Resource Access Decision Facility
Specification

April2001
Version 1.0




Copyright 1999, 2AB, INC.
Copyright 1999, Baptist Health Systems of South Florida
Copyright 1999, CareFlow/Net, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.



ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm






Contents

1. Preface . ... . i
1.1  About the Object ManagementGroup . ............... iii
1.1.1 WhatisCORBA? . ....... .. ... il
1.2  Associated OMG Documents. . .................c.... iv
1.3 Acknowledgments ............ .. . .. i, %
2. OVEIVIEW . .. 1-1
2.1 Introduction .. ....... ... . 1-1
2.2 Reference Models. .. ...... .. ... ... ... .. . .. 1-3
2.2.1 Access Decision Model .................. 1-3
2.2.2 Administrative Model. . .................. 1-5
2.2.3 Information Model . ..................... 1-7
2.2.4  Computational Model ................... 1-8
3. DfResourceAccessDecisionModule . .................. 2-1
3.1 OMGIDL. . 2-2
3.2 TYPES i 2-3
3.2.1 Basic Types & Types used from the CORBA
Security Service . ... ... e 2-3
3.2.2 Types that identify and manage information
about secured resources. .. ............. .. 2-4
3.2.3 Types Associated with Evaluating Access Policy 2-6
3.2.4 Types Used to Request Access Decisions. . . .. 2-7
3.25 EXCeptions ........... .. 2-8
3.3  PolicyNamelListlterator Interface . . .. ................ 2-12
3.4 AccessDecisioniInterface................. ... ...... 2-12

Resource Access Decision, v1.0 April 2001



Contents

3.5 DynamicAttributeService Interface . ................. 2-14
3.6  PolicyEvaluatorLocator Interface. .. ................. 2-15
3.7 DecisionCombinator Interface . . .. .................. 2-16
3.8 PolicyEvaluator Interface. .. ........... ... ... .. ... 2-18
3.9  AccessDecisionAdmin Interface .................... 2-19
3.10 PolicyEvaluatorLocatorBasicAdmin Interface.......... 2-20
3.11 PolicyEvaluatorLocatorNameAdmin Interface........ .. 2-21
3.12 PolicyEvaluatorLocatorPatternAdmin Interface. . ....... 2-25
3.13 PolicyEvaluatorAdmin Interface .................... 2-31
3.14 Conformance Classes. . .. ..., 2-34
Appendix A-OMG IDL ... .. A-1
Appendix B - Use Case Example. .. .................. B-1
Appendix C - Resource Names for PIDS .. ............ C-1

Resource Access Decision, v1.0 April 2001



Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Resource Access Decision, v1.0 April 2001 iii



Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

CORBA Languages collection of language mapping specifications. See the
individual language mapping specifications.

CORBAservices: Common Object Services Specificatiaollection of OMG'’s
Object Services specifications.

CORBAfacilities: Common FacilitieSpecificationa collectionof OMG’s Common
Facility specifications.

CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA HealthcareComprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA TelecomsComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i@iject Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

Resource Access Decision, v1.0 April 2001



OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments
The following companies submitted and/or supported parts of this specification:
2AB, INC.
Baptist Health Systems of South Florida
CareFlow/Net, Inc.
Concept Five
DASCOM, Inc.
IBM
Inprise
Los Alamos National Laboratory
National Institute of Standards (NIST)
National Security Agency (NSA)

Philips Medical Systems

The submitters would like to thank the following individuals for their active
participation during the development of the specificaiton and detailed review of each
version of the specification.

John Barkley - NIST
Bob Blakley - IBM

Resource Access Decision, v1.0 Acknowledgments April 2001 v



Vi

Resource Access Decision, v1.0

April 2001



1.1

Introduction

Overview 1

Contents

This chapter contains the following topics.

Topic Page
“Introduction” 1-1
“Reference Models” 1-3

The Resource Access Decision (RAD) Facility is a mechanism for obtaining
authorization decisions and administrating access decision policies. It enables a
common way for an application to request and receive an authorization decision. The
facility is intended to be used by security-aware applications.

This specification provides access decision functionality not supported by
CORBAsecurity, which is required in healthcare and other application environments. It
is intended to be implementable using CORBAsecurity as a base; it is also intended to
be implementable in ORB environments that do not provide CORBAsecurity. For
detailed information about the healthcare environment’s access control requirements,
refer to the RAD RFP (OMG document number corbamed/98-02-23).

In the design, authorization logic is encapsulated within an authorization facility that is
external to the application. In order to perform an application-level access control, an
application requests an authorization decision from such a facility and enforces that
decision. A simplified schema of application flow is depicted in Figure 1-1.

Resource Access Decision, v1.0 April 2001 1-1



Target
Object AccessDecision

(ADO client)

\ 1. Application Request ) \— 2. Authorization request .—~
\ 4. Reply to application request ,/ — 3. Reply to authorizaition request .—/

CORBA Object Request Broker

Scope is Application Scope is HRAC

Figure 1-1  Application flow schema

The sequence of the interaction, illustrated by Figure 1-1, is as follows:

1. An application client invokes an operation of the interface provided by the target
object. The object request broker transfers this request to the target object and
causes invocation of the appropriate method in the target object.

2. While processing the request, the target object requests authorization decision(s)
from the Access Decision object (ADO) by invoking #exess_allowed()
method of the ADO.

3. The Access Decision object consults other objects that are internal to the RAD
(described in this specification) to make an access decision. The access decision is
returned to the Target Object (ADO client) as a boolean.

4. The target object, after receiving an authorization decision, is responsible for
enforcing the decision. If access was granted by the ADO, the target object
performs the requested operation and returns the results. If access to secured
resources was denied, the target object may return partial results or raise an
exception to the Client.

Resource Access Decision, v1.0 April 2001



1

A detailed description of the object model and design of the ADO (and its interaction
with other RAD objects) can be found in Section 2.3, “PolicyNameListlterator
Interface,” on page 2-12.

1.2 Reference Models

Two views of the RAD are presented in the following models. The first is the access
decision model. This represents the relationship of objects involved in making an
access decision. The second view is the Administrative view and represents how a
RAD is configured. Administration of Access Policy is beyond the scope of the RAD
and is clearly indicated as such on this model diagram.

The Resource Access Decision facility reference model defines a framework within
which a wide variety of access control polices may be supported. The reference models
below clearly indicate the scope of this specification by heavy dotted lines. In some
cases there are types that occur within the scope of this specification that represents
concepts and/or services that lie beyond the scope of the RAD. An example of this is
the concept of a “secured resource,” which is only represented within the scope of the
RAD by aResourceName . Where this occurs these external concepts appear in the
model, but outside the dotted line to aid the reader in an understanding of the
relationship between the RAD and the external concepts and/or services. The
appearance of objects outside the scope of the specification is conceptual and is
presented only to aid in understanding the types that occur within the RAD.

RAD types that represent or encapsulate external concepts and/or services:

®* ResourceName : A “secured resource” is represented within the RAD by a
ResourceName that is a structure containing &athorityld for the namespace
and a sequence of name/value pairs.

® QOperation : Secured resources have one or more operations that may be performed
on them (such as create, get, set, use). These operations are represented within the
RAD as strings.

® PolicyName : “Policy” (the rules used for controlling access to secured resources
and their operations) is beyond the scope of the RAD, but when referenced within
the RAD, is identified by #&olicyName that is a string.

® DynamicAttributeService : The DynamicAttributeService may consult an
externalAttributeEvaluator .

1.2.1 Access Decision Model

An Access Decision is requested by a client by invokingatteeess_allowed()

method of theAccessDecision object (ADO) passing ResourceName ,

Operation, and&ecAttributes . The ADO consults ®ynamicAttributeService to
obtain an updated list GecAttributes that include any dynamic attributes currently
applicable for this access decision. ThgnamicAttributeService may consult
externally provided dynamic attribute evaluators as part of its implementation. The
AccessDecision object also consults thHeolicyEvaluatorLocator to obtain object
references for th@olicyEvaluator (s) and theDecisionCombinator that are

RAD, v1.0 Reference Models April 2001 1-3



required for an access decision. ThecessDecision object consults the
DecisionCombinator that consults with anfPolicyEvaluators responsible for
interpreting access policy that controls access tdRébsurceName/operation

The DecisionCombinator encapsulates policy combination logic and is responsible
for understanding the policy that controls how a series of results from
PolicyEvaluators are combined including any precedence rules that may apply. It is
the response from theecisionCombinator that is returned to the client. This
combinator is responsible for taking the results ofRbécyEvaluators evaluate()
method and making a final access decision.

consults 1 DynamicAttribute

/ Service

I
I
I
I
consults |
I
I
I

1 1

1..* T, PolicyEvaluator *.
- = __——consults ~
AccessDecision Locator S

repreéénted by

W 1 1 |
| ol
locates —» . .

PolicyEvaluator |~~~

It: locates 0..1 evaluates
consults .
| \ Policy
1.* | 0.1
1 | 0..1
1 I
Decision ———consults |
Combinator defines
| access policy

1! 0.1
ResourceName | -- ' l L
represented by -
i | :

1
'

SecuredResource :

1*: hasl/ H

Scope of the HRAC

Figure 1-2  Access Decision Model

Resource Access Decision, v1.0 April 2001



1.2.2 Administrative Model

The administrative model of RAD is designed to allow replaceable RAD objects within
an implementation and to allow RAD clients to apply previously defined policy to
resources.

The administrative model is not intended to provide the Administrative interfaces
necessary to define access policy. The definition of access policy (the rules that govern
access to secured resources/operations) is outside the scope of this specification. This
Administrative model clearly indicates this by placing Policy administration outside

the dotted line that delineates the scope of the RAD specification.

The PolicyEvaluatorLocatorAdmin  interface is used to associate

PolicyEvaluators andDecisionCombinators with aResourceName . Multiple
PolicyEvaluators may be associated with a sindgtesourceName . These

evaluators will all be consulted during access decisions. There is only one
DecisionCombinator provided for aResourceName . PolicyEvaluators have an
endless series of options for implementation. For this reason, the interface is public and
evaluators may be “plugged-in” to a RAD framework by vendors and/or users. In the
same sense, there are many possible policies for combining policy decisions. Some
secured resources should not be accessible unless &blibgEvaluators return
ACCESS_DECISION_ALLOWED. Other secured resources may be accessible if any
one of thePolicyEvaluators allow access. Defining an interface for the
DecisionCombinators allows custom combinators to be configured for a secured
resource. It is possible to assign a def@dtisionCombinator .

The PolicyEvaluatorAdmin interface is used to apply an existing named access

policy to a secured resource. An application that wished to dynamically apply policy to
newly created resources would be required to specify the names of those policies. The
policy would be configured by an administrator using the administrative interfaces of
the underlying access policy system and the required name associated with it (this is
outside the scope of the RAD admin interfaces). Once this had been accomplished, a
RAD client could apply this named policy using thelicyName to a

ResourceName . ThePolicyEvaluatorAdmin also allows default policy to be

assigned “by name” and a list of existiRglicyNames can be retrieved via the

interface.

RAD, v1.0 Reference Models April 2001 1-5



1-6

administers

—_————

PolicyEvaluator

PolicyEvaluator
LocatorAdmin: |——————associates.

PolicyLocator
applies I
policy associates
Decision
Combinator

“1

ResourceName kl

~y ¥

'
'

«
IN
™
1

'

1

Operation

PolicyEvaluator
Admin :
PolicyEvaluator

associates.

TR N
o\ represented by
[N

l\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

has

Administrator

administers

0.1 / 1

assigns

i
access policy represented

by

SecuredResource

PolicyName

Scope of the HRAC Service

Figure 1-3  Administrative Model

Resource Access Decision, v1.0 April 2001



1.2.3 Information Model

- - - ResourceNameComponent
ResourceNamingAuthority ResourceNameComponentList S S <<IDL Interface>>
0.1 1.* ovalue_string[o..ll : string BolovEraliag
1.1 1.1
+resource_name_authority

+resource_name_component_list

DecisionResult

(ACCESS_DECISION_ALLOWED
ACCESS_DECISION_NOT_ALLOWED

+policy _evaluator

oACCESS_DECISI ON_UNKNOWN
ResourceName | ResourceNamePattern 0.*
<<ty pedef>> -
NamedPolicy Ev aluator
+resource_name oevaluator_name [0..1] : string
0..*
0.1
0.1
AccessDef inition AccessDefinitionList
<<IDL Interface>> Policy EvaluatorList
0.x 0.1 DecisionCombinator
0.1 1.1
+operation_name 1.1 +policy _ev aluator_list
1.1
+decision_combinator
Operation OperationList o
0..* 0.1 {} 0.1
0.1 1 Policy DecisionEv aluators
Policy NameList v PolicyName | NO_ACCESS_PoOLICY
<<instance>>
BooleanList boolean AttributeList Security ::AttributeList
>
<<ty pedef>>
0.1 0. yp

Figure 1-4 Information Model

The information model of RAD is designed to be simple to implement and to use.

