
February 2001 Python Language Mapping, v1.0 1-1

Python Language Mapping 1

Contents

Text in green is from the Python 1.1 RTF. Text in red is from the Python
1.2 RTF. This chapter contains the following sections.

Source Documents

This formal specification is based on the following OMG documents:

• orbos/99-08-02 - submission document

• ptc/00-04-08 - FTF final adopted specification

• ptc/2001-03-05 - Python 1.1 RTF

• ptc/2002-06-05 - Python 1.2 RTF

Section Title Page

“Mapping Overview” 1-2

“Using Scoped Names” 1-2

“Mapping for Data” 1-4

“Client Side Mapping” 1-12

“Server Side Mapping” 1-15

“Mapping for ORB Services” 1-17

“Deprecated Interfaces” 1-18

1-2 Python Language Mapping, v1.0 February 2001

1

1.1 Mapping Overview

The mapping of IDL to Python presented here does not prescribe a specific
implementation. It follows the guidelines presented in Chapter 1.1 of the C Language
Mapping (formal/99-07-39). The Python language features used in this mapping are
available since Python 1.3, most of them have been around much longer.

This document covers the following aspects of implementing CORBA-based
architectures in Python:

• Representation of IDL types, constants, and exceptions in Python

• Invocation of methods on a CORBA object using a statically generated stub

• Invoking methods dynamically (DII)

• Providing object implementations using generated stubs

• Providing object implementations dynamically (DSI)

• Access to ORB services

For some of the concepts, alternative mappings are given. An implementation should
clearly identify if it uses these alternative mappings.

An implementation of this specification provides the predefined module CORBA. All
names qualified with the CORBA module are also provided by the implementation.

1.2 Using Scoped Names

Python implements a module concept that is similar to the IDL scoping mechanisms,
except that it does not allow for nested modules. In addition, Python requires each
object to be implemented in a module; globally visible objects are not supported1.

Because of these constraints, scoped names are translated into Python using the
following rules:

• An IDL module mapped into a Python module. Modules containing modules are
mapped to packages (i.e., directories with an __init__ module containing all
definitions excluding the nested modules). An implementation can chose to map top-
level definitions (including the module CORBA) to modules in an implementation-
defined package, to allow concurrent installations of different CORBA runtime
libraries. In that case, the implementation must provide additional modules so that
toplevel modules can be used without importing them from a package.

• For all other scopes, a Python class is introduced that contains all the definitions
inside this scope.

1. The __builtin__ module is globally accessible. However, an application like an IDL-to-
Python compiler should not introduce new objects into that module.

February 2001 Python Mapping, v1.0 Using Scoped Names 1-3

1

• Other global definitions (except modules) appear in a module whose name is
implementation dependent. Implementations are encouraged to use the name of the
IDL file when defining the name of that module.

For instance,

module M
{
 struct E{
 long L;
 };
 module N{
 interface I{
 void import(in string what);
 };
 };
};
const string NameServer="NameServer";

would introduce a module M.py , which contains the following definitions:

since M is a package, this appears in M/__init__.py
class E:
 pass #structs are discussed later

module M/N.py
class I:
 def _import(self,what):
 pass #interfaces are discussed later

The string NameServer would be defined in another module. Because the name of
that module is not defined in this specification, using global definitions except for
modules is discouraged.

To avoid conflicts, IDL names that are also Python identifiers are prefixed with an
underscore (‘_’). For a list of keywords, see Table 1-1.

Table 1-1 Python keywords

and assert break class continue

def del elif else except

exec finally for from global

if import in is lambda

not or pass print raise

return try while

1-4 Python Language Mapping, v1.0 February 2001

1

1.3 Mapping for Data

1.3.1 Mapping for Basic Types

Because Python does not require type information for operation declarations, it is not
necessary to introduce standardized type names, unlike the C or C++ mappings.
Instead, the mapping of types to dynamic values is specified here. For most of the
simple types, it is obvious how values of these types can be created. For the other
types, the interface for constructing values is also defined. The mappings for the basic
types are shown in Table 1-2.

