June 2009

Robotic Localization Service Specification

FTF Beta 3

OMG Document Number: dtc/2009-06-04
Standard document URL: http://www.omg.org/spec/RLS/1.0/PDF
Associated File(s)*: http://www.omg.org/spec/RLS/20090601

http://www.omg.org/spec/RLS/20090602

* original files: dtf/2009-06-06 (C++ header file), dtc/2009-06-07 (xmi)

This OMG document replaces the submission document (robotics/2008-05-01, Alpha 1). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by February 23, 2009.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on July 2 , 2009. If you are
reading this after that date, please download the available specification from the OMG Specifications
Catalog.

http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/issues/
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080603
http://www.omg.org/spec/uml4dds/20080602
http://www.omg.org/spec/uml4dds/20080602
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601
http://www.omg.org/spec/uml4dds/20080601

Copyright @ 1997-2008 Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in
accordance with the terms, conditions and notices set forth below. This document does not
represent a commitment to implement any portion of this specification in any company's
products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document
and to modify this document and distribute copies of the modified version. Each of the
copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this
specification hereby grant you afully-paid up, non-exclusive, nontransferable, perpetual,
worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear
on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media
and will not be otherwise resold or transferred for commercia purposes; and (3) no
modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will
destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of
OMG specifications may require use of an invention covered by patent rights. OMG shall not
be responsible for identifying patents for which a license may be required by any OMG
specification, or for conducting legal inquiries into the legal validity or scope of those patents
that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is

protected by copyright. All Rights Reserved. No part of this work covered by copyright herein
may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,

ii Robotic Localization Service, Beta 2

including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BEACCURATE, IT ISPROVIDED "AS
IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT
GROUPAND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP ORANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS
OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER ORANY THIRD
PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification
is borne by you. This disclaimer of warranty constitutes an essential part of the license granted
to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rightsin Technical Data and Computer Software Clause at
DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software
- Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright
owners are as indicated above and may be contacted through the Object Management Group,
140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA®
and XMI® are registered trademarks of the Object Management Group, Inc., and Object
Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture
Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM ™,
CWM Logo™, IIOP™ ' MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting

Robotic Localization Service, Beta 2 iii

itself or through its designees) is and shall at all times be the sole entity that may authorize
developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with
this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially
matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the
specification only if the software satisfactorily completes the testing suites.

iv Robotic Localization Service, Beta 2

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the I ssue Reporting Form listed on the main web page
http://www.omg.org, under Documents, Report a Bug/lssue

(http://www.omg.org/technol ogy/agreement.htm).

Robotic Localization Service, Beta 2

Table of Contents

\Y

LISE Of FIQUIES......eei ittt sttt s e e b e e a e e se e sareesbeeenreenree s Vii
K B =0 =SSOSR viii
T oo oL TSP R PRSP PRSPPI 3
A ©0 01 {0 11 7= o XSRS 3
G T B S 1 1= 0= SR PRS 3
3.1 NOrMEiVE REFEIENCES........c.evee ettt e e e e e aeeens 3
3.2 NON-NOrMative REFEIENCES........ccueeieectee ettt be e eane e 4

4, TermSand DEINITION.........ccieiiieiie ettt s e e ebe e sareebeesaeeeereesaneeans 4
ST Y 1] | RSP 6
6. Additional INfFOrMELION..........ccuiiiieiie et sreeenre e 6
6.1 SUDMITEENS......eei ettt e e e e e et e e s ae e e ear e e e eabe e e eabeeeenreeennns 6
6.2 SubmMitting Organi ZaLiONS...........cceiieiieiieseeieeeeste e e s sre e reereseesreenneeneenrens 6
6.3 SUPPOItiNg Organi ZaLIONS..........ccouerieeeeseeseereeeesteesseseeseesaeeeesseesesseesseessesseessens 6
6.4 ACKNOWIEAGEMENTS.......eoiiiiitirieeeee et 7
6.5 BaCKGIOUNG........c.oiiiiiiiiiee et 7

7. Platform Independent MOdEL.............couveiii i 10
7.1 Format and CONVENTIONS.........cceeieeiireecieeeireesee et e creeereesreesreesreesreesseesnreesresennas 11
% Bt B O =TSO OO PP PPPPPPPP 11

T.1.2 ENUMEratioN.....c.ooiiie e 11

A (= (01 0 0 =PSRRI 12
7.3 ArChiteCture PaCKage..........ccceueieiieiiesiesieseeee e 12
7.3.1 Relative Coordinate Reference Systems............ccccoviiiiiiiic 12

7.3.2 Identity INfOrmation.............ooiiiiiii e 17

7.3.3 ErrorInformation.............ouuiiiiiiii e 20

7.3.4 Robotic Localization Architecture...........cccooooiiiiiiiiiiiiiie, 25

7.4 DataFormat PaCKagE..........cueciuieiiiiiieiie ettt snne e 35
7.4.1 Common data format............coooiiiiiiiiii e, 36

7.5 Filter Condition PaCKage..........ccouvieeieeiieiie e see st ee et 40
7.6 INterfaCe PaCKage.........ccoiiiiiiieee e 42

8. Platform SPeCIfiC MOGEL..........coeiiiiee e 57
ST R O ol |V RS 57

Robotic Localization Service, Beta 2

List of Figures

Figure 1. Example of atypical robotic service situation requiring localization of an entity.........ccccceevevvvevivnnnen. 9
Figure 2: Relation of Robotic Localization Service specification with existing GIS specifications.................... 10
Figure 3: Relative and Mobile coordinate reference SYStEM.......ccvveeceececeee e 13
Figure 4: Mobile CRS OPEIALIONS.........ciiieiirieerieesieesie ettt st s be et bese b et e et eseebeseesesbeneseeneaeas 16
Figure 5: [dentity INfOrMBHION..........cccciiiiiiie ettt re st s te st e s be e e s e s eneeseenestesnenrees 18
Figure 6: Hierarchy Of ROLO EFTON TYPES......ccciuiiriieeieeetenestesesteseeie e e see e te e bese s sessesessesesbeseeseseeneseeneseeneeas 21
T (U A o I o X 1 o g Y/ RSP 21
o B A o] IR0 N o ST 22
Figure 9: Representation of error information related to multiple localization data............ccoveeerereneieicnieeenn 26
Figure 10: ROLO ATCIITECTUIE.eiiriesiiriesies ettt sttt sttt b e bbb e b st e st st e e et et e e e e ebenbenbees 27
Figure 11: Don't-care classes and ODJECES........c.ccciriruicirrcierieie ettt ettt bbbttt 31
Figure 12: ROL O DAl OPEIEION.c.uceiueiiireiiteeetere ettt sttt b e b eb s b e b e b sn et b e nn e nn s 33
Figure 13: ROLO Dat@ FOMMEL.........ccciiiirieerieeietesee ettt s ae st s e b e saene s eenesbeneseens 35

Figure 14: Ddinition of a position and reference coordinate systems used in the common data format: (a)
Cartesian coordinate system for TypeI-1 and I-2, (b) spherical coordinate system for Typell-1 and 11-2, (c)

geodetic coordinate system for Type -1 and HH-2.......cocveiriiiie et 38
Figure 15: Three sequential rotations for the xyz-Euler angle representation used in the common data format
10703 R I L I 1o o I USRS 39
Figure 16: Three sequential rotations for the XY Z-Euler angle representation used in the common data format
10770 LT 2 L R 1o o I SR 40
Figure 17: Basic robotic 10Calization MOAUIE...........ccoiiieiiierinee et se e s neas 43
Figure 18: Structures of robotic localization module with different functionalities..........c.cccoovevvevvcvnenereneenene. 43
Figure 19: Example of a cascading modul@ CONNECTION...........ccoovririririnenisieseese et 44
o [N O Lo o 172N o 1 1 7 45
FIQUIE 21 - ROLO SEIVICE. ...ttt ettt b e bt e bbbt b et bt b e e b e e en e e e 49
Figure 22 - Sequence Diagram of Typical ROLO SErVICE USAQE.......ccvreeereeirereriesiesieseeseeseeneeseesessessesseseeseeseens 53
Figure 23 - Sequence Diagram of Connection Establishment from OUT ServiCe........ccocevvereevenvseneneseeneeen 53
Figure 24 - Sequence Diagram of Connection Establishment from [N Service........cccccoovvvvevivnevvneceereeeseeens 54
Figure 25 - Sequence Diagram Of Data PaSSiNg........ccccccuriiereiereseresesieseeseeessesessessessessessessessessesseseesessessessenes 55
Figure 26 - Sequence Diagram of Disconnecting CONNECLION...........cccvveiererieresesieseeseeeseeesre e sre e seeneeseenes 55

Robotic Localization Service, Beta 2 Vii

List of Tables

Table 1 REtUrNCOOE t ENUMETBLION.........ccviieiiiereseseeese e eeere s e e ste st e stesteseeseeaeseeseesessessesseseeseeseaaensenenneennnnes 12
TaADIE 2 - REIGLIVECRS ClESS.....ueieuiieieieerieresie sttt sttt b ettt b e b e be b e st s e e bt seene s be e s b e e ebeeeebe e b s 13
Table 3 - REIATIVEDEIUM CIESS......ccueiieeiiieiieee ettt ettt bbbt st e et e e b e ebe e ebe e 14
Table 4 - StatiCREIGHVECRS CIASS........ccciiieecese ettt st sttt e e s se s beeaesbestesbestesessenneneeneas 14
Table 5 - StaticRelativeCarteSIanCRS ClaSS.........oio i 14
Table 6 - StatiCRE @ VEPOIGrCRS ClESS.......c.cciiiciiiie ettt sttt be s ae s besae s be st e s e sae e eneene e 14
Table 7 - StatiCREIGIVEDEIUM ClESS.........ciiiiiee ettt b e b ettt ne b st eae e s e 14
Table 8 - DYNamiCREIGLIVECRS ClESS.......ccciiieirieiriirire ettt sttt et et e neesesaenesseneseens 15
Table 9 - DynamiCRE i VEDGIUM ClSS.........ccoiirriieerieee ettt b e e 15
Table 10 - MODIHECRS CIESS.......cccuiiiecieitecie ettt te sttt ae st e ae s beeaeesbeeaeesteeaeesteeaeesteeneestesneessesseans 15
Table 11 - MobileCarteSIanNCRS CIESS.........ccciiiiiiiiieseseeeee et ae e e ae st s re s besre b e st e s e eens 15
Table 12 - MODIEPOIArCRS ClESS........cciiieiieciecie ettt ettt sttt be st e be s ae e teeaeentesaeetesreennenreenes 15
Table 13 - MODIEDBIUM CIESS........cceiiiiieeciceee ettt et st e st et e st e e e s e e eseeaeeaesbesbesbessesbesaeneennas 15
Table 14 - MObil€OPEratiON ClaSS.......cccieieirieeetse sttt e e e seeseesesaesaesaesteneeseeneeneeneens 16
Table 15 - Mobile2Stati COPEIatioN ClaSS........ccoiriiirierisesie ettt sttt st st e e ebe bbb e b s 16
Table 16 - Static2M oIl €OPEIatioN ClaSS.......ccceieerirere e sestes ettt sae e s e e e e e e esesresresteneesrenes 16
Table 17 - Mobile2M 0obil€OPEratiON ClaSS........c.ooveirieirieirieriee et 17
Tahle 18 - [AENLILYCS ClESS..... ecuiieeeeeeeeeeee st se et ae sttt este e et e e e e e e e s e ssesseseeseeseeeeseeneeneenensennensees 18
Table 19 - NUMENCIAENTITYCS ClaSS.......cii ittt ese e saeste st e s tesaeeenae e e e e e eseeneneeas 18
Table 20 - SymBOliCIAENtItYCS ClESS......ccviiiiiire ettt e e sae s e re s tesaesee e e e e naeneeneens 18
Table 21 - [dentityDalUM ClESS.......ccciereeeieeeeeese e ste e ese e re st re e see s beste s e sae e e e enessesresseseeseesteneesennenneenenns 18
Table 22 - [AENILYCRS ClESS......cciieeieiisesisieeeseee sttt s et e et e e e e e e e sesaesaesteseesbestessenaeseeseenessessenseseenseneans 19
Table 23 - NUMENCIAENTITYCRS CIESS.....cueiieeeeeeieeeese sttt tenae e nesneeseesessesresseseesseneen 19
Table 24 - SymboliCldentityCRS ClaSS........ccveieeecicerc sttt st sttt a e e ne e enesaenrenean 19
Table 25 - DIreCtSYMBOl CIESS........iieieieieeceec et ettt e e e s e esesaeseesaeseesaestenaeneenens 19
Table 26 - SYMBOIRES CIASS.......ccoiiiee et sttt e e e ae e seenesrenre e es 19
Table 27 - SYMDOIICPOSITION ClESS........ccciiiiiiisiese ettt e e reebesre b steseeseeae e enenneenenns 19
B o L Sl g (o T Y o L= o = ST 21
Table 29 - ErrorTYPEOPEratiON ClaSS.......ccciiieieieeeieese s ste e e et e st et stesaeste st e teste s e e e e eseeseesesrenneneen 22
LI o (SR O 4 (o g = PSSO 23
Table 31 - RETBDIITY ClESS....ceiuieieieiteeeee ettt b et b e e b e b et seeae e b e e bens 23
Table 32 - ErrorDiStriDULION ClESS..........ceiieieecieieece ettt sttt sttt sttt et e s eneeseeseebesne et ee 23
I o (SR I T Y Qe T 23

Viii Robotic Localization Service, Beta 2

Table 34 - COVATANCEMBIIIX ClASS......eeiiieieiieieieeeeieteesseteesssteesssbessseesssetesaseeesaseessaseessabeessbessasbessassessssenesasenesases 23

TahlE 35 - GAUSSIAN ClESS......cuecuiiiiiiicieitestestestee ettt sttt et et e e et e besbeebesbesbesbesessenseseeseeaesteeresbeatestessensensens 23
Table 36 - UNIfOrMGAUSSIBN ClESS........cucoiiiiririirieierie ettt et e b se bbbt be e be e b e et e e ebeseeaesbenenna 24
TahlE 37 - PartiCIESEL ClESS......c.uiiveeeecieieeeete ettt ettt et sttt e st e e aeebeeaeebe st e sbesbessesbensenseneeseeseerens 24
Table 38 - MiXTUrEMOOE] CIESS......couiuiieieeciiete ettt bt b ettt be et es 24
Table 39 - WeIghtedM OOE! ClESS.........coiiiiiiiiiesieie st sttt sttt be bbb s 24
Table 40 - LinearMiXtUreM OOE] ClESS.........ccuiiiiieieieeceee sttt st st b e st et st e st e e e e eneeneene e 24
Table 41 - MixXtureOfGaUSSIAN CIESS.......cceciiiiieiiiieie sttt sttt et s e st e eaa e sesae e sesseasesaeensesseensesanenees 25
TaDIE 42 - POSITION CIESS.....c.uiiieiieeieecee ettt sttt ettt et et s b e s b et e st e s e s eaeeseeaeebesbesbesbesbestansensensesnenneneas 27
Table 43 - ElementSPeCifiCation ClaSS..........ccvviiiirerireereeeee ettt sre sttt e e e e eneeneenees 27
Table 44 - PositionElementSPeCifiCation ClaSS.........coiiirrrieseresieee s 28
Table 45 - ErrorElementSPeCifiCation ClaSS.........cociirieiriiesises e sese sttt ae e e e e enesneenenes 28
I o o L= 1= R = LSS 28
Table 47 - POSITIONEIEMENT ClESS.......c.eiieeirieeiieerieet ettt b e et a bt e et e b et sb e ere e 28
Table 48 - ErTOrEIEMENT CIaSS........coiiieieeee ettt b e 29
Table 49 - DataSPECITiCaliON ClESS.......ciiiierireriereieeeeeee sttt s et se e ssesresresteseesteaeae e eseesensessensenen 29
TaADIE 50 - DAIACISS.....c.eevieeeeieeieriee ettt bbb a e s e bbb et b e e b e e e bt se bbbt e bR ne b et b e b e r s 29
TaADIE 5L - DONECAIE ClESS....cviertieeteirtereeie ettt sttt b e s b b bt e bt s e e bt s e e st b e e e b et e b e e e b et e b e seebesbebesbenesbeneanas 31
TADIE 52 - NULLCS ClBSS....cuiiitiiitiieteiett sttt st b et bbbt b et b e e bt b se bt b st e 31
TaADIE 53 - NULLCRS ClBSS....c.ecuiiieiiiieesieiieeste sttt sttt b s st b et s b et s se b et b et b e e s b et st e e e b e seebeseene e 31
Table 54 - NULLDGIUM CIASS......c.ciuiuiieieieieicieieieieieie ettt bbb bbb bbb bbb bbbt bbb bbbttt 32
Table 55 - NULLEITOITYPE CIESS.....ccuiiiiieiisieieieeee ettt sttt s e et sa e ae st sttt e s besaesesaenn e s eneeseeseenesnesnesean 32
Table 56 - NULLEIementSPeCifiCation ClaSS..........ouiiiiiereiereeeeiese s st ste e saeseseee s e sse e sresteseesseaensenens 32
Table 57 - PositiONEIeMENtOPEratioN ClESS.........coiiririririerieeresiesiete ettt sttt b e e b e b e b s 33
Table 58 - PositionElementConcatenatedOperation ClasS...........ovieieiererereeeeese s 33
Table 59 - PositionElementSingleOPEration ClasS...... ..o it 34
Table 60 - DAaOPEralioN CIASS.......ccciceieiiicieci ettt s a s se s bese e st esese s s sasenn et 34
Table 61 - DataConcatenatedOPEration ClaSS..........couveiierirerriree ettt see e e e 34
Table 62 - DataSiNglEOPEraliON ClESS..........ciiieerieiriererierestere sttt et et e b st b s b e b seenesbe e sbe e esenes 34
Table 63 - DatalTransfOrMalion ClaSS.........cciiiiie it st be e ae s be e e s be e e e s besae e teeneenes 34
Table 64 - DataM appPiNGOPEIatiON ClESS.......ciuereruererierieierieiereeieseee et e ste e see e st e e sseseeseseeseseesessesestenesbeessesesseneas 35
TabhlE 65 - DAAFOIMAL ClaSS.......ueceeiteeieiteeee st et et ste et st e et e st e ste e testeeaesbeeaesbeeasesteeasesteeaseseeeasesteeneestesseensenseens 35
Table 66 - ENCOAINGRUIE CIESS........coueeiiieieees ettt ettt neseeneseens 36
Table 67 - SPECIfiCDAAFOIMEL ClaSS.......cceiireeeeeeeeeee sttt s et e e e e e e e e sseeseereseeseenean 36
Table 68 - UserDeinedDataFOrMaL ClaSS.......c.ciieiieieciie sttt sttt ste e e s tesreestesreesaesreensesreensesreens 36
Table 69 - COMMONDELAFOIMEE CIESS.........cciteuirieerieirierie sttt b e b b e b e bbb sne e nreneas 36

Robotic Localization Service, Beta 2 iX

Table 70 - Common data format type I-1 (Cartesian Coordinate System, xyz-Euler Angle Representation).....37
Table 71 - Common data format type I-2 (Cartesian Coordinate System, XY Z-Euler Angle Representation)...37
Table 72 - Common data format type 11-1 (Spherical Coordinate System, xyz-Euler Angle Representation)....37
Table 73 - Common data format type I1-2 (Spherical Coordinate System, XY Z-Euler Angle Representation). 37
Table 74 - Common data format type I11-1 (Geodetic Coordinate System, xyz-Euler Angle Representation)...37
Table 75 - Common data format type 111-2 (Geodetic Coordinate System, XY Z-Euler Angle Representation). 33