RAD, v1.0 Reference Models April 2001 1-7



1-8

1.2.4 Computational Model

<<IDL Interface>>
AccessDecision

#access_allowed()
multiple_access_allowed()

1

1.*

<<IDL Interface>>
AccessDecisionAdmin

Mget_policy_evaluator_locator(
#se t_policy_evaluator_locator(
#Mget_dynamic_attribute_sewice()
fpset_dynamic_attribute_sewice()

+policy_evaluator_locator

<<IDL Interface>>
DecisionCombinator

@Wecom bine_decisions()

<<Interface>>
PolicyEvaluatorLocator

1

+dynamic_attribute_service

1

<<IDL Interface>>
DynamicAttributeSewice

#liget_dynamic_atributes(

+name_admin

1

0.1

Mget_policy_decision_evaluators()

0..*

+basic_admin
1

T Madd_policies()

<<Interface>>
PolicyEvaluatorLocatorBasicAdmin

Mset_default_evaluators()
#get_default_combinator()
Mset_default_combinator()
Mget_default_evaluators()

<<IDL Interface>>
PolicyEvaluator
MWevaluate ()

1.*

+pe_admin

1

<<IDL Interface>>
PolicyEvaluatorAdmin
Miset_policies()

MWist_policies()
Mset_default_policy()
Hdelete_policies()

+pattern_admin

0.1

PolicyEvaluatorLocatorNameAdmin

<<IDL Interface>>

PolicyEvaluatorLocatorPatternAdmin

<<IDL Interface>>

Mise t_evaluators()
#add_evaluators()
#delete_evaluators()
#get_evaluators(
#set_combinator()
#idelete_com binator(

*et_evalu ators_by_pattern()
#add_evaluators_by_pattern()
#idelete_evaluators_by_pattern()
lhet_evaluators_by_pattern()
#set_combinator_by_pattern()
#idelete_com binator_by_pattern()
#get_combinator_by_pattern()

#get_combinator()

#register_resource_nam e_pattern(

l‘lnregister_resource_n am e_pattern()

Figure 1-5 Computational Model

The computational model of RAD consists of two interface groups:

®* Runtime interfacesAccessDecision , DynamicAttributeService
PolicyEvaluator , PolicyEvaluatorLocator , andDecisionCombinator

® Administrative interfacesAccessDecisionAdmin , PolicyEvaluatorAdmin , and
PolicyEvaluatorLocatorBasicAdmin  , PolicyEvaluatorLocatorNameAdmin
PolicyEvaluatorLocatorPatternAdmin

Among runtime interfacesdccessDecision , PolicyEvaluatorLocator , and
DynamicAttributeService are singletons (i.e., one instance of each interface is
available in every implementation of RAD). On the other hand more than one instance
of DecisionCombinator andPolicyEvaluator may be available.

Resource Access Decision, v1.0 April 2001



DfResourceAccessDecision Module 2

Contents

This chapter contains the following topics.

Topic Page
“OMG IDL” 2-2
“Types” 2-3
“PolicyNameListlterator Interface” 2-12
“AccessDecision Interface” 2-12
“DynamicAttributeService Interface” 2-14
“PolicyEvaluatorLocator Interface” 2-15
“DecisionCombinator Interface” 2-16
“PolicyEvaluator Interface” 2-18
“AccessDecisionAdmin Interface” 2-19
“PolicyEvaluatorLocatorBasicAdmin Interface” 2-20
“PolicyEvaluatorLocatorNameAdmin Interface” 2-21
“PolicyEvaluatorLocatorPatternAdmin Interface” 2-25
“PolicyEvaluatorAdmin Interface” 2-31
“Conformance Classes” 2-34

Resource Access Decision, v1.0 April 2001



2.1 OMG IDL

/IFile: DfResourceAccessDecision.idl
i

#ifndef DF_RESOURCE_ACCESS_DECISION_IDL_
#define _DF_RESOURCE_ACCESS_DECISION_IDL_

#include "Security.idl"
#pragma prefix "omg.org"
module DfResourceAccessDecision {

interface PolicyNameListlterator {

3

interface AccessDecision {

3

interface DynamicAttributeService {

y

interface PolicyEvaluatorLocator {

y

interface DecisionCombinator {

y

interface PolicyEvaluator {

y

interface AccessDecisionAdmin {

y

interface PolicyEvaluatorLocatorBasicAdmin {
3

interface PolicyEvaluatorLocatorNameAdmin {
3

interface PolicyEvaluatorLocatorPatternAdmin {

Resource Access Decision, v1.0 April 2001



2.2 Types

B
interface PolicyEvaluatorAdmin {
3
h

#endif //_DF_RESOURCE_ACCESS_DECISION _IDL_

The DfResourceAccessDecision contains four interfaces defined below and has
type dependencies on the CORBA Security Service.

#include <Security.idl>
The types declared within the Security service and used by the RAD are:
Security::AttributeList

These types are used for consistency with CORBASec and have the same meaning
when used in RAD interfaces. They are typedef'd in this specification for ease of use.

#pragma prefix "omg.org"
In order to prevent name pollution and name clashing of IDL types this module (and

all modules defined in this specification) uses the pragma prefix that is the omg DNS
name.

There are a number of structured types used widely throughout the
DfResourceAccessDecision Model. These types are described in this section:

2.2.1 Basic Types & Types used from the CORBA Security Service

//******************** *hkkkkkkkkkkkkhkhkkkkhkhkkkkhhhhkhkkkhhkxx

1 Basic Types

//******************** *hkkkkkkkkkkkkkhkhkhkkkkhkhkkkkhhhhkhkkhkhhkxkx

typedef sequence<boolean> BooleanList;

typedef Security::AttributeList AttributeList;

BooleanList

A sequence of boolean used as a return value when multiple decisions are requested.

This type is used as a return value in tdtiple_access_allowed() method of the
AccessDecision interface.

RAD, v1.0 Types April 2001 2-3



AttributeList

The Security::AttributeList  is defined as follows in CORBA Security 1.2 (ptc/98-
01-02). TheAttributeList is provided as an input parameter by the "application" client
when a request for an access decision is madeAfthbuteList used for access
decisions may be modified to include dynamic attributes by use of the
get_dynamic_attributes() method of theDynamicAttributeService interface. As

a convenience to the reader, the structure $&eurity::AttributeList  is replicated
below.

typedef sequence<octet> Opaque,;

/I security attributes
typedef unsigned long SecurityAttributeType;

struct ExtensibleFamily {
unsigned short family_definer,;
unsigned short family;
h
struct Attribute Type {
ExtensibleFamily  attribute_family;
SecurityAttribute Type attribute_type;

3

struct SecAttribute {
Attribute Type attribute_type;
Opaque defining_authority;
Opaque value;
/l the value of this attribute can be
/I interpreted only with knowledge of type

h

typedef sequence <SecAttribute> AttributeList;

2.2.2 Types that identify and manage information about secured resources

//******************** *hkkkkkkkkkkkkhkhkkkhkhkhkkkkhhhhkhkkhkhhkxx

/I Types that identify a secured resource

//******************** *hkkkkkkkkkkkkhkhkkkkhkhkkkkhhhhkhkkhkhhkxx

struct ResourceNameComponent {
string name_string;
string value_string;

h

typedetequence<ResourceNameComponent> ResourceNameComponentList;

typedef string ResourceNamingAuthority;

Resource Access Decision, v1.0 April 2001



struct ResourceName {
ResourceNamingAuthorityresource_naming_authority;
ResourceNameComponentListresource_name_component_list;

h

typedef ResourceName ResourceNamePattern;

typedef sequence<string> OperationList;

ResourceNameComponent

A datum element of this type is invalid if theame_string member has empty value.
ResourceNameComponentList

A datum element of typResourceNameComponentList is invalid if it is empty or
any of its sub-elements is invalid.

ResourceNamingAuthority

A ResourceNamingAuthority is used to identify an authority whose defined the
semantics of the naming scheme used in the components of the corresponding
resource_name_component_list data member.

ResourceName

A ResourceName is used to identify a secured resourceRésourceName

contains a unique identifier for the naming authority and a sequence of
ResourceNameComponents . EachResourceNameComponent includes a name
and value string. This combination of naming authority and name/value pairs allows
for categorization and grouping of resources if desired.

A datum of typeResourceName is invalid if eitherresource_name_authority or
resource_name_component_list is invalid.

ResourceNamePattern

A ResourceNamePattern is used in Administrative interfaces to allow generalized
regular expressions to be provided in tiadue_string of a
ResourceNameComponent for the purpose of administering groups of secured
resources. The regular expression syntax is defined by 9945-2:1993 (ISO/IEC)
Information Technology-Portable Operating System Interface (POSIX)-Part2: Shell
and Utilities IEEE/ANSI Stdl003.2-1992 & EEE/ANSI 1003.2a-1992 Section 2.8,
pages 77-91, “Regular Expression Notation.”

A datum of typeResourceNamePattern is invalid if either
resource_name_authority orresource_name_component_list is invalid.

RAD, v1.0 Types April 2001 2-5



OperationList

An OperationList is used to identify a list of operations that may be performed on a
secured resource.

2.2.3 Types Associated with Evaluating Access Policy

//******************** *hkkkkkkkkhkkkkkkhhkhkkkkkhkkkkkhhhhhxx

/I Types associated with evaluating Access Policy

//******************** *hkkkkkkkkkkkkkhkhkhkkkkkkkkkkhhhhhxx

typedef string PolicyName;
typedef sequence<PolicyName> PolicyNameList;

const PolicyName NO_ACCESS_POLICY ="NO_ACCESS_POLICY";

struct NamedPolicyEvaluator {
string evaluator_name;
PolicyEvaluator  policy evaluator;
h

typedef sequence<NamedPolicyEvaluator> PolicyEvaluatorList;

struct PolicyDecisionEvaluators {
PolicyEvaluatorList  policy_evaluator_list;
DecisionCombinator decision_combinator;

h
PolicyName

A PolicyName is a string used to identify an access policy for a secured resource.
This type is only used in theolicyEvaluatorAdmin interface. It is used as an input
parameter to theeplace_policy() , add_policy() , andset_default_policy()

methods of théPolicyEvaluatorAdmin interface.PolicyName s are assigned by the
administrative interface of the policy engine and cannot be modified or controlled by
the RAD. There is one standard PolicyName of “NO_ACCESS_POLICY.” See the
PolicyEvaluatorAdmin interface for usage.

A datum element of this type is invalid if it is empty.
PolicyNameList

A PolicyNamelList is a sequence ddolicyName s. It is returned from the
list_policy() method of thePolicyEvaluatorAdmin interface.

A datum element of this type is invalid if it is empty or any of its sub-elements is
invalid.

Resource Access Decision, v1.0 April 2001



NamedPolicyEvaluator

A NamedPolicyEvaluator is a structure that contains the name of the Policy
Evaluator and the object reference for the policy evaluatoreVakiator_name will

be null in implementations that choose not to name evaluators. Providing named
evaluators allows an implementation to apply precedence logic based on evaluator
names when making an access decision. A datum element of type
NamedPolicyEvaluator is invalid if its data membeipblicy_evaluator ” has value
nil.PolicyEvaluatorList

PolicyEvaluatorList

A PolicyEvaluatorList is a sequence ®dlamedPolicyEvaluator . The
administrative interfaces dfolicyEvaluatorLocator interface allow the association
of a list ofNamedPolicyEvaluator (s) with aResourceName . This type is returned
from get_policy _decision_evaluators() andset_default_evaluators() and is
used as an input parameter in #et_evaluators , add_evaluators() ,
delete_evaluators() , set_evaluators_by pattern() ,

add_evaluators_by pattern() , delete_evaluators_by pattern() , and
set_default_evaluators() operations. Thé&olicyEvaluatorList returned from the
PolicyEvaluatorLocator is passed to thBecisionCombinator returned from the
PolicyEvaluatorLocator . A datum element of typBolicyEvaluatorList is invalid
if it is empty or any of its elements is invalid.