For the boolean type, two predefined values CORBA.TRUE and CORBA.FALSE are
available. Since the wchar type currently cannot be represented appropriately in
Python, an alternative mapping is possible. For the long double type, the following
interface must be provided:

• The function CORBA.long_double creates a new long double number from
a floating point number.

• The operation to_float of a long double number converts it into a
floating point number. For each floating point number f ,
CORBA.long_double(f).to_float==f .

• The long double number has an internal representation that is capable of storing
IEEE-754 compliant values, with sign, 31 bits of mantissa (offset 16383), and 112
bits of fractional mantissa. If numeric operations are provided, they offer the
precision resulting from this specification.

Table 1-2 Basic Data Type Mappings.

OMG IDL Python

octet Integer (<type 'int'>)

short Integer

long Integer

unsigned short Integer

unsigned long Long integer(<type 'long int'>)

long long Long integer (<type 'long int'>)

unsigned long long Long integer

float Floating Point Number (<type 'float'>)

double Floating Point Number

long double CORBA.long_double

boolean Integer

char string of length 1

wchar Wide string of length 1

February 2001 Python Mapping, v1.0 Mapping for Data 1-5

1

1.3.2 Mapping for Template and Array Types

Both the bounded and the unbounded string type of IDL are mapped to the Python
string type. Wide strings are represented by an implementation-defined type with the
following properties:

• For the wide string X and the integer n, X[n] returns the nth character, which is a
wide string of length 1.

• len(X) returns the number of characters of wide string X.

• CORBA.wstr(c) returns a wide character with the code point c in an
implementation-defined encoding.

• X+Y returns the concatenation of wide strings X and Y.

• CORBA.word(CORBA.wstr(c)) == c

The sequence template is mapped to sequence objects (e.g., tuples or lists).
Applications should not assume that values of a sequence type are mutable. Sequences
and arrays of octets and characters are mapped to the string type for efficiency reasons.

For example, given the IDL definitions

typedef sequence<long> LongList;
interface VectorOps{
 long sum(in LongList l);
};

a client could invoke the operation

print obj.sum([1,2,3])

An object implementation of this interface could define

...
 def sum(self,l):
 return reduce(operator.add,l,0)

Array types are mapped like sequence templates. An application should expect a
BAD_PARAM exception if it passes sequences that violate the bounds constraint or
arrays of wrong size.

A fixed point type fixed<foo,bar> is mapped to a Python type or class with the
following interface:

• A constructor expecting an integer or large integer with most foo digits.

• Numeric operators for addition, subtraction, multiplication, and division, both of two
fixed point numbers and in combination with integers. A DATA_CONVERSION
exception is raised if the operation results in a loss of precision.

• Operations value, precision, and decimals.

• Fix.value() returns an integer or large integer

• Fix.precision() returns foo

1-6 Python Language Mapping, v1.0 February 2001

1

• Fix.decimals() returns bar

• The class CORBA.fixed has a constructor expecting foo, bar, and the value. It is
used in the case of anonymous fixed types.

IDL of the form

typedef fixed<digits,scale> MyFixed;

is mapped as follows:

• A constructor MyFixed() expecting either a string representing the fixed point value,
or an integer type representing the digits of the value.

The string form of the constructor accepts a string representation of a fixed point
literal, with the trailing ’d’ or ’D’ optional. The value is truncated if too many digits
are given after the decimal point. If there are too many digits before the decimal point,
or the string is not a valid fixed point value, a CORBA.DATA_CONVERSION
exception is raised.

The integer form of the constructor accepts a Python integer or long integer,
representing the digits of the fixed point value. The integer is numerically the
fixed point value * 10 ** scale. If the integer has too many digits,
CORBA.DATA_CONVERSION is raised.

E.g. given IDL:

typedef fixed<5,2> MyFixed;

the following is true:

MyFixed("123.45") == MyFixed(12345)

• To facilitate the use of anonymous fixed point values, a generic CORBA.fixed()
constructor is provided. Its arguments take three possible forms:

• A single string representing the fixed point value, with a trailing ’d’ or ’D’ optional.
The resulting fixed point value derives its digits and scale from the string. Raises
DATA_CONVERSION if the value exceeds the size of CORBA fixed, or the string
is invalid.

