined in the CORBA
Security specification, as required by the target.

All compliant secure ORBs supporting clients must be able to accept all the
target_supports andtarget_requires association options, and act on these
correctly, as defined in “TAG_ASSOCIATION_OPTIONS” on page 3-9.

Two of the association options are replay and misordering detection. While all the
protocols in this specification include facilities to detect replay and misordering, in a
multi-threading CORBA environment, the calls on the security mechanism are not
guaranteed to be made in the same order that the messages they are protecting are
transmitted. The facilities in the security mechanisms cannot guarantee that they will
correctly detect replay and misordering. An extension to SECIOP is expected in future
to provide these checks. Until this change to SECIOP has been specified and adopted
(although these association options may be set) replay and misordering detection is not
a mandatory part of this specification.

If no association options are specified in the IOR, a CSI defined default is assumed.

3.3.4 Cryptographic Profiles

Cryptographic algorithms are used for:
® integrity and confidentiality protection of messages,

® establishing the security association between client and target (including peer
authentication and establishing session keys),

® deriving dialogue keys for message protection (both confidentiality and integrity),
and

® protecting systems security data suchPAEs (Privilege Attribute Certificates).

The security mechanisms defined here allow a choice of algorithms that can be used
for the different functions, depending on:

®* the needs of the functions, and

® the requirements for international deployment in countries that constrain how
cryptography can be used and exported from countries where use of cryptography is
controlled.

Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-57

3-58

In some cases, export controls may require international versions of products to use
shorter key lengths; therefore, a large number of combinations of algorithms and key
lengths may be possible. For interoperability, both client and target must support the
same algorithms and key lengths for these functions.

This specification defines a number arfyptographic profileswhere each profile
identifies a set of algorithms with specified key lengths used by a mechanism for
specified functions.

For example, the CSI-ECMA protocol define®dNaDataConfidentiality

cryptographic profile, which can use DES and RSA for protecting the security
mechanism, but does not encrypt the ORB request/reply. (The profile for full security
would use DES/64 for data confidentiality.)

Cryptographic profiles are identified by a value, representd®Rs as an unsigned
short:

typedef unsigned short CryptographicProfile;

3.3.4.1 Key Establishment Algorithms

The algorithms used to establish the cryptographic session keys during security
associations depend on the type of mechanism.

® Where the secret key (Kerberos based) mechanism is used, either via the GSS
Kerberos or CSI-ECMA protocol, the DES algorithm is used.

® When a public key mechanism is used, either via SPKM or CSI-ECMA protocol,
the RSA algorithm is used.

3.3.4.2 Common Message Protection Algorithms

Even if different mechanisms and algorithms are used for key establishment, the same
algorithms can be used for message protection.

® All CSI mechanisms have cryptographic profiles that includ&B® hash of the
data for integrity, though the hash, in some profiles may be signed or encrypted.

® All CSI mechanisms can u$2ES in CBC mode for message confidentiality.

3.3.4.3 Cryptographic Profiles Supported by CSI Protocols

A number of cryptographic profiles are defined for e&3i protocol. Further
cryptographic profiles using different algorithms can be used with these protocols, but
these are not part of this interoperability standard. A target may support several
cryptographic profiles for a particular mechanism.

In all cases, support of @S| protocol requires support for a cryptographic profile that
provides integrity of user data, but not confidentiality, as such a profile is easier to
deploy internationally. For example, the GSS Kerberos protocol always supports its
MD5 cryptographic profile. Other profiles may also be supported.

Security Service, v1.7 March 2001

3.3.5 Security Name

The form of the security name depends on the security mechanism used. For example,
it can be a Kerberos name or a Directory style name. Directory names conform to the
string representation defined in [4].

The security name may be at the component level of@feor higher if shared
between mechanismK.a security mechanism tag, but no security name is present in
theIOR, thelOR is improperly formatted and @GORBA::INV_OBJREF exception
shall be raised when tH®R is used to specify the target of an operation.

3.3.6 Security Administration Domains

As defined in Section 2.1.8, “Domains,” on page 2-21, a security policy domain is a set
of objects to which a security policy applies for a set of security related activities and
is administered by a security authority.

Security mechanisms are concerned with the security domains where users and other
principals are administered, often by on-line authorities such as Authentication and
Privilege Attribute Services. Often, this domain will be the enclosing domain
encompassing secure invocation, access control, and other policy domains.

Note that some authorities may be off-line. For example, the Certification Authority
used to issue certificates is often off-line.

The security mechanisms specified in this document allow requests to cross domain
boundaries. At the boundary, trust between the domains needs to be established. (The
way this is done depends on the mechanism used.) Also, the scope of privileges may
not always cross the domain boundary. This specification does not define how
privileges are mapped on crossing domain boundaries, as this does not affect the
protocol.

While all security mechanisms here include the concept of such domains, in Kerberos
(used here as the secret key mechanism) these are known as realms. In this
specification, the term realm is used in tokens using this mechanism.

3.3.7 Mapping of Common Elements to the SECIOP Protocol

The SECIOP protocol includes the tokens for context establishment and management
and per message tokens.

The context establishment tokens contain:

® |nformation associated with a principal, including at least an identity. (At CSI Level
2, there may be a range of privileges and a separate audit identity, if required.)

® Associated delegation information. Only simple delegation is mandatory to conform
to this specification.

® Security information used to establish the client-target object security association.

® Security information used to establish the keys for message protection.

Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-59

3-60

3.3.7.1

3.3.7.2

Basic Token Format
SECIOP messages include context and message protection tokens.

All CSI mechanisms are usable inside and outside the object environment. In line with
standard practice outside the object environment, tokens are defined in ASN.1 and
encoded for transmission using BER (in some cases, constrained to the DER subset of
these). The token appears aseguence<octet> in CDR encoded SECIOP

messages.

These tokens are enclosed within framing as follows:

[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType
-- MechType is OBJECT IDENTIFIER
innerContextToken ANY DEFINED BY thisMech
-- contents mechanism-specific;

}

Note —For conformance to GSS-API, only the initial context token has to use this
token framing; however, in the CSI protocols, it applies to all tokens.

The initial context token should include a mechanism version, as well as type. For CSI
mechanisms, version numbers are in the mechanism specific information such as the
Kerberos ticket or CSI-ECMAAC.

Inner Context Tokens

The same token types are used in the different CSI protocols, though not all protocols
support all token types. The token types are defined below showing the relationship
with GSS-API calls, as all CSI protocols can be implemented using GSS-API.

The inner context tokens used for security association establishment are listed below:

InitialContextToken Sent by the initiator to a target, to start establishment of a security

association in an SECIOBstablishContext message. The token idds
00 (hex). If GSS-API is being used, it is the value returned by the
GSS_Init_sec_context call.

Security Service, v1.7 March 2001

TargetResultToken Sent to the initiator by the target to complete establishment of the context
in an SECIORCompleteEstablishContext message. The token id 08
00 (hex). It is returned byGSS_Accept_sec_context .

ContinueEstablishToken Sent either by the initiator or the target to continue context establishment
in an SECIORContinueEstablishContext message. The token id 08
00 (hex) (in SPKM). It is returned by either th&SS_Init_sec_context
call or theGSS_Accept_sec_context call.

ErrorToken Sent on detection of an error during security association establishment in
an SECIOPCompleteEstablishContext or ContinueEstablishContext
message. The token id@8 00 (hex) (except in SPKM where it i84 00
(hex)). It is returned by either th@SS_Init_sec_context call or the
GSS_Accept_sec_context call.

The inner context token for message protection isrtéesage_protection_token in
the SECIOPMVessagelnContext message. This can take one of the following forms:

MICToken Sent either by the initiator or the target to verify the integrity of
the user data sent in the following GIOP message (or message
fragment). The token id i81 01 (hex). It is returned by
GSS_GetMIC.

WrapToken Sent either by the initiator or the target. Encapsulates the input
user data (optionally encrypted) along with integrity check
values. The token id i82 01 (hex). It is returned by
GSS_Wrap.

This specification always us®4C tokens for integrity andlvrap tokens for
confidentiality. This may ease national use and export problems whershtpkens
are supported.

The inner context token in thaiscardContext SECIOP message may optionally
contain aDeleteContextToken .

ContextDelete Token Sent either by the initiator, or the target in an SECIO
DiscardContext message to release a Security
Association. It is returned b@SS_Delete_sec_context .

3.3.8 CSI Protocols

This specification includes three protocols for different circumstances, as described in
Section 3.1.6, “Key Distribution Types,” on page 3-13.

In all cases, the appropriate section specifies the cryptographic profiles supported, and
the contents of the SECIOP security tokens.

Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-61

3-62

3.3.8.1

3.3.8.2

3.3.8.3

In all cases, the protocol as supported by OMG is a subset of the protocol defined in
the source document. For example, in all protocols, channel bindings as defined in
GSS-API (and specified in the underlying protocols) are not supported. This is
because IP addresses cannot be trusted in current implementations; IP addresses are
spoofable. Including the channel binding information would lead to a false sense of
security about the source of the transmission.

The protocols described in this specification include SPKM, GSS Kerberos, and CSI-
ECMA.

SPKM Protocol

The SPKM protocol supports CSl level 0. This is a public key based protocol. The only
client information transmitted is its security name. See Section 3.4, “SPKM Protocol,”
on page 3-63.

GSS Kerberos Protocol

The GSS Kerberos protocol supports CSl level 1. This is a secret key based protocol.
The only client information transmitted is its security name. See Section 3.5, “GSS
Kerberos Protocol,” on page 3-65.

CSI-ECMA Protocol

The CSI-ECMA protocol also supports the privilege handling, sepawadéid , and
delegation controls of CSI level 2. Subschemes within this protocol support the three
key distribution options: secret, public, and hybrid. See Section 3.6, “CSI-ECMA
Protocol,” on page 3-68 for additional information.

To support this flexibility, thénitial_context_token is split into three parts;

therefore, the attributes for access control are independent of the key distribution
method, and this is independent of the cryptography used for message protection. The
token contains:

® Authorization information - attributes of a principal are held in a Privilege Attribute
Certificate PAC) with any associated information needed for delegation and other
controls. This is independent of the way the communications are protected;
therefore, it is usable with different key distribution methods.

® Security information needed to establish the association. The form of this depends
on the key distribution method used. It is a Kerberos ticket if this is secret key
based; it is a profile of thEPKM_REQ token for public key mechanisms. In both
cases, there is a link between this andRAE. Changing the security mechanism
mainly just requires replacing this part of the token.

® Dialogue key packages to establish confidentiality and integrity keys.

Security Service, v1.7 March 2001

3.4 SPKM Protocol

This section specifies the SPKM protocol, a simple public-key GSS-API mechanism. It
is based on SPKM as defined in [20]. SPKM protocol provides CSI level 0
functionality only and the purpose is to allow the adoption of a simple security
infrastructure without undue complexity or overhead.

SPKM has two separate GSS-AP| mechanisBBKM_1 andSPKM_2, whose

primary difference is tha8PKM_2 requires the presence of secure timestamps for the
purpose of replay detection during context establishmenS&kM_1 does not.
SPKM_1 is the mandatory mechanism for conformance to the SPKM protocol while
SPKM_2 is the optional mechanism.

Specifically, it defines the required information for encoding a secure interoperability
IOR and defines the token formats used by the SECIOP protocol.

3.4.1 Cryptographic Profiles

34.1.1

3.4.1.2

3.4.1.3

3.4.14

The following cryptographic profiles are supported with this mechanism.

MD5_RSA

Specifies use of the SPKM mechanism to provide data integrity and authenticity by
computing arRSA signature on th&D5 hash of that data. The default SPKM key
establishment algorithm is used (i.e., the context key is generated by the initiator,
encrypted with thdRSA public key of the target, and sent to the target). Note that
MD5_RSA is a mandatory integrity and authenticity algorithm for SPKM.

MD5_DES_CBC

Specifies use of the SPKM mechanism to provide data integrity by encrypting, using
DES in CBC mode, theMD5 hash of that data. The default SPKM key establishment
algorithm is used.

DES CBC

Specifies use of the SPKM mechanism to provide data confidentiality by D&8gn
CBC mode. The default key establishment algorithm is used.

MD5_DES_CBC_SOURCE

Specifies use of the SPKM mechanism to provide data integrity by encrypting, using
DES in CBC mode, theMD5 hash of that data. The default key establishment
algorithm is used plus source authentication information is also encrypted with the
target's public key.

Security Service, v1.7 SPKM Protocol March 2001 3-63

3-64

3.4.1.5 DES_CBC_SOURCE

Specifies use of SPKM mechanism to provide data confidentiality by DE®)in
CBC mode. The default key establishment algorithm is used plus source authentication
information is also encrypted with the target's public key.

Values for these cryptographic profiles are assigned in “General Security Data
Module” in Appendix B.

3.4.2 IOR Encoding

The security tags in th®©R are encoded. The component data member associated with
the SPKM_1 andSPKM_2 mechanism tags isstruct , defined as follows:

struct <mechanism_name> {

AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;

sequence<octet> security_name;

J3

mechanism_name can be eitheBPKM_1 or SPKM_2 and security_name must
contain a valid X.500 distinguished name represented as a string conforming to [4]. For
example, it could be “cn=Andrew Rust, ou=Home Office, o=Acme Widgets Inc.,

c=CA”~

All tag components must be encapsulated us§iBiR encoding.

3.4.3 Using SPKM for SECIOP

When the SPKM protocol is chosen as the security mechanism for invoking an object,
the SECIOP protocol carries the information described in this section. This protocol is
a profile of the SPKM GSS-API mechanism as defined in [20].

All SPKM tokens are encoded according to the general format described in
Section 3.3.7, “Mapping of Common Elements to the SECIOP Protocol,” on
page 3-59.

TheinnerContextTokens are described in the following sections. All
innerContextTokens are encoded using ASN.1 BER (constrained, in the interests of
parsing simplicity, to the DER subset defined in [22]).

The SPKM GSS-API “mechanism is identified by an OBJECT IDENTIFIER
representing SPKM_1" or “SPKM_2.” SPKM_1 uses random numbers for replay
detection during context establishment 8fKM_2 uses timestamps (note that for

both mechanisms, sequence numbers are used to provide replay and out-of-sequence
detection during the context, if this has been requested by the applic&Riiy_1
OBJECT IDENTIFIER is 1.3.6.1.5.5.1.1 aisPKM_2 OBJECT IDENTIFIER is
1.3.6.1.55.1.2.

Security Service, v1.7 March 2001

3.4.3.1 The Initial Context Token

Theinitial_context_token carried within arEstablishContext SECIOP message is
encoded according to the general framework and conforms t8RK&-REQ token
as described in [20] Section 3.1.1.

In theinitial_context_token , channel bindings are required to be ZERO
(GSS_C_NO_BINDINGS).

The GSS_C_DELEG_FLAG is required to be FALSE (no delegation is supported).

The GSS_C_MUTUAL_FLAG is TRUE if it requires both parties to authenticate
itself and FALSE (the default) if only one party is required to authenticate itself.

3.4.3.2 The Final Context Token

Thefinal_context_token carried within aCompleteEstablishContext SECIOP
message is encoded according to $RKM-REP-TI token as defined in [20] Section
3.1.2 or theSPKM-ERROR token as defined in [20] Section 3.1.4.

3.4.3.3 The Continuation Context Token

The continuation_context_token carried within aContinueEstablishContext
SECIOP message is encoded according tcSPEM-REP-TI token or theSPKM-
REP-IT token as defined in [20] Section 3.1.3 or 8lfKM-ERROR token.

3.4.3.4 The Message Protection Token

The message_protection_token carried within a SECIORIessagelnContext
message is encoded according to SRKM-MIC token (for integrity) oISPKM-
WRAP token (for confidentiality) as defined in [20] Section 3.2.

3.4.3.5 The Context Delete Token

The context_delete_token carried within a SECIOBiscardContext message is
encoded according to ttf&®PKM-DEL token as defined in [20] Section 3.2.3.

3.5 GSS Kerberos Protocol

This section specifies the GSS Kerberos protocol. It is based on the GSS Kerberos
specification [12] which itself is based on Kerberos V5 as defined in [13]. This
specification refers to, rather than repeats, information in [12] and [13].

This section defines the required information for encoding the mechanism specific
information in the IOR and the token formats used by the SECIOP protocol.

Security Service, v1.7 GSS Kerberos Protocol March 2001 3-65

3.5.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:

3.5.1.1 DES_CBC_DES MAC
Specifies use of the Kerberos V5 mechanism WHES MAC message digest for
integrity andDES in CBC mode for confidentiality.

3.5.1.2 DES_CBC_MD5
Specifies use of the Kerberos V5 mechanism W5 message digest for integrity
andDES in CBC mode for confidentiality.

3.5.1.3 DES_MAC
Specifies use of the Kerberos V5 mechanism WHES MAC message digest for
integrity.

3.5.1.4 MD5

Specifies use of the Kerberos V5 mechanism wilbES encryptedMD5 message
digest for integrity.

Values for these cryptographic profiles are assigned in “General Security Data
Module” in Appendix B.

3.5.2 Mandatory and Optional Cryptographic Profiles

ORB implementations claiming conformance to the GSS Kerberos protocol must
implement at least theID5 profile. Conformant ORBs may, but are not required to,
implement the remaining cryptographic profiles defined in this specification.

3.5.3 IOR Encoding

The security tags in th€®R are encoded. Both security name and association options
tags may appear in tHOR and be shared between mechanisms.

The component data member associated with the KerberosV5 mechanism tag is a struct
defined as follows:

struct KerberosV5 {

AssociationOptions target_supports;
AssociationOptions target_requires;
sequence<CryptographicProfile> crypto_profiles;

sequence<octet> security_name;

h

3-66 Security Service, v1.7 March 2001

security_name shall contain a valid Kerberos Principal Name of type
GSS_KRBV5_NT_PRINCIPAL_NAME , which is defined in [12].

All tag components must be encapsulated usiBiR encoding.

3.5.4 SECIOP Tokens

When the GSS-Kerberos protocol is chosen as the security mechanism for invoking an
object, the SECIOP protocol carries the information described in this section. All
Kerberos tokens are encoded according to the general format.

The OBJECT IDENTIFIER for Kerberos V5 is 1.3.5.1.2 until [12] is advanced to a
Proposed Standard RFC when it will be changed to 1.2.840.113554.1.2.2.

Each individual token is distinguished by the data carried in the ANY field of this
general framework.

3.5.4.1 The Initial Context Token

Theinitial_context_token carried within arEstablishContext SECIOP message is
encoded according to the general framework and conforms to the unencrypted
authenticator message as described in [12] Section 1.1.1.

Note that channel bindings are required to be ZERSS _C_NO_BINDINGS) in
this specification (see Section 3.3.8, “CSl Protocols,” on page 3-61).

The GSS_C_DELEG_FLAG is set when either the client has called

set_security features specifyingSecDelModeSimpleDelegation or when an
administrator has calleset_delegation_mode with a value of
SecDelModeSimpleDelegation on a domain to which the target object belongs. The
optional “Deleg” field, if present, includes a forwardable Ticket Granting Ticket (TGT)
representing the delegated credentials of the client sendirigstablishContext
message.

The GSS_C_MUTUAL_FLAG is set when either the client has called
set_association_options specifying a value oEstablishTrustinTarget or an
administrator has calleset_association_options with a value of
EstablishTrustinTarget on the domain to which the target belongs.

The GSS_C_REPLAY_FLAG andGSS_C_SEQUENCE_FLAG are generally clear
as they can cause incorrect replay and misordering detection in a multi-threaded
environment (see Section 3.3.3, “Association Options,” on page 3-57).

Note —The current GSS Kerberos implementation available without cost from MIT
does not support replay detection.

3.5.4.2 The Final Context Token

Thefinal_context_token carried within aCompleteEstablishContext SECIOP
message is encoded according to the formats defined in [12] Section 1.1.2.

Security Service, v1.7 GSS Kerberos Protocol March 2001 3-67

3.5.4.3 The Continuation Context Token

Kerberos V5 does not use tl®ntinueEstablishContext message and therefore

does not define theontinuation_context_token format. If the Kerberos V5

mechanism is amended in the future to support mechanism negotiation, support of the
ContinueEstablishContext message would be necessary and thus definition of the
continuation_context_token would be required.

3.5.4.4 The Message Protection Token

The message_protection_token carried within an SECIORIessagelnContext
message is encoded according to the formats defined in [12] section 1.2.

3.6 CSI-ECMA Protocol

3-68

This section defines the CSI-ECMA protocol. It is based on the ECMA GSS-API
mechanism as defined in ECMA-235, though is a significant subset of that. It supports
all CSl levels (0, 1, and 2). It provides three options for key distribution:

1. A secret key option using Kerberos data structures.

2. A hybrid option where secret keys are used within an administrative domain, but
public keys are used between domains.

3. A public key option that uses public key technology for key distribution both within
and between domains.

This section includes the full definition of the CSI-ECMA protocol so that it can be
read without reference to ECMA 235. The CSI-ECMA protocol is a subset of ECMA
235. It is very similar to the SESAME profile as described in [16].

The CSI-ECMA protocol supports the CORBA Security Level 2 facilities. It is
designed to be extensible as new facilities (for example, new delegation options) are
agreed in future, and further key distribution options. It is also designed to respond to
the requirements of international deployment such as minimal confidentiality (only
keying information needs to be encrypted), use of anonymous audit (a separate
audit_id can be transmitted), and choice of cryptography for message protection
(including strong integrity, weak confidentiality).

The structure of the initial context token is key to providing this flexibility. It is
separated into three parts:

1. Authorization information.

2. Information concerned with establishing the security association using one of the
supported key distribution options.

3. Information concerned with generating the dialogue keys for message protection.

Security Service, v1.7 March 2001

3.6.1 Concepts

3.6.1.1 Separation of Concerns

The initial context token transmitted in the SECIB$8tablishContext message on

setting up a security association contains a number of parts with limited links between
them. This is so that the different parts can be varied independently of each other. The
three main parts are:

1. Authorization information - the Privilege Attribute CertificaRAC) that contains
the privileges used for access control and other attributes such as the audit id.
Associated with this are delegation and other controls. Therefore, this is concerned
with the access control and delegation policies, but is mainly independent of the key
establishment and message protection mechanisms$PAQean be updated to
affect these policies independently of mechanisms. (The size #henay be
significant; therefore, it is not confidentiality protected, as this may cause regulatory
problems.) Privilege and other attributesP#Cs are described in Section 3.6.2,
“Security Attributes,” on page 3-69.

2. Target key block - used to provide the information needed to establish the security
association between client and target. Secret key or public key technology (or some
hybrid of these) may be used. The result is always a “basic” key from which
dialogue keys to protect application messages can be derived. Therefore, this is
concerned with the mechanism for establishing trust and distributing keys. This can
be varied independently of the authorization policies and the message protection
methods. Key establishment methods are described in Section 3.6.5, “Key
Distribution Schemes,” on page 3-71.

3. Dialogue key packages - control how dialogue keys to protect messages are derived
from the basic key. Note that this is largely independent of the key distribution
method (i.e., public key technology may be used to establish secret keys for
dialogue protection).

3.6.2 Security Attributes

3.6.2.1 Privilege Attributes

The CSI-ECMA protocol allows a range of privilege attributes in a Privilege Attribute
Certificate PAC) transmitted between the client and target object. These privileges
then can be used for access control.

Privilege attributes that can be carried in BRC at level 2 are defined in “Security
Attributes” in Appendix B and include all those defined in the CORBA Security
specification.

A vendor or user enterprise may also define its own privilege attributes (if the
particular implementation allows this) and use them for access control.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-69

3-70

3.6.2.2

In line with the CORBA Security specification, each privilege attribute has a defining
authority, which identifies the authority responsible for defining the semantics of the
value of the security attribute. This can be included for each privilege attribute in the
PAC and in this case, there could be a different defining authority for each privilege.

It is often the case that most attributes in P8 come under the same defining
authority, which is the authority that issued #&C. If the PAC, as transmitted, does
not have defining authorities for some attributes, then the issuing authority PAGhe
is considered to be the defining authority.

Miscellaneous Attributes

This specification allows other types of security attributes to be carried iPAhe
under the general heading of miscellaneous attributes. In CSI-ECMA, the only type of
miscellaneous attribute supported is the audit identity.

3.6.3 Target Access Enforcement Function

The security processing functionality at the target is split between the target
application and the target access enforcement func@ogetAEF). ISO (ISO/IEC
10181-3) defines an access enforcement function collocated with the target application,
which controls access to a target application. This has a number of advantages
including:

® The security critical code is isolated, which makes security evaluation simpler.

® Long term keys can be shared between applications/objects. This can simplify
administration (as there are less keys) and allow re-use of keying information when
accessing another application/object sharing tdrigetAEF .

The targetAEF is responsible for setting up the security association, including
validating thePAC and releasing the keys for message protection.

3.6.4 Basic and Dialogue Keys

The exchanges between client and target are secured using a two level key scheme in
which a distinction is made between basic and dialogue keys.

A basic key is a temporary key established between a client and the target (actually, the
targetAEF). The basic key is used for integrity protection of B and associated
information, its own key establishment information, and the information used to
establish the dialogue keys. The basic key is established by the client sending
information to the target in theargetkeyBlock . This can take different forms,

depending on the key distribution method used.

A dialogue key is a temporary key established between the client and target and is used
to protect the requests and responses. Separate dialogue keys can be established for
integrity and confidentiality protection, enabling different strengths of mechanism to

Security Service, v1.7 March 2001

3

be configured. The information required to derive the dialogue keys is transmitted in
the Dialogue key package. Typically, dialogue keys are constructed from the basic key
using a one way algorithm.

3.6.5 Key Distribution Schemes

3.6.5.1

3.6.5.2

The CSI-ECMA protocol allows a choice of key distribution methods for establishing a
client-target security association including the basic key. The content of the
targetkeyBlock depends on the scheme used.

The key distribution schemes depend on the existence of long term cryptographic keys.
Both secret (symmetric) and public (asymmetric) key technology can be used. When
secret keys are used, a key is shared between the target and its Key Distribution
Service KDS). When public keys are used, the private key is kept by the principal and
the public key held in a certificate, in a directory or elsewhere.

Initiators may also possess symmetric or asymmetric keys established as the result of
an earlier authentication.

This CSI-ECMA specification defines three key distribution schemes. These are
described below and are identified by a name and an architectural option number.
Other schemes are possible as extensions to this as described in ECMA-235.

