
Public Key InfrastructureSpecification

This OMG document replaces the submission document ec/2000-02-01. It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by April 15, 2001.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 18, 2001. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMGAdoptedSpecification

Public Key InfrastructureSpecification

FinalAdoptedSpecification
February2001

Copyright 2000, DSTC Pty Ltd (Cooperative Research Centre for Enterprise Distributed Systems Technology)
Copyright 2000, Baltimore Technologies PLC

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

February 2001 PKI Adopted Specification 1

Contents

About the Object Management Group 1-1
What is CORBA? 1-1

OMG Documents 1-2
OMG Modeling 1-2
Object Management Architecture Guide 1-2
OMG Interface Definition Language (IDL) Mapping

Specifications 1-2
CORBAservices 1-3
CORBAfacilities 1-3
Object Frameworks and Domain Interfaces 1-3

Definition of CORBA Compliance 1-3

Obtaining OMG Documents 1-3

Acknowledgments 1-4

1. Overview 1-1

1.1 Introduction 1-1

1.2 PKI Definitions 1-2
1.2.1 PKI User 1-2
1.2.2 Certificate 1-2
1.2.3 Certificate Revocation List (CRL) 1-2
1.2.4 Certificate and CRL Repository 1-2
1.2.5 Certification Authority (CA) 1-2
1.2.6 Registration Authority (RA) 1-3
1.2.7 Online Certificate Status Service 1-3

1.3 Specification Overview 1-3
1.3.1 PKI Module 1-4
1.3.2 PKIAuthority 1-4
1.3.3 PKIRepository 1-4

1.4 General PKI Usage Overview 1-5
1.4.1 Overall View 1-5
1.4.2 Provider Information 1-6
1.4.3 Polling Certificate Request 1-7
1.4.4 Certificate Request Using A Callback 1-7

1.5 General Repository Usage Overview 1-7

1.6 Design Rationale 1-8
1.6.1 Encoding to Representation Granularity 1-8
1.6.2 Asynchronous and Interactive Messaging 1-9
1.6.3 Repository 1-10
1.6.4 Provider Details 1-11

1.7 Proof of Concept 1-12

2 PKI Adopted Specification February 2001

Contents

2. PKI Interfaces 2-1

2.1 Introduction 2-1

2.2 Module PKI 2-1
2.2.1 PKIStatus Constants 2-1
2.2.2 EncodingType 2-3
2.2.3 Opaque 2-3
2.2.4 RepresentationType 2-3
2.2.5 CertificateType 2-3
2.2.6 Certificate 2-4
2.2.7 CRL 2-4
2.2.8 CertificateRequest 2-5
2.2.9 CertificateStatusRequest 2-5
2.2.10 CertificateStatusResponse 2-6
2.2.11 Exceptions 2-6

2.3 Module PKIAuthority 2-7
2.3.1 Interface RegistrationAuthority 2-7
2.3.2 Interface RegistrationAuthority_CB 2-10
2.3.3 Interface CertificateAuthority 2-12
2.3.4 Interface CertificateAuthority_CB 2-13
2.3.5 Interface RequestManager 2-13
2.3.6 Interface RequestCertificateManager 2-14
2.3.7 Interface RequestRevocationManager 2-15
2.3.8 Interface RequestKeyUpdateManager 2-16
2.3.9 Interface RequestKeyRecoveryManager 2-17
2.3.10 Interface CertificateCallback 2-18
2.3.11 Interface RevocationCallback 2-18
2.3.12 Interface KeyUpdateCallback 2-19
2.3.13 Interface KeyRecoveryCallback 2-19
2.3.14 Interface CertificateStatusResponder 2-20

2.4 Module PKIRepository 2-20
2.4.1 PKIPrincipalValue 2-20
2.4.2 Interface Repository 2-20

2.5 Module PKIExtension 2-21
2.5.1 Interface LDAPRepository 2-21

3. OMG IDL A-1

4. Conformance Issues B-1

PKI Adopted Specification February 2001 1

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to develop a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

2 PKI Adopted Specification February 2001

OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the follow-
ing publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed object
systems. The specification includes the formal definition of a common Object Analysis
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that sup-
ports model interchange between OA&D tools and metadata repositories. The UML pro-
vides the foundation for specifying and sharing CORBA-based distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and their cor-
responding models. The MOF provides the infrastructure for implementing CORBA-
based design and reuse repositories. The MOF specifies precise mapping rules that enable
the CORBA interfaces for metamodels to be automatically generated, thus encouraging
consistency in manipulating metadata in all phases of the distributed application develop-
ment cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including both
model and metamodel information. The specification supports the encoding of metadata
consisting of both complete models and model fragments, as well as tool-specific exten-
sion metadata. XMI has optional support for interchange of metadata in differential form,
and for metadata interchange with tools that have incomplete understanding of the meta-
data.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes the
conceptual models upon which OMG standards are based. It defines the umbrella architec-
ture for the OMG standards. It also provides information about the policies and procedures
of OMG, such as how standards are proposed, evaluated, and accepted.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA objects.
The IDL definition is the contract between the implementor of an object and the client.
IDL is a strongly typed declarative language that is programming language-independent.
Language mappings enable objects to be implemented and sent requests in the developer’s
programming language of choice in a style that is natural to that language. The OMG has
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Java,
Java to IDL, Lisp, and Smalltalk.

PKI Adopted Specification February 2001 3

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a uni-
versal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Compliant
objects can be combined in many different ways and put to many different uses in applica-
tions. They can be used to construct higher level facilities and object frameworks that can
interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include Col-
lection, Concurrency, Event, Externalization, Naming, Licensing, Life Cycle, Notification,
Persistent Object, Property, Query, Relationship, Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable to
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilities
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Domain
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telecoms,
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the Common Object Request Broker: Architecture
and Specification, Interworking Architecture chapter.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with
its membership, evaluating the responses. Specifications are adopted as standards only

4 PKI Adopted Specification February 2001

when representatives of the OMG membership accept them as such by vote. (The policies
and procedures of the OMG are described in detail in the Object Management Architec-
ture Guide.)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.htm. To obtain print-on-demand
books in the documentation set or other OMG publications, contact the Object Manage-
ment Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• DSTC Pty Ltd (Cooperative Research Centre for Enterprise Distributed Systems
Technology)

• Baltimore Technologies PLC

February 2001 PKI Adopted Specification 1-1

Overview 1

Contents

This chapter contains the following topics.

Source Document(s)

This FTF Adopted Specification is based on the following OMG document:

• ec/2000-02-01 - submission document

1.1 Introduction

A Public Key Infrastructure (PKI) is a collection of components or entities for the
issuance, management, and revocation of digital certificates. Public key technology,
although not new, does have promise as a basis for a flexible method of providing
security in an online and distributed environment. For public key technology to reach
this potential it must be possible to bind an identity to that of a public/private key pair
(digital certificates) and then subsequently manage these using a PKI.