• The digits and scale values, followed by a conforming string. The string is treated as
with named types described above.

• The digits and scale values, followed by a conforming integer or long integer. The
integer is treated as with named types described above.

e.g.

a = CORBA.fixed("123.45")
b = CORBA.fixed(5, 2, "123.45")
c = CORBA.fixed(5, 2, 12345)
assert(a == b)
assert(b == c)

The result of calling either kind of constructor is an object with the following properties:

February 2001 Python Mapping, v1.0 Mapping for Data 1-7

1

• Numeric operators for addition, subtraction, multiplication, and division, both of two
fixed point numbers, and in combination with integers. A DATA_CONVERSION
exception is raised if the operation results in an overflow.

• Operations as follows:

• value() returns an integer or long integer representing the digits of the fixed point
number, in the form accepted by the constructors.

• precision() returns the number of digits.

• decimals() returns the scale.

• round(scale) returns a new fixed point number containing the original number
rounded to the specified scale.

• truncate(scale) returns a new fixed point number containing the original number
truncated to the specified scale.

• When a fixed point number is passed to the standard str() function, a string
representing the fixed point value is returned. The string does not contain a trailing
’d’.

1.3.3 Mapping for Enumeration Types

An enumeration is mapped into a number of constant objects in the name space where
the enumeration is defined. An application may only test for equivalence of two
enumeration values, and not assume that they behave like numbers.

For example, the definition

module M{
 enum color{red,green,blue};
 interface O{
 enum Farbe{rot,gruen,blau};
 };
};

introduces the objects

import M
M.red,M.green,M.blue,M.O .rot,M.O .gruen,M.O .blau

1.3.4 Mapping for Structured Types

An IDL struct definition is mapped into a Python class or type. For each field in the
struct, there is a corresponding attribute in the class with the same name as the field.
The constructor of the class expects the field values, from left to right.

For example, the IDL definition

struct segment { long left_limit; long right_limit };

could be used in the Python statements

1-8 Python Language Mapping, v1.0 February 2001

1

s=segment(-3, 7)
print s.left_limit,s.right_limit

1.3.5 Mapping for Union Types

Union types are mapped to classes with two attributes. The first is the discriminant _d ,
the second the associated value _v . For each branch, there is an additional attribute,
which can only be accessed if the branch has been set. There are three possibilities:

• If the discriminant was explicitly listed in a case statement, the value is of the
branch associated with that case.

• If the discriminant is not explicitly listed and there is a default case label, the value
is of the branch associated with the default case label.

• If the discriminant is not listed, and there is no default, the value is None.

The constructor of that class expects the discriminator and the value as arguments.

Alternatively, the union can also be constructed by passing a keyword argument, with
the field name of the union as the key. If more than one discriminator is associated
with a field, the discriminator must be set explicitly.

For example, the definition

union MyUnion switch(long){
 case 1: string s;
 default: long x;
};

can be accessed as

u = MyUnion(17, 42)
17 is the discriminator, 42 is the value of x
print u.x
u = MyUnion(s = 'string')
print u._d, u._v

1.3.6 Mapping for Constants

An IDL constant definition maps to a Python variable initialized with the value of the
constant.

1.3.7 Mapping for Exceptions

An IDL exception is translated into a Python class derived from
CORBA.UserException. System exceptions are derived from
CORBA.SystemException. Both base classes are derived from CORBA.Exception. The
parameters of the exception are mapped in the same way as the fields of a struct
definition. When raising an exception, a new instance of the class is created; the
constructor expects the exception parameters.

February 2001 Python Mapping, v1.0 Mapping for Data 1-9

1

For example, the definition

module M{
 interface I{
 exception PermissionDenied{string details;};
 I create(in string name)raises(PermissionDenied);
 };
};

could be used caught as

from M import I;
try:
 i_copy=my_i.create('SuperUser');
except I.PermissionDenied,value:
 print "Could not create SuperUser:",value.details
 i_copy=None

1.3.8 Mapping for TypeCodes

TypeCode s are defined in IDL in the Interface Repository chapter of the Common
Object Request Broker: Architecture and Specification document. As a result, the normal
mapping rules apply. In addition, the type code constants defined in the TypeCodes
section (Interface Repository chapter) of the Common Object Request Broker:
Architecture and Specification document are available as Python variables in the module
CORBA, with the names given in the TypeCode Constants subsection.