Basic Symmetric Key Distribution Scheme

In this scheme, the client and target each share different secret keys with the same Key
Distribution Server. The scheme name for thisisnmintradomain . The
architectural option number &

To establish the association between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s
long term key. On receipt of thargetKeyBlock , the target can extract the basic key
from it.

In this case, théargetKeyBlock is a Kerberos ticket.

Symmetric Key Distribution with Asymmetric KDS

In this scheme, the initiator shares a secret key with its KDS and the target shares a
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair. The scheme name for thisydridinterdomain . The
architectural option number &

To establish the client-target association, the client géasgatKeyBlock from its

KDS containing the basic key encrypted under a temporary key and the temporary key
encrypted under the target's KDS public key. TagetKeyBlock is also signed

using the initiator's KDS private key.

On receipt of theargetKeyBlock , the target transmits it to its KDS and gets back the
basic key encrypted under the long term secret key it shares with its KDS.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-71

3-72

3.6.5.3 Full Public Key Scheme

In this scheme, both client and target possess private/public keys. Neither use a KDS.
The scheme name for this Bsymmetric. The architectural option number 6s

To establish the client-target association, the client construetgetKeyBlock

containing a basic key encrypted under the target’s public key. The target key block is
signed with the client’s private key. On receipt of thmyetKeyBlock , the target

directly establishes a basic key from it.

3.6.6 Cryptographic Algorithms and Profiles

Cryptographic and hashing algorithms are used for various purposes. This section
categorizes the algorithms according to usage so that client and targets can determine
more easily if they have the cryptographic support required to allow interoperation.
The categorization then is refined into cryptographic profiles that can be incorporated
into specific mechanism identifiers. The mechanism identifiers with cryptographic
profiles then can be carried in th@R. Table 3-6 summarizes the different uses to

which algorithms are put.

Table 3-6 Summary of Algorithm Usage

Use
Reference Description of Use Type of Algorithm
2 PAC protection using signature OWF + asymmetric
sighature
3 basic key usage confidentiality and
integrity
4 integrity dialogue key derivation OWF
5 integrity dialogue key usage symmetric integrity
6 CA public keys OWF + asymmetric
sighature
7 encryption using shared long term| symmetric confidentiality
symmetric key
8 name hash to prevent ciphertext | OWF
stealing
9 asymmetric basic key distribution asymmetric encryption
10 key establishment within (fixed value)
SPKM_REQ
11 confidentiality dialogue key OWF
derivation
12 confidentiality dialogue key use symmetric confidentiality

Security Service, v1.7 March 2001

3

The algorithms can now be further categorized into broader classes, as shown in the

following table.

Table 3-7 Summary of Algorithm Classes

Class 1:| symmetric for security of mechanism: uses 3,5, 7
Class 2:| all OWFs: uses 2, 4, 6, 8, 11
Class 3:| internal mechanism asymmetric, encrypting: use 9

Class 4:| internal mechanism asymmetric, non encrypting: use 2

Class 5:| CAs asymmetric non-encrypting: use 6

Class 6:| data confidentiality, symmetric: use 12

Use 10 is a fixed value and does not contribute to mechanism use options.

Based on these classes, the following cryptographic algorithm usage profiles are
defined. Other profiles are possible and can be defined as required. Note that
symmetric algorithm key sizes are included in this profiling, th&ES/64 indicates
DES with a 64 bit key.

Table 3-8 Cryptographic Algorithm Usage Profiles

Profile 1 | Profile 2 Profile 3 Profile 5
Full no data low grade defaulted
confidentiality confidentiality
Class 1 DES/64 DES/64 RC4/128 separately
agreed default
Class 2 MD5 MD5 MD5 separately
agreed default
Class 3 RSA RSA RSA separately
agreed default
Classes 4 | RSA RSA RSA separately
and 5 agreed default
Class 6 DES/64 None RC4/40 separately
agreed default
Table key:

® Profile 1 provides full security, using standard cryptographic algorithms with
common accepted key sizes.

®* Profile 2 is the same, but without supporting any confidentiality of user data.

* Profile 3 provides low grade confidentiality. In some countries, products using this

are exportable without restriction; in others, they are more easily
exportable/importable.

Security Service, v1.7 CSI-ECMA Protocol March 2001

3-73

3-74

®* Profile 5 uses algorithms identified by a separately specified default. It is intended
for use by organizations who wish to use their own proprietary or government
algorithms by separate agreement or negotiation.

3.6.7 PAC Protection and Delegation - Outline

The ECMA protocol provides a number of ways to protect a principal’s credentials, as
held in aPAC. In CSI-ECMA, a digital signature is used, as this allows a target system
to check what Security Authority authorized use of these privileges, without relying on
the transitive trust needed for sealAICs crossing domain boundaries. Encrypted
PACs are not included in this profile.

There may also be controls on where BAC may be delegated and used.

Protection method fields in tHeAC specify where thi®AC can be used and whether
it can be used by the specified targets only (for example, allowing use of the privileges
for access control) or whether that target can also delegate it.

Protection method fields are grouped together into method groups. The protection
method check is passed if all the method fields in any one of the method groups is
passed.

3.6.8 PPID Method

This method protects tHeAC from being stolen, by restricting the initiators who can
use thePAC.

When no other method group is present, it permitdPh@e to be used only by the
client entity to which it was originally issued (i.e., it prevents delegation). However, a
PAC with aPPID will be delegatable if delegation is permitted b?\&/CV method.

A PPID identifying the initiating principal is put in tHRAC by the Privilege Attribute

(or other security) Service, according to policy or client request. The same/related
information is also supplied as part of tiaegetKeyBlock so that the target can

check that the entity that sent this token is the same entity that is entitled to use the
PAC.

The PPID is a security attribute whose value in the CSI-ECMA protocol can take one
of two forms, depending on the key distribution scheme used by the initiator.

® When the initiator has a secret key, #iID is a random bit string that is also sent
in the authorization field of the Kerberos ticket. This ticket is sent as part of the
targetKeyBlock and can be checked to come from this client.

® For the public key scheme, tiRPID contains the certificate serial number 83w
name for the initiator's<.509 public key certificate. ThéargetKeyBlock sent to
the target is signed using this initiator’s private key.

Security Service, v1.7 March 2001

3.6.9 PV/CV Delegation Method

This method prevents tHRAC from being stolen and at the same time controls whether
(and where) it can be delegated. The method field irPA@ contains a protection
value PV), which is a one way function of a Control Valu@\).

A PAC will be accepted by the target (subject to other controls ifPtfie method
group) if the client proves knowledge of t68& by passing it (encrypted) as part of the
initial context token. A method group contains at most BXevalue.

In the simplest case, the method group contains ju®thand the target can delegate
the PAC if it receives theCV.

The PV/CV method can be used for more selective targeting oPA@ also. A

method group can include qualifier attributes, which specify wher@Al@=can be

used. Qualifier attributes can specify which principals can receivBAGieas a target

and which can act as both delegate and target. These principals can be specified by
their identities (though the protocol is extensible for other options such as a
group/domain to which they belong).

For the simpler case, delegation can be prevented by setting the delegation mode to
Security::SecDelModeNoDelegation . This will cause the client to send tRAC
without theCV.

Note —The protocol allows more than one method group irPhE€, each with its own
PVICV. This can be used by a client or intermediate object in a chain to further restrict
who can use thPAC, by failing to send some of thgVs. However, this specification
does not include any operations for restricting delegation in this way, so it is not
possible to exploit this capability.

3.6.9.1 Restrictions

Other restrictions may be included in thAC. An ORB conforming to this
specification does not have to generate these restrictions, but will PAEst with
mandatory restrictions that it does not understand or cannot process.

3.6.10 Mechanism Identifiers and IOR Encoding

All tag component data in th®OR must be encapsulated usiG®R encoding.
Mechanism identifiers for the CSI-ECMA protocol have up to three parts, as follows:
1. The protocol identifier. This is CSI-ECMA.

2. The architectural option. This identifies the architectural option (i.e., the key
distribution method used when establishing security associations). If absent, the
default option is used.

3. The cryptographic profile. This identifies the cryptographic profile as defined above.
If absent, a default is used.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-75

3-76

In thelOR, the mechanism name in the struct of T#&_x_ SEC_MECH is:

CSI-ECMA_<architectural option>

where the architectural options supported are Secret, Hybrid, and Public; therefore,
mechanism names a@S|_ECMA_Secret, CSI_ECMA_Hybrid , and
CSI_ECMA_Public .

These values could also be negotiated using a generic mechanism negotiation scheme
such as that in [19] in future, but are in @R for the current CSI specification.

3.6.11 Security Names

This protocol uses two forms of security names:

1. Directory names (DNs) are used where public key technology is used, as this is the
form of name used X509 certificates.

2. Kerberos names are used where secret key technology is used, as this is the form of
name used by Kerberos.

3.6.11.1 Kerberos Naming

An entity that uses the normal Kerberos V5 authentication is given a printable
Kerberos principal name of the form:

<principal_name>@realm_name>

Note —Components of a hame can be separated by “/".

The separator @ signifies that the remainder of the string following the @ is to be
interpreted as a realm identifier. If no @ is encountered, the name is interpreted in the
context of the local realm. Once an @ is encountered, a non-null realm name, with no
embedded “/" separators must follow. The “/” character is used to quote the character
that follows immediately.

3.6.11.2 Directory Naming

Where public key technology supported by Directory Certificates is used, entities are
given DNs. Such names are normally transmitted as directoryNames. At interfaces,
they are strings built from components separated by a semicolon. The standardized
keywords supported are:

CN (common-name)
S (surname)

OU (organization unit)
O (organization)

C (country)

Security Service, v1.7 March 2001

An example of a supported DN is:

CN=Martin;OU=Sesame;O=Bull;C=fr

There is no general rule for mapping the Directory name of an entity onto its Kerberos
principal name. An explicit mapping is provided in a principal’s Directory Certificate
using the extensions field of the extended Directory Certificate syntax (version 3) to
carry the principal’'s Kerberos name.

The syntax of the login name is imported from the Kerberos V5 GSS-API mechanism.
The form of name is referred to using the symbolic name:
GSS_KRB5_NT_PRINCIPAL . Syntax details are given in [12].

3.6.12 SECIOP Tokens When Using CSI-ECMA

All SECIOP security tokens conform to the basic token format defined in
Section 3.3.7.1, “Basic Token Format,” on page 3-60. The object identifier for the
MechType is of the form:

{generic_CSI_ECMA_mech (y) (2)}

where the value fogeneric_CSI_ECMA_mech is 1.3.12.0.235.4 and the values of y
and z, if present, represent the architectural option number and cryptographic profile
numbers. Botty andz can be defaulted.

TheinnerContextToken of the SECIOP message may be any of the tokens defined in
Section 3.3.7.2, “Inner Context Tokens,” on page 3-60. For context establishment,

tokens are:
InitialContextToken Sent by the initiator to a target, to start the process pf
establishing a Security Association.
TargetResultToken Sent by the target on detection of an error during
Security Association establishment.
ErrorToken Sent by the target on detection of an error during
Security Association establishment.

The per-message tokens are:

MICToken Sent either by the initiator or the target to verify the
integrity of the user data sent separately.

WrapToken Sent either by the initiator or the target. Encapsulates
the input user data (optionally encrypted) along with
integrity check values.

A ContextDeleteToken may also be used either by the initiator or the target to
release a Security Association.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-77

This definition uses ASN.1 types from other standards (e.g., the ISO definition of a
Certificate). These types are detailed in Annex E of ECMA-235.

3.6.13 Initial Context Token

The initial context token contains:

® General information such as the tokenddntextFlags (i.e., delegation , replay-
detect), utcTime , seq-number , etc.

* A targetAEF part to be passed to the target access enforcement function. This
includes thePAC and associate@Vs, target key block, and dialogue key package.

®* A seal.

target AEF part
(used by target to enforce policy)

token id. pac & CVs target Key BlocK dialogue Key Block seal
etc. (initiating and/or| (information | (information used
delegate principalls needed to to establish
authorization establish the | message protection
and delegation association) | key - integrity and
information) confidentiality)

Figure 3-7 Initial Context Token

InitialContextToken ::= SEQUENCE{
ictContents[0] ICTContents,
ictSeal [1] Seal

ictContents Body of the initial context token.

ictSeal Seal ofictContents computed with the integrity dialogue key.
Only thesealVvalue field of theSeal data structure is present.
The cryptographic algorithms that apply are specified by
integDKUselnfo in thedialogueKeyBlock field of the initial
context token.

ICTContents ::= SEQUENCE {
tokenld [0] INTEGER, -- shall contain X'0100'
SAld [1] OCTET STRING,
targetAEFPart [2] TargetAEFPart,
targetAEFPartSeal[3] Seal,
contextFlags [4] BIT STRING {
delegation (0),

3-78 Security Service, v1.7 March 2001

utcTime

usec

seq-number

mutual-auth (1),
replay-detect (2),
sequence (3),
conf-avail (4),
integ-avail (5)

}
[5] UTCTime OPTIONAL,
[6] INTEGER OPTIONAL,
[7] INTEGER OPTIONAL,

initiatorAddress[8] HostAddress OPTIONAL,
targetAddress [9] HostAddress OPTIONAL

tokenld

Identifies the initial-context token. Its value($ 00 (hex).

SAld

A random number for identifying the Security Association being

formed; it is one which (with high probability) has not been used
previously. This random number is generated by the initiator and
processed by the target as follows:

® If notargetResultToken is expected, the SAld value is taken
to be the identifier of the Security Association being
established (if this is unacceptable to the target, then an error
token with etContents value of
gss_ses_s_sg_sa_already_established mustbe generated).

(7]

®* |f a targetResultToken is expected, the target generates it
random number and concatenates it to the end on the
initiator's random number. The concatenated value is the
taken to be the identifier of the Security Association being
established.

>

targetAEFPart

Part of the initial-context token to be passed to the target access
enforcement function. This is defined below and incluggg,
basic, and dialogue key packages.

targetAEFPartSeal

Seal of thaargetAEFPart computed with the basic key. Only the
sealValue field of theSeal data structure is present. The
cryptographic algorithms that apply are specified by algorithm
profile in the mechanism option.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-79

3-80

contextFlags

Combination of flags that indicates context-level functions
requested by the initiator, as follows:

® delegation - indicates that when setO{ahe initiator
explicitly forbids delegation of thBAC in the
targetAEFPart .

® mutual-auth - indicates that mutual authentication is
requested.

® replay-detect - indicates that replay detection features ar
requested to be applied to messages transferred on the
established Security Association.

® sequence - indicates that sequencing features are requested to

be enforced to messages transferred on the established
Security Association.

® conf-avalil - indicates that a confidentiality service is
available on the initiator side for the established Security
Association.

® integ-avail - indicates that an integrity service is available
the initiator side for the established Security Association.

on

rate

utcTime The initiator's UTC time.

usec Micro second part of the initiator's time stamp. This field along
with utcTime are used together to specify a reasonably accu
time stamp.

seg-number When present, specifies the initiator's initial sequence numbe

otherwise, the default value 6fis to be used as an initial
sequence number.

2]

initiatorAddress

Initiator's network address part of the channel bindings. This field

is present only when channel bindings are transmitted by the
caller to the mechanism implementation. Conformant ORBS ¢
not need to generate this field.

do

targetAddress

Target's network address part of the channel bindings. This f
is present only when channel bindings are transmitted by the
caller to the implementation.

eld

3.6.13.1 TargetAEF Part

TargetAEFPart ::= SEQUENCE {

pacAndCVs

[0] SEQUENCE OF CertandECV OPTIONAL,

targetkeyBlock [1] TargetKeyBlock,
dialogueKeyBlock [2] DialogueKeyBlock,

targetldentity

[3] Identifier,

Security Service, v1.7 March 2001

flags [4] BIT STRING {
delegation 0)
}

pacAndCVs The initiatorACI to be used for this Security Association. Thig
field is not present when the association does not require any
ACI. This field contains th€AC together with associatdeAC
protection information. When only simple delegation is
supported, exactly one of these should be present.

If composite delegation options are supported, this field will
contain more than oneAC. For example, for the initiator plus
immediate invoker case, the initiatoPAC would be present
(with CVs) and the immediate invoker’s (withPPID).

targetkeyBlock ThetargetkeyBlock carrying the basic key to be used for the
Security Association being established.

dialogueKeyBlock A dialogue key block used by thargetAEF along with the basic
key to establish an integrity dialogue key and a confidentiality
dialogue key for per-message protection over the Security
Association being established.

targetldentity The identity of the intended target of the Security Association.
Used by theargetAEF to validate thé?PAC. Can also be used b
the targetAEF to help protect the delivery of dialogue keys.

\

flags Flags required by thergetAEF for its validation process.
Contains only a delegation flag, the value of which is the same as
the value of delegation flag icbntextFlag field of ictContents .
When the flag is set, aBCVs sent inpacAndCV s are made
available to the target. Other bits are reserved for future use!

3.6.14 TargetResultToken

This token is returned by the target if the mutual-req flag is set in the Initial Context
Token. It serves to authenticate the target to the initiator since only the genuine target
could derive the integrity dialogue key needed to sealdhgetResultToken .

TargetResultToken ::= SEQUENCE{
trtContents [0] TRTContents,

trtSeal [1] Seal

}

TRTContents ::= SEQUENCE {
tokenld [0] INTEGER, -- shall contain X'0200'
SAIld [1] OCTET STRING,

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-81

utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,

Note —There is no field for returning certification data here. This is because any such
data that may be required is assumed to be returned at the conclusion of mechanism
negotiation.

trtContents This contains only administrative fields, identifying the token
type, the context, and providing exchange integrity.

seq-number When present, specifies the target's initial sequence number
otherwise, the default value 6fis to be used as an initial
sequence number.

The other administrative fields are as described previously.

trtSeal Seal oftrtContents computed with the integrity dialogue key.
Only thesealVvalue field of theSeal data structure is present. The
cryptographic algorithms that apply are specified by
integDKUselnfo in thedialogueKeyBlock field of the initial
context token.

3.6.15 ErrorToken

An error token may be returned, as follows:

ErrorToken ::= {
tokenType [0] OCTET STRING VALUE X'0400,
etContents [1] ErrorArgument,

etContents Contains the reason for the creation of the error token. The
different reasons are given as minor status return values.

ErrorArgument ::= ENUMERATED {

gSS_Ses_S_sg_server_sec_assoc_open (),
gsS_ses_s_sg_incomp_cert_syntax (2),
gss_ses_s_sg_bad_cert_attributes (3),
gss_ses_s_sg_inval_time_for_attrib (4),
gss_ses_s_sg_pac_restrictions_prob (5),

gss_ses_s_sg_issuer_problem (6),
gss_ses_s_sg_cert_time_too_early (7),
gss_ses_s_sg_cert_time_expired (8),

3-82 Security Service, v1.7 March 2001

gss_ses_s_sg_invalid_cert_prot (9),
gss_ses_s_sg_revoked_cer (10),
gss_ses_s_sg_key_constr_not_supp (12),
gss_ses_s_sg_init_kd_server_ unknown (12),
gss_ses_s_sg_init_unknown (13),
gss_ses_s_sg_alg_problem_in_dialogue_key block (14),
gss_ses_s_sg_no_basic_key for_dialogue_key_block (15),
gss_ses_s_sg_key_distrib_prob (16),
gss_ses_s_sg_invalid_user_cert_in_key_block a7,
gss_ses_s_sg_unspecified (18),
gss_ses_s_g_unavail_qgop (19),
gss_ses_s_sg_invalid_token_format (20)

3.6.16 Per Message Tokens

The syntax of thenessage_protection_token in SECIOP messages has the same
general structure for botklIC andWrap tokens:

PMToken ::= SEQUENCE{
pmtContents [0] PMTContents,
pmtSeal [1] Seal
-- seal over the pmtContents being protected

}
PMTContents ::= SEQUENCE {
tokenld [0] INTEGER, -- shall contain X'0101'
SAld [1] OCTET STRING,
seq-number [2] INTEGER OPTIONAL
userData [3] CHOICE {
plaintext BIT STRING,
ciphertext OCTET STRING OPTIONAL
}
directionindicator[4]BOOLEANOPTIONAL
}

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-83

3-84

pmtContents

tokenld
SAID

A random number for identifying the Security Association being form

it is one which (with high probability) has not been used previously. T

random number is generated by the initiator and processed by the tar
follows:

®* |f no targetResultToken is expected, th8Ald value is taken to be the
identifier of the Security Association being established (if this is
unacceptable to the target, then an error token &tlontents value
of gss_ses_s_sg_sa_already_established must be generated).

®* |f a targetResultToken is expected, the target generates its rando
number and concatenates it to the end on the initiator's random
number. The concatenated value is then taken to be the identifie
the Security Association being established.

his
get as

v

m

of

seq-number

This field must be present if replay detection or message sequencing
been specified as being required at Security Association initiation tim
The field contains a message sequence number whose value is incren
by one for each message in a given direction, as specified by
directionindicator . The first message sent by the initiator following the
InitialContextToken shall have the message sequence number specifie
that token, or if this is missing, the valoeThe first message returned b
the target shall have the message sequence number specified in the
TargetReplyToken if present, or failing this, the value

The receiver of the token will verify the sequence number field by
comparing the sequence number with the expected sequence numbe
the direction indicator with the expected direction indicator. If the
sequence number in the token is higher than the expected number, th
expected sequence number is adjusted@®8_S_GAP_TOKEN is
returned. If the token sequence number is lower than the expected nu
then the expected sequence number is not adjusted and
GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is returned,
whichever is appropriate. If the direction indicator is wrong, then the
expected sequence number is not adjusted=881 S_UNSEQ_TOKEN is
returned.

have
e.
nented

ad in
y

r and

en the

mber,

userData

See specific token type narratives below.

directionindicator

FALSE indicates that the sender is the context initiaf®UE that the
sender is the target.

pmtSeal

See specific token type narratives below.

Security Service, v1.7 March 2001

3.6.16.1 MICToken

A MICToken is a per-message token, separate from the user data being protected,
which can be used to verify the integrity of that data as received. The token is passed
in the message_protection_token in SECIOP messages, and the protected data
follows as a GIOP message or message fragment. The syntax of the token is:

MICToken ::= PMToken

The overall structure and field contents of the token are described above. Fields
specific to theMICToken are:

userData Not present foMICTokens.

pmtSeal The Checksum is calculated over thBER encoding of the
pmtContents field with the user data temporarily placed in the
userData field. TheuserData field is not transmitted.

3.6.16.2 WrapToken

A WrapToken encapsulates the input user data (optionally encrypted) along with
associated integrity check values. It consists of an integrity header followed by a body
portion that contains either the plaintext or encrypted data. The syntax of the token is:

WrapToken ::= PMToken

The overall structure and field contents of the token are described above. Fields
specific to theWrapToken are:

userData Present either in plain text form or encrypted. If the data is
encrypted, it is performed using the Confidentiality Dialogue
Key, and as in [13], an 8-byte random confounder is first
prepended to the data to compensate for the fact that an IV of
zero is used for encryption.

wtSeal The Checksum is calculated over themtContents field,
including theuserData . If the userData field is to be encrypted
the seal value is computed prior to the encryption.

3.6.17 ContextDeleteToken

The ContextDeleteToken is issued by either the context initiator or the target to
indicate to the other party that the context is to be deleted.

ContextDeleteToken ::= SEQUENCE {
cdtContents[0] CDTContents,
cdtSeal [1] Seal
-- seal over cdtContents, encrypted under the Integrity
-- Dialogue Key. Contains only the sealValue field

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-85

}

CDTContents ::= SEQUENCE {
tokenType [0] OCTET STRING VALUE X'0301/,

SAld [1] OCTET STRING,
utcTime [2] UTCTime OPTIONAL,
usec [3] INTEGER OPTIONAL,
seq-number[4] INTEGER OPTIONAL,
}
cdtContents This contains only administrative fields, identifying the token
type, the context, and providing exchange integrity.
seq-number When present, this field contains a value one greater than| that
of theseg-number field of the last token issued from this
issuer. The other administrative fields are as described above.
trtSeal See above for a general description of the use of this
construct.

3.6.18 Security Attributes

3.6.18.1 Data Structures

The security attribute is a basic construct for privilege and other attribuRACis.

SecurityAttribute ::= SEQUENCE{
attribute Type Identifier,
attributeValue SET OF SEQUENCE {
definingAuthority [0] Identifier OPTIONAL,

securityValue [1] SecurityValue
}
}
Identifier ::= CHOICE({
objectld [0] OBJECT IDENTIFIER,
directoryName [1] Name,
-- imported from the Directory Standard
printableName [2] PrintableString,
octets [3] OCTET STRING,
intval [4] INTEGER,
bits [5] BIT STRING,
pairedName [6] SEQUENCE{
printableName [0] PrintableString,
unigueName [1] OCTET STRING
}
}

3-86 Security Service, v1.7 March 2001

SecurityValue ::= CHOICE{
directoryName [0] Name,
printableName [1] PrintableString,

octets [2] OCTET STRING,

intval [3] INTEGER,

bits [4] BIT STRING,

any [5] ANY -- defined by attributeType

}

Only one set member is permittedAttributeValue . Multivalue attributes are

effected in thesecurityValue field, where the “SEQUENCE OF” construct can be
used. (Including “SET OF” in the syntax enables security attributes to be stored as
normal in a Directory whenever the choice made within Identifier is OBJECT
IDENTIFIER.)

A directory name is translated into a string format as defined in Section 3.6.11,
“Security Names,” on page 3-76. TBequence<octet> attribute value returned at
the IDL interface is a representation of this string, not the more complex ASN.1
definition of this.

attribute Type Defines the type of the attribute. Attributes of the same type
have the same semantics when used in Access Decision
Functions, though they may have different defining
authorities.

definingAuthority The authority responsible for the definition of the semantics
of the value of the security attribute. This optional field of
the attributeValue can be used to resolve potential value
clashes. It is defined as an Identifier that has a choice of
syntax. For CSI-ECMA, it is always directoryName .

securityValue The value of the security attribute. Its syntax can be either
one of the basic syntaxes for attributes or a more complex
one determined by the attribute type.

3.6.18.2 Attribute Types

An attribute type in this standard is formally defined as an Identifier that provides a
choice of syntax; however, all standard attribute types are defined as OBJECT
IDENTIFIERSs. Three types of attributes are defined:

1. Privilege attributes (e.gAccessld , Groupld , Role).
2. Miscellaneous attributes, mainly tAaditld .

3. Qualifier attributes used within tH®//CV delegation scheme to say where
credentials can be used/delegated.

For standard attributes, the OBJECT IDENTIFIER includes:
* first, a standard part with the valae3.12.1.46,

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-87

3-88

® then the “family” for privilege, miscellaneous, or qualifier attributés3, or 5),
and

® then the value for that particular attribute type.