Topic Page

“Introduction” 1-1

“PKI Definitions” 1-2

“Specification Overview” 1-3

“General PKI Usage Overview” 1-5

“General Repository Usage Overview” 1-7

“Design Rationale” 1-8

“Proof of Concept” 1-12

1-2 PKI Adopted Specification February 2001

1

This document provides interfaces and operations in CORBA IDL to support the
functionality of a PKI. It describes a generic interface that allows standards to be
implemented behind these interfaces and operations. The specification also takes into
consideration the possibility of specific CORBA extensions being designed at a later
date that utilize specific technology within the CORBA framework. The interfaces
provided in this document describe a standard method of interacting with PKI entities
in a CORBA environment.

1.2 PKI Definitions

The following sections describe major components of a PKI. These are not specific to
this specification nor to any specific existing standard, but are common PKI terms and
components.

1.2.1 PKI User

A PKI user refers to human users as well as applications and hosts that may also use a
PKI functionality.

1.2.2 Certificate

A certificate is a structured electronic document that binds some information to a
public/private key pair and is digitally signed by a trusted third party called a
Certification Authority or commonly referred to as a CA. This document will use the
term CA throughout.

1.2.3 Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is a structured electronic document signed by a
CA that lists any certificates previously issued by that CA that are now revoked. A
certificate may be revoked for reasons that may include, but is not limited to, an entity
or person changing or leaving a particular role or a private key being compromised. A
CRL is issued on a periodic basis with the period determined by policy of the CA. A
revoked certificate will remain on a CRL until the validity period of the certificate
expires.

1.2.4 Certificate and CRL Repository

A repository is a service provided for the storage and retrieval of certificates and
CRLs.

1.2.5 Certification Authority (CA)

A Certification Authority (CA) performs a number of functions relating to the issuance
and management of public key certificates. These include:

• Accepting and verifying requests for certificates

February 2001 PKI Adopted Specification Specification Overview 1-3

1

• Revoking certificates and issuing CRLs

• Servicing requests for certificate status information

• Key management issues such as re-keying and re-certification

The CA may also certify the keys of other CAs so that the PKI can scale to multiple
domains.

1.2.6 Registration Authority (RA)

A Registration Authority (RA) accepts requests for certificates on behalf of a CA and
verifies the binding between the public/private key pair and the attributes being
certified. Typically one or more RAs exist to provide a means for scaling a PKI within
a single management domain. The relationship between the RAs and the CA is similar
to the relationship between bank branches and the bank. While the branches are the
“face” of the organization, the bank has the ultimate authority for the granting of
transactions. So a request for a certificate may be made on a particular RA, the RA
may verify Proof Of Possession (POP) of the private key and then request the
certificate from the CA. The certificate obtained is from the CA but the RA provides
the point of contact and may perform functions such as POP and checking
authentication based on policy.

1.2.7 Online Certificate Status Service

This is a service used to determine the status of a certificate without the use of CRLs.
Since CRLs can only be issued periodically, any revocation during this period is not
known until the next issue of the CRL. Essentially this provides an online service to
check the validity of a particular certificate and hence a more timely method of
obtaining status information.

1.3 Specification Overview

This specification describes interfaces, constants, and constructs for interacting with a
PKI through CORBA objects. The general design fits around existing standards and
implementations and defines generic interfaces for the interaction with PKI
components. This allows (but is not limited to) the wrapping of existing
implementations. The major interfaces of this specification are shown (in rectangular
boxes) in Figure 1-1 on page 1-4.

1-4 PKI Adopted Specification February 2001

1

Figure 1-1 PKI Overview

There are other interfaces defined that are used to assist in the interaction with the
above interfaces and allow for asynchronous messaging. These interfaces are described
later in more detail. The functions of the major interfaces relate to the corresponding
descriptions in Section 1.2, “PKI Definitions,” on page 1-2.

1.3.1 PKI Module

This module describes common type definitions and constants that are used by the
other modules.

1.3.2 PKIAuthority

This module outlines 14 interfaces for interacting with PKI authorities through the
management of certificates. The major interfaces are CertificateAuthority,
RegistrationAuthority, and CertificateStatusResponder. The rest are employed to
maintain the interactive and asynchronous behavior that is typical using a PKI.

1.3.3 PKIRepository

This module provides interfaces and operations to store and retrieve certificates and
CRLs.

RegistrationAuthority

CertificateStatusResponder CertificateAuthority

Repository

CORBA

PKI User

February 2001 PKI Adopted Specification General PKI Usage Overview 1-5

1

1.4 General PKI Usage Overview

This section describes some typical usage scenarios for interaction with the interfaces
described in this specification. As mentioned earlier there is the potential for
communication between PKI users to have an interactive and asynchronous nature. The
asynchronicity comes from the fact that an authority will have policy regarding the
issuance and management of certificates that may involve some out of band process
(e.g., a phone call or email message). Complicating this even further is that the CA
may need to interact with the clients to obtain more information and so a single
invocation may not be sufficient to complete a particular request. For example a
certificate request to an authority may require that POP is performed using a challenge
response mechanism. This requires that the client decrypts a challenge and returns the
result to the authority.

In addressing the asynchronous and interactive nature of PKI messaging additional
interfaces have been added. These are the RequestManager and Callback
interfaces. A RequestManager object is created by the authority. This is then used
for any subsequent operations and status enquiries for a particular request. The
callback interfaces are implemented at the client side and are used by the target to
notify the client that a status change has occurred. This gives two possible methods for
a client to interact with a CA or RA. The client can continuously poll the
RequestManager object for a status change or it can register a local callback object
and be notified of a status change. Whether an authority supports polling only or
polling and callbacks will depend on the level of conformance as described in
Appendix B - Conformance Issues. Asynchronous behaviour can be addressed by using
Asynchronous Method Invocation (AMI) described in CORBA/IIOP 2.4.2 document
2001-02-33, Chapter 22 CORBA Messaging.

Some example scenarios describing suggested behavior are overviewed in
Section 1.4.3, “Polling Certificate Request,” on page 1-7 and Section 1.4.4, “Certificate
Request Using A Callback,” on page 1-7.

1.4.1 Overall View

Typical operations that are expected from the set of specified interfaces are shown in
Figure 1-2 on page 1-6. This diagram is included to show an overall structure of the
specified interfaces.

1-6 PKI Adopted Specification February 2001

1

Figure 1-2 Interface Structure

1.4.2 Provider Information

Before a client makes requests to an authority it can obtain general details about what
the authority provides. This may include general details such as version and vendor as
well as specifics about supported types including whether an authority can handle
callbacks in addition to polling.

Client

RA

RequestManager

Repository

CSR

CA

RequestManager

1) Client makes a request to an RA, (similar if a client requests directly to a CA).
2) RA creates a RequestManager object.
3) Client using RequestManager to get results.
4,5,6) RA performs client operations to make request on CA.
7) CA access to Repository.
8) Client access to Repository
9) Client access to CertificateStatusResponder.

1

2

3
4

5

6

7

8

9

February 2001 PKI Adopted Specification General Repository Usage Overview 1-7

1

1.4.3 Polling Certificate Request

The following example is that of a client making a request to have a certificate issued
by a CA or RA.

