Date: March 2005

Product Lifecycle Management Services

Convenience Document
dtc/05-03-08

Copyright © 1997-2005, Prostep iViP Association
Copyright © 1997-2005, International Standard Organization
Copyright © 2005, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The organizations listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
The copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included
materia of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regul ations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS' AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THISPUBLICATION, INCLUDING BUT NOT
LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIESLISTED ABOVE BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This disclaimer of
warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
I1OP® areregistered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfecilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company hames mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer software to use
certification marks, trademarks or other specia designations to indicate compliance with these materials.

Software devel oped under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the I ssue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/lssue.

Table of Contents

1Scope 1

2Conformance 1

3Normative References 1

4Terms and Definitions 2
5Symbols 2
6Additional Information 2

6.1 Changes to Adopted OMG Specifications 2

6.2 How to Read this Specification 2

6.3 Acknowledgements 2

7Informational Viewpoint 5

7.1
7.2

PLM Adopted Specification

Overview 5

Use cases 5

7.2.1 Export of assembly data 5

7.2.2 Import of assembly data 8

7.2.3 Authentication/Start-Up of session 10

7.2.4 Authorization 11

7.2.5 Start node identification 13

7.2.6 Browsing down product structure data 15
7.2.7 Browsing up product structure data 18

7.2.8 Download of product data 20

7.2.9 Download meta data including structures 20
7.2.10 Download a single digital file 23

7.2.11 Generic object query 25

7.2.12 Search in design space 28

7.2.13 Upload of product data 31

7.2.14 Upload a single digital file (simple user interaction) 32
7.2.15 Upload meta data including structures 33
7.2.16 Change notification 35

7.2.17 Display content of subscription list and confirm changes 37
7.2.18 Change content of subscription list 40
7.2.19 Product Class Identification 42

7.2.20 Browsing of Abstract Product Structures 43

7.2.21 Browsing of Alternative Solutions within an Abstract Product Structure 45
7.2.22 Retrieve Configuration Data within an Abstract Product Structure 46
7.2.23 Viewing of Change Management Information 48
7.3 Relevant Subsets of STEP PDM Schema and STEP AP214 49
7.3.1 Part Identification 50
7.3.2 Part Structure 50
7.3.3 Document and File Management 50
7.3.4 Shape Definition and Transformation 51
7.3.5 Classification 51
7.3.6 Properties 51
7.3.7 Alias Identification 52
7.3.8 Authorization 52
7.3.9 Configuration Management 52
7.3.10 Change and Work Management 52
7.3.11 Process planning 53
7.3.12 Multi-Language support 53
7.4 EXPRESS-X Mapping 53
7.4.1 Part Identification 54
7.4.2 Part Structure 57
7.4.3 Document and File Management 69
7.4.4 Shape Definition and Transformation 88
7.4.5 Classification 97
7.4.6 Properties 103
7.4.7 Alias Identification 118
7.4.8 Authorization 119
7.4.9 Configuration Management 129
7.4.10 Change and Work Management 159
7.4.11 Process planning 166
7.4.12 Multi-Language support 174
7.5 PIM Equivalence Model 175
7.6 EXPRESS to XMI Mapping 175
7.6.1 Standard mapping 175
7.6.2 Customized mapping based on domain knowledge 179
7.7 Informational PIM 184
7.7.1 Package PLM_base 185
7.7.2 Package Part_identification 189
7.7.3 Package Part_structure 194
7.7.4 Package Document_and_file_management 206
7.7.5 Package Shape_definition_and_transformation 220
7.7.6 Package Classification 233
7.7.7 Package Properties 242
7.7.8 Package Alias_identification 258
7.7.9 Package Authorization 259
7.7.10 Package Configuration_management 277
7.7.11 Package Change_and_work_management 309
7.7.12 Package Process_planning 320
7.7.13 Package Multi_language_support 329

8Computational Viewpoint 323

PLM Adopted Specification

8.1
8.2
8.3

8.4
8.5
8.6
8.7
8.8
8.9

Overview 323

PLM Connector 323

PLM_property_descriptor and PLM_properties_descriptor 323
8.3.1 Sample "login" PLM_properties_descriptors 324

8.3.2 Sample "assembly export" PLM_properties_descriptor 325
PLM_resource_adapter Class 326

PLM_object_factory Interface 326
PLM_connection_factory Interface 327

PLM_container Type 327

PLM_connection Interface 327

Query Operation 327

8.9.1 Write Operation 328

8.9.2 Export_data Operation 328

8.9.3 Import_data Operation 329

8.9.4 Delete Operation 329

8.9.5 Get_download_URL Operation 329

8.9.6 Get_upload_URL Operation 329

8.9.7 Close Operation 329

8.9.8 Get_export_data_properties_descriptors Operation 329
8.9.9 Get_import_data_properties_descriptors Operation 330

8.10 PLM_exception classes 330

8.10.1 Authentication_exception 330

8.10.2 Authorization_exception 330

8.10.3 Invalid_session_id_exception 331
8.10.4 Session_timeout_exception 331
8.10.5 Object_uid_timeout_exception 331
8.10.6 Invalid_object_uid_exception 331
8.10.7 Unsupported_query_exception 331
8.10.8 Unsupported_pattern_exception 331
8.10.9 Unsupported_operation_exception 331

8.11 Query Type 331
8.12 Generic Queries Conformance Point 334

8.12.1 Specialized Predicates for filtering of object sets 335
8.12.2 Query_with_relating_type_predicate 340
8.12.3 Relationship_query 341

8.13 XPath Queries Conformance Point 341
8.14 Specific Queries Conformance Point 342

PLM Adopted Specification

8.14.1 Common interfaces for types of start and target objects 342
8.14.2 Activity _element_query 346

8.14.3 Activity_relationship_query 347

8.14.4 Alias_identification_query 348

8.14.5 Alternative_solution_query 349

8.14.6 Application_context_query 350

8.14.7 Approval_relationship_query 351

8.14.8 Assembly_component_placement_query 352
8.14.9 Assembly_structure_query 353

8.14.10 Associated_activity query 354

8.14.11 Associated_approval_query 355

8.14.12 Associated_classification_query 357
8.14.13 Associated_date time_query 357

8.14.14 Associated_document_query 358
8.14.15 Associated_effectivity_query 359
8.14.16 Associated_file_query 360
8.14.17 Associated_item_property _query 361
8.14.18 Associated_person_organization_query 362
8.14.19 Associated_process_property _query 363
8.14.20 Associated_project_query 364
8.14.21 Associated_property_query 365
8.14.22 Class_structure_query 366
8.14.23 Complex_product_query 367
8.14.24 Configuration_query 368
8.14.25 Design_discipline_item_definition_query 369
8.14.26 Document_classification_query 370
8.14.27 Document_property_query 371
8.14.28 Document_query 372
8.14.29 Document_representation_query 374
8.14.30 Document_structure_query 374
8.14.31 Document_version_query 375
8.14.32 Effectivity_query 376
8.14.33 Item_classification_query 377
8.14.34 Item_query 378
8.14.35 Item_use_query 379
8.14.36 Item_version_query 380
8.14.37 Item_version_relationship_query 381
8.14.38 Object_by uid_query 382
8.14.39 Objects_by uids_query 383
8.14.40 Organization_query 384
8.14.41 Organization_relationship_query 385
8.14.42 Person_in_organization_query 386
8.14.43 Person_in_organization_relationship_query 388
8.14.44 Product_class_query 389
8.14.45 Product_structure_query 390
8.14.46 Project_assignment_query 390
8.14.47 Simple_property_query 391
8.14.48 Work_request_activity query 392
8.14.49 Work_request_query 393
8.14.50 Work_request_relationship_query 395
8.14.51 Work_request_scope_query 396

8.15 PDTnet Queries Conformance Point 396
8.15.1 General_detail_query 397
8.15.2 Document_detail_query 399
8.15.3 Document_selection_query 399
8.15.4 Document_ traversal_query 400
8.15.5 ltem_detail_query 401
8.15.6 ltem_selection_query 402
8.15.7 ltem_ traversal_query 403
8.15.8 Product_ detail_query 404
8.15.9 Product_ selection_query 405
8.15.10 Product_traversal_query 406

PLM Adopted Specification

9Web services PSM 367

9.1 Overview 367
9.2 UML Profile for XML Schema 367

9.2.1 UML Model 367

9.2.2 UML Package 368

9.2.3 UML Classes 370

9.2.4 UML Interfaces 372

9.2.5 UML Attributes, Associations and Compositions 372
9.3 PLM Services Web services WSDL 374

9.3.1 Query Examples 375

9.3.2 Realization of Use cases 377

10PIM for Product Lifecycle Management
Services 377

10.1 PIM Equivalence Model 377
10.1.1 Part Identification 377
10.1.2 Part Structure 378
10.1.3 Document and File Management 381
10.1.4 Shape Definition and Transformation 385
10.1.5 Classification 388
10.1.6 Properties 390
10.1.7 Alias Identification 393
10.1.8 Authorization 394
10.1.9 Configuration Management 399
10.1.10 Change and Work Management 406
10.1.11 Process Planning 410
10.1.12 Multi-Language Support 412

10.2 PIM 412

11Webservices PSM for Product LifeCycle Management
Services 413

11.1 UML Profile for XML 413
11.1.1 Model PLM_services 413
11.1.2 PLM Base 413
11.1.3 Part Identification 421
11.1.4 Part Structure 426
11.1.5 Document and File Management 434
11.1.6 Shape Definition and Transformation 444
11.1.7 Classification 454
11.1.8 Properties 460
11.1.9 Alias Identification 467
11.1.10 Authorization 468
11.1.11 Configuration Management 478
11.1.12 Change and Work Management 502
11.1.13 Process Planning 512
11.1.14 Multi Language Support 520

PLM Adopted Specification

Vi

11.2 XML Schema for PLM Services 521

PLM Adopted Specification

1 Scope

This specification defines a Platform Independent Model (PIM) for Product Lifecycle Management Services. Its
informational model is derived from the SO 10303-214 STEP model by an EXPRESS-X mapping specification and a
EXPRESS-to-XMI mapping process. The functiona model is derived from the OMG PDM Enablers V1.3 and to fulfill
requirements of the PLM Services 1.0 RFP.

The specification defines a Platform Specific Model (PSM) applicable to the Web Services implementation defined by a
WSDL specification, with a SOAP Binding, and a XML Schema specification.

2 Conformance

An implementation compliant to the XML Schema and Web Services PSM described in this specification shall be capable
to deliver and to consume valid XML documents with respect to the XML Schema defined in Chapter 9.3

An implementation compliant to the XML Schema and Web Services PSM described in this specification shall support at
least one of the Queries Conformance Points defined below.

A Queries Conformance Point consists of a set of specializations of the type Quer y. This specification defines four
Queries Conformance Points:

 the Generic Queries Conformance Point (see Chapter 8.12),
 the XPath Queries Conformance Point (see Chapter 8.13),

« the Specific Queries Conformance Point (see Chapter 8.14), and
» the PDTnet Queries Conformance Point (see Chapter 8.15).

An implementation shall define the Queries Conformance Points it is realizing.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

e UML Specification

o XMI Specification

e MOF 2.0 Specification

e IS0 10303-11:1994 Description methods: The EXPRESS language reference manual

e 1S0 10303-14:2001 Description methods: The EXPRESS-X language reference manual

PLM Adopted Specification 1

e SO CD 10303-25:2003 | mplementation methods: EXPRESS to UML mapping
e 1SO TS 10303-28:2002 XML representation for EXPRESS-driven data

* 1S0O 10303-203:2000 Configuration-controlled mechanical design

e SO 10303-214:2000 Core data for automotive mechanical design process

e 1S0 10303-232:2001 Technical Data Package

* |ISO/IEC 10746: Reference Model for Object Distributed Computing (RM/ODP)

4 Terms and Definitions

None.

5 Symbols

None.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification completely replaces the PDM Enablers Version 1.3. It is recommended that “PDM Enablers Version
1.3" is retired as an adopted technology because of lack of vendor and user interest.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

« BMWAG

2 PLM Adopted Specification

* Robert Bosch GmbH

o DaimlerChrysler AG

e Keiper GmbH & Co. KG

e PDTec GmbH

e PROSTEPAG

* ScaniaAB

e T-Systems International GmbH

e Volkswagen AG

e Zentrum fur Graphische Datenverarbeitung e.V.

» 88solutions Corp.

PLM Adopted Specification

PLM Adopted Specification

/7 Informational Viewpoint

7.1 Overview

The Information Model of the proposed PLM Service is based on the STEP PDM Schema [2] and extended by relevant
subsets of STEP 1SO 10303-214:2000 [8], especialy the Configuration Management modelling parts according to CC8.

The selected scope of the Information Model is chosen based on the requirement analysis in the PDTnet project [1]. The
use cases identified in this industrial project of European automotive companies are given in brief in Chapter 7.2. The
chosen data model is derived from the STEP PDM Schema and the relevant subset of STEP 1SO 10303-214:2000. The
scope of both contributing sources is described shortly in Chapter 7.3. Both sources share a common AIM level
representation for PLM related data models. The chosen data model itself is notated at ARM level according to the STEP
nomenclature in EXPRESS language. It defines the scope of the so-called “Equivalence model” and denotes a Platform
Independent Model (PIM). The PIM Equivalence model is described in Chapter 7.5. The transformation from the AIM
representation into that PIM Equivalence model is described in Chapter 7.4. The mapping specification is formulated in
EXPRESS-X (1SO 10303-14, [4]). The relationship of both the AIM and ARM EXPRESS models becomes tractable,
executable, and normative.

The objectives for the PIM Equivalence model are twofold:
- To produce the desired reference model suitable for the mapping on to Web services.
- To produce the desired reference model suitable for the mapping on to CORBA PDM Enablers.

The PIM Equivalence model is mapped by STEP SO 10303-25:2003 into an UML notation. This mapping is described
in Chapter 7.6. The resulting UML model represents the PLM reference model in the informational viewpoint and is
described in Chapter 7.7. The model is specified in UML 1.3.

7.2 Use cases

This section describes the uses cases that are subject to the PLM services specification. They are categorized according to
the requirement analysis resulting from the PDTnet project [1]. They are documented in this section, and may be extended
continuously.

The scope of the use cases is defined supporting an online PLM integration scenario which is characterized by a data
access on remote systems using internet functionality and technology. This integration does not provide a real online
integration, but due to the usage of data streaming techniques and due to the possibility of an immediate reply by a system
it comes near to it. It is assumed, that a neutral PLM client provides access to different PLM data providers (these are
usually different PLM systems in different companies).

7.2.1 Export of assembly data

Export of product data (meta data and geometry) of assemblies and parts from one partner to another partner via exchange
of ENGDAT packages (STEP PDM files, CAD files).

7.2.1.1 Owner of the use case

This use case was defined by Work Group 1 of the PDTnet project.

PLM Adopted Specification 5

7.2.1.2 Process purpose

Export of product data which consist of meta data and geometry information of assemblies and its components from one
partner to another partner via exchange of ENGDAT formatted packages. The ENGDAT message contains the STEP PDM

files and (optionally) the CAD

files, in native or neutral format.

7.2.1.3 Partner role descriptions

Table 1 - Roles for export of assembly data

Role name

Role description

Roletype

User

Party, that selects and processes product data to be exported.

Person

PLM System

Party, that provides the relevant product data and functionality for
product data management. Thisis usually a company's PLM
system, which also can be extended by atool, that provides
extended STEP processor functionality.

System

Data Exchange (DE) Tool

System, that provides communication with a network and
functionality to automatically process and pack/unpack file
packages (usually ENGDAT-based).

System

7.2.1.4 Process definition

The process steps are:

1. User selects parts/docu

« Selection of root/top

ments/CAD models (using the functionality of the PLM system):

level assembly by assembly (version) number

* Selection of affected sub-assemblies or parts (could be controlled by a context or specific algorithm)

« Exclusion of elements from selected set is possible

2. PLM system generates

STEP PDM file:

« Passing assembly structure tree and collecting transformation matrices (if appropriate)
 Generating STEP PDM file

3. User selects addressee

of data (using the DE tool or PLM tool)

4. Download of digital files from PLM system

5. DE Tool generates ENGDAT package including message abstract, STEP PDM file(s) and digital files (CAD/CC2

files, etc.)

6. DE Tool initiates sendi

ng of ENGDAT message

The order of the process steps could differ depending on specific user requirements and system scenario. Examples for
possible alternative process step orders are:

a:1.®3.®4®2.®5 ® 6.

b:3®1.®2 ®4 ®5 ®6.

PLM Adopted Specification

7.2.1.5 Process flow diagram
At the moment no flow diagram exists.
7.2.1.6 Process start and end states

Start state / precondition:

The user knows the assembly/part identifiers and digital file (CAD model) identifiers which are supposed to be exported.
At least, the identifier of an assembly, which serves as an entry node, is provided. Additionally, a specific “context
handle” is known (project, change status, work order, etc.) is known.

Alternative a): Depending on the user environment also a top-level document 1D can be the entry node to a structure.

Alternative b): A top-level part and a specific configuration, which controls the way of the expansion of the tree (sub-
parts, kind of documents,...), is known.

End state / post condition E1 (Success):
An ENGDAT package including the STEP PDM file and all selected digital files were successfully sent to the addressee.
End state / post condition E2 (Failure):
DE Tool delivers failure notification/report to user. The reasons can be:
» The STEP processor failed.
» The download of filesfrom the PLM system failed.
- The DE Tool failed.

7.2.1.7 Constraints and assertions

Currently the number of STEP files included in one ENGDAT package is recommended to be restricted to one (VDA).
Nevertheless, the intention is to allow more than one STEP file per ENGDAT message. See: Topics under discussion.

7.2.1.8 Relevant data

Documents/digital files (CAD files)
- Document meta data
» Assembly/part master data

» Assembly structure data (including transformation data)
7.2.1.9 Topics under discussion / Remarks

Currently no engineering change information is included in the STEP PDM file.

Should more than one STEP file be allowed in an ENGDAT message?

PLM Adopted Specification 7

7.2.2 Import of assembly data

Import of product data (meta data and geometry) of assemblies and parts from one partner to another via exchange of
ENGDAT packages (STEP PDM files, CAD files).

7.2.2.1 Owner of the use case

This use case was defined by Work Group 1 of the PDTnet project.

7.2.2.2 Process purpose

Import of product data which consist of meta data and geometry information of assemblies and its components from one
partner to another partner via exchange of ENGDAT formatted packages. The ENGDAT message contains the STEP PDM

files and (optionally) the CAD files, in native or neutral format.

7.2.2.3 Partner role descriptions

Table 2 - Roles for import of assembly data

Role name Role description Roletype
User Party, that processes product data that has been imported. Person
PLM System Party, that providestherelevant product data and functionality | System

for product data management. Thisisusually a company's
PLM system, which also can be extended by atool, that
provides extended STEP processor functionality.

Data Exchange (DE) Tool | System, that provides communication with a network and System
functionality to automatically process and pack/unpack file
packages (usually ENGDAT-based).

7.2.2.4 Process definition

The process steps are:
1. TheDE tool receives an ENGDAT package.
2. The DE tool unpacks the ENGDAT package and stores STEP PDM and CAD filesin defined directories (routing).

3. ThePLM system evaluates the received STEP PDM file and displays the included data (assembly data, part data,
CAD file meta data) and, optionally, generates an analysis report (comparison of existing data and data to be
imported). This step can be initiated by the user or by the DE tool (if it is appropriately integrated). ® see Topics
under discussion

4. The user manually processes the data and integrates it into the database of the PLM system or, aternatively, no man-
ud interaction is done. ® see Topics under discussion

The DE tool can notify the user of the import process in different ways, e.g. via e-Mail, via PLM system message, a.s.0.
7.2.2.5 Process flow diagram

At the moment no flow diagram exists.

8 PLM Adopted Specification

7.2.2.6 Process start and end states

Start state / precondition:

- An ENGDAT package including a STEP PDM file and one or more digital files (CAD files,...) has been received suc-
cessfully. This means:

- The ENGDAT message contains the expected correct data.
» Noinconsistencies between STEP file and references to digital files exist. ® see Topics under discussion
» User selected the mode for import (update, create, etc.)
End state / post condition E1 (Success):
The received PDM data has been successfully integrated in the PLM systems' database.
The received CAD files have been successfully stored in the defined storage areas.
Partial incorporation of data in the PLM system, if the user allowed it.
End state / post condition E2 (Failure):
The process results in a failure message. A failure can occur due to the following reasons:
» The ENGDAT message contains errors and can not be processed correctly.

» The STEP PDM file contains errors and can not be processed correctly (syntactically, semanticaly, e.g. STEP PDM
Schema, etc.).

- Theloading process into the PLM system caused errors.
7.2.2.7 Constraints and assertions
At the moment none are defined.

7.2.2.8 Relevant data

Documents/digital files (CAD files)
- Document meta data
» Assembly/part master data

» Assembly structure data (including transformation data)
7.2.2.9 Topics under discussion

» Who or which system checks, whether the STEP file and the references to digital filesincluded in an ENGDAT mes-
sage are consistent? Definition of a separate use case?

» On supplier's side: How to handle product/document meta data, that is not managed by the own PLM system (or no
PLM system exists) but that has to be re-exported to the OEM ?

» Export of version/status information for re-exported assemblies/parts could be discussed. At the moment no version/
status information is used.

PLM Adopted Specification

» The CATIA model name must not be changed by the supplier.

» On supplier'sside: How to associate product data identified by OEM identifiers to product datain the own PLM sys-
tem?

» Onsupplier'sside: How to manage different assembly structures?
7.2.3 Authentication/Start-Up of session
This process allows a user to be authenticated via a PLM client by one or more PLM server(s).
7.2.3.1 Owner of the use case
This use case was defined by the Work Group 2 of the PDTnet project.
7.2.3.2 Process purpose
This process allows a user to be authenticated via the PLM client by one or more PLM server(s).

7.2.3.3 Partner role descriptions

Table 3 - Roles for authentication and start-up of session

Role name Role description Roletype

User Party, that wishesto log in aremote PLM server. Thiscould | Person/ System
be a person, who interacts with the PLM client, or a system,
that triggersthe PLM client.

PLM client System, that provides the communication between user and | System
PLM server
PLM server System, that providestherelevant PLM data. Thisisusually a | System

company's PLM system that acts as a server.

7.2.3.4 Process definition

This use case includes the initiation of the connection between PLM client and PLM server, the authentication and
personalization of the user. This use case usually initiates all following communication and data transfer between a user,
using the PLM client, and a PLM server (also caled “site”).

Two dternative authentication processes are possible, which can also be combined:
1. Thefirst attempt to access aremote PLM server will automatically start the authentication process.
2. Theuser explicitly starts alogin procedure to authenticate in one or more PLM server(s) in the beginning of a session.

The following accesses to specific PDM data will be validated within the use case “Authorization.”
7.2.3.5 Process flow diagram

At the moment no flow diagram exists.

10 PLM Adopted Specification

7.2.3.6 Process start and end states

Start state S1:
» The user owns a user name and a password valid for a certain PLM server (site).
- The client provides the necessary site information for the network connection.
» Theuser knows avalid development project to be authorized to access product data on the PLM server.
» The PLM server provides an authentication service based on user, password and session.
End state E1 (Success):
» The user is successfully logged in and, optionally, the PLM server returns asession id.
End state E2 (Failure):
» The processresultsin afailure message. A failure can occur due to the following reasons:
» Theuser isnot allowed to access the PLM server (return message: “Permission denied”).

« The PLM server itself is not available.

7.2.3.7 Constraints and assertions

A development project defines a project in which persons work together on a certain set of product data. A development

project can be a car/vehicle project, a module development project, etc.

7.2.3.8 Relevant data

User name, password, development project, site information (PLM server system), optional: session id.
7.2.4 Authorization

This process validates the access rights of a specific user (designer, group, department, company) to access specific
product data on a PLM server.

7.2.4.1 Owner of the use case
This use case was defined by the Work Group 1 of the PDTnet project.
7.2.4.2 Process purpose

This process validates the access rights of a specific user (designer, group, department, company) to access specific
product data on a PLM server.

PLM Adopted Specification

11

7.2.4.3 Partner role descriptions

Table 4 -Roles for authorization

Role name Role description Roletype

User Party, that wishes to access PDM data on aremote PLM server. Person / System
This could be a person, who interacts with the PLM client, or a
system, that triggers the PLM client.

PLM client System, that provides the communication between user and PLM | System
server
PLM server System, that provides the relevant PDM data. Thisisusually a System

company's PLM system that acts as a server.

7.2.4.4 Process definition

This use case describes the authorization process of a user who attempts to request specific product data on a PLM server.
It isused by all other use cases (e.g., when extracting product structure trees). The actual process description is dependent
on the authorization mechanisms provided by the PLM server.

7.2.4.5 Process flow diagram
At the moment no flow diagram exists.
7.2.4.6 Process start and end states

Start state S1:
A previous authentication process was successful (e.g. by given session id).

» ThePLM server provides an authorization service based on user, password and session related to specific product data
elements. Additionally, the association of product data elements to a development project has to be supported.

» Specific product data that is requested by a user.
End state E1 (Success):

» Theuser isidentified to have the appropriate rights to access the requested product data. The calling processis enabled
to provide the product data to the user.

End state E2 (Failure):
» Theprocessresultsin afailure message. A failure can occur due to the following reason:

» Theuser isnot allowed to access the requested product data. Sinceit could be in-tended to keep the existence of the
requested data completely secret, the user should not get the information “Access denied.” Instead, he should get afail-
ure message like “ Data not found.”

12 PLM Adopted Specification

7.2.4.7 Constraints and assertions
The PLM server provides an authorization service based on user, password and session related to specific product data
elements. Additionally, the association of product data elements to a development project has to be supported. The

detailed mechanisms of authorizing specific users to access specific product data elements depend on the PLM server's
internal authorization features and company-specific customizing.

Specific assertions:
» The PLM server manages the association of user/development project to a specific server-interna role concept.
« Thegeneral role “owner” is provided having all rights for the owned data objects

» Defined accessrightsto all other (not owned) data objects are: View, Download, Write, Create
7.2.4.8 Relevant data

User name, password, development project, optional: session id

» Requested product data
7.2.4.9 Topics under discussion
The topic “Authorization and Network Security” is under discussion and will be documented in a separate specification.
7.2.5 Start node identification
Identify the start node of a product structure to enable browsing in the product structure.
7.2.5.1 Owner of the use case
This use case was defined by the Work Group 2 of the PDTnet project.
7.2.5.2 Process purpose

Identify the start node of a product structure to enable browsing in the product structure.

PLM Adopted Specification 13

7.2.5.3 Partner role descriptions

Table 5 - Roles for start node identification

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who Person / System
interacts with the PLM client, or a system, that triggers the PLM
client.
PLM client System, that provides the communication between user and PLM | System
server
PLM server System, that provides the relevant PDM data. Thisisusually a System
company's PLM system that acts as a server.

7.2.5.4 Process definition

This use case defines the process of identifying the start node of a product structurein aPLM server. The end state / post
condition of the use case is the precondition for the start of the use cases “Browsing down/up product structure data’.

The process steps are:
1. User enters|D (part number and optionally part version number) or Wild Card ("*" for "all").
2. PLM client submits search request ® Exception: The PLM server does not respond.

3. PLM server receives ID or Wildcard and triggers search in PLM system ® Exception: The connection between PLM
client and PLM server is down.

4. PLM system executes query in its database ® Exceptions: Database is not available, no data found, user is not autho-
rized to access the data, etc.

5. PLM server returns start node and list of views.

6. PLM client displays list of start nodes.
7.2.5.5 Process flow diagram
At the moment no flow diagram exists.
7.2.5.6 Process start and end states

Start state / precondition S1:

The user is correctly logged in, connected to the server, positively identified and authorized.
- Theserviceisavailable.
» Theuser enters an ID ("Sachnummer" etc.) or wildcard for the structure start node.

End state / post condition E1 (Success):
« List of product structure nodes including their possible views/ configurations

End state / post condition E2 (Failure):

14 PLM Adopted Specification

« In case of missing authorization: Exception, message: "No items found or access denied.”
7.2.5.7 Constraints and assertions
At the moment none are defined.
7.2.5.8 Relevant data
 Product structure data
7.2.5.9 Topics under discussion

The user should be able to enter either internal or external part master ids ("Alias-Query").

7.2.6 Browsing down product structure data

This process allows a user starting with the product structure to get a view on all product structure relevant data including
document (structure) data that is relevant for this specific user or a specific project, independently of the provider of the
data.

7.2.6.1 Owner of the use case

This use case was defined by the Work Group 2 of the PDTnet project.

7.2.6.2 Process purpose

This process allows a user starting with the product structure to get a view on all product structure relevant data including
document (structure) data that is relevant for this specific user or a specific project, independently of the provider of the

data.

7.2.6.3 Partner role descriptions

Table 6 -Roles for browsing down product structure data

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who Person / System
interacts with the PLM client, or a system, that triggers the PLM
client.
PLM client System, that provides the communication between user and PLM | System
server
PLM server System, that provides the relevant PDM data. Thisisusually a System
company's PLM system that acts as a server.

7.2.6.4 Process definition

This use case includes the browsing of product structure data down a product structure, ba-sic part classification data and
associated document meta data. For browsing up a product structure ("where used" query), a separate use case is defined.

The following requirements are defined:

PLM Adopted Specification 15

Multiple views on the product structure have to be supported, e.g. lead view, supplier's assembly structure, spare part
structure, second tier supplier's view, etc.

» Therelationship between different base classification data has to be handled (customer's and supplier's data).

- The assignment of structure and classification data to documents has to be consistent and browsing documents must
result always in displaying identical information.

» Theuser defines aset of parameters (filter information), that specifies characteristics of the desired structure nodes in
detail. Filtering the data will be defined as a separate use case “PLM filter”.

» Browsingin different PLM server systems has to be supported. This means, the change of a server site has to be possi-
ble (“Multi-site support”) when the user selects a structure node, which links to a supplied item provided by another
PLM server. This enables the user to browse into a sub-structure of the development partner (e.g. OEM user browses
into sub-structure of supplier or vice versa) and to see the information consistently in one single structure tree. The con-
cept for this mechanism is the following:

« Reference tables connecting the OEM part identifiersto the supplier part identifiers (“alias identifiers’) are
managed by the PLM servers, containing for each exchange node:

e Own part id (item_version to be supported)
e Corresponding alias id on PLM server of partner
* Unique identifier for partner PLM server site: harmonized organization 1D (e.g., “bmw.de”).

» An additional reference table for the association of organizationid and URL (server site connection) is provided on the
PLM client site.

The process steps are:

1. PLM client sends a query for substructure specified by the user to the PLM server

a. Incase of the structure node being a“ supplied item”, i.e., the selected structure node represents an alias identifier:
o- Client retrieves alias site connection information (URL) from reference table.
«- Client asks user for password for alias site (only in case of first request to this site).
«- Client performs Login, Start node query on alias server site using current development project.

Steps repeated by PLM server for each product structure node in the scope of the query:
2. Check authorization regarding requested data ® Exception: Access denied (PLM server).
3. Caoallect requested data within PLM server.

End of repeated steps.
4. PLM server sends datato PLM client.

5. Display structure and itemsin PLM client.

16 PLM Adopted Specification

7.2.6.5 Process flow diagram.

User @

Query

PDM Web Client sub-structure @ E2
and items

Check
authorization
regarding
requested data

Collect Send Send

Yes requested data ra failure
message

No 1

uthorization

successful?
PDM Server

Figure 1 - Process flow diagram for browsing down product structure data
7.2.6.6 Process start and end states

Start state / precondition S1:

- A specific development project is defined, which itself defines certain items of product data (e.g. assemblies, parts, doc-
uments), that will be subject to change or creation during the project's life time. These items are identified by identifi-
ers.

- Theend state/ post condition of use case “ Start node identification” or one of the children of the start node.
» The user is correctly logged in and authorized to access the requested information.
» Thelevel of depth down the start node / current node is defined (default: 1 level down the current node).
» The necessary filter information is defined, i.e., the result of the use case “PDM filter” is provided.
End state / post condition E1 (Success):

» Theprocessresultsin afiltered list or astructure tree containing at least the identifiers of product data items, and addi-
tional information about the items (e.g. URL s to documents or additional item information to be downloaded).

End state / post condition E2 (Failure):
» Theprocessresultsin afailure message. A failure can occur due to the following reasons:
» Theuser is not authorized to access the data.

- Thereguested data is not available on the PLM server.
7.2.6.7 Constraints and assertions

If process step 2 leads to an exception regarding a specific structure node, the whole process must continue. The structure
node affected by the exception is not included in the collected data set.