All standard attributes, which conformant ORBs must be able to generate/transmit,
have this form.

In addition, conformant ORBs must be able to handle other attribute types defined in
this chapter. They must also be able to handle attribute types @MG* object
identifiers, as described in Section 3.1.13.5, “Mapping Other Attributes to Externally
Valid IDL Attributes,” on page 3-29. In this case, the Object Identifier is:

<iso>..<omg>.<security><family definer>.<family>.<attribute type>

where the values of the CORBA family definer, CORBA family and attribute type are
as defined in “Security Attributes” in Appendix B. For standard attributes, the family
definer isO and the family i for privileges andlL for miscellaneous attributes.

OMG Object Identifiers can also be used for privilege attributes defined by other
organizations, who have registered a family definer with OMG.

3.6.19 Privilege and Miscellaneous Attribute Definitions

Privilege and miscellaneous attribute types are normally identified by Object Identifiers
that have a standard part, then family and attribute type parts.

The following privilege and miscellaneous attributes are defined in the CORBA
Security specification and have defined attribute types. Some of these are mandatory
for a CSl level 2 conformant ORB to generate (see Section 3.1.15, “Support for
CORBA Security Facilities and Extensibility,” on page 3-32). The Object Identifier in
the privilege attribute set for that type is listed in the following table.

Table 3-9 Privilege and Miscellaneous Attributes

Type of oid family | Syntax Meaning
Attribute & type
access-identity| 4.2 printableString The access identity represents the principal's

identity to be used for access control purposes.

primary-group

4.3 printableString The primary group represents a unique group
to which a principal belongs. A security
context must not contain more than one
primary group for a given principal.

Security Service, v1.7 March 2001

Table 3-9 Privilege and Miscellaneous Attributes

Type of oid family | Syntax Meaning

Attribute & type

group 4.4 SEQUENCE OF | A group represents a characteristic common to

printableString several principals. A PAC may contain more

than one group for this principal.

role 4.1 printableString A role attribute represents one of the
principal's organizational responsibilities.

audit_id 3.2 printableString The identity of the principal as used for
auditing.

3.6.20 Qualifier Attributes

When atargetQualification or delegateTargetQualification method is present in
the PAC, the syntax used for the method parametesesirityAttribute . Object
Identifiers for qualifier attributes have the vali8.12.1.46.5.<qualifier attribute
type>.

Currently, only one form of qualifier attribute is defined, and this identifies the target
by security name. This is usually the name of an identity domain as defined in
Section 2.1.8, “Domains,” on page 2-21, not an individual object.

In future, other forms of qualifier attributes may be added. For example, the attribute
could identify an invocation delegation domain, rather than particular named target.

3.6.21 Target Names

Within a PAC protection method, a target name is indicated using the OID:

target-name-qualifier OBJECT IDENTIFIER ::= {qualifier-attribute 1}
Its syntax in the PAC is:
TargetNameValueSyntax ::= ldentifier

3.6.22 PAC Format

The PAC is in the form of a generalized certificate. A Generalized Certificate is
composed of three main structural components:

1. The ‘commonContents ” fields collectively serve to provide generally required
management and control over the use ofRAE.

2. The ‘specificContents " fields are different for different types of certificate, and
contain a type identifier to indicate the type. In this specification, only one type is
defined - the Privilege Attribute CertificatBAC).

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-89

3. The ‘checkValue " fields are used to guarantee the origin of the certificate. This is
a signature in the CSI-ECMA specification. (though a seal would be possible as in

ECMA 235).
c PAC specific contents
ommon
Certificate . . Check
Contents | Protection/| privilege o Value
delegation| and other | restrictions
methods attributes

Figure 3-8 Generalized Certificate’s Structural Components

GeneralizedCertificate ::= SEQUENCE{
certificateBody[0] CertificateBody,
checkValue [1] CheckValue

}

CertificateBody ::= CHOICE{
encryptedBody[0] BIT STRING,
normalBody [1] SEQUENCE{
commonContents[0] CommonContents,
specificContents[1] SpecificContents

}
}
The next sections describe these three main structural components of the Generalized
Certificate.

3.6.23 Common Contents fields

CommonContents ::= SEQUENCE({
comConSyntaxVersion[0]INTEGER { versionl (1) }DEFAULT 1,
issuerDomain [1] Identifier OPTIONAL,
issuerldentity [2] Identifier,
serialNumber [3] INTEGER,

creationTime [4] UTCTime OPTIONAL,
validity [5] Validity,

algld [6] Algorithmldentifier,
hashAlgld [7] AlgorithmldentifierOPTIONAL

}

In the imported definition oAlgorithmldentifier , ISO currently permits both a hash
and a cryptographic algorithm to be specified. If this is done, they must appear in the
algld field. ThehashAlgld field is present for those cases where a separate hash
algorithm specification is required.

Validity ::= SEQUENCE {

notBefore UTCTime,
notAfter UTCTime

3-90 Security Service, v1.7 March 2001

} -- as in [ISO/IEC 9594-8]
-- Note: Validity is not tagged, for compatibility with the
-- Directory Standard.

comConFieldsSyntaxVersion Identifies the version of the syntax of the combination of
the commonContents and thecheckValue fields parts of
the certificate.

issuerDomain The security domain of the issuing authority. Not required
if the form of issuerldentity is a full distinguished name,
but required if other forms of naming are in use. In CSl;
ECMA, this is always alirectoryName .

issuerldentity The identity of the issuing authority for the certificate.

serialNumber The serial number of the certificateAC) as allocated by
the issuing authority.

creationTime The UTCtime that the certificate was created, according [to
the authority that created it.

validity A pair of start and end times within which the certificate is
deemed to be valid.

algld The identifier of the secret or of the public cryptographic
algorithm used to seal or to sign the certificate. If there |s a
single identifier for both the encryption algorithm and the
hash function, it appears in this field.

hashAlgld The identifier of the hash algorithm used in the seal or |n
the signature.

The certificate can be uniquely identified by a combination ofitkeerDomain ,
issuerldentity , andserialNumber .

3.6.24 Specific Certificate Contents for PACs

SpecificContents ::= CHOICE{
pac [1] PACSpecificContents
-- only the PAC is used here

}

PACSpecificContents ::= SEQUENCE{
pacSyntaxVersion [0] INTEGER{ versionl (1)} DEFAULT 1,
protectionMethods [2]SEQUENCE OF MethodGroupOPTIONAL,
pacType [4] ENUMERATED{
primaryPrincipal (1),
temperedSecPrincipal (2),
untemperedSecPrincipal(3)
} DEFAULT 3,

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-91

3-92

privileges [5] SEQUENCE OF PrivilegeAttribute,
restrictions [6] SEQUENCE OF RestrictionOPTIONAL,
miscellaneousAtts [7] SEQUENCE OF SecurityAttributeOPTIONAL,
timePeriods [8] TimePeriods OPTIONAL

}
PrivilegeAttribute ::= SecurityAttribute
Restriction ::= SEQUENCE {

howDefined [0] CHOICE {
included [3] BIT STRING

h
-- the actual restriction in a form undefined here
type [2] ENUMERATED {
mandatory (1),
optional (2)

} DEFAULT mandatory,
targets [3] SEQUENCE OF SecurityAttribute OPTIONAL

} -- applies to all targets if this is omitted

pacSyntaxVersion Syntax version of th€AC.

protectionMethods A sequence of optional groups ®kthod fields used to protect
the certificate from being stolen or misused. For a full description
see below.

pacType Indicates whether the privileges contained inRA€ are those of
a Primary Principal (e.g., the client) or of a Secondary Principal
(e.g., the user). In this specification, it is alwayRA& of a
secondary principal untempered by the privileges of a Primary
Principal.

privileges Privilege Attributes of the principal.

Security Service, v1.7 March 2001

restrictions This field enables the original owner of tR&C to impose
constraints on the operations for which it is valid. There are two
types of restriction:

® Mandatory: If a target to which the restriction applies canhot
understand the bit string defining the restriction, access
should not be granted.

® Optional: If a target application to which the restriction
applies cannot understand the bit string, it is expected to
ignore it.

For CSI-ECMA, it is not mandatory to generate restrictions, but

mandatory restrictions cannot be ignored. If not understood, the

PAC cannot be accepted.

miscellaneousAtts Security attributes that are neither privileges attributes nor
restrictions attributes. In BAC, this may include identity
attributes such as Audit Identity. For the CSI-ECMA
specification, this is the only miscellaneous attribute expected.

timePeriods This field adds further time restrictions to the validity field of the
commonContents . EitherstartTime orendTime can be optional.
The TimePeriods control is passed if the time now is within any
of the sequence periods, or if there is a period with a start before
now and ncendTime, or there is a period with an end after now
and nostartTime .

3.6.24.1 Protection Methods

A method consists of a method id and parametaeti{odParams). The method id
determines the syntax for the typeméthodParams .

Method ::= SEQUENCE{
methodld [0] Methodld,
methodParams [1] SEQUENCE OF MparmOPTIONAL
}
Methodld ::= CHOICE{
predefinedMethod[0] ENUMERATED {
controlProtectionValues (1),
ppQualification (2),
targetQualification (3),
delegateTargetQualification (4)

}
}
Mparm ::= CHOICE{
pValue [0] PValue,
securityAttribute[1] SecurityAttribute
}

PValue ::= SEQUENCE({

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-93

3-94

pv [0] BIT STRING
algorithmldentifier[1]AlgorithmIdentifierOPTIONAL
}
CertandECV ::= SEQUENCE {
certificate [0] GeneralizedCertificate,
ecv [1] ECV OPTIONAL
}
- ECV is defined in later
methodld Identifies a protection method. Methods can be used in any
combination, and except where stated otherwise, multiple
occurrences of the same method are permitted. The choice of
methodld determines the permitted choices of method parameters
in the methodParams construct as described below.
methodParams Parameters for a protection method. The semantics of each
protection method is described in section Section 3.1.9.2,
“Cryptographic Profiles,” on page 3-15.

For the Primary Principal Qualification Method, thkethodld is ppQualification
and the syntax oflparm is securityAttribute . Its value is defined in Section 3.6.8,
“PPID Method,” on page 3-74.

For the PV/CV method, thielethodld is: controlProtectionValues and the syntax
of Mparm is:pValue.

For the Target Qualification protection method, khethodld is targetQualification
and the syntax foMparms is securityAttribute

For the Delegate/Target Qualification protection method Mbthodld is
delegatetargetQualification and the syntax foMparms is securityAttribute

The security attribute in the target and delegate/target protection method is a qualifier
attribute as defined in Section 3.6.20, “Qualifier Attributes,” on page 3-89.

3.6.24.2 External Control Values Construct

When using theontrolProtectionValues method aPAC protected under that

method may be accompanied by one or more control values and indices to the method
occurrences in the certificate to which they apply. Also, when such a certificate is
being issued to a requesting client, €% values it will need in order to use that
certificate may need to be returned with it.

ECV ::= SEQUENCE {
crypAlgldentifier [0] AlgorithmldentifierOPTIONAL,
cValues [1] CHOICE {
encryptedCvalueList[0] BIT STRING,
individualCvalues [1] CValues

Security Service, v1.7 March 2001

}
}
CValues ::= SEQUENCE OF SEQUENCE {
index [0] INTEGER,
value [1] BIT STRING
}
crypAlgldentifier This specifies the encryption algorithm of the control values.
cValues An ECV construct can contain either an encrypted list of control

values in theencryptedCvaluelList field, or a list of individual
control values inndividualCvalues .

If the encryptedCvalueList choice is made, the whole list is encrypted in bulk, but
the in-clear contents of this field are expected to have the sgtalues. If the
individualCvalues choice is made, values are individually encrypted in the value
fields of the list. Encryption is always done under the basic key protecting the
operation.

In the case of theontrolProtectionValues method, value is &V, and index is then
the index of the method occurrence in the certificate, starting at 1.

3.6.25 Check Value

In this specification, #AC is protected by being digitally signed by the issuer.

A signature may be accompanied by information identifying the Certification
Authority under which the signature can be verified, and with an optional convenient
reference to or the actual value of the user certificate for the private key that the
signing authority used to sign the certificate.

CheckValue ::= CHOICE{
signature [0] Signature
-- only signature supported here

}
Signature ::= SEQUENCE{
signatureValue [0] BIT STRING,
publicAlgld [1] Algorithmidentifier OPTIONAL,
hashAlgld [2] Algorithmidentifier OPTIONAL,
issuerCAName [3] Identifier OPTIONAL,
caCertinformation [4] CHOICE {
caCertSerialNumber[0] INTEGER,
certificationPath [1] CertificationPath
} OPTIONAL
}

--CertificationPath is imported from [22]

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-95

signatureValue The value of the signature. It is the result of a public encryptjon
of a hash value of theertificateBody .

publicAlgld Only present if the certificate body is encrypted, then it is a
duplication of thealgld value in ‘tommonContents .” This is not
required in CSI-ECMA.

hashAlgld Only present if the certificate body is encrypted, then it is a
duplication of thenashAlgld value in ‘tommonContents .” This
is not required in CSI-ECMA.

issuerCAName The identity of the Certification Authority that has signed the user
certificate corresponding to the private key used to sign this
certificate.

caCertinformation Contains either just a certificate serial number that together with

theissuerCAName uniquely identifies the user certificate
corresponding to the private key used to sign this certificate, jor a
full specification of a certification path via which the validity g
the signature can be verified. The latter option follows the
approach used if22].

—+

The Seal structure is used in theokens defined above.

Seal ::= SEQUENCE({
sealValue [0] BIT STRING,
secretAlgld [1] AlgorithmldentifierOPTIONAL,
hashAlgld [2] AlgorithmldentifierOPTIONAL,
targetName [3] Identifier OPTIONAL,
keyld [4] INTEGER OPTIONAL

sealValue The value of the seal. It is the result of a secret encryption of a
hash value of a set of octets (which are DR encoding of
some ASN.1 type).

secretAlgld An optional indicator of the sealing algorithm.

hashAlgld Only present if thesecretAlgld does not specify which hashing
algorithm is used.

targetName This field identifies theargetAEF or target with which the secret
key used for the seal is shared.

keyld This serial number together with tkergetName uniquely
identifies the secret key used in the seal.

3-96 Security Service, v1.7 March 2001

3.6.26 Basic Key Distribution

The TargetKeyBlock is structured as follows:

® An identifier kdSchemeOID) for the key distribution scheme being used, which
takes the form of an OBJECT IDENTIFIER.

® A part that, if present, the targkEF needs to pass on to KOS (targetKDSPart
- will be present only when the targlEF's KDS is different from the initiator's).

® A part that, if present, can be used directly bytHrgetAEF (targetPart).

When atargetAEF using a separat€DS receives theéargetKeyBlock , it first
checks whether it supports the key distribution scheme indicatiedsBchemeOID .

Two different cases need to be considered:

1. Only thetargetPart is present. The targétEF computes the basic key directly,
using the information present in tkergetPart . The syntax ofargetPart is
scheme dependent. Expiry information optionally can be presdatgatPart . If
supported by the scheme, the Primary Principal attributes of the initiator will also
be present foPAC protection under the Primary Principal Qualification method
(see above).

2. Only thetargetKDSPart is present. ThéargetAEF forwards the
TargetKeyBlock to itsKDS. In return, it receives a scheme dependent data
structure that allows the targAEF to determine the basic key and, if supported by
the scheme, the Primary Principal attributes of the initiatoPA& protection
purposes. Expiry information can optionally be present indhgetKDSPart .

The form of this information depends on the key distribution configuration in place.

3.6.27 Keying Information Syntax

TargetKeyBlock ::= SEQUENCE {
kdSchemeOID [2] OBJECT IDENTIFIER,
targetKDSpart [3] ANY OPTIONAL,
-- depending on kdSchemeOID
targetPart [4] ANY OPTIONAL
-- depending on kdSchemeOID

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-97

3-98

kdSchemeOID Identifies the key distribution scheme used. AllowstthgetAEF
to determine rapidly whether or not the scheme is supported| It
also allows for the easy addition of future schemes.

targetKDSpart Part of the Target Key Block that is processable only byKih&
of the targetAEF. This part is sent by the targeEF to its local
KDS, in order to get the basic key that is in it. It must always
contain the name of a target “served” by thgetAEF in
guestion. The mapping between the name of the application and
the name of the targ@&EF is known to the targeAEF's KDS,
which is able to authenticate whitdrgetAEF is issuing the
request for translating thtargetKDSpart . It can then verify that
the AEF is one that is responsible for the application name
contained in theargetKDSpart . If it is, the key is released and is
sent protected back to the requestiizF. TargetKDSpart should
include data that enables thk®S of the targefAEF to
authenticate th&DS of the initiator. When the “Primary
Principal Qualification” protection method needs to be used for
the PAC, unless there is an accompanyiagyetPart ,
targetKDSpart must contain the appropriate primary principal
security attributes (which is always true in this specification).

targetPart A part of the Target Key Block that is processed only by the
targetAEF. When there is ntargetKDSpart it is processable
directly; otherwise, it can only be processed after the target
KDSpart has been processed by theS of the targeAEF, and
the appropriate Keying Information has been returned taéEfe
ThetargetPart construct should include data that enables the
targetAEF to authenticate th&DS of the initiator. When the
“Primary Principal Qualification” protection method needs to be
used for thePAC, targetPart must contain the primary principal
security attributes.

3.6.28 Summary of Key Distribution Schemes
This specification defines three key distribution schemes. These are:

1. symmintradomain : using a secret key technology within a domain. In this case,
thetargetKDSpart of the TargetKeyBlock is not supplied and thargetPart
contains a Kerberos ticket.

2. hybridinterdomain : In this case, théargetPart field is not supplied. The
PublicTicket contains a Kerberos ticket.

3. asymmetric : thetargetKDSpart is not supplied and theargetPart contains an
SPKM_REQ.

Security Service, v1.7 March 2001

The following table shows the different syntaxes useddagetKDSpart and
targetPart for the defined KD-schemes. “Missing” in the table means that the relevant
construct is not supplied.

Table 3-10 Syntaxes Used for targetKDSpart and targetPart

KD-Scheme name kdSchemeOID targetKDSpart targetPart
symmintradomain {kd-schemes 1} Missing Ticket
hybridInterdomain {kd-schemes 3} PublicTicket Missing
asymmetric {kd-schemes 6} Missing SPKM_REQ

Further options are possible by defining further kd-schemes. For example, ECMA 235
also defines options for:

® |nitiators with public keys and targets with secret keys.

® |nitiators with secret keys and targets with public keys.

3.6.29 CSI-ECMA Secret Key Mechanism

In this scheme, the client and target each share different secret keys with the same Key

Distribution Server.

To establish the association, between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target's
long term key. On receipt of thargetKeyBlock , the target can extract the basic key

from it.

The symmintradomain key distribution scheme

® has a mechanism id &SI_ECMA_Secret, and

® uses a Kerberos ticket in thargetkKeyBlock of theinitial_context_token
An unmodified Kerbero3GS can be used as th€DS in this case.

3.6.29.1 Profile of Ticket as Used in SymmIintradomain Scheme

The following table indicates which optional fields must be present in the Kerberos
ticket for theCSI_ECMA_Secret mechanism and indicates the values which are
required to be present in all fields.

Table 3-11 Kerberos Ticket's Mechanism Fields

jet

Field Value/Constraint

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form
shame target application name including the realm of the tar

- EncTicketPart encrypted with long term key of target AEF

Security Service, v1.7

CSI-ECMA Protocol

March 2001

3-99

3-100

Table 3-11 Kerberos Ticket's Mechanism Field@€ontinued)

Field Value/Constraint

-- flags only bits 6, 10 and 11 can be meaningful in the context of
the CSI-ECMA protocol, the rest are ignored

-- key the basic key

-- crealm initiator domain name in Kerberos realm name form

-- chame principal name of the initiator (in the case of delegation
the cname will be that of the delegate)

-- transited not used

-- authtime the time at which the initiator was authenticated

-- starttime not used

-- endtime the time at which the ticket becomes invalid

-- renew-till not used

-- caddr not used

-- authorization-data contains the PPID corresponding to cname

The Kerberos Ticket'authorization_data field contains thé?PID of the context
initiator, as formally defined below.

ECMA-AUTHORIZATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }
ECMA-AUTHORIZATION-DATA ::= SEQUENCE {
ecma-ad-type [0] ENUMERATED {ppidType (0)},
ecma-ad-value [1] CHOICE {ppidValue [0]SecurityAttribute

}
}
ppidType Indicates the type of the authorization data that is included in the
Ticket.
ppidValue This value is used in thgpQualification PAC protection
method, as described above.

3.6.30 CSI-ECMA Hybrid Mechanism

In this scheme, the initiator shares a secret key witKXS and the target shares a
secret key with it&KDS (which is different). In addition, eadkDS possesses a
private/public key pair.

To establish the client-target association, the client géasgatKeyBlock from its

KDS containing the basic key encrypted under a temporary key and the temporary key
encrypted under the targe®®DS public key. ThetargetKeyBlock is also signed

using the initiator'sKDS private key.

Security Service, v1.7 March 2001

3

On receipt of theargetKeyBlock , the target transmits it to it6€DS and gets back the
basic key encrypted under the long term secret key it shares wiKD8s

The hybridinterdomain key distribution scheme:
® has a mechanism id &SI_ECMA_Hybrid in thelOR, and

® uses a Public ticket in thtargetKeyBlock of theinitial_context_token , as
described below.

A modified KerberosSTGS can be used as thDS in this case.

3.6.30.1 Hybrid Inter-domain Key Distribution Scheme Data Elements

PublicTicket ::= SEQUENCE({
krb5Ticke [0] Ticket,
publicKkeyBlock[1] PublicKeyBlock

}

PublicKeyBlock ::= SEQUENCE({
signedPKBPart [0] SignedPKBPart,
signature [1] Signature OPTIONAL,
certificate [2] Certificate OPTIONAL

}

SignedPKBPart ::= SEQUENCE{
keyEstablishmentData[0]KeyEstablishmentData,
encryptionMethod [1] Algorithmldentifier OPTIONAL,
issuingkDS [2] Identifier,
uniqgueNumber [3] UnigueNumber,

validityTime [4] TimePeriods,
creationTime [5] UTCTime

}

UniqueNumber ::= SEQUENCE({
timeStamp [0] UTCTime,
random [1] BIT STRING

}

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-101

3-102

krb5Ticket

The Kerberos Ticket that contains the basic key. The encrypﬂed

part of this ticket is encrypted using the key found within the
encryptedPlainKey field of theKeyEstablishmentData in the
PublicKeyBlock .

publicKeyBlock

Contains the key used to protect #ie5Ticket encrypted using
the public key of the recipient and signed by the encryptor (i
the context initiator's KD-Server).

signedPKBPart

The part of thepublickeyBlock that is signed. The
keyEstablishmentData field contains the
KeyEstablishmentData (i.e., the actual encrypted temporary

key).

® TheencryptionMethod indicates the algorithm used to
encrypt theencryptedKey .

® TheissuingKDS is the name of the KD-Server that produc
the PublicTicket .

® TheuniqueNumber is a value (containing a timestamp ang
random number) that prevents replay of EblicTicket .

® validityTime specifies the times for which thrublicTicket
is valid.

® creationTime contains the time at which thRublicTicket
was created.

signature

Contains the signature calculated by dsiingKDS on the
signedPKBPart field.

certificate

If present, contains the public key certificate of the issib§.

3.6.30.2 Key Establishment Data Elements

These are used in public key establishment mechanisms.

KeyEstablishmentData ::= SEQUENCE {
encryptedPlainKey[0]BIT STRING,-- encrypted PlainKey
targetName [1] Identifier OPTIONAL,
nameHashingAlg[2]AlgorithmIdentifierOPTIONAL

}

HashedNamelnput ::= SEQUENCE {
hniPlainKey [0] BIT STRING,-- same as plainKey
hnilssuingKDS[1] Identifier

PlainKey ::= SEQUENCE {

plainKey

[0] BIT STRING, -- The cleartext key

Security Service, v1.7 March 2001

hashedName [1] BIT STRING

}

encryptedPlainKey Contains the encrypted key. The BIT STRING contains the result
of encrypting aPlainKey structure.

targetName If present, contains the name of the target application. This is
necessary for some of the KD-schemes.

nameHashingAlg Specifies the algorithm that is used to calculatentshedName
field of the PlainKey .

hniPlainKey Used as input to a hashing algorithm as a general means to

hnilssuingkDS prevent ciphertext stealing attacks.

plainKey Contains the actual bits of the plaintext key that is to be
established.

hashedName A hash of the name of the encryptik®S calculated using the
plainkey andkKDS name as input (within theashedNamelnput
structure). The algorithm identified mmeHashingAlg is used
to calculate this value.

targetName If present, contains the name of the target for which the
PublicTicket was originally produced. This may be different from
the targetldentity field of thanitialContextToken if caching of
PublicTickets has been implemented.

3.6.30.3 Key Establishment Algorithm

The PublicKeyBlock in this mechanism and ttf#PKM_REQ construct used in
scheme 6 requires a sequence of key establishment algorithm identifier values to be
inserted into thé&key_estb_set field. The OBJECT IDENTIFIER below is defined as
the (single) key establishment “algorithm” for ECMA mechanisms:

gss-key-estb-alg Algorithmlidentifier ::= {kd-schemes, NULL }

gss-key-estb-alg This Algorithmldentifier identifies the key establishment
algorithm value to be used within tkey_estb_set field
of anSPKM_REQ data element as the one defined by
ECMA.

This algorithm is used to establish a symmetric key for use by both the initiator and the
target AEF as part of the context establishment. The correspokeljngstb_req

field of the SPKM_REQ will be a BIT STRING the content of which isER

encoding of th&KeyEstablishmentData element.

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-103

3.6.30.4 Profile of Ticket as Used in Hybrid Interdomain Scheme

Note that thekrb5Ticket part of this is identical to that used in the
CSI_ECMA_Secret key mechanism except that tBacTicketPart is encrypted with
the temporary key used betwekkDS rather than the target’s key.