For user-defined types, a function CORBA.TypeCode can be used to create the type
codes. This function expects the repository ID. If creation of the type code fails,
CORBA.TypeCode raises a system exception. The repository ID of a type can be
obtained with the function CORBA.id , passing the object representing the type. Such
an object shall be available for every IDL type with a <scoped_name> , including
names that are not otherwise mapped to a Python construct (such as type aliases). If an
invalid object is passed to CORBA.id , a BAD_PARAM system exception is raised.

Example: To obtain the TypeCode of the CosNaming::NamingContext interface
type, either

CORBA.TypeCode("IDL:omg.org/CosNaming/NamingContext:1.0")

or

CORBA.TypeCode(CORBA.id(CosNaming.NamingContext))

could be used. In addition, the ORB operations for creating type code, create_*_tc, are
available to create type code values. Even though they are defined in PIDL, they follow
the mapping for IDL operations in Python.

1-10 Python Language Mapping, v1.0 February 2001

1

1.3.9 Mapping for Any

Because of the dynamic typing in Python, there is no need for a strictly type-safe
mapping of the any type as in the C or C++ mappings. Instead, all that needs to be
available at run-time is the value and the type code corresponding to the type of the
value. Because of the mappings for structured types, there is no need that the values
belong to the exact class that would have been generated by the IDL compiler. The
only requirement is that the values conform to the interface that the IDL compiler
would have provided. An object reference extracted from an Any value must be
narrowed before it can be used in an interface-specific operation.

To create an any value, the application invokes CORBA.Any(typecode,value) . The
resulting object supports two operations, typecode() and value() .

For example, with the IDL specification

module M{
 struct S{
 short l;
 boolean b;
 };
 interface foo{
 void operate(in any on_value);
 };
};

a client could perform the actions

import M
class Dummy: pass
#construct value
v=Dummy()
v.l=42
v.b=0
#somehow obtain type code
tc=Corba.TypeCode("M::S")
o=something() #obtain object reference
o.foo(CORBA.Any(tc,v))

import CORBA
import M
Create a value of type M.S
v = M.S(1, CORBA.TRUE)
obtain type code
tc=CORBA.TypeCode(CORBA.id(M.S))
could also use: tc1=CORBA.TypeCode("IDL:M/S:1.0")
Create any containing an M.S object
any1 = CORBA.Any(tc, v)
the TypeCodes for the basic CORBA types are defined
in the CORBA 2.4 standard, section 10.7.2 "TypeCode Con-
stants"

February 2001 Python Mapping, v1.0 Mapping for Data 1-11

1

Create any containing CORBA Long
any2 = CORBA.Any(CORBA.TC_long, 1)
Create any containing CORBA Float
any3 = CORBA.Any(CORBA.TC_float, 3.14)
Create any containing CORBA short
any4 = CORBA.Any(CORBA.TC_short, 5)
Create any containing CORBA unsigned short
any5 = CORBA.Any(CORBA.TC_ushort, 6)
Create any containing CORBA String
any6 = CORBA.Any(CORBA.TC_string, "some string")
o = something() # somehow obtain reference to object of type
M.foo
o.operate(any1)
o.operate(any2)
o.operate(any3)
o.operate(any4)
o.operate(any5)
o.operate(any6)

1.3.10 Mapping for Value Types

A value type V (either concrete and abstract) is mapped to a Python class V, which
inherits from either the base value type, or from CORBA.ValueBase . The state of a
value is represented in attributes of the instance representing the value. Operations of
the V are implemented in a class derived from V implementing the value. Value
implementations may or may not provide an __init__ method; if they do provide
one, which requires parameters, the registered factory is expected to fill in these
parameters.

The null value is represented by None.