PolicyDecisionEvaluators

The PolicyDecisionEvaluators  struct contains ®olicyEvaluatorList and the
DecisionCombinator . This is the type returned from the
get_policy_decision_evaluators() = method of thePolicyEvaluatorLocator

interface. This structure contains the references of all the objects that may be consulted
during an access decision.

2.2.4 Types Used to Request Access Decisions

//******************** *hkkkkkkkkhkkkkkhkhkhkhkkkkhkkkkkhhhhhxx

/I Types used to request an Access Decision

//******************** *khkkkkkkkhkkkkkhkhkhkhkkkkkkkkkhhhhhxx

struct AccessDefinition {
ResourceName resource_name;
string operation;

typedef sequence<AccessDefinition> AccessDefinitionList;
enum DecisionResult {ACCESS_DECISION_ALLOWED,

ACCESS_DECISION_NOT_ALLOWED,
ACCESS_DECISION_UNKNOWN

RAD, v1.0 Types April 2001 2-7



2-8

AccessDefinition

The AccessDefinition  struct is provided to allow multiple access definitions to be
defined. It contains thResourceName and the operation name for the secured
resource access being requestectessDefinition is used as an input parameter to
theaccess_allowed() method of theAccessDecision interface and thevaluate()
method of thePolicyEvaluator interface.

A datum element of this type is invalid if either of its members is invalid.
AccessDefinitionList

AccessDefinitionList  is the type used to request multiple access decisions in a
single operation. It is used as an input parameter tontligple_access_allowed()
method of theAccessDecision interface and thenultiple_evaluate() method of
the PolicyEvaluator interface.

DecisionResult

DecisionResult is an enum with three possible values. The values are:

® ACCESS_DECISION_ALLOWED: the policy evaluated for this ResourceName,
operation and Attribute list indicates that access is ALLOWED.

® ACCESS_DECISION_NOT_ALLOWED: the policy evaluated for this
ResourceName, operation and Attribute list indicates access is NOT_ALLOWED.

® ACCESS_DECISION_UNKNOWN: the policy evaluated for this ResourceName,
operation and Attribute list indicates an access decision cannot be made.

This type is used as a result in access decisions where access policy is applied. This is
the type returned from thevaluate() method of thePolicyEvaluator .

2.2.5 Exceptions

The following exceptions are used in this module

”********************************************************

1 Exception Data types
”********************************************************
struct ExceptionData {

short error_code;

string reason;

enum InternalErrorType {Fatal, NotFatal};

I
/I Exception thrown by the Access Decision Object
I

exception RadInternalError{InternalErrorType ed;};

Resource Access Decision, v1.0 April 2001



//******************** *khkkkkkkkkkkkkkhkhkhkkhkhhkkkkhhhhkhkkhkhhkxkx

/I Exception thrown by Internal non-admin interfaces

//******************** *hkkkkkkkkkkkkhkhkhkkkhhkkkkhhhhkhkkhkhhkxx

exception RadComponentError{
ExceptionData ed,;
InternalErrorType it;

h

//******************** *hkkkkkkkkkkkkhkhkkhkkkhkkhkkkkhhhkhkhkkhkhkhkxx

1 Exceptions thrown by Admin Interfaces

//******************** *hkkkkkkkkkkkkhkhkhkkkkhkhkkkkhhhhkhkkkhkhkxx

exception PatternConflict {ExceptionData ed;};

exception PatternDuplicate {ExceptionData ed;};
exception PatternNotRegistered {ExceptionData ed;};
exception PatterninUse {ExceptionData ed;};

exception ResourceNameNotFound {ExceptionData ed;};
exception NoAssociation {ExceptionData ed;};

exception InvalidPolicy {ExceptionData ed;};

exception DuplicateEvaluatorName {ExceptionData ed;};
exception InvalidResourceName {ExceptionData ed;};
exception InvalidResourceNamePattern {ExceptionData ed;};
exception TooMany { };

exception InvalidPolicyEvaluatorList {
ExceptionData ed;
NamedPolicyEvaluator first_invalid_element;

h

exception InvalidPolicyNamedList {
ExceptionData ed;
PolicyName  first_invalid_element;

h
ExceptionData

The ExceptionData structure is included in most RAD exceptions. The contents of
the error_code and reason are implementation dependent.

RadInternalError
The RadlInternalError exception is reserved for internal logic errors and is not used
as a reason code for rejecting a request. This is the only exception that is thrown by the

AccessDecision object. Indicating Fatal means that the ADO client should
discontinue using the ADO.

RAD, v1.0 Types April 2001 2-9



2-10

RadComponentError

The RadComponentError exception may be thrown by non-administrative interfaces
to alert theAccessDecision object when a component encounters an internal error. If
theRadComponentError is Fatal, theAccessDecision object must determine if it
can continue to process without the component. If it cannot, it must throw a
RadinternalError with Fatal. If the Access Decision Object can continue to function
without this component or if the exception error type Wwatal, it is implementation
dependent what the ADO returns to the client.

PatternConflict

The PatternConflict exception is thrown by thBolicyEvaluatorLocatorAdmin

when aregister_resource_name_pattern() detects a pattern that conflicts with an
existing registered pattern and the implementation does not support conflicting
patterns.

PatternDuplicate

The PatternDuplicate exception is thrown by tholicyEvaluatorLocatorAdmin
when aregister_resource_name_pattern() detects a duplicate pattern registration.

PatternNotRegistered

The PatternNotRegistered exception is thrown by

PolicyEvaluatorLocatorAdmin  operations when an attempt is made to use a pattern
in an administrative interface without registering the pattern first.

PatterninUse

The PatterninUse exception is thrown byolicyEvaluatorLocatorAdmin
unregister_resource_name_pattern  when an attempt is made to unregister a
pattern that is currently in use by the RAD.

ResourceNameNotFound

The ResourceNameNotFound exception is thrown b¥olicyEvaluatorAdmin

interface operations whenResourceName has not been defined. Not all
implementations will require pre-definition &esourceNames . For those
implementations that do not require pre-definition, this exception will not be thrown.
NoAssociation

The NoAssociation exception is thrown by thBolicyEvaluatorAdmin interface

delete_policies() operation when an association betweenRkesourceName and
PolicyName does not exist.

Resource Access Decision, v1.0 April 2001



InvalidPolicy

The InvalidPolicy exception is thrown by thBolicyEvaluatorAdmin interface
operations when an attempt is made to associate an IRalityName with a
ResourceName or to set a default Policy that is invalid.

DuplicateEvaluatorName

The DuplicateEvaluatorName exception is thrown by the

PolicyEvaluatorLocatorAdmin interface operations when an attempt is made to use
those operations to add an evaluator that has the same value of its data member
evaluator_name but different value of its data membeolicy_evaluator as some

other named policy evaluator associated or to be associated (after the current operation
was supposed to complete) with a resource name pattern.

InvalidResourceName

This exception is raised when the provided resource name is invalid. Please refer to the
specification of typeResourceName for the description of valid and invalid datum
elements of typ&kesourceName .

InvalidResourceNamePattern

This exception is thrown by corresponding operations when a resource name pattern,
provided as an operation argument, has invalid syntax. Please refer to the specification
of ResourceNamePattern data type for description of invalid values for
ResourceNamePattern .

InvalidPolicyNameList

This exception is raised when the provided PoNamelList has invalid value. Please
refer to the specification dPolicyNamelList data type for a description of valid
PolicyNamelList datum elements.

first_invalid_element is first policy name in the invalid list which caused the list to
be invalid. If the value of this data member is nil, then the list is invalid not because of
a particular element, but because of some other reason (for example, because the list is

empty).

TooMany

This exception is raised fdist_policies() if the number ofPolicyName s found
(based on theeq_max anditer_max argument) exceeds the implementations limit.
The implementation may be optionally configurable by the implementation.
InvalidPolicyEvaluatorList

This exception is raised whenPalicyEvaluatorList contains invalid elements.

Please refer to the specificationRdlicyEvaluatorList data type for a description of
invalid PolicyEvaluatorList datum elements of that type.

RAD, v1.0 Types April 2001 2-11



first_invalid_element is the first named policy evaluator in tRelicyNameList

which caused the list to be invalid. If the value of this data member is nil, then the list
is invalid not because of a particular element, but because of some other reason (for
example, because the list is empty).

2.3 PolicyNamelListlterator Interface

//******************** *hkkkkkkkkkkkkhhkhkkkkkhkkkkhhhhkhkkkkkhkhkkhhhhxx

/I interface PolicyNameListlterator

//******************** *hkkkkkkkhkkkkkkhhkhkhkkkkhkkkkhhhhkhkkkkhkhkkkhhhhxx

interface PolicyNamelListlterator {
unsigned long how_many();
boolean next_one(
out PolicyName name);
boolean next_n(
in unsigned long how_many,
out PolicyNamedList list);
void destroy();

J3

The PolicyNameListlterator is used to manage the list of Policy names that may be
returned from dist_policies() operation of thePolicyEvaluatorAdmin interface.

how_many()
returns the number of policy names held by the iterator at this time.
next_one()

returns true if @olicyName is returned in the out parameter. Returns false if there are
no more policy names.

next_n()

returns the next policy names held by the iterator. Returns trueRblicyNameList
is returned in the out parameter. Returns false if there are no more policy hames.

destroy( )
destroys the iterator. The iterator will destroy itself if all policy names are retrieved

from the iterator; however, a client should destroy the iterator using this operation
when they are finished if they have not retrieved all the policy names.

2.4 AccessDecision Interface

//******************** *hkkkkkkkkhkkkkkkhhkhkkkkkkkkkkhhhhhxx

/I interface AccessDecision

//******************** *hkkkkkkkkhkkkkkkhhkkkkkkkkkkhhhhhxx

2-12 Resource Access Decision, v1.0 April 2001



interface AccessDecision {

boolean access_allowed(
in ResourceName resource_name,
in string operation,
in AttributeList  attribute_list

)
raises (RadInternalError);
BooleanList multiple_access_allowed(
in AccessDefinitionListaccess_requests,
in AttributeList attribute_list
)
raises (RadInternalError);
h

The singletomccessDecision object is used to request decisions on access based on
a ResourceName , an operation, and a list &ecAttributes . This specification

provides a framework for the support of many policy evaluators. It is beyond the scope
of this specification to mandate how policy is defined or evaluated using the
information provided by the client at the time access decisions are requested. This is
the only interface that is necessary for a client to be familiar with in order to obtain
access decisions from the RAD.

The AccessDecision object sometimes passes exceptions to callers indicating that it
has encountered an internal error and is not able to make an access decision. This is
different from the behavior of many operating systems, which have a default-deny or a
default-grant policy when an internal failure occurs, but don’t report the failure to their
callers. This difference arises because RAD is an access decision service, not an acces
control service. In all cases, the application that calls RAD is responsible for enforcing
the policy decision that RAD makes. Therefore, the RAD client application is the right
place to make the policy enforcement decision about what should be done when RAD
is not able to make a policy decision.

access_allowed()

A single access decision is requested and a boolean is returne®adiheernalError
exception is reserved for internal logic errors and should not be used as a reason code
for rejecting a request. As a security consideration, ADO clients are not provided with
the specific reason for not allowing access.

Preconditions

1. “resource_name” is valid.

2. “operation” is valid.

Postconditions

1. return == authorization decision for the requested operation on the specified
resource name by a principal with the specified security attributes.

RAD, v1.0 AccessDecision Interface April 2001 2-13



multiple_access_allowed()

Multiple access decisions are requested in a single method invocation and a sequence
of booleans are returned. The boolean sequence maps one to one in the same order t
RADInternalError exception is reserved for internal logic errors and should not be
used as a reason code for rejecting a request. ADO clients are not exposed to the
security reason for not allowing access. Indicating Fatal means that the ADO client
should discontinue using the ADO.