Table 3-12 Ticket as Used in Hybrid Interdomain Scheme

arget

text

tion

Field Value/Constraint

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name fornj

- sname target application name including the realm of the t

-- EncTicketPart encrypted with temporary key (which is in turn
encrypted within the keyEstablishmentData field)

--- flags only bits 6, 10 and 11 can be meaningful in the con
of the CSI-ECMA protocol, the rest are ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name forn

--- chame principal name of the initiator (in the case of delega
the cname will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publickeyBlock

- signedPKBPart

-- encryptedKey KeyEstablishmentData structure

-- encryptionMethod gss-key-estb-alg

-- issuingKDS X.500 name of initiator's KDS (the signer)

-- uniqueNumber creation time of publicKeyBlock plus a random bit
string

-- validity Time only one period allowed

3-104 Security Service, v1.7

March 2001

Table 3-12 Ticket as Used in Hybrid Interdomain Sche(@®ntinued)

Field Value/Constraint
-- creationTime creation time of publicKeyBlock
- signature contains all the signing information as well as the

actual signature bits

- certificate optional

3.6.31 CSI-ECMA Public Mechanism

In this scheme, both client and target possess a private/public key pair and neither use
aKDS.

To establish the client-target association, the client construetgetKeyBlock

containing a basic key encrypted under the target’s public key. The target key block is
signed with the client’s private key. On receipt of thmyetKeyBlock , the target

directly establishes a basic key from it.

The asymmetric key distribution scheme:
® has a mechanism id &SI_ECMA_Public , and
® uses arSPKM_REQ in thetargetkeyBlock of theinitial_context_token

This mechanism has only a profile of t82KM_REQ as defined below.

3.6.31.1 Profile of SPKM_REQ Used in Public Key Mechanism

The following table indicates which optional fields must be present in the
SPKM_REQ in thetargetKeyBlock for theCSI_ECMA_Public mechanism and
indicates the values that are required to be present in all fields.

Table 3-13 SPKM-REQ Used in Public Key Mechanism

Field Value/Constraint

requestToken

- tok_id not used - fixed value of ‘0’

- context_id not used - fixed value of bit string containing one zero bit
- pvno not used - fixed value of bit string containing one zero bit
- timestamp creation time of SPKM_REQ - required

- randSrc random bit string

- targ_name X.500 Name of target AEF

- src_name X.500 Name of initiator

- req_data

-- channelld not used - octet string of length one value ‘00'H

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-105

Table 3-13 SPKM-REQ Used in Public Key Mechanigi@ontinued)

Field Value/Constraint

-- seq_number

missing

-- options not used - all bits set to zero

-- conf_alg not used - use NULL CHOICE

-- intg_alg not used - use a SEQUENCE OF with zero elements
- validity mandatory

- key_estb_set only one element supplied containing gss-key-estb-alg

containeyEstablishmentData with targetApplication field
missing

- key_estb_req

- key_src_hind missing

req_integrity sig_integ mandatory

certif_data only userCertificate field supported

auth_data missing

Definitions of KeyEstablishmentData andgss-key-estb-alg are given in
Section 3.6.30, “CSI-ECMA Hybrid Mechanism,” on page 3-100.

3.6.32 Dialogue Key Block

Dialogue Key Block constructs are used to specify how the integrity dialogue key and
confidentiality dialogue key should be derived from the basic key, and specify the
cryptographic algorithms with which the keys should be used. Dialogue keys are
explained above. The syntax is as follows:

DialogueKeyBlock := SEQUENCE {
integKeySeed [0] SeedVvalue,
confKeySeed [1] SeedValue,

integKeyDerivationinfo[2] KeyDerivationinfo OPTIONAL,
confKeyDerivationinfo [3] KeyDerivationinfo OPTIONAL,

integDKuselnfo [4] DKuselnfo OPTIONAL,
confDKuselnfo [5] DKuselnfo OPTIONAL
}
SeedValue ::= SEQUENCE {
timeStamp [0] UTCTime OPTIONAL,
random [1] BIT STRING
}

KeyDerivationinfo::= SEQUENCE {

owfld [0] Algorithmldentifier,
keySize [1] INTEGER
}
3-106 Security Service, v1.7 March 2001

DKuselnfo ::= SEQUENCE {

useAlgld [0] Algorithmlidentifier,
useHashAlgld [1] AlgorithmldentifierOPTIONAL
}
integKeySeed A random number, optionally concatenated with a time valu
ensure uniqueness, used as input to the one way function
specified inintegKeyDerivationInfo
confKeySeed A random number, optionally concatenated with a time valu

ensure uniqueness, used as input to the one way function
specified inconfKeyDerivationInfo

integKeyDerivationinfo

Key derivation information for the integrity dialogue key, as
follows:

®* owfld - The one way algorithm that takes the basic key
XOR the seed as input, resulting in the integrity dialog
key.

® keySize - The size of the key in bits. If the algorithm
identified by owfld produces a larger key, it is reduced
masking to this length, losing its most significant end.

confKeyDerivationInfo

Key derivation information for the confidentiality dialogue ke
The fields in this construct have the same meanings as de
above for the integrity dialogue key.

integDKuselnfo

Information describing how the integrity dialogue key is to be

used, as follows:

® useAlgld - The secret or public reversible encryption
algorithm with which the integrity dialogue key is to be
used.

® useHashAlgld - The one way function with which the
integrity dialogue key is to be used. It is the hash produ
by this algorithm on the data to be protected that is
encrypted usingiseAlgld .

confDKuselnfo

Information describing how the confidentiality key is to be
used. ThauseHashAlgld construct is not used here.

ced

Security Service, v1.7

CSI-ECMA Protocol March 2001 3-107

3.7 Integrating SSL with CORBA Security

3-108

3.7.1 Introduction

This section defines how SSL [21] is integrated with CORBA Security. SSL provides
CSl level 0 (see “Common Secure Interoperability Levels” in Appendix D)
functionality only. This level of functionality is achieved only if the optional
authentication features of SSL are used.

3.7.2 Cryptographic Profiles

All of the cryptographic profiles defined by SSL may be used by ORBs using SSL for
Security.

3.7.3 IOR Encoding

A new kind of security tag is defined, for use in the component tag sequence in the
[IOP IOR profile body, to describe the use of Secure Transports with CORBA Security.
This enables the future use of combinations of security mechanisms and secure
transports.

The IIOP TAG identifying the SSL secure transporTA&_SSL_SEC_TRANS. The
tag component data described below must be encapsulated using CDR encoding. The
data structure associated with this tag is as follows:

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

3

The definition of association options is the same as for the CSI protocols. SSL only
supports client and target authentication if the optional certificate exchanger features of
SSL are supported.

Unlike the CSI mechanism TAGs, the SSL TAG does not include cryptographic
profiles as cryptography is negotiated as part of the SSL session establishment. For the
same reason the TAG does not include a security name for the target.

The port field contains the port number to be used instead of the port defined in the
accompanying IIOP profile body, if SSL is selected by the client. It contains the
TCP/IP port number (at the specified host) where the target agent is listening for
connection requests. The agent must be ready to process IIOP messages on connection
accepted at this port.

As with the other secure interoperability options, if the client invokes the target
without the appropriate level of security (e.qg., if the client is not secure and simply
invokes the target ignoring all security TAGs in the profile) the target shall raise the
CORBA::NO_PERMISSION exception.

Security Service, v1.7 March 2001

3.7.4 Relation to SECIOP

As SSL provides a secure transport layer over TCP/IP, the CORBA SECIOP protocol is
not required when using SSL. Instead, the connection rules of IIOP (see the General
Inter-ORB Protocol chapter of thttommon Object Request Broker: Architecture and
Specification are applied to SSL (which itself uses TCP).

3.8 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs that use
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CIOP
transport layer should handle security (for example, how it should interpret the security
components of thEOR profile when selecting DCE Security Services for a request and
secure invocation).

3.8.1 Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in @@nmon Object Request Broker:
Architecture and Specificatigrare maintained and enhanced by Secure DCE-CIOP:

® Support multi-vendor, mission critical, enterprise-wide, secure ORB-based
applications.

® |everage services provided by DCE wherever appropriate.
* Allow efficient and straightforward implementation using public DCE APIs.

® Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated security
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE-
CIOP specification to support the use of arbitrary security mechanisms for protection
of DCE-CIOP messages.

3.8.2 Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on the
DCE Security Services and the DCE Authenticated RPC runtime that utilizes those
services.

The DCE Security Services (specified in [6]), as employed by the DCE Authenticated
RPC runtime (specified in [7] and the [8]), provide the following security features:

® cryptographically secured mutual authentication of a client and target,

® ability to pass client identity and authorization credentials to the target as part of a
request,

® protection against undetected, unauthorized modification of request data,
® cryptographic privacy of data, and

® protection against replay of requests and data.

Security Service, v1.7 DCE-CIOP with Security March 2001 3-109

3-110

3.8.2.1

The RPC runtime provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from threats
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given client-
target communication binding. Subsequent DCE-CIOP messages on that binding flow
over RPC and thus are protected at the requested levels.

This Secure DCE-CIOP specification defines & Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associamuponent_data are specified. Client

secure association requirements, as indicated by client-side policy, and target secure
association requirements, as specified in the td@RtProfile security components,

are mapped to DCE Security Services. Finally, the use of DCE APIs to protect DCE-
CIOP messages is described.

IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIOP is
encoded in ahOR in a profile identified byTAG_MULTIPLE_COMPONENTS. The
profile_data for this profile is aCDR encapsulation (see “CDR Transfer Syntax” in

the General Inter-ORB Protocol chapter of @@mmon Object Request Broker:
Architecture and Specificatigrof the MultipleComponentProfile type, which is a
sequence ofaggedComponent structures. These types are described in the ORB
Interoperability Architecture chapter of tl@®ommon Object Request Broker:

Architecture and Specification

The Multiple Component Profile contains the tagged components required to support
DCE-CIOP, described in the DCE ESIOP chapter ofGbenmon Object Request

Broker: Architecture and Specificatipas well as the components required to support
security for DCE-CIOP. The general security components are described in

Section 3.1.4.1, “Security Components of the IOR,” on page 3-8. The DCE-specific
security component and semantics for the common security components are described
here.

Although a conforming implementation of Secure DCE-CIOP is only required to
generate and recognize the components defined here and in the General Inter-ORB
Protocol chapter of thEommon Object Request Broker: Architecture and
Specification the profile may also contain components used by other kinds of ORB
transports and services. Implementations should be prepared to encounter profiles
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.
Unrecognized components should be preserved but ignored. Although an
implementation may choose to order the components in a profile in a particular way,
other implementations are not required to preserve that order. Implementations must be
prepared to handle profiles whose components appear in any order.

Security Service, v1.7 March 2001

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates support
for the (non-GSSAPI) “DCE Security with Kerberos V5 with DES” mechanism type.
The component_data field contains an authorization service identifier and an
optional sequence of tagged components.

Future versions of DCE Security that require different information than what is
provided by thecomponent_data structure described below are expected to be
supported with a new component tag, rather than with revisions to the data structure
associated with theAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOPSecurity {
const IOP::Componentld TAG_DCE_SEC_MECH = 103
/l CORBA IDL doesn't (yet) support const octet
I
/I const octet DCEAuthorizationNone = 0;
/I const octet DCEAuthorizationName = 1;
/I const octet DCEAuthorizationDCE = 2;
typedef unsigned short DCEAuthorization;
const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

/I since consts of type octet are not allowed in IDL the constant

/I values that can be assigned to the authorization_service field

/I in the DCESecurityMechanisminfo is declared as unsigned shorts.

/I when they actually get assigned to the authorization_service field

/I they should be assigned as octets.

struct DCESecurityMechanisminfo {
octet authorization_service;
sequence <TaggedComponent> components;

h

h

A TaggedComponent structure is built for the DCE Security Mechanism component
by setting the tag member TdG_DCE_SEC_MECH, and setting the
component_data member to &DR encapsulation of a

DCESecurityMechanisminfo structure.

The authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC
runtime for invocations on thi®R. Two authorization models are supported:
DCEAuthorizationName andDCEAuthorizationDCE with a third identifier,
DCEAuthorizationNone , to indicate that no authorization is required.

Security Service, v1.7 DCE-CIOP with Security March 2001 3-111

3.8.2.2

The components Field

Thecomponents field contains a sequence of zero or more tagged components, none
of which may appear more than once, from the following list of common setORy
componentsTAG_ASSOCIATION_OPTIONS andTAG_SEC_NAME.

Each of these components, defined in Section 3.1.4.1, “Security Components of the
IOR,” on page 3-8, may be present either in the components field of the
DCESecurityMechanisminfo structure, or at the top level of th@R profile. When

one of these components appears at the top level of the profile, its data may be shared
by other security mechanisms in the profile. When it appears in the nested components
field of DCESecurityMechanisminfo , its data is available only to the DCE Security
mechanism and overrides the data of an identically-tagged component, if present, at the
top level of the profile.

TAG_ASSOCIATION_OPTIONS

The association options component, described in Section 3.1.4.1, “Security
Components of the IOR,” on page 3-8, contains flags indicating which protection and
authentication services the target supports and which it requires. This component is
optional for Secure DCE-CIOP; defaults are used when the component is not present.

The way in which association options are interpreted for use with DCE security is
reflected in Table 3-14 shows how an association option is mapped to a DCE RPC
protection level and authentication service.

Table 3-14 Association Option Mapping to DCE Security

Association Option DCE RPC Protection Level DCE RPC Authentication Service
NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level pkt_integrity rpc_c_authn_dce_secret
Confidentiality rpc_c_protect_level pkt_privacy rpc_c_authn_dce_secret
DetectReplay rpc_c_protect_level pkt rpc_c_authn_dce_secret
DetectMisordering rpc_c_protect_level pkt rpc_c_authn_dce_secret
EstablishTrustinTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret
EstablishTrustInClient rpc_c_protect_level _connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level _default rpc_c_authn_dce_secret

3-112

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to requpe c_protect_level_default and
rpc_c_authn_dce_secret . (The value ofpc_c_protect_level_default is defined
by the DCE implementation or by a site administrator.)

Security Service, v1.7 March 2001

The target_supports Field

When an association option is set in theget_supports field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
supports invocations that use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 3-14.
Any or all of the association options may be set intdnget_supports field. The

options set in théarget supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Although, for the DCE security mechanism, a single selected option may imply
support for several other options (e.g., selection of the Integrity option implies support
for DetectReplay , DetectMisordering , andEstablishTrustinClient) it is
recommended that every supported option be explicitly set itathet supports

field to facilitate comparison with client requirements.

The target_requires Field

When an association option is set in theget_requires field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target

requires invocations secured with at least the protection level and authentication
service that correspond to the selected option, as shown in Table 3-14. Since DCE RPC
supports a range of protection levels, each of which provides all the protection of the
level below it and also some additional protection, selecting mutpiet_requires

options does not make sense. For DCE, no more than one option need be selected in
thetarget_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanisminfo structure, thearget_requires field may conform to

the DCE semantics (i.e., no more than one option selected). If other security
mechanisms are sharing thAG_ASSOCIATION_OPTIONS component, and

perhaps using different rules for interpreting tagget_requires field, then the
target_requires field may have several options selected. The “DCE Association
Options Reduction” algorithm, described in section 3.8.3.1, handles both cases and is
used to select the appropriate DCE secure invocation services given a set of required
association options.

The EstablishTrustinTarget option in thetarget_requires field is meaningless,
and is therefore ignored.

3.8.2.3 TAG_SEC_NAME

The security name component contains the DCE principal name of the target.
Generally, this is a global principal name that includes the name of the cell in which
the target principal’'s account resides. If a cell-relative principal name (i.e., the cell
prefix does not appear) is specified, the local cell is assumed. Cell-relative principal
names are only appropriate for usd@Rs that are consumed by clients in the same
cell in which the target resides. WhenI&R containing a cell-relative principal name

in the TAG_SEC_NAME component crosses a cell boundary, the cell-relative
principal name should be replaced with a global name.

Security Service, v1.7 DCE-CIOP with Security March 2001 3-113

3-114

3.8.3 DCE

The format of a “human-friendly” DCE principal name is described in section 1.13 of
[6]. It is a string containing a concatenated cell name and cell-relative principal nhame
that looks like:

/...Icell-name/cell-relative-principal-name

For example, the principal with the cell-relative nameiritserver” in the
“mis.prettybank.com” cell has the global principal hame:

/.../mis.prettybank.com/printserver

The component_data member of thefAG_SEC_NAME component is set to the
string value of the DCE principal name. The string is represented directly in the
sequence of octets, including the terminathigLL .

If the TAG_SEC_NAME component is not present, then a valuélblLL is assumed,
indicating that the client will depend on the DCE authenticated RPC runtime to retrieve
the DCE principal hame of the target, identified in I&® by the DCE-CIOP string
binding and binding name components. This case indicates that the client is not
interested in authentication of the target identity.

RPC Security Services

This section provides details about the protection provided by DCE Authenticated RPC
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in [9] for more information about using
these protection parameters to secure an association between a client and target.

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of thdCESecurityMechanisminfo structure in
the component_data field of theTAG_DCE_SEC_MECH component.

DCEAuthorizationName indicates that the target performs authorization based on
the client security name. The DCE RPC authorization service
DCEAuthorizationName asserts the principal name (without cryptographic
protection if the association optidtfoProtection is chosen, or with cryptographic
protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the
client’s Privilege Attribute Certificate (for OSF DCIEO.30r previous versions), or the
client’'s Extended Privilege Attribute Certificate (for DCE 1.1). The authorization
serviceDCEAuthorizationDCE asserts the principal name and appropriate
authorization data (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationNone indicates that the target performs no authorization based on
privilege information carried by the RPC runtime. This is valid only if the association
option NoProtection is chosen.

Security Service, v1.7 March 2001

The authorization_service identifiers defined here for Secure DCE-CIOP
correspond to DCE RPC authorization service identifiers and are defined to have
identical values. The relationship between these identifiers is shown in the following
table.

Table 3-15 Relation between DCE-CIOP and DCE RPC Authorization Service ldentifiers

Secure DCE-CIOP DCE RPC

authorization_service Authorization Service Shared Value
DCEAuthorizationNone rpc_c_authz_none 0
DCEAuthorizationName rpc_c_authz_name 1
DCEAuthorizationDCE rpc_c_authz_dce 2

DCE RPC Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 3-15 are described
below. For the purposes of evaluating the protection levels, it is interesting to
remember that a single DCE-CIOP message is transferred over the wire in the body of
one or more DCE RPC PDUs.

rpc_c_protect_level_none Indicates that no authentication or message protection |s to
be performed, regardless of the authentication service
chosen. Depending on target policy, the client may be
granted access as an unauthenticated principal.

rpc_c_protect_level_connect Indicates that the client and server identities are exchanged
and cryptographically verified at the time the binding is set
up between them. Strong mutual authentication and replay
detectionfor the binding set-up onlis provided. There are
no protection services per DCE RPC PDU.

rpc_c_protect_level_pkt Indicates that thepc_c_protect_level_connect services
are provided plus detection of misordering or replay of
DCE RPC PDUs. There is no protection against PDU
modification.

rpc_c_protect_level_pkt_integrity Offers therpc_c_protect_level_pkt services plus detection
of DCE RPC PDU modification.

rpc_c_protect_level_pkt_privacy Offers therpc_c_protect_level_pkt_integrity services plus
privacy of RPC arguments, which means the DCE-CIOP
message in its entirety is privacy protected.

rpc_c_protect_level_default Indicates the default protection level, as defined by the
DCE implementation or by a site administrator (should be
one of the above defined values).

Security Service, v1.7 DCE-CIOP with Security March 2001 3-115

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 3-15 are
described below.

rpc_c_authn_none Indicates no authentication. If this is selected, then
no authorization, DCEAuthorizationNone, must be
chosen as well.

rpc_c_authn_dce_secret Indicates the DCE shared-secret key authentication
service.

3.8.3.1 Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security for
invocation and locate requests.

During a request invocation, if tH®R components indicate support for the DCE-
CIOP transport and thBAG_DCE_SEC_MECH component is present, then a Secure
DCE-CIOP request can be made.

Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in the
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
using the method described in “Determining Association Options” on page 3-12. These
options are then reduced to a singgquired_option using the algorithm described

in “The DCE Association Options Reduction Algorithm” on page 3-116 below. The
resultantrequired_option is used to select a DCE RPC protection level and
authentication service using Table 3-14 on page 3-112. The derived protection level
and authentication service are used to secure the association via the
rpc_binding_set_auth_info() call (see “Securing the Binding Handle to the Target”
on page 3-117).

The DCE Association Options Reduction Algorithm

The “DCE Association Options Reduction” algorithm is used to select a single
association optiomequired_option , given the value required by client and target
derived as described in “Determining Association Options” on page 3-12. The resultant
required_option indicates, via Table 3-14 on page 3-112, the DCE protection level
and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in the
negotiated-required options set.

The “DCE Association Options Reduction” algorithm is expressed as:

If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR

if DetectMisordering is set,

3-116 Security Service, v1.7 March 2001

then required_option = DetectReplay;
(alternatively, the same results are obtained with:
then required_option = DetectMisordering;)
else if EstablishTrustIinClient is set,
then required_option = EstablishTrustIinClient;
else required_option = NoProtection.

Behavior When TAGASSOCIATION_OPTIONS Not Present

As described earlier, if thEAG_ASSOCIATION_OPTIONS component is not

present, then the target is assumed to support and require
rpc_c_protect_level_default andrpc_c_authn_dce_secret . Since these

protection parameters are not expressed as association options, the usual method of
deriving a singleaequired_option by combining client and target policy (see
“Determining Association Options” on page 3-12 and “The DCE Association Options
Reduction Algorithm” on page 3-116“above) cannot be used. Instead, use the
following alternative method to derive the required DCE RPC protection level and
authentication service:

®* Translate the client-side secure invocation policy from a set of client supported
association options to a singtéent_supported_option and from a set of client
required association options to a singlient_required_option , using in each
case the algorithm described in “The DCE Association Options Reduction
Algorithm” on page 3-116.

® Using Table 3-14 “Association Option Mapping to DCE Security” translate the
client_supported_option andclient_required_option to corresponding
“supported” and “required” DCE RPC protection level/authentication service pairs.

® |f the target principal is a member of the local cell, determine the target required
protection level implied bypc_c_protect_level_default by calling
rpc_mgmt_ing_dflt_protect level() passingpc_c_authn_dce_secret as the
authn_svc parameter. If the target principal is not a member of the local cell or if
it's difficult to determine, then assume a target required protection level of
rpc_c_protect_level_pkt_integrity

® |If the client supportspc_c_authn_dce_secret , then choose the strongest
protection level that both the client and target support and that does not exceed the
strongest protection level required by either the client or target. If the client does not
supportrpc_c_authn_dce_secret , then choosepc_c_authn_none and
rpc_c_protect_level_none . Use the protection level and authentication service
thus derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquiresrpo_binding_handle to the target using
its normal procedure. THBCE_CIOP sets authentication and authorization
information on that binding handle with thec binding_set_auth_info() call using
data from thdOR profile security components in the following way:

Security Service, v1.7 DCE-CIOP with Security March 2001 3-117

3-118

® The target security name string from ff®G_SEC_NAME component (or NUL, if

the component is not present) is passetpto binding_set_auth_info() via the
server_princ_name parameter.

If the TAG_ASSOCIATION_OPTIONS component is present in th®R, see
“Deriving DCE Security Parameters from Association Options” on page 3-116
above to select a DCE RPC protection level and authentication service for this
invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, see
“Behavior When TAG_ASSOCIATION_OPTIONS Not Present” on page 3-117
above to select a DCE RPC protection level and authentication service for this
invocation.

The selected protection level is passedptm binding_set_auth_info() via the
protect_level parameter. The selected authentication service is passed via the
authn_svc parameter topc_binding_set_auth_info()

The auth_identity parameter is set tdULL to use the DCE default login context.

The authorization service identifier from thathorization_service field of the
DCESecurityMechanismInfo component_data is mapped to the
corresponding DCE RPC authorization service identifier (using Table 3-15 on
page 3-115) which is then passed via duthz_svc parameter.

After a successful call tgpc_binding_set_auth_info() , the authenticated binding
handle will be used by the DCE-CIOP protocol engine to make secure requests.

Security Service, v1.7 March 2001

References A

Note that these references are to definitions which are sometimes a set of document.
[1] CORBA/IIOP 2.2.
[2] Common Secure IIOP Request for Proposals (orb/96-01-03)

[3] CORBA Time Service, Chapter 16 of CORBAservices specification, also
available at the URL http://www.omg.org/docs/formal/97-02-22.pdf.

[4] |IETF RFC 1779 A String Representation of Distinguished Names. March 1995.
[5] X/Open Application Environment Specification for Distributed Computing

[6] X/Open Preliminary SpecificatioX/Open DCE: Authentication and Security
Services.

[7] X/OPEN CAE Specification C309
[8] OSFAES/Distributed Computing RPC Volume
[9] OSF DCE 1.1 Application Development Reference

[10] The ECMA GSS-API mechanism specified in ECMA-235. See also related
standard ECMA-219 (Authentication and Privilege Attribute Security
Application with related key distribution functions).

[11] GSS-APIThe Generic Security Services API as defined in IETF RFC 1508
(September 1993) and X/Open P308.An update to RFC 1508 has been produced
by the IETF cat group.

[12] The IETF GSS Kerberos V5 definition which specifies details of the use of
Kerberos V5 with GSS-API. It includes updates to RFC 1510 (e.g., how to carry
delegation information). It is specified in RFC 1964.

[13] The Kerberos V5 mechanism as defined in IETF RFC 1510 (September 1993).

Security Service, v1.7 March 2001 A-1

A-2

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

The ORB Portability Specification - CORBA V2.3 Chapter 9.

Open Distributed Processing - Reference Model Parts 1 through 3, OMG doc
#0om/96-10-02, 03, 04.

The SESAME gss-api mechanism. This is a subset of the ECMA GSS
Mechanism and is specified in draft-ietf-cat-sesamemech-00.txt.

The SESAME V4 Overview. This can be found via the web at
www.esat.kuleuven.ac.be/cosic/sesame.html

John G. Fletcher, “Serial Link Protocol Design: A Critique of the X.25
Standard, Level 2,” Proceedings of SIGCOMM '84, ACM SIGCOMM, pp.26-
33, June 6-8, 1984.

IETF RFC 2478, The Simple and Protected GSS-API Negotiation Mechanism,
December 1998.

IETF RFC 2025, The Simple Public-Key GSS-API Mechanism (SPDM),
October 1996.