PLM Adopted Specification 17

7.2.6.8 Relevant data

Product structure data

7.2.7

- Basic part classification data

« Document meta data

Browsing up product structure data

This process allows a user starting with the product structure to get a view on al product structure relevant data including
document (structure) data that is relevant for this specific user or a specific project, independently of the provider of the
data.

7.2.7.1 Owner of the use case

This use case was defined by the Work Group 1 of the PDTnet project.

7.2.7.2 Process purpose

This process allows a user starting with a specific product structure node to get a view on all relevant product structure
nodes in which this specific node is included (“Where used” query). For browsing down a product structure, a separate
use case is defined.

7.2.7.3 Partner role descriptions

Table 7 -Roles for browsing up product structure data

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggers the
PLM client.
PLM client System, that provides the communication between user and System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually a | System
company's PLM system that acts as a server.

7.2.7.4 Process definition

This use case includes the browsing of product structure data up a product structure (“where used” query).

The following requirements are defined

Multiple views on the product structure have to be supported, e.g. lead view, supplier's assembly structure, spare part
structure, second tier supplier's view, etc.

» Theuser defines aset of parameters (filter information), that specifies characteristics of the desired structure nodes in

detail.

The process steps are:

18

PLM Adopted Specification

1. PLM client sends aquery for “where used” nodes specified by the user to the PLM server
Steps repeated by PLM server for each product structure node in the scope of the query:
2. Check authorization regarding requested data® Exception: Access denied (PLM server)
3. Collect requested datawithin PLM server
End of repeated steps.
4. PLM server sendsdatato PLM client

5. Display structure and itemsin PLM client. The way of presentation and needed interaction have to be defined by the
application projects.

7.2.7.5 Process flow diagram
At the moment no flow diagram exists.
7.2.7.6 Process start and end states

Start state / precondition S1:

A specific engineering development project is defined, which itself defines certain items of product data (e.g. assemblies,
parts, documents), that will be subject to change or creation during the project's life time. These items are identified by
identifiers.

- The end state / post condition of use case “ Start node identification” or one of the children of the start node, that means
item or item_version. Item_version is optionally in order to enable the access of versioning information starting from
the part number. Additionally, the single_instance can be identified (maybe by user interaction). Thisis“nice to have”
in general, but required as precondition for a*“ Search in design space” functionality.

» The user is correctly logged in and authorized to access the requested information.

- Thelevel of depth up the start node / current node is defined and restricted to direct parent or root node (default: direct
parent node).

The necessary filter information is defined, i.e., the result of the use case “PLM filter” is provided.
End state / post condition E1 (Success):

» Theprocessresultsin afiltered list or astructure tree containing only identifiers of product data items (root nodes or
direct parent nodes). Only structure nodes which the user is authorized to see are included.

End state / post condition E2 (Failure):
» Theprocessresultsin afailure message. A failure can occur due to the following reasons:
» Theuser is not authorized to access the data.

- Thereguested data is not available on the PLM server.
7.2.7.7 Constraints and assertions

Whenever the PLM System is providing a single_instance concept, the start node used may be the single_instance. If the
single_instance is used, there is no necessity for repeating process steps 2 and 3. This statement needs to be evaluated!

PLM Adopted Specification 19

- Thelevel of depth up the start node / current node is defined and restricted to direct parent or root node (default: direct
parent node).

» Exactly one root node exists for one development project.
» Need of unique filter, that displays the root node only once.

» Within the Client GUI the change to one of the resulting development project (in case of aresult list containing root
nodes) should be possible.

7.2.7.8 Relevant data
« Product structure data
7.2.8 Download of product data
7.2.8.1 Owner of the use case
This use case was defined by the Work Group 1 of the PDTnet project.
7.2.8.2 Process purpose

This use case has to be described under consideration of two main criteria:

What product data is to be downloaded?
» Download of asingle digital file: either geometry (CATIA, STEP) or other binary formats (e.g. TIFF)
» Download of aset of digitd files
* Download of structures including optionally digital files
» Download of product meta data of a (structure) node
How is the product data to be downloaded?
« Using online download: viaHTTP, only for available documents - no conversion functionality provided

« Using offline download (e.g. via OFTP)

Due to this distinctions the use case “Download of product data” is divided into two use cases, which are described in the
following sections 7.2.9 and 7.2.10.

7.2.9 Download meta data including structures

This use case allows the user to identify meta data including structures that he wants to store in alocal file system, or that
he wants to import into an own PLM system. The format of the transferred data differs:

Online download: The data is transmitted as an data stream (e.g. SOAP message response for web services based
implementation). File representations are not supported in this case.

Offline download: The datais sent as an file within the download package. It can be a STEP AP214 Part21, which is
specified in the server configuration and considers requirements at target side.

20 PLM Adopted Specification

If the detail level covers digital documents the download of these files will be initiated. The download of existing Part 21

files is not covered by this use case either. For this, see use case “Download of a single digital file’. If the data is sent
offline, the files may be added to the download package, which is specified in the server configuration and considers
requirements at target side.

This functionality covers the access of multiple PLM server Interfaces. For this, two possibilities exist:
1. Theuser has access to the PDM data of hisdirect (!) partners. Thisis covered by the use cases.

2. All other alternate possibilities are managed by the PLM server interface (e.g. datain a 2nd-tier supplier's PLM sys-
tem).

7.2.9.1 Partner role descriptions

Table 8 - Roles for downloading meta data including structures

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who Person / System
interactswith the PLM client, or a system, that triggersthe PLM
client.
PLM client System, that provides the communication between user and System
PLM server.
PLM server System, that provides the relevant PDM data. Thisisusually a | System
company's PLM system that acts as a server.

7.2.9.2 Non-functional requirements

The following requirements with respect to the design of the PLM client GUI are defined:

» Theleve of detail (“configuration”) can be defined depending on the application project. The technology for defining
this configuration is not defined yet.

» Theapprova status of the relevant data has to be managed by the PLM server interface via authentication and authori-
zation use cases.

» Theuser is not able to exclude single objects that belong to the tree defined by the start node.

« An additional use caseis needed: “PLM Filter”. This use case enables the user to define some special properties that
restrict the following amount of managed data.

7.2.9.3 Process definition

The standard process consists of the following steps (the steps directly refer to elements of the user interface of the PLM
client):

1. Using the context menu (“right mouse click™) for starting the use case. The user may use thismenu only for items and
documents in order to be STEP compliant in any cases.

2. By identifying the menu button “download of metadata’ a submenu appearsthat provides all available levels of detail
(called “configurations”): download of part master data, download of part and document master data, etc.

3. Theuser identifies the wished level of detail using the submenu.

PLM Adopted Specification 21

4. If the user defined to download structure information the next submenu appears: “Level of structure depth”.

5. Intheright frame alist of items appears that were defined for the download process. The user is able to use a scroll
bar for browsing through the list.

Optionally: If the download information was not aready received by the client the following steps will be performed:
5a. Theclient is calling the PLM server using a specified query.

5b.. The server generates the product data and sends the resulting data stream to the client interface.

Mandatory:
6. The User startsthe download by choosing the Online or Offline Download entry in the right click menu.
7. Online Download:
8. ThePLM client sends a query to the PLM server.
9. ThePLM server sends the requested data as a data stream to the PLM client.
10. The client takes the data stream and:
10a..calls the “Upload Query” to the second PLM system or
10b. writes an datafile.
Offline Download (see also “Initiation of an Offline Download”):

11. The PLM client sends aquery to PLM server interface or to theinvolved EDI-Tool ® In-put to use case “ Initiation of
an Offline Download”.

12. A Client notification is created by the EDI-Tool.
7.2.9.4 Process flow diagram
At the moment no flow diagram exists.
7.2.9.5 Process start and end states

Start state S1.:
 Successful results of Authorization and Browsing use cases.

End state E1 (Success):
- Offline Download: A notification of an additional exchange process is provided (e.g. “ Off-line transfer is running”).
» Online Download: A notification for the User, if the download is finished (with success or not).

» The selected metadataincluding structuresis stored in adatafile on alocal computer (file system), or generated as data
stream as input for the Upload use case.

End state E2 (Failure):

» Theprocessresultsin afailure message. A failure can occur due to the following reasons:

22 PLM Adopted Specification

» The user is not authorized to access the PLM server.

« ThePLM server interface detected a problem.

» Theuser is not authorized to download the requested data.
» The PLM server itself is not available.

- Offline Download: Triggering the EDI-Tool failed.

» Online Download: Not sufficient disc space for storing the file.
7.2.9.6 Relevant data

 All product data (part master, document master etc.)
2.2.9.7. Topics under discussion / Remarks

» Thisdownload use case ends by creating adatafile or adata stream. This data can be re-used by Upload Use Cases.

« Definition of “configurations’: Should they be based on transformation rules?
7.2.10 Download a single digital file
This process allows a user to download a single specific digital file (geometry file, TIFF, etc.) from aremote PLM server
to alocal storage. The download also includes the viewing of digital files, as far as a viewing tool is automatically started

on the user side after the download process has finished. This process is called “simple viewing”.

7.2.10.1 Partner role descriptions

Table 9 - Roles for downloading a single digital file

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who Person / System
interactswith the PLM client, or asystem, that triggersthe PLM
client.
PLM client System, that provides the communication between user and System
PLM server.
PLM server System, that provides the relevant PDM data. Thisisusually a | System
company's PLM system that acts as a server.

7.2.10.2 Process definition

This use case includes the identification of a single digital file to be downloaded, the start, the monitoring of the progress
and the check of the success of the data transport from a PLM server to alocal storage.

The process steps are as follows:
1. Theuser identifies the digital file to be downloaded from the PLM server.
2. The User starts the download by choosing the Online or Offline Download entry in the right click menu.

Online Download:

PLM Adopted Specification 23

3. ThePLM client sends a query to the PLM server.
4. ThePLM server sendsthe requested digital file datato the PLM client.

5. ThePLM client receives the digital file and displays it directly, opens an external application to display it or let the
user storeitin the local file system.

6. A notification is sent to the User (in case of success and in case of failure).
Offline Download (see also “Initiation of an Offline Download”):

7. ThePLM client sendsaquery to PLM server interface or to the involved EDI-Tool ® In-put to use case “ Initiation of
an Offline Download”.

8. For thefile export from the PDM Vault a copy of the document should be created, no file locking mechanism (for par-
allel use by other users) should be implemented. The export could be triggered by the PLM server or by the EDI-Tool.

9. A Client notification is created by the EDI-Tool.
7.2.10.3 Process flow diagram
At the moment no flow diagram exists.
7.2.10.4 Process start and end states

Start state S1.:
» The user has been successfully authenticated.
» Theuser is authorized to know that the digital file exists.
» Theuser has got alist or a structure tree containing at least the identifier of the digital file and an appropriate URL .
- Thekind of the access (viewing, changing) is specified. Currently only viewing functionality is considered.

» Thefinal trigger is the selection in the context sensitive menu (“ Download selected file online/offline”) that belongs to
aselected single digital file.

End state E1 (Success):

- Offline Download: A notification of an additional exchange processis provided (e.g. “ Offline transfer isrunning”).

» Online Download: A notification for the User, if the download is finished (with success or not).

» Thedigital file, that has been specified by the user for download, is opened and displayed or stored on the local storage.
End state E2 (Failure):

» The processresultsin afailure message. A failure can occur due to the following reasons:

» The user is not authorized to accessthe PLM server.

« Theuser isnot authorized to download the digital file.

- The reguested digital file is not available on the PLM server.

« The PLM server itself isnot available.

24 PLM Adopted Specification

- Offline Download: Triggering the EDI-Tool failed.
» Export (checkout) functionality failed (digital file doesn't exist, the fileis aready used by an other user).

» Online Download: Not sufficient disc space for storing the files.
7.2.10.5 Constraints and assertions

» The downloaded file is always not compressed if it is sent online. Then the file can be opened directly and maybe
viewed using a client plug in or an externa application. Compression isonly allowed if an offline transfer process
implies a package mechanism

» Thefile name is generated by server/system specific rules.
7.2.10.6 Relevant data

« Document meta data

» Document data (digital file)
7.2.11 Generic object query

This use case alows a user to genericaly access objects (e.g. items, documents) as result of a specified filter condition.
Feasible filter parameters and the functionality for the collection and provision of these objects have to be provided by the
PLM server. Therefore, this generic use case can be specialized to further detailed use cases. Examples for detailed use
cases are:

» Find all parts contained in a design space by providing bounding box parameters.
 Find heat sensitive parts by providing temperature parameters.
7.2.11.1 Owner of the use case
This use case was defined by the Work Group 2 of the PDTnet project.
7.2.11.2 Process purpose
This use case allows a user to genericaly access objects (items, documents) as result of a specified filter condition.
Feasible filter parameters and the functionality for the collection and provision of these objects have to be provided by the

PLM server. Therefore, this generic use case can be specialized to further detailed use cases. Examples for detailed use
cases are:

» Find all parts contained in a design space by providing bounding box parameters.

 Find heat sensitive parts by providing temperature parameters.

PLM Adopted Specification 25

7.2.11.3 Partner role descriptions

Table 10 - Roles for generic object query

Role name Role description Roletype
User Party, that wishes to request information This could be a Person / System
person, who interacts with the PLM client, or a system, that
triggersthe PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that provides the relevant PDM data. Thisisusualy | System
acompany's PLM system that acts as a server.

7.2.11.4 Process definition

The process steps are:

1. User chooses the intended (and provided) functionality (specialized query).

2. User defines a development project or uses the existing one.

3. PLM client displaysthe parameter names, that have to be provided to filter out the correct datawithin the PLM server,
according to the chosen functionality (see 1.).

4. User provides required parameter val ues (objects properties, bounding box information, etc.) and initiates query to
PLM server interface (single PLM Interface).

5. PLM System is processing the query that resultsin an object list.

6. Object list is displayed within the PLM client.

7.2.11.5 Process flow diagram

The main mechanism for “Generic object query” is shown in the following diagram. For more details see the specialized
use cases.

26

PLM Adopted Specification

User PLM Web Client PLM Server

Display provided
query functions
(submitted by PDM
server at start-up of
session) for currently
selected data object

Choose intended
query function

Display required filter

parameters for

chosen query
function

|

Provide parameter
values and initiate Submit query Process query using
internal functionality

query function, parameters
and values and provide result list

Display result list

Figure 2 - Process flow diagram for generic object query
7.2.11.6 Process start and end states

Start state S1:
The authentication and authorization of the user was successful.

« A valid development project is existing.
» Theavailable specialized types of object queriesrelated to specific objects have been previously submitted by the PLM

server (see use case “ Start-up of session”).

End state E1 (Success):
 List of objects that were requested according to the specialized query and filter parameters. Example for specialized

query “Search in design space”: All parts contained in the defined design space as alist of items.
End state E2 (Failure):
» Theprocessresultsin afailure message. A failure can occur due to the following reasons:

* No development project defined.
 The user is not authorized to access the data (see also use case “Authorization”).

* The requested data is not available on the PLM server.

« -Functionality is not supported for this object type.
27

PLM Adopted Specification

7.2.11.7 Constraints and assertions

Only one single PLM server is accessed. A generic object query that is sent simultaneously to more than one PLM server
is not supported.

7.2.11.8 Relevant data

Product structure data

- Basic part classification data

« Document meta data

« Document data

7.2.11.9 Diagrams

UML diagrams are provided for the specialized use cases.

7.2.12 Search in design space

This use case is a specialization of the use case “ Generic object query”.

7.2.12.1 Process purpose

Purpose of the “Search in design space” process is to query all parts which are located in the neighborhood of a given

part. This use case alows a designer at the supplier site to search for parts which are positioned in a certain area around
a specified part. The calculation of the neighborhood relation of parts will be done by using the “bounding boxes” of the
parts. The user should be able to “blow up” the bounding box around a part in order to get al partsin a certain distance
of the given part.

7.2.12.2 Partner/actor role descriptions

Table 11 - Roles for search in design space

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggers the
PLM client.
PLM client System, that provides the communication between user and System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusualy a | System
company's PLM system that acts as a server.

7.2.12.3 Process definition

The process could be seen as a query in which the query parameters do not exist as discrete PDM data in the PLM system.
Actually, the criteria for the evaluation of the result set is the geometrical relation between the given part and all other
partsin a given assembly. For ex-ample, the designer has to modify the design of the oil pump of a car. He needs to know

28

PLM Adopted Specification

which parts are located near to the pump to be able to check whether the modified pump fits into the space left for this
device. With the search described here, he can find those parts easily. This use case would probably only be relevant for
the OEM side of the PDTnet project.

The following requirements are defined:

The parts found during the search are displayed in form of a*“virtual container” which contains all parts meeting the
design space criteria. The virtual container is an assembly which isonly created temporarily and which does not repre-
sentsany form of areal assembly. It isonly meant as a set of objects and therefore can be displayed as an assembly with
one and only one level.

It should be possible to combine different search criteria (search in design space, search by defining PDM data filters).
For example, all temperature sensitive partsin a certain distance of ahot part have to be found by the query.

In order to ensure the clearness of visualization, the formerly displayed structures should be made available by means
of a“Pull down list” or by “Tabs” which allow to go directly to the assigned structure display.

The resulting set of items should alow to perform adownload (online or offling) on certain items sel ectable by the user

The user should optionally be able to define an assembly (“ Start node”) in which the parts to find are contained. For
example, al parts in an combustion engine should be found.

Another option is to enter the depth of search, the levels of deepnessin an assembly.

PLM Adopted Specification 29

7.2.12.4 Process flow diagram

C

PDM Web PDM Web
Client Server

| . |
| Identify mot node |

|
|
Get next structure level |
|

)) Deliver items of level
Display nodesin structure

Select interesting part

Choose context method
"Search in design space"

Display query dialog

Opt.: Select assembly for result
set reduction ("start node")

Opt.: Define search depth

Enter additional query criteria

Y

L
Commit query dialog
Send query message
Build result set as
a virtual container
Return result set Zl

-4

L Display items found

Figure 3 - Process flow diagram for search in design space
7.2.12.5 Process start and end states

Start state / precondition S1:

A specific engineering project is defined, which itself defines certain items of product data (e.g. assemblies, parts,
documents), that will be subject to change or creation during the project's life time. These items are identified by
identifiers.

30 PLM Adopted Specification

- The end state / post condition of use case “ Start node identification” or one of the children of the start node, that means
an item

» Theuser is correctly logged in and authorized to access the requested information.
The necessary filter information is defined (see use case “Generic object query”).
End state / post condition E1 (Success):

» Theprocessresultsin avirtual container (see 2.2.12) containing all the accessible parts found during the query. The
number of parts found is displayed.

« Thevirtual container contains the transformation matrices of the partsin relation to the car origin

« If no parts or accessible parts were found, an empty virtual container is presented. The number of parts found is dis-
played, in thiscaseit is 0.

End state / post condition E2 (Failure):
» The processresultsin afailure message. A failure can occur due to the following reasons:

» The selected part contains no geometry. Therefore, there is no possibility to find any parts in the neighborhood of the
part. This should be reported by the message “Part contains no geometry.”

7.2.12.6 Constraints and assertions
» The selected part has to contain any geometry as a base for the query.
7.2.12.7 Relevant data

« Product structure data
7.2.13 Upload of product data

7.2.13.1 Process purpose

This use case alows a user to upload specific product data that was created or changed on a local storage to a remote
PLM server.

This use case corresponds mainly to use case “Download of product data”. Additionaly, it requires two functions:
« Identification of correct structure nodes for the integration of uploaded data.
- Creation/change of structures and/or structure nodes, if appropriate.

This functionality is closely related to the underlying access authorization concept. Due to the variety of PLM system-
specific access authorization architectures this topic is closely de-pending on the PLM system functionality and/or
company specific PLM system usage restrictions.

7.2.13.2 Owner of the use case

This use case was defined by the Work Group 2 of the PDTnet project.

PLM Adopted Specification 31

7.2.14 Upload a single digital file (simple user interaction)

7.2.14.1 Process purpose

This process allows a user to upload a single file which were created or changed on alocal storage to a remote PLM
server.

7.2.14.2 Process definition

This use case corresponds mainly to use case “Download of a single digital file” (see section 2.2.10). Additionally, it
reguires two functions:

Identification of the correct structure node for the integration of uploaded data.

« Creation/change of structures and/or structure nodes, if appropriate. This functionality is closely related to the underly-
ing access authorization concept. Due to the variety of PLM system-specific access authorization architectures this
topicis closely depending on the PLM system functionality.

7.2.14.3 Process flow diagram

At the moment no flow diagram exists.

7.2.14.4 Partner role descriptions

Table 12 -Roles for uploading of a single digital file (simple user interaction)

Role name Role description Roletype

User Party, that wishes to store PDM data on aremote PLM Person / System
server. This could be a person, who interacts with the PLM
client, or asystem, that triggers the PLM client.

PLM client System, that provides the communication between user and | System
PLM server
PLM server System, that providestherelevant PDM data. Thisisusually | System

acompany's PLM system that acts as a server. The PLM
system can be extended by aWeb Server to build the
complete PLM server.

7.2.14.5 Process start and end states

Start state Sl.:
» Theuser has got asingle file stored on hislocal file system to be uploaded.
» The user knows the correct structure node in the database of the PLM server for the integration of the data.
End state E1 (Success):
- Offline Upload: A notification of an additional exchange processis provided (e.g. “Offline transfer is running”).

» OnlineUpload: A notification for the User, if the upload isfinished (with success or not). The displayed target structure
is refreshed on the screen.

32 PLM Adopted Specification

- Thefile, that had been specified by the user for upload, is stored on the remote PLM server and attached to the target
structure. M aybe some new structure node were created to attach the file to.

End state E2 (Failure):
» Theprocessresultsin afailure message. A failure can occur due to the following reasons:
» The user is not authorized to access the PLM server.
» Theuser is not authorized to upload the digital file.
» Theuser is not authorized to create needed structure nodes.
» The server can't create needed structure nodes with default values.

- The specified data could not be integrated in the database of the PLM server (e.g. the correct structure node for data
integration could not be identified).

» The PLM server itself is not available.
- Offline Upload: Triggering the EDI-Tool failed.

7.2.14.6 Constraints and assertions

The uploaded file is always not compressed. Compression is only allowed if an offline transfer process implies a
packaging mechanism.

The target element to assign an uploaded file to can be of type “Item_version” or “Document_version”. In case of a
“Document_version” the file can be assigned directly. If an “Item_version” is selected, the server has to create a
document with default values to assign the file to. If any creation is not possible, the action fails and the user is notified.

Any directives/parameters for the upload process are stored at server side.
7.2.14.7 Relevant data

Product structure data
« Document meta data

» Document data (digital file)
7.2.15 Upload meta data including structures

7.2.15.1 Process purpose

This process allows a user to upload meta data including structures to a remote PLM server. This data was created or
changed on alocal storage or is the result of a download process.

7.2.15.2 Process definition

This use case corresponds mainly to use case “Download of meta data including structures” (see section 2.2.9).
Additionally, it requires two functions:

« Identification of correct structure nodes for the integration of uploaded data.

PLM Adopted Specification 33

« Creation/change of structures and/or structure nodes, if appropriate. This functionality is closely related to the underly-
ing access authorization concept. Due to the variety of PLM system-specific access authorization architectures this
topicis closely depending on the PLM system functionality.

7.2.15.3 Process flow diagram

At the moment no flow diagram exists.

7.2.15.4 Partner role descriptions

Table 13 -Roles for uploading meta data including structures

Role name Role description Roletype

User Party, that wishes to store PDM data on aremote PLM Person / System
server. This could be a person, who interacts with the PLM
client, or asystem, that triggers the PLM client.

PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually | System

acompany's PLM system that acts as a server.

7.2.15.5 Process start and end states

Start state Sl.:

» Theuser has got data stored on hislocal file system or stored temporarily as a result of a download process.

» The user knows the correct structure nodes in the database of the PLM server for the integration of the data.
End state E1 (Success):

- Offline Upload: A notification of an additional exchange processis provided (e.g. “Offline transfer is running”).

» OnlineUpload: A notification for the User, if the upload isfinished (with success or not). The displayed target structure
is refreshed on the screen.

- The data, that had been specified by the user for upload, is stored on the remote PLM server and integrated into the tar-
get structure.

End state E2 (Failure):

» The processresultsin afailure message. A failure can occur due to the following reasons:
 The user is not authorized to accessthe PLM server.
 The user is not authorized to upload the data.

* The specified data could not be integrated in the database of the PLM server (e.g. the correct structure nodes for
data integration could not be identified).

* The PLM server itself is not available.
« Offline Upload: Triggering the EDI-Tool failed.

34 PLM Adopted Specification

7.2.15.6 Constraints and assertions

The new structure is sent as message set to the server. The data can be assigned to one or more target elements. If the
whole uploaded structure should be assigned to one single element, this will be selected within a message parameter. |f
there are more complex relations between the new and target elements, the message set also contains the target elements
and the relationships to them. In case of an offline transfer, the message set can be replaced by a STEP Part 21 file, which
is specified in the server configuration and considers requirements at target side. In case of an online transfer, STEP Part
21 is not supported.

Referenced files has to be uploaded separately using the use cases “Upload a single digital file” or “Upload a set of digital
files” If the data is sent offline, the files may be added to the upload package, which is specified in the server
configuration and considers requirements at target side.

Any directives/parameters for the upload process are stored at server side.
7.2.15.7 Relevant data

Product structure data
- Basic part classification data
- Document meta data
- Document data
7.2.16 Change notification
7.2.16.1 Process purpose
The designer of a part needs notification when a change to a part happens which affects one of the parts he is responsible
for. This could take place when a part in the neighborhood of a given part is changed in its dimensions or properties or

when a part in an assembly is moved to another place than before. The user specifies the parts on which he wants to be
notified by using the functionality of subscribing specified in use case “Change content of subscription list”.

PLM Adopted Specification 35

7.2.16.2 Partner/actor role descriptions

Table 14 -Roles for change notification

Role name Role description Roletype
User Party, that requests PDM data. This could be aper-son, who | Person/ System
interacts with the PLM client, or a system, that triggers the
PLM client.
E-Mail Client System, that is able to maintain the user's e-mail. System
PLM server System, that providestherelevant PDM data. Thisisusually | System

acompany's PLM system that acts as a server.

7.2.16.3 Process definition

Target of the process is the evaluation of objects being changed since the last visit of the user to this object. When a
modification of those object is being detected, an appropriate message has to be delivered to the user. Objects could be
parts (and part versions), documents (and document versions) or models.

Changes to report could be:

Creation of anew version of an object
Change of the release status of an object
Objects are deleted

Geometry has changed

Properties have changed

The following requirements are defined:

36

Two possibilities of detecting changes on the server side are conceivable. Which of them is used is depending on the
PLM server implementation:

Whenever an object linked to anybody's subscription list is changed, an e-mail is sent to the user(s).

In certain periods of time, the subscription lists of all users are checked against the objects they include. When a modi-
fication of a certain object is detected, an e-mail is sent to the user.

The frequency and content of e-mail notifications (confidential data must not beincluded!) are defined server-specifi-
cally.

PLM Adopted Specification

7.2.16.4 Process flow diagram

E-Mail Client PLM PL

C
0
D
=

Detection of object
being changed

Send E-mail notification to user <—

Read change notificatior

]

Figure 4 - Process flow diagram for change notification
7.2.16.5 Process start and end states

Start states / preconditions S1 and S2:
 User has access to his e-mail client.
End state / post condition E1 and E2 (Success):

« Ane-mail notification about changes to one of his objects collected in the clipboard is sent to the user.
7.2.16.6 Constraints and assertions
Currently none are defined.
7.2.16.7 Relevant data

« Product meta data
7.2.17 Display content of subscription list and confirm changes

7.2.17.1 Process purpose

To get an overview about objects being changed on the PLM server, the user should be able to display the contents of his
subscription list in which he collects al the objects to track. The changed objects should be displayed in an emphasized
style to show the status of being changed.

The current content of the subscription list including notifications of changes can be re-quested by the PLM client:
- when logging in at the server

- when interactively initiated by the PLM client user.

PLM Adopted Specification 37

7.2.17.2 Partner/actor role descriptions

Table 15 - Roles for displaying content of subscription list and confirm changes

Role name Role description Roletype
User Party, that requests PDM data. This could be a person, who Person / System
interacts with the PLM client, or a system, that triggersthe PLM
client.
PLM client System, that provides the communication between user and PLM | System
server.
PLM server System, that provides the relevant PDM data. Thisisusually a System
company's PLM system that acts as a server.

7.2.17.3 Process definition

Target of the process is the evaluation of objects being changed on the PLM server since the last visit of the user and the
notification of the user by displaying the content of the subscription list. When a modification of those objects is being
detected, the objects are marked as changed in the subscription list and the reasons of the changes are displayed.

The following requirements are defined:

» Theuser controlsthe start of the evaluation process viathe client. The results of the evaluation process are displayed
directly in the client.

- The change notification datais transferred by the PLM server using the data constructs provided by AP214 (work man-
agement information). An additional transfer of change management/notification documents (like PDF files) is cur-
rently not needed.

» Theuser must be able to define and to modify the content of his subscription list (see use case “ Change content of sub-
scription list”).

» The subscription list should be represented as a separate folder within the PLM client GUI.

38 PLM Adopted Specification

7.2.17.4 Process flow diagram

c
o

©

T
—
<
O
—
<

Client Server

l Selects "display clipboard"

Requests clipboard data

Returns clipboard data

Displays content of clibboard

Confirm changes I .
Request reset of modification stati

Reset
modification stati

—

7.2.17.5 Process start and end states

Start state / precondition S1:

A specific engineering project is defined, which itself defines certain items of product data (e.g. assemblies, parts,
documents), that will be subject to change or creation during the project life time. These items are identified by
identifiers.

- The user is correctly logged in and authorized to access the requested information.
End state / post condition E1 (Success):

» Theprocessresultsin avirtua container (see use case “ Search in design space”) containing al the objects in the sub-
scription list.

» Objects modified since the last [ook on the subscription list are displayed emphasized. Deleted objects are displayed in
adifferent style.

 After confirmation, the modification status of the objectsis reset and in the case of deleted objectsin the PLM system,
they are also deleted from the subscription list.

7.2.17.6 Constraints and assertions

Currently none are defined.

PLM Adopted Specification 39

7.2.17.7 Relevant data

« Product metadata

« Work management data
7.2.18 Change content of subscription list

7.2.18.1 Process purpose

The idea of the subscription list is, that the user needs a sort of folder in which he can collect objects. The purpose of the
Subscription lists is to collect objects for which the change notification should be provided. The modification of the
objects in this subscription lists is tracked and the user will be notified if such a modification takes place. The user should
be able to change the content of his subscription list. The subscription list contains all objects the user wants to be notified
when changes are applied to them.

7.2.18.2 Partner/actor role descriptions

Table 16 - Roles for changing content of subscription list

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person / System
interacts with the PLM client, or a system, that triggersthe
PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusualy | System
acompany's PLM system that acts as a server.

7.2.18.3 Process definition

a. Theuser selects objects in the subscription list and wants the PLM system to del ete the objects from the subscription
list.

b.. Theuser selects objectsin the PLM client and wantsthe PLM system to link those objects into the subscription list.
The following requirements are defined:

» Theuser has got a subscription list in the PLM system

 For use case @), the content of the subscription list with the objects to delete have to be displayed.O

 For use case b), the objects to add have to be displayed in the client.

40 PLM Adopted Specification

7.2.18.4 Process flow diagram

C
>
o]
- | O
R
<
T
—

Selects contents of clipboard to delete

Selects "delete objects in clipboard"

Sends modification information

Modifies clipboard
content

Returns current clipboard contents <

Displays clipboard content

Selects objects in client to be
linked into the clipboard

Selects "add objects to clipboard" /Lﬁ

Sends add request

Adds links to the
selected objects to

p—

Returns current clipboard contents

Displays clipboard content

7.2.18.5 Process start and end states

Start state / precondition S1 (use case a):

A specific engineering project is defined, which itself defines certain items of product data (e.g. assemblies, parts,
documents), that will be subject to change or creation during the project life time. These items are identified by
identifiers.

- The user is correctly logged in and authorized to access the requested information.
» The content of the subscription list is being displayed in the client.

Start state / precondition E2 (use case b):

PLM Adopted Specification

41

A specific engineering project is defined, which itself defines certain items of product data (e.g. assemblies, parts,
documents), that will be subject to change or creation during the project life time. These items are identified by
identifiers.

- The user is correctly logged in and authorized to access the requested information.