Preconditions

1. All elements of “access_request” are valid.

Postconditions

1. The length of the returned list is the same as of “access_requests” list.

2. Each element of the returned list is an authorization decision for the corresponding
request in the “access_requests” list. For example, first element of the returned list
is an authorization decision for the first element of access_request, and so on.

2.5 DynamicAttributeService Interface

2-14

//******************** *hkkkkkkkkkkkkkhkhkhkhkkkkkkhkhkkkhhhhhkkxx

/I interface DynamicAttributeService

//******************** *hkkkkkkkkkkkkhhkhkkkkkkhkhkkkkhhhhkkxx

interface DynamicAttributeService {

AttributeList get_dynamic_attributes(
in AttributeList attribute_list,
in ResourceNameresource_name,
in string operation

)
h

The DynamicAttributeService interface is used to obtain a new list of

SecAttributes that are applicable to an access decision. This service may encapsulate
calls to a relationship service and/or application specific logic to determine how the
original AttributeList provided by the client should be modified.

raises (RadComponentError);

get_dynamic_attributes()

This method takes the parameters provided by the client di¢bessDecision

object; theAttributeList , theResourceName , and the operation and determines
what (if any) dynamic attributes should be added toAtttiebuteList . In addition, the
returnedAttributeList may be modified by this service. The service may add
SecAttributes to the list or may remov8ecAttributes from this list. It is the
returned list ofSecAttributes that is used as the basis of access decisions by the
RAD.

Resource Access Decision, v1.0 April 2001



Preconditions

1. “resource_name” is valid.

2. ‘“operation” is valid.

Postconditions

No postconditions.

2.6 PolicyEvaluatorLocator Interface

//******************** *hkkkkkkkkkkkhkhhhkkkkkkhkhkkkhhhhhkkxx

/I interface PolicyEvaluatorLocator

//******************** *hkkkkkkkkkkkkhkhkhhkkkkkkhkhkkkhhhhhkkxx

interface PolicyEvaluatorLocator {

readonly attribute PolicyEvaluatorLocatorBasicAdmin basic_admin;
readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin;
readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin;

PolicyDecisionEvaluators get_policy decision_evaluators(
in ResourceName resource_name

raises (RadComponentError);

h

The PolicyEvaluatorLocator interface is used to locate tRelicyEvaluators and
the DecisionCombinator associated with esourceName . This specification
provides a framework for the support of one or more policy evaluators for a single
resource.

readonly attribute PolicyEvaluatorLocatorBasicAdmin basic_admin

The PolicyEvaluatorLocator 's basic administrative interface can be obtained via this
attribute.

readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin

The interface for administrating associations between resource names and policy
evaluators as well as between resource hames and decision combinators can be
obtained via this attribute.

readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin

The interface for administrating associations between resource name patterns and
policy evaluators as well as between resource name patterns and decision combinators

can be obtained via this attribute. If an implementation of a policy evaluator locator
does not implement support for resource name patterns this attribute must be null.

RAD, v1.0 PolicyEvaluatorLocator Interface April 2001 2-15



get_policy_decision_evaluators()

A PolicyDecisionEvaluators  structure is returned to the client. A
PolicyDecisionEvaluators  structure contains BolicyEvaluatorList and the
DecisionCombinator .

Preconditions

1. “resource_name” is valid.

Postconditions

1. The returned references are not nil.

2. No elements of “policy_evaluator_list” in the returned datum have same value of
“evaluator_name.”

2.7 DecisionCombinator Interface

//******************** *hkkkkkkkkkkkkkhhkhkkkkkhkkkkhhhhhkkkkkkhkx

/I interface DecisionCombinator

//******************** *hkkkkkkkkkkkkhhkkkkkkkkkkhhhhhkxkkkkxkx

interface DecisionCombinator{

boolean combine_decisions(
in ResourceName resource_name,
in string operation,
in AttributeList attribute_list,
in PolicyEvaluatorList policy evaluator_list

)
J3

raises (RadComponentError);

The DecisionCombinator interface is used to encapsulate a policy for combining
decisions of multiple consultelolicyEvaluators that may disagree.
DecisionCombinators may be simple or arbitrarily complex. A default combinator
may be used for all access decisions, or combinators may be chosen specifically for
access decisions on specific secured resources.

Functions consisting of a global combinator operator are easy to implement; an
example of such a policy is:

AND ((Evaluator_1 = ACCESS_DECISION_ALLOWED),
(Evaluator_2 = ACCESS_DECISION_ALLOWED), ...)

This policy can be expressed as an application of a global combinator (“AND” in this
case) to the results returned by ALL tRelicyEvaluator objects passed to the
DecisionCombinator .

2-16 Resource Access Decision, v1.0 April 2001



2

The thing which makes this kind of policy easy to implement is that it's not necessary
to know anything about the result returned by any speBiicyEvaluator object,

and hence thPolicyEvaluator objects can all be treated the same and can be called
in any order.

The disadvantages of this kind of policy are:

® They aren't very expressive (there are lots of kinds of real-world policies that can't
be expressed using only a global combinator).

®* They are inefficient. It's always necessary to call all BodicyEvaluator objects
passed to th®ecisionCombinator object in order to make a decision. An
important goal of th®ecisionCombinator design is to support complex policies
that can be efficiently evaluated. A policy like the following can't be expressed
using only a global combinator, but should be implementable as a
DecisionCombinator object:

(Evaluator_1 result is ACCESS_DECISION_ALLOWED) OR
((Evaluator_2 result is ACCESS_DECISION_ALLOWED) AND
(Evaluator_3 result is (ACCESS_DECISION_ALLOWED OR
ACCESS_DECISION_UNKNOWN)))

Note that this policy can be short-circuit evaluated: ifBleeisionCombinator calls
Evaluator_1 and it returns ACCESS_DECISION_ALLOWED as a decision result, then
it doesn’t need to call Evaluator_2 and Evaluator_3 at all. However, in order to support
evaluation of this policy, thBecisionCombinator object needs to be able to match
the PolicyEvaluator objects passed to it as input to the formal parameters in this
expression. This is why thBecisionCombinator interface accepts as input a
structure containing both a reference tBaicyEvaluator object and the name of

that PolicyEvaluator object; it uses th€olicyEvaluator name to figure out which
evaluators to call in which order; it uses fPaicyEvaluator object’s reference to call

the object and request a decision result, and then it us@olibgEvaluator object’s
name again to plug the decision result into the policy combinator expression above.

combine_decisions()

The DecisionCombinator is responsible for determining whiolicyEvaluators

(from the list passed to it) must be called and how the results are to provide a boolean
result. This is the result that will be returned by AoeeessDecision object to the
original client of the RAD facility.

Preconditions

1. “resource_name” is valid.
2. “operation” is valid.

3. “policy_evaluator_list” is valid.

Postconditions

No postconditions.

RAD, v1.0 DecisionCombinator Interface April 2001 2-17



2.8 PolicyEvaluator Interface

2-18

//******************** *hkkkkkkkkkkkkhkhkhhkkkkkkhkhkkkkhhhhkkxx

/I interface PolicyEvaluator

//******************** *hkkkkkkkkkkkkhkhkhkkkkkkhkhkkkkhhhhkkxx

interface PolicyEvaluator {
readonly attribute PolicyEvaluatorAdmin pe_admin;

DecisionResult evaluate(
in ResourceName resource _name,

in string operation,
in AttributeList attribute_list
)
raises (RadComponentError);
h

The PolicyEvaluator interface is used to obtain an access decision based on an
encapsulated policy for tHResourceName/operation when provided a list of

effective Security Attributes for the requestor. This specification provides a framework
for the support of one or more policy evaluators for a single resource.

readonly attribute PolicyEvaluatorAdmin

If the PolicyEvaluator has an associated administrative interface, it can be obtained
via this attribute. If an administrative interface is not available for this evaluator, this
attribute will be nil.

evaluate()

A single access decision is requested based on access policy(s) this evaluator
determines is appropriate for the named resource. The decision is based on the
ResourceName , the operation, and the effective Security Attributes. The
SecAttributes passed to thAccessDecision object by the client in
access_allowed() may have been modified by tigynamicAttributeService
get_dynamic_attributes() method before tholicyEvaluator is called. The
DecisionResult is a ternary result. ThBecisionResult is as follows:

® ACCESS_DECISION_ALLOWED: the policy evaluated for tResourceName ,
operation and Attribute list indicates that access is ALLOWED.

® ACCESS_DECISION_NOT_ALLOWED: the policy evaluated for this
ResourceName , operation and Attribute list indicates access is
NOT_ALLOWED.

® ACCESS_DECISION_UNKNOWN: the policy evaluated for this
ResourceName , operation and Attribute list indicates an access decision cannot
be made.

Resource Access Decision, v1.0 April 2001



Preconditions

1. “resource_name” is valid.

2. ‘“operation” is valid.

Postconditions

1. return == authorization decision for the requested operation on the specified
resource name by a principal with the specified security attributes.

2.9 AccessDecisionAdmin Interface

//******************** *hkkkkkkkkkkkkhkhkhhkkkkkkhkhkkkkhhhhkkxx

/I interface AccessDecisionAdmin

//******************** *hkkkkkkkkkkkkhhhhkkkkkkhkhkkkhhhhhkkxx

interface AccessDecisionAdmin {
PolicyEvaluatorLocator get_policy_evaluator_locator();

void  set_policy_evaluator_locator (
in PolicyEvaluatorLocator policy_evaluator_locator

);
DynamicAttributeService get_dynamic_attribute_service();

void  set_dynamic_attribute_service(
in DynamicAttributeService dynamic_attribute_service

The Access Decision Admin object is provided to allow a standard mechanism for
replacement of the vendor provid@dlicyEvaluatorLocator and the
DynamicAttributeService

get_policy _evaluator_locator()

This operation returns tHeolicyEvaluatorLocator used by the access decision
object.

set_policy_evaluator_locator()
This operation sets theolicyEvaluatorLocator used by the access decision object.
get_dynamic_attribute_service()

This operation returns tHeynamicAttributeService used by the access decision
object.

RAD, v1.0 AccessDecisionAdmin Interface April 2001 2-19



set_dynamic_attribute_service()

This operation sets tHaynamicAttributeService used by the access decision object.

2.10 PolicyEvaluatorLocatorBasicAdmin Interface

2-20

//******************** *hkkkkkkkkkkkkhkhkhkkhkkkkhkkkkkhhhhhkkkxk

/I interface PolicyEvaluatorLocatorBasicAdmin

//******************** *hkkkkkkkkkkkkhhkhkhkkkkkkhkkkhhhhhkkkxk

interface PolicyEvaluatorLocatorBasicAdmin {

PolicyEvaluatorList set_default_evaluators(
in PolicyEvaluatorList policy evaluator_list

)
raises (DuplicateEvaluatorName, InvalidPolicyEvaluatorList);
PolicyEvaluatorList get_default_evaluators();
DecisionCombinator get_default_combinator ();
void set_default_combinator(
in DecisionCombinator decision_combinator
);
h

The PolicyEvaluatorLocatorBasicAdmin  object is used to administrate default
associations betwedpolicyEvaluators andResourceNames as well as default
associations betweddecisionCombinators andResourceNames .

set_default_evaluators()

The list of PolicyEvaluators provided is set as the default evaluators for any
ResourceName for whichPolicyEvaluators have not been explicitly assigned. The
default evaluators will be returned by tRelicyEvaluatorLocator

get_policy decision_evaluators()  operation when n®olicyEvaluators have
been explicitly assigned forResourceName .

Preconditions

No preconditions.

Postconditions

1. default_evaluators == "policy_evaluator_list"
get_default_evaluators()

The default set of policy evaluators provided is returned.

Resource Access Decision, v1.0 April 2001



Preconditions

No preconditions.

Postconditions

1. return == default_evaluators.
get_default_combinator()

The DecisionCombinator provided is returned.

Preconditions

No preconditions.

Postconditions
1. return == default_combinator.
set_default_combinator()
The DecisionCombinator provided is set as a default. This combinator is now the
combinator used whenRecisionCombinator has not been explicitly specified for a

secured resource. This combinator will be returned byPthieyEvaluatorLocator
get_policy decision_evaluators()  operation for these resources.