Table 76 - Filter Condition parameter for ROLO SIFEAMS........cc.ciiririeerieeriee ettt s 40
Table 77 - AttriDULEDEINITION ClESS......c.ccieiieceecie ettt eae e s teeaeestesreestesreessesreensesreennens 45
Table 78 - AHDULEBASE CIASS........c.ocuiiiieececce ettt e beebeebesbe st e ee e ennns 45
TaDIE 79 - ATIIDULE CIESS.... e ittt st e e neeaesseeaesbeseesbenee s e neeneeneens 46
LI o =S O == = 1 (= G = LSS 46
Table 81 - ParameterOVErDOMAIN ClESS.........civieriirieeeieeresese et ste st stesee e sesseeessessessestessessessessessensensnnessessenes 46
I o = Y N (= Y= o oSS 46
Table 83 - INtErValParamELEr ClaSS........cuiueieieieeeese sttt ae e e e seesesaeseesreseeseeseeneenennees 46
Tabhle 84 - SEtPAIAMELEr CIESS........iieieerieieieeee ettt sttt e ste s beste st e sae e e e e e eseeneseeseeseeseesesennenneenens 47
Table 85 - ParameterValUEBase ClaSs.........cciieieieere sttt st sttt e e e e nenresnennenes 47
Table 86 - ParameterValUE ClaSS..........oivieriieeeeeieeee st et st s te st e sae e e eneesesseeaeseenrenrens 47
Table 87 - ALIDULESEL CLASS........ci ettt e e s e e resreseesbeste e e ee e eneennens 47
TaDIE 88 - ADIIITY ClaSS.....ueiiiieiesesieeee ettt sttt e e e e e e e e e e eseeseesesbesaesaeseesteneeneenennnnsennnns 47
Table 89 - INtErfaCEBASE ClaSS.......cccvii et st e et e e e e e aesreereebesteseeseenseneens 49
Table 90 - StreamMTYPE ENUMEIELION......c..eveeeeeeeriesie e sestesteseesee e esesre s e stesrestessessesaeseeseesessessessessessessensessenseseenenes 50
Table 91 - StreaAMADILITY ClaSS.......covcicececece et st re s aesae s besbe s bente s e aenneneeneas 50
LI 8 LT 2 == o o =SSP 50
TabhlE 93 - OULSIIEAM ClBSS......cuiiieieieieiccese ettt sttt st st et e st e e e e eaeeseeaeebestesbesteeeseensensenensensennees 50
LI o LT R F g == g o =SS 51
Table 95 - SErVICEADIIITY ClaSS......io ittt ettt st e et e b e b s 51
TADIE OB = SEIVICE ClBSS.....ccviiieiisieieeeeete ettt e e s e e et e e et sbe et st et et et e sseaseseeseeaeebesbesbestensestensensenenseaneerees 51

X Roabotic Localization Service, Beta 2

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-
profit computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable, and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end
users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG' s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI
through afull-lifecycle approach to enterprise integration that covers multiple operating
systems, programming languages, middleware and networking infrastructures, and software
development environments. OM G’ s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http./ www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks.
A Specifications Catalog is available from the OM G website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
UML
MOF
XMI
CWM
Prdfile specifications

OMG Middleware Specifications
CORBA/IIOP
IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM)

Robotic Localization Service, Beta 2 1

Platform Specific Model and Interface Specifications
CORBAservices
CORBAfecilities
OMG Domain specifications
OMG Embedded Intelligence specifications
OMG Security specifications.

All of OMG'sformal specifications may be downloaded without charge from our website.
(Products implementing OM G specifications are available from individual suppliers.) Copies
of specifications, available in PostScript and PDF format, may be obtained from the
Specifications Catal og cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp:/www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
HelveticalArial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Termsthat appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

2 Robotic Localization Service, Beta 2

http://www.iso.org/

1. Scope

This specification defines arobotic localization (RoLo) service that can handle data and usages specific to use in
robotics. It includes a platform independent model (PIM) as well as a mapping of this PIM to a platform specific
model (PSM) defined by C++. In addition, two informative annex parts are provided for the filter condition
functionality. Thefirst definesa PSM by XML and the another shows naming rules.

2. Conformance

Any implementation or product claiming conformance to this specification shall support the
following conditions:

* Implementations shall provide the interfaces described in section 7.5 Interface Package.

* Implementations shall provide their ability descriptors and the necessary attribute
definitions described in section 7.5 Interface Package.

* Datatreated by implementations shall follow the data structure described in 7.3
Architecture Package and the data formats described in 7.4 Data Format Package. This
does not mean that modules shall be able to treat every structure or formats described
herein. However, every module shall support at least one of the common data formats and
the relevant data structure.

* Implementations shall support the return codes described in section 7.2.

3. References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply.

[1S019103] International Organization for Standardization, Geographic information —
Conceptual schema language, 2005

[1SO19107] International Organization for Standardization, Geographic information — Spatial
schema, 2003

[1SO19111] International Organization for Standardization, Geographic information — Spatial
referencing by coordinates, 2007

[1SO19115] International Organization for Standardization, Geographic information —
M etadata, 2003

[PER] International Telecommunication Union Telecommunication Standardization Sector,

Robotic Localization Service, Beta 2 3

Specification of Packed Encoding Rules (PER), ITU-T Rec. X.691 (2002) / ISO/IEC 8825-
2:2002

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.2, OMG document number formal/2009-02-02, 2009

3.2 Non-Normative References

[1SO/D1S19142] International Organization for Standardization, Geographic information —
Web Feature Service, DIS, 2009

[1SO/DIS19143] International Organization for Standardization, Geographic information —
Filter Encoding, DIS, 2009

[Wikipedia] Wikipedia, the free encyclopedia, http://www.wikipedia.org/

4. Terms and Definition

* Cartesian coordinate system: Coordinate system which gives the position of points relative
to n mutually perpendicular axes [ISO19111]. Note that in this specification, in contrast to
[1SO19111], there is no limitation to the number of dimensions.

* Coordinate reference system (CRS): Coordinate system which isrelated to the real world
by a datum [1SO19111].

* Coordinate system (CS): Set of mathematical rules for specifying how coordinates are to
be assigned to points [|SO19111].

e Coordinate value: N-tuple of scalars assigned with respect to a coordinate system. In this
specification, every coordinate value shall be associated with a single coordinate reference
system. Note that, there exists no uncertainty with a coordinate value; error through the
measurement process shall be represented by ‘error’ values elsewhere.

* Covariance: Covariance is a measure of how much two variables change together
(variance is a special case of the covariance when the two variables are identical).If two
variables tend to vary together (that is, when one of them is above its expected value, then
the other variable tends to be above its expected value too), then the covariance between
the two variables will be positive. On the other hand, if one of them tends to be above its
expected value when the other variable is below its expected value, then the covariance
between the two variables will be negative [Wikipedia].

* Datum: Parameter or set of parameters that define the position of the origin, the scale, and
the orientation of a coordinate reference system [1SO19111]. More specifically, adatumis
amathematical system that defines the mapping from a space defined by coordinate system
to a certain phenomenon space of interest, mostly in the real world.

* Geodetic coordinate system: Coordinate system in which position is specified by geodetic latitude,
geodetic longitude and (in the three-dimensional case) ellipsoidal height, associated with one or more
geographic coordinate reference systems [1S019111].

* Geographic(al) Information System (GIS): Information system for storing, analyzing,
managing or displaying various data in away associated with location data. The location

4 Robotic Localization Service, Beta 2

http://www.wikipedia.org/

dataused in GISisin most cases 2 or 3 dimensional position on the earth.

Kalman filter: Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic system
from a series of noisy measurements. It is used in a wide range of engineering applications from radar to
computer vision, and is an important topic in control theory and control systems engineering. Together with
the linear-quadratic regulator (LQR), the Kalman filter solves the linear-quadratic-Gaussian control problem
(LQG). The Kalman filter, the linear-quadratic regulator and the linear-quadratic-Gaussian controller are
solutions to what probably are the most fundamental problems in control theory [Wikipedia].No terms are
defined in this document.

Localization: Action of locating some physical entities through analysis of sensing data.
The word “locate” here may include not only measuring the position in the spatio-temporal
space but also may include additional information such as identity, heading orientation or
pose information of the target entity, measurement error estimation or measurement time.

Normal distribution: A continuous probability distribution described by the following
probability density function:

ol 2m 20°
A normal distribution is also called a Gaussian distribution [Wikipedia].

Particle, particle set: A particleis aword used to denote a single sample obtained through
random sampling algorithms such as Monte Carlo method. A particle set is a set of samples
obtained through some sampling or estimation algorithms. In robotics, particles and
particle sets are often used to represent distributions obtained from estimation algorithms
such as sequential Monte Carlo method or CONDENSATION (Conditional Density
Propagation) algorithm.

Physical entity: Thetarget to be localized such as robots, humans or other objects.

Polar coordinate system: Two-dimensional coordinate system in which position is
specified by distance and direction from the origin [1SO19111]. In this specification, three-
dimensional coordinate system (spherical coordinate system) or n-dimensional coordinate
system may also be called as polar coordinate system.

Data Instance: Here, the word 'data instance’ is used for a RoL o data or its subcomponent
such as a RoL o element, a RoL o position, a RoLo symbolic position or a GM_Position
object.

Implicit (Type) Specification: When a structure embedding some data instance holds atype
specification for those data instances, those data instances are described to have an
"implicit type specification." For example, a RoLo dataisimplicitly associated with a
RoL o data specification when the data is passed through a RoL o stream that holds a RoLo
data specification defined in its ability description.

Explicit (Type) Specification: A datainstance is said to have an "explicit type specification”
if areference to corresponding specification is provided in its attribute. For example, when
a RoL o data has areference to RoL o data specification asits ‘ spec’ attribute, the RoLo
datais said to have an explicit type specification.

Type Specification: A “type specification” of a data instance is either an implicit type
specification or an explicit type specification of an instance.

Incomplete (Type) Specification: A type specification is called "incomplete” when it

Robotic Localization Service, Beta 2 5

includes one or more "don't-care" elements.

* Complete (Type) Specification: A type specification is called "complete" when it does not
include any "don't-care" element.

* Consistent Type Specifications. Two type specifications are called "consistent” when the
two specifications own the same structure and each corresponding parts of them is the

same or have a base-derivation (generalized-specialized) relation with each other, or when

one of the corresponding parts are specified as "don't-care”.

* Unified (Type) Specification: A "unified type specification” of a data instance is the result
of unification of all the type specifications associated with the data instance. The type

specifications to be unified shall be consistent. The unification of two type specifications is

done by the following operation:
For each part of the type specifications, do:
1. When both of the corresponding type specifications are "don't-care", use "don't-care".

2. When one of part of the two specifications is "don't-care”, use the corresponding part
from another specification.

3. When both of the corresponding type specifications are not "don't-care”", use the one
which ismuch specialized.

5. Symbol

X, ¥,z Cartesian coordinate

r, 8, ¢ spherical coordinate

0, 4, h geodetic coordinate (latitude, longitude, height)
o, B,y orientation

X,y,z afixed Cartesian coordinate system

X,Y,Z arotating Cartesian coordinate system

6. Additional Information

6.1 Submitters

The initial submissions that this specification is based on were submitted by the following
people:

Kyuseo Han, Electronics and Telecommunications Research Institute (ETRI)

Y eonho Kim, Samsung Electronics Co., Ltd.

Shuichi Nishio, Japan Robot Association (JARA) / Advanced Research Institute
International (ATR)

6 Robotic Localization Service, Beta 2

6.2 Submitting Organizations

The following organizations made the initial submission that this specification is based on:

Electronics and Telecommunications Research Institute (ETRI)
Japan Robot Association (JARA)
Samsung Electronics Co., Ltd.

6.3 Supporting Organizations

The following organizations supported parts of this specification:

Hitachi, Ltd.

National Institute of Advanced Industrial Science and Technology (AIST)
New Energy and Industrial Technology Development Organization (NEDO)
Shibaura Institute of Technology

Technologic Arts Incorporated

University of Tsukuba

6.4 Acknowledgements
The following people supported parts of this specification:

Su-Young Chi, Electronics and Telecommunications Research Institute

Y un Koo Chung, Electronics and Telecommunications Research Institute

Miwako Doi, Toshiba Corporation

Kenjirou Fujii, Hitachi Industrial Equipment Systems Co., Ltd.

Y oshimasa Hata, Japan Robot Association

Y asuo Hayashibara, Chiba Institute of Technology

Ryota Hiura, Mitsubishi Heavy Industries, Ltd.

Toshio Hori, National Institute of Advanced Industrial Science and Technology
Masato lehara, Mitsubishi Heavy Industries, Ltd.

Wataru Inamura, IHI Corporation

Jaeyeong L ee, Electronics and Telecommunications Research Institute

Takahide Kanehara, Y askawa Electric Corporation

Tetsuo Kotoku, National Institute of Advanced Industrial Science and Technology
Makoto Mizukawa, Shibaura I nstitute of Technology

Kouji Murakami, Kyushu University

Y oshisada Nagasaka, National Agriculture and Food Research Organization

Itsuki Noda, National Institute of Advanced Industrial Science and Technology
Kohtaro Ohba, National Institute of Advanced Industrial Science and Technology
Fumio Ozaki, Toshiba Corporation

Takeshi Sakamoto, Technologic Arts Incorporated

Takashi Suehiro, National Institute of Advanced Industrial Science and Technology
Tetsuo Tomizawa, National Institute of Advanced Industrial Science and Technology
Takashi Tsubouchi, University of Tsukuba

Tomoki Y amashita, Maekawa MFG Co. Ltd.

Masayoshi Y okomachi, New Energy and Industrial Technology Development Organization
Wonpil Yu, Electronics and Telecommunications Research Institute

Robotic Localization Service, Beta 2 7

6.5 Background

This specification defines a localization service that can handle data and usages specific to use
in robotics. It includes a platform-independent model (PIM) as well as a mapping of this PIM
to platform-specific models (PSM) defined by C++.

Location information is a crucial factor in providing robotic services of every kind. Typically, a
robotic system is defined as an apparatus equipped with the function of interacting with
physical entities in the environment. Navigation, manipulation and human-robot interaction are
typical features that require physical interaction with the environment, which distinguish a
robotic system from information appliances. On performing such tasks, robots require
geometric association between physical entities of interest and the robot itself for
implementing and/or performing the given service scenario. Besides these examples, the
number of location-based robotic tasks is continuously increasing as personal or service robot
fields gradually expand, from controlled, stable factory environments to indeterminate,
uncertain daily environments. However, currently there exists no standard means to represent
the necessary location-related information in robotics, nor any common interface for
constructing localization related software modules.

Note: In the context of this proposal and the originating RFP, the word
“localization” means “to locate some physical entities through analysis of
sensor data”, consistent with the common use of this term in robotics. Here the
word "locate" may include not only measuring the position in the spatio-
temporal space, but also heading orientation or pose information of the entity,
or additional information such as error estimation or time of measurement.
Also, the word “physical entity” (or “entity” in short) is used to describe the
target to be localized, including robots, humans or other objects.

Geographic Information System (GIS) is one of the most popular and established systems that
treats location information. Many spatio-temporal location related specifications have been
standardized in the International Organization for Standardization (1SO/TC211), and there
already exist versatile production services based on these standards such as driving navigation
systems or resource databases. However, current GIS specifications are not powerful enough to
represent or treat information required in the field of robotics.

Although localization is still one of the main research topicsin the field of robotics, the
fundamental methodology and elements necessary are becoming established. Standardizing
localization result representation and related interfaces in a generic form, independent to
specific algorithms or equipment, are significant for decreasing costs and accelerating the
market growth of robotic services. Moreover, clarifying what types of information are required
in the field of robotics shall be useful for equipment vendors such as sensor manufacturers.

In this proposal, a new framework for robotic localization (RoL 0) service, i.e. representing and
treating location information specific to robotic usage, is presented. Notions and items
necessary for treating location information in robotic usage are reorganized and rearranged, in
a generic form independent to specific algorithms or types of robotic services. This was done
through extensive surveys and case studies on current and ongoing robotic products and
researches. Based on the widespread GI S standard, a new specification for RoL o servicesis
proposed.

Figure 1 illustrates atypical robotic service situation where localization of various entitiesis
required. Here, arobot in service needs to obtain the location of a cellular phone, utilizing
information from various robotic entities in the environment. These robotic entities have the

8 Robotic Localization Service, Beta 2

ability to estimate the location of the entities within their sensing range. Thus, the problem here
is to aggregate the location estimations from the robotic entities, and to localize the cellular
phone in target. However, this example also shows several factors that makes the localization
service in robotics a difficult, challenging issue. A) Some sensorsonly provide partial
location information. For example, the camera sensor can only provide 2D information, and
RF tag reader can only provide proximity information. B) Sensor outputs are not always
correct. Sometimes, they might measure two or more entities as a single object, or even miss
it. This erroneous report occurs frequently when sensors are used in the uncontrolled daily
environment. In order to tackle this erroneous situation, sensor outputs are usually treated to be
probabilistic, with error estimation information. C) M atching observations between different
sensor s require efforts. Imagine you are viewing two photographs of a crowded street corner,
taken from different angles but on the same instant. The issue here isto match every single
person in one photograph to another. Thisis much more difficult when matching the observed
entities from the wall camera and the output from the laser range scanner installed in the blue
robot, as these two sensors measure different aspects of objects. Thisissue, the identity
association problem, happens every time multiple sensors are used. In other word, you are
always not sure about the identity of the entity sensed. Thus, identity information shall also be
treated to be probabilistic.

I am Cam1, | see 3 entities
person: ID=14,pos=(34,21)
robot: ID=25,pos=(58,55)
sofa: ID=134,pos=(93,42)

| am Cam2, | see 3 entities
table: ID=23, pos=(10,20)

table: ID=73, pos=(-23,72)
table: ID=12, pos=(-53,56)

Where is my
I am Robot32, my Laser Phone?
detected 3 entities: Robot21, bring it to
| am RFID reader1 on a table: d=32, a=40 me !
table, | feel the phone table: d=67, 0=123 =9
ID=823 is within my range robot: d=99, a=187
| am RFID reader2 on a &
table, | fee the phone .
ID=123 is within my range I / (
& : (' — J 1 B o o \'
- 4 3 / S——
L
21?2171

Figure 1: Example of a typical robotic service situation requiring localization of an entity

As can be seen from these examples, operations in robotics require a much more detailed
representation of location information. Still, interoperability with the current GIS systems shall
be supported. In this proposal, we define a new framework for representing and treating
location information suitable for robotic use, by extending existing GIS specifications. Using
the GI S specification as a basis of the proposal will make it easy for robots to interconnect with
existing Gl S-based systems and utilize existing geographic datasets. This will also ease the use
of this specification in the emerging fields of next-generation GIS systems, sensor network
systems, or location based systems where advanced positioning methods and complex data

Robotic Localization Service, Beta 2 9

processing similar to robotics usage is required. Figure 2 illustrates the existing GIS standards
that are related with this specification.

:1SO 19107 :1SO 19103
) 77N
::RoLo : - 7 |
. o ;
l al !
Architecture [_>_ Interface T IS0 19115
I\ I\
I I
I I —‘
DataFormat FilterCondition L >
:1SO 19111
A)
II \\

/ N

::1SO 19142 ::1SO 19143

Figure 2: Relation of Robotic Localization Service specification with existing GIS specifications

In order to fulfill the requirements for robotic localization, the following items are defined in
the PIM, some part as an extension to existing GI S specification.