» Product datais displayed.
End state / post condition E1 and E2 (Success):

» The processresultsin an updated view to the subscription list.
7.2.18.6 Constraints and assertions
The user must own a subscription list.
7.2.18.7 Relevant data
Product meta data
7.2.19 Product Class Identification
7.2.19.1 Process purpose
Identification of atop level product_class to enable browsing of an abstract product structure.

7.2.19.2 Partner/actor role descriptions

Table 17 -Roles for product class identification

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggersthe
PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually | System
acompany's PLM system that acts as a server.

7.2.19.3 Process definition

This use case defines the process of identifying the start node of an abstract product structure in a PLM server. The end
state / post condition of the use case is the precondition of the use case “Browsing of an abstract product structure.”

The process steps are:
e Theuser entersan ID or Wild Card.
» PLM server receives ID or Wild Card and triggers search in PLM System.

- Exception: The PLM server does not respond.

42 PLM Adopted Specification

» PLM System executes query in its database
-> Exception: Database is not available, no data found, user is not authorized to access the data, etc.
« PLM server returns alist of product_class and product_component nodes.

» PLM client displays the resulting product_class nodes. If the list has only one member it shall be displayed as the root
node of atree. If the list contains more than one node than the result should be displayed as alist from which the user
may select one node that isthan displayed as the root node of atree.

Remark: according to the AP214 CC8 Recommended Practices, each product_class is associated to one instance of
product_component (with relation_type='"realization’) having the same attribute values. From this instance of
product_component (not displayed within the client), the abstract product structure may be traversed
(ProductStructureQuery).

7.2.19.4 Process flow diagram

At the moment no process flow diagram is provided.

7.2.19.5 Process start and end states

Start state / precondition S1:
- The user is correctly logged in and authorized to access the requested information.
» Theserviceisavailable.
» The user entersan Id or Wild Card.
End state / post condition E1 (Success):
« Thelist of resulting nodesis displayed as described above.
End state / post condition E2 (Failure):

» Theprocessresultsin afailure message.
7.2.19.6 Constraints and assertions
At the moment none are defined.
7.2.19.7 Relevant data
» Product_classinformation
7.2.20 Browsing of Abstract Product Structures
7.2.20.1 Process purpose

This process alows a user starting with an identified product_class, product_component or alternative_solution to get
information on the subcomponents of an abstract product structure (product_component or item_instance).

PLM Adopted Specification 43

7.2.20.2 Partner/actor role descriptions

Table 18 - Roles for browsing of abstract product structures

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggersthe
PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually | System
acompany's PLM system that acts as a server.

7.2.20.3 Process definition

The process steps are:
» ThePLM client evaluatesif the product structure information is already obtained then it is directly displayed in atable.

» ThePLM client sends aquery for a substructure of product_class, product_component or alternative solution specified
by the user to the PLM server.

« For each product structure node in the scope of the query the PLM server
» Checks the authorization regarding the requested data
-> Exception: Access denied
 Collects requested datawithin the PLM server
» PLM server sends datato the PLM client.

» PLM client displays the resulting nodes within the structure. The kind of relationship (e.g
product_structure_relationship of kind “decomposition” or “redization™) and child node (product_component or
item_instance) should be displayed within the PLM client.

Remark: only one level of the product structure is retrieved at a time.

Remark: only product_structure_relationships from product_component to product_component from alternative_solution
to item_instance and from alternative_solution to product_component are supported.

Remark: all the subtypes of item_instance are supported (single, quantified and selected). selected_instance is used in the
case of a quantity 'as needed": se-lected instance.selection_quantity refers to an instance of value_limit with limit=0 and
limit_qualifier="minimum.

Remark: this functionality is also available on item_version nodes if they are handled both as part (for their usage) as well
as product_component (having an own abstract product structure). In this case, the function handles the item_version just
asif it was a product_component.

7.2.20.4 Process flow diagram

At the moment no flow diagram is provided.

44 PLM Adopted Specification

7.2.20.5 Process start and end states

Start state / precondition S1:
- The user is correctly logged in and authorized to access the requested information.
» Theserviceisavailable.
» Theuser entersan Id.
End state / post condition E1 (Success):
- Thelist of resulting of the resulting nodes is displayed as described above.
End state / post condition E2 (Failure):
» Theprocessresultsin afailure message.
7.2.20.6 Constraints and assertions
At the moment none are defined.

7.2.20.7 Relevant data
» Product_structure relationships, Product_components, Alternative_solutions, Item_instances
7.2.21 Browsing of Alternative Solutions within an Abstract Product Structure

7.2.21.1 Process purpose

This process allows a user starting with an identified product._component (or alternative_solution) to get information on
the (sub-)alternative solutions of an abstract product structure.

7.2.21.2 Partner/actor role descriptions

Table 19 - Roles for browsing of alternate solutions within an abstract product structure

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggers the
PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually | System
acompany's PLM system that acts as a server.

7.2.21.3 Process definition

The process steps are:

» ThePLM client evaluatesif the alternative_solutions are aready obtained then it isdirectly displayed in atable.

PLM Adopted Specification 45

» ThePLM client sends a query for the alternative solutions of a product_component (or alternative solution) specified
by the user to the PLM server.

- For each alternative solution node in the scope of the query the PLM server
» Checks the authorization regarding the requested data
-> Exception: Access denied
 Collects requested datawithin the PLM server
» PLM server sends datato the PLM client.

- PLM client displays the resulting nodes within the structure. The kind of child node (alternative_solution,
technical_solution, final_solution, supplier_solution) should be displayed within the PLM client.

7.2.21.4 Process flow diagram
At the moment no flow diagram is provided.
7.2.21.5 Process start and end states

Start state / precondition S1:
- The user is correctly logged in and authorized to access the requested information.
» Theserviceisavailable.
» Theuser entersan Id.
End state / post condition E1 (Success):
- Thelist of resulting of the resulting nodes is displayed as described above.
End state / post condition E2 (Failure):

» Theprocessresultsin afailure message.
7.2.21.6 Constraints and assertions
At the moment none are defined.
7.2.21.7 Relevant data
» Product_structure_relationships, Product_components
7.2.22 Retrieve Configuration Data within an Abstract Product Structure
7.2.22.1 Process purpose

This process allows a user starting with an identified alternative_solution or item_instance to get information on the
configuration of an abstract product structure.

46 PLM Adopted Specification

7.2.22.2 Partner/actor role descriptions

Table 20 - Roles for retrieving configuration data within an abstract product structure

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggers the
PLM client.
PLM client System, that provides the communication between user and | System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually | System
acompany's PLM system that acts as a server.

7.2.22.3 Process definition

The process steps are:
» ThePLM client evaluatesif configuration information is already obtained then it is directly displayed in atable.

» ThePLM client sendsaquery for the configuration[s] of an alternative _solution or item_instance specified by the user
tothe PLM server.

« For [each] configuration node in the scope of the query the PLM server
» Checks the authorization regarding the requested data
-> Exception: Access denied
 Collects requested data within the PLM server
» PLM server sends data to the PLM client.

- PLM client displays the resulting nodes within the structure. The associated Specification referenced through Configu-
ration and Class_specification_association should be displayed within the PLM client as a property of the configura-
tion.

Remark: currently, configuration may be only displayed on alternative_solution and item_instance, but not on
product_component and product_function.

Remark: for complexity reason the specification_expression corresponding to the logical rule stored within the legacy
system is mapped to a single string and mapped to a pseudo-Specification.id. This specification is directly referenced by
the Class_specification_association. The category of this specification has id=/DUMMY.

Remark: the product_class referenced by the class specification_association will not be displayed to the PLM client,
since it is either derived from the root node of the abstract product structure, or is project independent (for example in the
case on configured assembly structures) and would have to be instantiated with a product_class of kind 'enterprise’.

Remark: if the usage of a part or product_component is not configured (i.e. the associated logical rule is empty), this
function will give no results.

7.2.22.4 Process flow diagram

At the moment no flow diagram is provided.

PLM Adopted Specification 47

7.2.22.5 Process start and end states

Start state / precondition S1:
- The user is correctly logged in and authorized to access the requested information.
» Theserviceisavailable.
» Theuser entersan Id.
End state / post condition E1 (Success):
- Thelist of resulting of the resulting nodes is displayed as described above.
End state / post condition E2 (Failure):

» Theprocessresultsin afailure message.
7.2.22.6 Constraints and assertions
At the moment none are defined.
7.2.22.7 Relevant data

» Alternative_solution, Item_instance, Configuration, Product_class, Class_specification_association, Specification,
Specification_category

7.2.23 Viewing of Change Management Information
7.2.23.1 Process purpose
Browsing through a product structure the user is able to see the assigned change management information.

7.2.23.2 Partner/actor role descriptions

Table 21 - Roles for viewing of change management information

Role name Role description Roletype
User Party, that requests PDM data. This could be a per-son, who | Person/ System
interacts with the PLM client, or a system, that triggersthe
PLM client.
PLM client System, that provides the communication between user and System
PLM server.
PLM server System, that providestherelevant PDM data. Thisisusually a | System
company's PLM system that acts as a server.

7.2.23.3 Process definition

The process steps are:

» Theuser selectsanode (product_class, product_component, item_version) within the PLM client.

48 PLM Adopted Specification

« ThePLM client evaluates if work management information is already obtained then it is directly displayed in atable.
« If work management information is not obtained the PLM client sends a query for this node to the PLM server.
» PLM System executes query in its database
-> Exception: Database is not available, no data found, user is not authorized to access the data, etc.
» PLM server sends obtained work management data to the PLM client.
» PLM client displays the resulting data in atable.

Remark: according to the CC8 Recommended Practices, the effectivity references an event_reference, which references
again an activity. Effectivity_assignment.effective_element and Activity Element.element both reference the
product_class, product_component or item_version node.

Remark: other object nodes are not supported at this time.
7.2.23.4 Process flow diagram

At the moment no flow diagram is provided.

7.2.23.5 Process start and end states

Start state / precondition S1:

» Theuser is correctly logged in and authorized to access the requested information.

» Theserviceisavailable.

» Theuser selectsanode of kind product_class, product_component or item_version in the tree view.
End state / post condition E1 (Success):

» Theresulting information is displayed as described above.
End state / post condition E2 (Failure):

» Theprocessresultsin afailure message.
7.2.23.6 Constraints and assertions
At the moment none are defined.
7.2.23.7 Relevant data

- Activity, Activity_element, Effectivity, Effectivity_assignment, Event_reference

7.3 Relevant Subsets of STEP PDM Schema and STEP AP214

The relevant subsets of the STEP PDM Schema and the STEP AP214 are defined by the following functional modules:
« Part Identification,
 Part Structure,

PLM Adopted Specification 49

» Document and File Management,

« Shape Definition and Transformation,
« Classification,

» Properties,

- Alias Identification,

« Authorization,

» Configuration Management,

« Change and Work Management,
 Process planning, and

+ Multi-Language support.
7.3.1 Part Identification

This subset of the STEP PDM Schema includes the primary objects used for product data management. This subset
provides the capability to represent product management information. It includes information about items that are either
raw materials, parts, or tools, about versions and views of items. A part may represent one of a variety of physical entities
used in discrete manufacturing; including raw material, semi-finished parts, assemblies, instruction manuals, Kits,
manufacturing by-products, and products. The manufacturing industry is de-fined by the design, production, and sales of
parts, and almost every business activity in some way works with data that describes parts.

7.3.2 Part Structure

Base of this subset is the group of objects that define the bill of material relationships be-tween items for discrete
manufacturing.

A part is not defined by a single object with a set of attributes, but a collection of objects and relationships, each
describing different aspects of the part. For example, a part definition may consist of several engineering attributes, links
to suppliers of the part, references to CAD drawings describing the parts geometry, and a list of components used to
assemble the part. These different pieces of the part definition will be referred to as part data objects.This subset supports
explicit hierarchical product structures representing assemblies and the constituents of those assemblies. This explicit part
structure corresponds to the traditional engineering and manufacturing bill of material indentured parts list.

7.3.3 Document and File Management

The scope of this subset is the handling of electronic documents comprising one or more files and track documents that
are not actively managed by the PLM system.

External files represent a simple external reference to a named file. An external file is not managed independently by the
system - there is usually no revision control or any representation definitions of external files. Version identification may
optionally be associated with an external file, but thisis for information only and is not used for managed revision
control.

50 PLM Adopted Specification

If afileisunder configuration control, it should be represented as a constituent of a document definition view/
representation. In this case it is actually the managed document that is under direct configuration control, the fileisin this
way indirectly under configuration control. A change to the file results in a change to the managed document (i.e. a new
version) - the changed file would be mapped as a constituent of a view/representation definition of the new document
version. A simple external reference alone is not configuration controlled; it is just an external file reference to product
data. Documents may be associated with product data in a specified role, to represent some relationship between a
document and other elements of product data. Constraints may aso be specified on this association, in order to distinguish
an applicable portion of an entire document or file in the association.

7.3.4 Shape Definition and Transformation

The scope of this subset provides the capability to associate items with shape or to identify aspects of the shape. It allows
also to distinguish between geometric elements used as auxiliary elements and geometric elements that describe product
data. Additionally, it contains the capability of an empty geometric model with only a geometric element for placement
purposes and an unconstrained three-dimensional geometric model that may contain any geometric data elements.

This subset allows linking geometric structures that result from relating different shape representations with associated
product structure when applicable, i.e., when the geometric structure directly corresponds to the assembly structure.

Two alternatives for the implementation of geometric structures related to assembly structures are recommended:

[1] Theassembly is described with the components built in. With this approach the shape of the component is mapped into
the shape of the assembly viamapped_item. The basic idea of the mapped_item is: an item will become part of another
item. The assembly component geometry is used as a template in the assembly geometry.

[2] The components of an assembly are described together with the construction history. This approach uses the
representation_relationship_with_transformation. The transformation describes the relation between different work-
spaces.

The usage of both alternatives is considered reasonable, because both mechanisms make sense even in mixed
combinations. With regard to the transformations in the context of assembly, a part is in principle incorporated in the
assembly only by rigid motion (i.e., translation and/or rotation) excluding mirroring and scaling.

7.3.5 Classification

A simple basic type of classification of products in STEP works by assigning categories to product data items. These
categories are identified by name labels that define the related classification. This type of classification is referred to as
specific classification. A specific_item_classification_hierarchy is used to build up hierarchical structures of
specific_item_classification.

7.3.6 Properties

The scope of this subset allows specifying properties associated with parts. A property is the definition of a special quality
and may reflect physics or arbitrary, user defined measurements. A general pattern for instantiating property information
isin this subset. A number of pre-defined property type names are also proposed for use when appropriate.

A specia case of part propertiesis that of the part shape property - a representation of the geometrical shape model of the
part, which are described in section 2.3.4.

PLM Adopted Specification 51

7.3.7 Alias Identification

An alias identification is a mechanism to associate an object with an additional identifier that is used to identify the object
of interest in a different context, either in another organization, or in some other context. The alias identification
mechanism shall not be used to alias sup-plied parts.

The scope of the alias identification shall be specified either by the description of the associated identification role or - if
the scope is defined by an organization - with help of an applied_organization_assignment. The scope of an alias defines
the context in which the id specified via applied_identification_assignment.assigned_id overrides the original id. A
scenario might be that an object has an id in the context of the organization assigned in therole 'id owner' as aprimary id
and other ids defined via aliases that are valid in the context of some other organizations.

7.3.8 Authorization

The scope of this subset represents organizations and people in organizations as they per-form functions related to other
product data and data relationships. A person in this scope must exist in the context of some organization. An organization
or a person in an organization is then associated with the data or data relationship in some role indicating the function
being performed. Both people and organizations may have addresses associated with them.

Approving in this scope is accomplished by establishing an approval entity and relating it to some construct through an
applied_approval_assignment. The applied_approval_assignment entity may have a role associated with it through the
entity role_association and its related object_role entity to indicate the reason/role of this approval related to the particular
element of product data.

Approval may be represented as a simple basic approval, or it may represent a more complex approval cycle involving
multiple provers, on different dates/times, and possibly with different status values.

7.3.9 Configuration Management

The purpose of this subset of the STEP PDM Schema [2] is meeting the requirements of enterprises that offer many
possible configurations of their products for sale. In most cases, the different configurations of a product differ from each
other in only minor ways. Configuration identification in the STEP PDM Schema [2] is the identification of product
concepts and their associated configurations, the composition of which is to be managed. If a configuration of a product
concept is implemented by a certain design, i.e. a particular part version, this version can be associated with the
configuration and managed using configuration effectivity. Because this model is based on the configuration management
model defined in STEP AP214, additional information and description of how to use the model can be found in the ARM
model and other documentation on AP214.

7.3.10 Change and Work Management

This subset describes the process by which companies request, implement, and effect change to products, documents,
components, assemblies, manufactured or purchased parts, processes, or even suppliers. This subset provides the
capability to represent activity, project, and contract related information. Activities may be initiated by work requests and
may be authorized by work orders. Activities may result in changes of models or of properties; such changes can also be
represented.

52 PLM Adopted Specification

7.3.11 Process planning

This subset provides the capability to represent process related data. This includes process plans, versions of process plans
with version tracking, process operations and properties of processes. A process plan is decomposed into one or more
occurrences of process operations. Process plans and process operations establish relationships among raw materials, in-
process items, and final items, as well as the relationship between the items and the tools used to manufacture them.
Additionally, the representation of the connection of parts in various kinds of mating is part of this subset.

7.3.12 Multi-Language support

This subset provides the capability to represent descriptive information about objects in different languages.

7.4 EXPRESS-X Mapping

Supposed that one has two EXPRESS Schemes which cover approximately the same context. Then the EXPRESS-X
mapping gives rise to a method for mapping instances of one schema onto instances of the second schema. Information
not contained in the second schema are neglected.

The EXPRESS-X mapping specification in this section specifies the mapping from the STEP PDM Schema [2] extended
by the relevant subsets of 1SO 10303-214:2000 [8] (Chapter 7.3), especially the Configuration Management modelling
parts according to CC8, given as an AIM representation to the PIM Equivalence model (Chapter 7.5). In addition to the
EXPRESS-X mapping specification, instance diagrams are supplied in order to illustrate the mapping specification. These
diagrams follow the EXPRESS-G notation. They highlight the elements in scope of the illustrated mapping.
Corresponding AIM and ARM constructs are shown in parallel.

Example: Entities needed to create an item.

ENTITY product;

id: identifier;

nane : | abel;

description : OPTI ONAL text;

frane_of _reference : SET[1:?] OF product_context;
END _ENTI TY;

ENTI TY product _rel ated_product category
SUBTYPE OF (product_category);
products : SET[1:7?] OF product;

END _ENTI TY;

ENTI TY product category;

name : | abel;
description : OPTIONAL text;
DERI VE
id: identifier := get_id_val ue(SELF);
VWHERE

wrl : S| ZEOF(USEDI N(SELF, ' AUTOMOTI VE_DESI GN.* + ' | D_ATTRI BUTE. ' +
"I DENTIFIED_I TEM)) <= 1,
END_ENTI TY;

PLM Adopted Specification 53

To reduce the complexity of the resulting reference model, the transformation in to the PIM represented in UML is based
on a PIM Equivalence model which is similar to the STEP AP214 ARM representation. This PIM Equivalence model is
described in Chapter 7.5.

Example: Entities needed to create an item.

ENTITY item
id: STRING
nane : string_ select;
description : OPTIONAL string select;
I NVERSE
associ ated version : SET[1:?] OF itemversion FOR associated_item
itemclassification : SET[1:?] OF specific_itemclassification
FOR associated item
END _ENTI TY;

The relationship of the STEP AP214 ARM model representation described in EXPRESS to the underlying AIM model is
normative and described by mapping tables as part of the STEP AP214 standard.

Nevertheless, an EXPRESS-X mapping exists between corresponding parts of the STEP PDM and AP214 Schema
modelled with AIM elements and the STEP AP214 ARM model. This mapping is extended to reflect additional modelling
reguirements met by the PIM Equivalence model and to remove insufficiencies in the base models.

7.4.1 Part Identification
7.4.1.1 Item
A target instance of type Item is created out of a source Instance of type Product in the source schema which is referenced

by an instance of type Product_related product_category as products where the value of the name attribute is either 'part’,
‘raw material' or 'tool'.

PRODUCT_RELATED_
PRODUCT_CATEGORY ’ PRODUCT #71 ITEM #85
#72 broducts
name=part ‘
py A
4 4 -

Figure 5 - Instance mapping for item

EXPRESS-X Mapping Specification:

54 PLM Adopted Specification

MAP item map AS

it item
FROM

p . product;

prpc : product_rel ated_product category;
VWHERE

wl: p IN prpc. products;

w2: prpc.name I[N ['part', 'raw material', 'tool'];
| DENTI FI ED_BY p;
SELECT

it.id C= op.id;

it.name = p. nane;

it.description := p.description;
END_MAP;

7.4.1.2 ltem_version

A target instance of type Item_version in the target schema is created out of a source instance of type
Product_definition_formation which references a Product instance which is mapped to an Item.

PRODUCT_RELATED_PRODUCT_CATEGORY
- o - PRODUCT_DEFINITION FORMATION SPECIFIC_ITEM_CLASSIFICATION #137
#132 ITEM_VERSION #134 P o
#128 classifiation_name=part
name=part

[J
associaed_item
oduct relating_product_definition_formation relgting associates_item

PRODUCT_DEFINITION_FORMATION_RELATIONSHIP

A

PRODUCT #131 #130 ITEM_VERSION_RELATIONSHIP #133 ITEM #136
of_protgt related_product_dgfinition_formation elded associdfed item
° |

PRODUCT_DEFINITION FORMATION
#129
ITEM_VERSION #135

Figure 6 - Instance mapping for item version

EXPRESS-X Mapping Specification:

MAP item version_map AS

iv : itemuversion;
FROM
pdf : product_definition_formation;
VWHERE
EXI STS(item map(pdf. of product));
SELECT
iv.id := pdf.id;
iv.associated item:= item map(pdf.of product);
iv.description := pdf.description;

PLM Adopted Specification

55

END_MAP;
7.4.1.3 Iltem_version_relationship
An target instance of type Item_version_relationship is created out of an instance of a source instance of type

Product_definition_formation_relationship which references instances of type Product_definition_formation that are
mapped to Item_versions as relating_product_definition_formation and as related_product_definition_formation.

RO R D CATECORY PRODUCT_DEFINITION_FORMATION SPECIFIC_ITEM_CLASSIFICATION #137
#132 ITEM_VERSION #134 e A
#128 classifiation_name=part
name=part
A
[J
associafed_item
foduct relating_product_definition_formation relagting associatw.
PRODUCT #131 PRODUC"—DEFmo"—mz'A TIONCRELATIONSHIE ITEM_VERSION_RELATIONSHIP #133 ITEM #136
A A A

related_product_dgfinition_formation

assogidted_item

PRODUCT_DEFINITION FORMATION
ITEM_VERSION #135

Figure 7 - Instance mapping for item version relationship

EXPRESS-X Mapping Specification:

MAP item version_relationship_mp AS

ivr : itemversion_relationship;
FROM

pdfr : product_definition_formation_relationship;
VWHERE

EXI STS(item version_map(pdfr.related_product _definition_formation)) AND
EXI STS(item version_map(pdfr.relating_product_definition formation));
SELECT
i vr.description := pdfr.description
ivr.relation_type := pdfr.nane;
ivr.rel ated D=
itemversion_nmap(pdfr.rel ated _product _definition_formation);
ivr.relating L=
itemversion_map(pdfr.relating product_definition_formation);

END_MAP;
7.4.1.4 Application_context

A target instance of type Application_context is created out of a source instance of type Product_definition_context.

EXPRESS-X Mapping Specification:

56 PLM Adopted Specification

MAP appl i cation_context_nmap AS
actx : application_context;
FROM
pdctx : product _definition_context;
SELECT
actx.life_cycle_stage
act x. application_domain :
END_MAP;

pdctx.life_cycl e_stage;
pdct x. frame_of _reference. application;

7.4.2 Part Structure

7.4.2.1 ltem definitions, and Process_state

A target instance of type Design_discipline_item_definition is created out of an source instance of type Product_definition
in the source schema that references an instance of type Product_definition_context as frame_of _reference which has a
name attribute with value 'part definition'.

If the source instance is referenced by an instance of type Product_definition_context_association with role name 'part
definition type' as definition, which refers to an instance of type Product_definition_context as frame_of reference then
the type of the created instance is a subtype of Design_discipline_item_definition, depending on the value of the name
attribute of the Product_definition_context. An Assembly_definition is created if the name is 'assembly definition’, a
Collection_definition is created if the name is 'collection definition' and a Process_state is created if the name is 'process
state'

V| | |
‘ ‘
PRODUCT_
DEFINITION_CONTEXT PRODUCT_ DEFINITION DESIGN_DISCIPLINE_
#84 %ame_of_refe rence #74 ITEM_DEFINITION #87
name=part definition P

Figure 8 - Instance mapping for design discipline item definition

EXPRESS-X Mapping Specification for Design_discipline_item_definition

MAP ddi d_map AS

ddid : design_discipline_itemdefinition;
FROM

pd : product_definition;
VWHERE

PLM Adopted Specification 57

wl: pd.frame_of _reference.name = 'part definition'

SELECT
ddid.id = pd.id;
ddi d. name = pd. nane;
ddi d. associ ated _itemversion := itemversion_nmap(pd.formation);
ddid.initial _context := application_context_map(pd.frane_of _reference);

ddi d. addi ti onal _context :=
FOR EACH pdca I N pd<-
pd<-definition{product _definition_context_association |
role.nane = 'additional context'};
RETURN application_context_nap(pdca.franme_of reference);

END_MAP;
COLLECTION_
A DEFINITION #2
PRODUCT_
DEFINITION #1
|
4
|
4
| |

V|
Figure 9 - Instance mapping for collection definition

EXPRESS-X Mapping Specification for Assembly_definition, Collection_definition, Process_state:
MAP assenbly definition_nmap AS

ddid : assenbly_definition
SUBTYPE OF (ddi d_nap)

VWHERE
S| ZEOF(pd<-defini ti on{product _definition_context_association
role.nane = 'part definition type'}
c:frane_of _reference{product _definition_context |
nane = 'assenbly definition'}) > O;
END_MAP;

MAP col | ection_definition_map AS

58 PLM Adopted Specification

ddid : collection_definition
SUBTYPE OF (ddid_nap);
VWHERE
(Sl ZEOF(pd<-definition{product_definition_context_association |
role.nane = 'part definition type'}
::frane_of _reference{product _definition_context |
nane = 'collection definition'}) > 0);
END_MAP;
MAP process_state _map AS
ddid : process_state;
SUBTYPE OF (ddid_nap);
VWHERE
S| ZEOF(pd<-defini ti on{product_definition_context_association
role.nane = 'part definition type'}
::frane_of _reference{product _definition_context |
nane= 'process state'}) > O;
SELECT
ddid.related itemdefinition : =
ddi d_map(pd<-rel ated_product _definition
{product _definition_relationship
nane = 'process state to related item}
c:relating_product_definition[1]);
END_MAP;

7.4.2.2 Assembly relationships

A target instance of type Item_definition_instance _relationship is created out of a source instance of type
Product_definition_relationship which refers to a Product_definition with a frame_of _reference name of 'part definition'
as relating_product_definition. In addition the Product_definition_relationship source instance must either refer to an
instance of type Product_definition with frame_of _reference name 'part occurrence' as related product_definition or it
must be of type Assembly component_usage and refer to an instance of type Product_definition with frame_of reference
name 'part definition' as related_product_definition.

If the name of the source Product_definition_relationship is 'collection membership' then a target instance of subtype
Collected _item_association is created.

If the source Product_definition_relationship is of type Next_assembly usage occurrence, then a target instance of
subtype Next_higher_assembly is created.

If the source Product_definition_relationship is of type Assembly _component_usage then a target instance of subtype
Assembly_component_relationship is created.

If dl of the above conditions are false, a target instance of subtype General_item_definition_instance relationship is
created.

PLM Adopted Specification 59

NEXT_

HIGHER_ASSEMBLY #95 o
rd |
related
NEXT_ASSEMBLY_
USAGE_OCCURRENCE SINGLE_INSTANCE #98
#101
A |

Figure 10 - Instance mapping for next higher assembly

EXPRESS-X Mapping Specification:

MAP item definition_instance_relationship_mp AS

rel : itemdefinition_instance_relationship;
FROM

pdr : product _definition_relationship;
VWHERE

wr1l: pdr.relating_product_definition.frame_of_reference. nane
"part definition'

wr2: (pdr.related_product_definition.frame_of_reference. nane
"part occurrence') OR

(" AUTOVOTI VE_DESI GN. ASSEMBLY_COVPONENT_USAGE' | N TYPEOR(rel)) AND

(pdr.rel ated_product _definition.frame_of reference. name =
"part definition');
SELECT
rel.relating := ddid_map(pdr.relating_product _definition);
rel.related

IN TYPEOF(rel)
THEN
item.instance_map(
pdr.rel at ed_product _definition
<-rel ated_product _definition
{product _definition_relationship
nane = 'definition usage'}::
rel ating_product _definition{product _definition|
pdr I N product_definition<-occurence
{product definition_occurrence_rel ationship}
:roccurrence_usage}[1]);
ELSE
item.instance_map(pdr.rel ated_product _definition);
END | F;

I F " AUTOMOTI VE_DESI GN. ASSEMBLY_COMVPONENT_RELATI ONSHI P

60 PLM Adopted Specification

END_MAP;

MAP assenbly_structure_nmap AS

rel : assenbly_conponent rel ationship;
SUBTYPE OF (itemdefinition_instance_rel ationship_nmap)
VWHERE

" AUTOMOTI VE_DESI GN. ASSEMBLY _COVPONENT _RELATI ONSHI P | N TYPEOF(pdr) ;
SELECT
acr. pl acenent 1=
nodel _rel ationshi p_map(pdr<-definition{product_definition_shape}
<-represented_product _relation
{cont ext _dependent _shape_representati on}
c:representation_relation[1]);
END_MAP;

MAP next _hi gher_assenbly nmap AS

rel : next_higher_assenbly;
SUBTYPE OF (assenbly_structure_nmap);
VWHERE

' AUTOMOTI VE_DESI GN. NEXT_ASSEMBLY USAGE_OCCURRENCE' | N TYPEOF(pdr);
END_MAP;

MAP col | ected_item associ ati on_nmap AS

rel : collected item association;
SUBTYPE OF (itemdefinition_instance_relationship);
VWHERE

pdr.nanme = 'collection nenbership';
END_MAP;

MAP general itemdefinition_instance relationship_nmap AS

rel : general itemdefinition_instance rel ationship;
SUBTYPE OF (itemdefinition_instance_relationship);
V\HERE
OTHERW SE;
SELECT
rel.description := pdr.description;
rel.relation_type := pdr.naneg;
END_MAP;

7.4.2.3 ltem relationships

A target instance of type Item_definition_relationship is created from a source instance of
Product_definition_relationship, which is not of type Assembly component_usage, where the related and relating
Product_definition reference a Product_context as frame_of _reference with name attribute value 'part definition’. The
exact type of the target instance depends on the subtype of the Product_definition_relationship.

PLM Adopted Specification

PRODUCT_
DEFINITION_ ITEM_DEFINITION_RELATIONSHIP
RELATIONSHIP #1
#1
| | V| A

V|
Figure 11 - Instance mapping for item relationships

EXPRESS-X Mapping Specification:

MAP item definition_relationship_map AS

idr : itemdefinition_relationship;
FROM

pdrel : product_definition_relationship;
VWHERE

wr 1l: pdrel.relating_product_definition.frane_of _reference. nane
= 'part definition';
wr2: pdrel.related_product _definition.franme_of reference. nane
= 'part definition';
wr3: NOT (' AUTOMOTI VE_DESI GN. ASSEMBLY_COVPONENT _USAGE' | N TYPEOF(rel));
SELECT
idr.relating :
idr.rel ated
END_MAP;

ddi d_map(pdrel .relating_product _definition);
ddi d_map(pdrel .rel ated_product _definition);

MAP neke fromrel ati onship_nmap AS
idr : nmake_fromrel ationship;
SUBTYPE_OF (itemdefinition_relationship_nmap);
VWHERE
wr 3: ' AUTOMOTI VE_DESI GN. MAKE_FROM USAGE_OPTI ON' I N TYPECF(pdrel);
SELECT
idr.description := pdrel.description;
END_MAP;

MAP repl aced_definition_relationship _map AS
idr : replaced_definition_relationship;
SUBTYPE OF (itemdefinition_relationship_nmap);

VWHERE

wr 3: pdrel.nane = "definition replacenent’;
SELECT

idr.description := pdrel.description;

62 PLM Adopted Specification

END_MAP;

MAP geonetrical _rel ationship_mp AS
idr : geonetrical _relationship;
SUBTYPE OF (itemdefinition_relationship_nap);

VWHERE

wr 3: pdrel.name = 'geonetrical relationship';
SELECT

idr.description := pdrel.description;

idr.definition_placenent :=
nodel _rel ationship_trafo_map(pdrel <-definition{product_definition_shape}
<-represented_product _relation
{cont ext _dependent _shape_representati on}
:representation_relation[1]);
END_MAP;

MAP tool part_relationship_map AS
idr : tool part_relationship;

VWHERE
wr3: pdrel.nane = "tool part relationship';
SELECT
i dr.used_technol ogy_description := pdrel.description;

idr.placement :=
nmodel rel ationship_trafo_map(pdrel <-definition{product_definition_shape}
<-represented_product _relation
{cont ext _dependent _shape_representati on}
:representation_relation[1]);
END_NVAP;

MAP general itemdefinition_relationship_map AS
idr : general itemdefinition_relationship
SUBTYPE OF (itemdefinition_relationship_nmap);
VWHERE
OTHERW SE
SELECT
idr.description := pdrel.description;
idr.relation_type := pdrel.naneg;
END_NAP;

7.4.2.4 Item instance entities

A target instance of type Item_instance is created out of a source instance of type Product_definition that references an
instance of type Product_definition_context with name 'part occurrence' as frame_of _reference. Depending on the value of
the name attribute of the source instance the target instance is of subtype Single_instance (for value 'single instance'),
Quantified_instance (for value 'quantified instance'), Selected_instance (for value 'selected instance') or
Specified_instance (for value 'specified instance).