Preconditions

No preconditions.

Postconditions

1. default_combinator == "decision_combinator".

2.11 PolicyEvaluatorLocatorNameAdmin Interface

//******************** *hkkkkkkkkkkkkhkhkhkhkkkkhkkkkkhhhhhkkkxk

/I interface PolicyEvaluatorLocatorNameAdmin

//******************** *hkkkkkkkkhkkkkhhkkkkkhkkkkkhhhhhkkkxk

interface PolicyEvaluatorLocatorNameAdmin {

PolicyEvaluatorList get_evaluators(
in ResourceName resource_name

raises (InvalidResourceName);
void set_evaluators (

in PolicyEvaluatorList policy evaluator_list,
in ResourceName resource_name

RAD, v1.0 PolicyEvaluatorLocatorNameAdmin Interface April 2001 2-21



2-22

raises (InvalidPolicyEvaluatorList,
InvalidResourceName,
DuplicateEvaluatorName);

void add_evaluators (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

raises (InvalidResourceName,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name
raises (InvalidResourceName,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator (
in ResourceName resource_name

raises (InvalidResourceName);

void set_combinator (
in DecisionCombinatordecision_combinator,
in ResourceName resource_name

raises (InvalidResourceName);

void delete_combinator (
in ResourceName resource_name

raises (InvalidResourceName);

The PolicyEvaluatorLocatorNameAdmin  object is used to associate
PolicyEvaluators with aResourceName . The object is also used to associate the
appropriateDecisionCombinator with a ResourceName . This specification
provides a framework for the support of one or more policy evaluators for a single
resource.

get_evaluators()
The list of PolicyEvaluators associated with thResourceName is returned.

Preconditions

No preconditions.

Resource Access Decision, v1.0 April 2001



Postconditions

1. return == “resource_name”.registered_ evaluator_list
set_evaluators()

A list of PolicyEvaluators is assigned for the named resource. If the resource had
existingPolicyEvaluators assigned, they are removed and the entire list is replaced
with the ones provided in this method. The replacement of evaluators for a resource
which previously had none results in the added list of evaluators being the only
evaluators consulted on an access decision (system default evaluators are no longer
consulted unless a system default evaluator is a member of the replacement list).

These evaluators will be theolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy decision_evaluators() method.
Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_evaluator_list == policy_evaluator_list
add_evaluators()

A list of PolicyEvaluators is added to the list of evaluators for the named resource.
These evaluators will be in the list BblicyEvaluators returned by the
PolicyEvaluatorLocator get_policy decision_evaluators() method. The

addition of evaluators to ResourceName which previously had none results in the
added list of evaluators being the only evaluators consulted on an access decision
(system default evaluators are no longer consulted unless a system default evaluator is
a member of the added list).

Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_evaluator_list == union (policy_evaluator_list,
“resource_name”.registered_evaluator_list)

delete_evaluators()
The list of PolicyEvaluators is removed from the list of evaluators for the named
resource. These evaluators will not be in the ligeafcyEvaluators returned by the

PolicyEvaluatorLocator get_policy decision_evaluators() method.

Preconditions

No preconditions.

RAD, v1.0 PolicyEvaluatorLocatorNameAdmin Interface April 2001 2-23



Postconditions
1. for the “resource_name” : “resource_name”.registered_evaluator_list =
“resource_name”.registered_evaluators - “policy_evaluator_list”

get_combinator()

The DecisionCombinator specified for the named resource is returned. If a
combinator has not been specified for BesourceName provided, the return will
be nil (it will not return the default combinator).

Preconditions

No preconditions.

Postconditions

1. return == “resource_name”.registered_ decision_combinator
set_combinator()

A DecisionCombinator is specified for the named resource. This combinator will be
returned by thdPolicyEvaluatorLocator get_policy_decision_evaluators()

method. TheDecisionCombinator provided replaces any previous combinator
specified for the secured resource.

Preconditions

No preconditions.

Postconditions

1. “resource_name”.registered_ decision_combinator == “decision_combinator”
delete_combinator()

The DecisionCombinator for theResourceName is removed. The default
combinator will now be returned by tiRolicyEvaluatorLocator

get_policy decision_evaluators()  method.

Preconditions

No preconditions.

Postconditions

1. Resource names matching only “resource_name” will be associated with the default
combinator.

2-24 Resource Access Decision, v1.0 April 2001



2.12

PolicyEvaluatorLocatorPatternAdmin Interface

//******************** *hkkkkkkkkkkkkhhkhkkkkkhkkhkkkkhhhhhkkkxk

/I interface PolicyEvaluatorLocatorPatternAdmin

//******************** *hkkkkkkkhkkkkkhkhkhkhkkkkkkkkkhhhhhkkkxk

interface PolicyEvaluatorLocatorPatternAdmin {

void register_resource_name_pattern(
in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,
PatternDuplicate,
PatternConflict);

void unregister_resource_name_pattern(
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered,
PatterninUse);

PolicyEvaluatorList get_evaluators_by pattern (
in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,
PatternNotRegistered);

void set_evaluators_by pattern (
in PolicyEvaluatorList policy evaluator_list,
in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void add_evaluators_by_pattern (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators_by pattern (
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

)

raises (InvalidResourceNamePattern,

RAD, v1.0 PolicyEvaluatorLocatorPatternAdmin Interface April 2001

2-25



2-26

PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator_by_pattern (
in ResourceNamePattern pattern
)
raises (InvalidResourceNamePattern,
PatternNotRegistered);

void set_combinator_by pattern (
in DecisionCombinatordecision_combinator,
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered);

void delete_combinator_by_pattern (
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered);

DecisionCombinator get_default_combinator( );

3

The PolicyEvaluatorLocatorPatternAdmin  object is used to associate
PolicyEvaluators with aResourceNamePattern . The object is also used to
associate the appropriabecisionCombinator with the ResourceNamePattern .
This specification provides a framework for the support of one or more policy
evaluators for a single resource pattern.

Patterns are used to group resource names without requiring the
PolicyEvaluatorLocator administrator to enumerate all the resources names
individually; this is accomplished by associating list®oficyEvaluator objects with
ResourceNamePatterns , and checking whether a supplied resource name matches
any of the Patterns with which it has assocideticyEvaluators . This section
describes how RAD objects decide whether a Pattern matches a resource name.
Throughout the section, we use the shorthand phrase “exactly matches” to mean “is
exactly the same string as.”

Patterns have a specific format:
® A Pattern must include ResourceNamingAuthority
® A Pattern must include a list fesourceNameComponent strings.

® EachResourceNameComponent consists of amame_string and a
value_string .

® Two kinds ofResourceNameComponents can occur in a pattern.

Resource Access Decision, v1.0 April 2001



[=2i]

Bu="anien [ 1351 peuodwos suel sanosarumiEd 3 Y0 sy s IHOLFN BuuE anEn[ 1] s oA oduog B Ue T & INosR - BUIEL ._ [ou]
[ saf ]
_,. Bups"auen | | ]3s1 uauodwos sued sonosas awel == SupgsTswenr| | ] ueuodwos” swed” sunosa) LEped k_ Tou]
Bunjogey anjen,
[=i]
ﬁ 1 (150 e uedwos BWEN BN oses MU 1375 ._ [ou]
[ou]
ﬁ e == B BnEn [ 1]15 17 e uodwog” sue s anosa Fueed [ zaf ] HalnW 1ingel dos Q_ HOLWW 0N Wingay
3L
[ ou] ﬁ == BU BT BWE | 1]35 17 pauoduwos sUE L RanosE FUseed g SRETER
— {0iN0 BE
waEd pLE
BUI2IEN PIEOP |, WL Lyog
[ s ]
i [ou]
_,. 12 FI pauodwoe” sed s unosaruRged 3215 1< 51 euodwos” sWweL saInosar AUED | 7|5 _‘_ woil]
SIETTENE]
B0 OU
el LIaRed
[=ad]

Spogne Bu ey sainosal sey == Aoy Bu el sanosar ulened ._

Helg

[ou]

2-27

PolicyEvaluatorLocatorPatternAdmin Interface April 2001

RAD, v1.0



2-28

The first kind is a component value pattern. It has the form:
® name_string is a string
® value_string is a regular expression

A resource name component matches a component value pattern only if its
name_string exactly matches the pattermiame_string and itsvalue_string
matches the component value pattem@hkie_string regular expression.

The second kind oResourceNameComponent that can occur in a pattern is a
component wildcard pattern:

® name_string exactly matches “*” and

® value_string exactly matches “*”
Every component of a resource name matches a component wildcard pattern.

A resource name matches a pattern if and only if the algorithm shown in the figure on
page 2-27 returns MATCH.

The algorithm has two inputs: resource name (“name”) and resource name pattern
(“pattern”). It also assumes availability of two functions:

® SIZE - returns number of elements in a sequence,

®* MATCHES_AS_GRE - returns “yes” if the resource “name” matches the resource
name “pattern,” where the “pattern” is interpreted according to the regular
expression syntax specified in the definitionRésourceNamePattern in
Section 2.2.2, “Types that identify and manage information about secured
resources,” on page 2-4.

register_resource_name_pattern()

Before aResourceNamePattern can be used in the administrative interfaces, it must
be registered. This allows the administration of name patterns separately from the
administration of the association of patterns to evaluators and combinators. Since a
ResourceName is aResourceNamePattern , ResourceName s must also be
registered if these administrative interfaces are used to administer evaluators and
combinators.

Implementations may or may not support overlapping patterns; that is, an
implementation may choose to allow registration of two patterns both of which match
at least one name, or they may choose not to allow such registrations. An
implementation that does not support overlapping patterns shall raise the
PatternConflict exception when this method is used to register a pattern, which
overlaps with another previously registered pattern. Implementors should document
whether their implementations support overlapping patterns or not.

Preconditions

No preconditions.

Resource Access Decision, v1.0 April 2001



Postconditions

1. “resource_name_pattern " is registered.
unregister_resource_name_pattern()

ResourceNamePatterns may be unregistered. ResourceNamePattern must not
have any evaluators or combinators associated with it when it is unregistered.
Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern” is unregistered.
get_evaluators_by pattern ()

The list of PolicyEvaluators associated with thResourceNamePattern is
returned.
Preconditions

No preconditions.

Postconditions

1. return == “resource_name_pattern”.registered_ evaluator_list
set_evaluators_by_pattern ()

A list of PolicyEvaluators is assigned for the resources that will match
ResourceNamePattern . If the resource had existi@plicyEvaluators assigned,

they are removed and the entire list is replaced with the ones provided in this method.
The replacement of evaluators for a resource which previously had none results in the
added list of evaluators being the only evaluators consulted on an access decision
(system default evaluators are no longer consulted unless a system default evaluator is
a member of the replacement list).

These evaluators will be theolicyEvaluators returned by the
PolicyEvaluatorLocator get_policy_decision_evaluators()  method.

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern”.registered_evaluator_list == policy_evaluator_list

RAD, v1.0 PolicyEvaluatorLocatorPatternAdmin Interface April 2001 2-29



2-30

add_evaluators_by pattern ()

A list of PolicyEvaluators is added to the list of evaluators for the resources that will
matchResourceNamePattern . These evaluators will be in the list of

PolicyEvaluators returned by théolicyEvaluatorLocator

get_policy decision_evaluators() method. The addition of evaluators to a
ResourceNamePattern which previously had none results in the added list of
evaluators being the only evaluators consulted on an access decision (system default
evaluators are no longer consulted unless a system default evaluator is a member of the
added list).

Preconditions

No preconditions.

Postconditions
1. “resource_name_pattern”.registered_evaluator_list == union
(policy_evaluator_list, “resource_name_pattern”.registered_evaluator_list)

delete_evaluators_by_pattern ()

The list of PolicyEvaluators is removed from the list of evaluators for the resources
that will matchResourceNamePattern . These evaluators will not be in the list of
PolicyEvaluators returned by théolicyEvaluatorLocator

get_policy decision_evaluators()  method.

Preconditions

No preconditions.