For a given value type, the ValueFactory maps to a class instance with a __call__
method, which returns a new instance of the value type. Initializer operations of the value
type map to methods of the factory. The registry for value factories can be accessed using
the standard ORB operations register_value_factory ,
unregister_value_factory , and lookup_value_factory . For value types
without operations, a default factory is registered automatically.

For a given value type, the ValueFactory maps to a class instance with a __call__ method
taking no arguments. When it is called, it returns a new instance of the value type.
Initialiser operations of the value type map to methods of the factory object. The registry
for value factories can be accessed using the standard ORB operations
register_value_factory, unregister_value_factory, and lookup_value_factory. For value
types without operations, a default factory is registered automatically.

If a value type supports an interface (either concrete or abstract), the implementation of
the value type can also be supplied as a servant to the POA.

Value boxes are mapped as a Python class with an instance attribute _boxed . Instances
of the value box are created by passing the boxed value to the constructor of the class.

1-12 Python Language Mapping, v1.0 February 2001

1

Value boxes are mapped to the normal mapping of the boxed type, or None for null value
boxes. For example, given IDL

valuetype BoxedString string;
interface I {

void example(in BoxedString a, in BoxedString b);
};

the operation could be called as:

obj.example("Hello", None)

A custom value type inherits from CORBA.CustomMarshal , instances need to
provide the custom marshal and unmarshal methods as defined by
CORBA::CustomMarshal . The types CORBA::DataOutputStream and
CORBA::DataInputStream follow the mapping for abstract values.

1.4 Client Side Mapping

1.4.1 Mapping for Objects and Operations

A CORBA object reference is represented as a Python object at run-time. This object
provides all the operations that are available on the interface of the object. Although
this specification does not mandate the use of classes for stub objects, the following
discussion uses classes to indicate the interface.

The nil object is represented by None.

If an operation expects parameters of the IDL Object type, any Python object
representing an object reference might be passed as actual argument.

If an operation expects a parameter of an abstract interface, either an object
implementing that interface, or a value supporting this interface may be passed as
actual argument. The semantics of abstract values then define whether the argument is
passed by value or by reference.

Operations of an interface map to methods available on the object references.
Parameters with a parameter attribute of in or inout are passed from left to right to
the method, skipping out parameters. The return value of a method depends on the
number of out parameters and the return type. If the operation returns a value, this
value forms the first result value. All inout or out parameters form consecutive result
values. The method result depends then on the number of result values:

• If there is no result value, the method returns None.

• If there is exactly one result value, it is returned as a single value.

• If there is more than one result value, all of them are packed into a tuple, and this
tuple is returned.

Assuming the IDL definition

February 2001 Python Mapping, v1.0 Client Side Mapping 1-13

1

interface I{
 oneway void stop();
 bool more_data();
 void get_data(out string name,out long age);
};

a client could write

names={}
while my_I.more_data():
 name,age = my_I.get_data()
 names[name]=age
my_I.stop()

If an interface defines an attribute name , the attribute is mapped into an
operation _get_name , as defined If the attribute is not readonly , there is an
additional operation _set_name , as defined in the OMG IDL Syntax and Semantics
chapter, “Attribute Declaration” section, of the Common Object Request Broker:
Architecture and Specification document.

If an operation in an OMG IDL specification has a context specification, then a Context
parameter follows all operation-specific in and inout arguments. The caller must pass a
CORBA.Context object; if the object has the incorrect type, a BAD_PARAM system
exception is raised.

1.4.2 Narrowing Object References

Python objects returned from CORBA operations or pseudo-operations (such as
string_to_object) might have a dynamic type, which is more specific than the
static type as defined in the operation signature.

Since there is no efficient and reliable way of automatically creating the most specific
type, explicit narrowing is necessary. To narrow an object reference o to an interface
class I , the client can use the operation o._narrow(I) .

Implementations may give stronger guarantees about the dynamic type of object
references.

1.4.3 Mapping for Context

The Context object supports the following operations:

• set_one_value(name,val) associates a property name with a property value.

• set_values(dict) sets a number of properties, passed as a dictionary.