Secure Socket Layer [http://home.netscape.com/eng/ssl3/ssl-toc.html]

ISO/IEC 9594-8, “Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework”, CCITT/ITU Recommendation
X.509, 1993.

The extended gss-api supporting access control and delegation extensions
defined in draft-ietf-cat-xgssapi-acc-cntrl-00.txt. This interface is also defined in
the ECMA GSS-API Mechanism standard - ECMA-235.

Security Service, v1.7 March 2001

B.1

Introduction

Consolidated OMG IDL B

The OMG IDL for CORBA security is split into modules as follows:

®* A module containing the common data types used by all security modules.

®* A module for application interfaces for each Security Functionality Levels 1 and 2.
® A module for Security Level 2 security policy administration.

®* A module for non-repudiation, including the non-repudiation policy administration
interface.

®* A module for the Replaceable Security Service, as described in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-142.

® A module for elements of the SECure Inter Orb Protocol (SECIOP)I.
®* A module for elements of the SSL Protocol.

®* A module for elements related to Security that are added to the DCE_CIOPSecurity
module.

B.2 General Security Data Module

This subsection defines the OMG IDL for security data types common to the other
security modules, which is the modwBecurity. The Security module depends on the
TimeBasemodule and th€ ORBA module.

#if 1defined(_SECURITY_IDL)
#define _SECURITY_IDL_
#include <orb.idl>

#include <TimeBase.idl>
#pragma prefix "omg.org"

Security Service, v1.7 March 2001 B-1

module Security {
pragma version Security 1.7

typedef string SecurityName;
typedef sequence <octet> Opaque;

/I Constant declarations for Security Service Options

const CORBA::ServiceOption SecurityLevell = 1;

const CORBA::ServiceOption SecurityLevel2 = 2;

const CORBA::ServiceOption NonRepudiation = 3;

const CORBA::ServiceOption SecurityORBServiceReady = 4;
const CORBA::ServiceOption SecurityServiceReady = 5;

const CORBA::ServiceOption ReplaceORBServices = 6;

const CORBA::ServiceOption ReplaceSecurityServices = 7;
const CORBA::ServiceOption StandardSecurelnteroperability = 8;
const CORBA::ServiceOption DCESecurelnteroperability = 9;

/I Service options for Common Secure Interoperability

const CORBA::ServiceOption CommonlnteroperabilityLevelO = 10;
const CORBA::ServiceOption CommonlnteroperabilityLevell = 11;
const CORBA::ServiceOption CommoninteroperabilityLevel2 = 12;

/I Security mech types supported for secure association
const CORBA::ServiceDetailType SecurityMechanismType = 1;

/I privilege types supported in standard access policy
const CORBA::ServiceDetailType SecurityAttribute = 2;

/I extensible families for standard data types
struct ExtensibleFamily {

unsigned short family_definer;
unsigned short family;

h
typedef sequence<octet> OID;
typdef sequence<OID> OIDList;

/I security attributes
typedef unsigned long SecurityAttribute Type;

/I other attributes; family = 0

const SecurityAttribute Type Auditld = 1;
const SecurityAttribute Type Accountingld = 2;
const SecurityAttributeType NonRepudiationld = 3;

Security Service, v1.7 March 2001

/I privilege attributes; family = 1

const SecurityAttributeType _Public = 1;

const SecurityAttributeType Accessld = 2;

const SecurityAttributeType PrimaryGroupld = 3;
const SecurityAttribute Type Groupld = 4;

const SecurityAttribute Type Role = 5;

const SecurityAttribute Type AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttribute Type attribute_type;

h

typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {

AttributeType attribute_type;
OoID defining_authority;
Opaque value;

/I the value of this attribute can be
/I decoded only with knowledge of defining_authority

h
typedef sequence <SecAttribute> AttributeList;
/I Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

h
/I Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

3

/I Authentication method
typedef unsigned long AuthenticationMethod;

typedef sequence<AuthenticationMethod> AuthenticationMethodList;

Security Service, v1.7 March 2001 B-3

/I Credential types

enum InvocationCredentialsType {
SecOwnCredentials,
SecReceivedCredentials,
SecTargetCredentials

h
/I Declarations related to Rights

struct Right {
ExtensibleFamily rights_family;
string right;

h

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

h
/I Delegation related
enum DelegationState {

Seclnitiator,
SecDelegate

h

enum DelegationDirective {
Delegate,
NoDelegate

h
/I pick up from TimeBase

typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT,

/I Security features available on credentials.

enum SecurityFeature {
SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
Seclntegrity,
SecConfidentiality,
SeclintegrityAndConfidentiality,
SecDetectReplay,

Security Service, v1.7 March 2001

SecDetectMisordering,
SecEstablishTrustinTarget,
SecEstablishTrustInClient

h

/I Quality of protection which can be specified
/I for an object reference and used to protect messages

enum QOP {
SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

h
/I Type of SecurityContext

enum SecurityContextType {
SecClientSecurityContext,
SecServerSecurityContext

h
/I Operational State of a Security Context

enum SecurityContextState {
SecContextlnitialized,
SecContextContinued,
SecContextClientEstablished,
SecContextEstablished,
SecContextEstablishExpired,
SecContextExpired,
SecContextlnvalid

h

struct ChannelBindings {
unsigned long initiator_addrtype;
sequence<octet> initiator_address;
unsigned long acceptor_addrtype;
sequence<octet> acceptor_address;
sequence<octet> application_data;

h
/I For use with SecurityReplaceable

struct OpaqueBuffer {

Opaque buffer;
unsigned long startpos;
unsigned long endpos;

/I startpos <= endpos
/I OpaqueBuffer is said to be empty if startpos == endpos

Security Service, v1.7 March 2001 B-5

/I Association options which can be administered
/I on secure invocation policy and used to
/I initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;

const AssociationOptions Integrity = 2;

const AssociationOptions Confidentiality = 4;

const AssociationOptions DetectReplay = 8;

const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustinTarget = 32;
const AssociationOptions EstablishTrustIinClient = 64;
const AssociationOptions NoDelegation = 128;

const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;

/I Flag to indicate whether association options being
/[administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

h

/Il Direction of communication for which
/I secure invocation policy applies

enum CommunicationDirection {
SecDirectionBoth,

SecDirectionRequest,
SecDirectionReply

h

/I security association mechanism type

typedef string MechanismType;

typedef sequence<MechanismType> MechanismTypeList;
/I AssociationOptions-Direction pair

struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirectiondirection;

J5

typedef sequence <OptionsDirectionPair> OptionsDirectionPairList;

/I Delegation mode which can be administered

Security Service, v1.7 March 2001

enum DelegationMode {
SecDelModeNoDelegation, /l i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

h
/I Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

h

typedef sequence <MechandOptions> MechandOptionsList;
/I Attribute of the SecurityLevel2::EstablishTrustPolicy

struct EstablishTrust {

boolean trust_in_client;
boolean trust_in_target;

h

/I Audit

typedef unsigned long AuditChannelld;
typedef unsigned short EventType;
const EventType AuditAll = 0;

const EventType AuditPrincipalAuth = 1;

const EventType AuditSessionAuth = 2;

const EventType AuditAuthorization = 3;

const EventType Auditinvocation = 4;

const EventType AuditSecEnvChange = 5;
const EventType AuditPolicyChange = 6;

const EventType AuditObjectCreation = 7;

const EventType AuditObjectDestruction = 8;
const EventType AuditNonRepudiation = 9;

enum DayOfTheWeek {
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

enum AuditCombinator {
SecAllSelectors,
SecAnySelector

h

struct AuditEventType {
ExtensibleFamily event_family;
EventType event_type;

Security Service, v1.7 March 2001 B-7

h
typedef sequence <AuditEventType> AuditEventTypelList;

typedef unsigned long SelectorType;

const SelectorType InterfaceName = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;

const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

const SelectorType DayOfWeek = 7;

/I values defined for audit_needed and audit_write are:
Il InterfaceName: CORBA::Repositoryld

/I ObjectRef: object reference

/I Operation: op_name

/I Initiator: Credentials

/I SuccessFailure: boolean

/I Time: utc time on audit_write; time picked up from

1 environment in audit_needed if required
/I DayOfWeek: DayOfTheWeek

struct SelectorValue {
SelectorType selector;
any value;

h

typedef sequence <SelectorValue> SelectorValuelList;
/I Constant declaration for valid Security Policy Types

/I General administrative policies

const CORBA::PolicyType SecClientlnvocationAccess = 1;
const CORBA::PolicyType SecTargetlnvocationAccess = 2;
const CORBA::PolicyType SecApplicationAccess = 3;
const CORBA::PolicyType SecClientinvocationAudit = 4;
const CORBA::PolicyType SecTargetinvocationAudit = 5;
const CORBA::PolicyType SecApplicationAudit = 6;

const CORBA::Policy Type SecDelegation = 7;

const CORBA::PolicyType SecClientSecurelnvocation = 8;
const CORBA::PolicyType SecTargetSecurelnvocation = 9;
const CORBA::PolicyType SecNonRepudiation = 10;

/I Policies used to control attributes of a binding to a target
const CORBA::Policy Type SecMechanismsPolicy = 12;

const CORBA::PolicyType SeclnvocationCredentialsPolicy = 13;
const CORBA::PolicyType SecFeaturePolicy = 14; // obsolete
const CORBA::PolicyType SecQOPPolicy = 15;

const CORBA::Policy Type SecDelegationDirectivePolicy = 38;
const CORBA::PolicyType SecEstablishTrustPolicy = 39;

Security Service, v1.7 March 2001

k
#endif /* SECURITY_IDL_ */

B.3 Application Interfaces - Level 1

This subsection defines those interfaces available to application objects using only
Security Functionality Level 1, and consists of a single modaeurityLevell This
module depends on tf@ORBA module, and on th8ecurity module.

#if \defined(_SECURITY_LEVEL_1_IDL)
#define _SECURITY_LEVEL_1_IDL_
#include <Security.idl>

#pragma prefix "omg.org"

module SecurityLevell {

pragma version SecurityLevell 1.5
interface Current : CORBA::Current {// Locality Constrained

I thread specific operations

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
J3
I3
#endif /* SECURITY_LEVEL 1 _IDL_*/

B.4 Application Interfaces - Level 2

This subsection defines the interfaces available to applications using Security
Functionality Level 2, all of which are declared in BecurityLevel2 module. This
module depends on tI@ORBA, SecurityLevellandSecurity modules. The interfaces
are described in Section 2.3, “Application Developer’s Interfaces,” on page 2-71.

#if |defined(_SECURITY_LEVEL_2_IDL)
#define _SECURITY_LEVEL_2_IDL_
#include <SecurityLevell.idl>

#pragma prefix "omg.org"

module SecurityLevel2 {

pragma version SecurityLevel2 1.7
I/l Forward declaration of interfaces
interface PrincipalAuthenticator;

interface Credentials;
interface Current;

Security Service, v1.7 March 2001 B-9

/I Interface PrincipalAuthenticator
interface PrincipalAuthenticator {
pragma version PrincipalAuthenticator 1.5

Security::AuthenticationMethodList
get_supported_authen_methods(

/I Locality Constrained

in Security::MechanismType mechanism
);
Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data
)i
Security::AuthenticationStatus continue_authentication (
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data
);

h
I Interface Credentials
interface Credentials { /I Locality Constrained
pragma version Credentials 1.7
Credentials copy ();
void destroy();

readonly attribute Security::InvocationCredentialsType
credentials_type;

readonly attribute Security::AuthenticationStatus
authentication_state;

readonly attribute Security::MechanismType mechanism;

attribute Security::AssociationOptions
accepting_options_supported;

attribute Security::AssociationOptions
accepting_options_required;

attribute Security::AssociationOptions

B-10 Security Service, v1.7 March 2001

invocation_options_supported;

attribute Security::AssociationOptions
invocation_options_required;

boolean get_security feature(

in Security::CommunicationDirection direction,
in Security::SecurityFeature feature
)i
boolean set_attributes (
in Security::AttributeList requested_attributes,
out Security::AttributeList actual_attributes
);
Security::AttributeList get_attributes (
in Security::Attribute TypeList attributes
);
boolean is_valid (
out Security::UtcT expiry_time
)i
boolean refresh(
in any refresh_data
)i
h
typedef sequence <Credentials> CredentialsList;

interface ReceivedCredentials : Credentials { / Locality Constrained
pragma version ReceivedCredentials 1.5
readonly attribute Credentials accepting_credentials;
readonly attribute Security::AssociationOptions
association_options_used;

readonly attribute Security::DelegationState
delegation_state;

readonly attribute Security::DelegationMode
delegation_mode;

J3

interface TargetCredentials : Credentials { // Locality Constrained

readonly attribute Credentials initiating_credentials;

Security Service, v1.7 March 2001 B-11

readonly attribute Security::AssociationOptions
association_options_used;

h
/I RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator
);
void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
3

/I interface audit channel
interface AuditChannel { /I Locality Constrained

void audit_write (

in Security::AuditEventType event_type,

in CredentialsList creds,

in Security::UtcT time,

in Security::SelectorValueList ~ descriptors,

in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelld audit_channel _id;

h
Il interface for Audit Decision
interface AuditDecision { /I Locality Constrained

boolean audit_needed (

in Security::AuditEventType event_type,
in Security::SelectorValueList value_list
);
readonly attribute AuditChannel audit_channel;
h
interface AccessDecision { /I Locality Constrained

B-12 Security Service, v1.7 March 2001

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,

in Object target,

in CORBA::Identifier operation_name,

in CORBA::Identifier target_interface_name

);
J3

Il Policy interfaces to control bindings

interface QOPPolicy : CORBA::Policy { /I Locality Constrained
readonly attribute Security::QOP qop;

3

interface MechanismPolicy : CORBA::Policy {// Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

J3

interface InvocationCredentialsPolicy : CORBA::Policy {
/I Locality Constrained
readonly attribute CredentialsList creds;

J3

interface EstablishTrustPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::EstablishTrust trust;

h
interface DelegationDirectivePolicy : CORBA::Policy {
/I Locality Constrained
readonly attribute Security::DelegationDirective
delegation_directive;

h
interface SecurityManager {
/I Process/Capsule/ORB Instance specific operations
readonly attribute Security::MechandOptionsList
supported_mechanisms;
readonly attribute CredentialsList own_credentials;

readonly attribute RequiredRights required_rights_object;

readonly attribute PrincipalAuthenticator
principal_authenticator;

readonly attribute AccessDecision access_decision;

readonly attribute AuditDecision audit_decision;

Security Service, v1.7 March 2001 B-13

TargetCredentials get_target_credentials (
in Object obj_ref
)i

void remove_own_credentials(
in Credentials creds

);

CORBA::Policy get_security policy (
in CORBA::PolicyType policy_type
)i
h
h

I Interface Current derived from SecurityLevell::Current providing

/I additional operations on Current at this security level.

/I This is implemented by the ORB

interface Current : SecurityLevell::Current { // Locality Constrained
pragma version Current 1.7

/I Thread specific

readonly attribute ReceivedCredentials received_credentials;

h

#endif /* SECURITY_LEVEL 2 IDL_*

B.5 Security Administration Interfaces

B-14

This section covers interfaces concerned with querying and modifying security
policies, and comprises the mod®8ecurityAdmin. The SecurityAdmin module
depends ofCORBA, Security, and SecurityLevel2 modules. The interfaces are

described in Section 2.4, “Administrator’s Interfaces,” on page 2-115. There are related
interfaces for finding domain managers and policies. They are to be found in the ORB

Interface chapter of thEommon Object Request Broker: Architecture and
Specification

#if Idefined(_ SECURITY_ADMIN_IDL)
#define _SECURITY_ADMIN_IDL_
#include <SecurityLevel2.idI>

#pragma prefix "omg.org"

module SecurityAdmin {

pragma version SecurityAdmin 1.5

/I interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

Security Service, v1.7 March 2001

pragma version AccessPolicy 1.5

Security::RightsList get_effective_rights (
in Security::AttributeList attrib_list,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_effective_rights(
in Security::AttributeList attrib_list
);
h
/I interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {
pragma version DomainAccessPolicy 1.5

void grant_rights(

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void replace_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

Security::RightsList get_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state

h

[l interface AuditPolicy

interface AuditPolicy : CORBA::Policy {
pragma version AuditPolicy 1.5

void set_audit_selectors (

Security Service, v1.7 March 2001 B-15

in CORBA::Repositoryld
in Security::AuditEventTypeList
in Security::SelectorValueList
in Security::AuditCombinator
)i
void clear_audit_selectors (
in CORBA::Repositoryld
in Security::AuditEventTypeList
);
void replace_audit_selectors (
in CORBA::Repositoryldf
in Security::AuditEventTypeList
in Security::SelectorValueList
in Security::AuditCombinator
);
void get_audit_selectors (
in CORBA::Repositoryld
in Security::AuditEventType

out Security::SelectorValueList
out Security::AuditCombinator

);

void set_audit_channel (
in Security::AuditChannelld
);
h

/I interface SecurelnvocationPolicy

object_type,
events,
selectors,
audit_combinator

object_type,
events

object_type,
events,

selectors,
audit_combinator

object_type,
event_type
selectors,
audit_combinator

audit_channel_id

interface SecurelnvocationPolicy : CORBA::Policy {

pragma version SecurelnvocationPolicy 1.5

void set_association_options(

in CORBA::Repositoryld object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection
direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(

in CORBA::Repositoryld
in Security::RequiresSupports
in Security:: CommunicationDirection

);
I3

/l interface DelegationPolicy

B-16 Security Service, v1.7 March 2001

object_type,
requires_supports,

direction

interface DelegationPolicy : CORBA::Policy {
pragma version DelegationPolicy 1.5

void set_delegation_mode(

in CORBA::Repositoryld object_type,
in Security::DelegationMode mode
);
Security::DelegationMode get_delegation_mode(
in CORBA::Repositoryld object_type
);

h
J5

#endif /* _SECURITY_ADMIN_IDL_ */

B.6 Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. This
module depends oBecurityLevel2andCORBA modules. The interfaces are described
in Section 2.3.14.2, “Non-repudiation Service Data Types,” on page 2-108.

#if 1defined(_ NR_SERVICE_IDL)
#define _NR_SERVICE_IDL_
#include <SecurityLevel2.idI>
#pragma prefix "omg.org"

module NRService {
pragma version NRService 1.5

typedef Security::MechanismType NRMech,;
typedef Security::ExtensibleFamily NRPolicyld;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

h

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,

SecNRConditionallyValid
h

Security Service, v1.7 March 2001 B-17

/I the following are used for evidence validity duration
typedef unsigned long DurationIinMinutes;

const DurationinMinutes DurationHour = 60;

const DurationinMinutes DurationDay = 1440;

const DurationinMinutes DurationWeek = 10080;

const DurationinMinutes DurationMonth = 43200;// 30 days;
const DurationinMinutes DurationYear = 525600;//365 days;

typedef long TimeOffsetinMinutes;

struct NRPolicyFeatures {

NRPolicyld policy id;
unsigned long policy version;
NRMech mechanism;

h
typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

/I features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;
h
struct EvidenceDescriptor {
EvidenceType evidence_type;
DurationIinMinutes evidence_validity _duration;
boolean must_use_trusted_time;

h
typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetinMinutes last_revocation_check offset;
/I may be >0 or <0; add this to evid. gen. time to
/I get latest time at which mech. will check to see
/I if this authority’s key has been revoked.

h
typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {

NRMech mech_type;
AuthorityDescriptorList authority_list;
TimeOffsetinMinutes max_time_skew;

B-18 Security Service, v1.7 March 2001

I3

/I max permissible difference between evid. gen. time
/I 'and time of time service countersignature
I ignored if trusted time not reqd.

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials : SecurityLevel2::Credentials{

Security Service, v1.7

boolean set NR_features (

in NRPolicyFeaturesList
out NRPolicyFeaturesList

);

requested_features,
actual_features

NRPolicyFeaturesList get NR_features ();

void generate_token (

in Security::Opaque
in EvidenceType

in boolean

in boolean

in RequestFeatures
in boolean

out Security::Opaque
out Security::Opaque

)i
NRVerificationResult verify _evidence (
in Security::Opaque
in Security::Opaque
in boolean
in boolean

out Security::Opaque
out Security::Opaque
out boolean

out boolean

out Security::TimeT
out Security::TimeT

void get_token_details (
in Security::Opaque
in boolean
out string
out NRPolicyFeatures
out EvidenceType
out Security::UtcT
out Security::UtcT
out DurationIinMinutes
out boolean
out boolean

March 2001

input_buffer,
generate_evidence_type,
include_data in_token,
generate_request,
request_features,
input_buffer_complete,
nr_token,
evidence_check

input_token_buffer,
evidence_check,
form_complete_evidence,
token_buffer_complete,
output_token,
data_included_in_token,
evidence_is_complete,
trusted_time_used,
complete_evidence_before,
complete_evidence_after

token_buffer,
token_buffer_complete,
token_generator_name,
policy features,
evidence_type,
evidence_generation_time,
evidence_valid_start_time,
evidence_validity_duration,
data_included_in_token,
request_included_in_token,

B-19

B-20

out RequestFeatures
);
boolean form_complete_evidence (
in Security::Opaque
out Security::Opaque
out boolean
out Security::TimeT
out Security::TimeT

);
I3

interface NRPolicy : CORBA::Policy{

void get NR_policy_info (

out Security::ExtensibleFamily
out unsigned long

out Security::TimeT

out Security::TimeT

out EvidenceDescriptorList
out MechanismDescriptorList

);

boolean set_NR_policy_info (
in MechanismDescriptorList

out MechanismDescriptorList

);
I3
h
#endif /* NR_SERVICE_IDL_ */

B.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the

request_features

input_token,

output_token,
trusted_time_used,
complete_evidence_before,
complete_evidence_after

NR_policy_id,
policy_version,
policy_effective_time,
policy_expiry_time,

supported_evidence_types,

supported_mechanisms

requested_mechanisms,

actual_mechanisms

Security objects, which should be

replaced if there is a requirement to replace the Security services used for security
associations (i.e., théault andSecurity Contexf). The IDL provided here is for those
interfaces that have not already been covered byséuerityl evel2 module. This
section comprises the modubecurityReplaceable This module depends on the
CORBA, Security, andSecurityLevel2 modules. The interfaces are described in
Section 2.5, “Implementor’s Security Interfaces,” on page 2-142.

#if !defined(_SECURITY_REPLACEABLE_IDL_)

#define _SECURITY_REPLACEABLE_IDL _
#include <SecurityLevel2.idI>

#include <IOP.idI>

#pragma prefix "omg.org"

Security Service, v1.7 March 2001

module SecurityReplaceable {
pragma version SecurityReplacable 1.7
interface SecurityContext;

interface ClientSecurityContext;
interface ServerSecurityContext;

interface Vault { /' Locality Constrained

pragma version Vault 1.7
Security::AuthenticationMethodList

get_supported_authen_methods(
in Security::MechanismType mechanism;

);

readonly attribute Security::OIDList supported_mech_oids;

Security::AuthenticationStatus acquire_credentials(

in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data
)i
Security::AuthenticationStatus continue_credentials_acquisition(
in any response_data,
in SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data
)i
IOP::TaggedComponentSeq create_ior_components(
in SecurityLevel2::Credentials creds_list
);
Security::AssociationStatus init_security_context (
in SecurityLevel2::Credentials creds,
in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList
association_options,
in Security::MechanismType mechanism,
in Security::Opaque comp_data, //from IOR

Security Service, v1.7 March 2001 B-21

in Security::ChannelBindings chan_binding,
out Security::OpaqueBuffer security _token,
out ClientSecurityContext security _context
);
Security::AssociationStatus accept_security _context (
in SecurityLevel2::CredentialsList creds_list,
in Security::ChannelBindings chan_bindings,
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token,
out ServerSecurityContext security_context
)i
Security::MechandOptionsList get_supported_mechs ();
h
interface SecurityContext { /I Locality Constrained
pragma version SecurityContext 1.5

readonly attribute Security::SecurityContextType
context_type;

readonly attribute Security::SecurityContextState
context_state;

readonly attribute Security::MechanismType
mechanism,;

readonly attribute boolean supports_refresh;

readonly attribute Security::ChannelBindings
chan_binding;

readonly attribute SecurityLevel2::ReceivedCredentials
received_credentials;

Security::AssociationStatus continue_security _context (

in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token
);
void protect_message (
in Security::OpaqueBuffer message,
in Security::QOP gop,
out Security::OpaqueBuffer text_buffer,
out Security::OpaqueBuffer token
);
boolean reclaim_message (
in Security::OpaqueBuffer text_buffer,
in Security::OpaqueBuffer token,
out Security::QOP qop,

B-22 Security Service, v1.7 March 2001

out Security::OpaqueBuffer message
);
boolean is_valid (
out Security::UtcT expiry_time
)i
boolean refresh_security_context (
in any refresh_data,
out Security::OpaqueBuffer out_token
)i
boolean process_refresh_token (
in Security::OpaqueBuffer refresh_token
)i
boolean discard_security_context (
in Security::Opaque discard_data,
out Security::OpaqueBuffer out_token

);

boolean process_discard_token (
in Security::OpaqueBuffer discard_token,
)i
h

interface ClientSecurityContext : SecurityContext {
/I Locality Constrained
readonly attribute Security::AssociationOptions
association_options_used;
readonly attribute Security::DelegationMode
delegation_mode;
readonly attribute Security::Opaque comp_data;
readonly attribute SecurityLevel2::Credentials
client_credentials;
readonly attribute Security::AssociationOptions
server_options_supported;
readonly attribute Security::AssociationOptions
server_options_required;
readonly attribute Security::Opaque server_security_name;

J3

interface ServerSecurityContext : SecurityContext {

/I Locality Constrained
readonly attribute Security::AssociationOptions

association_options_used;
readonly attribute Security::DelegationMode

delegation_mode;
readonly attribute SecurityLevel2::Credentials

server_credentials;
readonly attribute Security::AssociationOptions

Security Service, v1.7 March 2001 B-23

server_options_supported;
readonly attribute Security::AssociationOptions

server_options_required;
readonly attribute Security::Opaque server_security_name;

J3

interface RequiredRights{
void get_required_rights(

in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator
);
void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::Repositoryld interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator
);
h
interface AuditChannel { /I Locality Constrained
void audit_write (
in Security::AuditEventType event_type,
in SecurityLevel2::CredentialsList creds_list,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opague event_specific_data
);
readonly attribute Security::AuditChannelld audit_channel_id;
h
interface AuditDecision { /I Locality Constrained
boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list
);
readonly attribute AuditChannel audit_channel;
h
interface AccessDecision { /I Locality Constrained

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

B-24 Security Service, v1.7 March 2001

#endif /* _SECURITY_REPLACEABLE_IDL_ */

B.8 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message
fields in the Secure Inter-ORB protocol. This module depends oiOfhendSecurity
modules.