• After constructing a certificate request message, using a supported standard, the
message can be encapsulated and invoked through the request_certificate
operation. This returns a reference to a RequestCertificateManager object.

• The client can then poll using call either status or
get_certificate_request_result operations and check the status until a change
occurs. If using the status operation, then the results will have to be obtained
through an extra get result operation. Results can then be processed.

• After processing, if more interaction is required (for example, proving possession of
the private key through a challenge response), then this is made through the
manager object using the continue_request_certificate operation until a success
(or failure) is reached.

1.4.4 Certificate Request Using A Callback

This example uses a call back to request issuance of a certificate from an authority.

• After constructing a request, using a supported standard, the message can be
encapsulated and invoked through the request_certificate_with_CB operation
passing in a reference to a client side CertificateCallback object. A reference to a
RequestCertificateManager object is also returned (as in the above example) to
be used if more interaction is required for this request.

• The client can then wait (or perform other tasks) until the reply handler’s notify
operation is called by the target. Once notified the results can be processed.

• After processing, if more interaction is required (for example, proving possession of
the private key through a challenge response), then this is made through the poller
object using the continue_request_certificate operation until a success (or
failure) is reached, again using the callback object for notification from the target.

1.5 General Repository Usage Overview

The PKI repository is defined as a service provided for the storage and retrieval of
certificates, CRL’s, and certificate pairs (collectively termed PKI values herein). Such
PKI values are bound within the repository to a PKI principal, or user of PKI services.
A PKI principal has some form of identifying name that distinguishes that principal
within the repository. For example, there may be multiple certificates bound to the
principal “Bob” within the repository. The PKI repository is designed to be conformant
with respect to existing standards (specifically X.500 and LDAP), yet flexible enough
to allow implementation using other services (e.g., databases, flat files).

An entry for a principal in the repository is assumed to have a number of attributes
attached to it, where such attributes contain one or more values. Attributes are given a
name, which facilitates the efficient search of the repository for specific values of a

1-8 PKI Adopted Specification February 2001

1

principal matching a particular attribute. For example, the CRL for the principal
“BobCA” may be stored under an attribute with a name of “crl;binary”. Thus, the
attribute with the name “crl;binary” is used when finding CRLs for “BobCA.”

In most cases, the repository implementor will have default attribute names for storing
and retrieving PKI values, and clients should not have to specify exactly which
attribute names are to be used when storing and retrieving PKI values in the repository.
In the above example, the repository implementator may specify that the default
attribute to use for storing CRLs for a principal is the attribute with the name
“crl;binary”. In such cases, the client only needs to provide the principal and the CRL
to the repository. It is assumed that this will suffice for most clients and repository
implementations (in particular, those implementations that use LDAP). Provision has
been made for repository operations that allow the client to specify the particular
attribute under which a given PKI value may be bound to a principal, and for
determining the default attribute the repository implementor will use in specific cases.

1.6 Design Rationale

The design describes interfaces that have generic functionality that can support
different underlying PKI standards. The wrapping of existing standards is an important
issue with regard to this submission. There is also a reliance on other CORBA services
for some functionality, primarily for security. Our goal was to consider functionality
requirements to meet those of the RFP but also to meet those of Internet X.509 PKI
Certificate Management Protocols IETF RFC 2510 and Internet X.509 PKI Online
Certificate Status Protocol IETF RFC 2560.

1.6.1 Encoding to Representation Granularity

In this design a significant decision was made as to how best to represent certain data
structures in CORBA. This is significant in this case because there are standards
already defined and implemented that must be considered. Integrating to handle these
standards is a significant issue being addressed by this specification. As a result,
existing standards have different methods of encoding these structures so that they can
be transported between entities. Encoding of these in the general case is encoding rules
of ASN.1. This means that these types of structures can be represented as
PKI::Opaque (i.e., a sequence of bytes).

The specification also allows for the possible future use of CORBA valuetypes. The
use of valuetypes for representing types including a specific CORBA certificate
would be useful. This specification allows for this by using an any type for the actual
representation. The following IDL snippets demonstrate the design for encapsulating
an outside encoded representation as well as a specific CORBA representation in a
typesafe manner.

 struct RepresentationType {
 EncodingType encoding_type;
 Opaque data;
 };

February 2001 PKI Adopted Specification Design Rationale 1-9

1

 struct Certificate {
 CertificateType certificate_type;
 any representation_type;
 };

This specification defines and recommends the use of the RepresentationType for
cases where it is logical that the representation is an encoded sequence of bytes. The
RepresentationType allows for the tagging of the specific encoding type. The above
sample IDL shows the PKI::Certificate type where the actual representation is
implied to be that of the RepresentationType type, but it could be a valuetype for a
case where a specific CORBA representation was defined. Similar situations to this
example occur throughout the PKI module of the specification.

1.6.2 Asynchronous and Interactive Messaging

A significant design decision for this specification was in addressing the potential for
asynchronous behavior combined with the potential for a level of interactivity between
client and target entities. Each certification domain will have its own policy with which
to manage certificate functionality. Depending on this policy it is possible for
significant delays to occur between an initial request and a returned result due to the
possible need for an out of band exchange. For example, a CA may require that a
phone call or some interaction via email is made as part of the authentication process
adding a significant delay. If this is to be performed in a single synchronous invocation
the potential for lengthy delays may cause timeout problems. To address this, a method
of handling asynchronicity was added in the form of RequestManager and Callback
interfaces. A synchronous invocation may block during this delay. This can be handled
using an AMI aware ORB or simply ignored and wait for the invocation to be returned.

The potential for interactivity between an authority (CA or RA) and a client is also
possible. An example of this interactivity might be where a certificate request has been
made using a public key, the authority requires assurance that the client is in
possession of the associated private key and policy dictates the use of a challenge
response. This will require an extra exchange of messages and that the client may also
be directly involved (by needing to supply a passphrase to unlock the private key). This
interactivity for a request is addressed using the RequestManager interfaces. When a
request is initiated a RequestManager object reference is returned, and this is used
to perform further interaction, status checking, or to return results for that particular
request.

The interaction of client and authority entities in a PKI domain is typically a
combination of both an interactive dialogue, with state being maintained on the server
side, combined with asynchronous messaging behavior. This implies a server side
model for asynchronous messaging. Since the CORBA Asynchronous Messaging
Service specification in principle provides a client side asynchronous model with no
changes to the server side it does not specifically suit this particular domain. Also since
the state and processing is on the server side it is logical for the callback reference to
be known by the server side authority for notification of a status change. The
RequestManager interface is created by the authority and then encapsulates

1-10 PKI Adopted Specification February 2001

1

everything that relates to this a particular request. The client entity receives a reference
to this interface after an initial request and continues to use it for as long as the request
is outstanding.

Resources related to RequestManager s can be reclaimed by the CertificateAuthority
or RegistrationAuthority after either a status of either PKISuccess ,
PKISuccessWithWarning or PKIFailed. For a status of PKISuccessAfterConf irm
the resources can be reclaimed after the confirm_content() operation has been
invoked.