• get_values(prop_name,start_scope=None) returns a dictionary of properties that
match with prop_name. If the key word argument start_scope is given, search is
restricted to that scope.

• delete_values(prop_name) deletes the specified properties from the context.

• create_child(ctx_name) returns a new child context.

1-14 Python Language Mapping, v1.0 February 2001

1

All property names and values are passed as strings. Instead of returning Status values,
these operations may raise CORBA system exceptions.

1.4.4 The Dynamic Invocation Interface

Because Python is not statically typed, there is no need to use the NVList type to pass
parameters at the DII. Instead, the _create_request operation takes the parameters
of the operation directly.

The operation _create_request of CORBA.Object instances returns a Request
object and takes the following parameters:

• the name of the operation

• a variable list of parameters

• optionally the keyword argument context

• optionally the keyword argument flags

• optionally the keyword argument repository_id

The parameters are passed following the usual conventions for values of their
respective types. It is the responsibility of the run-time system to correlate these values
to the types found in the interface repository. The application may specify the
repository id of the target object. Instead of returning a Status value,
_create_request might raise a CORBA system exception.

The resulting Request object supports the following operations:

• invoke(flags=0) synchronously initiates the operation.

• send(flags=0) asynchronously initiates the operation.

• get_response(flags=0) can be used to analyze the status of the operation.
This returns the result value and out parameter, and may raise both user and system
exceptions.

• delete(flags=0) can be used to invalidate a request.

The various flags defined in the CORBA module follow the normal mapping rules.
Some of the flags deal with memory management and have no specified semantics in
Python. Relevant to the DII are the following flags: INV_NO_RESPONSE,
INV_TERM_ON_ERR, and RESP_NO_WAIT.

1.4.5 Mapping for Components

The CORBA Component specification defines a number of new IDL Syntax elements.
It also explains how these syntax elements result in implicit interface definitions, with
implicit operations. A component-aware Python program should use the implicit
operation names to access the component.

February 2001 Python Mapping, v1.0 Server Side Mapping 1-15

1

1.5 Server Side Mapping

Traditionally, IDL language mapping would be unspecific on purpose when it comes to
a mapping for object implementations. The reasoning was that there are various
reasonable approaches, and standardizing on a single approach would limit the range
of applications.

Central to the architecture is the object adapter, which communicates the requests to
the implementation. CORBA explicitly allows for multiple object adapters, including
non-standardized ones. The only object adapter that has been standardized for CORBA
2.0 is the Basic Object Adapter (BOA), as a least common denominator. This adapter
has been found to be insufficient, so vendors would extend it with proprietary features.

A recent effort was made to standardize a portable object adapter (POA). The POA
standard [BDE97] now suggests to drop the BOA from the Common Object Request
Broker: Architecture and Specification, and replace it with the POA (note: this
occurred in Version 2.2 of the Common Object Request Broker: Architecture and
Specification). Vendors are still free to support other object adapters, including the old
BOA.

This specification only defines a server side mapping for the POA. Many of the
relevant definitions are defined using IDL in [BDE97]. The corresponding Python
mapping follows the rules specified above.

1.5.1 Skeleton-Based Implementation

This specification defines an inheritance-based mapping for implementing servants.One
approach of implementing interfaces is to derive the implementation class from a
skeleton class. Delegation-based approaches are also possible, but can be implemented
on top of the inheritance-based approach. For the POA, the first element of the fully-
scoped name of the interface is suffixed with “__POA”. Following the name mapping
scheme for Python, the corresponding Python class can be used as a base class for the
implementation class. For example, the interface

module M{
 interface I{
 void foo();
 };
};

could be implemented in Python as

import M__POA
class MyI(M__POA.I):
 def foo(self):
 pass #....

If the implementation class derives from other classes that also implement CORBA
interfaces, the skeleton class must be mentioned before any of those base classes. A
class may implement multiple interfaces only if these interfaces are in a strict
inheritance relationship.

1-16 Python Language Mapping, v1.0 February 2001

1

The skeleton class (M__POA.I in the example) supports the following operations:

• _default_POA() returns the POA reference that manages that object. It can be
overridden by implementations to indicate they are managed by a different POA.
The standard implementation returns the same reference as
ORB.resolve_initial_reference("RootPOA") , using the default ORB.