* (Architecture package) Data architecture for representing structures and accompanying operations for
representing information necessary for robotics usage. These include coordinate system / coordinate
reference system definitions for treating essential information such as pose or identity information, or
structures for representing error estimation.

¢ (DataFormat package) Data formats for formatting and exchanging resulting localization data.

* (Interface package) Service interface for treating resulting localization data. This includes advanced
facilities that will be a basis for dynamically exchanging or negotiating module functionality information.

/. Platform Independent Model

The PIM consists of three parts:
1. Architecture package

The architecture package defines a new framework for representing location
information required in the field of robotics. See section 7.3.

10 Robotic Localization Service, Beta 2

2. DataFormat package

The data format package defines how the defined datais represented for exchange
amongst RoLo modules. See section 7.4.

3. Interface package

The interface package defines an API for data passing and configuration of RoLo
modules. See section 7.5.

7.1 Format and Conventions

7.1.1 Class
Classes described in this PIM are documented using tables of the following format:
Table xx: <class name>

Description: <description>
Derived From: <parent class>
Attributes
<attribute name> <attribute type> <obligation> | <occurrence> | <description>
Operations
<operation name> | <description>
<direction> | <parameter name> <parameter type> <description>

Note that derived attributes or operations are not described explicitly. Also, as the type of
return code for every operation in this specification is Returncode_t which is defined in section
7.2, thisis omitted in the description table.

The 'obligation’ and 'occurrence’ are defined as following.

Obligation
* M (mandatory): This attribute shall always be supplied.
e O (optional): This attribute may be supplied.

e C (conditional): This attribute shall be supplied under a condition. The condition is given as a part of the
attribute description.

Occurrence

The occurrence column indicates the maximum number of occurrences of the attribute values
that are permissible. The following denotes special meanings.

e N: No upper limit in the number of occurrences.
e ord: The appearance of the attribute values shall be ordered.
* ung: The appeared attribute values shall be unique.

Robotic Localization Service, Beta 2 1"

7.1.2 Enumeration
Enumerations are documented as follows:

Table xx: <enumer ation name>
<constant name> <description>

7.2 Return Codes

At the PIM level, we have modeled errors as operation return codes typed Returncode t. Each
PSM may map these to either return codes or exceptions. The complete list of return codesis
indicated below.

Table1l Returncode t enumeration

OK Successful return.
ERROR Generic, unspecified error.
BAD_PARAMETER Illegal parameter value.
UNSUPPORTED_PARAMETER Unsupported parameter.
UNSUPPORTED_OPERATION Unsupported operation.
TIMEOUT The operation timed out.

7.3 Architecture Package

Modern robotic algorithms rel ated to localization require not only simple spatial positioning
information. Generally, various types of information related to spatial position are also
required. In order to obtain precise results, measurement time and error estimation is crucial,
especially when integrating measurements from multiple sensors. For robotics usage, complex
spatial positioning such as pose information is also important. When sensors in use can
perform measurements of multiple entities at once, identity information is also necessary in
order to distinguish and associate measurements. As such, there is avariety of other
information to be expressed in combination with simple spatial positioning. In order to make
various robotic services treat and process this versatile information easily and effectively, our
ideais to represent this heterogeneous information under a common, unified framework.

In this section, we propose a new framework for representing location information required in
the field of robotics, by extending existing GIS specifications. Three types of information
required in robotics usage are defined, and lastly, a generic framework for representing
structured robotic localization results (RoL o architecture) is defined.

Note that, although the ISO 19111 specification assumes every CS to be 2 or 3 dimensional [ISO19111], in this
specification, we do not assume any limitation on the number of dimensions on any coordinate systems. This is to
enable representation of complex data such as feature points defined over multi-dimensional space. Also note that
this does not violate the ISO 19111 standard where no formal limitation is specified on the number of dimensions.
One issue is how to treat the attribute bounded to specific feature in the real space such as axisDirection (type
CS_AxisDirection) in CS_CoordinateSystemAxis which is a mandatory attribute and where the type is defined as
an finite enumeration of direction names such as ‘north’ or ‘south’. It is clear that these values are not suitable for
some robotics usage such as for relative or mobile coordinate reference systems. We thus recommend that
implementers and users of this specification to simply ignore this attribute and to set this value as the first
element in the enumeration, ‘north’, if necessary. This is a safe solution as we cannot expect GIS systems to treat

12 Robotic Localization Service, Beta 2

data based on this specification correctly; we only expect data from GIS systems to be treated on systems based
on this robotic specification.

7.3.1 Relative Coordinate Reference Systems

In this section, relative coordinate reference systems are defined which may lack fixed relation
with the earth or users have no interest in referencing them to other coordinate reference
systems. We categorize relative coordinate reference systems in two types, static and dynamic.
A coordinate reference system on mobile platforms, mobile coordinate reference system, is
defined as a dynamic relative coordinate reference system. That is, the relation with other
coordinate reference systems may change by time.

The GIS standard on spatial reference system [1SO19111] allows the definition and use of such
relative and mobile coordinate reference systems. However, there is no specific model or
description on these systems. As these systems are quite commonly used in the field of
robotics, here we explicitly define structures and operations specific to these coordinate
reference systems. Although here we only define coordinate reference systems based on two
coordinate systems of frequent usage, SC_CartesianCS and SC_PolarCS, users may define
derivatives of relative or mobile coordinate reference system based on the coordinate system of
their interest.

Robotic Localization Service, Beta 2 13

::1ISO 19111::CD_EngineeringDatum

DataSpecification

dataSpec

RelativeDatum

::ISO 19111::SC_EngineeringCRS

{subset usesDatum}

m

StaticRelativeDatum

Data

base

0.1

StaticRelativeCartesianCRS

{subset usesDatum}

DynamicRelativeDatu

{subset usesDatum}

RelativeCRS

B R

StaticRelativeCRS

StaticRelativePolarCRS

{subset usesCS}

:21ISO 19111::SC_CartesianCS

{subsgt usesCS}

DynamicRelativeCRS

MobileCartesianCRS

{subset usesCS}

MobileCRS

::1ISO 19111::SC_PolarCS

MobilePolarCRS

{subset usesCS}

{subset usesDatum}

MobileDatum

#inStream

RoLo:Interface::InStream ——————————@

+ getInStream (out inStream : ::RoLo::Interface::InStream) : Returncode_t

Figure 3: Relative and Mobile coordinate reference system

Table 2 - RelativeCRS class

Description: Base abstract class for representing relative coordinate reference systems.

Derived From: SC_EngineeringCRS [1S019111]

inherited classes.

Note: Vaues for the attribute ‘usesDatum’ which is derived from parent class shall be limited to instances of RelativeDatum or its

Table 3 - RelativeDatum class

Description: Datum for relative coordinate reference systems.

Derived From: CD_EngineeringDatum [1SO19111]

Table 4 - StaticRelativeCRS class

Description: Abstract class for representing relative coordinate reference systems that have static relation with other CRS(s).

14

Robotic Localization Service, Beta 2

Derived From: RelativeCRS

Note: Values for the attribute ‘ usesDatum’ which is derived from parent class shall be limited to instances of StaticRelativeDatum or its
inherited classes.

Table 5 - StaticRelativeCartesianCRS class

Description: Static relative coordinate reference systems based on Cartesian coordinate system.

Derived From: StaticRelativeCRS

Note: Vauesfor the attribute ‘ usesCS’ which is derived from parent class shall be limited to instances of SC_CartesianCS [1SO19111]
or itsinherited classes.

Table 6 - StaticRelativePolarCRS class

Description: Static relative coordinate reference system based on polar coordinate system.

Derived From: StaticRelativeCRS

Note: Values for the attribute ‘ usesCS' which is derived from parent class shall be limited to instances of SC_PolarCS [1SO19111] or its
inherited classes.

Table 7 - StaticRelativeDatum class

Description: Datum for static relative coordinate reference system.

Derived From: RelativeDatum

Attributes

dataSpec DataSpecification o 1 A RoLo data specification indicating allowed structure for the ‘base’
attribute. If the coordinate reference system in target holds no
relation with other coordinate reference systems, this may be
omitted.

base Data o 1 A RoLo data for determining relation to other coordinate reference
system. Typically, this data includes spatial position for origin and
pose for axis direction. If no relation with other coordinate
reference systems is required, this may be omitted.

Table 8 - DynamicRelativeCRS class

Description: Abstract base class for representing dynamic relative coordinate reference systems.

Derived From: RelativeCRS

Note: Values for the attribute ‘ usesDatum’ which is derived from parent class shall be limited to instances of DynamicRelativeDatum or
its inherited classes.

Table 9 - DynamicRelativeDatum class

Description: Datum for dynamic relative coordinate reference system.

Robotic Localization Service, Beta 2 15

Derived From: RelativeDatum

Table 10 - MobileCRS class

Description: Abstract base class for representing mobile coordinate reference systems.

Derived From: DynamicRelativeCRS

Note: Values for the attribute ‘ usesDatum’ which is derived from parent class shall be limited to instances of MobileDatum or its
inherited classes.

Table 11 - MobileCartesianCRS class

Description: Mobile coordinate reference systems based on Cartesian coordinate system.

Derived From: MobileCRS

Note: Values for the attribute ‘ usesCS' which is derived from parent class shall be limited to instances of SC_CartesianCS [ISO19111] or
its inherited classes.

Table 12 - MobilePolarCRS class

Description: Mobile coordinate reference system based on polar coordinate system.

Derived From: MobileCRS

Note: Vaues for the attribute ‘usesCS' which is derived from parent class shall be limited to instances of SC_PolarCS [1SO19111] or its
inherited classes.

Table 13 - MobileDatum class

Description: Datum for mobile coordinate reference systems. This datum holds a RoL o input stream that is used to obtain positional
information for determining the relation between the mobile coordinate reference system in target and another coordinate reference
system. Users shall connect a RoLo output stream to this input stream, or shall supply positional information directly by the 'setDatal
method of this input stream. For example, if the mobile coordinate system is based on Cartesian coordinate system, spatial position
information for mapping the origin and orientation information for determining axis directions may be supplied. However, some
transformation algorithms require more complicated information such as measurement time or error information. The necessary
information required can be determined by the ability description of the input stream.

Derived From: DynamicRelativeDatum

Attributes
inStream (protected) InStream M 1 Input stream for obtaining base position.
(RoLo::Interface)
Operations
getInStream Returns the input stream in use.
out | inStream InStream InStream instance used in this datum.
(RoLo::Interface)

16 Robotic Localization Service, Beta 2

::ISO 19111::CC_Transformation

Figure 4: Mobile CRS operations

target - - -
Mobile2StaticOperation
21SO 19111::SC_CRS
source
Mobile Operation
souree Static2MobileOperation
MobileCRS
target
target source
Mobile2Mobile Operation

Table 14 - MobileOperation class

Description: Abstract base class for operations between mobile coordinate reference system and other coordinate reference systems.

Derived From: CC_Transformation [1SO19111]

Table 15 - Mobile2StaticOperation class

Description: Transformation operation from mobile coordinate reference systems to other static, non-mobile coordinate reference
systems.

Derived From: MobileOperation

Attributes
source MobileCRS M 1 The source mobile coordinate reference system.
target CS_CRS[1S019111] M 1 The target coordinate reference system.

Note: Values for the attribute ‘target’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Table 16 - Static2MobileOperation class

Description: Transformation operation from other static, non-mobile coordinate reference systems to mobile coordinate reference
systems.

Derived From: MobileOperation

Attributes
source CS_CRS|[1S019111] M 1 The source coordinate reference system.
target MobileCRS M 1 The target mobile coordinate reference system.

Note: Vaues for the attribute ‘ source’ shall not be an instance of DynamicRelativeCRS or its inherited classes.

Robotic Localization Service, Beta 2 17

Table 17 - Mobile2MobileOperation class

Description: Transformation operation between mobile coordinate reference systems.

Derived From: MobileOperation

Attributes
source MobileCRS M 1 The source mobile coordinate reference system.
target MobileCRS M 1 The target mobile coordinate reference system.

7.3.2 Identity Information

Identity (ID), which is assigned for each localized targets, can also be treated as a value on
some coordinate reference system. For example, MAC addresses used in Ethernet
communication protocols can be represented as a coordinate value on a two-dimensional
coordinate system, vendor code and vendor-dependent code. Electric Product Code (EPC) or
ucode, used for identifying RF tags, is another example of identification systems defined by a
multi-dimensional coordinate system. There also exist some ID systems, such as family names,
that are usually not explicitly defined over some mathematical structure.

In general, each sensor holds its own ID system and each entity observed is assigned an ID
from thislocal ID system. Thisis because, at least on the initial stage, there are no means to
assign the observed entity aglobal ID. Thus, when multiple sensors are in use, there exist
multiple local 1D systems independent to each other, and it becomes necessary to properly
manage and integrate these ID systems. Resolving the bindings between each local ID systems
is called the ID association problem, and is one of the major research issues in the robotic
localization field. Also, as we saw in the overview section, ID assignments are probabilistic,
just like other location information.

Under these considerations, here we define coordinate reference systems and rel ated structures
for representing identity information. Here, two coordinate reference systems and
accompanying coordinate systems are defined, for identity systems that are represented in
numerical values and symbolic values. The actual coordinate value holding structurein GIS
standard [ISO19107] only allows numeric values as coordinate value elements. Thus, similar
structures in use with symbolic values are also defined.

Note that, operations on identity information (such as conversion from numeric 1D to symbolic
ID or mapping between different ID systems) can be constructed using
CC_CoordinateOperation or relevant classes specified in GIS standard [1SO19111]. Thisis
because the identity information define here is represented by using derived classes from GIS
coordinate systems and coordinate reference systems.

18 Robotic Localization Service, Beta 2

21SO 19111::CS_CoordinateSystem ::1SO 19111::SC_SingleCRS

IdentityCS

IdentityCRS

21SO 19111::CD_Datum

IdentityDatum

NumericldentityCS NumericldentityCRS

{subset upesCS}

{subset usesDatum}

SymbolicldentityCS

SymbolicldentityCRS

SymbolicPosition

{subset usesCS}

direct

0.1

indirect 0..1

DirectSymbol

SymbolRef

+ coords : CharacterString [1..*] { ordered }

point

Figure 5: Identity Information

Table 18 - IdentityCS class

y

::1SO 19111::10_IdentifiedObjectBase

Description: Coordinate systems for identity information.

Derived From: CS_CoordinateSystem [ISO19111]

Table 19 - NumericldentityCS class

Description: Coordinate system for identity information, where each axisis defined over numerical values.

Derived From: IdentityCS

Table 20 - SymbolicldentityCS class

Description: Coordinate system for identity information, where each axisis defined over a set of symbolic values.

Derived From: IdentityCS

Table 21 - IdentityDatum class

Description: Datum for identity coordinate reference systems.

Derived From: CD_Datum [1SO19111]

Robotic Localization Service, Beta 2

19

Table 22 - IdentityCRS class

Description: Base abstract class for representing coordinate reference systems for identity information.

Derived From: SC_SingleCRS [1S019111]

Note: Values for the attribute ‘ usesDatum’ which is derived from parent class shall be limited to instances of IdentityDatum or its
inherited classes.

Table 23 - NumericldentityCRS class

Description: Coordinate reference system for identity information, where each axisis defined over numerical values.

Derived From: IdentityCRS

Note: Values for the attribute ‘ usesCS' which is derived from parent class shall be limited to instances of NumericldentityCS or its
inherited classes.

Table 24 - SymbolicldentityCRS class

Description: Coordinate reference system for identity information, where each axisis defined over a set of symbolic values.

Derived From: |dentityCRS

Note: Vaues for the attribute ‘usesCS' which is derived from parent class shall be limited to instances of SymbolicldentityCS or its
inherited classes.

Table 25 - DirectSymbol class

Description: Class for holding symbolic identity information.

Derived From: |O_ldentifiedObjectBase [SO19111]

Attributes
coords CharacterString M | Nord | Vauesfor each of the coordinate system axis.
crs SymbolicldentityCRS O |1 Reference to the coordinate reference system this data belongs to.

Table 26 - SymbolRef class

Description: Data holder for areference to DirectSymbol

Derived From: 10O_ldentifiedObjectBase [| SO19111]

Attributes

point DirectSymbol | M | 1 | Reference to the target DirectSymbol class instance.

Table 27 - SymbolicPosition class

Description: Union of DirectSymbol and SymbolRef. This class is used as a data holder for accessing symbolic information
transparently, whether it is directly held or indirectly referenced.

Derived From: |O_|dentifiedObjectBase [SO19111]

20 Robotic Localization Service, Beta 2

Attributes

direct DirectSymbol C 1 | Symbolic identity data

indirect Symbol Ref C 1 Reference to symbolic identity data.

Condition: Either one of the element shall be contained.

7.3.3 Error Information

Every sensing system in the real world cannot avoid having measurement error. As such, it is
essential to know the reliability or deviation of measurements for performing localization and
for utilizing the resulting estimation. Error information plays an important role in robotic
operations. In GIS specifications, the only error concerned is the expected reliability of inter-
coordinate transformation. However, complex and detailed error descriptions are required in
modern localization methods. Thus, here we define additional structures for representing and
operating on error information.

RoLo Error Type

Similar to the relation of coordinate reference system and the position in the traditional GIS
systems, we here define RoL o error types for describing the nature of error information. Every
RoL o error holds areference to an error type (either implicitly or explicitly; see section 7.6),
which indicates how this error is represented. This means that, the same error data can be
represented in a different manner. Thus, operations for transforming between different error
types are defined.

RoL o error types may also be structured to for a hierarchy. Just as the normal class inheritance
relationships, often error types may be related to each other. For example, alinear mixture
model distribution is one limited form of general mixture model where models mixtureis
performed through linear operations. Here the hierarchy of RoLo error types is specified by
inter-object relationships, and not by inter-class relationships. Thisisto be consistent with
other specification data types such as coordinate reference system, coordinate system or RoLo
data specification. Figure 6 shows some RoL o error types and their relationships corresponding
to the RoL o error classes defined afterwards.

Robotic Localization Service, Beta 2 21

ET_Base : ErrorType

| baseType

ET_Reliability : ErrorType ‘ ET_Distribution : ErrorType ‘

baseType

Q Q

‘ ET_Gaussian : ErrorType ‘ ET_MixtureModel : ErrorType ‘

J> baseType J> baseType

‘ ET_UniformGaussian : ErrorType ‘ ‘ ET_LinearMixtureModel : ErrorType ‘
baseType
‘ ET_MixtureOfGaussian : ErrorType ‘ ‘ ET_ParticleSet : ErrorType

Figure 6: Hierarchy of RoLo Error Types

Note that, error information in the context of localization cannot exist solely by itself. Error
information is an attribute to the location value. Thus, there exist two types of operation on
error information in general. 1) Change in error representation type, and 2) change in the
coordinate system the target location value is based on. The former operation is described in
this section, and the | atter is described later with the description on RoL o data specification.

:1SO 19111::10_IdentifiedObject

ErrorType source ErrorTypeOperation

target

baseType
0..1

Figure 7 - RoLo Error Type

Table 28 - ErrorType class

Description: Class for representing RoLo error types.

Derived From: 10_IdentifiedObject [1SO19111]

Attributes

baseType ErrorType (@) 1 Reference to a RoL o error type which is the base type of thisRoLo
error type. This attribute is used to represent hierarchical relationships
among RoL o error types.