Postconditions

1. for the “resource_name_pattern” : “resource_name_
pattern”.registered_evaluator_list = “resource_name__ pattern”.registered_evaluators
- “policy_evaluator_list”

get_combinator_by_pattern ()
The DecisionCombinator specified for by th&kesourceNamePattern is returned.

If a combinator has not been specified for ResourceNamePattern provided, the
return will be nil (it will not return the default combinator).

Preconditions

No preconditions.

Postconditions

1. return == “resource_name_pattern”.registered_ decision_combinator

Resource Access Decision, v1.0 April 2001



set_combinator_by_pattern ()

A DecisionCombinator is specified for the resources that will match
ResourceNamePattern . This combinator will be returned by the
PolicyEvaluatorLocator get_policy decision_evaluators() method. The
DecisionCombinator provided replaces any previous combinator specified for the
secured resource.

Preconditions

No preconditions.

Postconditions

1. “resource_name_pattern”.registered_ decision_combinator ==
“decision_combinator”

delete_combinator_by_pattern ()

The DecisionCombinator for theResourceNamePattern is removed. The default
combinator will now be returned by tRolicyEvaluatorLocator

get_policy decision_evaluators()  method for those resource that used to match

the specifiedResourceNamePattern and do not match any other
ResourceNamePattern set byset_combinator_by_pattern() operation.

Preconditions

No preconditions.

Postconditions

1. Resource names matching only “resource_name_pattern” will be associated with
the default combinator.

get_default_combinator ()

The default DecisionCombinator is returned.

2.13 PolicyEvaluatorAdmin Interface

//******************** *hkkkkkkkkkkkkkhhkhkkkkkhkkkkkhhhhhkkkxk

/I interface PolicyEvaluatorAdmin

//******************** *hkkkkkkkkkkkkhhkhkhkkkkkkkkkhhhhhkkkxk

interface PolicyEvaluatorAdmin {
void  set_policies(
in PolicyNamelList policy_names,
in ResourceName resource_name

raises (InvalidResourceName,

RAD, v1.0 PolicyEvaluatorAdmin Interface April 2001 2-31



2-32

ResourceNameNotFound,
InvalidPolicyNameList);

void  add_policies(
in PolicyNamelList policy_names,
in ResourceName resource_name
)
raises (InvalidResourceName,
ResourceNameNotFound,
InvalidPolicyNameList);

void  delete_policies(
in PolicyNamelList policy_names,
in ResourceName resource_name
)
raises (InvalidResourceName,
ResourceNameNotFound,
InvalidPolicyNameList,
NoAssociation);

PolicyNamelList list_policies(
in unsigned long seq_max,
in unsigned long iter_max,
out PolicyNamelListlterator iter
) raises (TooMany);

PolicyName set_default_policy(
in PolicyName policy_name

raises (InvalidPolicy);

3

The PolicyEvaluatorAdmin interface is used to associate named access policies with
secured resources. It is assumed that the administrative tool used to create and manag
access policies (outside the scope of this specification) provides a mechanism to allow
policies to be associated with “names” that are representedliiagName (a string).

This PolicyEvaluatorAdmin interface allows those policies to be applied “by name”

to a secured resource represented ResourceName .

This interface is primarily provided for the application that wishes to assign a policy to
a newly created resource programmatically at the time of resource creation. It does,
however, require that the application have knowledge of the named policies in order to
choose an appropriate policy for access decisions.

Resource Access Decision, v1.0 April 2001



set_policies()

The policies identified byrolicyNamelList is associated with the secured resource
identified by theResourceName . If a singlePolicyName of

NO_ACCESS_POLICY is specified, then all policy is removed for the resource. If a
PolicyNamelList is applied to @&esourceName that has existing policy, then the
policy will be replaced by the policy identified by thHPelicyNameList .

Preconditions

No preconditions.

Postconditions

1. “resource_name”.applied_policie_names == “policy _names”.

2. if PolicyName == NO_ACCESS_POLICY, then no policy exists for the resource.
add_policies()

The policy identified byPolicyNamelList is added to the list of policies used when
making access decisions for the secured resource identified RetioeirceName . If

a PolicyNamelList is added to a resource that has existing policy, then the policy will
be added to the list of policies that control access decisions for the resource. An
implementation is not required to support multiple policies for a resource. If the
implementation does not support the application of multiple policies, then a
InvalidPolicy exception shall be thrown for this method.

Preconditions

No preconditions.

Postconditions
1. “resource_name”.applied_policy_names == union
(“resource_name”.applied_policy_names, “policy_names”)

list_policies()

A list of names of all policies supported by this instanc@alfcyEvaluator is
returned to the client. The number of policy names to be returned in the sequence
should not exceeder_max ; the number of policy names to be held in the
PolicyNamelListlterator should not exceeiter_max . The TooMany exception is
thrown if the number of policy hames that exist (and are requested) exceeds the
implementation max.

Preconditions

No preconditions.

Postconditions

1. return == all_existing_policy_names.

RAD, v1.0 PolicyEvaluatorAdmin Interface April 2001 2-33



set_default_policy()

The policy identified byPolicyName is associated (as default) with any secured
resource that has not yet been assigned an access policy.

Preconditions

No preconditions.

Postconditions

The order is significant.
1. return == default_policy_name

2. default_policy_name == “policy_name”

2.14 Conformance Classes

2-34

There are two conformance classes: “RAD without Patterns” and “RAD with Patterns.”

An implementation of Resource Access Decision (RAD) facility compliant to
conformance class “RAD without Patterns” must implement all of the interfaces
defined in this specification except interface
PolicyEvaluatorLocatorPatternAdmin . In this casepattern_admin attribute of
PolicyEvaluatorLocator interface implementation must be /return value null.

An implementation of Resource Access Decision facility compliant to conformance
class “RAD with Patterns” must implement all of the interfaces defined in this
specification. In this casgattern_admin attribute ofPolicyEvaluatorLocator

interface implementation must return an object reference for a
PolicyEvaluatorLocatorPatternAdmin

Resource Access Decision, v1.0 April 2001



OMG IDL

/IFile: DfResourceAccessDecision.idl
1

#ifndef DF_RESOURCE_ACCESS_DECISION_IDL_
#define _DF_RESOURCE_ACCESS_DECISION_IDL_

#include "Security.idl"
#pragma prefix "omg.org"
module DfResourceAccessDecision {

typedef sequence<boolean> BooleanList;
typedef Security::AttributeList AttributeList;

interface DynamicAttributeService;

interface DecisionCombinator;

interface PolicyEvaluator;

interface PolicyEvaluatorAdmin;

interface PolicyEvaluatorLocatorBasicAdmin;
interface PolicyEvaluatorLocatorNameAdmin;
interface PolicyEvaluatorLocatorPatternAdmin;

1
/I Types that identify a secured resource
1
struct ResourceNameComponent {
stringname_string;
stringvalue_string;

h

typedef sequence<ResourceNameComponent> ResourceNameComponentList;

typedef string ResourceNamingAuthority;

Resource Access Decision, v1.0 April 2001



A-2

struct ResourceName {
ResourceNamingAuthorityresource_naming_authority;
ResourceNameComponentListresource_name_component_list;
h

typedef ResourceName ResourceNamePattern;

typedef sequence<string> OperationList;

I
/I Types associated with evaluating Access Policy
I
typedef string PolicyName;

typedef sequence<PolicyName> PolicyNameList;

const PolicyName NO_ACCESS_POLICY ="NO_ACCESS_POLICY";

struct NamedPolicyEvaluator {
string evaluator_name;
PolicyEvaluatorpolicy evaluator;
h

typedef sequence<NamedPolicyEvaluator> PolicyEvaluatorList;

struct PolicyDecisionEvaluators {
PolicyEvaluatorListpolicy evaluator_list;
DecisionCombinatordecision_combinator;

3

I

/I Types used to request an Access Decision

1

struct AccessDefinition {
ResourceNameresource_name;
string operation;

I3

typedef sequence<AccessDefinition> AccessDefinitionList;

enum DecisionResult{
ACCESS_DECISION_ALLOWED,
ACCESS_DECISION_NOT_ALLOWED,
ACCESS_DECISION_UNKNOWN

h

1
/I Exception Data Types
I
struct ExceptionData {
short error_code;
stringreason,;

I3

enum InternalErrorType { Fatal, NotFatal };

Resource Access Decision, v1.0 April 2001



)
/I Exception thrown by the Access Decision Object
I
exception RadlnternalError {InternalErrorType ed;};

I
/I Exception thrown by Internal non-admin interfaces
I
exception RadComponentError {
ExceptionData ed;
InternalErrorType it;

/I Exceptions thrown by Admin Interfaces
I
exception PatternConflict { ExceptionData ed; };
exception PatternDuplicate { ExceptionData ed; };
exception PatternNotRegistered { ExceptionData ed; };
exception PatterninUse { ExceptionData ed; };
exception ResourceNameNotFound { ExceptionData ed; };
exception NoAssociation { ExceptionData ed; };
exception InvalidPolicy { ExceptionData ed; };
exception DuplicateEvaluatorName { ExceptionData ed; };
exception InvalidResourceName { ExceptionData ed; };
exception InvalidResourceNamePattern { ExceptionData ed; };
exception TooMany {};
exception InvalidPolicyEvaluatorList {
ExceptionData ed,;
NamedPolicyEvaluatorfirst_invalid_element;

h

exception InvalidPolicyNameList {
ExceptionData ed,;
PolicyNamefirst_invalid_element;

I3

I
/I interface PolicyNameListlterator
I

interface PolicyNamelListlterator {
unsigned long how_many();

boolean next_one(
out PolicyName name);

boolean next_n(

in unsigned long how_many,
out PolicyNameList list);

Resource Access Decision, v1.0 April 2001

A-3



A-4

h

void destroy();

I
)

interface AccessDecision

I

interface AccessDecision {

I3

boolean access_allowed(
in ResourceNameresource_name,
in stringoperation,
in AttributeListattribute list

)

raises (RadInternalError);

BooleanList multiple_access_allowed(
in AccessDefinitionListaccess_requests,
in AttributeListattribute _list

)

raises (RadInternalError);

I
"

interface DynamicAttributeService

I

interface DynamicAttributeService {

I3

AttributeList get_dynamic_attributes(
in AttributeListattribute _list,
in ResourceNameresource_name,
in stringoperation

)

raises (RadComponentError);

I
"

interface PolicyEvaluatorLocator

I

interface PolicyEvaluatorLocator {

readonly attribute PolicyEvaluatorLocatorBasicAdminbasic_admin;
readonly attribute PolicyEvaluatorLocatorNameAdmin name_admin;
readonly attribute PolicyEvaluatorLocatorPatternAdmin pattern_admin;

PolicyDecisionEvaluators get_policy decision_evaluators(
in ResourceName resource_name

)

raises (RadComponentError);

Resource Access Decision, v1.0 April 2001



I
)

interface DecisionCombinator

I

interface DecisionCombinator {

J3

boolean combine_decisions(
in ResourceNameresource_name,
in string  operation,
in AttributeListattribute _list,
in PolicyEvaluatorListpolicy evaluator_list

)

raises (RadComponentError);

I
)

interface PolicyEvaluator

I

interface PolicyEvaluator {

h

readonly attribute PolicyEvaluatorAdmin pe_admin;

DecisionResult evaluate(
in ResourceNameresource_name,
in stringoperation,
in AttributeListattribute _list

)

raises (RadComponentError);

I
"

Management Interfaces

I

I
"

interface AccessDecisionAdmin

I

interface AccessDecisionAdmin {

PolicyEvaluatorLocator get_policy_evaluator_locator();

void set_policy_evaluator_locator(
in PolicyEvaluatorLocator policy evaluator_locator

);
DynamicAttributeService get_dynamic_attribute_service();
void set_dynamic_attribute_service(

in DynamicAttributeService dynamic_attribute_service

);

Resource Access Decision, v1.0 April 2001

A-5



A-6

h

I
)

interface PolicyEvaluatorLocatorBasicAdmin

I

interface PolicyEvaluatorLocatorBasicAdmin {

I3

PolicyEvaluatorList set_default_evaluators(
in PolicyEvaluatorList policy evaluator_list

)
raises (DuplicateEvaluatorName, InvalidPolicyEvaluatorList);
PolicyEvaluatorList get_default_evaluators();