PLM Adopted Specification 63

PRODUCT_
DEFINITION #1

Figure 12 - Instance mapping for item instance entities

EXPRESS-X Mapping Specification:

MAP item.instance_nap AS

ii : item.instan
FROM

pd : product _def
VHERE

pd. franme_of refe
SELECT

ii.description

ii.id := pd.id;

ii.definition :

END_MAP;

64

ce;
inition;
rence. nane = 'part occurrence'

;= pd.description;

| F SI ZEOF(pd<-rel at ed_product _definition
{product _definition_relationship
name = 'definition usage'}) > 0
THEN
ddi d_map(pd<-rel ated_product _definition
{product _definition_relationship
nane = 'definition usage'}
c:relating_product_definition[1]);
ELSE
product _identification_nmap
pd<-desi gn{configuration_design
name = 'occurrence usage definition'}

ITEM_INSTANCE
#1

::configuration{product_identification}[1]);

END | F;

PLM Adopted Specification

MAP singl e_i nstance_map AS

ii : single_instance;
SUBTYPE OF (item.instance);
WHERE

pd. name = 'single instance';
END_NVAP;

MAP quantified_instance _map AS
ii : quantified_instance;
SUBTYPE OF (item.instance);

VWHERE
pd. name = 'quantified instance';
SELECT
ii.quantity := nunerical _val ue_map(
pd<-definition{property definition
nane = 'occurrence quantity'}
<-definition{property definition_representation}
::used_representation{representation | name='quantity'}
critens{neasure_representation_item |
nane = 'quantity nmeasure'}[1]);
END_MAP;

MAP sel ected_i nstance_nmap AS
ii : selected instance;
SUBTYPE OF (item.instance);

VWHERE
pd. nane = 'sel ected instance';
SELECT
ii.selection_control :=
pd<-definition{property definition | nane = 'occurrence selection'}
<-definition{property definition_representation}
::used_representation{representation | nanme = 'selection criteria'}
critens{descriptive_representation_item |
nane = 'selection control' }[1].description
ii.selected quantity := value with unit_map(
pd<-definition{property definition | nane = 'occurrence selection'}
<-definition{property definition_representation}
::used_representation{representation | nane = 'selection criteria'}
ciitems{representation_item| nane = 'selection quantity'}[1]);
END_MAP;

MAP specified_i nstance _map AS
ii : specified_instance;
SUBTYPE OF (item.instance);
VWHERE
pd. name = 'specified instance'
SELECT
ii.assenbly context := assenbly definition_map(
pd<-occurrence{product _definition_occurrence_rel ationshi p}
::occurrence_usage{specified_hi gher _usage_occurrence}

PLM Adopted Specification 65

c:relating_product_definition[1]);
ii.related _instance := item.instance_map(
pd<-occurrence{product _definition_occurrence_rel ationship}
::occurrence_usage{speci fi ed_hi gher _usage_occurrence}
;. next _usage{next _assenbly usage_occurrence}
<-occurrence_usage{product _definition_occurrence_relationship}
:roccurrence{product _definition}[1]);
ii.upper_usage := item.instance_map(
pd<-occurrence{product _definition_occurrence_rel ationship}
::upper _usage{next _assenbly usage_occurrence}
::occurrence_usage{speci fi ed_hi gher _usage_occurrence}
<-occurrence_usage{product _definition_occurrence_rel ationship}
:roccurrence{product _definition}[1]);
END_MAP;

7.4.2.5 Item instance relationships

A target instance of type Item_instance_relationship is created out of a source instance of type
Product_definition_relationship that references instances of type Product_definition with aframe_of _reference name 'part
occurrence' both as related_product_definition and as relating_product_definition. If the value of the name attribute of the
source instance is 'usage re-placement' the target instance is of subtype Replaced usage relationship, otherwise the target
instance is of subtype General_item_instance relationship.

A target instance of type Replaced usage relationship is also created out of a source instance of type
Product_definition_substitute that refers to a Product_definitions with a frame_of _reference name 'part occurrence' as
substitute_definition and context_relationship.

EXPRESS-X Mapping Specification:

MAP item.instance_relationship_map AS

iir : iteminstance_relationship ;
PARTI TI ON p_pdr ;
FROM

pdr : product_definition_relationship ;
VWHERE

wl : pdr.relating_product_definition.frame_of _reference. nane =
"part occurrence' ;
w2 : pdr.rel ated_product_definition.frame_of _reference. nane =
"part occurrence' ;
RETURN (item.instance_rel ati onshi p_pdrel map(pdr));
PARTI TI ON p_psubst ;

FROM
ps : product_definition_substitute;
VWHERE
ps. substitute _definition.frame_of reference.name = 'part occurrence';
RETURN (repl aced_usage_rel ati onshi p_subst_nmap(ps));
END MAP ;
DEPENDENT_MAP item i nstance_rel ationship_pdrel _nmap AS
iir : iteminstance_relationship ;
FROM

pdr : product_definition_relationship ;

66 PLM Adopted Specification

SELECT
iir.related := item.instance_map(pdr.related_product _definition) ;
END_ DEPENDENT _NMAP ;

DEPENDENT _MAP general _item.instance_rel ationship_pdrel _nmap AS
iir : general iteminstance relationship
SUBTYPE OF (item.nstance_relationship _pdrel _map) ;

VWHERE
OTHERW SE ;

SELECT
irr.relating := item.instance_map(pdr.rel ated product _definition);
irr.relation_type := pdr.nane ;

END_DEPENDENT_MAP ;

DEPENDENT _MAP repl aced_usage _rel ationshi p_pdrel _map AS
iir : replaced_usage_relationship ;
SUBTYPE OF (item.nstance_relationship _pdrel _map) ;

VWHERE
(pdr.nane = 'usage replacenent') OR
(pdr.nane = 'process input or output replacenent');
SELECT
irr.description ;= pdr.description
irr.relating = item.instance_map(pdr.relating product _definition);
irr.usage_context := process_operation_input_or_out put_nmap(

pdr.relating_product _definition
<-defined_product{process_product_association}[1]);

END_DEPENDENT_MAP ;

DEPENDENT _MAP repl aced_usage rel ati onshi p_subst_nmap AS
rur : replaced_usage_relationship ;

FROM
ps : product_definition_substitute
SELECT
rur.related := item.instance_map(ps.substitute definition) ;

rur.relating :=
item.instance_map(ps.context_relationship
<-occurrence_usage{product _definition_occurrence_rel ationship}
;roccurrence[1]) ;
rur.usage_context :=
I F ' AUTOMOTI VE_DESI GN. PRODUCT_DEFI NI TI ON_USAGE' I N
TYPEOF(ps. cont ext _rel ati onshi p)

THEN

product _structure_rel ationshi p(ps. context_rel ationship) ;
ELSE

itemdefinition_instance_rel ationship(ps.context_relationship) ;
END | F ;

END_DEPENDENT_MAP ;

PLM Adopted Specification

7.4.2.6 Instance_placement

A target instance of type Instance_placement is created out of a source instance of type
Representation_relation_with_transformation with name 'instance placement'.

EXPRESS-X Mapping Specification:

MAP i nstance_pl acenent _nmap AS

ip : instance_pl acenent;
FROM

rrel : representation_relation with transformation;
VWHERE

rrel.nane = 'instance placenent';
SELECT

i p. pl aced_i nstance := single_instance_map(

rrel::rep_1{shape_representation}
<-used_representation{shape_definition_representation}
represented_definition{product _definition_shape}

c:definition{product _definition | (nane = 'single instance')
AND (frane_of _reference.nane = 'part occurrence')}[1]);
i p. pl acement := geonetric_nodel _relationship(rrel);

i p. reference_product _conponent :=
| F ' AUTOVOTI VE_DESI GN. SHAPE REPRESENTATI ON' I N TYPEOF(rrel .rep_2) THEN
product _conponent _map(rrel.rep_2
<-used_representati on{shape_definition_representation}
represented_definition{product _definition_shape}
c:definition{product_definition | frane_of _reference.name =
"conceptual definition')}[1]);

ELSE
product _conponent _map(rrel::rep_2{representation
nane = 'nodel property value'}
<- used_representation{property definition_representation}
represented_definition{property definition |
name = 'positioning'}
c:definition{product_definition | frane_of _reference. name =
"conceptual definition')}[1]);
END | F;
END_MAP;

7.4.2.7 Component_placement

A target instance of type Component_placement is created out of a source instance of type
Representation_relation_with_transformation with name ‘component placement'.

EXPRESS-X Mapping Specification:

MAP conponent _pl acenent _nmap AS

ip : conpnent_placenent;
FROM

rrel : representation_relation with transformation;
VWHERE

68 PLM Adopted Specification

rrel.nane = 'conponent placenent’;
SELECT
i p. pl aced_conponent : =
| F ' AUTOVOTI VE_DESI GN. SHAPE_REPRESENTATI ON' I N TYPEOF(rrel .rep_1) THEN
product conponent _map(rrel::rep_1{shape_representation}
<-used_representati on{shape_definition_representation}
represent ed_definition{product _definition_shape}
c:definition{product_definition | frane_of _reference. name =
"conceptual definition}[1]);

ELSE
product _conponent _map(rrel::rep_1{representation
nane = 'nodel property value'}
<- used_representation{property definition_representation}
represented_definition{property definition |
name = 'positioning'}
s definition{product_definition | frane_of _reference. name =
"conceptual definition')}[1]);
END | F;
i p. pl acement := geonetric_nodel relationship(rrel);

i p. reference_product _conponent : =
| F ' AUTOVOTI VE_DESI GN. SHAPE_REPRESENTATI ON' I N TYPEOF(rrel.rep_2) THEN
product conponent _nmap(rrel.rep_2
<-used_representati on{shape_definition_representation}
represent ed_definition{product_definition_shape}
s definition{product_definition | frane_of _reference.name =
"conceptual definition')}[1]);

ELSE
product _conponent _map(rrel::rep_2{representation
nane = 'nodel property value'}
<- used_representation{property definition_representation}
represented_definition{property definition |
name = 'positioning'}
c:definition{product_definition | frane_of _reference.name =
"conceptual definition')}[1]);
END | F;
END_MAP;

7.4.3 Document and File Management
7.4.3.1 Document

An instance of type Document in the target schema is created out of an instance of type Product in the source schema.

Conditions: attribute 'products of at least one instance of type Product_related product_category where the value of the
name attribute is 'document’, refers to the Product instance.

PLM Adopted Specification 69

PRODUCT_RELATED_
PRODUCT_CATEGORY #89 PRODUCT #88 DOCUMENT #93

name=document products
-
4 |
A p)
| y)

Figure 13 - Instance mapping for document

EXPRESS-X Mapping Specification:

MAP docunent _nmap AS
doc : docunent;

FROM

p . product;

prpc : product_rel ated _product category;
VWHERE

wl: p IN prpc. products;

wr2: prpc.name = 'docunent’;
| DENTI FI ED_BY p;
SELECT

doc. docunent _id := p.id;

doc. nane = p. nane;

doc. description := p.description;
END_MAP;

7.4.3.2 Document_version

An instance of type Document_version in the target schema s created out of an instance of type
Product_definition_formation in the source schema.

Conditions: Attribute of _product refers to an instance of type Product that is mapped to a Document.

70 PLM Adopted Specification

a A |
PRODUCT_
DEFINITION_FORMATION DOCUMENT_VERSION #94
#90
|
o | |
A A |

Figure 14 - Instance mapping for document version

EXPRESS-X Mapping Specification:

MAP docunent _versi on_map AS
dv : docunent version;

FROM
pdf : product_definition_formation;
VWHERE
EXI STS(docunment _map(pdf . of _product));
SELECT
dv.id := pdf.id;
dv. associ at ed_docunent : = docunent _map(pdf.of _product);
dv. description := pdf.description;
END_MAP;

7.4.3.3 Document_version_relationship
A target instance of Document_version_relationship is created out of a source instance of type

Product_definition_formation_relationship which refers to instances of type Product_definition_formation that are
mapped to Document_versions both as related _product_definition and as relating_product_definition.

PLM Adopted Specification

FORMATION_RELATI HIP #
o ON_ ONs RELATIONSHIP #1

PRODUCT_DEFINITION_ J
1

DOCUMENT_VERSION_ J

|
Figure 15 - Instance mapping for document version relationship

EXPRESS-X Mapping Specification:

MAP docunent _version_rel ationshi p_map AS
ivr : docunent_version_relationship;
FROM
pdfr : product_definition_formation_relationship;
VWHERE
wr1: EXI STS(docunent _versi on_map
(pdfr.related_product _definition_formation));
wr 2: EXI STS(docunent _versi on_map
(pdfr.relating product _definition_formation));
SELECT
i vr.description := pdfr.description
ivr.relation_type := pdfr.nane;
ivr.related D=
docunent _version_nmap(pdfr.related_product _definition_formation);
ivr.relating L=
docunent _version_nmap(pdfr.relating product _definition_formation);
END_MAP;

7.4.3.4 Physical_document and Digital_document

A target instance of type Digital_document or Physical _document is created out of an instance of type Product_definition
in the source schema.

[1] A Digital_document iscreated if the attribute frame_of _reference of the source instance refers to an instance of type
Product_definition_context that has an attribute 'name’ with value 'digital document definition'.

72 PLM Adopted Specification

[2] A Physical_document is created if the attribute frame_of_reference of the source instance refersto an instance of type

Product_definition_context that has an attribute 'name’ with value 'physical document definition'.

| A a
A a
PRODUCT
= PRODUCT_DEFINITION_
DERINITIONZCONTEXTLS WITH_ASSOCIATED_ DIGITAL_DOCUMENT #110
name=digital document | frame_of reference
1 DOCUMENTS #109
definition p
| A a

Figure 16 - Instance mapping for digital document

EXPRESS-X Mapping Specification:

MAP docunent representation_map AS
drep : docunent _representation;

FROM

pd : product_definition;
VHERE

pd. frame_of reference.nane = 'digital docunment definition';
SELECT

drep.id = pd.id;

drep. description
drep. associ at ed_docunent _versi on
drep.representation_format :=
docunent _format_property_nmap(pd<-definition{property definition
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation
nane = 'docunent format'}[1]);

pd. descri ption;
docunent _ver si on_map(pd. for mation);

drep.content :=
docunent _content _property nmap(pd<-definition{property definition |
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation
nane = 'docunent content'}[1]);
drep.creation : =

PLM Adopted Specification

73

docunent _creation_property _map(pd<-definition{property definition |
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation |
nane = 'docunent creation'}[1]);
drep. common_Il ocation : =
FOR EACH idx I N pd<-itens{applied external _identification_assignnment |
role.nane = 'common | ocation'}
RETURN docunent | ocation_property nmap(i dx.source);
END_MAP;

MAP di gital docunent_nmap AS
drep : digital _docunent;
SUBTYPE OF (docunent _representation_nap);

VWHERE
pd. frame_of reference.name = '"digital docunment definition';
SELECT
drep.file := |IF " AUTOMOTI VE_DESI GN. ' +
PRODUCT _DEFI NI TI ON_W TH_ASSOCI ATED DOCUMENTS' | N
TYPEOF(pd)
THEN
FOR EACH df I N pd. docunmentation_ids
RETURN digital _file_nmap(df);
ELSE
[1;
END | F;
END_MAP;

MAP physi cal _docunment _map AS
drep : physical docunent;
SUBTYPE OF (docunent _representation_nap);

VWHERE
pd. frane_of reference. name = ' physical docunent definition';
SELECT
drep. conponent := | F ' AUTOMOTI VE DESI GN.' +
PRODUCT_DEFI NI TI ON_W TH_ASSOCI ATED_DOCUMENTS' | N
TYPEOF(pd)
THEN
FOR EACH df I N NVL(pd.docunentation_ids,[]);
RETURN har dcopy_nap(df);
ELSE
[1;
END | F;
END_MAP;

7.4.3.5 Digital_file and Hardcopy

A target instance of type Digital_file or Hardcopy is created out of a source instance of type Document_file.

Conditions:

74 PLM Adopted Specification

[1] Thereisat least oneinstance of type Document_representation_type that references the Document_file instance with
atribute 'represented_document'.

[2] If thevalue of attribute 'name' of the referencing Document_representation type instance is'digital' aDigita_fileis cre-
ated.

[3] If thevalue of attribute 'name' of the referencing Document_representation_type instance is 'physica’ a Physica_fileis
created.

DOCUMENT_
REPRESENTATION_TYPE DOCUMENT_FILE #105 DIGITAL_FILE #103

#106 epresented_document +
| V|

Figure 17 - Instance mapping for digital file

EXPRESS-X Mapping Specification:

MAP docunent _file _map AS
docf : docunment file;
FROM
df : docunent file;
drt : docunment _representation_type;
VWHERE
wl: drt.represented docunment :=: df;
w2: drt.name IN ["digital', 'physical'];
| DENTI FI ED_BY df;
SELECT
docf.file_id := df.id;
docf.docunent _file type := docunent _type property map(df.kind);
docf.file format :=
docunent _format_property_nmap(df <-definition{property definition
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation
nane = 'docunent format'}[1]);

PLM Adopted Specification 75

docf.content :=
docunent _content _property _map(df<-definition{property definition |
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation |
nane = 'docunent content'}[1]);
docf.creation : =
docunent _creation_property map(df<-definition{property definition |
nane = 'docunent property'}
<-definition{property definition_representation}
::used_representation{representation |
nane = 'docunent creation'}[1]);
docf.external _id_and | ocation :=
FOR EACH idx IN df<-itens{applied _external _identification_assignnment |
role.nane = 'external docunent id and |ocation'}
RETURN external _file_ id _and_ | ocation_map(idx);
END_MAP;

MAP digital _file_nap AS

docf : digital _file;
SUBTYPE OF (docunent file_ nmap);
VWHERE

drt.nane = 'digital"';
END_MAP;

MAP har dcopy_nap AS

docf : hardcopy;
SUBTYPE OF (docunent file_ nmap);
VWHERE

drt.nane = 'physical';
END_MAP;

7.4.3.6 Document_structure
A target instance of type Document_structure is created out of a source instance of type Product_definition_relationship

that references product_definition instances as relating_product_definition and related_product_definition which are both
mapped to Document_representation instances.

76 PLM Adopted Specification

PRODUCT _
DEFINITION_RELATIONSHIP POCURENT=STRUCTURE
#111
#114
|
| A

Figure 18 - Instance mapping for document structure

EXPRESS-X Mapping Specification:

MAP docunent _structure_nmap AS
dstr : docunent structure;
FROM
pdr : product_definition_relationship;
VWHERE
wr1: EXI STS(docunent _representation _map(
pdr.rel ated_product_definition));
wr 2: EXI STS(docunent _representati on_map(
pdr.rel ating_product _definition));
SELECT
dstr.related : =
docunent _representation_map(pdr.rel ated_product _definition);
dstr.relating: =
docunent _representati on_map(pdr.relating _product_definition);

dstr.relation_type := pdr.nane;
dstr.description := pdr.description;
END_MAP;

7.4.3.7 Document Assignments

A target instance of type Document_assignment is created out of a source instance of type Applied_document_reference.

PLM Adopted Specification 77

OBJECT_ROLE #10

role

A

DOCUMENT_
PRODUCT_EQUIVALENCE
#6

assigned_dogument

APPLIED_
DOCUMENT_REFERENCE
#4

item_witPIroIe

ROLE_ASSOCIATION #9

J
J
J

Figure 19 - Instance mapping for document assignment

EXPRESS-X Mapping Specification:

MAP item docunent _assi gnnent _nmap AS
da : docunent _assi gnnment;

FROM
adr : applied_docunent _reference;
p . product;
dpa : docunent product _equival ence

dp : product;
VWHERE

wl: p INadr.itens;

wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product
wr4: adr.assi gned_docunent. ki nd. product _data_type

c=odp;

‘configuration controlled docunment';

SELECT

da. assi gned_docunent

da.is_assigned_to
da.role
END_MAP;

78

= docunent _map(dp);

item map(p);
adr . rol e. nane;

DOCUMENT_ASSIGNMENT

#117

4

PLM Adopted Specification

MAP item docunent version_assi gnnent_nmap AS
da : docunent _assignnent;
FROM
adr : applied_docunent _reference;
p : product;
dpa : document _product _equi val ence
dpdf : product _definition_formation;

VWHERE
wl: p INadr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product : = dpdf;

wr4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent version'
SELECT
da. assi gned_docunent
da.is_assigned_to
da.role
END_MAP;

docunent _versi on_map(dpdf);
item map(p);
adr.rol e. nane;

MAP item docunent representation_assi gnnent_map AS
da : docunent assignnent;

FROM
adr : applied _docunment reference;
p . product;

dpa : document _product _equi val ence
dpd : product _definition;

VWHERE
wl: p INadr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product :=: dpd;

wr4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent representation';
SELECT
da. assi gned_docunent
da.is_assigned_to
da.role
END_MAP;

docunent _representati on_map(dpd);
item map(p);
adr.rol e. nane;

MAP itemdigital file_assignnent_map AS
da : docunent _assignnment;

FROM
p . product;
adr : applied_docunent _reference;
df : docunent file;
VWHERE
wl: p INadr.itens;
wr 2: adr.assigned _docunent :=: df;
SELECT
da. assi gned_docunent := digital _file_map(df);

PLM Adopted Specification 79

item map(p);
adr . rol e. nane;

da.is_assigned_to
da.role
END_MAP;

----- itemversion ---

MAP item version_docunent _assi gnnent_nmap AS
da : docunent _assi gnnment;
FROM
adr : applied_docunent _reference;
pdf : product_definition_formation;
dpa : docunent _product _equi val ence

dp : product;
VWHERE
wl: pdf IN adr.itenmns;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c=odp;

wr4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent"';

SELECT
da. assi gned_docunent := docunent _nmap(dp);
da.is_assigned_to = itemyversion_map(pdf);
da.role = adr.rol e. naneg;
END_MAP;

MAP item version_docunent _version_assi gnnent_nmap AS
da : docunent _assi gnnment;

FROM
adr : applied_document _reference;
pdf : product _definition_formation;
dpa : docunent product _equival ence
dp : product _definition_formation;
VWHERE
wl: pdf IN adr.itenmns;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c=odp;

wr 4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent version'
SELECT
da. assi gned_docunent
da.is_assigned_to
da.role
END_MAP;

docunent _versi on_map(dp);
itemversion_map(pdf);
adr . rol e. nane;

MAP item version_docunent representation_assi gnnent_nmap AS
da : docunent _assi gnnent;

FROM
adr : applied_docunent _reference;
pdf : product_definition_formation;
dpa : docunent _product _equi val ence
dp : product _definition

80 PLM Adopted Specification

VWHERE
wl: pdf IN adr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c= o dp;
wr 4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent representation';
SELECT
da. assi gned_docunent : =
da.is_assigned_to D=
da.role =
END_MAP;

docunent _representati on_map(dp);
item version_map(pdf);
adr.rol e. nane;

MAP itemversion_digital file_assignment_map AS
da : docunent _assignnent;

FROM
pdf : product_definition_formation;
adr : applied_docunent _reference;

df : docunent file;
VWHERE

wl: pdf IN adr.itens;

wr 2: adr.assigned _docunent :=: df;
SELECT

da. assi gned_docunent
da.is_assigned_to
da.role

END_MAP;

digital _file_map(df);
itemversion_map(pdf);
adr . rol e. nane;

MAP ddi d_docunent _assi gnnment _nmap AS
da : docunent _assignnent;

FROM
adr : applied_docunent _reference;
pd : product_definition
dpa : document _product _equi val ence
dp : product;

VWHERE
wl: pd IN adr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c=odp;

wr 4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent';
SELECT
da. assi gned_docunent
da.is_assigned_to
da.role
END_MAP;

docunent _map(dp);
ddi d_map(pd);
adr.rol e. nane;

MAP ddi d_docunent versi on_assi gnnent_nmap AS
da : docunent _assi gnnment;

FROM
adr : applied_docunent _reference;
pd: product _definition;

PLM Adopted Specification

dpa : docunent _product _equival ence

dp : product_definition_formation;
VWHERE
wl: pd IN adr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c= o dp;

wr4: adr.assi gned_docunent. ki nd. product _data_type =
"configuration controlled docunent version'
SELECT
da. assi gned_docunent
da.is_assigned_to
da.role
END_MAP;

docunent _versi on_map(dp);
ddi d_map(pd);
adr . rol e. nane;

MAP ddi d_docunent representation_assi gnnent _map AS
da : docunent _assi gnnment;

FROM
adr : applied_document _reference;
pd : product _definition
dpa : docunent product equival ence
dp : product _definition
VWHERE
wl: pd IN adr.itens;
wr 2: dpa.relating_docunent :=: adr.assigned_docunent;
wr 3: dpa.rel ated_product c=odp;

wr 4: adr.assi gned_docunent. ki nd. product _data_type =

"configuration controlled docunent representation';

SELECT
da. assi gned_docunent

da.is_assigned_to = ddi d_map(pd);
da.role = adr.rol e. naneg;
END_MAP;

MAP ddid digital file_assignnment_map AS
da : docunent _assignnent;

FROM
pd : product_definition
adr : applied_docunent _reference;

df : docunent file;
VWHERE

wl: pd IN adr.itens;

wr 2: adr.assigned _docunent :=: df;
SELECT

da. assi gned_docunent
da.is_assigned_to
da.rol e

END_MAP;

digital _file_map(df);
ddi d_map(pd);
adr . rol e. nane;

82

docunent representation_map(dp);

PLM Adopted Specification

7.4.3.8 Document_content, Document_format, Document_creation

Document property instances are referenced by instances of type Document_representation or Document_file. The
reference between the the Document_property instances and the referring instances are build by map calls in
digital_file_map and document_representation_map (see Chapter 7.4.3.4 and Chapter 7.4.3.6).

Document property instances are created out of instances of type Representation, depending on the name of the
Representation different types of Document_property instances are created:

value of AIM representation name | Type of PIM equivalence model property
document content document_content_property

document format document_format_property

document creation document_creation_property

document size document_size property

Additional conditions:

The value of the attribute context_type of the Representation_context instance referenced by the Representation must be
‘document parameters.

DESCRIPTIVE_REPRESENTATION_ITEM
#107
name=character code

PRODUCT_DEFINITION_CONTEXT #95
name=digital document definition

LI REPRESENTA TION #105

name=document format
DESCRIPTIVE_REPRESENTATION_ITEM DOCUMENT_CREA TION_PROPERTY #111

name=data format
frame_of Jreference

used_reprpsentation

cregtion

PRODUCT_DEFINITION_WITH_ASSOCIATED_DOCUMENTS PROPERTY _DEFINITION #103 PROPERTY_DEFINITION_REPRESENTATION | context_|of_items

definition | name=document property [definition #104 DIGITA L_DOCUMENT
#110
documentation_ids
file
REPRESENTATION_CONTEXT #99
context_type=document parameters
DIGITAL_FILE #108
PROPERTY_DEFINITION #96 PROPERTY_DEFINITION_REPRESENTA TION
DOCUMENISHILEL91 definition name=document property |efnition #97 context_fof items

file_fprmat

document used_reprpsentation
C DESCRIPTIVE_REPRESENTATION_ITEM

DOCUMENT_FORMAT_PROPERTY #109
name=operating system
REPRESENTATION #98

- name=document creation

DOCUMENT_REPRESENTATION_TY PE #93
name=digital

DESCRIPTIVE_REPRESENTATION_ITEM itgms

name=creating system

DESCRIPTIVE_REPRESENTATION_ITEM
#102 f
name=creating interface

Figure 20 - Instance mapping for document content properties

PLM Adopted Specification 83

EXPRESS-X Mapping Specification:

MAP docunent _content _property_map AS
dcp : docunent _content _property;

FROM
rep : representation
VWHERE
wrl: rep.context_of itens.context type = 'docunent paraneters';
wr2: rep.name = 'dounment content';
SELECT
dcp.detail _level :=rep::itens{descriptive representation_item |
nane = 'detail level'}[1].description;
dcp. geonetry type := rep::itens{descriptive representation_item |
nane = 'geonetry type'}[1].description;
dcp.real _world_scale := nunerical value map(rep::itens
{measure_representation_item |
nane = 'real world scale' }[1]);
dcp. l anguages := FOR EACH | ang I N rep<-itens{l anguage_assi gnnent |
rol e.nane = 'l anguage'}

::assigned_cl ass{l anguage}
RETURN | anguage_map(| ang);
END_ MAP;

MAP docunent format_property nmap AS
df p : document _format_property;

FROM
rep : representation
VWHERE
wrl: rep.context_of itens.context type = 'docunent paraneters';
wr2: rep.name = 'docunment format';
SELECT
df p.character_code := rep::itens{descriptive_representation_item|
nane = 'character code'}[1].description;
df p.data format := rep::itens{descriptive_ representation_item|
nane = 'data format'}[1].description;
END_MAP;

MAP docunent creation_property map AS
dcp : docunent _creation_property;

FROM
rep : representation

VWHERE
wrl: rep.context_of itens.context type = 'docunent paraneters';
wr2: rep.nane = 'docunent creation'

SELECT

rep::itenms{descriptive_representation_item |
nane = 'creating interface'}

[1] . descri ption;
rep::itenms{descriptive_representation_item |
nane = 'creating system}

[1] . descri ption;

dcp.creating_interface

dcp. creating_system

84 PLM Adopted Specification

dcp. operating_system

END_MAP;

MAP docunent _size property _map AS

nane = 'operating systeni}
[1] . description;

= rep::itens{descriptive_representation_item|

dcp docunent _si ze_property;
FROM

rep : representation;
VWHERE

wrl: rep.context_of itens.context type = 'docunent paraneters';

wr2: rep.nanme = 'docunent size';
SELECT

dep.file_size := value_with_unit_map(rep::itens{representation_item |
name = 'file size' }[1]);

dcp. page_count := value with unit_map(rep::itens{representation_item |
nane = 'page count'}[1]);
END_MAP;

7.4.3.9 Document properties

An instance of type Document_location_property is created out of an instance of type External _source which is attached
to a Document_representation or Document_file instance by an instance of type

Applied_external _identification_assignment.

An instance of type Document_type property is created out of an instance of type Document_type which is referenced by
a Document_file.