22 Robotic Localization Service, Beta 2

Table 29 - ErrorTypeOperation class

Description: Denotes transformation of RoLo error into a different RoLo error type.

Derived From: 10_ldentifiedObject [ISO19111]

Attributes

source ErrorType M 1 Source RoLo error type.

target ErrorType M 1 Target RoLo error type.
RoLo Error

RoL o errors are objects for holding error information in different representations. Here we
define some frequently used forms. Users may extend these classes to implement their own
RoL o error containers, accompanied with appropriate RoL o error type definitions.

Matrix

+ nRow : Integer
+nCol : Integer

vals

1..* {ordered}

:I1SO 19111::10_IdentifiedObjectBase

<< DataType »>
::1SO 19103::Number

Error

CovarianceMatrix

ErrorDistribution

1

errType
ErrorType

0.1

Reliability

Gaussian

- -

UniformGaussian

The mean value is
the combined RoLo position

]

Figure 8: RoLo Error

::21ISO 19103::Probability

<< DataType »

Robotic Localization Service, Beta 2

weight
MixtureModel PositionElement
posElem
LinearMixtureModel models WeightedModel
S
ZF 1..* {ordered}
MixtureOfGaussian ParticleSet

23

Table 30 - Error class

Description: Base abstract class for holding error information.

Derived From: 10_ldentifiedObjectBase [|SO19111]

Attributes

errType ErrorType O 1 Reference to the RoL o error type indicating how this error information
is represented.

Table 31 - Reliability class

Description: Reliability value. The derived attribute 'errType' shall be ET_Reliability.

Derived From: Error, Probability [1SO19103]

Table 32 - ErrorDistribution class

Description: Base abstract class for error information represented by a probability distribution.

Derived From: Error

Table 33 - Matrix class

Description: N-dimensional matrix.

Derived From: 10_ldentifiedObjectBase [SO19111]

Attributes

nRow Integer M 1 Number of matrix rows. The value of attribute ‘nRow’ should be a
positive integer.

nCol Integer M 1 Number of matrix columns. The value of attribute ‘nCol’ should be a
positive integer.

vals Number [1S019103] M N ord Value elements of the matrix.

Table 34 - CovarianceMatrix class

Description: An n-dimensional matrix describing covariance.

Derived From: Matrix

Note: This shall represent a square matrix where nRow = nCol.

Table 35 - Gaussian class

Description: Error represented by an n-dimensional normal distribution. The mean value is denoted by the accompanying RoLo
position. The derived attribute 'errType' shall be ET_Gaussian.

Derived From: ErrorDistribution

Attributes

24 Robotic Localization Service, Beta 2

cov CovarianceMatrix | M | 1 | Indicates the covariance for the normal distribution.

Table 36 - UniformGaussian class

Description: Error represented by a uniform normal distribution.

Derived From: Gaussian

Note: Dimensions of the cov attribute derived from class Gaussian shall all be equal to 1. That is, nRow = nCol = 1.

Table 37 - ParticleSet class

Description: Error represented by a set of particles. As for the 'models' attribute derived from LinearMixtureModel class, the 'posElem’
attribute shall either have no ‘err' attribute or have an RoL o error like an impulse response (such as a Gaussian distribution with zero
standard deviation). Normally, thisis used for representing distributions by Monte Carlo approximation, where distributions are
approximated by a finite number of random samplings. The derived attribute ‘errType' shall be ET_ParticleSet.

Derived From: LinearMixtureModel

Table 38 - MixtureModel class

Description: Abstract base class for representing an error distribution by means of mixture of probability distributions.

Derived From: ErrorDistribution

Table 39 - WeightedModel class

Description: A distribution with aweight. Recall that a PositionElement object can be interpreted to represent a probability distribution.
Its 'pos' attribute is treated as the expected coordinate value and its 'err' attribute as the shape of distribution. Thus, in this class the
combination of ‘weight' and 'posElem' attributes denotes a weighted distribution.

Derived From: 10_IdentifiedObjectBase [1SO19111]

Attributes

weight Probability M 1 Welight of this distribution.
[1S019103]

posElem PositionElement M 1 Expected position for the distribution.

Table 40 - LinearMixtureModel class

Description: A distribution represented by alinear mixture of probability distributions. The derived attribute 'errType' shall be
ET_LinearMixtureModel.

Derived From: MixtureModel

Attributes

models WeightedModel | M [Nord | Listof weighted models to be combined.

Robotic Localization Service, Beta 2 25

Table 41 - MixtureOfGaussian class

Description: A distribution represented by alinear mixture of Gaussian distributions. The derived attribute 'errType' shall be
ET_MixtureOf Gaussian. The models attribute derived from LinearMixtureModel shall have a'posElem' attribute whose ‘err* attribute is
restricted to be an instance of Gaussian class.

Derived From: LinearMixtureModel

7.3.4 Robotic Localization Architecture

The Robotic Localization (RoLo) Architecture defined here is a unified framework for
organizing and representing complex data set required in robotic localization. Similar to the
relation between GIS location data and coordinate reference system, two sets of structures are
defined here.

1) Classes for holding the localization results (Data, Element and Position)

2) Classes for describing the structure or the meaning of localization results (DataSpecification,
ElementSpecification)

These two sets of classes arein relation similar to that between GIS position data and
coordinate reference systems: the latter describes the structure and meaning of the former. The
RoL o element and RoL o element specification pair binds the main localization data element to
error information. The RoL o data and RoL o data specification pair defines the structure and
relation among a set of RoL o elements that forms a compl ete robotic localization results.

Normally, error information is combined with one main localization element. However, in
certain cases, there is a need to hold an integrated error among multiple location data. For
example, in atypical Kalman filter usage, multiple main location information such as spatial
position and velocity are used to form a state vector. When the elements of the state vector are
not independent, which is the usual case, the corresponding error, the covariance matrix, is
related to multiple main elements. In such case, the ErrorElementSpecificaion (derived from
ElementSpecification class) specifies which main information slot the error is related to, and
the actual error datais contained by the ErrorElement class (derived from Element class)
instances. Figure 9 shows a sample data structure and corresponding object diagram.

26 Robotic Localization Service, Beta 2

PositionElementSpecification

ErrorElementSpecification

DataSpecification

VAR

(not

(not 1
defined) !

Data

PositionElement

dataSpec1 : ::RoLo::Architecture::D ataSpecification

T

ErrorElement

identifier = um:x-ris:def:DS:jp.atr:...:ds132
name = DataSpec for KansaiPF output

elemSpecs

<]

data1 : ::Rolo::Architecture::Data ‘

’elems

pElem1 : ::RoLo::Architecture::PositionElement

posSpec1 : ::RoLo::Architecture::PositionElementSpecification

identifier = um:x-rls:def:PES:jp.atr:...: 312
name = Pos. Elem. Spec. for Local 2D pos. at KansaiPF

posSpecRefs
SRC_CRS1: ::Rolo:Architeciure:: StaticRelativeCartesianCRS

identifier = um:x-rls:def: CRS;jp.atr:....412131
crs name = CRS at KansaiPF generated at ... 15:23:22.12JST

elemSpecs
posSpec? : ::RoLo::Architecture::PositionElementSpecification

’ Pos pos1 : ::RoLo::Architecture::Position ‘
[J

’ numeric [nPos1: :ISO19107::GM_Position ‘

J

[
’ position dp1 : ::1ISO19107::DirectPosition

coordinate = (142, 23)

elems
_(pElem2 : ::RoLo::Architecture::PositionElement ‘

1
name = Pos. Elem. Spec. for Local 2D pose at KansaiPF

posSpecRefs

SRC_CRS2: ::RoLo::Architecture:: StaticRelativeCartesianCRS

identifier = um:x-rls:def:CRS;jp.atr:....412132
name = CRS at KansaiPF generated at: ... 15:23:22.12 JST

L

crs

elemSpecs
errSpec1 : ::RoLo::Architecture::ErrorElementSpecification

identifier = um:x-ris:def:EES:jp.atr:.....err1
name = Em. Elem. Spec. for pos/pose state at KansaiPF

\ |
’POS [pos?2 : ::RoLo::Architecture::Position ‘
[|
’ numeric [hpos2 ; :IS019107::GM_Position |
[|

’ position dp2 : ::1ISO19107::DirectPosition

elems

coordinate = (3.12, -2.13)
eElem : ::RolLo:Architecture::ErrorElement

eT_Gaus2D : :RolLo:Architecture: ErrorType

identifier = urn:x-ris:def:ET:Gaussian:2D
localname = Error type for Gaussian error in 2D

T

errType

errType

er
L‘ err1 : ::RolLo::Architecture::Gaussian ‘

cov1: ::RoLo::Architecture:: CovarianceMatrix

nCol =2
vals = (0.1,0.2,02, 04)

Figure 9: Representation of error information related to multiple localization data

Robotic Localization Service, Beta 2

27

numeric Position
21SO 19111::SC_CRS ::1SO 19107::GM_Position 0.1
crs symbolic pos
SymbolicPosition 0.1
PositionElementSpecification PositionElement
{subset spec}
posSpecRefs
1..* {ordered} errType 0.1
0..1 orr
ErrorType Error
errType err
ErrorElementSpecification ErrorElement
{subset spec}
ElementSpecification spec Element
0..1
elemSpecs elems
1..*{ordered} 1..*{ordered}
DataSpecification spec Data
ﬁ 0..1 {7
::1ISO 19111::10_IdentifiedObject ::1SO 19111::10_IdentifiedObjectBase

Figure 10: RoLo Architecture

Table 42 - Position class

Description: Data container for localization results without error information. This is formed as a union of SymbolicPosition class and
GM_Position [ISO19107] class. The former is a container for symbolic symbols such as identity information, and the latter contains
numerical data such as spatia coordinate values.

Derived From: |O_ldentifiedObjectBase [SO19111]

Attributes:

symbolic SymbolicPosition C 1 Symbolic data container

numeric GM_Position C 1 Numeric data container.
[1S019107]

Condition: One and only one of the choices shall be chosen.

Table 43 - ElementSpecification class

Description: Base abstract class for holding structural definition for RoLo elements. Instances of this class contain meta-level
information on what kind of data each RoLo element holds.

Derived From: 10_|dentifiedObject [1SO19111]

28 Robotic Localization Service, Beta 2

Table 44 - PositionElementSpecification class

Description: Specification holder for RoLo position elements.

Derived From: ElementSpecification

Attributes:
crs SC_CRS M 1 Reference to a coordinate reference system that the ‘pos’ attribute in
[ISO19111] RoL o position element is based on.
errType ErrorType (0] 1 Reference to a RoL o error type. Specifies the type of ‘err’ attribute in
RoL o position elements. If this attribute is omitted, RoL o position
elements related with this instance shall not contain error information.

Table 45 - ErrorElementSpecification class

Description: Definition holder for RoLo error elements.

Derived From: ElementSpecification

Attributes:

posSpecRefs PositionElementSpecification | M N An ordered list of references to RoLo position element specifications

ord | showing which positional datathe RoLo error contained in the RoLo

error element is related to. The referred RoL o position element
specifications shall be contained in the same RoLo data specification
asthis class instance.

errType ErrorType M 1 Reference to a RoL o error type. Specifies the type of ‘err’ attribute in
RoLo error elements.

Table 46 - Element class

Description: Base abstract class for RoLo elements which holds the binding between the main positional data and the RoLo error.

Derived From: |O_ldentifiedObjectBase [SO19111]

Attributes:

spec ElementSpecification | O | 1 | Reference to RoLo element specification that this element is based on.

Table 47 - PositionElement class

Description: Data container of each localization result by combining the main positional data and the accompanying RoL o error.

Derived From: Element

pos Position M 1 The main information.

err Error O 1 RoL o error information related to the ‘ pos’ attribute of the same
instance. If the RoL o position element specification referred related
with this instance does not hold an ‘errType' attribute, this attribute
shall be omitted.

Note: Values for the attribute ‘ spec’ which is derived from parent class shall be limited to instances of PositionElementSpecification or
itsinherited classes.

Robotic Localization Service, Beta 2 29

Table 48 - ErrorElement class

Description: Data container of error information that is related to multiple positional datain the same RoLo data. RoL o position
elements related with this error information are specified in the referenced RoL o error element specification.

Derived From: Element

Attributes:

err Error | M | 1 | RoL o error bound with the specified RoLo position elements.

Note: Values for the attribute ‘ spec’ which is derived from parent class shall be limited to instances of ErrorElementSpecification or its
inherited classes.

Table 49 - DataSpecification class

Description: Specification holder for RoLo data.
Derived From: 10_IdentifiedObject [SO19111]

Attributes:

elemSpecs ElementSpecification M N Ordered list of RoL o element specifications that defines the structure
ord | of localization result.

Table 50 - Data class

Description: Data container for the robotic localization result.
Derived From: IO_ldentifiedObjectBase [SO19111]
Attributes:
spec DataSpecification (0] 1 Reference to the corresponding RoL o data specification.
elems Element M N An ordered list of RoLo elements. Numbers, orders and types of the
ord RoLo elements shall match that of the corresponding RoLo data
specification.
Don't-Care

In order to handle generic data specifications, specifications may include “don't care” valuesin
their definition. For example, you may want to build a people tracking service which accepts
outputs from another RoL.o module bound with a camera sensor and performs some
calculation. In such case, the coordinate system of the camera sensor output may be fixed but
the coordinate reference system and the datum associated with each camera module may differ,
depending on the location where the cameraisinstalled. Building such module isimpossiblein
the normal RoL o framework, as each RoL o stream need to clearly specify a set of RoL o data
specifications it can accept; you need to specify an infinite list of RoL o data specifications on
the input stream ability description.

That's where don't-cares are used. In such cases, you specify a RoL o data specification for the
tracking modul€'s input stream ability using a coordinate reference system which uses a don't-
care datum (NUL L Datum class). Thisway you can specify only the specification parts you (the
module) is interested, and leave the other parts free. Such is quite acommon usage, and so the
use of don't-cares will increase the flexibility and usability of the RoLo service. However, this

30 Robotic Localization Service, Beta 2

use of don't-care elements may require notice as it may result in high computation cost or
ambiguous, usel ess specifications that break the idea of having specifications for data. Thus,
we need some rule to avoid misleading usages. The following describes the rules that shall be
followed on using don't-cares:

« When multiple type specifications are associated with a data instance, the specifications
shall be consistent with each other.

» Every datainstance shall have a complete unified type specification.
« A type specification may include don't-cares for the following attributes:
O 'elemSpec' in RoL o data specification
‘crs in RoL o position element specification
'errType' in RoLo position element specification or RoLo error element specification
'cs'in SC_CRS[1S019111]
'datum’ in SC_CRS [1S019111]
Figure 11 shows the classes and the objects used to indicate don't-care.

0O O O O

« A RoLo stream that is associated with an incomplete data specification should check
consistency of each Data passed through the stream.

The last rule means that any RoL o stream that is associated with a complete RoL o data
specification may skip checking explicit specification of each RoL o data or its subcomponents
passed through itself. Thus, modules equipped with low computation power can avoid
unnecessary processing by specifying explicit data specifications as their RoL o input stream
ability.

Robotic Localization Service, Beta 2 31

:1SO 19111::CD_EngineeringDatum :1SO 19111::SC_CRS

ElementSpecification ::1SO 19111::CS_CoordinateSystem ErrorType
DontCare .
NULLElementSpecification NULLDatum NULLCS NULLCRS NULLErrorType
(a) Don't-care classes
elemSpec_NULL : NULLElementSpecification cs NULL: NULLCS ET_Base : ErrorType

baseType

datum_NULL : NULLDatum crs_NULL : NULLCRS

ET_NULL : NULLErrorType

(b) Don't-care objects

Figure 11: Don't-care classes and objects

Table 51 - DontCare class

Description: Base abstract class for don’t-care classes.

Derived From: (none)

Table 52 - NULLCS class

Description: Don't-care indicator. Used for indicating that this coordinate system shall be ignored.

Derived From: DontCare, CS_CoordinateSystem [1SO19111]

Table 53 - NULLCRS class

Description: Don't-care indicator. Used for indicating that this coordinate reference system shall be ignored.

Derived From: DontCare, SC_CRS [ISO19111]

32 Robotic Localization Service, Beta 2

Table 54 - NULLDatum class

Description: Don't-care indicator. Used for indicating that this datum shall be ignored.

Derived From: DontCare, CD_EngineeringDatum [1SO19111]

Table 55 - NULLErrorType class

Description: Don't-care indicator. Used for indicating that this RoL o error type shall be ignored.

Derived From: DontCare, ErrorType

Table 56 - NULLElementSpecification class

Description: Don't-care indicator. Used for indicating that this slot in RoLo element specification shall be ignored

Derived From: DontCare, ElementSpecification

RolLo Data Operation

DataSpecification

source target
— DataOperation
1 childOperations
Z% 1..* {ordered}
DataSingleOperation DataConcatenatedOperation

L DataTransformation

usesOperations

::1ISO 19111::10_IdentifiedObject

PositionElementSpecification

source target

Position ElementOperation childOperations

1..* {ordered}

1..* {orderd}
sourceElemSpecs

DataMappingOperation

targetElemSpecs
1..*{ordered}

ElementSpecification

::1ISO 19111::CC_CoordinateOperation

1..*{ordered}

PositionElementConcatenatedOperation

usesOperation

PositionElementSingleOperation

ErrorTypeOperation

0..1

usesErrTypeOperation

Figure 12: RoLo Data Operation

Table 57 - PositionElementOperation class

Description: Base abstract class for representing operations for transforming data between different RoL o position elements. RoLo

Robotic Localization Service, Beta 2

33

position elements are basically composed by RoL o position and RoL o error. As the value of RoLo error is also based on the coordinate
reference system where the combined RoL o position is based on, both the main information and the error information shall be
transformed at once.

Derived From: |O_ldentifiedObject [ISO19111]

Attributes:
source PositionElementSpecification M 1 | Source RoLo position element specification.
target PositionElementSpecification M 1 | Target RoLo position element specification.

Table 58 - PositionElementConcatenatedOperation class

Description: Concatenation of multiple PositionElementOperation instances.

Derived From: PositionElementOperation

Attributes:

childOperations | PositionElementOperation | M N | Ordered list of PositionElementOperation to be applied. Target RoLo
ord | position element specification and source RoL o position element
specification for succeeding operations shall match.

Table 59 - PositionElementSingleOperation class

Description: Definition of an operation for transforming or converting data between different RoLo position element specifications. The
main information is processed by the CC_CoordinateOperation [1SO19111], and the error information should also be transformed.

Derived From: PositionElementOperation

Attributes:
usesOperation CC_CoordinateOperation | M 1 | Operation to be used for transforming the main localization data.
[ISO19111] This operation may also be utilized to transform the accompanying
RoL o error.
usesErrTypeOperation | ErrorTypeOperation O 1 | Operation to be used for converting the type of the RoLo error part.
If no error type conversion is necessary, this part may be omitted.

Table 60 - DataOperation class

Description: Base abstract class for representing operations for transforming data between different RoL o data specifications. The main
purpose of this operation is to transform or to convert RoL o data that contains RoL o error element. RoL o data which contains RoL o error
element need to know about how other elements within the same RolL o data specification are operated. Instances of this class perform
necessary operations for RoLo error elements, alongside the operations for RoL o position elements.

Derived From: 10O_IdentifiedObject [ISO19111]

Attributes:
source DataSpecification M 1 Reference to the originate RoLo data specification.
target DataSpecification M 1 Reference to the target RoL o data specification.