DecisionCombinator get_default_combinator();

void set_default_combinator(
in DecisionCombinator decision_combinator

);

I
"

interface PolicyEvaluatorLocatorNameAdmin

I

interface PolicyEvaluatorLocatorNameAdmin {

PolicyEvaluatorList get_evaluators(
in ResourceName resource_name

)

raises (InvalidResourceName);

void set_evaluators(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)

raises (InvalidPolicyEvaluatorList,
InvalidResourceName,
DuplicateEvaluatorName);

void add_evaluators(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceName resource_name

)

raises (InvalidPolicyEvaluatorList,
InvalidResourceName,
DuplicateEvaluatorName);

void delete_evaluators(
in PolicyEvaluatorList policy_evaluator_list,

Resource Access Decision, v1.0 April 2001



3

in ResourceName resource_name

raises (InvalidPolicyEvaluatorList,
InvalidResourceName,
DuplicateEvaluatorName);

DecisionCombinator get_combinator(
in ResourceName resource_name

)

raises (InvalidResourceName);

void set_combinator(
in DecisionCombinator decision_combinator,
in ResourceName resource_name

)

raises (InvalidResourceName);

void delete_combinator(
in ResourceName resource_name

raises (InvalidResourceName);

I
"

interface PolicyEvaluatorLocatorPatternAdmin

I

interface PolicyEvaluatorLocatorPatternAdmin {

void register_resource_name_pattern(
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternDuplicate,
PatternConflict);

void unregister_resource_name_pattern(
in ResourceNamePattern pattern

)

raises (InvalidResourceNamePattern,
PatternNotRegistered,
PatterninUse);

PolicyEvaluatorList get_evaluators_by_pattern(
in ResourceNamePattern pattern

)

raises (InvalidResourceNamePattern,
PatternNotRegistered);

void set_evaluators_by_pattern(
in PolicyEvaluatorList policy_evaluator_list,

Resource Access Decision, v1.0 April 2001



A-8

in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void add_evaluators_by pattern(
in PolicyEvaluatorList policy_evaluator_list,
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

void delete_evaluators_by pattern(
in PolicyEvaluatorList policy evaluator_list,
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered,
InvalidPolicyEvaluatorList,
DuplicateEvaluatorName);

DecisionCombinator get_combinator_by_pattern(
in ResourceNamePattern pattern

)

raises (InvalidResourceNamePattern,
PatternNotRegistered);

void set_combinator_by pattern(

in DecisionCombinator decision_combinator,

in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered);

void delete_combinator_by_pattern(
in ResourceNamePattern pattern

raises (InvalidResourceNamePattern,
PatternNotRegistered);

DecisionCombinator get_default_combinator();

I
"

interface PolicyEvaluatorAdmin

I

Resource Access Decision, v1.0

April 2001



interface PolicyEvaluatorAdmin {

h

void set_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

)

raises (InvalidResourceName,
ResourceNameNotFound,
InvalidPolicyNameList);

void add_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

raises (InvalidResourceName,
ResourceNameNotFound,
InvalidPolicyNameList);

void delete_policies(
in PolicyNameList policy_names,
in ResourceName resource_name

raises (InvalidResourceName,
ResourceNameNotFound,
InvalidPolicyNamelList,
NoAssociation);

PolicyNameList list_policies(
in unsigned long seq_max,
in unsigned long iter_max,
out PolicyNamelListlterator iter

)

raises (TooMany);

PolicyName set_default_policy(
in PolicyName policy _name

raises (InvalidPolicy);

}; I end of DfResourceAccessDecision module
#endif

Resource Access Decision, v1.0 April 2001

A-9



A-10 Resource Access Decision, v1.0 April 2001



Use Case Example B

This appendix presents an example illustrating a healthcare scenario and the use of
RAD to provide access control for the instances of healthcare information access
implied by this scenario. The example consists of:

1. A description of the healthcare scenario that involves one or more accesses to
healthcare information.

2. For each healthcare information access required by the scenario:

» A description of the actions of the healthcare application, the client of the Access
Decision Object (ADO).

» A description of ADO actions with an Object Interaction Diagram (OID).

Before presenting the Use Case, a generic OID describing the ADO is provided.

B.1 Generic RAD Sequence Diagram

This section shows the generic sequence diagram for the RAD.

Resource Access Decision V1.0 month 2000 B-1



an Application an Access Decision alocator : Policy an Attribute Service : a Combinator : an Ev aluator : Policy
Sy stem Object : AccessDecision EvaluatorLocator DynamicAttribute DecisionCombinator Evaluator
L

access_allowed(R esourceNarP e, Operation, AttributeList)

get_policy _decision_ev aIuators(L esourceName) ‘

| |
| |

T | | |
| |
| |
\

get_ ynamic_anribules(AnributeLislt. ResourceName, OperatLon)

| L

combine_decis ion s(ResourceNam e, Operation, At&ributeHist, PolicyEvaluatorlList)
I I

|
* ev aluale(RksourceName. Operation, ‘AttributeList)
\
|
|
|
|
I

Figure B-1 Generic RAD Sequence Diagram

B.2 Healthcare Scenario: Out-patient Visit to Attending Physician

B-2

This scenario (see table 1) illustrates the interaction with a patient record as a result of
a patient's visit with an attending physician at the hospital on an outpatient basis. In
this example, the access control policy pertinent to this scenario is called the “Basic
Hospital Patient Record Access Policy.”

As described in more detail in the normative part of this document, an access control
policy within RAD is realized by an evaluator applied to static attributes, dynamic
attributes, and other factors, such as, time of day and location of the principal. An
evaluator can be implemented as an interpreter of rules expressed in some scripting
language (e.g., SQL) as a process for which the rules are encapsulated as part of the
process (e.g., Java Classes) or as some combination of these methods.

Static attributes are used for describing relatively fixed properties of users and
resources, such as, basic user role and resource creation date. The values of static
attributes are typically set by a security administrator and are obtained by the
application in an implementation specific manner (e.g., from the principal’s
credentials). While the use of a static attribute in policy is specified by a security
administrator, the values of dynamic attributes are typically set as part of hormal
information processing. Unlike static attributes, which are usually properties of (i.e.,
metadata about information content), values of dynamic attributes are information
content that are necessary to make an access decision. Some examples of dynamic
attributes, which may be contained in a patient record or elsewhere, are:

Resource Access Decision V1.0 month 2000



B

* A list of physicians (i.e., attending physicians) currently treating the patient.

® An authorization permitting the release of mental health information to designated
parties.

Depending on the implementation, a dynamic attribute may be the value of the
dynamic attribute or a reference to the value of the dynamic attribute. If a reference,
then the dynamic attribute value is obtained by the evaluator if and when the evaluator
determines that the value is needed to make the access decision.

RAD is able to support more than one access policy. This healthcare scenario describes
RAD functionality using the Basic Hospital Patient Record Access Policy. Different
developers may implement different access policy evaluators. Dynamic attributes may
be associated with only one or several evaluators. New dynamic attributes may be
added to the Dynamic Attribute Service of a RAD when new evaluators are installed.
Once dynamic attributes are added to the Dynamic Attribute Service, they may be
available for use by all evaluators. In addition to the Basic Hospital Patient Record
Access Policy, other policies may specify access control requirements for HIV or
mental health information resources that are part of the patient record.

The Basic Hospital Patient Record Access Policy used in this example specifies the
conditions under which an attending physician can access a patient record. The policy
specifies that attending physicians may read/update a patient record and/or modify
certain authorization settings in a patient record. Within this policy, the term “update”
when applied to clinical information refers to an append operation. Clinical

information in the patient record once entered may not be modified.

Several static and dynamic attributes are used by the RAD evaluator that implements
the Basic Hospital Patient Record Access Policy. Among these are the static attribute
“role” and the dynamic attribute “principal/patient_relationship.” The value of the
static attribute role specifies the basic role of a user (such as, physician, nurse, and
registrar). In this example, the value of role is obtained from the principal’s credentials.
The value of the dynamic attribute principal/patient_relationship specifies the
relationship between the principal accessing the patient record and the patient who is
the subject of the patient record being accessed (e.g., “primary_care,” “attending,”
“consulting”). In this example, the value of the principal/patient_relationship dynamic
attribute is obtained by the Dynamic Attribute Service by accessing the content of the
patient record that contains a list of attending physicians.

Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician

Use Case Name Out-patient Hospital Visit to Attending Physician
Goal in Contact Physician provides care to a visiting patient
Scope & Level Summary

Preconditions Patient records already exist in the system, there

is already some kind of relationship between the
patient and the physician (attending, consulting
admitting, etc.)

RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-3



Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician

Success End Condition

Patient records are updated according to the visit

results.

Failed End Condition

Patient records are not updated according to
visit results.

Primary Actors

Care providing physician

Secondary Actors

Trigger

Patient visits corresponding physician.

Applicable Access Policy

Basic Hospital Patient Record Access

Diagram Description

Step Action

1 Physician (or physician representative) logs into
the information system unless it was done
previously.

2 Physician retrieves patient records and browses
them.

3 Physician examines the patient.

4 Physician updates patient records.

Extensions-step 4a

Branching Action

Physician changes authorization settings for th
patient records (or their sub-set) according to
patient request and/or sensitivity of the
information with which records are updated.

Variations-step 5

Branching Action

No variations

Related Information

Priority High
Performance 1 hour
Frequency Many times per hour through the hospital

Channels to actors

Vision, speech, various instruments and dev
in order to examine the patient; computer GUI
log into the system, brows and update patient
records.

Resource Access Decision V1.0

month 2000

the

he

ces



Table B-1 Healthcare Scenario: Out-patient Visit to Attending Physician

Open Issues

What authorization settings of the patient records

can a related physician change?

What if another related physician has limited
access to records that are interesting in the
context of the visit and the patient agrees those
records can be disclosed?

Superordinate use cases

No superordinates

Subordinate use cases

Log into the system, Read Patient Records,

Examine Patient, Update Patient Records, Change

Authorization Settings for the Patient Record(s).

As shown in Table B-1, there are three types of access to the patient record involved in
this scenario: read, update, and change authorization.

The next section describes the actions of the application program (the ADO client) in
reading the patient record including how the ADO is used to determine access
according to the Basic Hospital Patient Record Access Policy.

B.2.1 ADO Client Actions: Read Patient Record

Table B-2 ADO Client Actions: Read Patient Record

Use Case Name

ADO Client Actions: Read Patient Record

Goal in Context

Application program (ADO client) browses patien
record.

Scope & Level

Subfunction

Preconditions

Patient records already exist in the system; phys
has logged into application program; application
program initiated successfully.

cian

Success End Condition

The intended part of patient records are "read"
accessed by the caregiver.

Failed End Condition

The intended part of patient records are not "read

accessed by the caregiver.

Primary Actors

1. Client program acting on behalf of the caregive

(Client)

2. CORBA-compliant application service (Service),

which provides “read” access to the required
information.

-

RAD Healthcare Scenario: Out-patient Visit to Attending Physician

April 2001 B-5



B-6

Table B-2 ADO Client Actions: Read Patient Record

Secondary Actors

1. Access Decision Object (ADO), which provide
interface
DfResourceAccessDecision::AccessDecision

Trigger

A caregiver is attempting to “browse” parts of the
patient medical record.

Applicable Access Policy

Basic Hospital Patient Record Access: An attend
physician may read any part of the patient record.

Obtain
Resource
Name

Obtain
Principal
Security

Attributes

Obtain
Authorization
Decision

Enforce
Authorization
Decision

Figure B-2 ADO Client Actions Diagram

Resource Access Decision V1.0 month 2000

(2}

ng



Table B-3 ADO Client Actions: Read Patient Record

Description

Step Action

1 Application program (ADO client), acting on behalf of
the physician, obtains the resource_name for the part
of the patient record to be read and the static
attribute_list.

2 ADO client invokes access_allowed (resource_name,
“read,” attribute_list).

3 If access_allowed() returns “true,” then ADO client
reads and displays requested part of the patient record
to physician; otherwise, ADO Client displays error.