1.6.3 Repository

The repository was primarily designed to allow for implementations that use the X.500
or LDAP directory services, which is seen as being the predominant method of
repository implementation in existing services. However, it may be the case that a PKI
repository is implemented using some other data storage service, such as a database. In
either case, the data storage service

The repository is a service where information can be stored and retrieved. Primarily
this is used for storage and retrieval of principal information such as certificates. It is
also commonly used to store information such as Certificate Revocation Lists (CRLs).
Effectively there are 2 definitions of repository interfaces in this specification. There is
a simple interface described in PKIRepository and also a more intricate interface that
is designed to be able to interact with repositories that are based around X500 and
LDAP implementations. The simplified version is hoped to be the more commonly
used interface allowing implementors and clients to interact with ease. However since
the backend could well be LDAP or X500 in existing services that may be wrapped by
these interfaces the PKIExtension module allows for this interaction. The operations in
PKIRepository are simple and self explanatory but the PKIExtension module contains
a more detailed approach.

The PKIExtension module describes a data storage service which The PKIExtension
module describes a data storage service which generally has a schema that mandates
the form and the content of the data stored therein. As much as possible, the type of
repository implementation, and the exact details of the schema that oversees the data
storage service, should be hidden from the client of the PKI repository service. In
general, when a client wishes to publish information in the repository, it is assumed
that the repository implementation has enough information to create the appropriate
entry in the underlying data storage service according to the back-end schema.
However, it may be the case that a repository implementation cannot gather the
required information in order to create an entry for a principal when a request is made
by the client to store information in the repository. For example, a database
implementation of the PKI repository may require that all entries contain a value for
the “favorite milkshake” field. In such cases, the repository implementation may ask
for further information from the client. The PKIPrincipal type in the IDL allows the
client to pass additional attribute information as required.

 struct PKIPrincipal {

February 2001 PKI Adopted Specification Design Rationale 1-11

1

 PKIName name;
 PKIAttributeList attributes;
 };

In most cases, the client will pass a PKIPrincipal construct to the repository with no
attribute information. This is based on the assumption that there is already an entry for
the given principal in the repository, or that the repository can create such an entry if
this is the case. Clients should only pass attribute information within the Principal
type if the repository has requested such information due to schema problems.

The PKI repository design allows the client to obtain the schema of the repository in
order to present any additional attribute information required by the repository
implementation. The Schema type is used to provide the client with two classes of
information: information on attributes (OID, name, description, syntax, etc.) and
information on syntaxes (OID, description). Given such a schema, a client may deduce
the necessary values for attributes that are missing or incorrectly supplied. For
example, if the repository notifies the client that a value for the “favorite milkshake”
attribute is required, then the client may inspect the schema to lookup the attribute
definition for “favorite milkshake,” find the syntax definition to see how a “favorite
milkshake” value should be presented, and present that attribute information back to
the repository within the PKIPrincipal structure. Each information class is
represented within the schema as a collection of attributes (name-to-value bindings). A
name is defined to be a string, while a value can be any type (including another
collection of attributes).

The attribute list provided within the schema for attribute definitions is assumed to
contain the name of each attribute used by the repository back-end. The value attached
to each name is itself an attribute list, with names as defined in IETF RFC2252 for
AttributeTypeDescriptions (“OID,” “NAME,” “DESCR,” “SYNTAX,” etc.). The value
attached to each name is a string whose value is interpreted as defined by IETF
RFC2252 (for example, the string attached to “OID” would represent an object
identifier value such as “1.2.3”). The choice of which AttributeTypeDescription names
to provide within the attribute list is up to the repository implementor, although they
should provide at least the names “NAME,” “DESCR,” and “SYNTAX.”

The attribute list provided within the schema for syntax definitions is assumed to
contain names that represent the object identifier of each syntax used within the
attribute type definitions. The value attached to each name is itself an attribute list,
with names defined in IETF RFC2252 for SyntaxDescriptions (“OID” and “DESCR”).
The value attached to each of these names is a string whose value is interpreted as
defined by IETF RFC2252. The choice of which SyntaxDescription names to provide
within the attribute list is up to the repository implementor, although they SHOULD
provide at least the name “DESCR.”

1.6.4 Provider Details

There are operations added to the interfaces that provide details about a particular
implementation. This design decision was based around the fact that different
underlying implementations may support different type formats and encodings. For
example a particular CA may only support ASN.1 DER encoded X.509 certificates and

1-12 PKI Adopted Specification February 2001

1

so a client entity will need to query the CA and determine this detail. This is pertinent
in the case of a PKI, as a CA is often authoritative in a particular domain and so a
client may not have the choice to be able to choose its own CA based solely on
supported types but be directed to use a particular one.

1.7 Proof of Concept

At the time of submission this design is currently being prototyped. The current status
of this prototype demonstrates that the IDL is usable and can be implemented. The IDL
is known to be parsed by at least one IDL compiler.

February 2001 PKI Adopted Specification 2-1

PKI Interfaces 2

Contents

This chapter contains the following topics.

2.1 Introduction

This chapter describes the basic interfaces and some important constructs and type
definitions that are relevant to the specification.

2.2 Module PKI

This module declares type definitions used by both the PKIAuthority and
PKIRepository modules. This section describes some of the particularly important
constructs for clarity in understanding the interface operations in the rest of this
chapter. The complete IDL is included in Appendix A.

2.2.1 PKIStatus Constants

Status constants are returned indicating the current status of a request.
typedef unsigned long PKIStatus;

Topic Page

“Introduction” 2-1

“Module PKI” 2-1

“Module PKIAuthority” 2-8

“Module PKIRepository” 2-21

2-2 PKI Adopted Specification February 2001

2

2.2.1.1 PKISuccess

const PKIStatus PKISuccess = 0;

PKISuccess indicates that the current transaction is now complete without any more
invocations required.

2.2.1.2 PKISuccessWithWarning

const PKIStatus PKISuccessWithWarning = 1;

PKISuccessWithWarning indicates that the client has received something similar to
what was asked for. It is up to the client to ascertain the differences. This may for
example be a certificate that varies in some way from the request such as the validity
period may be different to that requested.

2.2.1.3 PKIContinueNeeded

const PKIStatus PKIContinueNeeded = 2;

PKIContinueNeeded indicates that the current part of the transaction is complete but
the actual end result has not yet been reached. This means that another invocation is
required most likely requiring some additional information.

2.2.1.4 PKIFailed

const PKIStatus PKIFailed = 3;

PKIFailed indicates that a failure has occurred and the transaction should be
terminated.

2.2.1.5 PKIPending

const PKIStatus PKIPending = 4;

PKIPending indicates that the transaction is in a transitional period pending some
result. This state occurs during the period before either a transaction is complete or a
continue is required.