PRODUCT_DEFINITION_CONTEXT #126
name=digital document definition

frame_of [reference

IDENTIFICATION_ROLE
#123
name =common location

PRODUCT_DEFINITION_WITH_ASSOCIATED_DOCUMENTS

#118

APPLIED_EXTERNA L_IDENTIFICATION ASSIGNMENT

#120

éms solrce
documentation_ids

item soyrce

EXTERNAL_SOURCE #122

DIGITAL_DOCUMENT #117

W) fﬁ

DOCUMENT_LOCATION_PROPERTY #115

DIGITA L_FILE #116

=3
8

externgl_igrand_location
dion documen file_type

DOCUMENT_FILE #119

APPLIED_EXTERNA L_IDENTIFICATION ASSIGNMENT

#121

EXTERNAL_FILE_ID_AND_LOCA TION
#113

DOCUMENT_TY PE_PROPERTY #112

A

represenl;é)cumem N

DOCUMENT_REPRESENTATION TYPE

#125
name=digital

DOCUMENT_TY PE #92

IDENTIFICA TION_ROLE #124
name=external document id
and location

Figure 21 - Instance mapping for document properties

PLM Adopted Specification

85

EXPRESS-X Mapping Specification:

DEPENDENT _MAP docunent | ocation_property _map AS
dl p : docunent _| ocation_property;

FROM
src : external source;
SELECT
dl p.location_name := src.source_id;

END_DEPENDENT_MAP;

DEPENDENT _MAP external file_id and_| ocation_map AS

efl : external file_ id and | ocation;
FROM
idx : applied_external _identification_assignnent;
SELECT
efl .external _id := idx.assigned_id;
efl . location := docunent | ocation_property_map(i dx. source);

END_DEPENDENT_MAP;

DEPENDENT _MAP docunent type_property nmap AS
dt : docunent type property;
FROM
dtp : docunent _type;
SELECT
dt . docunment _type _nane := dtp.product _data_type;
DEPENDENT _END_INAP;

7.4.3.10 Rectangular_size, Named_size

A target instance of Rectangular_size is created out of a source instance of complex type Planar_extent with name 'size
format'.

If the source instance is of complex type Planar_extent and Descriptive_representation_item, a the target instance of
subtype Named_size is created.

86 PLM Adopted Specification

MEASURE_REPRESENTATION_ITEM,
PLANAR_EXTENT #1
name=size format

DESC RIPTIVE_REPRESENTATION_ITEMJ

4
NAMED_SIZE #1
V| A r j V|
4 4
Figure 22 - Instance mapping for named size
EXPRESS-X Mapping Specification:
MAP rectangul ar_size _nmap AS
rs : rectangul ar_si ze;
FROM
px : planar_extent;
VWHERE
wl : px.nanme = 'size format'
SELECT
rs.density := | F ' AUTOVOTI VE_DESI GN. MEASURE REPRESENTATI ON_| TEM
I N TYPEOF(px)
THEN
val ue_wi th_unit_map(px);
END | F;
rs.height := value_with_unit_map(px.size_in_y);
rs.wdth = value_wi th_unit_map(px.size_ in_x);
END_MAP;

MAP named_si ze_map AS

rs : naned_size;
SUBTYPE OF (rectangul ar_size_map);

wr 2: ' AUTOMOTI VE_DESI GN. DESCRI TPl TVE_REPRESENTATI ON_| TEM | N TYPEOF(pXx) ;
SELECT

nas. si ze : = px.description;

nas.referenced_standard := classification_system map(

px<-itens{applied_classification_assignment |
rol e.nane = 'class system nenbership'}
::assigned_cl ass{cl ass_systen}[1]);

END_MAP;

PLM Adopted Specification 87

7.4.4 Shape Definition and Transformation

7.4.4.1 Item_shape

An instance of type Item_shape is created out of an instance of type Product_definition_shape, that references a
Product_definition as definition, which is mapped to an instance of type Design_discipline_item_definition.

NEXT_HIGHER_ASSEMBLY #175,

DESIGN_DISCIPLINE_ITEM_DEFINITION
#187

EOMETRIC_MODEL_RELATIONSHIP_WITH_TRANSFORMATION|
83

GEOMETRIC_REPRESENTA TION_CONTEXT | | GEOMETRIC_REPRESENTATION CONTEXT
207 #252
CARTESIAN_COORDINATE SPACE_3D | | CARTESIAN_COORDINATE_SPACE_3D
#208 ns

PROPERTY_DEFINITION_REPRESENTATION|
#204

Figure 23 - Instance mapping for item shape

EXPRESS-X Mapping Specification:

MAP item shape_nmap AS

is : itemshape;
FROM

pds : product _definition_shape;
VWHERE

pds. definition.frame_of reference.nane = 'part definition';
SELECT

i s.description pds. descripti on;
i s.described_object := ddi d_map(pds.definition);
END_MAP;

7.4.4.2 Shape_description_association

An instance of type Shape_description_association is created out of an instance of type Shape_definition_representation,
that references a Product_definition_shape as definition, which is mapped to Item_shape.

EXPRESS-X Mapping Specification:

MAP shape_descri ption_associ ati on_nmap AS
sda : shape_description_association;
FROM
sdr : shape_definition_representation;
VWHERE

88 PLM Adopted Specification

sdr.definition.definition.frame_of reference.nane = 'part definition';
SELECT
sda. i s_defining shape for :=
I F ' AUTOMOTI VE_DESI GN. SHAPE_ASPECT'
I'N TYPEOF(sdr.definition.definition)

THEN
shape_el enent _nmap(sdr.definition.definition);
ELSE
i tem shape_map(sdr.definition);
END | F;
sda. defining_geonetry : = geonetric_nodel _nmap(sdr.used_representation);
sda.rol e = sdr. nane;
END_MAP;

7.4.4.3 Geometric_model

A target instance of type Geometric_model is created out of source instance of type Shape representation. that does not
refer to an instance of type Representation_context with context_type value 'external’.

EXPRESS-X Mapping Specification:

MAP geonetric_nodel _map AS
gm : geonetric_nodel ;

FROM
sr : shape_representation;
VWHERE
sr.context_of itens.context_type <> '"external';
SELECT
gm description := sr.description ;
gm nodel _extent := sr<-rep_1{representation_relationship |
name = 'nodel extent association'}
c:rep_2{representation |
name = 'nodel extent representation}
critens{representation_item |
nane = 'nodel extent value'}
::val ue_conponent;
gm nodel _id c=osr.id;

gmis_defined_in :=
cartesian_coordi nate_space_nap(sr.context_of itens);
END_MAP;

7.4.4.4 External models
An instance of type External_model is created out of an instance of type Representation that references a

Representation_context with context_type 'external' and that refers to an instance of type Axis2_placement_3d or
AXis2_placement_2d as items.

If the source instance is of type Shape representation then a target instance of type External_geometric_model is created.

PLM Adopted Specification 89

If the source instance refers to a Geometric_representation_context with a coordinate_space dimension value of 2 as
context_of items, a target instance of type External_picture is created.

EXPRESS-X Mapping Specification:

MAP ext ernal _nodel _map AS
enod : external nodel;

FROM
rep : representation
VWHERE
wl : rep.context_of itens.context type = 'external'

w2 : SIZEOF(rep::itens{axi s2_placenent_ 3d} +
rep::itens{axis2_placenment_2d}) > 0 ;

SELECT
enod. nodel _i d I = rep.nane;
enod. descri ption := rep.description

enod.is_defined as : =
digital file_ map(sr<-used_representation
{property definition_representation}
c:definition{property_definition |
name = 'external definition'}
c:definition{docunment _file}[1]);
enod.is _defined in :=
cartesian_coordi nate_space_nap(sr.context_of itens);
END_MAP;

MAP ext ernal _geonetric_nodel _nmap AS
enod : external geonetric_nodel ;
SUBTYPE OF (external nodel _map) ;

VWHERE
" AUTOMOTI VE_DESI GN. SHAPE_REPRESENTATI ON' | N TYPEOF(r ep) ;
SELECT
enod. nodel _extent := sr<-rep_1{representation_relationship |
name = 'nodel extent association'}
c:rep_2{representation |
name = 'nodel extent representation}
critens{representation_item |
nane = 'nodel extent value'}
::val ue_conponent;
END_MAP;

MAP external _picture map AS
enod : external picture
SUBTYPE OF (external _nodel map) ;
VWHERE
wrl : " AUTOMOTI VE_DESI GN. GEOVETRI C_REPRESENTATI ON_CONTEXT'
I N TYPEOF(rep. context_of _itens);
w2 : rep.context_of itens.coordinate_space_di nension = 2
END_MAP;

90 PLM Adopted Specification

7.4.45 Cartesian_coordinate_space and subtypes

An target Instance of type Cartesian_coordinate space is created out of a source instance of type

Geometric_representation_context.

If the value of the coordinate space dimension attribute of the source instance is 2 then a target instance of subtype
Cartesian_coordinate space 2d is created. If the attribute has the value 3, a target instance of type

Cartesian_coordinate_space 3d is created.

EXPRESS-X Mapping Specification:

MAP cartesi an_coordi nate_space_nap AS

ccs : cartesian_coordi nate_space;
FROM

grc : geonetric_representation_context;
SELECT

ccs.unit_of values := FOR EACH un IN grc.units;
RETURN uni t _nmap(un);

END_MAP;

MAP cartesi an_coordi nate_space_2d_nap AS
ccs : cartesian_coordi nate_space_2d;
SUBTYPE OF (cartesian_coordi nate_space_nap);
VHERE
grc. coordi nat e_space_di nension = 2 ;
END_MAP;

MAP cartesi an_coordi nate_space_3d_nap AS
ccs : cartesian_coordi nate_space_3d;
SUBTYPE OF (cartesian_coordi nate_space_nap);
VHERE
grc. coordi nate_space_di nension = 3 ;
END_MAP;

7.4.4.6 Accuracy

An target instance of type Accuracy is created out of a source instance of type Global _uncertainty assigned_context or

Uncertainty _assigned representation or Qualified_representation_item which refers to an instance of type

Standard_uncertainty as qualifiers.

EXPRESS-X Mapping Specification:

MAP accuracy_map AS
ac : accurracy;
PARTI TI ON p_gl ;

FROM

gl : global _uncertainty assigned_context;
SELECT

ac.accuracy_type := gl.nane;

ac. accuracy_val ue : =

gl .uncertainty{ uncertainty measure with unit}[1].val ue_conponent;

PLM Adopted Specification

91

ac.description :=
gl .uncertainty{ uncertainty neasure with unit}[1].description;
ac.is_defined for :=
geonetri c_nodel _map(gl <-context_of _itenms{shape_representation}[1]);
PARTI TI ON p_uar;

FROM

uar : uncertainty_assigned_context;
SELECT

ac.accuracy_type := uar.nane;

ac.accuracy_val ue : =

uar.uncertainty{ uncertainty _nmeasure with unit}[1].val ue_conponent;
ac.description :=

uar.uncertainty{ uncertainty_neasure_with_unit}[1].description;

ac.is_defined for := geonetric_nodel map(uar);
PARTI TI ON p_qual ;
FROM

grep : qualified representation_item
stu: standard_uncertainty;

VWHERE
stu IN grep.qualifiers;

| DENTI FI ED_BY qr ep;

SELECT
ac.accuracy_type := stu.nmeasure_nane;
ac.accuracy_val ue : = stu.uncertainty val ue;
ac.description := stu.description;

END_MAP;

7.4.4.7 Shape_element

An instance of type Shape element is created out of an instance of type Shape_aspect.

PRODUCT_DEFINITION_SHA PE #257 SHAPE_ASPECT #256 ITEM_SHAPE #255 SHAPE_ELEMENT #254
Shape Compostion
ethem defirftion is_defining shape_for is_defining| shape._for
PROPERTY_DEFINITION
SHAPE_D EFINITION_REPRESENTATION #260 — SHARESDEFINEDIO N REERESENTATION SHAPE_DESCRIPTION ASSOCIATION #265 SHAPE_DESCRIPTION_ASSOCIATION #178
#63 name=
"]

used_reprpsentation
used_reprpsentation defining_gleometry defining_beometry

SHAPE_REPRESENTATION
SHAPE_REPRESENTATION #262
#264

-

EXTERNA L_GEOMETRIC_MODEL
#266

EXTERMAL_GEOMETRIC_MODEL

Figure 24 - Instance mapping for shape element
EXPRESS-X Mapping Specification:
MAP shape_el enent _nmap AS

se : shape_el enent;
FROM

92 PLM Adopted Specification

sa : shape_aspect
SELECT

se. description

se. el enent _nane :

se. conposition
END_MAP;

= sa.description

sa. nane;
i tem shape_nmap(sa. of _shape);

2.4.4.8. Shape_el ement _rel ati onship
A target instance of shape_element _relationship is created out of a source instance
of type shape_aspect _rel ationship.

I nst ance Di agr ans:

Al M (PDM SCHEMA, AP214) Pl M equi val ence nodel

EXPRESS- X Mappi ng Specification:
MAP shape_el enent _rel ationship_nmap AS
ser : shape_el enent _rel ati onshi p;

FROM
sar : shape_aspect _rel ationship;
SELECT
ser.description := sar.description;
ser.relation_type := sar.nane;
ser.related : = shape_el ement _nap(sar.rel ated_shape_aspect);
ser.relating := shape_el enent _nmap(sar.rel ating_shape_aspect);

END_MAP;

7.4.4.8 Geometric_model _relationship

A target instance of type Geometric_model_relationship is created out of a source instance of type

Shape_representation_relationship. If the source instance is of type Representation_relationship_with_transformation, the

target instance will be of type Geometric_model_relationship_with_transformation.

EXPRESS-X Mapping Specification:

MAP nodel rel ationshi p_map AS
gnr : geonetric_nodel rel ationshi p;

FROM

srr : shape_representation_rel ationship;

SELECT
gnr.relating
gnr.rel ated

gnr.relation_type

END_MAP;

geonetri c_nodel _map(srr.rep_2);
geonetri c_nodel _map(srr.rep_1);
Srr.nane;

MAP nodel rel ationship trafo_map AS

gnr : geonetric_nodel _relationship with transformation

SUBTYPE OF (nodel _rel ationship_nmap);

WHERE

" AUTOMOTI VE_DESI GN. REPRESENTATI ON_RELATI ONSHI P_W TH_TRANSFORVATI ON'

I'N TYPEOF(srr);
SELECT

gnr . nodel _pl acenent

transformati on_map(srr.transformati on_operator);

PLM Adopted Specification

93

END_MAP;

7.4.4.9 Transformation, Transformation_3d, Axis2_placement_3d

A target instance of type Transformation 3d is created out of a source instance of type Mapped_item or
Item_defined_transformation or Cartesian_transformation_operator_3d. If the source instance is of type
Item_defined_transformation or if the source instance is a Mapped_item referencing an Axis2_placement_3d as
mapping_target then a target instance of subtype Implicit_transformation_3d is created, otherwise a target instance of

subtype Explicit_transformation_3d is created.
EXPRESS-X Mapping Specification:

MAP transformation_map AS
tr : transformation_3d;
PARTI TI ON p_mapped;
FROM
m t mapped_item ;
RETURN (nmapped_item map(idt));
PARI TI TION p_idt ;
FROM
i dt item defined_transformation ;
RETURN (inplicit_transformation_3d _map(idt));
PARTI TION p_fdt ;
FROM
pdt: cartesian_transfornmation_operator_3d;
RETURN (explicit_transformation_3d _map(idt));
END_MAP;

REPRESENTATION RELATIONSHIP_WITH_TRANSFORMATION
SHAPE_REPRESENTATION RELATIONSHIP #219

b2 transformatjon_operator rep>

GEOMETRIC_MODEL_RELATIONSHIP_WITH_TRANSFORMATION

#209

./14 model_placement k&c\‘

SHAPE_REPRESENTATION ITEM_DEFINED_TRANSFORMATION SHAPE_REPRESENTATION
#43 #220 #242

EXTERNAL_GEOMETRIC_MODEL
#244

IMPLIQT_TRANSFORMATION_3D EXTERNAL_GEOMETRIC_MODEL
#2110 #247

lfaﬂ?’éﬂ‘} ua%}
itefns .

AXIS2_PLACEMENT_3D

#223
‘7{

AXIS2_PLACEMENT_3D

1_origin

o

AXIS2_PLACEMENT 3D

#211
‘%4‘“ reffdlrxlon

afis

CARTESIA N_POINT #227

DIRECTION #229 CARTESIAN_PQINT #224/ 2! DIRECTION #226

CARTESIAN_POINT #230| 2fiS

1 target

AN

AXIS2_PLA CEMENT_3D

#212

ef_dlitgtion

DIRECTION #228 DIRECTION#225

Figure 25 - Instance mapping for implicit transformation

94

DIRECTION#232

afis DIRECTION #235
CARTESIAN_POINT #233)

DIRECTION #231

DIRECTION #234

PLM Adopted Specification

EXPRESS-X Mapping Specification (implicit_transformation):

DEPENDENT _MAP inplicit_transformation_3d_nmap AS

tr : inplicit_transformation_3d;
FROM
idt : itemdefined transformation ;
SELECT
tr.transformation_target := axis_placenent_nmap(trop.transformitem2);
tr.transformation_origin := axis_placenent_map(trop.transformitem1);

END_DEPENDENT_MAP;

REPRESENTATION_RELATIONSHIP_W ITH_TRA NSFORMATION GEOMETRIC_MODEL_RELATIONSHIP_WITH_TRANSFORMATION
SHAPE_REPRESENTATION_RELATIONSHIP #236
/v_z/ repN % Xﬂ\‘
SHAPE_REPRESENTATION SHAPE REPRESENTA TION
#248 transformatipn_operator v EXTERNAL_MODEL #250 model_pfacement EXTERNAL_MODEL #251

CARTESIAN_TRANSFORMATION OPERATOR_3D EXPLICIT_TRANSFORMATION_3D
#237 Mocalorig® CARTESIAN_POINT #240 w214 MocaTorigi® CARTESIAN_POINT #215
. A
f{ a%z kz\ % ax\iz Xa\-
DIRECTION #238 J DIRECTION #239 DIRECTION #241 J DIRECTION #216 DIRECTION #217 DIRECTION #218 J
-

Figure 26 - Instance mapping for explicit transformation

EXPRESS-X Mapping Specification (explicit_transformation):

DEPENDENT _MAP explicit_transformation_3d_map AS
tr @ explicit_transformation_3d;

FROM
cto : cartesian_transformation_operator_3d ;
SELECT
tr.axisl := direction_map(trop.axisl);
tr.axis2 := direction_map(trop.axis2);
tr.axis3 := direction_map(trop.axis3);
tr.local _origin := cartesian_point_map(trop.local origin);

END_DEPENDENT_MAP;

DEPENDENT _MAP mapped_item map AS
tr : transformation_3d ;

FROM
m : mapped_item;

END_ DEPENDENT _NMAP ;

DEPENDENT _MAP mapped_itemexplicit_trafo_map AS
tr @ explicit_transformation_3d;

PLM Adopted Specification

95

SUBTYPE OF (nmapped_item map) ;

VWHERE
" AUTOMOTI VE_DESI GN. CARTESI AN TRANSFORVATI ON_ 3D I N
TYPEOF(i . mappi ng_target) ;

SELECT
tr.axisl := direction_map(m . mappi ng_t arget. axisl);
tr.axis2 := direction_map(m . mappi ng_t arget. axi s2);
tr.axis3 := direction_map(m . mappi ng_t arget. axi s3);
tr.local _origin := cartesian_poi nt_map(m . mappi ng_target.|ocal _origin);

END_DEPENDENT_MAP ;

DEPENDENT _MAP mapped_iteminplicit_trafo_map AS

tr @ inplicit_tranformation_3d ;
SUBTYPE OF (napped_item map) ;
VWHERE

" AUTOMOTI VE_DESI GN. AXI S2_PLACEMENT_3D | N TYPEOR(m . mappi ng_t arget) ;
SELECT

tr.transformation_target axi s_placenment _map(m . mappi ng_target);

tr.transformation_origin := axis_placenent_map(n . mapping_origin);
END_DEPENDENT_NAP ;

7.4.4.10 Axis2_placement_3d, Cartesian_point and Direction

Target instances of type Cartesian_point and Direction are created out of the correspondingly named source instances.

EXPRESS-X Mapping Specification:

MAP axi s_placenent _map AS

t _axpl : axis2_placenent_3d;
FROM

s_axpl : axis2_placenent 3d;
SELECT

cartesian_point_map(s_axpl .l ocation);
direction_map(s_axpl.ref _direction);
direction_map(s_axpl.axis);

t _axpl .l ocation
t _axpl.ref_direction :
t _axpl.axis

END_MAP;

MAP cartesi an_point_map AS
t _cp : cartesian_point;

FROM

s_cp : cartesian_point;
SELECT

t _cp.coordi nates := s_cp. coordinates;
END_MAP;

MAP direction_map AS
t _dr : direction;

FROM
s dr : direction;
SELECT
t dr.direction_ratios := s _dr.direction_ratios;

96 PLM Adopted Specification

END_MAP;
7.45 Classification

7.45.1 Specific item and document classification

An instance of type Specific_item_classification is created out of an instance of type Product_related_product_category if
the referenced Product is mapped to an Item. If the referenced Product is mapped to a Document, the instance is mapped

to an instance of type Specific_document_classification.

PRODUCT_R ELA TED_PRODUCT_CATEGORY #76

PRODCT #75 % ST TEM #84 tm SPECIFIC_ITEM_CLASSIFICATION #83

category super_clafsification

PRODUCT_CATEGORY _RELATIONSHIP #77 SPECIFIC_ITEM_CLA SSIFICA TION_HIERARCHY #85
4
sub_cdtegory sub_clasfsification
‘ PRODUCT_R ELA TED_PRODUCT_CATEGORY #78

products name=assembly ’ assodated_ftem SPECIFIC_ITEM_QLASSIFICATION #86

PRODUCT_RELATED_PRODUCT_CATEGORY #80 SPECIFIC_DOCUMENT_CLASSIFICATION
PRODUCT #79 w name=document DOCUMENT, #90! ’m #38

A

category super_clasification

PRODUCT_CATEGORY _RELATIONSHIP #81 SPECIFIC_DOCUMENT_CLASSIFICATION_HIERARCHY
4
a
sub_cgtegory
sub_clagsification
‘ PRODUCT_RELATED_PRODUCT_CATEGORY #82 SPECIFIC DOCUMENT CLASSIFICATION
products Bame Sgsometnyldata ‘ assodated_document - #89

Figure 27 - Instance mapping for specific item and document classification

EXPRESS-X Mapping Specification:

MAP item cl assification_map AS
sic : specific_itemclassification;

FROM

prpc : product_rel ated_product _category;
VWHERE

EXI STS(i tem map(prpc. products[1]));
SELECT

FOR EACH p I N prpc. products
RETURN i tem nap(p);

pr pc. nane;

prpc. description;

sic.associated_item

sic.classification_nane
sic.description

PLM Adopted Specification

97

END_MAP;

MAP item cl assification_hierarchy map AS
ich : specific_itemclassification_hierarchy;

FROM

prpc : product_category_rel ationship;
VWHERE

EXI STS(item cl assification_map(prpc.category));
SELECT

itemclassificati on_map(prpc.sub_category);
itemclassification_nmap(prpc.category);

ich.sub_classification
i ch. super_classification
END_MAP;

MAP docunent _cl assification_nmap AS
sic : specific_docunent _classification

FROM
prpc : product_rel ated _product category;
VWHERE
EXI STS(document _map(pr pc. products[1]));
SELECT
si c.associ ated_docunent := FOR EACH p I N prpc. products
RETURN docunent _nmap(p);
sic.classification_name := prpc. nang;
sic.description = prpc.description
END_MAP;

MAP docunent cl assification_hierarchy _map AS
dch : specific_docunent _classification_hierarchy;

FROM
prpc : product_category_rel ationship;
VWHERE
EXI STS(document _cl assi ficati on_map(prpc. category));
SELECT
dch. sub_classification := docunent_cl assification_map(prpc.sub_category);
dch. super _cl assification := docunent_cl assification_map(prpc.category);
END_MAP;

7.4.5.2 General_classification, General_classification_hierarchy, Classification_system

A target instance of type General_classification is created out of a source instance of type Class. A target instance of type
Genera_classification_hierarchy is created out of a source instance of type Group_relationship with role name 'class
system membership'. A target instance of type Classification_sytem is created out of a source instance of type
Class_system.

98 PLM Adopted Specification

GROUP_RELATIONSHIP GENERAL_CLASSIFICATION_
#2 HIERARCHY #1 subfclassificatio’
A A |

supercl%sification

GENERAL_ CLASSIFICATION EL)::;E!RANRAYL_
EXTERNALLY_DEFINED_CLASS #3 classification_sourCe REFERENCE #5
#1 A
A

usedclassifiationsystem

A
CLASS_SYSTEM
#6
A
A
Figure 28 - Instance mapping for general classification
EXPRESS-X Mapping Specification:
MAP general classification_map AS
gc : general classification
FROM
cl : class;
SELECT
gc.id := cl\group. nane;
gc.description := cl\group. description
gc.version_id := aia<-itens{applied_identification_assignnent |
role.name = 'version'}[1].assigned id

gc.classification_source : =
I F " AUTOVOTI VE_DESI GN. EXTERNALLY DEFI NED CLASS' | N TYPEOR(cl) THEN
external library reference_map(cl.source);
END | F;
gc.used _classification_system:= classification_system map(
cl<-itens{applied_classification_assignment |
rol e.nane = 'class system nenbership'}
::assigned_cl ass{cl ass_systen}[1]);
END_MAP;

MAP cl assification_system nmap AS
cls : classification_system
FROM
cs : class_system
SELECT

PLM Adopted Specification

cls.id := cs.nane;
cls.description := cs.description;
END_NVAP;

MAP general classification_hierarchy map AS
gch : general classification_hierarchy;

FROM
grel : group_relationship;
VWHERE
grel .name = 'class hierarchy';
SELECT
gch.sub_classification := general classification_nmap(grel.

gch. super _classification : =
general classification_map(grel.relating group);
END_MAP;

7.4.5.3 External_library_reference

rel ated_group);

A target instance of type External _library reference is created out of an instance of type Externally_defined_class or
Externally _defined_property which references an instance of exact type External_source.

EXTERNALLY_DEFINED_CLASS
#1

soyrce

EXTERNAL_SOURCE #2

EXTERNAL_LIBRARY_
REFERENCE #1

soyrce

EXTERNALLY_DEFINED_
GENERAL_PROPERTY #3

Figure 29 - Instance mapping for external library reference

EXPRESS-X Mapping Specification:

MAP external |ibrary reference_map AS
elr : external _library_reference;
FROM
edi : externally_defined_item
VWHERE

wr 1: SI ZEOF([' AUTOMOTI VE_DESI GN. EXTERNALLY_DEFI NED_CLASS' ,

" AUTOMOTI| VE_DESI GN. EXTERNALLY_DEFI NED _ PRCPERTY'] *

TYPEOF(edi)) > 0;

100

PLM Adopted Specification

wr 2: NOT(' AUTOMOTI VE_DESI GN. KNOAN_SOURCE' | N TYPEOF(cl s. source));
SELECT

elr.description := edi.source.description;

elr.external id edi.item.id;

elr.library_type := edi.source.source_id;
END_MAP;

7.4.5.4 Classification_association

A target instance of type Classification_association is created out of a source instance of type
Applied_classification_assignment.

|
|
AT (A T CLASSIFICATIO#I‘JI_ASSOCIATION
ASSIGNMENT #2 4 definitional=FALSE

|
Figure 30 - Instance mapping for classification association

EXPRESS-X Mapping Specification:

MAP cl assification_association_nmap AS
ca : classification _association;

FROM
aca : applied_classification_assignnent;
SELECT
ca.definitional := IF aca.role.nane = 'non-definitional' THEN
FALSE;
ELSE
I F aca.role.nane = 'definitional' THEN
TRUE;
END | F;
END | F;
ca.role := aca.rol e.description;

ca.associated classification : =
general classification_map(ca.assigned_cl ass);

PLM Adopted Specification

101

ca.classified_elenment := classified_elenent_sel ect_map(aca.itens[1]);
END_MAP;

7.4.5.5

Classification_attribute

A target instance of type Classification_attribute is created out of a source instance of type Property_definition which
references an instance of type Characterized class as definition.

Figure 31 - Instance mapping for classification attribute

PROPERTY_DEFINITION
#1

EXPRESS-X Mapping Specification:

MAP cl assification_attribute _map AS

ca :

FROM

pd :
cd :

WHERE

pd.

classification attribute;

property_definition;
characterized class;

definition :=: cd;

| DENTI FI ED_BY pd;

SELECT
ca.
ca.
ca.
ca.
ca.

102

description := pd.description;
id:= pd.id;
nane : = pd. nane;

associated classification := general classification_map(cd);

attribute definition :=

CLASSIFICATION_ATTRIBUTE
#1

property _map(pd<-derived definition{general property association |

: . base_definition{general _property}[1]);

name = 'attribute definition'}

PLM Adopted Specification

ca. al | oned_val ue

:= property_val ue_representati on_map(
pd<-represented_definition{property_definition_representation}

c:used_representation{representation}[1]);

END_MAP;

7.4.6 Properties

PRODUCT_DEFINITION

PROPERTY_DEFINITION #146

#147 definition

name=

derived definition defirfition

GENERA L_PROPERTY_ASSOCIATION

PROPERTY_DEFINITION_REPRESENTATION

ASSEMBLY_DEFINITION
#139

describeq_element

ITEM_PROPERTY_ASSOCIATION #138

A | |
base_definition usedﬁlepisenlallon
describing_pfoperty_value
REPRESENTATION #152
GENERAL_PROPERTY name= items
#150
A
MEASURE_REPRESENTATION ITEM PROPERTY_VALUE_R| TION #140 __
; #155 definition
s context_pf_items
definjition 1~
PROPERTY_DEFINITION_REPRESENTA TION GLOBA L_UNIT_ASSIGNED_CONTEXT .
#158 #157 unit_t specified_value globalwqit
unjts
SI_UNIT #156 VALUE_WITH_UNIT #154 T
used_reprgsentation context’of_items wnit_component
]
REPRESENTATION #159 DESCRIPTIVE_REPRESENTATION_ITEM #160
name =allowed units items name = allowed units
A

Figure 32 - Instance mapping for properties

7.4.6.1 Property_value_association, Item_property_association

An instance of type Item_property association is created out of an instance of type Property_definition which is

referenced by an instance of type General_property association as derived_definition.

EXPRESS-X Mapping Specification:

MAP property_val ue_associ ati on_nmap AS
pv : property val ue_association ;

PARTI TI ON p_pdef
FROM
pdef

PARTI TI ON p_act

FROM
apr

PLM Adopted Specification

property_definition ;
RETURN (item property_associ ati on_nap(pdef))

action_property ;

H

PROPERTY #142

allowed_unit

UNIT #141

103

RETURN (process_property_associ ati on_nmap(apr));
PARTI TION p_res ;
FROM

res : resource_property ;
RETURN (process_property_associ ati on_nmap(res));
END MAP ;

MAP item property_association_map AS

ipa : itemproperty_association;
FROM
pdef : property_definition
gpa : general _property_association
VWHERE
gpa. derived_definition :=: pdef;
| DENTI FI ED_BY pdef ;
SELECT
i pa. described _elenent := itemproperty_sel ect _map(pdef.definition);

i pa. describing _property value :=
property val ue_rep_map(pdef <-definition
{property definition_representation}[1]);

i pa.definitional := CASE gpa.nane OF
"definitional'’ . TRUE
"non-definitional' : FALSE
END_CASE;
i pa. description := pdef.description

ipa.validity context :=
| F SI ZECF(i pa<-itenms{applied_organi zati on_assi gnment |
nane = 'validity context'}) > 0 THEN
organi zation_map(i pa<-itens{applied_organi zati on_assi gnnent |
nane = 'validity context'}
. assigned_organi zation[1])
ELSE
| F SI ZEOF(i pa<-rel ated_property_definition
{property definition_relationship |

name = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}

c:definition{product_class}) >0
THEN
product _cl ass_map(i pa<-rel ated property_definition
{property definition_relationship |

name = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}

c:definition{product_class}[1]);
ELSE
product _i dentification_map(ipa<-related_property _definition
{property_definition_relationship |

name = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}

104 PLM Adopted Specification

c:definition{product_identification}[1]);
END | F;
END | F;
END_MAP;

DEPENDENT _MAP item property sel ect _map AS
ips : itemproperty_sel ect;
PARTI TI ON p_ddi d;
FROM
pd : product_definition;
VWHERE
pd. frame_of reference.nane = 'part definition';
RETURN ddi d_map(pd);
PARTI TI ON p_docr ep;

FROM
pd : product_definition;
VHERE
pd. frame_of reference.nane = 'digital docunment definition';

RETURN di gital _document _map(pd);
PARTI TI ON p_docfil e;
FROM

df : document file;
VWHERE

EXI STS(digital _file map(df));
RETURN digital _file_nmap(df);
END_ DEPENDENT _VAP;

7.4.6.2 Property

An instance of type Property is created out of an instance of type General_property. If the name of the General _propery
is 'mass, an instance of subtype Mass_property is created instead.