Extensions

Step Branching Action
No variations

Variations

Step Branching Action

No variations

Related Information

Priority High
Performance
Frequency Many times per hour through the hospital

Channels to actors

Open Issues

Superordinate use cases Out-patent Visit to Attending Physician

Subordinate use cases ADO Actions: Read Patient Record

Table B-3 describes the actions of the application program (ADO client) in providing
the physician the capability of browsing resources contained in the patient record. The
application program obtains from the physician the name of the resource to be read. It
then obtains the static attributes from the physician’s credentials. The application
invokes the ADO, which returns an indication of whether the physician is able to read
the requested resource within the patient record. If the physician has read access to the
resource, the application displays the resource for the physician.

The next section describes the actions of the ADO when it is invoked by the
application to determine if the physician has read access to the patient record resource

RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-7



B-8

B.2.2 ADO Actions: Read Patient Record

Table B-4 Read Patient Record

Use Case Name

ADO Actions: Read Patient Records

Goal in Context

ADO renders access decision for a resource which
part of the patient record.

Scope & Level

Subfunction

Preconditions

S

Patient records already exist in the system; Application

program has invoked ADO.

Success End Condition

An access decision is returned by the ADO to the
application program.

Failed End Condition

An exception occurred and an access decision is 1
returned by the ADO to the application program.

Primary Actors

1. Access Decision Object (ADO), which provides
interface
DfResourceAccessDecision::AccessDecision

Secondary Actors

1. Policy Locator Object(PL), which provides the
interface
DfResourceAccessDecision::PolicyEvaluatorLocator

2. Dynamic Attribute Service Object(DAS), which
provides interface
DfResourceAccessDecision::DynamicAttributeService

3. Policy Evaluator Object (PE), which provides the
interfaceDfResourceAccessDecision::PolicyEvaluator

4. Decision Combinator Object(DCO), which provide
the interface
DfResourceAccessDecision::DecisionCombinator

Trigger

Application program (ADO client) invokes ADO.

Applicable Access Policy

Basic Hospital Patient Record Access: An attendin
physician may read any part of the patient record.

Resource Access Decision V1.0 month 2000

ot

2}

g



a Locator : Policy
EvaluatorLocator

an Attribute Service
: DynamicAttribute

an Evaluator : Policy
Ev aluator

a Com binator :
Decision

get_policy _decision_ev aluators(ResourceName)

[

get_dynamic_anributes(Atlril%uleLisl, ResourceN am{&)peration)

combine_decisions(Resourct‘eName, Operation, AttributeList, Policy EvalualorLisl‘)

an Application an Access Decision
System Object : Access
i \
ac cess _allone d(ResourceN arp e, Operation, AttributeList)
T \

|
\ |
* evaluate(ResourceName, Operation, AI‘tributeList)

Figure B-3 Read Patient Record Diagram

ect

of

Description

Step Action

1 ADO invokes
get_policy _decision_evaluators(resource_name) which
returns:

1. policy_evaluator_list that contains only one item: the
NamedPolicyEvaluator consisting of the evaluator_name
"Basic Hospital Patient Record Access Policy" and its obj
reference policy_evaluator.

2. A decision_combinator.

2 Using the static attribute_list provided by the ADO client,
ADO invokes get_dynamic_attributes(attribute_list,
resource_name, "read") which returns attribute_list', a lis
all static and dynamic attributes required for policy_evaluator
to make the access decision.

RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001 B-9



B-10

Description

Step Action

3 ADO invokes combine_decisions(resource_name, "read"
attribute_list', policy _evaluator_list). Within
combine_decisions(), the policy_evaluator with
evaluator_name "Basic Hospital Patient Record Access
Policy" is invoked returning
"ACCESS_DECISION_ALLOWED".
combine_decisions()returns "TRUE" to the ADO.

4 ADO returns the boolean result "TRUE".
Extensions
Step Branching Action

No variations

Variations

Step Branching Action

No variations

Related Information

Priority High
Performance
Frequency Many times per hour through the hospital

Channels to actors

Open Issues

Superordinate use | ADO Client Actions: Read Patient Record
cases

The above table describes the actions of the ADO in providing an access decision
when invoked by the application in order to determine if the physician has the
capability of browsing resources contained in the patient record. Given resource_name,
a resource within the patient record, the operation “read,” and attribute_list, a list of
static attributes that contains the static role attribute “physician,” the ADO invokes
get_policy _decision_evaluators()  with theresource_name which returns:

1. policy_evaluator_list that contains only one item: tiNamedPolicyEvaluator
consisting of theevaluator_name “Basic Hospital Patient Record Access Policy”
and its object referengmolicy_evaluator .

2. A decision_combinator

Resource Access Decision V1.0 month 2000



B

The ADO obtains dynamic attributes by invokiget_dynamic_attributes() with the
staticattribute_list provided by the ADO clientesource_name , and the operation
“read.” Upon return, a combined list of static and dynamic attributes, consisting of the
static role attribute “physician” and the dynamic relationship attribute “attending,” is
now contained irattribute_list .

The ADO then invokesombine_decisions() with resource_name , the operation
“read,” the combined list of static and dynamic attribigetsbute_list , and
policy_evaluator_list . Within combine_decisions() , thepolicy_evaluator with
evaluator_name “Basic Hospital Patient Record Access Policy” is invoked returning
“ACCESS_DECISION_ALLOWED?” since the principal has both the static role
attribute “physician” and the dynamic relationship attribute “attending.” Having
invoked all evaluators ipolicy_evaluator_list , combine_decisions() returns
“TRUE” to the ADO.

Finally, the ADO returns “TRUE” to the ADO client.

RAD Healthcare Scenario: Out-patient Visit to Attending Physician April 2001B-11



B-12 Resource Access Decision V1.0 month 2000



Resource Names for PIDS C

This section describes corresponding changes to Person Identification Service
Specification (PIDS) (corbamed/98-02-29) in order for PIDS-compliant services to use
RAD in a standard way.

C.1 Changesto Conformance Classes

The specification requires to add a new conformance class ‘PIDS using RAD’ in the

list of conformance classes by appending the following bullet item after the last bullet
item on page 63:

®* “PIDS using RAD’ - An implementation of PIDS is conformant to this class if it is
conformant to any of the above conformance classes and, in addition, it obtains
from Resource Access Decision facility and enforces authorization decisions
according to the description provided in section 11.8 of this specification.”

C.1.1 Changes to Security Guidelines

The specification requires to add a new section (11.8) titled “Use of Resource Access
Decision Facility” with the following text:

“Resource names used for obtaining access decisions from RAD facility by PIDS-
compliant services, should be created in a predefined manner:

PIDS_RAD_Resource_Name ::= ‘IDL:omg.org/PersonldService’ +

{“QualifiedPersonld.domain”, <QualifiedPersonld.domain>} +
{"QualifiedPersonld.id”, <QualifiedPersonld.id>}+

(, {*TraitName”, TraitName})+
Text below explains the expression above in English.

If a PIDS-compliant service uses Resource Access Decision facility (RAD), it shall:

Resource Access Decision, v1.0 April 2001 C-1



C-2

create RAD resource names according to the following rules:

. “resource_naming_authority " data member oResourceName shall adhere to

the syntax oNamingAuthority::AuthorityldStr type. For the corresponding
datum element of typAuthorityld , the value of authority shall be ‘IDL.” The value
of naming_entity shall be bmg.org/PersonldService

. First element oResourceName data member

resource_name_component_list is mandatory. It shall have value of
name_string ‘QualifiedPersonid.domain ’, and the value ofalue_string shall

be the value of domain data member of the corresponding datum element of type
QualifiedPersonld for the person whose traits are to be accessed.

. Second element & esourceName data member

resource_name_component_list is mandatory. It shall have value of
name_string ‘QualifiedPersonld.id ', and the value ofalue_string shall be
the value of id data member of the corresponding datum element of type
QualifiedPersonld for the person whose traits are to be accessed.

. Third element oResourceName data member

resource_name_component_list is mandatory. It shall have value of
name_string ‘TraitName '. The value of the correspondimame_string data
members shall be the name of the trait to be accessed and it shall adhere to the
syntax ofPersonldService::TraitName data type.

. All other elements oResourceName data member

resource_name_component_list are optional. They shall have value of
name_string ‘TraitName '. The value of the correspondimame_string data
members shall be the name of the trait to be accessed and it shall adhere to the
syntax ofPersonidService::TraitName data type.

Create RAD operation name according to the following rules:

. When serving invocations of operations that semantically mean “get,” operation in

DfResourceAccessDecision::access_allowed() shall have value ‘read.’

. When serving invocations of operations that semantically mean “set” or “register,”

operation inDfResourceAccessDecision::access_allowed() shall have value
‘write’.

Obtain security attributes of the invoking principal.

Obtain resource access decision(s) by invoking e#lceess_allowed() or
multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface.

Enforce the decision according to the semantics of the operation the PIDS-
compliant service is serving.

It is not mandated by this specification how exceptions caught during an attempt to
invoke eitheraccess_allowed() or multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface are handled by PIDS-
compliant service."

Resource Access Decision, v1.0 April 2001



Index

A
Access Decision Model 1-3, 1-4
access decision model 1-3
AccessDecision Interface 2-12
AccessDecisionAdmin Interface 2-19
administrative model 1-5, 1-6
Administrative view 1-3
ADO Actions

Read Patient Record B-8
ADO Client Actions

Read Patient Record B-5
Application flow schema 1-2

B
Basic Types 2-3

C
Computational Model 1-8
Conformance Classes 2-34, C-1
CORBA

documentation set iv

D

DecisionCombinator Interface 2-16
DuplicateEvaluatorName 2-11
DynamicAttributeService Interface 2-14

E
ExceptionData 2-9
Exceptions 2-8

G
Generic RAD Sequence Diagram B-1

H
Healthcare Scenario B-2

|

Information Model 1-7
InvalidPolicy 2-11
InvalidPolicyEvaluatorList 2-11
InvalidPolicyNamelList 2-11

InvalidResourceName 2-11
InvalidResourceNamePattern 2-11

N
NoAssociation 2-10

)
Object Management Group iii
address of iv

P
PatternConflict 2-10

PatternDuplicate 2-10

PatterninUse 2-10

PatternNotRegistered 2-10

PolicyEvaluator Interface 2-18
PolicyEvaluatorAdmin Interface 2-31
PolicyEvaluatorLocator Interface 2-15
PolicyEvaluatorLocatorBasicAdmin Interface 2-20
PolicyEvaluatorLocatorNameAdmin Interface 2-21
PolicyEvaluatorLocatorPatternAdmin Interface 2-25
PolicyNameListlterator Interface 2-12

R

RadComponentError 2-10
RadInternalError 2-9
ResourceName 1-3
ResourceNameNotFound 2-10

S
Security Guidelines C-1

T

TooMany 2-11

Types 2-3

Types Associated with Evaluating Access Policy 2-6

Types that identify and manage information about secured
resources 2-4

Types used from the CORBA Security Service 2-3

Types Used to Request Access Decisions 2-7

Resource Access Decision, v1.0 April 2001 Index-1



Index

Index-2 Resource Access Decision, v1.0 April 2001



	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1.  Overview
	1.1 Introduction
	1.2 Reference Models
	1.2.1 Access Decision Model
	1.2.2 Administrative Model
	1.2.3 Information Model
	1.2.4 Computational Model


	2.  DfResourceAccessDecision Module
	2.1 OMG IDL
	2.2 Types
	2.2.1 Basic Types & Types used from the CORBA Security Service
	2.2.2 Types that identify and manage information about secured resources
	2.2.3 Types Associated with Evaluating Access Policy
	2.2.4 Types Used to Request Access Decisions
	2.2.5 Exceptions

	2.3 PolicyNameListIterator Interface
	2.4 AccessDecision Interface
	2.5 DynamicAttributeService Interface
	2.6 PolicyEvaluatorLocator Interface
	2.7 DecisionCombinator Interface
	2.8 PolicyEvaluator Interface
	2.9 AccessDecisionAdmin Interface
	2.10 PolicyEvaluatorLocatorBasicAdmin Interface
	2.11 PolicyEvaluatorLocatorNameAdmin Interface
	2.12 PolicyEvaluatorLocatorPatternAdmin Interface
	2.13 PolicyEvaluatorAdmin Interface
	2.14 Conformance Classes

	Appendix A - OMG IDL
	Appendix B - Use Case Example
	Appendix C - Resource Names for PIDS