2.2.1.6 PKISuccessAfterConfirm

const PKIStatus PKISuccessAfterConfirm = 5;

PKISuccessAfterConfirm indicates that the transaction is complete but the
PKIAuthority requires that a confirmation message is sent using
RequestManager.confirm_content() operation. For example this might occur in the
case where the CA may revoke the issued certificate if a confirm is not made as the CA
may presume that the client could not decrypt the message as a way of providing proof
of possession (POP) of the private key.

February 2001 PKI Adopted Specification Module PKI 2-3

2

2.2.2 EncodingType
typedef unsigned long EncodingType;
 const EncodingType UnknownEncoding = 0;
 const EncodingType DEREncoding = 1;
 const EncodingType BEREncoding = 2;
 const EncodingType Base64Encoding = 3;
 const EncodingType SExprEncoding = 4;
 const EncodingType CustomEncoding = 0x8000;

The EncodingType is a type used to describe the method of encoding used to encode
the original PKI structure to an Opaque type. The general case will be ASN.1 DER
(Distinguished Encoding Rules).

2.2.3 Opaque

 typedef sequence <octet> Opaque;

The Opaque type is used to represent encoded structures as a sequence of bytes.

2.2.4 EncodedData RepresentationType

 struct EncodedData RepresentationType {
 EncodingType encoding_type;
 Opaque data;
 };

This construct is defined to be able to represent encoded structures in a type safe
manner. This is recommended for implementations that are currently defined and
represent structures using ASN.1 encoding rules.

2.2.5 CertificateType
typedef unsigned long CertificateType;
 const CertificateType UnknownCertificate = 0;
 const CertificateType X509v1Certificate = 1;
 const CertificateType X509v2Certificate = 2;
 const CertificateType X509v3Certificate = 3;
 const CertificateType PGPCertificate = 4;
 const CertificateType SPKICertificate = 5;
 const CertificateType X509v1AttributeCertificate = 6;
 const CertificateType CustomCertificate = 0x8000;

The CertificateType is used to explicitly describe the type of certificate that has been
encoded. Some examples of certificate types are the X509 versions of certificate
(version 3 being the most common in use), Pretty Good Privacy (PGP) certificates or
Simple Public Key Infrastructure (SPKI) certificates.

2-4 PKI Adopted Specification February 2001

2

2.2.6 EncodingType

typedef unsigned long EncodingType;
 const EncodingType UnknownEncoding = 0;
 const EncodingType DEREncoding = 1;
 const EncodingType BEREncoding = 2;
 const EncodingType Base64Encoding = 3;
 const EncodingType SExprEncoding = 4;
 const EncodingType CustomEncoding = 0x8000;

The EncodingType describes the way in which the byte representation is encoded. This
is used to explicitly name the encoding method used. Some examples are ASN.1
Distinguished Encoding Rules (DER), ASN.1 Basic Encoding Rules (BER) ar perhaps
Base 64 encoding.

2.2.7 AuthorityInfoType
typedef unsigned long AuthorityInfoType;
 const AuthorityInfoType UnkownMessage = 0;
 const AuthorityInfoType PKIXCMPGeneralMessage = 1;
 const AuthorityInfoType CustomMessage = 0x8000;

The AuthorityInfoType is used to describe the type of a message that is being
sent/received by an authority. An example type for this is a PKIX Certificate
Management Protocol (CMP) general message format.

2.2.8 Certificate

 struct Certificate {
 CertificateType certificate_type;
 any representation_type;
 };
valuetype Certificate {
 private CertificateType certificate_type;
 private EncodedData data;
 };

This is the construct defined to represent a certificate in CORBA.

February 2001 PKI Adopted Specification Module PKI 2-5

2

Fields

2.2.9 CRL

This construct is the representation of a Certificate Revocation List.

 struct CRL {
 CRLType crl_type;
 any representation_type;
 };
valuetype CRL {
 private CRLType crl_type;
 private EncodedData data;
 };

Fields

2.2.10 CertificateRequest

The construct used to represent an encoded certificate request message.

 struct CertificateRequest {
 CertificateRequestType cert_request_type;
 any representation_type;

certificate_type Describes the certificate type used, such as X509V1,
X509V2, X509V3, PGP, SPKI.

data This is used to contain the actual representation of the
certificate. For existing PKI standards and
implementations this will be RepresentationType
defined in this module. A local value object type
valuetype may also be used here in representing a
certificate in future revisions of this document.
This field contains a representation of the Certificate
held in an EncodedData structure.

crl_type The type of CRL such as X509V1CRL, X509V2CRL,
X509V1ARL.

data This is used to contain the actual representation of the
CRL. For existing PKI standards and implementations
this will be RepresentationType defined in this
module. A local value object type valuetype may also
be used here in representing a CRL in future revisions
of this document.
This field contains a representation of the CRL held in
an EncodedData structure.

2-6 PKI Adopted Specification February 2001

2

 };
valuetype CertificateRequest {
 private CertificateRequestType cert_request_type;
 private EncodedData data;
 };

Fields

2.2.11 CertificateStatusRequest

 struct CertificateStatusRequest {
 CertificateStatusRequestType type;
 any value;
 };
valuetype CertificateStatusRequest {
 private CertificateStatusRequestType type;
 private EncodedData data;
 };

cert_request_type The type of certificate request message such as
PKCS10, PKIXCRMF, PKIXCMC.

data This is used to contain the actual representation of the
certificate request message. For existing PKI standards
and implementations this will be
RepresentationType defined in this module. A
local value object type valuetype may also be used
here in representing a certificate request in future
revisions of this document.
This field contains a representation of the
CertificateRequest held in an EncodedData structure.

February 2001 PKI Adopted Specification Module PKI 2-7

2

Fields

2.2.12 CertificateStatusResponse

 struct CertificateStatusResponse {
 CertificateStatusResponseType type;
 any value;
 };
valuetype CertificateStatusResponse {
 private CertificateStatusResponseType type;
 private EncodedData data;
 };

Fields

2.2.13 Exceptions

2.2.13.1 UnsupportedTypeException

exception UnsupportedTypeException {
 string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest,
etc. supplied is not a supported type by the PKIAuthority interface.

type The type of certificate status request such as OCSP.

data This is used to contain the actual representation of the certificate
status request message. For existing PKI standards and
implementations this will be RepresentationType defined in
this module. A local value object type valuetype may also be used
here in representing a certificate status request in future revisions
of this document.
This field contains a representation of the CertificateStatusRequest
held in an EncodedData structure.

type The type of certificate status response such as OCSP.

data This is used to contain the actual representation of the
certificate status response message. For existing PKI standards
and implementations this will be RepresentationType
defined in this module. A local value object type valuetype
may also be used here in representing a certificate status
response in future revisions of this document.
This field contains a representation of the
CertificateStatusResponse held in an EncodedData structure.

2-8 PKI Adopted Specification February 2001

2

2.2.13.2 UnsupportedEncodingException

exception UnsupportedEncodingException {
 string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest,
etc. supplied is using an unsupported encoding type.

2.2.13.3 MalformedDataException

exception MalformedDataException {
 string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest,
etc. supplied is in some way malformed and cannot be interpreted.