#if !defined(_SECIOP_IDL_)
#define SECIOP_IDL
#include <IOP.idI>

#include <Security.idl>
#pragma prefix "omg.org"

module SECIOP {
const IOP::Componentld TAG_GENERIC_SEC_MECH = 22;
const IOP::Componentld TAG_ASSOCIATION_OPTIONS = 13;
const IOP::Componentld TAG_SEC_NAME = 14;
const IOP::Componentld TAG_SECIOP_INET_SEC_TRANS = 123;

struct SECIOP_INET_SEC_TRANS {
unsigned short port;

3

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

h

struct GenericMechanisminfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

h

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,
MT ContinueEstablishContext,
MTDiscardContext,
MTMessageError,

Security Service, v1.7 March 2001 B-25

Security Service, v1.7

MTMessagelnContext

I3

typedef unsigned long long Contextld;

enum ContextldDefn {
CIDClient,
CIDPeer,
CIDSender

h

struct EstablishContext {
Contextld
sequence <octet>

3

client_context_id;
initial_context_token;

struct CompleteEstablishContext {

Contextld
boolean
Contextld
sequence <octet>

3

client_context_id;
target_context_id_valid;
target_context_id;
final_context_token;

struct ContinueEstablishContext {

Contextld
sequence <octet>

J3

struct DiscardContext {
ContextldDefn
Contextld
sequence <octet>

h

struct MessageError {
ContextldDefn
Contextld
long
long

3

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

I3

struct MessagelnContext {
ContextldDefn
Contextld
ContextTokenType
sequence <octet>

client_context_id;
continuation_context_token;

message_context_id_defn;
message_context_id;
discard_context_token;

message_context_id_defn;
message_context_id;
major_status;
minor_status;

message_context_id_defn;
message_context_id;
message_context_type;
message_protection_token;

March 2001

h

/I message_protection_token is obtained by CDR encoding

/I the following SequencingHeader followed by the octets of the
/I frame data. SequencingHeader + Frame Data is called a

/I SequencedDataFrame

struct SequencingHeader {

octet control_state;

unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

I3

typedef sequence <octet> SecurityName;
typedef unsigned short CryptographicProfile;
typedef sequence <CryptographicProfile> CryptographicProfileList;

/I Cryptographic profiles for SPKM

const CryptographicProfile MD5_RSA = 20;

const CryptographicProfile = MD5 _DES CBC = 21;

const CryptographicProfile = DES_CBC = 22;

const CryptographicProfile = MD5_DES_CBC_SOURCE = 23;
const CryptographicProfile = DES_CBC_SOURCE = 24;

/I Security Mechanism SPKM_1
const IOP::Componentlid TAG_SPKM_1 SEC MECH = 15;

struct SPKM_1 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

h
/I Security Mechanism SPKM_1
const IOP::Componentld TAG_SPKM_2 SEC_MECH = 16;
struct SPKM_2 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

CryptographicProfileList crypto_profile;
SecurityName security_name;

h
/I Cryptographic profiles for GSS Kerberos Protocol

const CryptographicProfile DES_CBC_DES_MAC = 10;

Security Service, v1.7 March 2001 B-27

const CryptographicProfile DES_CBC_MD5 =11;
const CryptographicProfile DES_MAC = 12;
const CryptographicProfile MD5 = 13;

/I Security Mechanism KerberosV5
const IOP::Componentld TAG_KerberosV5_SEC_MECH = 17,

struct KerberosV5 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

J3

/I Cryptographic profiles for CSI-ECMA Protocol

const CryptographicProfile FullSecurity = 1;

const CryptographicProfile NoDataConfidentiality = 2;
const CryptographicProfile LowGradeConfidentiality = 3;
const CryptographicProfile AgreedDefault = 5;

/I Security Mechanism CSI_ECMA_Secret
const IOP::Componentld TAG_CSI_ECMA_Secret SEC_MECH = 18;

struct CSI_ECMA_Secret {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

h
/I Security Mechanism CSI_ECMA_Hybrid
const IOP::Componentld TAG_CSI_ECMA_Hybrid SEC_MECH =19;

struct CSI_ECMA_Hybrid {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

h

/I Security Mechanism CSI_ECMA_Public

const IOP::Componentld TAG_CSI_ECMA_Public. SEC_MECH = 21;
struct CSI_ECMA_Public {

Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

B-28 Security Service, v1.7 March 2001

CryptographicProfileList crypto_profile;
SecurityName security_name;

k
k
#endif /* _SECIOP_IDL */

B.9 SSL

The SSLIOP module holds the structure and TAG definitions needed for using SSL as
the secure transport under CORBA Security. This module depends 8edhety and
the IOP modules.

#if !defined(_SSLIOP_IDL)
#define _SSLIOP_IDL
#pragma prefix "omg.org"
#include <IOP.idI>
#include<Security.idl>

module SSLIOP {
/I Security mechanism SSL

const IOP::Componentld TAG_SSL_SEC_TRANS = 20;

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

k
k
#endif /* _SSLIOP_IDL */

B.10 Secure DCE CIOP

The DCE_CIOP_Security module extension holds structures and TAG definitions
needed for using DCE-CIOP Security. This module depend3ecarity andlOP
modules.

#if Idefined(_DCE_CIOP_SECURITY_IDL)
#define _DCE_CIOP_SECURITY_IDL
#pragma prefix "omg.org"
#include <IOP.idI>
#include <Security.idl>
module DCE_CIOPSecurity {
const IOP::Componentld TAG_DCE_SEC_MECH = 103;

typedef unsigned short DCEAuthorization;

Security Service, v1.7 March 2001 B-29

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

/I since consts of type octet are not allowed in IDL the constant

/I values that can be assigned to the authorization_service field

/l in the DCESecurityMechanisminfo is declared as unsigned shorts.
/I when they actually get assigned to the authorization_service field
/I they should be assigned as octets.

struct DCESecurityMechanisminfo {
octet authorization_service;
sequence<IOP::TaggedComponent> components;

k
k
#endif /* DCE_CIOP_SECURITY_IDL */

B.11 Values for Standard Data Types

B-30

A number of data types in this specification allow an extensible set of values, so the
user can add values as required to meet his own security policies. However, if all users
defined their own values, portability and interoperability would be seriously restricted.

Therefore, some standard values for certain data types are defined. These include the
values that identify:

® Security attributes (privilege and other attribute types)
® Rights families
® Audit event families and types

® Security mechanism types as used inltbR (andVault, etc.)

Rights families and audit event families are defined a&stensibleFamily type. This

has a family definer value registered with OMG and a family id defined by the family
definer. Security attribute types also have family definers. Family definers with values
0 - 7 are reserved for OMG. The family valOes used for defining standard types

(e.g., of security attributes).

B.11.1 Security Attributes

Section 2.3, “Application Developer’s Interfaces,” on page 2-71 defines an attribute
structure for privilege and other attributes. This includes:

* A family, as previously described.

® An attribute type. Users may add new attribute types. Two standard OMG families
are defined: the family of privilege attributdarily = 1), and the family of other
attributes family = 0). Types in these families are listed in Table B-1.

Security Service, v1.7 March 2001

B

® A defining authority. The field indicates the authority responsible for defining the
encoding of the value field of the attribute. The defining authority is defined as an
octet sequence that is a standard ASN.1 encoding of an OID. The entity referenced
by the OID defines the value’s encoding to/from a sequence of octets. If the
defining authority field is empty (i.e., octet sequence of length 0), the defining
authority is the OMG. The OMG defines all attribute values to be UTF-8 byte
encodings of a string value.

® An attribute value. The attribute value is encoded as an octet sequence. The
encoding is specified by thdefining_authority field.

Attributes used in the CORBA realm or CORBA based security mechanisms have
values of UTF-8 encoded strings, which is stipulated by an empty sequence of octets
for thedefining_authority field. A defining authority field stipulating different
encodings for values is meant for the representation of security attributes from security
mechanism other than CORBA such that the values of these attrdautestbe
represented as the standard UTF-8 encoding of a string, or if such a mapping to and
from a string is not defined. Equality for attributes is defined as structural equality
based on structural equality on the attribute type, octet sequence equality on the
defining authority, and octet sequence equality of the value.

Table B-1 Attribute Values

Attribute Type Value | Meaning

Privilege Attributes (family = 1)| All privilege attributes are used for access control.

Public 1 The principal is a member of the general public
(always present).

Accessld 2 The identity of the principal used for access
control.

PrimaryGroupld 3 The primary group to which the principal belongs.

Groupld 4 A group to which the principal belongs.

Role 5 A role the principal takes.

AttributeSet 6 An identifier for a set of related attributes, which a
user or application can obtain.

Clearance 7 The principal’s security clearance.

Capability 8 A capability.

Other Attributes (family = 0)

Auditld 1 The identity of the principal used for auditing.

Accountingld 2 The id of the account to be charged for resource
use.

NonRepudiationid | 3 The id of the principal used for non-repudiation.

Security Service, v1.7 March 2001 B-31

B.11.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of
operations, so the administrator only needs to know what rights are required, rather
than the semantics of particular operations.

Rights are grouped into families. Only one rights family is defined in this specification.
The family definer is OMG (valu®) and the family id is CORBA (valug). Other
families may be added by vendors or users.

Three values are specified for the standard CORBA rights family.

Table B-2 CORBA Rights Family Values

Right Meaning

“get’ Used for any operation on the object that does not change its state.

“set’ For operations on an object that changes its state.

“managé For operations on the attributes of the object, not its state.

“usé For operations on an object that may change the overall state of the
system, but not the state of the object itself.

B.11.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in Section 2.3, “Application
Developer’s Interfaces,” on page 2-71.

Only one event family is defined in this specification. This has a family definer of

OMG (valueQ) and family of SYSTEM (valud) and is used for auditing system

events. All events of this type are audited by the object security services, or the
underlying security services they use. Some of these events must be audited by secure
object systems conforming to Security Functionality Level 1 (though in some cases,
the event may be audited by underlying security services). Other event types are
identified so that, if produced, a standard record is generated, so that audit trails from
different systems can more easily be combined. System audit events are specified in
Table B-3 on page B-32.

Table B-3 System Audit Events

Event Name Value| Whether Meaning and Event Specific Data
Mandatory

AuditPrincipalAuth 1 Yes Authentication of principals, either via the principal
authentication interface or underlying security
services.

AuditSessionAuth 2 Yes Security association/peer authentication.

AuditAuthorization 3 Yes Authorization of an object invocation (normally using
an Access Decision object).

B-32 Security Service, v1.7 March 2001

Event Name Value| Whether Meaning and Event Specific Data
Mandatory
Auditlnvocation 4 No Object invocation (i.e., the request/reply).
AuditSecEnvChange 5 No Change to the security environment for this client or
object (e.g., override_default_credentials).
AuditPolicyChange 6 Yes Change to a security policy (using the administrative
interfaces in the Administrator’s Interfaces section).
AuditObjectCreation 7 No Creation of an object.
AuditObjectDestruction 8 No Destruction of an object.
AuditNonRepudiation 9 No Generation or verification of evidence.

Application audit policies are expected to use application audit families.

B.11.4 Security Mechanisms

The security specification allows use of different mechanisms for security associations.
These are used in the Interoperable Object Reference and also on the interface to the

Vault.

Mechanism ids that are formed by stringifying the integer value of the corresponding
mechanism tag value. So, for example the mechanism id of mechanism type SPKM_1
is the string “15”, which is the string representation of the mechanism tag value
defined in the SECIOP module above as TAG_SPKM_1 SEC_MECH.

Following this rule, the currently defined mechanism ids are:

Table B-4 Mechanism Ids

Mechanism Name Mechanism Tag Mech Id Base Mech
SPKM_1 TAG_SPKM_1_SEC_MECH 15 SPKM

SPKM_2 TAG_SPKM_2_SEC_MECH 16’ SPKM

KerberosV5 TAG_KerberosV5_SEC_MECH 17 KerberosV5
CSI_ECMA_Secret TAG_CSI_ECMA_Secret_ SEC_MECH 18" CSI_ECMA
CSI_ECMA_Hybrid TAG_CSI_ECMA_Hybrid_SEC_MECH 19 CSI_ECMA
CSI_ECMA_Public TAG_CSI_ECMA_Public_SEC_MECH 2r CSI_ECMA

Security Service, v1.7 March 2001 B-33

Cryptographic profile ids are the stringified form of the value of the cryptographic
profile constant. For example the id of the cryptographic prMiEs_RSA is the
string “20°. The cryptographic profile ids currently defined are:

Table B-5 Cryptographic Profile Ids

Profile Name Profile 1d Base Mech
MD5_RSA 20 SPKM
MD5_DES_CBC 21" SPKM
DES_CBC 22 SPKM
MD5_DES_CBC_SOURCE| 23’ SPKM
DES_CBC_SOURCE 24 SPKM
DES_CBC_DES_MAC {0} KerberosV5
DES_CBC_MD5 1717 KerberosV5
DES_MAC “12 KerberosV5
MD5 “13 KerberosV5
FullSecurity 1" CSI_ECMAS
NoDataConfidentiality 2" CSI_ECMA
LowGradeConfidentaility 3 CSI_ECMA
AgreedDefault 5" CSI_ECMA

A complete mechanism type (used fdechanismType parameters) consists of a
mechanism id with zero, one or more comma separated cryptographic profiles
appended to it. For example the mechanism tyiie 20 representsSPKM_1
mechanism wittMD5_RSA cryptographic profile.

B-34 Security Service, v1.7 March 2001

C.1

Introduction

Relationship to OtherServices C

This appendix describes the relationship between Object Services and Common
Facilities and the security architecture components, if they are to participate in a
consistent, secure object system.

C.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, may
be unaware of security, and rely on the security enforced automatically on object
invocations. As for application objects, access to their operations can be controlled by
access policies as described in Section 2.1, “Security Reference Model,” on page 2-1,
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to
enforce security itself. For example, it may need to control access to functions and data
at a finer granularity than at object invocation, or need to audit such activities. The way
it can do this is described in Section 2.1, “Security Reference Model,” on page 2-1.
Existing Object Services should be reviewed to see if such access control and auditing
is required.

If an Object Service or Common Facility is required to be part of a more secure
system, some assurance of its correct functioning, if security relevant, is needed, even
if it is not responsible for enforcing security itself. See Appendix E for guidelines on
this matter.

Where an Object Service is called by an ORB service as part of object invocation in a
secure system, there is a need to ensure security of all the information involved in the
invocation. This requires ORB Services to be called in the order required to provide the
specified quality of protection. For example, the Transaction Service must be invoked
first to obtain the transaction context information before the whole message is
protected for integrity and/or confidentiality.

Security Service, v1.7 March 2001 C-1

In the following sections, we provide an initial estimation of the relationship between
Security Service and other existing services and facilities.

C.3 Relationship with Specific Object Services

C-2

C.3.1 Naming Service

For security, the object must be correctly identified wherever it is within the distributed
object system. The Naming Service must do this successfully in an environment where
an object name is unique within a naming context, and name spaces are federated.
(However, to provide the required proof of identity, objects, and/or the gatekeepers
which give access to them will be authenticated using a separate Authentication
Service.) See Section E.3.2, “Basis of Trust,” on page E-9, for additional information
about the relationship between security and names.

C.3.2 Event Service

The implementation of a Security Audit Service may involve the use of Event Service
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects the
audit trail from modification and deletion. It must also be able to guard against
recursion if it audits its own activities.

C.3.3 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this service, in
which case the implementation of the Persistent Object Service must ensure that data
stored and retrieved through it is not tampered with by unauthorized entities. If it is
used in the implementation of Security Service or by a secure application, it must
follow the guidelines in Appendix E.

C.3.4 Time Service

The Security Service uses the data types for time, timestamps, and time intervals as
defined by the Time Service, so that applications can readily use the Time Service
defined interfaces to manipulate the time data that the Security Service uses. The
interfaces of Security Service do not explicitly pass any interfaces defined in the Time
Service.

C.3.5 Other Services

The other services are not used explicitly. If any of them are used in the
implementation of Security Service or by a secure application, it must be verified that
the service used follows the guidelines in Appendix E.

Security Service, v1.7 March 2001

C.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the
Object Management Architecture, only minimal, security-specific administration
interfaces are specified here. When Common Facilities Management services are
specified, they will need to take into account the need for security management and
administration identified in this specification. Also, such management services will
themselves need to be secure.

This specification adds certain basic interfaces to CORBA, which form the basis for
the minimal policy administration related interfaces and functionality that has been
provided. Future management facilities are expected to build upon this foundation.

Security Service, v1.7 March 2001 C-3

Security Service, v1.7

March 2001

Conformance Details and Statement D

D.1 Conformance Details

CORBA Security Feature Packages include the following.

D.1.1 Main Security Functionality

There are two possible levels.

e Level I This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

e Level 2 This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

Security Functionality Options

These are functions expected to be required in several ORBSs, so are worth including in
this specification, but are not generally required enough to form part of one of the main
security functionality levels previously specified. There is only one such option in the
specification.
* Non-Repudiation This provides generation and checking of evidence so that
actions cannot be repudiated.

D.1.2 Security Replaceability

This specification is designed to allow security policies to be replaced. The additional
policies must also conform to this specification. This includes, for example, new
Access Polices. Security Replaceability specifies if and how the ORB fits with
different security services. There are two possibilities.

Security Service, v1.7 March 2001 D-1

* ORB Services replaceabilityThe ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security-specific code, as that is in the
interceptors.

e Security Service replaceabilitythe ORB may or may not use interceptors, but
all calls on security services are made via the replaceability interfaces specified in
Section 2.5, “Implementor’s Security Interfaces,” on page 2-142. These interfaces
are positioned so that the security services do not need to understand how the
ORB works, so they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options is said to be Security
Ready (i.e., support no security functionality itself, but be ready to have security
added).

Note —Some replaceability of the security mechanism used for secure associations
may still be provided if the implementation uses some standard generic interface for
security services such as GSS-API.

D.1.3 Secure Interoperability using SECIOP

An ORB supporting this can generate/use security information in the IOR and can
send/receive secure requests to/from other ORBs using the GIOP/IIOP protocol with
the security (SECIOP) enhancements defined in Section 3.2, “Secure Inter-ORB
Protocol (SECIOP),” on page 3-34, providing they can both use the same underlying
security mechanism and algorithms for security associations.

D.1.4 Common Secure Interoperability (CSI) Feature packages

These feature packages each provide different levels of secure interoperability. There
are three functionality levels for Common Secure Interoperability (CSI).

All levels can be used in distributed secure CORBA compliant object systems where
clients and objects may run on different ORBs and different operating systems. At all
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity, and
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSl level 2 can support all the security functionality described
in the CORBA Security specification. Facilities are more restricted at levels 0 and 1.
The three levels are:

1. Identity based policies without delegation (CSI level Ot this level, only the
identity (no other attributes) of the initiating principal is transmitted from the client
to the target, and this cannot be delegated to further objects. If further objects are
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

Security Service, v1.7 March 2001

D

2.

Identity based policies with unrestricted delegation (CSI level Aj) this level,

only the identity (no other attributes) of the initiating principal is transmitted from
the client to the target. The identity can be delegated to other objects on further
object invocations, and there are no restrictions on its delegation, so intermediate
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 2.1.6.2, “Overview of Delegation Schemes,” on
page 2-14.)

. Identity & privilege based policies with controlled delegation (CSI level &)this

level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and
groups. Delegation of these attributes to other objects is possible, but is subject to
restrictions, so the initiating principal can control their use. Optionally, composite
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packages.

D.1.5 Common Security Protocol Packages

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. Common Security
Protocols define the details of the tokens in the IIOP and SECIOP messages as
applicable. Four protocols are defined:

1.

SPKM Protocol This protocol supports identity based policies without delegation
(Csl level 0) using public key technology for keys assigned to both principals and
trusted authorities. The SPKM protocol is based on the definition in [20]. The use
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIOP.

. GSS Kerberos ProtodoThis protocol supports identity based policies with

unrestricted delegation (CSI level 1) using secret key technology for keys assigned
to both principals and trusted authorities. It is possible to use it without delegation
(providing CSI level 0). The GSS Kerberos protocol is based on the [12] which
itself is a profile of [13]. The use of Kerberos in CORBA interoperability is based
on the SECIOP extensions to IIOP.

. CSI-ECMA protocol This protocol supports identity and privilege based policies

with controlled delegation (CSI level 2). It can be used with identity, but no other
privileges and without delegation restrictions if the administrator permits this (CSI
level 1) and can be used without delegation (CSI level 0). For keys assigned to
principals, it has the following options:

« |t can use either secret or public key technology.

It uses public key technology for keys assigned to trusted authorities.

Security Service, v1.7 March 2001 D-3

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined
in ECMA 235, but is a significant subset of this - the SESAME profile as defined in
[16]. It is designed to allow the addition of new mechanism options in the future;
some of these are already defined in ECMA 235. The use of CSI-ECMA in CORBA
interoperability use the SECIOP extensions to IIOP.

DCE-CIOP: An ORB supporting this option provides secure interoperability using
DCE Security together with the Security extensions to DCE-CIOP.

SSL protocol This protocol supports identity based policies without delegation
(CsSl level 0). The SSL protocol is based on the definition in [21]. The use of SSL
in CORBA interoperability does not depend on the SECIOP extensions to IIOP.

An ORB that interoperates securely must do so using one of these protocol packages.
For the definitive statement on conformance requirements see below.

D.2 Conformance Requirements

D-4

An ORB must meet the following requirements to claim conformance to the CORBA
Security specification:

To claim conformance to theORBA Security interfaces it must support the
following feature packages:

e Security Functionality Level 1.

To claim conformance t&€ORBA Secure Interoperability it must support the
following feature packages:

» Secure Interoperability using SECIORP

e CSl Level 1

* GSS Kerberos Protocol using MD5 Cryptographic profile

Conformance to any of the other feature packages may be claimed in addition to the
base conformance specified in the previous bullet item, by providing the interfaces,
facilities and support for protocols specified in that package, as described further in
the following sections.

The conformance statement required for a CORBA Security conformant
implementation is defined in Section , “Facilities Not in This Specification. Appendix
includes two checklists, one for functionality and the other for interoperability, which
can be completed to show what the ORB conforms to; they are reproduced next. A
main security functionality level must always be specified. Functional Options,
Security Replaceability, and Secure Interoperability should be indicated by checking
the boxes corresponding to the function supported by the ORB.

Table D-1 CORBA Security Functionality Checklist

Functionality

Main Functionality | Options Security Replaceability
Non ORB Security Security
Level 1 Level 2 | Repudiation Services Services Ready

Security Service, v1.7 March 2001

Table D-2 CORBA Secure Interoperability Checklist

Interop | IOP DCE-
SECIOP

Level SPKM CSI-ECMA SSL CIOP
SPKM | SPKM | Kerberos | Privat | Public | Hybri
1 2 e d

Level O

Level 1 | XXXX | XXXX XXX

Level 2 | XXXX | XXXX XXXXX XXX

D.3 Security Functionality Level 1

Security Functionality Level 1 provides:

® A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

®* An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g., to control
access to its own attributes and operations).

D.3.1 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following security
features for all applications, whether they are security-aware or not.

® Allow users and other principals to be authenticated, though this may be done
outside the object system.

®* Provide security of the invocation between client and target object including:

¢ Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other secure
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

« Integrity and/or confidentiality of requests and responses between them.

¢ Control of whether this client can access this object. At this level, access controls
can be based on “sets” of subjects and “sets” of objects. Details of the Access
Policy and how this is administered are not specified.

® At an intermediate object in a chain of calls, the ability to be able to either delegate
the incoming credentials or use those of the intermediate object itself.

® Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited may
occur, and be audited, outside the object system (for example, in underlying security

Security Service, v1.7 March 2001 D-5

services). In this case, the conformance statement must identify the product
responsible for generating the record of such an event (or choice of product, for
example, when the ORB is portable to different authentication services).

At this level, auditing of object invocations need not be selectable. However, it must
be possible to ensure that certain events are audited (see Section B.11.3, “Audit
Event Families and Types,” on page B-32, for the list of mandatory events).

Note —For security aware applications, it must also make the privileges of
authenticated principals available to applications for use in application access control
decisions.

These facilities require the ORB and security services to be initialized correctly. For
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

D.3.2 Security Interfaces Supported

Security interfaces available to applications may be limited to:

get_service_informationproviding security options and details (see Section 2.3.2,
“Finding Security Features,” on page 2-73).

get_attributes on Current (see Interfaces under Section 2.3.9, “Security Operations
on Current,” on page 2-97).

No administrative interfaces are mandatory at this level.

D.3.3 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other security
options. For example, it may also:

Support some of the Security Functionality Options specified in, Section D.5,
“Security Functionality Optional Packages,” on page D-8.

Provide security replaceability using either of the replaceability options.

Provide secure interoperability, though in this case, will need to provide security
associations at the ORB level (not lower-layer communications) as the protocol
assumes security tokens are at this level.

D.4 Security Functionality Level 2

D-6

This is the functionality level that supports most of the application interfaces defined in
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and the administrative
interfaces defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115. It
provides a competitive level of security functionality for most situations.

Security Service, v1.7 March 2001

D.4.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

Principals can be authenticated outside or inside the object system.

Security of the invocation between client and target objects is enhanced.

« Establishment of trust and message protection can be done at the ORB level, so
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

« Further integrity options can be requested (e.g., replay protection and detection of
messages out of sequence) but need not be supported.

« The standardomainAccessPolicyis supported for control of access to
operations on objects.

¢ Selective auditing of methods on objects is supported.

Applications can control the options used on secure invocations. It can:

* Choose the quality of protection of messages required (subject to policy controls).
« Change the privileges in credentials.

¢ Choose which credentials are to be used for object invocation.

« Specify whether these can just be used at the target (e.g. for access control) or
whether they can also be delegated to further objects.