Table 61 - DataConcatenatedOperation class

Description: Concatenation of multiple RoLo data operations.

34 Robotic Localization Service, Beta 2

Derived From: DataOperation

Attributes:

childOperations DataOperation M N Ordered list of RoL o data operation to be applied. Target RoLo data
ord | specification and source RoLo data specification for succeeding
operations shall match.

Table 62 - DataSingleOperation class

Description: Abstract class for representing an operation for transforming data between different RoL o data specifications.

Derived From: DataOperation

Table 63 - DataTransformation class

Description: Definition of an operation for transforming data between different RoL o data specification.

Derived From: DataSingleOperation

Attributes:

usesOperations PositionElementOperation M N Operations used for each of the RoLo position element specification in
ord | the RoLo data specification. The number of RoLo position element
specifications in this RoL o data specification and that of
‘usesOperation’ attribute shall match. The operation defined hereis
applied to each of the RoL o position elements in the order the
corresponding RoL o position element specifications are defined.

Table 64 - DataMappingOperation class

Description: Definition of an operation for transforming data between different RoLo data specifications that simply maps elementsin
the source RoL o data specification to elements in the target RoL o data specification. Only the structures of the RoLo elements are altered,
and the data content itself are not changed. With RoL o error elements, the reference to the RoLo position elements shall be modified
appropriately. The two attributes contained are lists of references to RoL o element specifications in source and target RoL o data
specifications that defines how the mapping is to be performed.

Derived From: DataSingleOperation

Attributes:
sourceElemSpecs ElementSpecification M N Ordered list of RoLo element specification references within the
ord source RoL o data specification which is to be mapped to the RoLo
element specification in the target RoL o data specification represented
by the ‘targetElemSpecs’ attribute value at the same position. The
numbers of 'sourceElemSpecs’ attribute shall match that of
‘targetElemSpec’ attribute.
targetElemSpecs ElementSpecification M N Ordered list of RoL o element specification references within the target
ord | RoLo data specification.

7.4 DataFormat Package

When exchanging information amongst modules, knowledge on data structures is not enough.
We need to specify the actual data representation format exchanged amongst modules.

Robotic Localization Service, Beta 2 35

21SO 19111::10_IdentifiedObject

1

DataFormat

EncodingRule SpecificDataFormat dataSpec

::RoLo::Architecture::DataSpecification

I

CommonDataFormat UserDefinedDataFormat

Figure 13: RoLo Data Format

Table 65 - DataFormat class

Description: Base abstract class for data format definitions.

Derived From: |O_ldentifiedObject [ISO19111]

Table 66 - EncodingRule class

Description: Base abstract class for encoding rules. Encoding rule denotes some systematic mean that can determine the data format
from corresponding data structure (i.e. RoLo data specification). Packed Encoding Rule [PER] is an example of encoding rule. Thisisa
reserved class for future extension.

Derived From: DataFormat

Table 67 - SpecificDataFormat class

Description: Abstract class for data formats where format description is tightly coupled with data structure. Thisisin contrast with the
EncodingRule class, where data formatting rules are independent to data structure definitions.

Derived From: DataFormat

Attributes:

dataSpec DataSpecification M 1 Specifies a RoL o data specification that this data format can handle.
(RoLo::Architecture)

Table 68 - UserDefinedDataFormat class

Description: Abstract class for user-defined, non-common data formats.

Derived From: SpecificDataFormat

36 Robotic Localization Service, Beta 2

Table 69 - CommonDataFormat class

Description: Abstract class for denoting Common Data Formats.

Derived From: SpecificDataFormat

7.4.1 Common data format

This specification allows awide range of data formats for keeping compatibility to widely used
data formats. This specification, however, defines three common data formats each with two
different RoL o data specifications, representing location information in order to provide
interoperability between modules which have lack of computing resources. Every modulein
RoL o service shall support at |east one of these common data formats in order to transmit
location information to enhance inter-module connectability as much as possible.

In this specification, depending on the coordinate systems to refer the position and the methods
to specify the orientation, the common data format is represented by one of the six types, Type
I-1, I-2, 1I-1, 1I-2, III-1, and III-2 as bellows:

Type 11

Table 70 - Common data format type I-1 (Cartesian Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [x, y, z] Real, Real, Real meter, meter, meter
Orientation [a, B, Y] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
ID - Integer -
Type 1-2

Table 71 - Common data format type I-2 (Cartesian Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [x, y, Z] Real, Real, Real meter, meter, meter
Orientation [yaw a, pitch B, roll y] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
1D -- Integer --
Type 111

Table 72 - Common data format type II-1 (Spherical Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [% 6, 9] Real, Real, Real meter, radian, radian
Orientation [a, B, v] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
ID -- Integer --

Robotic Localization Service, Beta 2

37

Type 1I-2

Table 73 - Common data format type II-2 (Spherical Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [% 6, 9] Real, Real, Real meter, radian, radian
Orientation [yaw a, pitch B, roll y] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
1D -- Integer -
Type llI-1

Table 74 - Common data format type Ill-1 (Geodetic Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [latitude o, longitude A, height /] Real, Real, Real degree, degree, meter
Orientation [a, B, v] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
1D -- Integer -
Type llI-2

Table 75 - Common data format type IlI-2 (Geodetic Coordinate System, xyz-Euler Angle Representation)

Parameter Format of value Value type Unit
Position [latitude @, longitude A, height 4] Real, Real, Real degree, degree, meter
Orientation [yaw a, pitch 3, roll y] Real, Real, Real radian, radian, radian
Timestamp POSIX time Integer, Integer second, nanosecond
ID -- Integer -

Each type of the common data formats includes four parameters as follows:

* Position — specifies the coordinate value in a Cartesian coordinate system for Typel-1and 1-2, ina
spherical coordinate system for Typell-1 and 11-2, and in a geodetic coordinate system for Typelll-1
and I11-2. (See Figure 14 and its explanation for details).

e Orientation — specifies sequential three rotations by each axis in a right-handed 3-dimensional
Cartesian coordinate system defined by a so-called xyz-Euler Angle representation for Typel-1, I1-1,
and I11-1 (See Figure 15 and its explanation for details), and a so-called xyz-Euler Angle representation
(commonly called yaw-pitch-roll rotation) for I-2, 11-2, and 111-2. (See Figure 16 and its explanation for
details).

* Timestamp — specifies time at occurring measurement for current position and orientation. It is
compatible to POSIX time which is the time elapsed since midnight Coordinated Universal Time
(UTC) of January 1, 1970. A timestamp consists of two integers of elapsed seconds and nanoseconds
which is compatible to standard UNIX C time_t data structure.

* | D — specifies the identifier of current location information for robots and related entities.

The coordinate values of position information in the common data format in Table 70-75 are defined respectively
by three different coordinate systems: Cartesian coordinate, spherical coordinate and geodetic coordinate system
as shown in Figure 14.

38 Robotic Localization Service, Beta 2

r, 8, o, 2. I
[r. 6, ¢] Northoa\ N [¢. 2, h]

(a) (b) (c)

Figure 14: Definition of a position and reference coordinate systems used in the common data format: (a)
Cartesian coordinate system for Type I-1 and I-2, (b) spherical coordinate system for Type II-1 and II-2, (c)
geodetic coordinate system for Type IlI-1 and IlI-2.

Generally, a 3 by 3 matrix is commonly used in robotics to calculate consecutive rotations of a
coordinate system or to specify the orientation of a coordinate system respective to areference
coordinate system. However, it is not easy for a human to interpret an orientation by the matrix
that contains 9 numbers. Due to the reason, common data formats in this specification use so-
called Euler angles that specify the orientation of a coordinate system by a sequence of three
rotations that take place about an axis of the coordinate system.

To specify the rotation of the coordinate system, a fixed right-hand Cartesian coordinate system
is denoted in lower case (X, Y, z) and arotating right-hand Cartesian coordinate system is
denoted in upper case letters (x, v, z). Depending on the order of sequential rotations of two
coordinate systems, the Euler angle representation can be defined in several ways. In this
specification, two most popular Euler angle representations are used: in this specification, the
first representation is called xyz-Euler angle representation and used for Common Data Format
[-1, 11-1, [11-1 and the second representation is called xyz-Euler angle representation and used
for Common Data Format I-2, 11-2, 111-2.

The xyz-Euler angle representation is defined as follows:

1) Start with the rotating xyz coordinate system coinciding with the fixed xyz
coordinate system.

2) Rotate the xyz coordinate system about the x-axisby as shown inFigure

15(a).

3) Rotate the xyz coordinate system about the fixed y-axisby as shownin
Figure 15(b).

4) Rotate the xyz coordinate system about the fixed z-axisby as shownin
Figure 15(c).

Robotic Localization Service, Beta 2 39

Figure 15: Three sequential rotations for the xyz-Euler angle representation used in the common data format
type I-1, 1I-1, and IlI-1

The xyz-Euler Angle representation is commonly called as yaw-pitch-roll rotation and defined as follows:

1) Start with the rotating xyz coordinate system coinciding with the fixed xyz
coordinate system. Most familiar case appears in the x-axis directed to north,
the y-axis directed to east and the z-axis directed to the center of the globe.
Practically, the x-axis is set to the forward motion direction of a vehicle and
the origin isfixed at the rotation reference point of the vehicle.

2) Rotate the xyz coordinate system about the z-axisby (yaw angle) as
shown in Figure 16(a).

3) Rotate the xyz coordinate system about the newly rotated y-axisby (pitch
angle) as shown in Figure 16(b).

4) Rotate the xyz coordinate system about the newly rotated x-axisby (roll
angle) as shown in Figure 16(c).

40 Robotic Localization Service, Beta 2

(2) (b) (¢)

Figure 16: Three sequential rotations for the xyz-Euler angle representation used in the common data format
type 1-2, 1I-2, and 1lI-2

7.5 Filter Condition Package

When alocation service is operated in alarge scale and handles a large number of location
information, it is useful that the service has afiltering functionality by which it limits outgoing
RoL o data by a given condition. Without this functionality, service providers and receivers are
required to have large capacities of output/input to process the whole data from large scaled
systems. Suppose, as an example, that we implement a sensor system at a shopping center
which detects thousands of guests at once and provides localization service for robots. In such
case, it is not reasonable for each robot to receive localization data about the whole guests
every time. Instead each robot is generally interested in specific guests identified by certain
features, area, and/or time period.

The "Filter Condition" specified below is aimed to provide the functionality for localization
services to specify a condition for filtering data sent to service receivers.
Filter Condition in RoLo stream

A RoLo output stream may have the functionality to filter localization results by a certain
condition. We call this condition as "filter condition.” When afilter condition is specified, each
localization result is tested by the condition and passed to the output stream only when it
satigies the condition.

If no condition is given, or if the stream has no such functionality, the "True" condition is used
as the default condition, in which all localization results are passed to the output stream.

To handle the filter condition functionality, ability descriptor for RoLo streams shall
additionally have the following parameter:

Table 76 - Filter Condition parameter for RoLo streams

filterCondition Parameter<::1S019143::NonldOperator> O| 1 | Filter condition to be used for output data. Default valueis
(RoLo::Interface) True'.

Robotic Localization Service, Beta 2 41

Users can set and get the content of this parameter through the 'setParameterVaueSet' and 'getParameterV d ueSet'
methods toward the stream or the servicee When filter condition is not supported by the stream,
UNSUPPORTED_PARAMETER will be returned.

Data Format of Filter Condition

In order to specify afilter condition, we follow the I SO 19143 specification [1SO/DI1S19143]
which is defined for 1SO 19142 [1SO/DI1S19142]. 1SO 19143 specifies XML encoding and
UML class charts of filter conditions and their operators.

While the UML charts provides general concepts of data format of the filter condition, it is
generally useful and flexible enough to use the XML encoding for the localization service. (see
Examples.)

7.6 Interface Package

Several types of modules are commonly used in robotic localization services in general. The
simplest form of module is that which receives data from sensors, calculates location and
outputs the results. However, this type of interface strongly depends on sensor interfaces or
sensor output formats. Strong dependency on specific products or vendors is not suitable for
standardization. Moreover, when alocation is calculated, many kinds of resources such as map
data, specific to each sensing system, are required. It isimpractical to include each of these
resources into the standard specification. Thus, we decided to embed and hide the individual
device or localization algorithm details inside the module structure (Figure 17).

application

location

. . control
information

localization

Sy

sensor

Figure 17: Basic robotic localization module
On the other hand, if we focus on functionality required to localization modules, we can
classify them into roughly three classes (Figure 18):

A) Calculate localization results based on sensor outputs (measurement)

B) Adggregate or integrate multiple localization results (aggregation)

C) Transform localization results into different coordinate reference systems
(transformation)

42 Robotic Localization Service, Beta 2

application application =5

MM

application

Figure 18: Structures of robotic localization module with different functionalities

These functionalities differ in their internal algorithms or the number of input / output streams.
However, in all of these, the main data to be exchanged is localization results. Aswe are
focusing on the interface of RLS modules, and not on their functionalities, we decided to
abstract these different types of modules into a single form of module. This abstract module
holds n (>=0) input streams and a uniform output stream. By abstracting various types of
modules and assuming a uniform interface, complex module compositions such as hierarchical
or recursive module connections can be easily realized (Figure 19).

!

Transformation|
Module

i

Aggregation
Module

N

Measurement
Module

Sensor

Measurement
Module

Sensor

Figure 19: Example of a cascading module connection

A RoL o service (implemented as a Service class) may have one or more RoL o output streams
(OutStream class) and zero or more RoL o input streams (InStream class). Typicaly, the
number of RoL o inputs a service owns is predetermined and the number of RoL o outputs a
service owns changes dynamically based on requests from service users. Thisis similar to
typical server systems such as database or Web servers where the number of established output
connection increases as requests arrive until it reaches a predefined maximum number.

If each module can represent what or how it can perform, or provide information on available
configurable parameters, a large amount of development efforts can be reduced. Thus, each
service or stream is modeled to own an ability description (Ability class) which contains a set
of attributes (Attribute class) and parameters (Parameter class). Attributes show some static
nature of a module and parameters indicate its configurable parameters. For example, an ability

Robotic Localization Service, Beta 2 43

description for a service (ServiceAblity class) includes an attribute describing expected value
of latency. And an ability description for a stream (StreamAbility class) includes parameters
denoted by lists of DataSpecification and DataFormat objects which shows what type of data
structure or data format a stream can handle, respectively. Attributes or parameters specific to
each implementation, such as vendor-specific parameters, can be described by extending the
respective classes. As such, attributes may be used to describe fixed nature (catal ogue specs) of
modules, while parameters define configurabl e settings for modules. Note that, some
parameters may not be configurable on some implementations. For example, if an module
Implementation can output data only by a single data format, the af orementioned parameter for
DataFormat may show only a single candidate, and be marked as non-configurable
(Parameter.isConfigurable = false).

Often, parameters are defined over some limited value domains. As in the example given
above, data specifications or data formats that a stream is able to pass data are likely to be
limited to sets with a small number of choices. Or some parameters, such as output frequency,
may be restricted under alimited range of values. The attribute 'domain’ in
ParameterOverDomain class is aimed to denote these limitations. As the value domain required
may take variations of forms such as finite set or interval (or range), The
ParameterOverDomain class is defined as an template class which allows a type argument for
indicating what sort of value domain shall be specified.

By defining the “meaning” of attributes and parameters, the ambiguity in functional definition
or parameters can be eliminated which can be expected to increase devel oping efficiency. For
example, what does the value 0.23 given as an 'expectedError' attribute for a RoLo Service
mean? These ambiguities can often been seen in sensor products such as GPS receivers,
making it difficult to design a reusable system applicable to devices or modules from different
vendors. The AttributeD€dinition class is aimed to clarify the meaning of attributes and
parameters. Although thisis out of scope for this specification, by providing a repository of
AttributeDdinition objects that can be referred on demand, RoL o service users and devel opers
can always make sure what each ability description means or on which unit they are defined
on.

Moreover, advanced features can be implemented such as verification of inter-module
connection, automatic search of specific modules or semi-automatic parameter negotiation
between modules. In cases where sensors or robots distributed in the environment cooperate
with each other, namely the Network Robot environment, it becomes essential to register each
module's capabilities in repositories and make them searchable.

44 Robotic Localization Service, Beta 2

AttributeDefinitionSet

::1ISO 19111::10_IdentifiedObject

attrs 0..*
AttributeDefinition AttributeBase AttributeSet
_ def attrs i
+ type : ::11ISO19115::RS_Identifier @
+unit : ::1SO19103::UnitOfMeasure [0..1] 1
.':r':
Attribute [Ability
+val: T
TR
Parameter '_TJ
i + isConfigurable : Boolean = true [0..1] param
T
Interval -7
+min: T ":r-%[-)-:
+max:T : |
+mininc : Boolean [0..1] = True FETCITORRONEETA
+ maxinc : Boolean [0..1] = True + domain : TD ParameterValueBase
< bind »» | « bind>» | Z} R
~ r-- <TD -> Set<T> > .- VT
<TD -> Interval<T>> | : T_E | T ! Parametervalue - r-
IntervalParameter SetParameter = -‘[- AR
]

Figure 20 - RoLo Ability

Table 77 - AttributeDefinition class

Description: Definition of asingle attribute.

Derived From: 10_|dentifiedObject [1SO19111]

Attributes
type RS_ldentifier [1SO19115] M 1 | Typedescriptor for this attribute.
unit UnitOfMeasure [1SO19103] (@) 1 | Unit of thetarget attribute. If no unit is required, this may be omitted.

Table 78 - AttributeDefinitionSet class

Description: Class that represents a set of attribute definitions.

Derived From: 1O_ldentifiedObject [1SO19111]

Attributes

attrs

AttributeDefinition | M | N |Referenc%toAttributeDe‘inition objects.

Robotic Localization Service, Beta 2

Table 79 - AttributeBase class

Description: Base abstract class for different types of Attribute classes.

Derived From: 1O_ldentifiedObject [ISO19111]

Attributes

def AttributeDefinition M 1 Reference to an AttributeDefinition object indicating definition for this
attribute.

Table 80 - Attribute class

Description: Represents asingle attribute. Thisis a template class with type argument T which denotes the type of attribute value. The
type argument T shall be consistent with the value of ‘type' attribute in AttributeDefinition object referred by the ‘def' attribute derived
from AttributeBase class.

Derived From: AttributeBase

Attributes

va T | M | 1 |Valueof this attribute.

Table 81 - Parameter class

Description: Represents a single parameter. A parameter is an attribute that may be configurable. Thisis atemplate class with type
arguments T which denotes the type of parameter value.

Derived From: Attribute <T>

Attributes

isConfigurable Bool (0] 1 Flag to show whether this parameter is corfigurable or not. If omitted,
assumed to True. When this value is set to False, this parameter is not
corfigurable.

Table 82 - ParameterOverDomain class

Description: Represents a parameter whose value domain is defined. Thisis atemplate class with type arguments T and TD, where T
denotes the type of parameter value and TD denotes the type to show domain of the parameter value.

Derived From: Parameter <T>

Attributes

domain TD | M | 1 | Domain of parameter value.

Table 83 - Interval class

Description: Class for indicating an interval. Note that an interval is sometimes referred as a ‘range’.

Derived From: (none)

Attributes

46 Robotic Localization Service, Beta 2

min T M 1 Minimum value of interval.
max T M 1 Maximum value of interval.
minlnc Boolean (0] 1 Flag to show whether the minimum value is included in the range. Default is
True.
max|nc Boolean (0] 1 _Ilz_lag to show whether the maximum value isincluded in the range. Default is
rue.