2.2.13.4

exception UnexpectedContinueException {
 string description;
};

Exception reporting either the Certificate, CertificateRequest, CertificateStatusRequest,
etc. supplied is attempting an unnecessary continue operation.

2.3 Module PKIAuthority

2.3.1 Interface RegistrationAuthority

2.3.1.1 get_provider_info

Used to obtain a standard set of types supported by this authority.

AuthorityProviderInfo get_provider_info();

Return Value

AuthorityProviderInfo structure holding descriptions of supported types.

2.3.1.2 get_authority_info

Used for passing general messages between client entity and authority. For example
this may provide a method for a client to determine the authentication policy of the
authority.

PKI::PKIStatus get_authority_info(
 in PKI::AuthorityInfo in_authority_info,

February 2001 PKI Adopted Specification Module PKIAuthority 2-9

2

 out PKI::AuthorityInfo out_authority_info
)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

Status value

2.3.1.3 request_certificate

Called to make a request for a certificate from an authority such as a Certificate
Authority (CA) or Registration Authority (RA).

 RequestCertificateManager request_certificate
 (in PKI::CertificateRequest certificate_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

RequestCertificateManager object reference to extract details regarding the
particular request, continue interaction, and obtain results.

2.3.1.4 request_revocation

Called to request revocation of a certificate from a (CA) or (RA).

RequestRevocationManager request_revocation
 (in PKI::CertRevRequest cert_rev_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

in_authority_info The encoded message input to authority.

out_authority_info The encoded returned message from authority.

certificate_request PKI::CertificateRequest structure containing details
of the clients request.

2-10 PKI Adopted Specification February 2001

2

Parameters

Return Value

RequestRevocationManager object reference used to extract details pertaining to
the request continue interaction, and obtain results.

2.3.1.5 request_key_update

Called to request key update of a certificate from a (CA) or (RA).

 RequestKeyUpdateManager request_key_update
 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

RequestKeyUpdateManager object reference used to extract details pertaining to
the request, continue interaction, and obtain results.

2.3.1.6 request_key_recovery

RequestKeyRecoveryManager request_key_recovery
 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

RequestKeyRecoveryManager object reference that can be used to extract details
pertaining to the request, continue interaction, and obtain results.

cert_rev_request PKI::CertRevRequest structure containing details of
the client’s request for certificate revocation.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key update.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key recovery.

February 2001 PKI Adopted Specification Module PKIAuthority 2-11

2

2.3.2 Interface RegistrationAuthority_CB

Interface defining operations that can be performed on a RegistrationAuthority_CB
object. This interface is used where the implementation provides conformance to level
2, as described in Appendix B, Conformance Issues (i.e., supports both polling and
callbacks). This interface inherits operations from RegistrationAuthority.

2.3.2.1 request_certificate_with_CB

Called to make a request for a certificate from an authority such as a Certificate
Authority (CA) or Registration Authority (RA) using a callback object.

RequestCertificateManager request_certificate_with_CB
 (in CertificateCallback callback,
 in PKI::CertificateRequest certificate_request);

Parameters

Return Value

RequestCertificateManager object reference to extract details regarding the
particular request, continue interaction, and obtain results.

2.3.2.2 request_revocation_with_CB

Called to request revocation of a certificate from a (CA) or (RA) using a callback
object.

 RequestRevocationManager request_revocation_with_CB
 (in RevocationCallback callback,
 in PKI::CertRevRequest cert_rev_request);

callback The client’s callback CertificateCallback object used
by the target object to notify the client of a change in
status of the request.

certificate_request PKI::CertificateRequest structure containing details
of the client’s request.

2-12 PKI Adopted Specification February 2001

2

Parameters

Return Value

RequestRevocationManager object reference used to extract details pertaining to
the request and obtain results.

2.3.2.3 request_key_update_with_CB

Called to request key update of a certificate from a (CA) or (RA) using a callback
object.

 RequestKeyUpdateManager request_key_update_with_CB
 (in KeyUpdateCallback callback,
 in PKI::CertificateRequest key_request);

Parameters

Return Value

RequestKeyUpdateManager object reference used to extract details pertaining to
the request, continue interaction, and obtain results.

2.3.2.4 request_key_recovery_with_CB

Called to request key recovery from a (CA) or (RA) where the authority provides key
archive using a callback object.

RequestKeyRecoveryManager request_key_recovery_with_CB
 (in KeyRecoveryCallback callback,
 in PKI::CertificateRequest key_request);

callback The client’s callback RevocationCallback object that
is used by the target object to notify the client of a
change in status of the request.

cert_rev_request PKI::CertRevRequest structure containing details of
the client’s request.

callback The client’s callback KeyUpdateCallback object used
by target object to notify the client of a change in status
of the request.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key update.

February 2001 PKI Adopted Specification Module PKIAuthority 2-13

2

Parameters

Return Value

RequestKeyRecoveryManager object reference used to extract details pertaining to
the request and obtain results.

2.3.3 Interface CertificateAuthority

Interface defining operations that can be performed on a CertificateAuthority object.
There is IDL inheritance of the RegistrationAuthority interface.

2.3.3.1 get_ca_certificate

Returns the certificates of the CertificateAuthority.

PKI::PKIStatus get_ca_certificate(
 out PKI::CertificateList certificate_list)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.3.2 get_CRL

Return the current CRL of the CertificateAuthority.

 PKI::PKIStatus get_crl (out PKI::CRL crl);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

callback The client’s callback KeyRecoveryCallback object
used by target object to notify the client of a change in
status of the request and return results.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key recovery.

certificate_list List of certificates for CA.

crl The CRL published by the CertificateAuthority.

2-14 PKI Adopted Specification February 2001

2

2.3.3.3 get_certificate_status_responder

Return a reference to certificate status responder.

CertificateStatusResponder get_certificate_status_responder();

Return Value

Reference to CertificateStatusResponder object for the CA.

2.3.3.4 get_repository

Return a reference to the repository that the CA uses to store certificates, CRLs, etc.

PKIRepository::Repository get_repository()
 raises(PKIRepository::RepositoryError);

Return Value

PKIRepository::Repository object reference.

2.3.4 Interface CertificateAuthority_CB

Interface defining operations that can be performed on a CertificateAuthority_CB
object. This interface is used where the implementation provides conformance to level
2, as described in Appendix B, Conformance Issues (i.e., supports both polling and
callbacks). This interface inherits operations from both RegistrationAuthority_CB
and CertificateAuthority, and adds no new operations.

2.3.5 Interface RequestManager

Generic base interface for a manager object. A manager object is a target side object
that is used by the client to extract details, continue interaction, and to obtain results
for a particular request.

2.3.5.1 status

A read only attribute representing the status of the transaction associated with this
poller object.

readonly attribute PKI::PKIStatus status;

2.3.5.2 transaction_ID

readonly attribute long transaction_ID;

February 2001 PKI Adopted Specification Module PKIAuthority 2-15

2

A read only attribute representing an identifier for a particular transaction. This
attribute relates directly to existing PKI entities. Currently a transaction will be given
some unique identifier that relates to a particular transaction with an authority. In the
case of using CORBA the unique identifier is not directly required due to the use of a
RequestManager object for each transaction. This attribute is supplied so that the
identifier provided by the back end authority can be obtained by a CORBA client.