PLM Adopted Specification 105

GENERAL_PROPERTY
#1

name=mass
4 MASS_PROPERTY 4
#1
I— |
A
a
V|
|
|
a a

Figure 33 - Instance mapping for mass properties

EXPRESS-X Mapping Specification:

MAP property_map AS
prop : property;

FROM
gp : general _property;
SELECT
prop.id = ogp.id;

prop. descri ption
prop.version_id

gp. descri ption;
gp<-itenms{applied_identification_assignment |
role.nane = 'version'}[1].assigned_id,
FOR EACH un I N
gp<-definition{property definition_representation}
::used_representation{representation |
nane = 'allowed units'}
::context_of itens{global unit_assigned_context}
crunits
RETURN uni t _nmap(un);

prop. al | owed_uni t

END_MAP;

MAP mass_property_map AS
prop : nmass_property;
SUBTYPE OF (property map);

VHERE
gp. nanme = ' mass'
END_NAP;

106 PLM Adopted Specification

MAP cost _property_map AS
prop : cost_property;
SUBTYPE OF (property_map);
WHERE
gp. nane = 'cost property'
END_MAP;

MAP duration_property map AS
prop : duration_property;
SUBTYPE OF (property_map);
VWHERE
gp. name = 'duration property';
END_MAP;

MAP recyclability property map AS
prop : recyclability property ;
SUBTYPE OF (propery_nap)
VWHERE
gp.name = 'recyclability property
END MAP ;

MAP qual ity property AS

prop : quality_property ;
SUBTYPE OF (propery_nap) ;
VWHERE

gp.nane = 'quality property
END_NMAP ;

MAP neterial _property map AS
prop : material property ;
SUBTYPE OF (property_map);

VWHERE

" AUTOMOTI VE_DESI GN. GENERAL_MATERI AL_ PROPERTY'
SELECT

prop. property_nane := gp.nane ;
END MAP :

MAP general property_nmap AS

prop : general property;
SUBTYPE OF (property_map);
VWHERE

OTHERW SE ;
SELECT

prop. property type := gp.nane ;
END_MAP;

7.4.6.3 Material, Material_property_association

A target instance of Material is created out of a source instance of type Material_designation.

PLM Adopted Specification

I N TYPEOF(gp)

107

A target instance of type Material_property_association is created out of a source instance of type
Material_designation_characterization.

V|
MATERIAL #1
MATERIAL_

DESIGNATION #1 4 described_material
desighation used_representation MATERIAL_PROPERTY_

ASSOCIATION #3

MATERIAL_DESIGNATION_ MATERIAL_PROPERTY_
CHARACTERIZATION #4 property REPRESENTATION #5

= associated_pfoperty _value

fhition dependentknvironment

MATERIAL_PROPERTY_
VALUE_REPRESENTATION #4

‘ ‘
definition
derived_definition

GENERAL_PROPERTY_ GENERAL_MATERIAL_ MATERIAL_PROPERTY
ASSOCIATION #8 base_definitio PROPERTY #10 #5

A
Figure 34 - Instance mapping for material

EXPRESS-X Mapping Specification:

MAP neterial _nmap AS
ma : material;

FROM
ndes : nmaterial _designation;
SELECT
ma. mat eri al _nane : = ndes. nane;
ma. descri bed_el ement : = FOR EACH def I N ndes. definitions;
RETURN (item property sel ect _map(def));
END_MAP;

MAP neterial _property associati on_nmap AS

nmpa : nmmterial _property_association;
FORM

mdc : nmaterial _designation_characterization;
SELECT

108 PLM Adopted Specification

nmpa. definitional := IF ndc.name = "definitional' THEN
TRUE;
ELSE
I F ndc. nanme = 'non-definitional' THEN
FALSE;
END | F;
END | F;
npa. associ at ed_property_val ue : =
mat eri al _property_val ue_representation_nmap(
nmdc. property. used_representation);
npa. described_material := material _nap(ndc. desi gnation);
END_MAP;

7.4.6.4 Property value representations

An instance of type Property value representation is created out of an instance of type Representation which is
referenced by an instance of type Property_definition_representation that referenced an instance of type
Property_definition as definition, which gets mapped to an instance of type Item_property association or
Material_property_association.

If the Property_definition_representation source instance is of subtype Material_property_representation then a target
instance of subtype Material_property value representation is created.

PROPERTY_DEFINITION
#1
- P
PROPERTY_DEFINITION_ PROPERTY_VALUE_
REPRESENTATION #2 REPRESENTATION #1
I | |

REPRESENTATION #4
A |

- -
Figure 35 - Instance mapping for property value representation

EXPRESS-X Mapping Specification:

PLM Adopted Specification 109

MAP property_val ue_rep_nmap AS

pval : property_val ue_representation
FROM
pdef : property_definition
pdr : property_definition_representation
gpa : general _property_association
rep : representation
VWHERE
wr1: pdr.definition =: pdef;
wr 2: gpa.derived_definition =: pdef;
wr 3: pdr.used_representation :=: rep
| DENTI FI ED_BY rep
SELECT
pval .definition := property_map(gpa.base _definition);

pval . gl obal _unit unit_map(rep

::context _of itens{global unit_assigned_context}

crunits[1]);
pval . qualifier =rep::itens{qualified representation_item |
name = 'qualifier'}
crqualifiers{type_qualifier}[1].nane;
pval . val ue_determ nation := rep::itenms{qualified representation_item|
nane = 'value interpretation'}
crqualifiers{type_qualifier}[1].nane;
pval . speci fied_value := property value_map(rep::itens{representation_item

| (name <> 'qualifier') AND
(nane <> 'value interpretation')}[1]);
END_NVAP;

MAP neterial _property value_representati on_map AS

pval : material _property_val ue_representation
SUBTYPE OF (property_val ue_rep_nap);
VWHERE

wr4: ' AUTOMOTI VE_DESI GN. MATERI AL_PROPERTY_REPRESENTATI ON
I N TYPEOF(pdr) ;
SELECT
pval . envi ronnment _condition : =
dat a_envi ronment _map(pdr. dependent _envi ronment) ;
END_MAP;

MAP dat a_environnent _nmap AS
t _de : data_environnent;

FROM
s_de : data_environnent;
SELECT
t _de.description := s_de.description
t _de. environnment _nane : = s_de. nane;
END_MAP;

110 PLM Adopted Specification

7.4.6.5 Property values

An instance of type Property_value representation is created out of an instance of type Representation_item which is
referenced by a Representation mapped to a Property _value represenation by an instance as Definition which is mapped

to an instance of type Item_property_association.

Depending on the type of the representation_item instance, the target instance will be either a string_value (for
Descriptive_representation_item), a Numerical_value or a Value limit (for Measure_representation_item), a
Value range.(for Value range) or a Value_list (for Compound_representation_item).

DESCRIPTIVE_REPRESENTATION_ITEM #162
name= STRING_VALUE #163
VALUE_REPRESENTATION_ITEM, TYPE_QUA LIFIER #172 VALUE_LIMIT #174
‘QUA LIFIED_REPRESENTATION_ITEM #171 name=maximum limit_qualifier = maximum|

W

MASS_MEASURE_WITH_UNIT,

MEASlRE_REPREENTATIm__lTEM #164 VALUE_RANGE #153

'VALUE_WITH_UNIT #166
value_name=mass

VALUE_RANGE #144

unit_component

MASS_UNIT, SI_UNIT #165 item_efement

/ unit_c}Vponem

MEA SURE_REPRESENTATION_ITEM #169

unit_cofponent

MEA SURE_REPRESENTATION_ITEM #170

Figure 36 - Instance mapping for property values

EXPRESS-X Mapping Specification:

DEPENDENT _MAP property val ue_nmap AS

pval : property_val ue;
FROM

ri : representation_item
SELECT

pval . val ue_nanme : = ri.nane;

END_ DEPENDENT _NVAP;
DEPENDENT _MAP string_val ue_map AS

pval : string_val ue;
SUBTYPE OF (property_val ue_nap);

PLM Adopted Specification

unit_component unit_cofnponent

> d

UNIT #167

111

WHERE

" AUTOMOT| VE_DESI GN. DESCRI PTI VE_REPRESENTATI ON_I TEM I N TYPEOF(ri);

SELECT
pval . val ue_specification := ri.description
END_DEPENDENT _MAP

DEPENDENT _MAP val ue_with_unit_map AS

pval : value_w th_unit;
SUBTYPE OF (property_ val ue_map);
VWHERE
OTHERW SE
SELECT
pval .significant_digits := ri::qualifiers{precision_qualifier}

[1] . preci sion_val ue;
END_ DEPENDENT _NMAP

DEPENDENT _MAP val ue limt_map AS

pval : value_limt;
SUBTYPE OF (value with unit_nap);
VWHERE
SI ZEOF(ri::qualifiers{type_qualifier |
(name = "maxi mum) OR
(nanme = "mininmunm)}) >0
SELECT
pval .limt_qualifier :=ri::qualifiers{type_qualifier
(name = 'maxi num) OR
(nanme = "mininmum)}[1]. nane;
pval . unit_conponent := unit_map(ri::unit_conponent[1]);
pval . limt = ri.val ue_conponent;

END_DEPENDENT_MAP;

DEPENDENT _MAP val ue_range_nmap AS

pval : val ue_range;
SUBTYPE OF (value_ with unit_nmap);
V\HERE
" AUTOMOTI VE_DESI GN. VALUE_RANGE' | N TYPEOF(ri);
SELECT
pval . lower limt = ri::itemelenment{representation_item |
name = 'lower linmt'}
::val ue_conponent [1] ;
pval . upper _limt =ri::itemelement{representation_item |
name = '‘upper linmt'}

::val ue_conponent [1];

pval . unit _conponent
sunit_conponent[1]);
END_DEPENDENT_MAP

DEPENDENT _MAP nuneri cal _val ue_map AS

pval : nunerical _val ue;
SUBTYPE OF (value_with_unit_nmap);
VWHERE
112

unit_map(ri::itemelenment{neasure_with_unit}

PLM Adopted Specification

OTHERW SE;

SELECT
pval . val ue_conponent := ri.val ue_conponent;
pval .unit_conponent := unit_map(ri::unit_conponent[1]);

END_DEPENDENT_MAP;

DEPENDENT _MAP unit_map AS
t_un : unit;

FROM
s_un : unit;
SELECT
t_un.unit_name := get_unit_nane(s_un);

END_DEPENDENT_MAP;

COMPOUND_REPRESENTATION_
ITEM #1 VALUE_LIST #1

A
Figure 37 - Instance mapping for value list

EXPRESS-X Mapping Specification for Value_list:

DEPENDENT _MAP val ue_list_map AS

pval : value_list;
SUBTYPE OF (property_val ue_nap);
VWHERE

" AUTOMOTI VE_DESI GN. COMPOUND_REPRESENTATI ON | TEM I N TYPEOF(ri);
SELECT
pval .values := FOR EACH elem IN ri.item el ement;
RETURN (property val ue_map(elem);
END_DEPENDENT_ VAP,

7.4.6.6 Design_contraint, Design_constraint_version, Design_contrained_relationship

A target instance of type Design_constraint is created out of a source instance of type Product_definition_formation
which references a Product which is references by a Product_related product_category with name 'requirement’. In
addition the Product_definition_formation source instance must be referenced by an instance of type Product_definition
which refers to a Product_definition_context with name 'design constrained definition' as frame_of _reference.

If the id attribute of the Product_definition_formation source instances has a valid value, the target instance is of subtype

Design_contrained_version.

PLM Adopted Specification

A target instance of type Design_contrained relationship is created out of a source instance of type
Product_definition_relationship which refers to Product_definition instances with frame_of _reference name 'design
constraint definition' as related _product_definition and as relating_product_definition.

PRODUCT #1
A
of_p¥duct
——— PRODUCT _
DEFINITION_
DEFINITION_ RELATIONSHIP
FORMATION #2 #4

V|
forrltion relatwnmon related_produ efinition
PRODUCT DESIGN_CONSTRAINT_ DESIGN_CONSTRAINT_|
DEFINITION #3 VERSION #1 relating RELATIONSHIP #3
V|
frame_of_reference
reldted
A
A

A
Figure 38 - Instance mapping for design constraint version

EXPRESS-X Mapping Specification:

MAP desi gn_constraint_map AS
dc : design_contraint;
FROM
pdf : product_definition_formation;
VWHERE
wr1l: S| ZEOF(pdf <-fornati on{product_definition |
frame_of reference. nane='desi gn contrained definition'}) > O;
wr 2: S| ZEOF(pdf . of _product <- product s{ product rel ated_product _category |

nane = 'requirenent'}) > O;
SELECT
dc.constraint _id := pdf.of product.id;
dc. description := pdf.description;
dc. nanme : = pdf.of product. nane;
dc.is valid for := product_class_nmap(

pdf <-formati on{product _definition |

114 PLM Adopted Specification

frame_of _reference. nane="desi gn constraint definition'}
<-desi gn{configuration_design | nane = 'design constrai ned usage'}
::configuration{configuration_iten}
::item concept{product _class}[1]);
END_MAP;

MAP desi gn_contraint_version_nmap AS
dc : design_contraint_version;
SUBTYPE OF (design_constraint_nap);
VWHERE
w3: (pdf.id <>"''") AND (pdf.id <> "'/ANY') AND (pdf.id <> '/NULL');
SELECT
dc.version_id := pdf.id;
END_MAP;

MAP design_contraint_rel ationship_nap AS
dcr : design_contraint_relationship;
FROM
pdr : product _definition_relationship,;
VWHERE
wr 1: pdr.related_product_definition.frame_of_reference. nane =
"design contraint definition'
wr2: pdr.relating_product_definition.frame_of _reference. nane =
"design contraint definition'

SELECT
decr.related : = design_contraint_map(pdr.rel ated _product _definition);
decr.relating := design_contraint_map(pdr.relating_product _definition);
dcr.relation_type := pdr.nane;
drc.description := pdr.description;

END_MAP;

7.4.6.7 Design_constraint_association

A target instance of Design_constraint_association is created out of a source instance of type
Product_definition_relationship with name 'design constraint association' which refers to a Product_definition with
frame_of reference name 'design constraint definition' as relating_product_definition and which refers to a
Product_definition with frame_of _reference name 'alternative definition' or ‘conceptual definition' or 'functional definition'
asrelated product_definition.

PLM Adopted Specification 115

PRODUCT_DEFINITION_

RELATIONSHIP #1
id=
| |
DESIGN_CONSTRAINT_
ASSOCIATION #1
|
| |
|
|
Figure 39 - Instance mapping for design constraint association
EXPRESS-X Mapping Specification:
MAP desi gn_constrai nt_associ ati on_nmap AS
dca : design_constraint_association;
FROM
pdr : product _definition_relationship,;
VWHERE
wr1l: pdr.nane = 'design contraint association';

wr2: pdr.relating_product_definition.frame_of _reference. nane =
"design contraint definition';
wr 3: pdr.related_product_definition.frame_of reference.name IN
["alternative definition', 'conceptual definition',
"functional definition'];

SELECT
dca. nane : = pdr.description;
dca.is_based on := design_containt_map(pdr.relating _product _definition);

dca.is_contraining :=conpl ex_product _map(pdr.related product _definition);
END_MAP;

7.4.6.8 Change

A target instance of Change is created out of a source instance of type Product_definition_formation_relationship or
Product_definition_relationship or Action_relationship or Shape_aspect_relationship with name 'change’.

116 PLM Adopted Specification

PRODUCT_DEFINITION

FORMATION_RELATIONSHIP CHANGE #1
#1

name=change

Figure 40 - Instance mapping for change
EXPRESS-X Mapping Specification:
MAP change_map AS

ch : change;
PARTI TI ON p_pdr;

FROM
pdr : product _definition_relationship,;
VWHERE
pdr.name = 'change';
SELECT
ch. description := pdr.description;
ch. descri bed _change : = change_rel ationshi p_sel ect _map(pdr);
PARTI TI ON p_pdfr;
FROM

pdfr : product_definition_formation_relationship;
VWHERE

pdfr.nane = 'change';
SELECT
ch. description := pdfr.description;
ch. described_change : = change_rel ationshi p_sel ect _map(pdfr);
PARTI TI ON p_arel ;
FROM
arel : action_relationship;
VWHERE
arel . name = ' change';
SELECT
ch. description := arel.description;
ch. described_change : = change_rel ationshi p_sel ect_map(arel);
PARTI TI ON p_sarel;
FROM
sarel : shape_aspect _rel ationship;
VWHERE
sarel . name = 'change’';
SELECT
ch. description := sarel.description;
ch. described_change : = change_rel ationshi p_sel ect_nap(sarel);
END_MAP;

PLM Adopted Specification

117

7.4.7 Alias ldentification
7.4.7.1 Alias Identification

An instance of type Alias identification is created out of an instance of type Applied_identification_assignment, which
references an instance of type Identification_role that contains the value 'alias' in its name attribute.

IDENTIFICATION_ROLE
#9
name=version

APPLIED_IDENTIFICATION ASSIGNMENT
#8

ALIAS_IDENTIFICATION
#1

DOCUMENT #2

is_applied_to

A

items
alias_fscope

APPLIED_IDENTIFICATION ASSIGNMENT ORGANIZATION #3
- #4 W’—C PRODUCT #6
rdle
products
IDENTIFICATION_ROLE #5 PRODUCT_RELATED_PRODUCT_CATEGORY #7
name=alias name=document

Figure 41 - Instance mapping for alias identification

EXPRESS-X Mapping Specification:

MAP alias_identification_map AS
aid : alias_identification

FROM
aia : applied_identification_assignnent;
VWHERE
aia.role.name = "alias'
SELECT
aid.alias_id ;= al a.assigned_id;
ai d.alias_scope ;= organi zation_map(aia
<-itens{applied_organi zati on_assi gnnent
| role.name = "alias_scope'}[1]
.assi gned_organi zation);
aid.alias_version_id := aia<-items{applied_identification_assignment |
role.nane = 'version'}[1].assigned_id,;
ai d. description = ala<-itens{applied_identification_assignnment |
role.nane = 'version'}[1].rol e.description;

aid.is_applied_to | F SI ZEOF(ai a.itens[1]

<-product s{product _rel ated_product cat egory

| nane = 'docunent'}) >0
THEN
docunment _map(aia.itens[1]);
ELSE

118 PLM Adopted Specification

END_MAP;

7.4.8 Authorization

7.4.8.1 Organization, Person and Address

Instances of type Person, Organization and Address are created out of the corresponding instances in AIM (PDM
SCHEMA, AP214). An instance of type Person_in_organization in the PIM equivalence model is created out of an

itemmap(aia.itens[1]);

END | F;

instance of type Person_and_organization in AIM (PDM SCHEMA, AP214).

ORGA NIZATIONAL_ADDRESS
1

description=visitor address

ORGANIZATIONAL_ADDRESS #12
description=postal address

ORGANIZATIONAL_ADDRESS #13
description=delivery address

ADDRESS #17

ADDRESS #16

organiations

ORGANIZATION #10

the_organization

orgapizations

;mstxq%ss delivery |

address

ADDRESS #15

uisitor_address

ORGANIZATION #14

associated_}

PERSON_AND_ORGANIZATION ADDRESS
#34

PERSON_AND_ORGA NIZATION #31

ADDRESS #30

organization

location

peo)

PERSONAL_A DDRESS

#33 [people . ®

the_person

PERSON #32

PERSON_IN_ORGA NIZATION #29

A

associatg

ADDRESS #28

{d_person

prefered_business_address

Figure 42 - Instance mapping for organization, person, and address

EXPRESS-X Mapping Specification:

MAP address_map AS
pdt net _adr
FROM

addr ess;

ap21l4_adr

SELECT

pdt net _adr

pdt net _adr.
pdt net _adr.
pdt net _adr.
pdt net _adr.
pdt net _adr.
pdt net _adr.
pdt net _adr.

pdt net _adr

addr ess;

.internal |ocation
street nunber
street

post al _box

postal code

t own

region

country
.facsim | e _nunber

PLM Adopted Specification

:= ap2l4_adr

:= ap214_adr.
:= ap214_adr.
:= ap2l4_adr.
:= ap2l4_adr.
:= ap214_adr.
:= ap214_adr.
:= ap214_adr.
:= ap214_adr.

PERSON #27

internal | ocation;
street nunber;
street;
post al _box;
post al _code;

t own;

region;

country;
facsim | e _nunber;

119

pdt net _adr.tel ephone_nunber

pdt net _adr.tel ex_nunber

pdt net _adr. el ectronic_nmail _address
END_MAP;

ap214_adr.t el ephone_nunber;
ap214_adr.tel ex_nunber;
ap214 _adr.el ectroni c_nmil _address;

MAP or gani zati on_map AS

pdtnet _org : organization
FROM

ap214_org : organization
SELECT

pdt net _org. organi zation_nane :

pdtnet _org.id

pdt net _org. organi zation_type

pdt net _org.visitor_address

ap214_org. nane;
ap214_org.i d;
ap214 org. description;
address_nmap(ap214_org<- organizations
{organi zational _address | description =
‘visitor address'}[1]);
pdtnet _org.delivery address := address_map(ap2l4_org<-organi zations
{organi zational _address | description =
"delivery address'}[1]);
pdt net _org. postal _address ;= address_map(ap21l4_org<-organi zati ons
{organi zational _address | description =
'postal address'}[1]);

END_MAP;

MAP person_map AS
pdt net _pers : person

FROM
ap2l4_pers : person;
SELECT
pdt net _pers. person_nane := ap214 pers.first_name + ' ' +

ap21l4_pers. | ast _nane;
pdt net _pers. preferred_busi ness_address : =
address_map(ap214_pers<-peopl e
{personal _address}[1]);
END_MAP;

MAP person_in_organi zati on_nmap AS
pio : person_in_organi zation

FROM
pao : person_and_organi zation
SELECT
pio.id := pao<-itens
{applied_identification_assignnment |
role.nane = "id'}[1].assigned_id,
pi 0. associ at ed_per son .= person_nap(pao.the_person);
pi 0. associ at ed_or gani zation : = organi zati on_map(pao.the_organi zati on);
pio.role : = pao. nane,
pi 0.l ocation ;= address_map(pao.the_person<-peopl e

{person_and_organi zati on_addr ess
pao.the_organi zation IN
organi zations}[1]);

120 PLM Adopted Specification

END_MAP;

7.4.8.2 Date and Time

An instance of type Date time is created out of an instance of type Date time or of and instance of type Calendar_date,
which is not referenced as Date_component by an instance of type Date time.

date_cgmponent time_col

CALENDAR_DATE #20 LOCA L_TIME #21

z ie
COORDINATED_UNIVERSAL_TIME_OFFSET
#22

Figure 43 - Instance mapping for date and time
EXPRESS-X Mapping Specification:
MAP date_time_map AS

dat : date tine;
PARTI TION p_date_and_ti ne;

FROM
dt : date_and tine;
SELECT
dat . date : = FORMAT(dt. date_conponent.
FORVAT(dt . dat e_conponent .
FORMAT(dt . dat e_conponent .
dat.tine := FORMAT(dt.time_conponent.

FORMAT(dt. ti me_conponent.
FORMAT(dt. ti me_conponent.
PARTI TI ON p_cal endar _dat e;
FROM
cd : cal endar _date;
VWHERE
S| ZEOF(cd<- dat e_conponent {dat e_and_ti
SELECT
dat . date : = FORMAT(cd. year conponent,

DATE_AND_TIME #19 DATE_TIME #18

4

year _conponent, ' ####') + '/’
mont h_conponent,' 021') + '/’
day_conponent, ' 021");

hour _conponent,

m nut e_conponent, '021') + ':

to21t) + 't

second_conponent, '021"');

me}) = O;

I S

FORMAT(cd. nont h_conponent, '021"') + '/’

FORMAT(cd. day_conponent,
END_MAP;

PLM Adopted Specification

"021');

+
+

+

+

+

121

7.4.8.3 Date, person and organization

An instance of type Date and person_organization in the PIM equivalence model is created out of an instance of type
Person_and_organization or Organization which is referenced by an instance of type Applied_date assignment or

Applied_date and time assignment as items. The role name of the Applied_date assignment or

Applied_date and time_assignment must have either the value 'actua’ or if the date_item is an Approval, the value 'sign

off".

PERSON #25 PERSON #32 ORGANIZATION #33
M
PERSON_AND_ORGA NIZATION #24 \ /
person /
the_organz
ORGANIZATION #26

person_orfjanization

PERSON_IN_ORGANIZATION #31

APPROVAL_PERSON_ORGANIZATION #20 —rifozed asnon @

authorized_approval APPROVAL #18

person_or_|

biganization

itelns

DATE_AND_PERSON_OR GANIZA TION
#29

APPLIED_DATE_AND_TIME_ASSIGNMENT | | DATE_TIME_ROLE #22
#21 T ® name=sign off

| date

assigned_ddte_and_time

DATE_TIME #34

CALENDAR_DATE #27

,,—amfcmr‘

time_

DATE_AND_TIME #23

R

LOCAL_TIME #28

APPLIED_ORGANIZA TION_A SSIGNMENT DATE_ROLE #41

name=actual

DATE_AND_PERSON_ORGA NIZATION

Person_or_organzatio)

fe actua| date

items

APPLIED_DATE_ASSIGNMENT ® CALENDAR_DATE #40

#39 assigned_daie DATE_TIME #37

Figure 44 - Instance mapping for date, person and organization

EXPRESS-X Mapping Specification:

MAP dat e_person_organi zati on_nmap AS

dpo dat e_and_per son_organi zati on;
PARTI TION p_date_time_pers_org;
FROM

pao person_and_organi zati on;

dta appl i ed _date_and tinme_assi gnnent;
VHERE
122

ORGANIZATION #36

assigned_pers:

n_organization

PERSON_ORGA NIZATION_ASSIGNMENT

#43

PLM Adopted Specification

wl: pao IN dta.itens;

wr2: dta.role.nane = "actual';
SELECT
dpo. actual _date = date_tinme_map(dta. assigned_date_and_tine);
dpo. person_or _organi zati on : = person_in_organi zati on_map(pao);
PARTI TION p_date _pers_org
FROM
apa : applied_person_and_organi zati on_assi gnnent;
da : applied_date_assignnent;
VWHERE
wl: apa IN da.itens;
wr2: da.role.namre = 'actual';
SELECT
dpo. actual _date = date_tinme_map(da. assi gned_date);

dpo. person_or _organi zati on : = per-
son_i n_organi zati on_map(apa. assi gned_person_and_or gani zati on);
PARTI TION p_date_time_org;
FROM

aoa : applied_organi zation_assi gnnent;

dta : applied_date _and_tinme_assignment;

VWHERE
wl: aoa IN dta.itens;
wr2: dta.role.nane = '"actual';
SELECT
dpo. actual _date = date_tinme_map(dta. assigned_date_and_tine);
dpo. person_or _organi zati on : = organi zati on_nmap(aoa. assi gned_organi zati on);
PARTI TI ON p_dat e_org;
FROM
aoa : applied_organi zation_assi gnnent;
da : applied_date_assignnent;
VWHERE
wrl: aoa IN da.itens;
wr2: da.role.namre = 'actual';
SELECT
dpo. actual _date := date_tinme_map(da. assi gned_date);

dpo. person_or _organi zati on
PARTI TI ON p_approval _date_ti ne;
FROM

apo : approval _person_organi zati on

dta : applied_date_and_tinme_assignment;

organi zati on_map(aoa. assi gned_or gani zati on);

VHERE
wl: apo IN dta.itenmns;
wr2: dta.role.nane = 'sign of f';
SELECT
dpo. actual _date := date_tinme_map(dta. assigned_date_and _tine);

dpo. person_or _organi zation : =
per son_i n_organi zati on_map(apo. per son_organi zati on);
PARTI TI ON p_approval _date;
FROM
apo : approval _person_organi zation
da : applied_date_assignnent;

PLM Adopted Specification 123

VWHERE
wl: apo IN da.itens;

wr2: da.role.name = 'sign off';
SELECT
dpo. actual _date := date_tine_nmap(da. assi gned_date);

dpo. person_or _organi zation : =
person_i n_organi zati on_nmap(apo. person_organi zati on);
END_MAP;

7.4.8.4 Person organization assignment

An instance of type Person_organization_assignment is created out of an instance of type
Applied_person_and_organization_assignment or Applied_organization_assignment.

ORGANIZATION_ROLE PRODUCT_RELATED_PRODUCT_CATEGORY #48 PERSON_ORGANIZATION ASSIGNMENT

e ®
#16 name=part ORGANIZATION #58

assigned_person_organization
role=id owner gned_person_orga

prodjicts is_appjied_to
rde

APPLIED_ORGANIZA TION_A SSIGNMENT ‘ c
#44 items BRODUCKESY ITEM #56 PERSON #60

associated_prganization

assigned_drganization

associate¥ person

is_appied_to

ORGANIZATION #45 PERSON #53

PERSON_ORGANIZATION_ASSIGNMENT

role=creator
the_orggnization m/ezé:

PERSON_AND_ORGANIZATION #52

PERSON_IN_ORGANIZATION #59
lassigned_person_organizatio

Pl

assigned_person |and_organization

APPLIED_PERSON_A ND_ORGA NIZA TION_A SSIGNMENT L
#49 items

PERSON_A ND_ORGANIZATION_ROLE

-

Figure 45 - Instance mapping for person organization assignment

EXPRESS-X Mapping Specification:

MAP person_organi zati on_assi gnnment _nmap AS
poa : person_organization_assi gnnent;
PARTI TI ON p_org;
FROM
aoa : applied_organization_assignnent;
SELECT

124 PLM Adopted Specification

poa. assi gned_person_or gani zation : =
organi zati on_nap(aoa. assi gned_or gani zati on);
poa.role ;= aoa. rol e. naneg;
poa. descri ption aoa.rol e.description;
poa.is_applied_to FOR EACH it IN aoa.itens
RETURN org_select _map(it);

PARTI TI ON p_pers_org;
FROM
apa : applied_person_and_organi zati on_assi gnnent;
SELECT
poa. assi gned_person_or gani zation : =
person_i n_organi zati on_nap(apa. assi gned_person_and_or gani zati on);
poa.rol e := apa.rol e. nane;
poa. description := apa.rol e.description;
poa.is_applied_to FOR EACH it IN apa.itens
RETURN org_select _map(it);

END_MAP;

DEPENDENT _MAP org _select _nmap AS

god : general organizational data_sel ect;
PARTITION p_item
FROM

p : product;
VWHERE

EXI STS(item map(p));
RETURN it em map(p);
PARTI TI ON p_item version;
FROM

pdf : product_definition_formation
VWHERE

EXI STS(item version_map(pdf));
RETURN i tem versi on_nmap(pdf);
PARTI TI ON p_docunent ;
FROM

p : product;
VWHERE

EXI STS(document _map(p));
RETURN docunent _map(p) ;
PARTI TI ON p_docunent _ver si on;
FROM

pdf : product_definition_formation;
VWHERE

EXI STS(docunent _ver si on_map(pdf));
RETURN document _ver si on_map(pdf);
END_ DEPENDENT _VAP;

7.4.8.5 Date and person assignment
An instance of type Date and_person_assignment is created out of an instance of type

Applied_person_and_organization_assignment or Applied_organization_assignment.

PLM Adopted Specification 125

APPLIED_DATE_A #72 DATE_ROLE #73 DATE_AND_PERSON_ASSIGNMENT | ‘ o ITEM #62
role name=actual #61 is_applied_to

items

assigned_datp_and_person

assignehdate

DATE_AND_PERSON_ORGA NIZATION #63 DATE_TIME #67
actual_date
APPLIED_PERSON_A ND_gI;gA NIZATION_ASSIGNMENT CALENDAR_DATE #74 4 4
person_or_prganization
assigned_person| and_omanization
PERSON_IN ORGANIZATION #64 PERSON #65
associated_person
PERSON_AND_ORGANIZATION #69 PERSON #70
the_person
associated_frganization

the_orggnization

ORGANIZATION #66
ORGANIZATION #71
A

Figure 46 Instance mapping for date and person assignment
EXPRESS-X Mapping Specification:
MAP dat e_and_person_assi gnnent _map AS

dpa : date_and_person_assi gnnent;
PARTI TION p_date_tinme_pers_org
FROM

aoa : applied_organization_assignnent;

dta : applied_date_and_tine_assignnment;
VWHERE

wl: aoa IN dta.itens;

wr2: dta.role.nane = "actual'
SELECT

dpa. assi gned_dat e_and_person : = date_person_organi zati on_nap(aoa, dta);

FOR EACH it IN aoa.itens
RETURN org_select _map(it);

dpa.is_applied_to

dpa.role ;= aoa. rol e. naneg;
dpa. descri ption := aoa.rol e.description
PARTI TI ON p_date_pers_org;
FROM
apa : applied_person_and_organi zati on_assi gnnent;
da : applied_date_assignnent;
VWHERE
wl: apa IN da.itens;
wr2: da.role.nane = 'actual'
SELECT
dpa. assi gned_dat e_and_person : = date_person_organi zati on_nmap(apa, da);

dpa.is_applied_to FOR EACH it IN apa.itens

126 PLM Adopted Specification

RETURN org_select_map(it);
dpa.rol e : = apa.rol e. nane;
dpa. description apa.rol e. description;
END_MAP;

7.4.8.6 Date_time_assignment

A target Instance of Date_time_assignment is created out of a source instance of type Applied_date_and_time_assignment
or Applied_date _assignment.