• _this() returns the reference to the object that a servant incarnates during a
specific call. This works even if the servant incarnates multiple objects. Outside the
context of an operation invocation, it can be used to initiate the implicit activation,
if the POA supports implicit activation. In any case, it should return an object that
supports the operations of the corresponding IDL interface.

The base class for all skeleton classes is the class PortableServer.Servant .

1.5.2 The Dynamic Skeleton Interface

An implementation class is declared as dynamic by inheriting from
PortableServer.DynamicImplementation . Derived classes need to
implement the operation invoke, which is called whenever a request is received. The
PIDL type ServerRequest is not mapped to a structure, but to a parameters list for
that operation. invoke is passed the following parameters:

• the name of the operation.

• a variable list of parameters, following the usual mapping rules for the parameter
types of the specified operation.

• a keyword parameter context , specifying the context object if any, or None.

invoke returns either with a result following the mapping for out parameters, or by
raising an appropriate exception.

The implementation class must also implement the pseudo-operation
_get_interface , which must return a non-nil CORBA::InterfaceDef reference.
It does not need to implement any other pseudo operation.

1.5.3 Mapping for the Cookie Type

Because the Cookie type is a native type, a Python mapping is required:

class Cookie: pass

According to the language mapping, the preinvoke operation of the
ServantLocator returns a tuple (servant, cookie). The cookie will be input later to
the postinvoke operation. The ServantLocator implementation is free to
associate any attributes with the cookie.

February 2001 Python Mapping, v1.0 Mapping for ORB Services 1-17

1

1.5.4 Mapping for Components

A component implementation consists of a set of interface implementations. The
names of these interfaces are defined in the Components specification; these interfaces
follow the standard mapping rules for interfaces in Python. This specification does not
define a mapping of the Component Implementation Framework to Python.

1.6 Mapping for ORB Services

The predefined module CORBA contains the interfaces to the ORB services. The first
step that needs to be performed is the ORB initialization. This is done using the
ORB_init operation:

orb=CORBA.ORB_init(argv,orbid)

Both the argument vector and the orbid are optional. If provided, the orbid must be a
string, and the argument vector must be similar to sys.argv . If no orbid is given, the
default ORB object is returned.

Depending on the object adapters provided, the ORB object may provide additional
initialization functions. Furthermore, two operations allow access to the initial
references:

• orb.list_initial_references() returns a list of names of available
services.

• orb.resolve_initial_reference(string) returns an object reference or
raises ORB_InvalidName.

Two operations are available for stringification of object references:

• orb.string_to_object(string) returns an object reference, or a nil
reference if the string is not understood.

• orb.object_to_string(object) returns a stringification of the object
reference that can be passed later to string_to_object .

Each object reference supports a number of operations:

• _get_implementation() returns an ImplementationDef object related to
the object.

• _get_interface() returns an InterfaceDef object.

• _is_a(string) expects a repository identifier and returns true if the object
implements this interface.

• _non_existent() returns true if the ORB can establish that the implementation
object behind the reference is gone.

• _hash(maximum) returns a value between 0 and maximum that does not change
in the lifetime of the object.

• _is_equivalent(other_object) returns true if the ORB can establish that
the references reference the same object.

1-18 Python Language Mapping, v1.0 February 2001

1

The interface ORB provides some additional functions:

• get_default_context() returns the default context

• send_multiple_requests_oneway , send_multiple_requests ,
get_next_response , and poll_next_response are used with the DII.

1.7 Deprecated Interfaces

Because some interfaces and operations of earlier CORBA specifications are
deprecated in the Common Object Request Broker: Architecture and Specification
(CORBA 2.2), no mapping is provided for these interfaces:

• get_current() . Applications should use resolve_initial_reference
instead.

• get_implementation() and the ImplementationDef interface, as well as
the mapping for the Basic Object Adapter. Applications should use the Portable
Object Adapter.

• get_principal and the Principal interface. Applications should use
SecurityLevel2::Credentials instead.