2.3.5.3 confirm_content

Operation to acknowledge negotiation is complete.

void confirm_content(in PKI::ConfirmData confirm_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

 MalformedDataException);

Parameters

2.3.6 Interface RequestCertificateManager

Interface to extract details, continue interaction and extract results pertaining to a
particular certificate request. Inherits operations and attributes from
RequestManager interface.

2.3.6.1 continue_request_certificate

Used for continuing a certificate request that has already been initiated but requires
more interaction to complete the request. An example of the use of this operation is for
Proof Of Possession (POP) of the private key.

void continue_request_certificate
 (in PKI::RequestData request_data,
 in PKI::CertificateList certificates)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

2.3.6.2 get_certificate_request_result

Obtains final or interim results of a particular request.

confirm_data Message to confirm content is correct and received.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

certificates List of certificates, possibly partially formed.

2-16 PKI Adopted Specification February 2001

2

PKI::PKIStatus get_certificate_request_result
 (out PKI::CertificateList certificates,
 out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.7 Interface RequestRevocationManager

Interface to extract details, continue interaction and extract results pertaining to a
particular revocation request. Inherits operations and attributes from
RequestManager interface.

2.3.7.1 continue_request_revocation

Used for continuing a revocation request that has already been initiated but requires
more interaction to complete the request.

 void continue_request_revocation
 (in PKI::RequestData request_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

2.3.7.2 get_request_revocation_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_revocation_result
 (out PKI::CertRevResponse cert_rev_response,
 out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

certificates A list of certificates.

response_data PKI::ResponseData structure containing details of the
request thus far.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

February 2001 PKI Adopted Specification Module PKIAuthority 2-17

2

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.8 Interface RequestKeyUpdateManager

Interface to extract details, continue interaction, and extract results pertaining to a
particular key update request. Inherits attributes and operations from
RequestManager interface.

2.3.8.1 continue_key_update

Used for continuing a key recovery request that has already been initiated but requires
more interaction to complete the request.

void continue_key_update
 (in PKI::RequestData request_data,
 in PKI::Certificate certificate)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

2.3.8.2 get_request_key_update_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_key_update_result
 (out PKI::Certificate certificate,
 out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

cert_rev_response PKI::CertRevResponse structure containing details
of the response of the the revocation request.

response_data PKI::ResponseData structure containing details of
the request thus far for continuing the request.

request_data PKI::RequestData structure containing details for
the continuation of the initial request.

certificate PKI::Certificate

2-18 PKI Adopted Specification February 2001

2

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.9 Interface RequestKeyRecoveryManager

Interface to extract details, continue interaction and extract results pertaining to a
particular key recovery request. Inherits attributes and operations from
RequestManager interface.

2.3.9.1 continue_key_recovery

Used for continuing a key recovery request that has already been initiated but requires
more interaction to complete the request.

void continue_key_recovery
 (in PKI::RequestData request_data)
 raises
(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

2.3.9.2 get_request_key_recovery_result

Obtains final or interim results of a particular request.

PKI::PKIStatus get_request_key_recovery_result
 (out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

certificate The new certificate after key update.

response_data PKI::ResponseData structure containing details of
the request thus far.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

February 2001 PKI Adopted Specification Module PKIAuthority 2-19

2

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.10 Interface CertificateCallback

Callback interface implemented at client side for being notified of a result.

2.3.10.1 notify_result

void notify_result(
 in RequestCertificateManager req_cert_manager,
 in PKI::PKIStatus status,
 in PKI::CertificateList certificates,
 in PKI::ResponseData response_data);

Parameters

2.3.11 Interface RevocationCallback

Callback interface implemented at client side for being notified of a result.

2.3.11.1 notify_result

Used by the server side to notify the reply handler that there is a result, either interim
or final.

void notify_result(in RequestRevocationManager req_rev_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data);

response_data PKI::ResponseData structure containing details of the
request thus far.

req_cert_manager An object reference to a RequestCertificateManager
object that maintains details of a certificate request.

status PKI::Status indicating current status of request.

certificates A list of certificates.

response_data PKI::ResponseData structure that holds details of the
server side response for the request.

2-20 PKI Adopted Specification February 2001

2

Parameters

2.3.12 Interface KeyUpdateCallback

Callback interface implemented at client side for being notified of a result.

2.3.12.1 notify_result

Used by the server side to notify the reply handler that there is a result, either interim
or final.

void notify_result(in RequestKeyUpdateManager req_key_update_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data);

Parameters

2.3.13 Interface KeyRecoveryCallback

Callback interface implemented at client side for being notified of a result.

2.3.13.1 notify_result

Used by the server side to notify the reply handler that there is a result, either interim
or final.

void notify_result
 (in RequestKeyRecoveryManage req_key_recover_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data);

req_rev_manager An object reference to a
RequestRevocationManager object that maintains
details of a request revocation request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details of the
server side response for the request.

req_key_update_manager An object reference to a
RequestKeyUpdateManager object that
maintains details of a key update request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details
of the server side response for the request.

February 2001 PKI Adopted Specification Module PKIRepository 2-21

2

Parameters

2.3.14 Interface CertificateStatusResponder

Interface for an online certificate status responder.

2.3.14.1 request_certificate_status

Obtains details for the request of a certificate status from an online certificate status
server.

PKI::PKIStatus request_certificate_status(
 in PKI::CertificateStatusRequest request,
 out PKI::CertificateStatusResponse response)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.4 Module PKIRepository

2.4.1 PKIPrincipalValue

Valuetype supporting fields containing relevant information related to a particular
principal.

valuetype PKIPrincipalValue {
 private string name;
 private PKI::CertificateList certificates;
 private PKI::CertificatePairList;

req_key_recover_manager An object reference to a
RequestKeyRecoveryManager object that
maintains details of a key recovery request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details
of the server side response for the request.

request PKI::CertificateStatusRequest structure containing details
of the request.

response PKI::CertificateStatusResponse structure containing
details of the return response.

2-22 PKI Adopted Specification February 2001

2

 private PKI::CRL crl;
 private PKI::CRL delta;
 private PKI::CRL arl;
 };

2.4.2 Interface Repository

Interface for storage and retrieval of certificates and CRLs.

2.4.2.1 RepositoryProviderInfo info

Attributeto return a valuetype containing information pertaining to this particular
repository implementation.

2.4.2.2 publish

Enter a new PKIPrincipalValue into the repository.

void publish(in PKIPrincipalValue principal)
 raises (DuplicatePrincipal, RepositoryError);

Parameters

2.4.2.3 locate

Get a PKIPrincipalValue for a particular name.

PKIPrincipalValue locate (in string name)
 raises (UnknownPrincipal, RepositoryError);

Parameters

Return Value

PKIPrincipalValue of the specified name.