No further delegation facilities are mandatory, but the application can request
“composite” delegation, and the target can obtain all credentials passed, in systems
that support this. Note that “composite” here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

Administrators can specify security policies using domain managers and policy
objects as specified in Section 2.4, “Administrator’s Interfaces,” on page 2-115. The
security policy types supported at Level 2 are all those defined in Section 2.4,
“Administrator’s Interfaces,” on page 2-115 except non-repudiation. The standard
policy management interfaces for each of the Level 2 policies is supported.

Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g., which events types to audit) and some
policies the ORB enforces for them (e.g., default qop, delegation mode).

ORBs (and ORB Services, if supported) can find out what security policies apply to
them. They can then use these policy objects to make decisions about what security
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) depending on

policy type.

As at Level 1, these facilities require the ORB and security services to be initialized
correctly.

Security Service, v1.7 March 2001 D-7

D.4.2 Security Interfaces Supported

Interfaces supported at this level are:

® All application interfaces defined in Section 2.3, “Application Developer’s
Interfaces,” on page 2-71, except those in Section 2.1.7, “Non-repudiation,” on
page 2-18.

® All security policy administration interfaces defined in Section 2.4, “Administrator’s
Interfaces,” on page 2-115 (except those for the non-repudiation policy).

Note that some of these interfaces may raiSORBA::NO-IMPLEMENT exception,
as not ORBs conforming to Level 2 Security need implement all possible values of all
parameters. This will happen when:

® A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Section B.2, “General Security Data Module,” on
page B-1).

® A delegation mode is requested, which is not supported.

®* A communication direction for association options is requested, which is not
supported.

D.4.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other security
options. For example, it may also:

® Support some of the Security Functionality Options specified in Section D.6,
“Security Replaceability,” on page D-10.

®* Provide security replaceability, using either of the replaceability options.

® Provide secure interoperability.

D.5 Security Functionality Optional Packages

D-8

An ORB may also conform to optional security functionality defined in this
specification. Only one optional facilities is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

D.5.1 Non-repudiation

D.5.1.1 Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generating
and verifying evidence described in Section 2.2.5.3, “The Model as Seen by the
Objects Implementing Security,” on page 2-62. Note that thesblR€¥edentials, the
attributes in which may be the same as in the credentials used for other security

Security Service, v1.7 March 2001

D

facilities. Where non-repudiation is supported, the credentials acquired from the
environment or generated by the authenticate operation must be able to support non-
repudiation.

D.5.1.2 Security Operations Supported

The following operations must be supported. All are available to applications. They
are:

* set /get NR_featuress defined in Section 2.1.7, “Non-repudiation,” on page 2-18.

® generate_token verify_evidence form_complete_evidenceandget_token_details
of NRCredentials object as defined in Section 3.1.12.6, “Non repudiation,” on
page 3-25.

® Use ofset/get_credentialson Current specifying the type of credentials to be used
is NRCredentials.

®* NRPolicy object with associated interfaces as in Section 3.1.12.6, “Non
repudiation,” on page 3-25.

D.5.1.3 Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, which
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for
conformance to the non-repudiation security functionality option.

Secure interoperability as defined in Section D.7, “Secure Interoperability,” on
page D-11, is not affected by non-repudiation. The evidence may be passed on an
invocation as a parameter to a request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e., one non-
repudiation service handling evidence generated by another).

D.5.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additional
policies must also conform to some of the interfaces in this specification if they are
used to replace the standard policies automatically enforced on object invocation.

The case described next is for the addition of a new Access Policy which can be used
for controlling access to objects automatically, replacing the standard
DomainAccessPolicy

Clearly, other policies can be replaced. For example, the audit policy could be replaced
by one that used different selectors, or the delegation policy could be replaced by one
that supported more advanced features.

Security Service, v1.7 March 2001 D-9

D

D.6 Security Replaceability

D-10

This specifies how an ORB can fit with security services, which may not come from
the same vendor as the ORB. As explained above, there are two levels where this can
be done (apart from any underlying APIs used by an implementation).

D.6.1 Security Features Replaceability

Conformance to this allows security features to be replaced.

If it is provided without conformance to the ORB Service replaceability option (see
Section D.6.2, “ORB Services Replaceability,” on page D-10), it requires the ORB to
have a reasonable understanding of security, handling credentials, etc. and knowing
when and how to call on the right security services.

Support for this replaceability option requires an ORB (or the ORB Services it uses) to
use the implementation-level security interfaces as defined in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-142. This includes:

® TheVault, Security Context Access DecisionAudit andPrincipal Authentication
objects defined in Section 2.5.2, “Implementation-Level Security Object Interfaces,”
on page 2-148.

® Certain features of the CORBA Core needed for ORB Service Replaceability can be
found in theCommon Object Request Broker: Architecture and Specification

D.6.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use different
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security ones. It
also assumes that any of these services may have associated policies, which control
some of their actions.

Support for this replaceability option requires an ORB to:

® Use the Interceptor interfaces defined in the Interceptor chapter &fotmenon
Object Request Broker: Architecture and Specificatmicall security interceptors
defined in Section 2.5.1, “Security Interceptors,” on page 2-142, in the order
defined there.

® Use theget_policy operation (and the associated security policy operations such as
access_allowedaudit_neededdefined in Section 2.3.12, “Access Control,” on
page 2-102 and Section 2.3.10, “Security Audit,” on page 2-99 respectively, for
access control and audit and agggi_association_optionsand
get_delegation_modalefined in Section 2.4.6, “Secure Invocation and Delegation
Policies,” on page 2-134, for association options, quality of protection of messages,
and delegation).

Security Service, v1.7 March 2001

D.6.3 Security Ready for Replaceability

An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

D.6.3.1 Security Functionality Required

An ORB that is Security Ready does not have to provide any security functionality,
though must correctly respond to a request for the security features supported.

D.6.3.2 Security Interfaces Supported

® get_service_informationoperation providing security options and details (see
Section 2.3.2, “Finding Security Features,” on page 2-73).

® get_current operation to obtain the Current object for the execution context (see the
ORB Interface chapter of theommon Object Request Broker: Architecture and
Specificatiof.

D.6.3.3 Other Security Conformance

An ORB that is Security Ready for replaceability supports one of the replaceability
options. This should be done in such a way that the ORB can work without security,
but can take advantage of security services when they become available. So it calls on
the replaceability interfaces correctly (using dummy routines to replace security
services when these are needed, but not available).

D.7 Secure Interoperability

The definition of secure interoperability in this document specifies that a conformant
ORB can:

® Generate, and take appropriate action on, Interoperable Object References (IORs),
which include security tags as specified in Section 3.1.4, “CORBA Interoperable
Object Reference with Security,” on page 3-7.

®* Transmit and receive the security tokens needed to establish security associations,
and also the protected messages used for protected requests and responses once t}
association has been established according to the protocol defined in Section 3.2,
“Secure Inter-ORB Protocol (SECIOP),” on page 3-34.

Note that a Security Ready ORB (i.e., with no built-in security functionality) may, by
additions of appropriate security services, conform to secure interoperability.

For ORBs to interoperate securely, they must choose to use the same mechanism,
algorithms, etc. (or use a bridge between them, if available). A set of standard security
mechanisms and algorithms are described in subsections.

Security Service, v1.7 March 2001 D-11

D-12

D.7.1 Standard Secure Interoperability

An ORB that conforms to this must support the security-enhanced IOR defined in
Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-7,
and also GIOP/IIOP protocol with the SECIOP enhancements as defined in
Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34.

As for CORBA 2, this may be done by immediate bridges or half bridges. (However,
use of half bridges implies more complex trust relationships, which some systems may
not be able to support.) This allows a large range of security mechanisms to be used.

D.7.2 Common Secure Interoperability Levels

There are three functionality levels for Common Secure Interoperability (CSl). An
example of the difference in use of the three levels is explained in Section D.7.2,
“Common Secure Interoperability Levels,” on page D-12.

All levels can be used in distributed secure CORBA compliant object systems where
clients and objects may run on different ORBs and different operating systems. At all
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity, and
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSl level 2 can support all the security functionality described
in this specification. Facilities that are supportable at levels 0 and 1 are more restricted.
The three levels are:

1. Identity based policies without delegation (CSI level 0)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and this cannot be delegated to further objects.
If further objects are called, the identity will be that of the intermediate object, not the
initiator of the chain of object calls.

Access and audit policies at this level are based on the identity of the immediate
invoker. So access and audit policies in encapsulated objects which depend on the
initiator of the chain, can only be used at the point of entry to the object system, not in
further objects encapsulated by it.

As the attributes of principals are not delegated, environments should not be trusted to
pass on principal information which should be controlled.

Examples of applications which can use level 0 facilities are wrapped legacy
applications and telephone switches. If a CSl level 0 ORB also supports non-
repudiation, it can also be used for other types of applications such as electronic funds
transfer.

Security Service, v1.7 March 2001

D

2. Identity based policies with unrestricted delegation (CSl level 1)

At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target. The identity can be delegated to other objects
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form of
simple delegation defined in Section 2.1.6, “Delegation,” on page 2-13.)

Access and audit policies at this level can be based on the identity of the initiating
principal or immediate invoker, depending on the delegation policy.

As delegation is not restricted, once an initiator has delegated his identity, it must trust
the objects it calls not to abuse its delegated rights to act as the initiator. In practice,
this will limit the type of environment in which level 1 should be used to relatively
closed environments.

An example of an application environment which can use level 1 facilities is a back
office system protected by firewalls where identity based policies are acceptable.

3. Identity & privilege based policies with controlled delegation (CSI
level 2)

At this level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and groups
Delegation of these attributes to other objects is possible, but is subject to restrictions,
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefore, it
provides interoperability for ORBs conforming to all CORBA Security functionality.

Access and audit policies are based on the attributes of initiating principals. At this
level, a wider range of policies can be supported (e.g., role based access controls and
mandatory access controls using the initiating principal’s security clearance).

At this level, an initiator needs to trust those targets which it has allowed to use its
attributes not to abuse these. It does not have to trust these targets not to delegate the
attributes outside the trusted set of targets, as the delegation controls can be used to
prevent this.

This level can be used for a wide range of applications in large enterprise and inter-
enterprise networks.

Security Service, v1.7 March 2001 D-13

D.7.3 SECIOP Hosted Interoperability Mechanisms

The following conformance can be claimed:

® SPKM at level 0 by providing the specified CSI level using the SPKM protocol
(mechanisnSPKM_1 and optionally als&PKM_2).

® KerberosV5 at level 0 or 1 by providing the specified CSI level using the Kerberos
protocol.

® CSI-ECMA Public Key at level 0, 1, or 2 by providing the specified level of CSI
functionality using the CSI-ECMA protocol with the public key option (mechanism
CSI_ECMA_Public).

® CSI-ECMA Secret Key at level 0, 1, or 2 by providing the specified CSI level using
the CSI-ECMA protocol with the secret key option (mechanism
CSI_ECMA_Secre).

® CSI-ECMA Hybrid at level 0, 1, or 2 by providing the specified CSI level using the
CSI-ECMA protocol with the hybrid key option (mechani&8l_ECMA_Hybrid).

In addition, a conformant ORB must specify all the cryptographic profiles it supports.

D.7.4 Secure Interoperability with SSL

Conformance can be claimed for CORBA Security based on SSL by providing CSI
level O functionality using SSL on IIOP using any of the cryptographic profiles defined
in[21]. A conformant ORB must specify which of the cryptographic profiles are
supported by it.

D.7.5 Secure Interoperability with DCE-CIOP

An ORB that conforms to this must conform to Standard Secure Interoperability using
GIOP/IIOP as described in Section D.7.1, “Standard Secure Interoperability,” on
page D-12, and also support secure interoperability using DCE-CIOP as defined in
Section 3.8, “DCE-CIOP with Security,” on page 3-1009.

Both the Kerberos V5 based SECIOP Security and DCE Security must be supported
for this option. Any version of DCE up to and including DCE 1.1 is supported; the
DCE interfaces and protocols are specified in [5]

D.8 Conformance Statement

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and
effectiveness of that functionality.

Each OMG-compliant secure or security ready implementation must therefore include
in its documentation a conformance statement describing:

® The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix G.

D-14 Security Service, v1.7 March 2001

D

® The vendor's assurance argument that demonstrates how effectively the product
provides its specified security functionality and security policies.

® Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user can
make an informed decision on whether a product is appropriate for a particular
application. Ordinary descriptive documentation is not required as part of an OMG-
compliant product. However, because the CORBA security specification provides a
general security framework rather than a single model, there are many different kinds
of secure ORB implementations that conform to the framework. For example, some
systems may have greater flexibility and support customized security policies, while
other systems may come with a single built-in policy. Some systems may strive for a
high level of security assurance, while others provide minimal assurance. The
conformance statement will help the user understand the security features provided by
the product.

Some products will undergo an independent formal security evaluation (such as ones
meeting the ITSEC or TCSEC). The OMG security conformance statement does not
take the place of a formal evaluation, but may refer to formal assurance documentation,
if it exists. When formal evaluations are not required (often the case in commercial
systems), it is expected that the product’s security conformance statement along with
supporting product documentation will provide an adequate description of security
functionality and assurance.

D.9 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conformance
Guidelines.

CORBA Security Conformance Statement
<date>
<product identification>
<vendor identification>
1. Introduction
1.1 Summary of Security Conformance
1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

Security Service, v1.7 March 2001 D-15

2.1 Main Security Functionality Level
2.2 Security Functionality Options
2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms
3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information

D.10 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determine
which information belongs in each section of the conformance statement. The
statement will often be accompanied by product documentation to provide some of the
information needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the
product. The summary is in the form of a table with boxes that are ticked to show the
relevant conformance.

Table E-3 CORBA Security Functionality Checklist

Functionality

Main Functionality Options Security Replaceability
Non ORB Security Security
Level 1 Level 2 Repudiation Services Services Ready

D-16 Security Service, v1.7 March 2001

Table E-4 CORBA Secure Interoperability Checklist

Interop 11OP DCE-
SECIOP

Level SPKM CSI-ECMA SSL CIOP
SPKM | SPKM | Kerberos | Privat | Public | Hybri
1 2 e d

Level O

Level 1 | XXXX | XXXX XXX

Level 2 | XXXX | XXXX XXXXX XXX

1.2

1.3

2.1

For the main security functionality level, one of the boxes must be selected (either
Level 1 or Level 2), though note that an ORB can be just Security Ready, so does not
support either of the main security functionality levels. For security functionality
options, security replaceability, and secure interoperability, the appropriate boxes
should be selected.

Scope of Product

This section should define what security components this product offers. Examples are:

® ORB plus all security services needed to support it plus other object services fitting
with it and meeting the assurance criteria.

® Security-ready ORB.

® Security Services, which can be used with a security-ready ORB.

Security Overview

This section should give an overview of the product’s security features.

2. Security Conformance

Main Security Functionality Level

This section should define which main security functionality level this product
supports, Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells
and whistles around the published interfaces, and any limitations on support for this
level.

As in the conformance level descriptions, the description should be divided into:
® The security functionality provided by the product
® The application developer’s interfaces

® The administrative interfaces

Security Service, v1.7 March 2001 D-17

2.2 Security Functionality Options

This section should define which functionality options are provided, in particular the
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should be
accompanied by a qualification statement if needed, as for the main security
functionality level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of security
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any
bells and whistles around the published interfaces, and any limitations on support
for this conformance option.

2.4 Secure Interoperability

This section should define whether the product supports SECIOP based secure
interoperability, DCE-CIOP based interoperability, SSL based interoperability, or
none. As with the previous sections, qualifications of the support, interpretations of the
CORBA specification, and limitations should be included as needed.

2.5 Level of Interoperability

This section should specify what level of interoperability is supported by the ORB. As
with the previous sections, qualifications of the support, interpretations of the CORBA
specification, and limitations should be included as needed.

2.6 Mechanism Profiles

This section should specify what mechanism and cryptographic profiles for
interoperability are supported by the ORB. As with the previous sections,
gualifications of the support, interpretations of the CORBA specification, and
limitations should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, because it
is being formally evaluated), much of this section may be satisfied by references to
such documentation. Appendix E, Guidelines for a Trustworthy System, provides
general discussions of many of the topics described here, particularly the basis of trust
needed for each of the architecture object models.

3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.

D-18 Security Service, v1.7 March 2001

3.2 Threats

Description of specific threats intended to be addressed by the system security policy,
as well as those not addressed.

3.3 Security Policies

Description of any predefined policies, including:

Classes of entities (such as clients, objects) controlled by security policy

Modes of access (conditions that allow active entities to access objects)

Use of domains (policy, trust, technology)

Requirements for authentication of principal, client and target objects

Requirements for trusted path between principals, clients, ORBs, and target objects
Delegation model

Security of communications

Accountability requirements (audit, non-repudiation)

Environmental assumptions of the policy (e.g., classes of users, LAN/WAN,
physical protection)

3.4 Security Protection Mechanisms

Rationale for approach

Identification of components, which must function properly for security policies to
be enforced

Description of mechanisms used to enforce security policy
How protection mechanisms are distributed in the architecture

Why security mechanisms (such as access control) are always invoked and tamper-
proof

3.5 Environmental Support

How the underlying environment (such as operating systems, generation tools,
hardware, network services, time services, security technology) are used in
providing assurance

How installation tools ensure secure configuration

How security management and administration maintains secure configuration

3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

Requirements on use and development of: clients, target objects, legacy software
Limitations on interoperability

Required software and hardware configuration

Security Service, v1.7 March 2001 D-19

3.7 Security Policy Extensions
® Supported security policy extensions, if applicable

® Limitations of extensions

® Requirements imposed on developers to ensure trustworthiness of policy extensions

® Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be used
to describe, for example:

® Additional security features, not covered by the CORBA Security specification

® The impact of security mechanisms on existing applications

D-20 Security Service, v1.7 March 2001

E.1l

Introduction

Guidelines for a Trustworthy System E

This appendix provides some general guidelines for helping ORB implementors
produce a trustworthy system. The intention is to have all information related to
trustworthiness and assurance in this appendix, to explain how the specification has
taken into account the requirements for assurance, and also to show how conformant
implementations can have different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthiness and
assurance. Section E.2, “Protecting Against Threats,” on page E-3, describes the
threats and countermeasures relevant to a CORBA security implementation. Section
E.3 through E.6 provide the architecture and implementation guidelines for each
security object model described in Section 2.2, “Security Architecture,” on page 2-28.

E.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chosen to
allow flexibility in the security features, which can be provided. The specification can
support significantly different security policies and mechanisms for security functions
such as access control, audit and authentication. However, there is an overall security
model which applies whatever the security policy. This is described in the earlier
sections of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the
trustworthiness issues underlying the security model and interfaces described earlier in
the document, and provides implementation guidance on what components of the
architecture need to be trusted and why. Note that trust requirements assume
conformance to all of the security models, including the implementor’s view, as the
implementation affects trustworthiness. If a CORBA security implementation conforms
to the security features replaceability level, but not the ORB services one, any

Security Service, v1.7 March 2001 E-1

requirements on ORB services will apply to the ORB. Trustworthiness will also
depend on several other implementation choices, such as the particular security
technology used.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterprise
management must decide whether the assets will be adequately protected by the
system. Management must be convinced that the particular system configuration is
sufficiently trustworthyto meet the security needs of the enterprise environment.
Security trustworthiness is thus the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.

The basis for trust in distributed systems differs from host-centric stand-alone systems
largely for two reasons. First, the assignment of trust in a distributed system is not
isolated to a single global system mechanism. Second, the degree of trust in elements
of distributed systems (particularly distributeljectsystems) may change

dynamically over time, whereas in host-centric systems trustworthiness is typically
static. In many cases, trust in distributed systems must be seen in the context of mutual
suspicion.

E.1.3 Assurance

Assurancds a qualitative measure of trustworthiness; assurance is the confidence that
a system meets enterprise security needs. The qualitative nature of assurance means
that enterprises may have different assurance guidelines for an equivalent level of
confidence in security. Some organizations may need extensive evaluation criteria,
while other organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the
CORBA Security specification may evaluate the level of security to meet their needs.
A single overall trust model that underlies the security reference model and
architecture (as described elsewhere in this specification) can set this context for closed
systems, but it is unlikely that a single trust model exists for the diversity of open
distributed systems likely to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled from a s
of system building blocks. Concepts of system composition and integration should
allow the assurance analysis to be tailored to specific user requirements. Assurance
evidence should be carefully packaged to best support enterprise decision-makers
during the security trade-off process.

The security object models defined by the CORBA Security specification are the basis
for the necessary building blocks. The trust guidelines described in “Guidelines for
Structural Model” on page E-8, provide constraints on how these components may
relate.

Security Service, v1.7 March 2001

E

The relationship between assurance and security provides the foundation for the overall
security model. The key characteristic is balance. Balanced assurance promotes the use
of assurance arguments and evidence appropriate to the level of risk in the system
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record system.
The former relies on assurance in the underlying operating system, where the latter
focuses security in application software.

E.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropriate
security measures. This document addresses security in distributed object systems, so
focuses on the threats to assets, software, and data, in such systems.

An enterprise may want to assess the risk of a security breach occurring, against the
damage which will be done if it does occur. The enterprise can then decide the best
trade-off between the cost of providing protection from such threats and any
performance degradation this causes, against the probability of loss of assets. This
specification allows options in how security is provided to counter the threats.
However, it is expected that many enterprises will not undertake a formal risk
assessment, but rely on a standard level of protection for most of their assets, as
identified by industry or government criteria. This section describes CORBA-specific
security goals, the main distributed system threats, and protection against them. The
discussion does not emphasize generic issues of threats and countermeasures, but
instead concentrates on issues that are unique to the CORBA security architecture.

E.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in Section 1.1,
“Introduction to Security,” on page 1-2. CORBA security is based on the four
fundamental objectives of any secure system:

® Maintain confidentiality of data and/or system resources.
® Preserve data and/or system integrity.
® Maintain accountability.

® Assure data/system availability.

Many of the goals described in Section 1.1, “Introduction to Security,” on page 1-2 are
relevant to any IT system that is targeted at large-scale applications. However, some
security goals described are specific to the CORBA security architecture. These goals
deserve special attention because they surface potential threats that may not be
encountered in typical architectures. CORBA-specific security goals include:

® Providing security across a heterogeneous system where different vendors may
supply different ORBs.

Security Service, v1.7 March 2001 E-3

® Providing purely object-oriented security interfaces.

® Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

® Allowing polymorphic implementations of objects based on different underlying
mechanisms.

® Ensuring object invocations are protected as required by the security policy.

® Ensuring that the required access control and auditing is performed on object
invocation.

The discussion of the architecture and implementation guidelines in Section E.3,
“Guidelines for Structural Model,” on page E-8, addresses the mechanisms used to
ensure these CORBA-specific security goals, as well as many other generic security
issues.

E.2.2 Threats

The CORBA security model needs to take into account all potential threats to a
distributed object system. It must be possible to set a security policy and choose
security services and mechanisms that can protect against the threats to the level
required by a particular enterprise.

A securitythreatis a potential system misuse that could lead to a failure in achieving

the system security goals previously described. Section 1.1, “Introduction to Security,”
on page 1-2, provided an overview of security threats in a distributed object system.

These threats and related attacks include:

® Information compromise - the deliberate or accidental disclosure of confidential
data (e.g., masquerading, spoofing, eavesdropping).

® Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

® Denial of service- the curtailment or removal of system resources from authorized
users (e.g., network flooding).

® Repudiation of some action failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

® Malicious or inadvertent misuse- active or passive bypassing of controls by either
authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all the
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediation in
truly distributed systems will not only exacerbate the strain on host-centric security
services and mechanisms in use today on client/server systems, but also engender nev
forms of threat.

Security Service, v1.7 March 2001

E

Threats may be of different strengths. For example, accidental misuse of a system is
easier to protect against than malicious attacks by a skilled hacker. This specification
does not attempt to counter all threats to a distributed system. Those that should be
countered by measures outside the scope of this specification include:

® Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with this
threat.

® Traffic analysis.

® |nclusion of rogue code in the system, which gives access to sensitive information.
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilitiesare system weaknesses that leave the system open to one or more of the
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
vulnerabilities often result from deliberate or unintentional trade-offs made in system
design and implementation, usually to achieve other more desirable goals such as
increased performance or additional functionality.

Classes of vulnerabilities include:

® An authorized user of the system gaining access to some information which should
be hidden from that user, but has not been properly protected (e.g., access controls
have not been properly set up or the store occupied by one object has not been
cleared out when another reuses the space).

® A user masquerading as someone else, and so obtaining access to whatever that use
is authorized to do, resulting in actions being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act on
his behalf. This adds the threat of rights being delegated too widely, again, causing
a threat of unauthorized access.

® Controls that enforce security being bypassed.
® Eavesdropping on a communication line giving access to confidential data.

®* Tampering with communication between objects: modifying, inserting, and deleting
items.

® Lack of accountability due, for example, to inadequate identification of users.
® System data as well as business data must be protected. For example:

® |f a principal’'s credentials are successfully obtained by an unauthorized user, they
could be used to masquerade as that principal.

® |f the security sensitive information in the security context between client and target
object is available to an unauthorized user, confidential messages can be read, and it
may be possible to modify and resend integrity-protected messages or send false
messages without this being detected.

Security Service, v1.7 March 2001 E-5

E-6

As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent characteristics
of distributed object systems that make them particularly vulnerable include:

Dynamic Systems-- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security policies
also may be dynamically modified as enterprises change. Dynamic systems are
inherently complex, and thus security may be difficult to ensure. For example, in a
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the policy.
These potential inconsistencies in policy enforcement could lead to a security
failure.

Mutual Suspicion -- In a large distributed system, some system components will
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the potential
to inadvertently place unjustified trust in some system component, thus exposing a
vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system security
architecture must be carefully structured to ensure that these checks are always
performed.

Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each one
enforcing the security requirements of its organization. There is no single security
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy domain
boundaries. Defining the appropriate policies to enforce across domains may be a
difficult job. Mismatched policies could lead to vulnerabilities.

Layering of Security Mechanisms-- Distributed object systems are highly

layered, and the security mechanisms for those systems will be layered as well.
Complex, potentially nondeterministic interactions at the boundary of the layers is
another area for vulnerabilities to occur. A hardware error, for example, could cause
security checking code in the ORB to be bypassed, thus violating the policy. The
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

Complex Administration -- Finally, large geographically distributed object

systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. All of
the issues listed above lead to complex, error-prone administration. An innocent
change to a principal’s access rights, for example, could expose a serious
vulnerability.