Table 84 - IntervalParameter class

Description: A parameter whose value domain is defined as an interval. Thisis atemplate class with type argument T. The type argument
TD from ParameterOverDomain is deduced to be class Interval <T>.

Derived From: ParameterOverDomain<T, Interval>

Table 85 - SetParameter class

Description: A parameter whose value domain is defined as a set of values. This is atemplate class with type argument T. The type
argument TD from class ParameterOverDomain is deduced to be a set.

Derived From: ParameterOverDomain<T, Set<T>>

Table 86 - ParameterValueBase class

Description: Base abstract class for different types of ParameterVaue class.

Derived From: (none)

Table 87 - ParameterValue class

Description: A Class that represents values for parameters. Thisis atemplate class with type argument T which denotes the type of the
parameter value.

Derived From: AttributeBase

Attributes
val T M 1 Value of the parameter.
param Parameter M 1 Reference to a Parameter object this parameter value is for. The template

argument T for this class shall match the template argument of the referred
Parameter object.

Table 88 - AttributeSet class

Description: Represents a set of attributes or parameters.

Derived From: |O_ldentifiedObject [1SO19111]

Attributes
def AttributeD€finitionSet M 1 Definition of this attribute set.
attrs Attribute (0] N Set of attributes that is contained in this attribute set.

Robotic Localization Service, Beta 2 47

Table 89 - Ability class

Description: Describes module ability.

Derived From: AttributeSet

48 Robotic Localization Service, Beta 2

::1SO 19111::10_IdentifiedObject

InterfaceBase

+ getAbility (out ability : Ability) : Returncode _t

#ability

InStream

+ setData (in data : ::RoLo::Architecture::Data) : Returncode_t

+ streamType : SetParameter<StreamType>
+ frequency : Parameter<Real>[0..1]

— > + setParameterValues (in paramVals : Set<ParameterValueBase>) : Returncode_t Ability
+ getParameterValues (out paramVals : Set<ParameterValueBase>) : Returncode_t
<< Enumeration»>
StreamType
+ PUSH
+PULL
Stream
+ disconnect () : Returncode_t
+ isConnected (out status : Boolean) : Returncode _t
+ getConnectedStream (out stream : Stream) : Returncode_t
+ getService (out service : Service) : Returncode_t .
{subset ability}
StreamAbility
ZF + dataFormat : SetParameter<::RolLo::DataFormat::DataFormat>
+ dataSpec : SetParameter<::RolLo::Architecture::DataSpecification>

OutStream #inStreams

0.*

+ getData (out data : ::RoLo::Architecture::Data) : Returncode_t
+ activate () : Returncode_t

+ deactivate () : Returncode_t

+ isActivated (out status : Boolean) : Returncode_t

#outStreams

¢

ServiceAbility

+ expectedLatency : Attribute<Real>
+ inStreamAbilities : StreamAbility [0..*]
+ outStreamAbility : StreamAbility

Service

+ connect (in target : InStream, in source : OutStream [0..1], out inStream : InStream) : Returncode_t
+ connect (in source : InStream [0..1], out outStream : OutStream) : Returncode_t

+ adjust (in data : ::RoLo::Architecture::Data) : Returncode_t

+ getChild (in inStream : InStream, out service : Service) : Returncode_t

{subset ability}

Figure 21 - RoLo Service

Table 90 - InterfaceBase class

Description: Abstract class for interfacing objects.

Derived From: 10_ldentifiedObject [ISO19111]

Attributes
ability Ability M | 1 | Referenceto an ability description for this object. The referred RoLo
(protected) ability's attribute 'target’ shall refer to this object.
Operations
getAbility Operation for obtaining the ability description for this stream
out | ability Ability Ability description of this stream.
setParameterVaues Operation for setting values to the corfigurable parameters.

in | paramVads

Set<ParameterValueBase>

Set of parameter values to be set. If some nonexistent or inconfigurable
parameters were specified, UNSUPPORTED_PARAMETER or
BAD_PARAMETER will be returned respectively.

getParameterVaues

Operation for obtaining status of configurable parameters.

out | paramVas

Set<ParameterVaueBase>

Current status of parameter values.

Robotic Localization Service, Beta 2

49

Table 91 - StreamType enumeration

PUSH Indicates that data passing is performed in PUSH mode, i.e. OUT side triggers data passing.

PULL Indicates that data passing is performed in PULL mode, i.e. IN side triggers data passing.

Table 92 - StreamADbility class

Description: Ability description for RoLo streams. If each RoL o stream has special functionalities, this class may be extended to be
added necessary descriptions.

Derived From: Ability

Attributes

dataSpec SetParameter<RoL o::Architect M | 1 | Parameter for DataSpecification supported by this stream
ure:: DataSpecification>

dataFormat SetParameter<RoLo::DataForm | M | 1 | Parameter for data formats supported by this stream.

at::DataFormat>
streamType SetParameter<StreamType> M | 1 | Parameter for supported stream types.
frequency SetParameter<Real> O | 1 | Parameter for data passing frequency in PUSH mode. The unit for this

attribute is Hz. If unnecessary (for example, a RoLo out stream which only
supports PULL type data passing), this parameter may be omitted.

Table 93 - Stream class

Description: Abstract class for representing RoL o streams.
Derived From: InterfaceBase
Operations
getService | Returns the service owning this stream.
out | service | Service Reference to the service owning this stream.
getConnectedStream | Obtain currently connected stream, if any.
out | streams Stream Reference to the stream that is currently connected to this stream. If no streamis
connected, ERROR is returned. Otherwise, OK is returned. When the connection is
performed without 'source’ argument, this may not work (See description on Service class
for details).
isConnected | Check whether this stream is connected to other stream.
out | status | Boolean If connected true, otherwise false.
disconnect Disconnects this stream from the currently connected stream.
l\:ote: Vaues for the attribute ‘ability’ which is derived from parent class shall be limited to instances of StreamAbility or its inherited
classes.

Table 94 - OutStream class

Description: Represents output streams.

Derived From: Stream

50 Robotic Localization Service, Beta 2

Operations
getData Obtain localization result.

out | data Data Resulting localization data.

(RoLo::Architecture)

activate Activate stream output. Only meaningful on PUSH mode.
deactivate Deactivate stream output. Only meaningful on PUSH mode.
isActivated Query whether this stream is activated or not.

out | status | Boolean If activated true, otherwise false.

Table 95 - InStream class

Description: Represents input streams.

Derived From: Stream

(RoLo::Architecture)

Operations
setData Set data to this stream.
in | data Data Localization data to be set to this stream.

Table 96 - ServiceAbility class

Description: Ability description for RoLo Service. If each specific service implementation has special functionalities, this class may be
extended to be added the necessary descriptions.

Derived From: Ability

Attributes

expectedL atency Attribute<Real > M | 1 | Expected latency. This ability descriptor is especially useful for Robotic
Localization Service users. The unit for this attribute is milliseconds.

inStreamAbilities StreamAbility O | N | Ability descriptions for the input streamsin this service.

outStreamAbililty StreamAbility M | 1 | Ability descriptions for the output stream in this service.

Table 97 - Service class

Description: Interface for the robotic localization service.
Derived From: InterfaceBase
Attributes
inStreams InStream O N An ordered list of RoLo input streams owned by this service.
(protected)
outStreams OutStream O N An ordered list of RoLo output streams owned by this service.
(protected)
Operations
connect Establish connection from output stream to input stream. (OUT service initiates the connection)
in | target InStream Reference to a RoL o input stream to be connected. This target reference shall be
obtained through getAbility method.

Robotic Localization Service, Beta 2

51

in | source OutStream Reference to the RoL o output stream that is connecting. This argument is optional.
[0..1] When this argument is omitted, 'getChildren’ method may not work
out | inStream InStream Reference to a RoL o input stream to be used for further manipulation of the established
connection. Note that, this reference may be pointing to a different object as the one
given as input argument. Users shall use the returned reference, not the one obtained
through getAbility method.
connect Establish connection from input stream to output stream. (IN service initiates the connection)
in | source InStream Reference to the RoL o input stream that is connecting. This argument is optional.
[0..1] However, when data passing is to be done in PUSH mode, this argument cannot be
omitted. Also, when this argument is omitted, 'getChildren' method may not work.
out | outStream | OutStream Reference to a RoL o output stream object to be used for further manipulation of the
established connection.
adjust Method for adjusting localization results. For elements not required for adjustment, don't-care element should be
specified.
in | data Data Data to be used for initialization or adjustment. Adjusts every element at once.
(RoLo::Architecture)
getChild Obtain services connected to input streams of this service.
in | inStream InStream Instream to retrieve the connected service.
out | services List<Service> Ordered list of services connected to the input streams of this service.
Note: When 'getAbility' method is called, RoL o stream shall return an ability description that contains ability descriptors for the service
and also the descriptors for the RoLo streams that this service holds. This shall include the descriptors for each of the input streams. For
the out stream, only a single descriptor is sufficient.
Vaues for the attribute ‘ ability’ which is derived from parent class shall be limited to instances of ServiceAbility or itsinherited classes.

Using RoLo Service

Here we show several non-mandatory steps and sequence diagrams as examples. Typical steps
of using RoL o Services can be listed as following:

1

o 0~ W

7.

(optional) Obtain ability description by calling 'getAbility' method toward RoLo
service. An ability description obtained from RoL o service also includes descriptions on
its streams. This step can be omitted if users already have sufficient information such

by reading reference manuals.

(optional) Set up service and/or stream parameters through calling 'setParameterVaues
method. If the default settings are sufficient or if there exists no parameter to be
configured, this step can be omitted. In complicated cases, users may need to repeatedly
call 'setParameterVaues and 'getParameterValues' to set and to confirm parameter
changes.

Establish connection.
(optional) Set up initial position data by calling "adjust’ method with necessary data.
Perform data passing.

(optional) Occasionally, perform adjustment if necessary. Adjustment is an act to
provide auxiliary information to the target module for improving the localization
process..

Disconnect the connection.

Figure 22 to 26 show sequences of typical steps on using RoL o service. Note that in step 3,

52

Robotic Localization Service, Beta 2

connection establishment can be initiated from two side; either from the service that outputs
data (OUT service) or from the service that accepts data inputs (IN service). Figure 23 and
Figure 24 show typical connection sequences in both cases. Note that, disconnection of the
established connection (step 7) can be performed from both sides regardless of which side
initiated the connection (Figure 26).

Figure 22 - Sequence Diagram of Typical RoLo Service Usage

Figure 23 - Sequence Diagram of Connection Establishment from OUT Service

Robotic Localization Service, Beta 2 53

Figure 24 - Sequence Diagram of Connection Establishment from IN Service

Figure 25 - Sequence Diagram of Data Passing

54 Robotic Localization Service, Beta 2

Figure 26 - Sequence Diagram of Disconnecting Connection

As can be seen from Figure 23, Figure 24 and Table 97, ‘connect’ method of RoL o service has
two forms. Thefirst is for establishing connection from OUT service to IN service (OUT
service initiates connection), and another is for the opposite where IN service initiates
connection. As RoL o services may have multiple input streams of different natures, when
connecting from OUT serviceto IN service the stream to be connected shall be specified. Thus,
the first form of '‘connect’ method has an additional 'target’ argument.

Another factor that needs consideration is the type of data passing. In this specification, two
data passing types are provided as elements of StreamType enumeration: PUSH mode (OUT
side triggers data passing) and PULL mode (IN side triggers data passing). For example, most
GPS receivers output datain PUSH mode, that is, measurement results are outputted
continuously in some frequency. These two types of data passing can be performed regardless
of which side initiates connection, as far as both modules have the ability to perform data
passing in the specified type. Figure 25 shows typical steps for performing data passing for the
two directions. As can be seen from the sequence, in PULL mode, the IN service triggers data
passing by calling 'getData method. And in PUSH mode, the OUT service triggers data passing
by 'setData’ method.

PUSH type data passing can also be understood as a callback from OUT side to IN side. Thus,
when using PUSH mode and when connection is established from IN side, the 'source
argument cannot be omitted. Without this, the RoLo output stream on OUT side cannot know
where to make callbacks for data passing. However, when connection is established from OUT
side, this 'source’ argument is not required for the sake of making callbacks, as the RoL o input
stream is given back as an 'inStream’ argument.

Robotic Localization Service, Beta 2 55

8. Platform Specific Model

8.1 C++ PSM

In this section, we show a PSM in C++ language based on the PIM described in section 7. This
PIM-PSM mapping is based on the following rules:

« Thereturn values of methods are assumed to be mapped as exceptions. Thus, in this
PSM, no explicit description is given.

« When methods had only a single 'out' argument, it was mapped as return value of the
corresponding function.

« The'in' arguments to methods were mapped as method arguments with the ‘const'
modifier.

« Arguments which were based on non-primitive types are passed by reference.

« An attribute or an argument that is marked to occur more than once and is marked as
unordered is mapped to "::std::list'. If marked as ordered, it is mapped to "::std::vector'.

« When an attribute is shown as an aggregation or as a derived attribute, or when an
argument indicates a reference to other object, it is mapped as a pointer.

« CharacterString is mapped as "::std::string'.
The following shows the resulting C++ header files.

/1 $Id: Returncode_t.hpp,v 1.3 2009/ 06/20 06:18:43 nishio Exp $
#pragma once

nanespace RoLo
{
enum Returncode_t {

X,
ERROR,
BAD PARAMETER,
UNSUPPORTED PARAMETER,
UNSUPPORTED _OPERATI ON,
TI MEQUT

}
/1 $Id: Architecture. hpp,v 1.3 2009/ 06/20 06:18:42 nishio Exp $
#pragna once

#i ncl ude <RLS/ Rel ati veCRS. hpp>

#i ncl ude <RLS/ Mobi | eCRS. hpp>

#i ncl ude <RLS/ Mobi | eQper ati on. hpp>
#i ncl ude <RLS/ldentity. hpp>

56 Robotic Localization Service, Beta 2

#i ncl ude <RLS/ Error Type. hpp>

#i ncl ude <RLS/ Error. hpp>

#i ncl ude <RLS/ RoLoAr chitecture. hpp>

#i ncl ude <RLS/ RoLoDat aOper ati on. hpp>

/1 $lId: RelativeCRS. hpp,v 1.8 2009/06/20 17:51:30 nishio Exp $

#pragna once

#i ncl ude <l SO19111/ SC_Coor di nat eRef er enceSyst em hpp>
#i ncl ude <l SO19111/ CD_Dat um hpp>

#i ncl ude <RLS/ RoLoAr chitecture. hpp>

nanespace RoLo

{

nanespace Architecture

{
cl ass Rel ati veCRS
public ::1S019111:: SC Engi neeri ngCRS
{
H

cl ass Rel ati veDat um
public ::1S019111:: CD_Engi neeri ngDat um
{

s

class StaticRel ati veCRS
public Rel ati veCRS
{

H

class StaticRel ativeCartesi anCRS
public StaticRel ativeCRS
{

H

class StaticRel ati vePol ar CRS
public StaticRel ati veCRS
{

H

class StaticRel ati veDat um
public Rel ativeDatum
{

publi c:
Dat aSpeci fi cati on* dat aSpec;
Dat a base;

i

cl ass Dynanmi cRel ati veCRS
public Rel ati veCRS
{

H

cl ass Dynani cRel ati veDat um

Robotic Localization Service, Beta 2

57

public Rel ati veDatum

} }
/1 $ld: MobileCRS. hpp,v 1.5 2009/ 06/20 06:52:40 nishio Exp $

#pragma once

#i ncl ude <l SO19111/ CS_Coor di nat eSyst em hpp>
#i ncl ude <l SO19111/ CD_Dat um hpp>

#i ncl ude <RLS/ Rel ati veCRS. hpp>

#i ncl ude <RLS/ Servi ce. hpp>

nanespace RoLo

{
nanespace Architecture
{
cl ass Mbbi |l eCRS
publ i c Dynani cRel ati veCRS
{
b
cl ass Mbbil eCart esi anCRS
publ i c Mbil eCRS
{
H
cl ass Mbbi | ePol ar CRS
public Mbil eCRS
{
b
cl ass Mbbil eDat um
publ i ¢ Dynamni cRel ati veDat um
{
publi c:
const ::RoLo::Interface::InStream& getlnStream();
pr ot ect ed:
::RoLo::Interface::InStream i nStream
H
}

}
/1 $ld: MobileOperation. hpp,v 1.5 2009/06/20 06: 18:43 nishio Exp $

#pragnma once

#i ncl ude <l SO19111/ CC Oper ati on. hpp>

#i ncl ude <l SO19111/ SC Coor di nat eRef erenceSyst em hpp>
#i ncl ude <l S0O19111/ CD_Dat um hpp>

nanespace RoLo

{

58 Robotic Localization Service, Beta 2

nanespace Architecture

{

cl ass Mbbil eOperation
public ::1S019111:: CC Transformation
{

b

cl ass Mbile2Stati cOperation
public Mbil eQperation

{
publi c:

Mobi | eCRS *sour ce;

| SO19111:: SC CRS *target;
H

cl ass Stai c2Mobi | eOperati on
public Mbil eQperation

{

publi c:
I SO19111:: SC CRS *sour ce;
Mobi | eCRS *t ar get ;

b

cl ass Mbbi |l e2Mobi | eOperati on
public Mbil eQperation
{

publi c:
Mobi | eCRS *source, *target;

b

} }
/'l $ld: ldentity.hpp,v 1.8 2009/ 06/20 06:18:43 nishio Exp $

#pragnma once

#i ncl ude <string>

#i ncl ude <vector>

#i ncl ude <1 S019111/10 IdentifiedObject. hpp>

#i ncl ude <l SO19111/ CS_Coor di nat eSyst em hpp>

#i ncl ude <l SO1L9111/ SC Coor di nat eRef erenceSyst em hpp>
#i ncl ude <l S0O19111/ CD_Dat um hpp>

namespace RolLo

{

nanespace Architecture

{
class IdentityCS

public ::1S019111:: CS Coordi nat eSystem
{
s

class NunericldentityCs
public IdentityCSs
{

Robotic Localization Service, Beta 2

59

b

class SynbolicldentityCs
public IdentityCS
{

b

class IdentityDatum
public ::1S019111:: CD Dat um
{

H

class IdentityCRS
public ::1S019111:: SC Si ngl eCRS
{

H

cl ass Nunericl dentityCRS
public IdentityCRS
{

H

cl ass SynbolicldentityCRS
public IdentityCRS
{

H

cl ass Direct Synbol
public ::1S019111::10 IdentifiedCbjectBase
{

publi c:

c:std::vector<std::string> coords;
Synbol i cldentityCRS *crs;

b

cl ass Synbol Ref
public ::1S019111::10 IdentifiedbjectBase
{

publi c:
Di rect Synbol *point;
b

cl ass Synbol i cPosition
public ::1S019111::10 IdentifiedObjectBase
{

publi c:

Di rect Synbol *direct;
Synbol Ref *indirect;
b

}

}
[/ $ld: ErrorType. hpp,v 1.4 2009/ 06/20 06:18:43 nishio Exp $

60 Robotic Localization Service, Beta 2

#pragma once

#pragma once
#i ncl ude <l S019111/10 IdentifiedObject. hpp>

nanespace RoLo

{

nanespace Architecture

{

cl ass ErrorType
public ::1S019111::10 IdentifiedCbject
{
Error Type *baseType

};

class ErrorTypeQOperation
public ::1S019111::10 IdentifiedObject
{

publi c:
Error Type *source, *target;

b

}

}
[/l $ld: ErrorBase. hpp,v 1.1 2009/06/20 06:18:42 nishio Exp $

#pragma once
#i ncl ude <RLS/ Error Type. hpp>

nanespace RoLo

{
nanespace Architecture
{
cl ass ErrorType;
class Error
public ::1S019111::10 IdentifiedbjectBase
{
publi c:
Error Type *errType,
i
}