APPLIED_DATE_AND_ DATE_TIME_
TIME_ASSIGNMENT #1 ASSIGNMENT #1
A A
" A

Figure 47 - Instance mapping for date time assignment
EXPRESS-X Mapping Specification:
MAP date_tinme_assi gnment _nmap AS

dta : date_tinme_assignnent;
PARTI TION p_date_ti ne;

FROM
adta : applied_date_and tine_assignnent;
SELECT
dta.description := adta.role.description;
dta.role = adta. rol e. nane;

dta. assigned _date tinme := data_tinme_nap(adta.assigned _date_and_tine);
dta.is_applied_to :=
FOR EACH it IN adta.itens;
RETURN (data_tinme_person_organi zation_el enent _select_map(it));
PARTI TI ON p_dat e;

FROM
ada : applied_date_assignnent;
SELECT
dta.description := ada.rol e.description;
dta.role : = ada. rol e. nane;
dta. assigned _date tine := data_tine_nap(ada. assi gned_date);

dta.is_applied_to :=
FOR EACH it IN ada.itens;
RETURN (data_tinme_person_organi zation_el ement _select_map(it));
END_MAP;

PLM Adopted Specification 127

7.4.8.7 Approval, Approval_status and Approval_relationship

A target instance of type approval is created out of a source instance of type Approval, a target instance of type
Approval_statusis created out of a source instance of type Approval_status. Target instances of type
Approval_relationship are created out of source instances of type Approval _relationship.

APPROVAL #6
APPROVAL #16

re\aled$pprova\

APPROVAL_
RELATIONSHIP #2 APPROVAL_RELATIONSHIP

4 re\annggpprova\ 4

APPROVAL #1
- 4

APPROVAL #1
A

4 - 4
-

4 4 A A A
4

A 4

Figure 48 - Instance mapping for approval

EXPRESS-X Mapping Specification:

MAP approval _map AS
tgt : approval;

FROM
src : approval;
SELECT
tgt.level = src.level;
tgt.status = approval _status_map(src.status);

tgt.is_applied_ to
FOR EACH it IN
src_app<-assi gned_approval {appl i ed_approval _assignnent}::itens;
RETURN (approval _el ement_select_map(it));
tgt.scope D=
organi zation_map(src<-itens{applied_organi zation_assi gnnment |
role.nane = 'scope'}
. assigned_organi zation{organi zati on}[1]);
tgt. planned_date: =
date_time_map(src<-dated approval {approval date tine |
rol e.nane = 'planned'}
crdate_tine[1]);
tgt.actual _date 1=

128 PLM Adopted Specification

date_time_map(src<-dated_approval {approval date_ tine |
role.nane = "actual '}
c:date_time[1]);
tgt.is_approved by := FOR EACH it IN
src<-aut hori zed_approval {approval person_organi zation |
approval person_organi zation<-itens{applied_date _and time_assi gnnent |
role.nane = "sign off'};

RETURN dat e_person_organi zati on_map(it. person_organi zati on,

it<-itens{applied_date_and_tinme_assignment}[1]);

END_MAP;

MAP approval status_map AS
tgt : approval _status;

FROM
src : approval _status;
SELECT
tgt_stat.status_nane := src_stat.nane;

tgt_stat.used classification_system:=
classification_system map(
src<-itens{applied classification_assignnment |
role.nane = 'class system nmenbership'}
assigned_cl ass{cl ass_system[1]);
END_MAP;

MAP approval rel ationship_map AS
tgt_apr : approval rel ationship;

FROM
src_apr : approval relationship;
SELECT
tgt _apr.description ;= src_apr.description;
tgt_apr.relation_type := src_apr.nane;
tgt_apr.related := approval _map(src_apr.rel ated_approval);
tgt_apr.relating ;= approval _map(src_apr.relating_approval);
END_MAP;

7.4.9 Configuration Management
7.4.9.1 Product_class and relationships

A target instance of type Product_class is created out of a source instance of type Product_class. An instance of type
Product_class relationship is created of an instance of type Product_concept_relationship, which references instances of
type Product_class as related product_concept and as relating_product_concept. An instance of type

Class_structure _relationship is created of of an instance of type Configuration_design that references an instance of type
Product_class as Configuration.item_concept and that references Product_definitions with frame_of _reference.name
values 'conceptual definition' or 'function definition'.

PLM Adopted Specification 129

CONFIGURATION_ITEM
#4
PRODUCT_CLASS #1 -
PRODUCT_CLASS #1 item_concept name=conceptual o - relating
u structure item 4l A
=
configIration
CONFIGURATION

DESIGN #5

|
de#n

|
|

Figure 49 - Instance mapping for product class

EXPRESS-X Mapping Specification:

MAP product _class_nmap AS

arm pcl : product_cl ass;
FROM
aimpcl : product_cl ass;
SELECT
armpcl.id ;= aimopcl.id;

arm pcl . nane

arm pcl . description :
arm pcl .l evel _type
arm pcl .version_id

ai m pcl \ product _concept . nane;
ai m pcl \ product _concept. description;
ai m pcl\characterized_object. nane;

CLASS_STRUCTURE_
RELATIONSHIP #4
A

reldted

aimpcl <-itens{applied_identification_assignnment |

role.nane = 'version'} ::assigned_id[1]

END_MAP;

MAP cl ass_structure_rel _nmap AS
csr : class_structure_rel ationship;
FROM
cd : configuration_design
VWHERE
wr 1: AUTOMOTI VE_DESI GN. PRODUCT _CLASS' | N
TYPEOF(cd. configuration.itemconcept);

wr2: cd.design.frame_of reference IN['conceptual definition',

130

PLM Adopted Specification

"functional definition'];

SELECT
csr.relation_type := cd. nane ;
csr.description .= cd. description ;
csr.rel ated := I F cd.design.frane_of reference. nane =
‘conceptual definition'
THEN
product conponent _nap(cd. desi gn. formation) ;
ELSE
product function_nap(cd. desi gn. formation) ;
END | F;
csr.relating := product _cl ass_map(cd. configuration.itemconcept);
END_MAP;

7.4.9.2 Complex_product, Product_component, Product_function and solution types

A target instances of type Complex_product is created out of a source instance of Product_definition_formation that is
referenced by an instance of type Product_definition as formation. Depending on the value of the attribute

frame_of reference.name of the Product_definition, the target instance is either of subtype Product_component (for value
‘conceptua definition’), Product_function (for value 'functional definition) or Alternative_solution (for value 'alternative
definition’). If the target instance is of type Alternative_solution its exact type depends on the value of the name attribute
of the Product_definition source instance: it is either Technical_solution (for value 'technical’), Final_solution (for value
'final") or Supplier_solution (for value 'supplier").

EXPRESS-X Mapping Specification:

MAP conpl ex_product _map AS
cp : conpl ex_product;
FROM
pdf : product_definition_formation;
pd : product_definition;
| DENTI FI ED_BY pdf;
VWHERE
wl: pd.formation :=: pdf;
wr2: pd.frame_of _reference.nane IN
['conceptual definition','functional definition',
"alternative definition'];

SELECT
cp.id = pdf.of product.id;
cp.version_id = pdf.id;

END_MAP;

PLM Adopted Specification 131

PRODUCT_
DEFINITION_
FORMATION #2

PRODUCT_COMPONENT
#1

r

A A
Figure 50 - Instance mapping for product component

EXPRESS-X Mapping Specification:

MAP product _conponent _nmap AS
cp : product_conponent;
SUBTYPE OF (conpl ex_product _nap);
VWHERE
pd. franme_of reference. name = 'conceptual definition'
SELECT
cp.instance required := |IF pd.name = 'instance required THEN
TRUE;
ELSE
I F pd.nane = 'no instance required THEN
FALSE;
END | F;
END | F;
cp. name : = pdf.of _product. nane;
cp.description := pdf.description;
cp.is_relevant _for :=
FOR EACH pdc I N pd<-definition{product _definition_context_association |
rol e.nane = '"application context'}
c:franme_of _reference{product_definition_context};
RETURN (app_cont ext map(pdc));
END_MAP;

132 PLM Adopted Specification

of_prpduct

PRODUCT_
DEFINITION_ PRODUCT_FUNCTION #1
FORMATION #2

A A
Figure 51 - Instance mapping for product function

EXPRESS-X Mapping Specification:

MAP product _function_nmap AS
cp : product_function;
SUBTYPE OF (conpl ex_product_nap);
VWHERE
pd. franme_of reference.nane = 'functional definition'
SELECT
cp. name : = pdf.of _product. nane;
cp. description := pdf.description;
cp.is_relevant _for :=
FOR EACH pdc I N pd<-definition{product _definition_context_association |
role.nane = "application context'}
c:frane_of _reference{product _definition_context};
RETURN (app_context map(pdc));
END_MAP;

MAP al ternative_sol ution_nmap AS

cp : alternative_sol ution
SUBTYPE OF (conpl ex_product_nap);
VWHERE

pd. frane_of reference.nanme = "alternative definition'
SELECT

cp. base_el enent : =

compl ex_product _map(
pd<-rel ated_product definition{product_definition_relationship
name = 'solution alternative definition'}
c:relating_product_definition::formation[1]);

END_MAP;

PLM Adopted Specification 133

A A
PRODUCT_
DEFINITION SUPPLIER_SOLUTION #1
FORMMATION #3

A
| A y

A

4 P

A A

Figure 52 - Instance mapping for supplier solution

EXPRESS-X Mapping Specification:

MAP supplier_sol ution_map AS
cp : supplier_solution
SUBTYPE OF (alternative_solution_nmap);
VWHERE
pd. name = 'supplier';
SELECT
cp.supplier :=
organi zati on_map(pd<-itens{applied_organi zati on_assi gnnent |
role.nane = "supplier'}[1]);
cp.probability rate :=
pd<-definition{property_definition}
<-definition{property definition_representation}
::used_representation{representation | name = 'supplier probability'}
critens{neasure_representation_item| nane = 'probability rate'}
[1] . val ue_conponent;
END_MAP;

134 PLM Adopted Specification

PRODUCT_
DEFINITION_
FORMATION #6

FINAL_SOLUTION #1

Figure 53 - Instance mapping for final solution

EXPRESS-X Mapping Specification:

MAP final _sol ution_map AS
cp : final _solution;
SUBTYPE OF (alternative_solution_nap);
VWHERE
pd. name = 'final";
SELECT
cp.final _status :=
pd<-definition{property definition }
<-definition{property definition_representation}
::used_representation{representation
nane = 'final itemcharacteristics'}
c:itens{descriptive_representation_item| name='final itemstatus'}
[1] . descri ption;
cp.final _specification := FOR EACH pd IN
pd<-rel ati ng_product _definition{product _definition_relationship
name = 'final specification'}
::related_product _definition{product_definition
frame_of reference.nane IN
['part definition',
" physi cal occurrence']};
RETURN (I F pd_fs.franme_of reference.nanme = 'part definition THEN
ddi d_map(pd_fs);
ELSE
it := physical __instance_map(pd);
END | F);

PLM Adopted Specification 135

END_MAP;

A
of_prpduct
PRODUCT_
DEFINITION_ TECHNICAL_SOLUTION #1
FORMATION #2
A 4
| P

Figure 54 - Instance mapping for technical solution
EXPRESS-X Mapping Specification:
MAP t echni cal _sol uti on_map AS

cp : technical _solution;
SUBTYPE OF (alternative_solution_nmap);

VWHERE

pd. nane = 'technical';
SELECT

cp.description := pdf.description;
END_MAP;

7.4.9.3 Product relationships

A target instance of type Complex_product_relationship is created out of a source instance of type
Product_definition_formation_relationship where the relating_product_definition_formation and the
related_product_definition_formation both refer to Product_definition_formation instances that are mapped to
Complex_product target instances.

A target instance of type Product_structure relationship is created out of a source instance of type
Product_definition_usage where the Product_definition_formation of the relating_product_definition is mapped to a
Complex_product and the related_product_definition is mapped to a Product_constituent.

136 PLM Adopted Specification

A target instance of type Item_function_association is created out of a source instance of type
Product_definition_relationship which refers to a relating product_definition with frame_of _reference.name value
‘functionality' and to a related product_definition with frame_of _reference.name value 'part_definition'.

|

PRODUCT_DEFINITION_
FORMATION_RELATIONSHIP
#6

ITEM_FUNCTION_
ASSOCIATION #5

y name=sequence A ¥ |
PRODUCT_DEFINITION_RELATIONSHIP COMPLEX_PRODUCT_RELATIONSHIP
#1
]
V|
V| V| A
V|

Figure 55 - Instance mapping for item function association

EXPRESS-X Mapping Specification:

MAP conpl ex_product _rel ationship_map AS
cpr : conpl ex_product_rel ationshi p;
FROM
pdfr : product_definition_formation_relationship;
VWHERE
wr1: EXI STS(conpl ex_product _map(
pdrf.relating product _definition_formation));
wr 2: EXI STS(conpl ex_product _map(
pdrf.rel ated_product_definition_formation));

SELECT
cpr.relation_type := pdfr.nane;
cpr.description ;= pdfr.description;

cpr.relating : =

compl ex_product _map(pdrf.relating _product _definition_ formation);
cpr.related :=

compl ex_product _map(pdrf.rel ated_product _definition_formation);

PLM Adopted Specification

137

END_MAP;

|
|
|
4 A
|
RODUCT_
DEFIMITION_ PRODUCT_STRUCTURE_RELATIONSHIP

USAGE #4 #1

| |

Figure 56 - Instance mapping for product structure relationship

EXPRESS-X Mapping Specification:

MAP product _structure_rel ationship_map AS
cpr : product_structure_relationship;
FROM
pdu : product _definition_usage;
VWHERE
wr1: EXI STS(conpl ex_product _map(
pdrf.relating_product_definition.formation));
wr 2: EXI STS(conpl ex_product _map(
pdrf.rel ated_product_definition.formation)) OR
EXI STS(item instance_map(pdrf.related_product _definition));

SELECT
cpr.relation_type := pdu. naneg;
cpr.description ;= pdu. description

cpr.relating : =

conmpl ex_product _map(pdu. rel ati ng_product _definition.formation);

cpr.related :=
I F EXI STS(item instance_map(pdu.rel ated_product_definition))
THEN

138

PLM Adopted Specification

item.instance_map(pdu.rel ated product _definition);
ELSE
conmpl ex_product _map(pdu.rel ated_product _definition.formation);
END | F;
END_MAP;

MAP item functi on_association_nmap AS

ifa : itemfunction_association;
FROM

pdr : product _definition_relationship,;
VHERE

wr1l: pdr.relating_product_definition.frame_of _reference. nane =
"functional definition';
wr2: pdr.related_product_definition.frame_of_reference. nane =
"part definition';
SELECT
i fa.associated function : =
product function_map(pdr.relating_product _definition.formation);

ifa.assoicated item := ddid_map(pdr.rel ated_product _definition);
i fa.association_type := pdr.nane;
i fa.description = pdr. description;

END_MAP;
7.4.9.4 Class associations

A target instance of type Class_inclusion_association is created out of a source instance of type
Product_concept_feature _association that references an instance of type Inclusion_product_concept_feature as feature. A
target instance of type Class_condition_association is created out of a source instance of type

Product_concept_feature _association that references an instance of type Conditional_product_concept_feature as feature.
A target instance of type Class_specification_association is created out of a source instance of type
Product_concept_feature _association that references an instance of type Product_concept_feature as feature, but not an
instance of type Inclusion_product_concept_feature or Conditional_concept_feature.

PRODUCT_CONCEPT_FEATURE_ASSOCIATION CLASS_INCLUSION_ASSOCIATION
#1 #1

Figure 57 - Instance mapping for class inclusion association
EXPRESS-X Mapping Specification:
MAP cl ass_incl usi on_associ ati on_map AS

cia : class_inclusion_association;
FROMV

PLM Adopted Specification 139

pcfa : product_concept feature_association;

icf : inclusion_product _concept feature;
VWHERE
pcfa.feature :=: icf;
| DENTI FI ED_BY pcf a;
SELECT
cia.description := pcfa.description;
ci a.associ ated_product _class : = product _cl ass_map(pcfa.concept);
cia.associated_inclusion := specification_inclusion_map(icf);
END_MAP;

PRODUCT_CONCEPT_FEATURE_ASSOCIATION

#1 CLASS_CONDITION_ASSOCIATION #1

4 4 4
Figure 58 - Instance mapping for class condition association

EXPRESS-X Mapping Specification:

MAP cl ass_condi ti on_associ ati on_map AS
cia : class _condition _association

FROM
pcfa : product_concept feature_association;
ccf : conditional _concept_feature;

VWHERE
pcfa.feature : = ccf;
| DENTI FI ED_BY pcf a;
SELECT
cia.description := pcfa.description;
cia.condition_type := pcfa.naneg;
ci a.associ ated_product _class : = product _cl ass_nmap(pcfa.concept);
ci a.associ ated_condition : = specification_expression_map(ccf);
END_MAP;
PRODUCT_CONCEPT_FEATURE_ASSOCIATION CLASS_SPECIFICATION_ASSOCIATION
#1 #1
A F
V| V| | V|
140 PLM Adopted Specification

Figure 59 - Instance mapping for class specification association

EXPRESS-X Mapping Specification:

MAP cl ass_speci fication_associati on_nmap AS
csa : class_specification_association;

FROM
pcfa : product_concept feature _association;
pcf : product _concept_feature;
VWHERE
w l: pcfa.feature :=: pcf;
wr 2: NOT(' AUTOMOTI VE_DESI GN. CONDI TI ONAL_CONCEPT_FEATURE' | N
TYPEOF(pcf));
wr 3: NOT(' AUTOMOTI VE_DESI GN. | NCLUSI ON_CONCEPT_FEATURE' | N
TYPEOF(pcf));
SELECT
csa. associ ation_type := pcfa. naneg;

csa. associ at ed_product _cl ass :

csa. associ ated_specification :

END_MAP;

7.4.9.5 Class category types

product _cl ass_map(pcfa.concept);
speci fication_map(pcf);

A target instance of type Class_category _association is created out of a source instance of type
Product_concept_feature category usage. A target instance of type Specification_category is created out of a source
instance of type Product_concept_feature category.

PLM Adopted Specification

141

V|
associated_product_class
itel‘n
CLASS_CATEGORY_ASSOCIATION
PRODUCT_CONCEPT_ #1
FEATURE_CATEGORY_USAGE #1| mandatory=TRUE
V|

assignef_group associated_category

PRODUCT_CONCEPT_ SPECIFICATION_CATEGORY #3

FEATURE_CATEGORY #3 m plicit_exclusive_condition=FALS
|
A A
|
A

Figure 60 - Instance mapping for class category association

EXPRESS-X Mapping Specification:

MAP cl ass_cat egory_assocati on_map AS
cca : class_category_assocation

FROM
pcfc : product_concept feature_ category_usage;
SELECT
cca. mandatory := I F pcfc.role.name = 'mandatory category usage' THEN
TRUE;
ELSE
I F pcfc.role.nane = 'optional category usage' THEN
FALSE;
END | F;
END | F;
cca. associ ated_product _class : = product _class_map(pcfc.itens[1]);

cca. associ ated_category : =
speci fication_category_map(pcfc.assigned_group);
END_MAP;

142 PLM Adopted Specification

Instance Diagrams:

A
|
) L associated_groduct_class
items
PRODUCT_CONCEPT_ CLASS_CATEGORY_ASSOCIATION
FEATURE_CATEGORY_USAG #1
#1 mandatory=FALSE
A
assignef_group associated_category
EXCLUSIVE_PRODUCT_ SPECIFICATION_CATEGORY #3
CONCEPT—FEA;UGRE—CATEGORY im plicit_exclusive_condition=TRU
A

EXPRESS-X Mapping Specification:

MAP specification_category_map AS
sc : specification_category;

FROM
pcfc : product _concept_feature category;
SELECT
sc.description := pcfc.description;
sc.id := pcfc.id;

sc.inplicit_exclusive condition :=

I F " AUTOMOTI VE_DESI GN. EXCLUSI VE_CONCEPT_FEATURE_CATEGORY'
I'N TYPEOF(pcfc)

THEN
TRUE;

ELSE
FALSE;

END | F;

END_MAP;

MAP specification_category_hierarchy map AS
sch : specification_category_ hierarchy;

FROM
grel : group_relationship;
VWHERE
grel .name = 'specification category hierarchy';
SELECT
sch. super _category := specification_category nmap(grel.relating_group);

sch. sub_cat egory
END_MAP;

specification_category _map(grel.related _group);

PLM Adopted Specification 143

7.4.9.6 Specification types

A target instance of type Specification is created out of a source instance of exact type Product_concept_feature. A target
instance of type Specification_expression is created out of a source instance of type Conditional_concept_feature. A target
instance of type Specification_inclusion is created out of a source instance of type Inclusion_concept_feature.

INCLUSION_PRODUCT
CNgNgESP?_F_EATURE #IJ SPECIFICATION_INCLUSION #1
p
A
A |
A
A

Figure 61 - Instance mapping for specification inclusion

EXPRESS-X Mapping Specification:

MAP speci fication_inclusion_map AS

si : specification_inclusion;
FROM
i pcf : inclusion_product concept feature;
SELECT
si.description :=ipcf.description;
si.id :=ipcf.id;
si.if_condition := specification_operand_map(
i pcf.condition.relating_product_concept _feature);
si.included_specification := specification_operand_nmap(

i pcf.condition.rel ated_product _concept _feature);
END_MAP;

MAP speci fication_operand _nmap AS

sp : specification_operand_sel ect;
FROM

pcf : product _concept feature;
END_MAP;

144 PLM Adopted Specification

CONDITIONAL_
CONCEPT_FEATURE #1

P
Figure 62 - Instance mapping for specification expression

EXPRESS-X Mapping Specification:

MAP specification_expression_nmap AS

sp : specification_expression;
SUBTYPE OF (specification_operand_map);
VWHERE

wr1: ' AUTOMOTI VE_DESI GN. CONDI TI ONAL_CONCEPT_FEATURE'

SELECT
sp.id
sp. description :
sp. operation
sp. oper and := FOR EACH op IN

pcf.id;
pcf. description;

SPECIFICATION_EXPRESSION
#1
operation=AND

I N TYPEOF(pcf);

pcf.condition.conditional _operator. nane;

[pcf.condition.rel ated product _concept feature,
pcf.condition.relating product concept_feature];
RETURN (specification_operand_map(op));

END_MAP;

PLM Adopted Specification

145

PRODUCT_CONCEPT_ SPECIFICATION
FEATURE #1 #1

package=FALSE

|
|
A 4
V|
| A

Figure 63 - Instance mapping for specification
EXPRESS-X Mapping Specification:
MAP speci fication_map AS

sp : specification;
SUBTYPE OF (specification_operand_nap);
VWHERE

OTHERW SE;
SELECT

sp.id = pcf.id;

sp. description := pcf.description;

sp. package © = " AUTOMOTI VE_DESI GN. PACKAGE_CONCEPT_FEATURE'

I N TYPEOF(pcf);
sp. name = pcf. nane;
sp.version_id = ala<-itens{applied_identification_assignnent |
role.nane = 'version'}[1].assigned_id;

sp. cat egory D=
specification_category nmap(pcf<-itens{applied _group_assignment |
rol e.name = 'specification category nenber'}
::assigned_group{product _concept _feature_category}[1]);
END_MAP;

7.4.9.7 Configuration

A target instance of type Configuration is created out of a source instance of type Configured_effectivity assignment,
which references an instance of type Effectivity with id value ‘configuration validity'.

146 PLM Adopted Specification

ASSIGNMENT #1
configuration_type=usage

CONFIGURED_EFFECTIVITY_
J CONFIGURATION #1
inheritance_type=local

-
4
A
4 4 4
Figure 64 - Instance mapping for configuration
EXPRESS-X Mapping Specification:
MAP configuration_map AS
cfg : configuration;
FROM
cea : configured_ effectivity_assignnent;
LOCAL
pcfa : product_context feature_association
END_LOCAL;
VWHERE
cea. assigned_effectivity.id = 'configuration validity';
SELECT
cfg.configuration_type := cea.rol e. nang;
cfg.inheritance_type .= cea.rol e.description;

cfg.configured_elenment :=
| F ' AUTOMOTI VE_DESI GN. PRODUCT _DEFI NI TION' | N TYPEOF(cea.itens[1])
THEN
CASE cea.itens[1].frame_of reference.nane OF
"alternative definition'
‘conceptual definition'

"functional definition' : conplex_product_map(cea.itens[1]);
"part occurrence' : item.instance_map(cea.itens[1]);
END_CASE;
END | F;
pcfa : = cea<-assigned effectivity_ assignnment
{configured_effectivity context_assignnent |
role.nane = 'specification based condition'}

critens{product _context feature_association}[1];

PLM Adopted Specification

147

cfg.is_solution for :=
I F ' AUTOMOTI VE_DESI GN. CONDI TI ONAL_CONCEPT_FEATURE' | N
TYPEOF(pcf a. feat ure)

THEN
class_condition_associati on_map(pcfa);
ELSE
cl ass_specification_association_map(pcfa);
END | F;
END_MAP;

7.4.9.8 Product_design

A target instance of Product_design is created out of a source instance of type Configuration_design.

4
L ¢ 4

degign

CONFIGURATION_
DESIGN #1 PRODUCT_

A DESIGN #1
confi#ration

|

Figure 65 - Instance mapping for product design

EXPRESS-X Mapping Specification:

MAP product _design_map AS
pdes : product_design;
FROM
cd : configuration_design;
VWHERE
cd. nanme = 'product design';
SELECT
pdes.design := itemuversion_map(cd. design);
pdes. product product _i dentification_map(cd. configuration);
END_MAP

7.4.9.9 Product_identification and Product_specification

A target instance of Product_identification is created out of a source instance of type Product_identification.

A target instance of Product_specification is created out of a source instance of type Product_specification.

148 PLM Adopted Specification

|
PRODUCT_SPECIFICATION PRODUCT_SPECIFICATION
#1 #1
A
|
A A
Figure 66 - Instance mapping for product specification
EXPRESS-X Mapping Specification:
MAP product _identification_map AS
t _pid : product_identification
FROM
s _pid : product_identification;
SELECT
t_pid.id = s pid.id;
t _pid.nane := s_pid. nane;
t _pid.description := s_pid.description
t _pid.version_id := s _pid<-itens{applied_identification_assignnment |
role.name = 'version'}[1].assigned_id;
t _pid.associated_product _class := product_class_map(s_pid.item concept);
t_pid.
END_MAP;

MAP product specification_nmap AS

t_pid : product_specification;
SUBTYPE OF (product_identification_nap);
VWHERE

" AUTOMOT| VE_DESI GN. PRODUCT_SPECI FI CATION' I N TYPEOR(s_pi d);
SELECT

t _pid.defining_specification :=

FOR EACH pcf IN s _pid.itemconcept feature::feature;
RETURN (specification_map());

END_MAP;

PLM Adopted Specification 149

7.4.9.10 Physical_instance

A target instance of Physical_instance is created out of a source instance of type Product_definition which refers to a
Product_definition_context as frame_of _reference with name 'physical occurrence'.

PRODUCT #1 i
4 PHYSICAL_INSTANCE #1

of_prpduct

PRODUCT_
DEFINITION_

FORMATION #2 4
p
4 |
PRODUCT_
DEFINITION #3 frame_of_referenc?
4 | 4 p
p
p p
Figure 67 - Instance mapping for physical instance
EXPRESS-X Mapping Specification:
MAP physi cal _i nstance_map AS
phi : physical _i nstance;
FROM
pd : product _definition;
VWHERE
pd. frane_of reference.nane = ' physical occurrence';
SELECT
phi . description := pd.fornmation. of _product.description;

phi.inventory_nunber :=
pd. fornmation. of _product<-itens{applied_identification_assignnent |

role.nane = "inventroy nunber'}[1].assigned_id;
phi.lot_id :=
pd. fornmation. of _product<-itens{applied_identification_assignnent |
role.nane = 'l ot context'}[1].assigned_ id;
phi . serial _nunmber := pd.formation.of _product.id;

phi.is realization_ of :=
| F SI ZEOF(pd<-rel at ed_product _definition
{product _definition_relationship |

150 PLM Adopted Specification

name = 'physical realization'}) >0
THEN
ddi d_map(pd<-rel ated_product _definition
{product _definition_relationship |
nane = 'physical realization'}
c:relating_product_definition[1]);
ELSE
product _i dentification_map(pd<-design{configuration_design |
name ='physical instance basis'}
c:configuration[1]);
END | F;
END_MAP;

7.4.9.11 Physical_instance_test_result

A target instance of Physical_instance_test_result is created out of a source instance of type Property_definition with
name 'test result'.

A
4
PROPERTY_DEFINITION
#1 PHYSICAL_INSTANCE_
name=test result TEST_RESULT #1
- ‘ r 4
y
4
A
A
y
y
y
y

Figure 68 - Instance mapping for physical instance test result

EXPRESS-X Mapping Specification:

MAP physi cal _instance_test _result_nap AS
pitr : physical _instance_test_reslult;
FROM
prd : property_definition;
VWHERE

PLM Adopted Specification 151

prd.name = 'test result';

SELECT
pitr.description := prd. description;
pitr.id := prd.id;
pitr.tested_instance := physical _instance map(prd.definition);

pitr.test _result 1=
property _val ue_representati on_map(prd<-definition
{property definition_representation}
c:used_representation[1]);
pitr.test_activity :=
I F SI ZEOF(pd<-i tens{applied_action_assi gnment |
role.nane = 'test activity'}
::assigned_action{action}
<-related_action{action_relationship |
name = 'process operation occurrence'}
THEN
process_operation_occurrence_nmap(
pd<-itens{applied_action_assignment |
role.name = "test activity'}
:rassigned_action{action
<-rel ated_action{action_relationship

nane = 'process operation occurrence'}[1]);
ELSE
activity map(pd<-itens{applied_action_assignnent |
role.nane = 'test activity'}
::assigned_action{executed_action}[1]);
END | F;
END_MAP;

7.4.9.12 Physical_assembly_relationship

A target instance of Physical_assembly_relationship is created out of a source instance of type
Assembly _component_usage with name 'physical occurrence usage'.

152 PLM Adopted Specification

USAGE #1
name=physical occurence
usage

ASSEM BLY_COMPONENT_J

PHYSICAL_

ASSEMBLY_
a a RELATIONSHIP

#1
A
A |
V|
| A

Figure 69 - Instance mapping for physical assembly relationship

EXPRESS-X Mapping Specification:

MAP physi cal _assenbly rel ati onship_map AS
par : physical __assenbly rel ationship;

FROM

acu : assenbly conponent usage;
VWHERE

acu. nane = 'physical occurrence usage';
SELECT

par. physi cal _assenbly : =
physi cal i nstance_map(acu.rel ating _product _definition);
par. physi cal _conponent : =
physi cal _i nstance_map(acu.rel ated_product _definition);
par.is_realization_of :=
item.instance_map(acu.rel ated product _definition
<-rel ated_product _definition{product _definition_relationship
| name = 'physical realization'}
c:relating_product_definition[1]});
END_MAP;

7.4.9.13 Effectivity
A target instance of type Effectivity is created out of a source instance of type Effectivity that is referenced by an instance

of type Effectivity_relationship with name 'inheritance' as related effectivity or which is of subtype Dated_effectivity or
Time_interval_based effectivity.