Security Service, v1.7 March 2001

E.2.4 Countermeasures

Some threats are common across most distributed secure systems, so should be
countered by standard security features of any OMA-compliant secure systems.
However, the level of protection against these threats may vary. Complete protection is
almost impossible to achieve. Most enterprises will want a balance between a level of
protection against threats which are important to them, and the cost in performance and
use of other resources of providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object models
described in this specification. Relevant features of the object models include the
following:

® Authentication of principals proves who they are, so it is possible to check what
they should be able to do. This check can be performed at both client and target
object, as the client principal’'s credentials can be passed to the server.

® Authentication between clients and target objects allows them to check that they are
communicating with the right entities.

® Security associations can protect the integrity of the security information in transit
between client and target object (e.g., credentials, keys) to prevent theft and replay,
and keep the keys used for protecting business data confidential.

® Business data can be integrity-protected in transit so any tampering is detected
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

® Unauthorized access to objects is protected using access controls.
® Misuse of the system can be detected using auditing.

® Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

® Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a TCB,
which mediates security by segregating the security-relevant functions into a security
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multiple
environment situations in which most CORBA users reside. In many cases, for
example, secure interoperability of CORBA applications and ORBs may be based on
mutual suspicion. TCB scalability issues also argue against typical TCB approaches.
Given the complexity of distributed systems, it is not clear whether centralized access
mediation is possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common to
the CORBA world such as general purpose DBMSs, financial accounting, electronic
commerce, or horizontal common facilities will have many security requirements in
addition to those that can be enforced by a central underlying TCB.

Security Service, v1.7 March 2001 E-7

Despite the limitations of the traditional TCB, we use the conceptidftabutedTCB

in the assurance discussions of the next section. The concept of a distributed TCB is
the collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained. However, note that depending
on the assurance requirements of a particular CORBA security architecture, sensitive
data may still be handled by “entrusted” ORB code. Thus, our informal use of the
distributed TCB concept may not correspond to other existing models for network
TCBs, particularly for minimal assurance commercial CORBA security applications.

E.3 Guidelines for Structural Model

E-8

This section provides architecture and implementation guidelines for the structural
model of the CORBA security architecture described in Section 1.1, “Introduction to
Security,” on page 1-2. The security functions provided in the model and the basis for
trust are described.

E.3.1 Security Functions

user

Figure E-1 outlines interactions during a normal use of the system. It gives a simple
case, where the application is unaware of security except for calling a security service
such as audit. The security interactions include those seen by application objects and
secure object system implementors.

object reference

non-repud
audit etc.

Credentials | ©bjwrer)_ . _ _ _ _ _
System

Implementor’s
View

Security
ORB
Services

Security
ORB
Services

security tokens
transformed request

Figure E-1 Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the
security object models described next.

Security Service, v1.7 March 2001

E.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and
ensuring system enforcement of the policies.

The system developer and systems integrators must provide a system that supports the
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system will
be subject, and to put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluated
according to security criteria such as those of the US TCSEC or European ITSEC.

Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the application
objects so that it can be provided for application objects, which are security unaware.
This key functionality is contained in the distributed TGRthe system. It is therefore
responsible for ensuring that:

® Users cannot invoke objects unless they have been authenticated (unless the security
policy supports unauthenticated, guest access for some services).

® Security policies on access control, audit, and security association are enforced on
object invocation. This includes policies for message protection, both confidentiality
(ensuring confidential data cannot be read) and integrity (ensuring any corruption of
data in transit is detected).

® A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at the
server object.

® Application objects which do not trust each other cannot interfere with each other.
® The security policy between different security policy domains is suitably mediated.
® The security mechanisms themselves cannot be tampered with.

® The security policy data cannot be changed except by authorized administrators.

® The system cannot be put into an undefined or insecure state as a result of the
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applications
can enforce their own security policies in a way that is consistent with the domain
security policy.

Security Service, v1.7 March 2001 E-9

E-10

(Distributes) Trusted Computing Base

R ORB
Services
| |
| Core ORBS and OJA

lower layer
communications

oY

Security Objects
(Principal Authentication, Credentials, Security policies,
Vault, Security Context, Access Decision)

External Security Services

Operating System, Hardware

Figure E-2 Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and includes
components as follows.

The distributed core ORBs and associated Object Adapters

Core ORBs are trusted to function correctly and call the ORB Security Services
correctly in the right order, but do not need to understand what these do.

Object Adapters are trusted to utilize the operating system facilities to provide the
required protection boundaries between components in line with the security policy.

The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Security
Services are used to provide the required security on object invocation.

Related objects
ORB Services use objects such as the binding and Current to find which security is
required.

Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault,

Security Service, v1.7 March 2001

E

Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

® Any external security services used by the security services, as part of enforcing the
security policy.

® The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot interfere
with each other (using protection domains). The security services should also ensure
that the security information driving the security policy (such as the credentials and
security contexts) is adequately protected from the application objects using such
features.

® Optionally, lower layer communications software. However, this does not generally
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communication
software.

A distributed system may be split into domains, which have different security policies.
These domains may include ORBs and ORB Services with different levels of trust.
Trust between domains needs to be established, and an interdomain policy between
them enforced. The ORB security services (and external security services that these
call) to provide this interdomain working are part of the distributed TCB. Note,
therefore, that the parts of this TCB in different domains may have different levels of
trust.

Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce these
securely will affect only the applications concerned and any other application objects
that trusted them to perform this function.

Protection Boundaries

The general approach is to establbtection boundaries around groups of one or

more components, which are said to belong to a correspopditection domain.
Components belonging to a protection domain are assumed to trust each other, and
interactions between them need not be protected from each other, whereas interactions
across boundaries may be subject to controls. Protection Boundaries and Domains are
a lower level concept than Environment Domains; they are the fundamental protection
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:
® Application components that do not trust each other.
® Components that support security services and other components.

® Components that support security services and each other.

Security Service, v1.7 March 2001 E-11

E-12

Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled
means of allowing particular components to interact across protection boundaries (for
example, an application invoking a Security Object (explicitly), or an interceptor

(implicitly).

It must not be possible for applications to bypass security services which enforce
security policies. It is therefore necessary to ensure that the components supporting
those services are always invoked when required. This is achieved by using both
protection boundaries and controlled communications to ensure that client requests
(and server responses) are routed via the components (interceptors and Security
Objects), which implement the security services.

Figure E-3 illustrates the segregation of components implementing security services
into separate protection domains from application components; the only means of
communication between components is via controlled communication paths.

|
| Logical Object Request

Security Services
|

Base Protection and Communications

Figure E-3 Base Protection and Communications

In implementation terms, components could, for example, be executed in separate
processes, with process boundaries acting as protection boundaries. Alternatively,
security services could be executed in-process with (i.e., in the same address space as
corresponding client and server application components, provided that they are
adequately protected from each other -- for example, by hardware-supported multilevel
access control mechanisms).

Figure E-4 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second example
ORB and security components might be protected from applications by memory
protection mechanisms (e.g., kernel and user spaces) and client and server component:
might be protected from each other by physical separation.

Security Service, v1.7 March 2001

|
@ i i Applications @ | @
= S

Hardware and Operating System Hardware and Operating System

Figure E-4 Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to meet
security evaluation criteria for both functionality and assurance (in the correctness and
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other
security evaluation criteria.

The split into components previously described allows a choice over the way the
system is constructed to meet different requirements for assurance and performance.

This section describes three options for how the system may be constructed, as
follows:

®* A commercial system where all applications are generated using trusted tools.
®* A commercial system with limited security requirements.

® A higher security system.

Note —These are just examples to show the type of flexibility provided by the security
model. It is not expected that any implementation will provide all the options implied
by these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted not to
interfere with other components in the same environment. Therefore there is no need to
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

Security Service, v1.7 March 2001 E-13

E-14

If the ORB and ORB Services are also trusted, there may need be no need to provide a
protection boundary between the ORB and the underlying security services and
objects. It may well be acceptable to run them all in the same process, relying on the
trust between the components, rather than more rigidly enforced boundaries.

However, if the application generation tools and the ORB are less trusted than the
security services, then there may need to be a protection boundary to prevent access tc
security-sensitive information in the Credentials, Security Context, and Vault objects.

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprises may
not be prepared to pay for a high level of security. They may also know that the
probability of serious malicious attempts to break the system is low, and decide that
protecting against such attempts is not worth the cost. They may also choose not to
sacrifice performance for better levels of security.

In many systems, applications are generated using tools that are not particularly
trusted. For example, using a C compiler, it would be possible to write an application
that can read, or even alter, any information within the same protection domain.
Theoretically, providing good security implies putting protection boundaries between
each application object, and between applications and the ORB and Security Services.

The security model allows environment domains to be defined, where enforcement of
policy can be achieved by means local to the environment. For example, objects in the
same identity domain can share a security identity. Applications belonging to
environment domains may trust each other not to interfere with each other, and so can
be put in the same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain as
the application objects. This assumes that an interface boundary between applications
and the ORB is sufficient protection from accidental damage (the probability of an
application corrupting an ORB being low in a commercial system). Even if the
application does corrupt the ORB, damage is limited, as the ORB does not handle
security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the security
services in the same protection domain as the application and ORB. The chance of
these being accidentally (or maliciously) corrupted may be low, so it may be
acceptable to risk a failure to enforce the access control policy because the Access
Decision object is corrupt.

However, it will often be desirable to protect the state information of security objects,
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be used.
For example, label-based access controls may be used and these may be mandatory (s
under administrator’s controls) and not changeable by application objects.

Security Service, v1.7 March 2001

Stronger protection boundaries are also likely to be needed, allowing:

® |ndividual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

® The ORB and ORB Services to be protected from the application.

® The core security objects, which contain security-sensitive information such as keys
to be protected from applications and ORBSs, etc.

® Particular secure objects (e.g., the Access Decision objects) to be separate from
others, as they may have been written by someone less trusted than those who
wrote, for example, the Security Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modification
by operating system access control mechanisms. When invoked, programs run inside a
process whose address space is protected by operating system memory protection
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, implementors
have a wide variety of choices; identities may be associated, for example, with the
following:

® Object instances
® Servers
® Object adapters

® Address spaces

If identities are associated with object instances, precautions are necessary to prevent
object instance code from being modified by other code (which may have no identity,
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiations of previously unknown classes into their
address spaces. This makes it difficult to determine what code is running under an
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must therefore
be provided with some way of controlling what code can run under their identities.

Observing the following guidelines will help to ensure integrity of identities.

® Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

® |t must be possible for an identified “entity” to control which code runs within the
scope of its identity.

Security Service, v1.7 March 2001 E-15

E

E.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the application
interface model of the CORBA security architecture described in Section 2.2, “Security
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.4.1 Security Functions

Logging onto the System

When a user or other principal wants to use a secure object system, it authenticates
itself and obtains credentials. These contain its certified identity and (optionally)
privilege attributes, and also controls where and when they can be used. This principal
information is integrity-protected and it should be possible to ascertain what security
service certified them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target object.

®* The client invokes the object using its object reference. The ORB Security Services
are transparent to the client and application object and use the security information
with the object reference and the security policy to decide on the security facilities
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can be
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of proof.
For example, they may or may not require mutual authentication. It is expected that
most security mechanisms will provide options here, though the details of how they
do this, and the form of tokens used, is mechanism dependent.

The principal’s credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as well as
for integrity of the information itself (though some security mechanisms may not
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access control
is normally called at the server, rather than the client.

® Once the security association has been established between client and target object,
the request can be passed using the message protection interceptor to protect it. This
should be able to provide integrity and/or confidentiality protection. It should also
be able to provide continuous authentication, as the messages will be protected
using keys only known to this client and server (or the trust group for the target
object).

E-16 Security Service, v1.7 March 2001

E

® The application object may also call security services for access control and audit.
These will use the security information available from the environment to identify
the initiating principal and its privileges.

® This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there may be
constraints on whether the client’s credentials can be delegated. For example, a
particular principal’s credentials may be constrained to particular groups of objects.

E.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some trust in
other objects. Both may:

® Trust application objects to perform the business functions.

®* Have limited trust in some applications, or domains of the distributed system, so
restrict which of their privilege attributes are available to these objects.

® Want to restrict the extent that their credentials can be propagated at all.

® Have to prove their identity to the system so it can enforce access on their behalf,
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system security
policy, and therefore protect their information from unauthorized access and
corruption.

E.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administration
model of the CORBA security architecture described in Section 2.2, “Security
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes associated
with it depend on the security policies associated with its domain and object type,
though the object may be permitted to change some of these. These attributes control
what security is enforced on object invocation (or example, whether access control is
needed and, if so, the Access Decision object to be used; the minimum quality of
protection required).

The object reference for a such an object is extended to include some security
information. For example, it may contain:

Security Service, v1.7 March 2001 E-17

®* An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the object
belongs to one. Small objects, which are dynamically created and do not need to be
protected from each other, will normally share a trust domain. There could also be a
node identity.

® Security policy attributes required by the object when invoked by a client such as
the minimum quality of protection of data in transit.

® The security technology it supports. It may also contain some mechanism-specific
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the target object, so does not need protecting.

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects themselves,
or it could be stored in a procedural Access Control Manager whose interfaces are
accessible to Domain objects). Wherever authorization policy information is stored, it
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized
administrators.

Audit Policy Information and Audit Logs

Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain private
information; they should be viewed and changed only by authorized auditors.

® Audit policy information must be modifiable only by authorized audit
administrators.

® Audit logs must be protected against unauthorized examination and modification.

E.6 Security Object Implementation Model

E-18

E.6.1 Guidelines

This section provides architecture and implementation guidelines for the security
object implementation model of the CORBA security architecture described in
Section 2.2, “Security Architecture,” on page 2-28. The security functions provided in
the model and the basis for trust are described.

Security Service, v1.7 March 2001

E.6.2 Security Functions

The distributed core ORBSs, object adapters, ORB security services, and security
objects provide the underlying implementation to support the application and
administration interfaces.

E.6.3 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that are
not associated with a human user authenticate themselves in a secure CORBA system.
they use “security names.” Successful authentication to a target object indicates that it
possesses the authentication data (perhaps a cryptographic key), which is presumed tc
be known only to the legitimate owner of the security name. An object’s security name
may be included in references to that object as a “hint.” The question “how do
applications know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

® |f the EstablishTrustinTarget security feature is specified, then the security
services defined in this specification will authenticate the target security name
found in the target object reference. The semantics of this authentication operation
include an assumption that the security name in the reference corresponds to an
identity that the user is willing to trust to provide the target object’s implementation.
There is no way for the security services to test this assumption.

® |f your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provideged _security _namesperation on the object
reference through which applications can retrieve the target’'s security name and
perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations with
very high integrity requirements could ensure that references are trustworthy by
providing a trustworthy service that generates references and cryptographically signs
the contents, including the target security name.

Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms to
enforce the security with the required degree of protection against the threats. For
example, cryptographic keys are normally used in implementing security, for functions
such as authenticating users and protecting data in transit between objects. However,
different security mechanisms may use different types of cryptographic technology
(e.g., secret or public key) and may use it in different ways when, for example,
protecting data in transit. These cryptographic keys have to be managed, and again, the
way this is done is mechanism specific.

Security Service, v1.7 March 2001 E-19

A full analysis of how well an implementation counters the threats requires knowledge
of the security mechanisms used. However, this specification does not dictate that a
particular mechanism is used.

It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section E.2.4,
“Countermeasures,” on page E-7. These are expected to be provided by a number of
security mechanisms, which will be available for protecting secure object systems.
Therefore, the analysis of threats and the trust model assume this facility level.

It would be possible to use a security mechanism that does not provide some of these
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it will
be vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this documentamadity constrained objects, which
bypass the normal invocation process and therefore are not subject to the security
enforced by the ORB services. T@arrent object (used, for example, by the target
object to obtain security information about the client) is of this type. Protection of
these objects is provided by other means, for example, using protection boundaries
previously described.

E.6.4 Basis For ORB Assurance

The ORB must function correctly (e.g., when enforcing security policy on object
invocation and object creation as defined in this specification). Likewise the underlying
host platforms must function correctly in their provision of the security mechanisms
employed, and relied upon, by the ORB. Both must do this to the level of assurance
specified in its Conformance Statement (which is described in Appendix D). This
section identifies many of the most critical design considerations related to providing
these assurances in a DOC system.

Isolating Security Mechanisms

Figure E-5 depicts how security functionality and trust is distributed throughout the
architecture.

E-20 Security Service, v1.7 March 2001

Application
may be security unaware
may enforce application security policy

core ORB and OA ORB security interceptors
must function correctly e.g. must function correctly
mvokg requ[red interceptors ensure security enforced
in the right order

\

core security objeets - must enforce securi

Principal
Authentication

Non-
repudiation

Credentials—| Vault || Security Access
Context Decision

Figure E-5 Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amount of
security-sensitive information, which must be visible to applications and ORBs.

® Only log-in applications (where provided) need to handle secrets such as passwords,
and then only briefly during authentication.

® Cryptographic keys and other security-sensitive information about principals are
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on the
Credentials provide visibility of security information such as keys.

® Security information used to protect application data in transit between objects is
held in Security Context objects, which are not visible to applications at all. (Target
applications can ask for attributes associated with an incoming invocation using the
Current object.)

Security objects such as Credentials, Security Context, and Access Decision objects are
also not used directly by the core ORB, only by the security interceptors. Therefore the
core ORB needs to be trusted to call the interceptors correctly in the right order, but
does not need to understand security or have access to the security-sensitive
information in them.

The split also is intended to isolate components which may be replaced to change
security policy or security mechanisms. For example, to replace the access control
policy, the Access Decision objects need to be changed. However, the access control
interceptor will remain responsible for finding and invoking the right Access Decision
object. To replace the security mechanisms for security association, only the Vault and
associated Security Context objects need to be replaced.

Security Service, v1.7 March 2001 E-21

E-22

Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB and
Security Services. In order for these mechanisms to operate correctly, the following
rules must be followed:

® The ORB and Vault code must not be modifiable by unauthorized users or
processes.

® The ORB must protect all messages, according to policy, using the message
protection interfaces.

® The ORB must always check the client’s authorization before dispatching a client’s
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the ORB
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corruption
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a third-party-based system
may, depending upon the implementation, contain only information that the user is
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authentication
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatching a
client’'s message to a protected object, ORB implementors should follow one of the
following rules:

® Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

* Permit “direct dispatching” only after checking authorization and issuing “restricted
object references” to client objects. A “restricted object reference” is one that grants
access only to those methods of the target object, which the client is authorized to
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for example,
cryptographic keys associated with Security Context objects). If code owned by one
principal can penetrate a Vault object and examine or modify another principal’s
information, security can be compromised.

Security Service, v1.7 March 2001

E

In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible to and
encapsulate information about multiple identities, the following guidelines should be
observed:

* Do not permit a Vault object, which encapsulates one principal’'s Security Contexts,
to exist in the same address space as code running under a different principal’s
identity.

® |f a Vault object contains Security Contexts for two different principals, ensure that
no principal is able to obtain or use another principal’'s Security Contexts.

Security Service, v1.7 March 2001 E-23

E-24 Security Service, v1.7 March 2001

F.1

Introduction

Facilities Not in This Specification F

Security in CORBA systems is a big subject, which affects many parts of the Object
Management Architecture. It was therefore decided to phase the specification in line
with the priorities agreed as part of the security evaluation criteria by the Security
Working Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, the
size of the specification is larger than desirable for OMG members to review easily or
for vendors to implement.

Some of the facilities omitted from this specification are agreed to be required in some
secure CORBA systems, and so are expectdmbtadded later, using the usual OMG
process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specification,
but left to later specifications, which may be in response to further RFPs for Object
Services or Common Facilities.

F.2 Interoperability Limitations between Unlike Domains

Secure interoperabilitis included in this specification. This allows applications
running under different ORBs in different domains to interoperate providing that:

® Both support and can use the same security mechanisms (and algorithms, etc.) for
authentication and secure associations (an ORB may support a choice of security
mechanisms).

® Use of these between the domains will not contravene any government regulations
on the use of cryptography.

Security Service, v1.7 March 2001 F-1

® The security policies they support are consistent -- for example, use the same types
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

® The standard policies defined do not include specifying different policies when a
client communicates with different domains (though it is possible to define specific
policies to do this).

® There is no specification of the mapping policies required to translate attributes
when crossing a domain boundary where these policies are inconsistent, and how
these must be positioned, for example, to allow delegation of the mapped attributes.
Again, such mapping policies are not prevented.

® In general, there is no specification of how federated policies are implemented.

® There is no specification of gateways to handle interoperability between security
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the subject
of an RFP in the foreseeable future.

F.3 Non-Session-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 3.2, “Secure Inter-ORB Protocol (SECIOP),”
on page 3-34, assumes that all underlying security mechanisms are session-oriented.
The current specification does not support security mechanisms, which encapsulate key
distribution and other security context management information in a single message
along with the data being protected (examples of such mechanisms include those
accessed through the proposed internet IDUP-GSS-API interface). Changes to the
SECIOP protocol would be required to support non-session-oriented protocols.

F.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism which
all secure ORBs must implement. This is because the submitters did not think it was
possible to specify out-of-the-box interoperability adequately in the timescale of this
submission.

F.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are aimed
at general commercial users. Some enterprises may require other types of policies, for
example, support of mandatory access controls. Where there is a sufficient market for
such policies, new policies may be defined, providing they fit with the replaceability
interfaces defined in this specification.

Security Service, v1.7 March 2001

F.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records of
security relevant events to be collected. It does not include:

® Filtering of records after generation to further reduce the size of the audit trail.

® Routing audit records to a collection point for consolidation and analysis or routing
some as alarms to security administrators. (However, routing may be done using the
OMG Event Service, if that is secure enough.)

® Audit reporting or analysis tools to use the audit trails to track down problems.
F.7 Possible Enhancements

F.7.1 SECIOP Mechanism and Option Negotiation

This specification assumes the mechanism identifiers in the IOR allow the client to
choose what mechanisms and options to use when communicating with this target.
Therefore, it does not define protocol exchanges to allow the client and target to
negotiate either mechanisms or options.

However, if the target supports a number of mechanisms and options, the size of the
IOR could become larger than desirable. So in future, it may be desirable to define
protocol exchanges for mechanism negotiation, for example, using [19].

F.7.2 Further Key Distribution Options

The current CSI-ECMA protocol defines secret and public key options for key
distribution and a hybrid option where secret keys are used within a domain, but public
keys are used between domains. It does not define the protocol for use in the sort of
hybrid system where the initiator uses secret key and target uses public key technology
and vice versa.

This may be needed for interoperation between unlike domains. If so, further
architectural options from ECMA 235 may need to be included in the specification.

F.7.3 Further Delegation Options at/above Level 2

The current level 2 specification supports restricting where an initiator’s attributes can
be used to targets identified by security name. Further options for restricting where a
PAC may be delegated could be added (e.g., to restrict delegation to particular
delegation policy domain). This would require definition of further “qualifier

attributes” in the CSI-ECMA protocol (see application trust groups in ECMA 235). It
would also require administration of this, which would best be done by extending the
security policy administration in Section 2.4, “Administrator’s Interfaces,” on

page 2-115.

Security Service, v1.7 March 2001 F-3

Composite delegation of the initiator plus immediate invoker kind is described in the
CSI protocol, but is not mandatory at level 2. Further composite delegation options,
including traced delegation, could be added.

F.8 Interoperability when using Non-Repudiation

The optional Non-repudiation service in the CORBA Security specification generates
NR tokens. This specification does not specify the technology used to generate these
tokens or a standard form for them. Interoperability of evidence tokens would require a
standard specification for such tokens.

This CSI specification is focused at inter-ORB interoperability, and therefore the IOR
and SECIOP protocol. So it also does not specify the format of evidence tokens as they
do not affect the SECIOP protocol. However, these evidence tokens may be passed
between ORBs as parameters, and will not be understood by an ORB which does not
use the same security technology.

In future, a mandatory interoperability evidence token format should be defined, at
least for a limited number of types of evidence. This is expected to be compatible with
the public key mechanism specified in this document and use X.509 version 3
certificates.

F.9 Audit Trail Interoperability

F.10 Management

F-4

The CORBA Security specification includes an Audit Channel interface which allows
applications and ORBs to write records to the audit trail. The way this Audit Service
routes the audit records is not defined. This could be done using the OMG Event
Service or other means. Also, the stored/on-the-wire format of audit records is not
defined.

So there is no standard OMG defined method of bringing together audit records from
different Audit Services.

This specification contains only the management interfaces which are essential for
security policy management. It specifies how to obtain and use security policy objects.
However, it does not contain:

® Specification of facilities for handling domains, policies other than those required
for security policy administration.

® Specification of facilities for the management of some aspects of security. For
example, it does not specify how to create and install permanent keys, as this is
implementation specific.

Security Service, v1.7 March 2001

F11 Reference Restriction

This specification requires the movement of credentials to delegate access rights from
one object to another. Another technique of access rights delegation restricts the use of
an object reference according to a set of criteria. This approach, know as reference
restriction, is under study by a number of vendors, but is not ready for standardization
at this time. The criteria used to restrict references could include:

® Whether an object has the right to assert certain privileges, such as act on behalf of
a principal, act on behalf of a group of principals, act in a particular role, act with a
particular clearance, etc.

® Whether the object reference has been limited to use within a given time interval.

® Whether a particular method can be used by an object holding the object reference.

Various techniques for restricting object references have been developed. Some use
cryptographic methods, while others store state in the object associated with the
restricted reference, allowing the object to decide if a method request meets the
restricted reference use criteria.

It is anticipated that vendors will explore this type of access rights delegation and
move towards the standardization of an interface supporting it in a submission to a
future RFP.

F.12 Target Control of Message Protection

In the current specification, message protection can be specified by policy
administration at both the client and the target object.

Requesting an operation on an object may result in many other objects being invoked.
The CORBA security specification in this document allows an intermediate object in
such a chain of objects to delegate received credentials to the next object in the chain
(subject to policy). However, the current specification does not allow the application to
control when and where these credentials are used. A later specification may provide
such controls to ride the default quality of protection selectively. Therefore, it could
cause some messages to have different qualities of protection during a security
association.

The target has no equivalent interface to request the quality of protection for a
particular response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protection
by the target for individual responses.

F.13 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invoked.
The CORBA security specification in this document allows an intermediate object in
such a chain of objects to delegate received credentials to the next object in the chain
(subject to policy).

Security Service, v1.7 March 2001 F-5

However, the current specification does not allow the application to control when and
where these credentials are used.

A later specification may provide such controls.

If so