}
/1 $ld: Error.hpp,v 1.7 2009/06/20 06:18:42 nishio Exp $

#pragnma once

#i ncl ude <l SO19103/Prim tive. hpp>

#i ncl ude <1 S019111/10 IdentifiedObject. hpp>
#i ncl ude <RLS/ Error Type. hpp>

#i ncl ude <RLS/ ErrorBase. hpp>

nanespace RoLo

{

Robotic Localization Service, Beta 2

61

nanespace Architecture

{

62

class Reliability
public Error, public ::1S019103:: Probability
{

b

class ErrorDi stribution
public Error

{
b
class Matrix
{
publi c:
int nRow, nCol ;
c:std::vector< ::1S019103:: Nunber > val s;
b

cl ass Covari anceMatri x
public Matrix
{

H

cl ass Gaussi an
public ErrorDistribution

{
publi c:

Covari anceMatri x cov;
}

cl ass Uni f or nzaussi an
publ i c Gaussi an
{

H

cl ass M xt ur eModel
public ErrorDistribution
{

H

cl ass Wi ght edvbdel
public ::1S019111::10 IdentifiedCbjectBase

{
publi c:

Posi ti onEl ement posEl em

11 1S019103: : Probabil ity weight;
b

cl ass Li near M xt ur eModel
public M xturehbdel
{

publi c:

Robotic Localization Service, Beta 2

;. std::vect or<Wei ght edModel > nodel s;
s

cl ass M xtureOf Gaussi an
public LinearM xt ur eMbdel
{

s

class Particl eSet
public Li nearM xt ur eMbdel
{

s
}}
/1 $1d: RoLoArchitecture. hpp,v 1.8 2009/06/20 06:18:43 nishio Exp $

#pragna once

#i ncl ude <vector>

#i ncl ude <l SO19107/ Coor di nat eGeonet ry. hpp>

#i ncl ude <1 SO19111/10 IdentifiedObject. hpp>

#i ncl ude <l SO19111/ CS_Coor di nat eSyst em hpp>

#i ncl ude <l SO19111/ SC_Coor di nat eRef er enceSyst em hpp>
#i ncl ude <RLS/ Error Type. hpp>

#i ncl ude <RLS/ ErrorBase. hpp>

#i ncl ude <RLS/Ildentity. hpp>

nanespace RoLo

{

namespace Architecture

{

cl ass Position
public ISO19111::10 IdentifiedCbjectBase

{
publi c:

Synbol i cPosi ti on* synbolic;

| SO19107: : GM Posi ti on* nuneri c;
s

cl ass El enent Speci fication
public ::1S019111::10 IdentifiedObject
{

s

cl ass Positi onEl enent Speci fication
publ i c El enent Speci fication

{

publi c:
11 18019111: : SC_CRS *crs;
ErrorType *errType;

s

cl ass ErrorEl enent Specification
publ i c El ement Speci fication

Robotic Localization Service, Beta 2

64

{

publi c:

::std::vector<PositionEl enment Speci fi cati on*> posSpecRefs;
Error Type *errType,

};

cl ass El enent
public ::1S019111::10 IdentifiedObjectBase

{
publi c:

El ement Speci ficati on *spec;
b

cl ass PositionEl enent
public El enent
{

publi c:
Posi tion pos;
Error err;

H

cl ass ErrorEl enent
public El enent

{

publi c:
Error err;

H

cl ass Dat aSpecification
public ::1S019111::10 IdentifiedObject

L
publi c:

::std::vector<El ement Speci fi cati on> el enSpecs;
b

cl ass Data
public ::1S019111::10 IdentifiedbjectBase

{

publi c:
Dat aSpeci fi cati on *spec;
::std::vector<El enent> el ens;

}

cl ass Dont Care

{

};

cl ass NULLCS
public DontCare, public ::1S019111:: CS Coordi nat eSyst em
{

H

cl ass NULLCRS

Robotic Localization Service, Beta 2

public DontCare, public ::1S019111::SC CRS

{
H

cl ass NULLDat um
public DontCare, public ::1S019111::CD Datum
{

H

cl ass NULLErrorType
public DontCare, public ErrorType
{

b

cl ass NULLEI enent Speci fi cati on
publ i c Dont Care, El ement Specification
{

b
}

}
/1 $ld: RoLoDataCperation.hpp,v 1.8 2009/06/20 17:46: 15 nishio Exp $
#pragnma once

#i ncl ude <vector>

#i ncl ude <1 S019111/10 IdentifiedObject. hpp>
#i ncl ude <l SO19111/ CC Oper ati on. hpp>

#i ncl ude <RLS/ RoLoAr chitecture. hpp>

nanespace RoLo

{

nanespace Architecture

{

cl ass Positi onEl enent Operati on
public ::1S019111::10 IdentifiedCbject
{

publi c:
Posi ti onEl enent Speci fication *source, *target;

};

cl ass Posi ti onEl ement Concat enat edOper ati on
publ i ¢ PositionEl ement Operati on

L
publi c:

::std::vector<PositionEl erent Operati on*> chil dOperati ons;
b

cl ass PositionEl enent Si ngl eOperati on
publ i c PositionEl enent Qperation

{

publi c:
::1S019111: : CC_Coordi nat eQperati on *usesQperation
Error TypeQperati on *usesErr TypeQper ati on;

b

Robotic Localization Service, Beta 2

65

cl ass DataQperation
public ::1S019111::10 IdentifiedObject

{
publi c:

Dat aSpeci fi cati on *source, *target;
b

cl ass Dat aConcat enat edOper ati on
publ i ¢ DataQperati on

.
publi c:

::std::vector<DataOperation*> chil dOperati ons;
s

cl ass Dat aSi ngl eQperati on
publ i c DataQperation
{

s

cl ass Dat aTransformati on
publ i ¢ Dat aSi ngl eOperati on

{
publi c:

::std::vector<PositionEl enent Operati on*> usesQperations;
s

cl ass Dat aMappi ngOper ati on
publ i c DataSi ngl eOperation

{
publi c:

::std::vector<El ement Speci fi cati on*> sour ceEl enSpecs, target El enSpecs;
b

}

}
/1 $Id: DataFornat.hpp,v 1.5 2009/06/20 06:18:42 nishio Exp $

#pragma once
#i ncl ude <l S019111/10 IdentifiedObject. hpp>
#i ncl ude <RLS/ RoLoAr chitecture. hpp>

namespace RolLo

{

namespace Dat aFor mat

{

cl ass Dat aFor mat
public |SO19111::10 IdentifiedObject
{

H

cl ass Encodi ngRul e
publ i ¢ Dat aFor nat

66 Robotic Localization Service, Beta 2

{
H

cl ass Speci fi cDat aFor mat
publ i ¢ Dat aFor mat

{
publi c:

> RoLo:: Architecture:: DataSpecification *dataSpec;
b

cl ass User Def i nedDat aFor mat
publ i c Specifi cDat aFor mat
{

H

cl ass ComonDat aFor mat
public Specifi cDat aFor mat
{

s
}

}
/1 $ld: Interface. hpp,v 1.2 2009/06/20 06:18:43 nishio Exp $
#pragnma once

#i ncl ude <RLS/ Ability. hpp>
#i ncl ude <RLS/ Servi ce. hpp>
[/ $1d: Ability.hpp,v 1.9 2009/06/21 16:51:56 nishio Exp $

#pragnma once

#include <list>

#i ncl ude <l SO19103/Primtive. hpp>

#i ncl ude <1 SO19111/10 IdentifiedObject. hpp>
#i ncl ude <l SO19115. hpp>

#i ncl ude <RLS/ RoLoAr chitecture. hpp>

#i ncl ude <RLS/ Error. hpp>

nanespace RoLo

{

nanespace | nterface

{

class AttributeDefinition
public ::1S019111::10 IdentifiedOject

{
publi c:
1 1S019115: : RS Identifier type;
1 1S019103: : Uni t OF Measure unit;
b

class AttributeDefinitionSet
public ::1S019111::10 IdentifiedObject
{

b

costdi:list<AttributeDefinition*> attrs;

Robotic Localization Service, Beta 2

67

68

class AttributeBase
public ::1S019111::10 IdentifiedObject
{

publi c:
const AttributeDefinition def;
s

tenpl ate <typenane T>
class Attribute
public AttributeBase

{

publi c:
T val;

H

tenpl ate <typenane T>
cl ass Paraneter

public Attribute<T>
{

publi c:
bool isConfigurabl e;

i

tenpl ate <typenane T, typenane TD>
cl ass Paramet er Over Donai n
public Attribute<T>

{
publi c:

TD donmi n;
s

tenpl ate <typenane T>
class Interval

{

publi c:

T mn, max;

bool m nlnc, nmaxlnc;

};

tenpl ate <typenane T>
cl ass Interval Paraneter

: public ParaneterOverDomai n< T, Interval <T> >
{}:

tenpl ate <typenane T>
cl ass Set Par anet er

. public ParaneterOverDomain< T, ::std::list<T> >
{};

class AttributeSet
public ::1S019111::10 IdentifiedObject
{

Robotic Localization Service, Beta 2

}

publi c:
AttributeDefinitionSet def;
costd::list<AttributeBase> attrs;

H

class Ability
public AttributeSet
{

s

cl ass Par anet er Val ueBase

{
b

tenpl ate <typenane T>
cl ass Paranet er Val ue
publ i c Paranet er Val ueBase

{
publi c:

T val
b

}

/1 $lId: Service.hpp,v 1.10 2009/ 06/20 06:48: 15 nishio Exp $

#pragma once

#i
#i
#i
#i
#i
#i
#i

ncl ude <vector>

ncl ude <list>

ncl ude <1 SO19111/10 I dentifiedCbject. hpp>
ncl ude <l SO19115. hpp>

ncl ude <RLS/ Ability. hpp>

ncl ude <RLS/ Dat aFor mat . hpp>

ncl ude <RLS/ RoLoAr chitecture. hpp>

nanespace RoLo

{

nanespace | nterface

{

enum Streanlype {
PUSH,
PULL

};

class StreamAbility
public Ability

{
publi c:
Set Par anet er < :: RoLo: : Dat aFor mat : : Dat aFor mat > dat aFor mat ;
Set Paraneter< :: RoLo:: Architecture:: DataSpecification > dataSpec;
Set Par anet er <St r eamlype> streanilype
Set Par anet er <doubl e> frequency;
s

Robotic Localization Service, Beta 2

69

cl ass I nterfaceBase
public ::1S019111::10 IdentifiedObject

{
publi c:
const Ability& getAbility();
voi d set Paranet er Val ues(const ::std::|ist<ParaneterVal ueBase>&
par amval s) ;
const ::std::list<ParaneterVal ueBase>& get Paranet er Val ues() ;
pr ot ect ed:

70

Ability* ability;
b

class Stream
public InterfaceBase
{

publi c:

voi d di sconnect ();

bool isConnected();

const Stream& get Connect edStrean();
const class Service& get Service();

b

cl ass Qut Stream
public Stream
{

publi c:
const ::RoLo::Architecture::Data& getData();
void activate();
voi d deactivate();
bool isActivated();

};

class | nStream
public Stream
{

publi c:
voi d setData(const ::RoLo::Architecture::Data& data);
s

class ServiceAbility
public Ability
{

publi c:
Attribut e<i nt> maxQut St reamNum
At tri but e<doubl e> expect edLat ency;
crstdiilist<StreamAbility> inStreamAbilities;
StreamAbil ity outStreamAbility;

b

cl ass Service
public QutStream
{

publi c:

Robotic Localization Service, Beta 2

I nSt ream& connect (const I nStrean& target, const QutStreant source =

NULL) ;
Qut St ream& connect (const I nStreant source = NULL);
voi d adj ust(const ::RoLo::Architecture:: Data& data);
const ::std::list<const Service*> getChildren();
pr ot ect ed:
cistdi:list<InStreans inStrearns;
c:std::list<QutStreanr out Streans;
1
}
}

Robotic Localization Service, Beta 2

71

Annex A
PSM for XML

(informative)

1. Overview
This annex provides a platform specific model of RoLo Datafor XML.

PSM of RoLo datafor XML has two variations, generic model and architecture-specific model. The generic
model is derived by mapping naively from UML model of RoLo datato XML, and is able to represent any RoLo
data for any RoLo architecture. But, it isimpossible to restrict structures syntactically for a specification of
certain architecture even if the architecture of the data is known.

On the other hand, the architecture-specific model is generated for each RoL o specification in a pragmatic way,
and is able to restrict its syntax strictly according to the specification. But, the XML schema for the representation
should be given for each RoL o data specification.

Hereafter, the target namespace of the given XML schemas is assumed to be “http://www.omg.org/rls/1.0". Also,
the prefix “rls” indicates the same namespace.

2. Generic Model

Specified Structure Type

Specified Sructure Typeis an abstract type to represent structured data used in RoL o architectures, each of which
has correspondence to a specification of its structure.

An instance of this type shall have a spec attribute that indicates an identifier of its specification.

The schema of the Specified Structure Typeis given as follows:
<xsd: conpl exType nanme="Speci fi edStructureType" abstract="true">
<xsd: attribute nane="spec" type="1D" use="required"/>
</ xsd: conpl exType>

Data

XML schemafor Datais given as follows:
<xsd: el erent nanme="Data" type="rls: DataType"/>
<xsd: conpl exType nanme="Dat aType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rls: Speci fi edStructureType">
<xsd: sequence>
<xsd: choi ce maxCccur s="unbounded" >
<xsd: el ement ref="rls: PositionEl enent" />
<xsd: el enment ref="rls:ErrorEl enent" />
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Example
<rls: Data spec="#nyDat aSpec0001" >
<rl s: PositionEl ement spec="#myPosSpec0002">
<rls:pos>
<rls:Synbolicldentity srsNane="#myCRS0003" >
<rl s: coordi nate axi sNane="type" >human</rl s: coor di nat e>
<rl s: coordi nat e axi sNane="col or">red</rl s: coordi nat e>
<rl s: coordi nat e axi sNane="seqgNunt >0253</rl s: coor di nat e>
</rls:Synmbolicldentity>
</rls:pos>

<rls:err>
<rls:Reliability>0.6</rls:Reliability>
</rls:err>
</rls: PositionEl enent >
<rl s: PositionEl enment spec="#mnmyPosSpec0004" >
<rls:pos>
<gml : Poi nt srsName="#myCRS0005" >
<gm : pos>3. 25 2.21</gm : pos>
</ gm : Poi nt >
</rls:pos>
<rls:err>
<rls: Uni f or mGaussi an>
<rls:cov nRow="1" nCol ="1">
2.13
</rls:cov>
</rls:Unifornmzaussi an>
</rls:err>
</rls: PositionEl erent >
<rl s: PositionEl enent spec="#mnmyPosSpec0006" >
<rls: pos>
<gm : Ti mel nst ant franme="#nyCRS0007" >
<gnl : Ti mePosi ti on>2009- 01- 01T00: 40: 00+09: 00</ gnl : Ti nePosi ti on>
</ gm : Ti mel nst ant >
</rls:pos>
</rls: PositionEl enent >
</rls: Data>

Element
<xsd: conpl exType nane="El enent Type" abstract="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl|s: Specifi edStructureType">
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

PositionElement
<xsd: el emrent nanme="PositionEl enent"” type="rls: PositionEl ement Type"/>
<xsd: conpl exType nane="Positi onEl enent Type" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl s: El enment Type" >
<xsd: sequence>
<xsd: el erent name="pos"
type="rls:PositionType"/>
<xsd: el ement nanme="err" m nCccurs="0" maxQOccurs="1"
type="rls: ErrorType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Example 1
<rl s: PositionEl ement spec="#myPosSpec0002">
<rls:pos>
<rl s: Synbol Poi nt srsNane="#nyCRS0003" >
<rl s: coordi nate axi sNane="type" >human</rl| s: coor di nat e>
<rl s: coordi nate axi sNane="col or">red</rl s: coordi nat e>
<rl s: coordi nat e axi sNane="segNunit >0253</r| s: coor di nat e>
</rls: Synbol Poi nt >
</rls:pos>
<rls:err>
<rls:Reliability>0.6</rls:Reliability>

Robotic Localization Service, Beta 2
Ixxiii

</rls:err>
</rl s:PositionEl ement >

Example 2
<rl s: PositionEl enent spec="#nyPosSpec0004" >
<rls: pos>
<gml : Poi nt srsNanme="#myCRS0005" >
<gm : pos>3. 25 2.21</gmnl : pos>
</ gnm : Poi nt>
</rls:pos>
<rls:err>
<rl s: Uni f or mGaussi an>
<rls:cov nRow="1" nCol ="1">
2.13
</rls:cov>
</rls:Uniforntaussi an>
</rls:err>
</rls: PositionEl enent >

Example 3
<rl s: PositionEl ement spec="#nyPosSpec0006" >
<rls:pos>
<gml : Ti nel nst ant frane="#nyCRS0007" >
<gm : Ti mePosi ti on>2009- 01- 01T00: 40: 00+09: 00</ gnl : Ti nePosi ti on>
</ gm : Ti mel nst ant >
</rls:pos>
</rls: PositionEl enent >

ErrorElement

XML schema for ErrorElement is given as follows:
<xsd: el enent nanme="ErrorEl enent" type="rls: ErrorEl enent Type"/>
<xsd: conpl exType nanme="Error El enment Type" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl s: El enent Type" >
<xsd: sequence>
<xsd: el emrent name="err"
type="rl s: Error Conponent Type"/ >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Example
<rls:ErrorEl enent spec="#nyError Specl234">
<rls:err>
<rl s: Gaussi an>
<rls:cov nRow="3" nCol ="1">
2.31 -0.32 1.23
-0.32 1.50 0.01
1.23 0.01 10.31
</rls:cov>
</rls: Gaussi an>
</rls:err>
</rls:ErrorEl enent >

Position

Position is a union of classes SymbolicPosition in the Architecture package, GM_Position in 1SO 19107 and
TM_Position in SO 19108. So, its XML expression is a choice of their corresponding XMLs as follows:
<xsd: conpl exType nane="PositionType">
<xsd: choi ce>
<xsd: el enent ref="rls: SynbolicPosition"/>

Ixxiv Robotic Localization Service, Beta 2

<xsd: el enment ref="gm: Point"/>
<xsd: el ement ref="gm:Tinelnstant"/>
</ xsd: choi ce>
</ xsd: conpl exType>

SymbolicPosition
<xsd: el ement name="Synbol i cPosition"
type="rls: Synbol i cPositionType" />
<xsd: conpl exType nane="Synbol i cPositi onType" >
<xsd: sequence>
<xsd: el ement ref="rls:coords" nmaxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="coords"
type="rls: Synbol i cCoor di nat eType" />
<xsd: conpl exType nanme="Synbol i cCoor di nat eType" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd:attribute nane="axi sNane" type="xsd:string" use="required"
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

Example
<rls: Synbolicldentity srsNane="#myCRS0003" >
<rl s: coordi nate axi sNane="type">hunan</rl s: coor di nat e>
<rl s: coordi nat e axi sNane="col or">red</rl s: coordi nat e>
<rl s: coordi nat e axi sNane="segNunt >0253</rl s: coor di nat e>
</rls:Synbolicldentity>