PLM Adopted Specification 153

y - y -

rek¥ed

related_dffectivity

EFFECTIVITY_ EFFECTIVITY_
APPLIED_ RELATIONSHIP RELATIONSHIP
EFFECTIVITY_ a #5
ASSIGNMENT #10; |
relatin
assigned_¢ ‘
V|
EFFECTIVITY #1
EFFECTIVITY #1 . 4
V|
V|
effectivity/start_date effectivity
4
V| A V| ‘ V|

Figure 70 - Instance mapping for effectivity

EXPRESS-X Mapping Specification:

MAP effectivity _map AS
t_eff : effectivity;
FROM
s_eff : effectivity;
VWHERE
wr1: (S| ZEOF([' AUTOVOTI VE_DESI GN. DATED _EFFECTI VI TY"
" AUTOVOTI VE_DESI GN. TI ME_| NTERVAL_BASED EFFECTI VI TY']
* TYPEOF(s_eff)) > 0) OR
(Sl ZEOF(s_eff<-rel ated_effectivity{effectivity_relationship |

nane = 'inheritance'}) > O;
SELECT
t _eff.description := s_eff.description
t _ eff.effectivity context := s_eff.nane;
t eff.id :=s_eff.id;
t_eff.version_id := s_eff<-itens{applied_identification_assignnent |
role.nane = 'version'}[1].assigned_id;

t _eff.concerned_organi zation : =
FOR EACH org IN s_eff<-itens{applied_organi zation_assi gnnment |
rol e.nane = 'concerned organi zation'}
::assigned_organi zation);
RETURN or gani zati on_nmap(or Q) ;
END_MAP;

MAP dated effectivity map AS

t_eff : effectivity;
SUBTYPE OF (effectivity_nmap);
VWHERE

154 PLM Adopted Specification

wr2: ' AUTOMOTI VE_DESI GN. DATED_EFFECTI VI TY' I N TYPECF(s_eff);
SELECT
t_eff.start_definition :=
I F " AUTOMOTI VE_DESI GN. EVENT _OCCURRENCE
IN TYPEOF(s_eff.effectivity_end_date) THEN
event _reference_map(s_eff.effectivity end_date);
ELSE
date_ time_map(s_eff.effectivity end_date);
END | F;
t _eff.end definition :=
I F " AUTOMOTI VE_DESI GN. EVENT _OCCURRENCE
IN TYPEOF(s_eff.effectivity _end _date) THEN
event _reference_map(s_eff.effectivity end_date);
ELSE
date_ time_map(s_eff.effectivity _end_date);
END | F;
END_MAP;

MAP time_interval based effectivity map AS
t_eff : effectivity;
SUBTYPE OF (effectivity map);
VWHERE
wr 2: " AUTOMOTI VE_DESI GN. TI ME_I NTERVAL _BASED EFFECTI VI TY
IN TYPEOF(s_eff);
SELECT
t eff.period := duration_map(s_eff.effectivity period.duration);
t _eff.start_definition :=
I F " AUTOMOTI VE_DESI GN. EVENT _OCCURRENCE
IN TYPEOF(s_eff.effectivity period. pri mary_bound) THEN
event _reference_map(s_eff.effectivity period. primry_bound);
ELSE
date time_map(s_eff.effectivity period.primry_bound);
END | F;
t _eff.end definition :=
I F " AUTOMOTI VE_DESI GN. EVENT_OCCURRENCE
IN TYPEOF(s_eff.effectivity period. pri mary_bound) THEN
event _reference_map(s_eff.effectivity period. secondary_bound);
ELSE
date_ time_map(s_eff.effectivity period. secondary_bound);
END | F;
END_MAP;

7.4.9.14 Specific configurations

A target instance of type Manufacturing_configuration is created out of a source instance of type
Configuration_effectivity.

PLM Adopted Specification

155

| A
MANUFACTURING
CONFIGURATION_ _
EFFECTIVITY #1 CONFIGURATION #1
A A
| A
P | A
| A
A

Figure 71 - Instance mapping for manufacturing configuration

EXPRESS-X Mapping Specification:

MAP manuf act uring_configuration_nmap AS
nc @ manufacturing_configuration
FROM
ce : configuration effectivity;
SELECT
nc. concerned_organi zation : =
organi zati on_nap(ce<-itens{applied_organi zati on_assi gnnent |
rol e.nane = 'concerned organi zation'}
::assigned_organi zation[1]);
nc. configured_elenent := item.instance_map(
ce::usage{assenbl y _conponent usage}
<-occurrence_usage{product _definition_occurrence_relationship}
::roccurrence{product_definition}[1]);
nc.is_solution_for := product_design_map(ce.configuration);
END_MAP;

156 PLM Adopted Specification

MAP | ot _configuration_map AS

nmc : lot_configuration;
SUBTYPE OF (nmanufacturing_configuration_map);
VWHERE

" AUTOMOTI VE_DESI GN. LOT_EFFECTI VI TY' I N TYPEOF(ce);
SELECT

nc.lot _id = ec.effectivity lot_id;
nc.lot_size := ec.lot_size.val ue_conponent;
END_MAP;

MAP serial _configuration_nmap AS
nc : serial_configuration;
SUBTYPE OF (nmanufacturing_configuration_map);

VWHERE

" AUTOMOTI VE_DESI GN. SERI AL_NUVBERED EFFECTI VI TY' | N TYPEOF(ce);
SELECT

nc. serial _end _nunber := ce.effectivity end_id;

nc.serial _start_nunber := ce.effectivity start _id;
END_MAP;

MAP dat ed_configuration_map AS
nc : dated_configuration;
SUBTYPE OF (manufacturing_configuration_map);
VWHERE
" AUTOMOTI VE_DESI GN. DATED _EFFECTI VI TY' | N TYPEOF(ce);
SELECT

nc. end_date := date_tinme_map(ce.effectivity end _date);
nc.start _date := date_time_nap(ce.effectivity start_date);
END_MAP;

7.4.9.15 Event_reference

A target instance of type Event_reference is created out of a source instance of type Event_occurrence.

PLM Adopted Specification

157

DURATION #2
V' -

oert

y 4 EVENT_I;EIFERENCE

|

event_iontext
RELATIVE_EVENT_ EVENT_
OCCURRENCE #1 L OCCURRENCE #2

4

offset

TIME_MEASURE_
WITH_UNIT #3

Figure 72 - Instance mapping for duration and event

EXPRESS-X Mapping Specification:

MAP event reference_map AS
ref : event _reference;

FROM
occ : event_occurrence;

SELECT
ref.description := occ.description;
ref.event _type := occ. nang;

ref.event _context :=
general organi zational _data_sel ect _map(
occ<-assi gned_event _occurrence{applied_event _occurrence_assi gnnent |

role.nane = 'event context')
critems[1])
ref.offset := I F ' AUTOMOTI VE_DESI GN. RELATI VE_EVENT _OCCURRENCE'
I N TYPEOF(occ)
THEN
duration_map(occ. of fset);
END | F;

END_MAP;
7.4.9.16 Duration

A target instance of type Duration is created out of a source instance of type Time_measure_with_unit.

EXPRESS-X Mapping Specification:

DEPENDENT _MAP dur ati on_map AS

158 PLM Adopted Specification

d : duration;

FROM
tmu : tine_neasure with unit;
SELECT
d.tine := tnu. val ue_conponent;
d.tine_unit := get_unit_nanme(tnu.unit_conponent);

END_DEPENDENT_MAP;
7.4.10 Change and Work Management

7.4.10.1 Activity and related types

A target instance of type Activity is created out of a source instance of type Executed action.

A target instance of type Activity relationship is created out of a source instance of type Action_relationship. A target
instance of type Activity_method is created out of a source instance of type Action_method. A target instance of type
Activity_element is created out of a source instance of type Applied_action_assignment, which references an instance of
type Object_role with description value 'activity element'.

z 4
4
4 4 4 P
4
ACTIVITY #1
EXECUTED_ACTION #1
A | A
4
A A
4
A A |
4 4
A
A A 4
A A

Figure 73 - Instance mapping for activity

EXPRESS-X Specification:

MAP action_map AS
acv : activity;

FROM

act : executed_ action;
LOCAL

dpos : SET OF date_and_person_organizati on;
END_LOCAL;

PLM Adopted Specification 159

SELECT

acv.
acv.
acv.
acv.

acv.
acv.
acv.

acv.

acv.

acv.

acv.
FOR EACH org I N act<-itens{applied_organization_assi gnment |

acv.

160

activity type : = act.naneg;
description ;= act.description
id = act.id
i nt ernal = CASE act.chosen_net hod. pur pose OF
"internal' : TRUE;
"external' : FALSE
OTHERW SE : 7
END_CASE;
st at us ;= act<-assigned_action{action_status}[1].status
chosen_nethod : = activity_method_nmap(act.chosen_net hod);
actual _end date := date_tinme_map(
(act<-itens{applied _date _and time_assignnment |
role.nane = '"actual end'}
::assigned_date and time +
act<-itens{applied _date_assignnent |
role.nane = '"actual end'}
::assigned_date)[1]);
actual _start_date := date_tine_map(
(act<-itens{applied _date and tinme_assignnment |
role.nane = '"actual start'}
::assigned_date and time +
act<-itens{applied _date_assignnent |
role.nane = "actual start'}
::assigned_date)[1]);
pl anned_end_date := date_tinme_map(
(act<-itens{applied date _and time_assignnment |
role.nane = 'planned end'}
::assigned_date and time +
act<-itens{applied _date_assignnent |
role.nane = 'planned end'}
::assigned_date)[1]);
pl anned_start _date := date_tine_map(
(act<-itenms{applied_date_and_tine_assi gnment |
rol e.nane = 'planned start'}

::assigned_date and time +
act<-itenms{applied_date_assi gnnent |
rol e.nane = 'planned start'}
::assigned_date)[1]);
concer ned_organi zation : =

rol e.nane = 'concerned organi zation'}
::assigned_organi zation

RETURN (or gani zati on_map(orig));
acv.
FOR EACH org I N act<-itens{applied_organization_assi gnment |

suppl yi ng_or gani zation : =

rol e.nane = 'supplying organi zation'}
::assigned_organi zation;
RETURN (organi zati on_map(orig));
requestor := person_organization_map(
act<-itens{applied_person_and_organi zation_assi gnment |

PLM Adopted Specification

rol e.name = 'requestor'}
::assigned_person_and_organi zation[1]);
END_MAP;

MAP activity relationship_map AS

actirel : activity_relationship ;

FROM
actrel : action_relationship ;

SELECT
actirel . .related := activity _map(actrel.related_action)
actirel.relating := activity map(actrel .relating_action) ;
actirel.relation_type := actrel.nane ;
actirel.description := actrel.description ;

END MAP ;

MAP activity nethod map AS
am: activity nethod ;

FROM
actm: action_nethod ;

SELECT
am consequence : = actm consequence ;
am description := actmdescription ;
am nane = actm nane ;

END MAP ;

MAP activity_ el ement_nmap AS
ae : activity_elenent ;

FROM
aaa : applied_action_assignnent ;
VWHERE
aaa.role.description = "activity elenent' ;
SELECT
ae.role : = aaa.role. nane ;
ae. associated_activity := activity_map(aaa.assigned_action) ;
ae.elenent := activity_elenent_select _nap(aaa.itens[1]) ;
END MAP ;

7.4.10.2 Work_request, Activity_method_assignment
A target instance of type Work_request is created out of a source instance of type Versioned_action_request which is

referenced by an instance of type Action_request_status. A target instance of type Activity _method_assignment is created
out of a source instance of type Action_request_solution.

PLM Adopted Specification 161

WORK_REQUEST #1
VERSIONED_ACTION_ = A
REQUEST #1
associated_request
® L_req
V|
ACTIVITY_METHOD_
reqiiest ASSIGNMENT #4
assigned method
ACTION_REQUEST_
SOLUTION #5
V|
A
method
o
V|

Figure 74 - Instance mapping for work request and activity method assignment

EXPRESS-X Specification:

MAP wor k_request _map AS
wr : work_request ;

FROM
va : versioned_action_request ;
ar : action_request_status

VWHERE
ar.assigned_request :=: va
SELECT
wr . description := va.description ;
w.id:=va.id
wr . request _type := va.purpose
wr.status := ar.status
wr.version_id := va.version_id
wr . scope : =

FOR EACH it IN

vag<- assi gned_acti on_request{applied _action_request_assi gnnent |
role.nane = 'scope'}::itens ;
RETURN (activity el enment_select _map(it));
wr. notified_person :=
FOR EACH po I N act<-itens{applied _person_and_organi zati on_assi gnnent |
rol e.nane="'notified person or organization'}
::assigned_person_and_organi zati on;

RETURN (per son_or gani zati on_map(po)) ;

W . requestor := person_organi zation_map(
act<-itens{applied_person_and_organi zation_assi gnment |
role.nane = 'requestor'}

162 PLM Adopted Specification

::assigned_person_and_organi zation[1]);
END MAP ;

MAP activity nethod_assi gnnent_nmap AS
ara : activity_method_assi gnnment ;

FROM
ars : action_request_solution ;
SELECT
ara.relation_type := ars.nane ;
ara. assigned_nethod := activity nethod_map(ars. met hod) ;
ara. associ ated_request := work_request_map(ars.request) ;
END MAP ;

7.4.10.3 Work_order

A target instance of type Work_order is created out of a source instance of type Action_directive.

ACTION_DIRECTIVE #1 WORK_ORDER #1 |
V| |

Figure 75 - Instance mapping for work order

EXPRESS-X Mapping Specification:

MAP wor k_order _nmap AS
wo @ work_order ;

FROM
ad : action_directive ;
SELECT
wo. descri ption ;= ad. conment
wo. id = ad. nane;
wo. wor k_order_type : = ad.description;
wo. version_id = ad<-itens{applied_identification_assignnent |
role.name = 'version'} ::assigned_id[1] ;
wo.is_controlling := FOR EACH da I N adr<-directive{directed_action};
RETURN (activity_map(da));
END MAP ;

7.4.10.4 Project

A target instance of type Project is created out of a source instance of type Organizational _project. A target instance of
type Project_relationship is created out of a source instance of type Organizational _project_relationship.

PLM Adopted Specification 163

ORGANIZATIONAL PROJECT_
PROJECT #1 BROJECHL F relating RELATIONSHIP #3
A ‘] | |
relating_organiz ational_project

P ORGANIZATIONAL_ 4 relgted
PROJECT_
RELATIONSHIP #7

related_organizational_project

® V| V| A

A

Figure 76 - Instance mapping for project

EXPRESS-X Mapping Specification:

MAP proj ect _map AS
pro : project;

FROM
opr : organi zational _project;
SELECT
pro.description := opr.description
pro.id := opr.id;
pro. nane := opr.nane;

pro.actual end date :=
pro.actual start _date :=
pro. pl anned_end_date : =
pro.planned_start_date :=
pro.work _program := activity_ nmap(opr<-assi gned_organi zati onal project
{organi zational _product_assi gnnent |
rol e.nane = 'work progran}
critens{executed action}[1]);
pro.is_applied_to := FOR EACH it IN
opr <-assi gned_or gani zati onal _proj ect
{organi zational _product_assi gnnment |
role.nane = "affected item}::itens;
RETURN (project_information_select_map(it));
END_MAP;

MAP proj ect_rel ationshi p_map AS

prel : project_relationship;
FROM
orel : organizational project_relationship;

164 PLM Adopted Specification

SELECT

prel.related := project_map(orel.related _organizational project);
prel.relating := project_map(orel.relating_organizational _project);
prel.relation_type := orel. nane;
prel.description := orel.description;

END_MAP;

7.4.10.5 Element_delivery

A target instance of Element_delivery is created out of a source instance of type Element_delivery.

A A A
V|
ELEMENT_DELIVERY
4 A
V|
ELEMENT_DELIVERY
#1
A A
V|
A V| A
A V| A

Figure 77 - Instance mapping for element delivery

EXPRESS-X Mapping Specification:

MAP el ement _delivery_nmap AS
t _ed : elenment_delivery;
FROM
s_ed : element_delivery;
SELECT
t _ed.deliverable_elenent :=
activity el enent _nmap(s_ed<-assigned_action{applied_action_assignnent |

rol e.nane = 'delivarable elenent'}
::ritens{applied _action_assignnent |
role.description = "activity element'}[1]);;

t _ed.destination :=
organi zation_nmap(s_ed<-itens{applied_organi zati on_assi gnnment |
role.nane = 'destination'}::assigned_organization[1]);
t_ed.quantity :=

PLM Adopted Specification 165

value with_unit_map(t_ed<-definition{action_property}

END_MAP;

7.4.11 Process planning

7.4.11.1 Process_plan, Process_plan_relationship

<-property{action_property representation}
c:respresentation{representation |
name = 'derlivery quantity'}::items[1])

A target instance of type Process plan is created out of a source instance of type Process plan. If an
Applied_identification_assignment with role name 'version' references the Product_process plan as items, the created
target instance is of subtype Product_plan_version. A target instance of type Process plan relationship is created out of a
source instance of type Action_relationship that referenced instances of type Process plan as relating_action and as

related action.

PRODUCT_PROCESS_
PLAN #1

relatinlaction

ACTION_RELATIONSHIP
#5

relatetiaction

A

A

Figure 78 - Instance mapping for process plan

EXPRESS-X Mapping Specification:

MAP process_plan_map AS
pp : process_pl an;
FROM
ppp : process_pl an;
SELECT

pp. description : = ppp.description;

pp. nane : = ppp. nane;
pp.plan_id := ppp.id
pp. produced_out put

166

PROCESS_PLAN
#3

relating

PROCESS_PLAN_

RELATIONSHIP
#1
reldted
|

PLM Adopted Specification

i tem version_map(ppp<-process{process_product _associ ation |
nane = 'produced output'}
;. defined_product{product _definition}
c:formation[1]);
END_MAP;

MAP process_pl an_version_nmap AS
pp : process_plan_version
SUBTYPE OF (process_plan_nap);

VWHERE
S| ZEOF(ppp<-itens{applied_identification_assignment |
role.nane = 'version'}) > 0;
SELECT
pp.version_id := ppp<-itens{applied_identification_assignment |
role.name = 'version'}[1].assigned_id,
END_MAP;

MAP process_plan_rel ati onshi p_map AS
ppr : process_plan_rel ationship;
FROM
arel : action_relationship;
VWHERE
wr1l: ' AUTOMOTI VE_DESI GN. PROCESS PLAN | N TYPEOF(arel.rel ated_action);
wr2: ' AUTOMOTI VE_DESI GN. PROCESS_PLAN | N TYPECF(arel .rel ating_action);
SELECT

ppr.related : = process_plan_nap(arel.related_action);
ppr.relating := process_plan_map(arel.relating action);
ppr.relation_type := arel.nane;
ppr.description := arel.description

END_MAP;

7.4.11.2 Process_operation_definition

A target instance of Process operation_definition is created out of a source instance of type Process _operation.

PROCESS_
OPERATION #1

PROCESS_ PROCESS_OPERATION_

OPERATION_ . DEFINITION_ L ®
P DEFINITION #1 | 2200 | RELATIONSHIP #2 4 [eare

relating | method

ACTION_

METHOD_
RELATIONSHIP relatedimethof
#2 y 4
Figure 79 - Instance mapping for process operation definition

PLM Adopted Specification 167

EXPRESS-X Mapping Specification:

MAP process_operation_definition_map AS
pod : process_operation_definition;

FROM

po : process_operation
SELECT

pod. description : = po.description

pod.id := po.nane;

pod. nane : = po. pur pose;

pod. process_type := po.consequence;

pod.version_id := po<-itens{applied_identification_assignnent |

role.nane = 'version'}[1].assigned_id;

END_MAP;

7.4.11.3 Process_operation_occurrence

A target instance of type Process operation_occurrence is created out of a source instance of type Action_relationship
with name 'process operation occurrence'.

ACTION_RELATIONSHIP
#1 o
name=process relating_action
operation occurrence 4 py |
relateciaction
PROCESS_OPERATION_

ACTION #2 OCCURRENCE #1

il
|

| |
| |

Figure 80 - Instance mapping for process operation occurence

EXPRESS-X Mapping Specification:
MAP process_operation_occurrence_nmap AS

poo : process_operation_occurrence;
FROM

168 PLM Adopted Specification

arel : action_relationship;
SELECT
poo.id := arel.related_action.id;
poo. operation_definition :=
process_operation_definition_map(arel.related action.choosen_nethod[1]);
poo. plan : = process_plan_nmap(arel.relating_action);
poo.is _defined_in :=
cartesian_coordi nate_space_nap(arel .rel ated_action
<-definition{action_property}
::representation{representation
nane = 'reference system }::context_of itens[1]);
END_MAP;

7.4.11.4 Process_operation_occurrence_relationship
A target instance of type Process operation_occurrence_relationship is created out of a source instance of type

Action_relationship which refers to action instances as related_action and relating_action which are both referenced by
instances of type Action_relationship with name ‘process operation occurrence' as related action.

ACTION_RELATIONSHIP
#1
V|

PROCESS_OPERATION_ J
P

4 y OCCURRENCE_#I;ELATIONSHI

4 4 4
A A
p 4
4 p
Figure 81 - Instance mapping for process operation occurence relationship
EXPRESS-X Mapping Specification:
MAP process_operation_occurrence_relationshi p_map AS
por : process_operation_occurrence_rel ationship;
FROM
arel : action_relationship;
VWHERE
wr1l: SIZEOF(arel.relating action<-related action{action_relationship |

nane = 'process operation occurrence'}) > O;

PLM Adopted Specification 169

wr2: SIZEOF(arel .related_action<-rel ated_action{action_relationship |

nane = 'process operation occurrence'}) > 0;
SELECT
por.cycle tine : =
por.description := arel.description;
por.relation_type := arel.nane;
por.related : = process_operation_occurrence_nap(arel.related_action);
por.relating := process_operation_occurrence_map(arel.relating action);

por.cycle tine :=

arel <-itens{applied_tinme_interval assignment | role.nane="cycle tine'}

::assigned_tine_interval {tine_interval _w th _bounds
primary_bound. name = 'start of
::duration.val ue_conponent;
por.waiting_tine :=
property val ue_map(arel <-definition{action_property}

interval '}

<-property{action_property representation}

::representation{representation}
critens[1]);
END_MAP;

7.4.11.5 Process_property_association

A target instance of Process property association is created out of a source instance of type Action_property or

Resource_property.
ACTION_PROPERTY PROCESS_PROPERTY_
#1 ASSOCIATION #1
| |

Figure 82 - Instance mapping for process property association

EXPRESS-X Mapping Specification:

MAP process_property_associ ati on_map AS

ppa : process_property_association
PARTI TI ON p_ap;
FROM

ap : action_property;
SELECT

ppa. descri bi ng_property_val ue : =

property val ue_representation_map(
ap<-property{action_property representation}
c:representation[1]);

ppa. descri bed_el enent := process_property_sel ect _map(ppa. definition);

170

PLM Adopted Specification

ppa.validity context :=
| F SI ZECF(ap<-itens{applied_organi zati on_assi gnment |
nane = 'validity context'}) > 0 THEN
organi zati on_map(ap<-itens{applied_organi zati on_assi gnnent |
nane = 'validity context'}
::assigned_organization[1])

ELSE

| F SI ZEOF(ap<-rel ated_property_definition

{property definition_relationship |

nane = 'validity context'}
c:relating_property definition{property definition
name = 'context definition'}

::definition{product _class}) >0
THEN
product _cl ass_map(ap<-rel ated_property_definition
{property definition_relationship |

nane = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}

::definition{product_class}[1]);
ELSE
product i dentification_map(ap<-related _property definition
{property definition_relationship |

nane = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}
c:definition{product_identification}[1]);
END | F;
END | F;
PARTI TI ON p_res;
FROM
rp : resource_property;
SELECT

ppa. descri bing_property value : =
property val ue_representation_map(
rp<-property{resource_property_representation}
cirepresentation[1]);
ppa. descri bed_el enent := process_property_sel ect _map(ppa. definition);
ppa.validity_context :=
| F SI ZECF(rp<-itens{applied_organi zati on_assi gnment |
nane = 'validity context'}) > 0 THEN
organi zati on_map(rp<-itenms{applied_organi zati on_assi gnment |
nane = 'validity context'}
::assigned_organi zation[1])
ELSE
| F SI ZECF(rp<-rel ated_property_definition
{property definition_relationship |

name = 'validity context'}
c:relating_property_definition{property_definition
name = 'context definition'}

c:definition{product_class}) >0

PLM Adopted Specification 171

THEN
product _class_map(rp<-related_property_definition
{property definition_relationship |

nane = 'validity context'}
c:relating_property_definition{property_definition |
name = 'context definition'}

c:definition{product_class}[1]);
ELSE
product i dentification_map(rp<-related _property definition
{property definition_relationship |

nane = 'validity context'}
c:relating_property_definition{property_definition |
name = 'context definition'}
c:definition{product_identification}[1]);
END | F;
END | F;

END_MAP;
7.4.11.6 Process_operation_resource_assignment

A target instance of Process operation_resource assignment is created out of a source instance of type
Requirement_for_action_resource.

A A
REQUIREMENT_FOR_ PROCESS_OPERATION _
ACTION_RESOURCE #1 RESOURCE_ASSIGNMENT
name=reference tool #1
| reference_tool=TRUE A
4 - y
V| V|

Figure 83 - Instance mapping for process operation resource assignment
EXPRESS-X Mapping Specification:
MAP process_operation_resouce_assi gnnment _nmap AS

pora : process_operation_resource_assi gnment;
FROM

172 PLM Adopted Specification

rfar : requirement_for_action_resource;

SELECT
pora.reason := rfar.description
pora.reference_tool := rfar.nane = 'reference tool'

pora.operation : =
product operation_occurrence_map(rfar.operations{action}
<-rel ated_action{action_rel ationship
name = 'process operation occurrence'}[1]);
END_MAP;

7.4.11.7 Process_operation_input_or_output

A target instance of Process operation_input_or_output is created out of a source instance of type
Process_product_association.

| | A V|
PROCESS_
PRODUCT_
ASSOCIATION #1
A A
PROCESS_OPERATION_
INPUT_OR_OUTPUT #1
A
A A
A
A | |

Figure 84 - Instance mapping for process operation input or output

EXPRESS-X Mapping Specification:

MAP process_operation_input_or_output_map AS
poi o : process_operation_input_or_output;

FROM
ppa : process_product _associ ation
SELECT
poi 0. description : = ppa.description
poi o.rol e : = ppa. nane;

poi 0. concer ned_shape : = FOR EACH sasp | N ppa. process
<-process{process_property _association |
nane = 'concerned shape aspect'}
;. property_or_shape{shape_aspect};
RETURN (shape_el ement _map(saps));
poi 0. el enent : =
process_operation_i nput_or_out put_sel ect _nmap(ppa. defi ned_product);

END_MAP;

PLM Adopted Specification

173

7.4.11.8 Descriptive_specification

A target instance of Descriptive _specification is created out of a source instance of type Descriptive_representation_item.

DESCRIPTIVE_REPRESENTATION_ DESCRIPTIVE_SPECIFICATION
ITEM #1 #1

Figure 85 - Instance mapping for descriptive specification

EXPRESS-X Mapping Specification:

DEPENDENT _MAP descri ptive_specification_map AS
desp : descriptive_specification;

FROM
deri : descriptive_ representation_item
SELECT
desp. description := deri.description;
desp.id := deri.naneg;

END_DEPENDENT_NAP;
7.4.12 Multi-Language support
7.4.12.1 Language

A target instance of type Language is created out of a source instance of type Language.

LANGUAGE #1 LANGUAGE #1

Figure 86 - Instance mapping for language

EXPRESS-X Mapping Specification:

MAP | anguage_nap AS

t _lan : | anguage;
FROM
s_lan : | anguage;
SELECT
t _lan.country code := s | an.description;
t _lan.language_code := s_I| an. nane;
END_MAP;

7.4.12.2 String_with_language

A target instance of type String_with_language is created out of a source instance of type Attribute language assignment.

EXPRESS-X Mapping Specification:

174 PLM Adopted Specification

MAP string_wi th_| anguage_nmap AS

sl : string_w th_|l anguage;
FROM

ala : attribute_|l anguage_assi gnnment;
SELECT

sl.contents := ala.attribute_val ue;

sl .l anguage_specification := | anguage_nap(al a. assi gned_cl ass);
END_MAP;

7.4.12.3 Multi_language_string

A target instance of type Multi_language_string is created out of a source instance of type
Multi_language_attribute assignment.

EXPRESS-X Mapping Specification:

MAP string_with_| anguage_nmap AS
m's : multi_|language_string;

FROM
ma : multi_|anguage_attribute_assi gnnent;
SELECT
m a. primary_| anguage_dependent _string := string_w th_| anguage_map(n a);

m a. addi ti onal _| anguage_dependent _string : =
FOR EACH it IN ma<-itens{nulti_|anguage_attribute_assignnment |
role.name = '"alternate | anguage'};
RETURN (string_with_|l anguage_map(it));
END_MAP;

7.5 PIM Equivalence Model

The PIM Equivalence Model is given in Appendix A.

7.6 EXPRESS to XMI Mapping

The mapping of EXPRESS to XMI is atwo step process to ensure that the semantic information is transformed from
EXPRESS into UML and then partly rearranged into a more compact model.

7.6.1 Standard mapping

This mapping is based on the I SO 10303-25 [5] Technical Specification, which defines a mapping between EXPRESS
Schema and XMI. The standardization of the Technical Specification is still in progress, therefore the Committee Draft of
February 24th 2003 was considered. Some rules were adapted or added to fulfill all needed requirements.

The mapping is applied to the PIM equivalence model described in Chapter 7.5. The result of the mapping is the PLM
reference model represented in UML and is serving as the informational PIM as described in Chapter 7.7.

To reduce the complexity of the model obtained by original ISO TS 10303-25, some of the rules were adapted or added.
These rules are explained here.

PLM Adopted Specification 175

[1] Throughout the whole Part 25, navigationin UML is not explicitly discussed. Therefore associations between classes are
unidirectional if the corresponding construct in EXPRESS does not explicitly define an inverse attribute, otherwise bi-
directional with role names given by the attribute names.

[2] EXPRESS SELECT types are mapped to empty interfaces. Corresponding choicesredize thisinterface. Each interfaceis
named as the corresponding SELECT type. Nested SELECT type hierarchies are flattened before mapping them to inter-
faces. Thereforeall sub-SELECT types of aSELECT type are replaced by their underlying types. Thisis done recursively
till a SELECT type only contains non-SELECT data types.

If one of the sub-SELECT typesis not used anymore (e.g. by an attribute of an ENTITY) it is not mapped into the UML
model.

Example:

TYPE shape_infornmation_sel ect = SELECT (
shape_el enent _rel ati onshi p,
shaped_el enent _sel ect
)

END_TYPE;

TYPE shaped_el ement _sel ect = SELECT (
shape_el enent,

i tem shape
)
END_TYPE;
Accuracy_s
elect
External_geometric_model Geometric_model
BEBmodel_extent : String[0..1] Efmodel_id : String
EZmodel_extent : Double[0..1]

Figure 87 - UML interface modelled from EXPRESS SELECT
The following SELECT types were flattened:
 date time _person_organization element_select

» general_organizational _data select

176 PLM Adopted Specification

- configured_item_select

« documented element_select
» simple property select

 shape information_select

These SELECT types became unnecessary and were not mapped:

» general_organizational _data sub_select

» documented element sub select

 shaped element_select

O

shape_inform
ation_select

Shape_element_relationship

E&relation_type : String

Shape_element

tem_shape

EZelement_name : String[0..1]

Figure 88 - UML interface modelled from nested EXPRESS SELECTS

[1] Optional attributes are mapped using the lower multiplicity "0" of attributes and relationsin the UML model.

[2] Additiondly, the following general mapping restrictions were defined:

- AND/OR inheritanceis not supported (el classes inherit in a simple way).

» SELF statements are not mapped to a UML model construct. The restrictions are mentioned in the descriptions of the

UML attributes.

« INVERSE attributes are mapped but later removed in the 2nd step (see Chapter 7.6.2: only influences on existing cardi-

nalities are taken over but no inverse attribute roles).

« OPTIONAL SET [2:7] istreated as SET [0:7]. The prohibited multiplicity of exactly 1 is mentioned in the description

of the UML attribute.

- Comments are not mapped.

PLM Adopted Specification

| The mapping of simple data types is defined as follows:

EXPRESS fragment Resulting UML Interchange M odel fragment
STRING UML Datatype with name String

BOOLEAN UML Datatype with name Boolean

NUMBER UML Datatype with name Double

REAL UML Datatype with name Double

INTEGER UML Datatype with name Integer

Because in UML all relations between classes are considered as mathematical sets, special attention has to be paid to all
EXPRESS aggregation types. This is reflected in the following table with a relevant subset of mapping rules taken from
[5], Annex E. Some rules were adapted or added. The table summarizes all used mappings for complex modeling

constructs.
EXPRESS fragment Resulting UML Interchange M odel fragment
| SCHEMA sl UML Model with name s1
| ENTITY e2; UML Class with name E2-

ENTITY el SUBTY PE OF (e2); UML Class with name E1-
UML Generalization with UML Class E1 as child and UML Class E2 as parent

ENTITY e2; UML Class with name E2-
ENTITY el ABSTRACT Abstract UML Class with name E1-

| SUBTYPE OF (e2); UML Generalization with UML Class E1 as child, and UML Class E2 as parent
TYPEt1