Error (Base)

XML schema for Error is given as follows:
<xsd: conpl exType name="Err or Conponent Type" >
<xsd: sequence>
<xsd: el ement ref="rls: AbstractError"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el emrent nane="AbstractError"
t ype="Abstract Error Type"
abstract="true"/>
<xsd: conpl exType nanme="Abstract Error Type">
<xsd: attribute name="errorType" type="1D"' use="optional"/>
</ xsd: conpl exType>

Error (Variations)

Reliability

<I-- Reliability -->

<xsd: el ement name="Reliability"
type="rls: ProbabilityType"
substitutionGoup="rls:AbstractError" />

<xsd: si npl eType name="ProbabilityType">

<xsd:restriction base="float"/>
</ xsd: si npl eType>

Example
<rls:Reliability>0.7</rls:Reliability>

ErrorDisribution
<!-- ErrorDistribution -->
<xsd: el enent nane="ErrorDi stri bution"

Robotic Localization Service, Beta 2
Ixxv

/>

type="rls:ErrorDistributionType"
substitutionGoup="rls: Abstract Error"
abstract="true" />
<xsd: conpl exType nane="ErrorDi stributionType">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rls: ErrorType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Gaussian
<l-- Caussian -->
<xsd: el emrent name="Gaussi an"
type="rls: Gaussi anType"
substitutionGoup="rls:ErrorD strubition" />

<xsd: conpl exType nane="Gaussi anType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rls:ErrorDi stributionType">
<xsd: sequence>
<xsd: el ement nanme="cov"
type="rls: Covari anceMatri xType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="Matri xType" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="gnl : doubl eLi st" >
<xsd:attribute nane="nRow' type="integer"/>
<xsd:attribute nane="nCol" type="integer"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nane="Covari anceMatri xType" >
<xsd:restriction base="rls:MtrixType">
<xsd: annot at i on>
Attributes "nRow' should be equal to "nCol"
</ xsd: annot at i on>
</ xsd:restriction>
</ xsd: conpl exType>

Example
<rl s: Gaussi an>
<rls:cov nRow="3" nCol ="3">
3.20 0.53 0.02
0.53 9.21 -3.05
0.02 -3.05 12.00
</rls:cov>
</rls: Gussi an>

UniformGaussian
<!-- Uniform Gaussi an -->
<xsd: el enent nanme="Uni f or MGaussi an"
type="rls: Uni f or nzaussi anType"
substitutionG oup="rls: Gaussi an" />

<xsd: conpl exType nane="Uni f or mGaussi anType" >
<xsd: conpl exCont ent >

<xsd: ext ensi on base="rl s: Gaussi anType" >
<xsd: annot ati on>

Ixxvi Robotic Localization Service, Beta 2

Attributes "nRow' and "nCol" should be "1".
</ xsd: annot ati on>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Example
<rl s: Uni f or nGaussi an>
<rls:cov nRow="1" nCol ="1">
2.43
</rls:cov>
</rls:Uniformzaussi an>

MixtureModel
<l-- Mxture Mdel -->
<xsd: el enrent nane="Abstract M xt ur eMbdel "
type="rls: Abstract M xt ur eModel Type"
substitutionGoup="rls:ErrorDistribution
abstract="true" />

<xsd: conpl exType nane="Abstract M xt ur eModel Type"
abstract="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rls: ErrorDi stributionType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

LinearMixtureModel
<!-- Linear M xture Mdel -->
<xsd: el enent nane="Li near M xt ur eNbdel "
type="rls: Li near M xt ur eModel Type"
substituti onG oup="rls: Abstract M xt ur evbdel "
abstract="true" />

<xsd: conpl exType nanme="Li near M xt ur eModel Type" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl s: Abstract M xt ur eMbdel Type" >
<xsd: sequence>
<xsd: el enrent nanme="nodel " type="rl s: Wi ght edModel Type"
m nCccurs="1" maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="Wei ght edModel Type" >
<xsd: sequence>
<xsd: el enrent name="posEl enf' type="rls: PitionEl erent Type"/>
<xsd: el emrent nanme="wei ght" type="rls: ProbabilityType"/>
</ xsd: sequence>
</ xsd: conpl exType>

ParticleSet
<l-- Particle Set -->
<xsd: el emrent nanme="Particl eSet"
type="rls: Particl eSet Type"
substitutionG oup="rls: Li near M xt ureModel " />

<xsd: conpl exType name="Parti cl eSet Type" >

<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl s: Li near M xt ur eMbdel Type" >

Robotic Localization Service, Beta 2
Ixxvii

<xsd: annot ati on>
Each "npdel " el enent shall contain
w thout "err" el enent.
This is interpreted that the error is
a Gaussian distribution with
an all-zero covariance matri x.

</ xsd: annot ati on>

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Example
<rls:Particl eSet >
<rl s: nodel >
<rl s: posEl enr
<rls:pos>
<gml : Poi nt srsName="#myCRS0001" >
<gm : pos>20. 34 -2.59</gm : pos>
</ gm : Poi nt >
</rls:pos>
</rls: posEl enr
<rl s:wei ght >0. 8</rl s: wei ght >
</rls: nodel >
<rl s: nodel >
<rls: posEl enr
<rls: pos>
<gnl : Poi nt srsNanme="#myCRS0001" >
<gm : pos>17.25 -3.01</gm : pos>
</ gm : Poi nt >
</rls:pos>
</rls: posEl enr
<rl s: wei ght >0. 3</rl s: wei ght >
</rl s: nodel >
<rl s: nodel >
<rl s: posEl enr
<rls: pos>
<gml : Poi nt srsName="#nmyCRS0001" >
<gm : pos>21.99 -1.51</gm : pos>
</ gnm : Poi nt>
</rls:pos>
</rls: posEl enr
<rl s:wei ght>0.2</rl s: wei ght >
</rls: nodel >
</rls:ParticleSet>

MixtureOfGaussian
<l-- MxtureC Gaussi an -->
<xsd: el enent nane="M xt ur eX Gaussi an"
type="rls: M xtureO Gaussi anType"
substitutionG oup="rls: Li near M xt ureModel " />

<xsd: conpl exType nanme="M xt ur e Gaussi anType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="rl s: Li near M xt ur eMbdel Type" >
<xsd: annot at i on>
Each "nodel" el enent shall contain
an error information of Gaussian distribution
</ xsd: annot ati on>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Ixxviii Robotic Localization Service, Beta 2

Example
<rls: M xtureO Gaussi an>
<rl s: nodel >
<rls: posEl enr
<rls: pos>
<gm : Poi nt srsName="#myCRS0001" >
<gm : pos>20. 34 -2.59</gm : pos>
</ gm : Poi nt >
</rls:pos>
<rls:err>
<rl s: Gaussi an>
<rls:cov nRow="2" nCol ="2">
0.92 -0.07
-0.07 0.30
</rls:cov>
</rls: Gaussi an>
</rls:err>
</rls: posEl enr
<rl s: wei ght >0. 6</rl s: wei ght >
</rls: nodel >
<rl s: nodel >
<rls: posEl enr
<rls: pos>
<gm : Poi nt srsName="#myCRS0001" >
<gm : pos>19. 55 -1.30</gm : pos>
</ gm : Poi nt >
</rls:pos>
<rls:err>
<rl s: Uni f or mGaussi an>
<rls:cov nRow="1" nCol ="1">
0.7
</rls:cov>
</rls: Uniformzaussi an>
</rls:err>
</rls: posEl enr
<rl s:wei ght>0.6</rl s: wei ght>
</rls: nodel >
</rls: M xturef Gaussi an>

3. Architecture-specific Model

While the generic model shown above can represent any RoL o data, it is redundant and over generalized so that it
is difficult to check validity of the data syntactically according to the corresponding specifications. The
architecture-specific model will provides another mapping of a RoLo datato XML that istightly restricted for the
corresponding RoL o architecture specifications.

Identifier and Tag Naming

In order to provide unique name of each component of RoL o data in a systematic way, we suppose that the
following restrictions are applied to each related instance of RoL o architectures:

® Each instance of DataSpecification, ElementSpecification, ErrorType, SymbolicldentityCS, and
::1SO19111:CS_CoordianteSystemAxis shall have an identifier attribute that follow the following syntax:
(In the following BNF, we use “<<” and “>>" instead of “<” and “>" to avoid confusion of XML's tags
and nonterminal symbols.)

<<identifier>> ::= <<nanmespace>> <<separ at or>> <<| ocal nane>>
<<namespace>> ::= <<xsd: anyURIl >>

<<separator>> ::= "/" | "7 | “#

<<| ocal name>> ::= <<xsd: : NCName>>

Here, <<xsd: anyURI >> and <<xsd: NCName>> are the restricted character strings that are defined
in “W3C XML Schema D€inition Language”. From agiven identifier that follows above syntax, we

Robotic Localization Service, Beta 2
Ixxix

extract a namespace and a localname for a corresponding instance of Data, Element, Error, and
SymbolicPosition and its axis name of coordinates using <<namespace>> and <<I| ocal nanme>>,
respectively, partin<<i denti fi er >>,

® :1SO19111:CS CoordianteSystemAxis's axisAbbrev attribute shall identical to the <<I ocal name>>
part of itsidentifier attribute.

RoLo Data

Suppose that a DataSpecification has an identifier attribute, whose <<nanespace>> and <<| ocal nane>>
part are —“#myNamespace000" and ~~myRoL oData", respectively. We al so suppose that the specification consists
of alist of RoLo element specifications whose qualified names are ' myElement0", *~myElement1"”,
““myElement2", and so on. Then, the XML schema of corresponding Data instance shall be as following. Here we
assume that the target namespace of the following schema is “#myNamespace000” that corresponds to “app”
prefix.
<xsd: el emrent nanme="nyRoLoDat a” type="nyRoLoDat aType”/>
<xsd: conpl exType nane="nyRoLoDat aType>
<xsd: sequence>
<xsd: el ement ref="app: nyEl enent0”/>
<xsd: el enent ref="app: nyEl enent1"/>
<xsd: el ement ref="app: nyEl enent2”/>

</ xsd: sequence>
</ xsd: conpl exType>
Syntax of the contents of each Element is declared according to specifications of each ElementSpecification as
describe below.

Example
<app: SensedObj ect I nfo xm ns: app="#nmyAppl i cati on000" >
<app:id>
<app: pos>
<app: SensedCbj ect I d srsNane="#nyCRS0003" >
<app: t ype>hunan</ app: type>
<app: col or >r ed</ app: col or >
<app: segNun>0253</ app: seqNune
</ app: SensedObj ect | d>
</ app: pos>
<app: err>
<rls:Reliability>0.6</rls:Reliability>
</ app:err>
</ app:id>
<app: | ocati on>
<app: pos>
<gnl : Poi nt srsNanme="#myCRS0005" >
<gm : pos>3. 25 2.21</gm : pos>
</ gn : Poi nt>
</ app: pos>
<app: err>
<rl s: Uni f or n;aussi an>
<rls:cov nRow="1" nCol ="1">
2.13
</rls:cov>
</rls: Unifornaussi an>
</ app:err>
</ app: | ocation>
<app:time>
<app: pos>
<gm : Ti mel nst ant f ranme="#nyCRS0007" >
<gm : Ti mePosi ti on>2009- 01- 01TOO0: 40: 00+09: 00</ gm : Ti mePosi ti on>
</ gm : Ti nel nst ant >
</ app: pos>
</ app:tinme>

IXxx Robotic Localization Service, Beta 2

</ app: Sensedbj ect | nf 0>
PositionElement

Suppose that a PositionElementSpecification has an identifier attribute, whose namespace and localname part are
““#myNamespace000" and ~~myPosElement", respectively. Then, the XML schema of a corresponding
PositionElement shall be:
<xsd: el emrent name="nyPosEl enent” type="nyPosEl enent Type”/ >
<xsd: conpl exType nanme="nyPosEl enent Type>
<xsd: sequence>
<xsd: el emrent nanme="pos” type="<<nyPosType>>"/>
{<xsd: el enent name="err” type="rls: ErrorConponent Type”/>}?
</ xsd: sequence>
</ xsd: conpl exType>
, Where <<nyPosType>> is:
® an application specific SynbolicPosition type describe belowif the
CS_Coor di nat eSyst em of Posi ti onEl ement Specification refers an
i dentityCs,
® gl : TinelnstantPropertyType, if the cs is a tenporal coordiante
system
® or, gnl:PointPropertyType otherw se.
The“err” element part can be omitted according to the specification.

Example 1
<app:id xm ns:app="#myAppl i cati on000">
<app: pos>

<app: SensedObj ect | D sr sNane="#nyCRS0003" >
<app: t ype>human</ app: t ype>
<app: col or >r ed</ app: col or >
<app: segNun»0253</ app: segNunw
</ app: SensedObj ect | D>
</ app: pos>
<app:err>
<rls:Reliability>0.6</rls:Reliability>
</ app: err>

</ app:id>
Example 2
<app: |l ocati on xm ns: app="#nmyAppl i cati on000" >
<app: pos>

<gnl : Poi nt srsNanme="#myCRS0005" >
<gm : pos>3. 25 2.21</gmnl : pos>
</ gn : Poi nt>
</ app: pos>
<app: err>
<rl s: Uni f or mGaussi an>
<rls:cov nRow="1" nCol ="1">
2.13
</rls:cov>
</rls: Unifornaussi an>
</ app:err>
</ app: | ocation>

Example 3
<app:tinme xm ns: app="#nyApplicati on000" >
<app: pos>
<gnl : Ti nel nst ant frane="#nyCRS0007" >
<gm : Ti mePosi ti on>2009- 01- 01T00: 40: 00+09: 00</ gnl : Ti nePosi ti on>
</ gm : Ti el nst ant >
</ app: pos>

Robotic Localization Service, Beta 2
IXxXXi

</ app:time>
ErrorElement

Suppose that a RoL o error element specification has an identifier attribute, whose namespace and localname parts
are ~ #myNamespace000" and ~"myErrElement”, respectively. Then, the XML expression of a corresponding
Error Element shall be:
<xsd: el emrent name="nyErrEl enent” type="nyErrEl ement Type"/ >
<xsd: conpl exType nanme="nyErr El enent Type>
<xsd: sequence>
<xsd: el emrent name="err” type="rls: ErrorConponent Type”/>
</ xsd: sequence>
</ xsd: conpl exType>

Example
<app: nyError xm ns: app="#nyAppli cati on000" >
<app: err>
<rl s: Gaussi an>
<rls:cov nRow="3" nCol ="1">
2.31 -0.32 1.23
-0.32 1.50 0.01
1.23 0.01 10.31
</rls:cov>
</rls: Gaussi an>
</ app:err>
</ app: nyError>

Symbolic Position

Suppose that an IdentityCS has an identifier attribute, whose namespace and localname parts are
“#myNamespace000" and “"myldCS", respectively. We a so suppose that the usesAxis attribute of the IdentityCS
consists of alist of CoordinateSystemAxis [ISO19111] whose axisAbbrev (that isidentical to the localname part
in the identifier attribute of the axis) are “myAxis0", ~ myAxisl", “myAxis2", and so on. Then, the XML schema
of a corresponding SymbolicPosition shall be as follows:
<xsd: el erent name="nyl dCS" type="nyl dCSType"/ >
<xsd: conpl exType name="rnyl dCSType>
<xsd: sequence>
<xsd: el ement nane="nyAxi s0” type="xsd:string”/>
<xsd: el ement nanme="nyAxi s1” type="xsd:string”/>
<xsd: el enent name="nyAxi s2” type="xsd:string”/>

</ xsd: sequence>
</ xsd: conpl exType>

Example
<app:id xm ns: app="#nyAppl i cati on000" srsNane="#nyCRS0003" >
<app: t ype>hunan</ app: type>
<app: col or >r ed</ app: col or >
<app: segNun>0253</ app: seqNune
</ app:id>

Ixxxii Robotic Localization Service, Beta 2

Annex B
Naming of RoLo Architecture Components for Filter Condition

(informative)

This annex provides a naming rule of RoL o architecture components for use with filter
condition. In order to utilize the filter condition, we need away to specify componentsin a
RoL o data to test each condition. For this purpose, we suppose that each RoL o data can be
expressed by XML-PSM (see annex A) and use XPath to indicate each part of RoLo data as
same as the original filter encoding in SO 19143.

Example 1

This exampleisan XML encoding of afilter condition that requires only localization datain a
certain area.

<fes:Filter
xm ns: fes="http://ww. opengi s. net/fes/2.0"
xm ns: gm ="http://ww. opengi s. net/gm /3. 1"
xm ns: nyapp="http://nmy. | ocal host. | ocal net/ nyapp"
xmns:rls="http://ww.ong.org/rls/1. 0">
<fes:Intersects>
<f es: PropertyNanme>myapp: | ocation/rls: pos</fes: PropertyNane>
<gnl : Envel ope
srsNanme="http://my. | ocal host. | ocal net/ nyapp/crs000">
<gm : | ower Cor ner >10. 25 15. 33</gmi : | ower Cor ner >
<gm : upper Cor ner >17. 73 25. 03</ gni : upper Cor ner >
</ gm : Envel ope>
</fes:Intersects>
</fes:Filter>

Example 2

This exampleisan XML encoding of afilter condition that requires only localization data of a
certain ID.

<fes:Filter
xm ns: fes="http://ww. opengi s. net/fes/2.0"
xm ns: gm ="http://ww. opengi s. net/gm /3. 1"
xm ns: nyapp="http://my.l ocal host.| ocal net/ nyapp"
xmns:rls="http://ww.ong.org/rls/1. 0">
<f es: Propertyl sequal To>
<f es: PropertyName>myapp:id/rls: pos</fes: PropertyNanme>
<fes: Literal >nyl D 3429; abcd</fes: Literal >
</ fes: Propertyl sequal To>
</fes:Filter>

Example 3

This exampleisan XML encoding of afilter condition that requires only localization datain a
certain area and a certain time period.

<fes:Filter
xm ns: fes="http://ww. opengi s. net/fes/2.0"
xm ns: gm ="http://ww. opengi s. net/gnl /3. 1"
xm ns: nyapp="http://ny.l ocal host.| ocal net/ nyapp"
xmns:rls="http://ww.ong.org/rls/1. 0">
<f es: And>
<fes:Intersects>
<f es: Propert yName>nmyapp: | ocation/rls: pos</fes: PropertyNane>
<gm : Pol ygon
srsNanme="http:// my. | ocal host. | ocal net/ nyapp/crs000" >
<gm : exterior>
<gm : Li near R ng>
<gnl : posLi st di nensi on="2">
23.02 34.21
11.56 23.14
90.43 23.19
33.23 29.00
23.02 34.21
</ gm : posLi st >
</ gm : Li near R ng>
</gm :exterior>
</ gm : Pol ygon>
</fes:Intersects>
<f es: Propertyl sBet ween>
<f es: Propert yName>nyapp: tine/rls: pos</fes: PropertyNanme>
<f es: Lower Boundar y>
<fes: Literal >2008- 12- 08T09: 00: 00. 000- 08: 00</fes: Literal >
</ f es: Lower Boundar y>
<f es: Upper Boundar y>
<fes: Literal >2008-12-10T17: 30: 00. 000- 08: 00</fes: Literal >
</ f es: Upper Boundar y>
</ fes: Propertyl sBet ween>
</ fes: And>
</fes:Filter>

Ixxxiv Robotic Localization Service, Beta 2