2.4.2.4 delete

Deletes a principal in the repository using name as the lookup key.

void delete (in string name)
 raises (UnknownPrincipal, RepositoryError);

principal PKIPrincipalValue to be enterered.

name String name of desired principal to be located.

February 2001 PKI Adopted Specification Module PKIExtension 2-23

2

Parameters

2.4.2.5 update

Replaces an existing principal in the repository with the supplied PKIPrincipalValue
object.

void update (in PKIPrincipalValue principal)
 raises (UnknownPrincipal, RepositoryError);

Parameters

2.5 Module PKIExtension

2.5.1 Interface LDAPRepository

Interface for a repository for the storage and retrieval of certificates and CRLs.

2.5.1.1 get_provider_info

Get the provider info for this PKI repository.

RepositoryProviderInfo get_provider_info();

Return Value

RepositoryInfo construct containing general details relating the provider
implemented repository.

2.5.1.2 get_schema

Called to retrieve details of the schema used for the particular repository.

Schema get_schema();

Return Value

Schema construct containing lists of attribute and syntax definitions.

name String name of desired principal to be deleted

principal PKIPrincipalValue to be updated.

2-24 PKI Adopted Specification February 2001

2

2.5.1.3 publish_certificate

Publish a certificate for the given principal, under the attribute specified by the given
attribute name.

void publish_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)
 raises (PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.4 get_certificate

Get the certificate(s) associated with a given principal, under the attribute specified by
the given attribute name. If there are no certificates bound to the given principal (i.e.,
the given attribute does not exist, or that attribute exists but has no certificate values),
then a list of length 0 is returned.

PKI::CertificateList get_certificate(
 in PKIPrincipal principal, in string attr_name)
 raises (PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

Return Value

The (possibly empty) list of certificates bound to the entry in the repository for the
given principal, where such certificates (if any) are stored as values of the given
attribute.

principal The principal to which the certificate is to be bound.

certificate The certificate to be published.

attr_name The name of the attribute under which this certificate is to be
stored in the repository entry of the principal.

principle The principal whose certificates are to be returned.

attr_name The name of the attribute containing the certificate(s) in the
repository entry of the given principal.

February 2001 PKI Adopted Specification Module PKIExtension 2-25

2

2.5.1.5 delete_certificate

Deletes the given certificate stored against the given principal under the attribute
specified by the given name. How the given certificate is matched against stored
certificates is implementation-dependent.

void delete_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.6 publish_crl

Publish the given certificate revocation list for the given principal under the attribute
specified by the given name.

void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.7 get_crl

Get the CRL associated with a given principal, under the attribute specified by the
given name.

PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

principal The principal whose certificate is to be deleted.

certificate The certificate to be deleted.

attr_name The name of the attribute containing the certificate in the
repository entry of the given principal.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published.

attr_name The name of the attribute under which this crl is to be stored in
the repository entry of the principal.

2-26 PKI Adopted Specification February 2001

2

Parameters

Return Value

PKI::CRL structure containing the CRL.

2.5.1.8 delete_crl

Deletes the given CRL stored against the given principal under the attribute specified
by the given name. How the given CRL is matched against stored CRL is
implementation-dependent.

void delete_crl(in PKIPrincipal principal,
 in PKI::CRL crl,in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.9 publish_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified by
the given name.

void publish_certificate_pair(
 in PKIPrincipal principal, in PKI::CertificatePair certPair,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

principal The principal to which the CRL is bound.

attr_name The name of the attribute under which this crl is to be stored in
the repository entry of the principal.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted.

attr_name The name of the attribute under which this crl is stored in the
repository entry of the principal.

February 2001 PKI Adopted Specification Module PKIExtension 2-27

2

Parameters

2.5.1.10 get_certificate_pair

Get the certificate pair(s) associated with a given principal, under the attribute specified
by the given name. If there are no certificate pair(s) bound to the given principal (i.e.,
the given attribute does not exist, or that attribute exists but has no certificate pair
values), then a list of length 0 is returned.

PKI::CertificatePairList get_certificate_pair(
 in PKIPrincipal principal, in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CertificatePairList containing the requested certificate pairs.

2.5.1.11 delete_certificate_pair

Deletes the given certificate pair stored against the given principal under the attribute
specified by the given name. How the given certificate is matched against stored
certificate pairs is provider implementation-dependent.

void delete_certificate_pair(
 in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

principal The principal to which the certificate pair is bound.

certPair The certificate pair to be published.

attr_name The name of the attribute under which this certificate pair is to
be stored in the repository entry of the principal.

principal The principal to which the certificate pair is bound.

attr_name The name of the attribute under which this certificate pair is
stored in the repository entry of the principal.

2-28 PKI Adopted Specification February 2001

2

Parameters

2.5.1.12 publish_user_certificate

Publish a given certificate for the given principal under the attribute specified by the
repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

void publish_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.13 get_user_certificate

Get the certificate(s) for the given principal under the attribute specified by the
repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

PKI::CertificateList get_user_certificate(in PKIPrincipal principal)
 raises(UnknownPrincipal,RepositoryError);

Parameters

Return Value

PKI::CertificateList containing the list of requested user certificates.

2.5.1.14 delete_user_certificate

Delete the given certificate bound to the given principal under the attribute specified by
the repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be deleted.

attr_name The name of the attribute under which this certificate pair is
stored in the repository entry of the principal.

principal The principal to which the certificate is bound.

certificate The user certificate to be published.

principal The principal to which the certificate is bound.

February 2001 PKI Adopted Specification Module PKIExtension 2-29

2

void delete_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.15 publish_ca_certificate

Publish a given certificate for the given principal under the attribute specified by the
repository implementator as the default attribute for storing certificates to be
interpreted as CA certificates.

void publish_ca_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.16 get_ca_certificates

Get the certificate(s) bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing certificates to be interpreted
as CA certificates.

PKI::CertificateList get_ca_certificates(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

Return Value

PKI::CertificateList containing requested CA certificates.

principal The principal to which the certificate is bound.

certificate The user certificate to be deleted.

principal The principal to which the CA certificate is bound.

certificate The certificate to be published.

principal The principal to which the CA certificates are bound.

2-30 PKI Adopted Specification February 2001

2

2.5.1.17 delete_ca_certificate

Delete the given certificate bound to the given principal under the attribute specified by
the repository implementator as the default attribute for storing certificates to be
interpreted as CA certificates.

void delete_ca_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);;

Parameters

2.5.1.18 publish_default_crl

Publish the given CRL for the given principal under the attribute specified by the
repository implementor as the default attribute for storing CRLs.

void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.19 get_default_crl

Get the CRL bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing CRLs.

PKI::CRL get_default_crl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

Return Value

The PKI::CRL containing the requested CRL.

principal The principal to which the CA certificate is bound.

certificate The certificate to be deleted.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published.

principal The principal to which the CRL is bound.

February 2001 PKI Adopted Specification Module PKIExtension 2-31

2

2.5.1.20 delete_default_crl

Delete the specified CRL bound to the given principal under the attribute specified by
the repository implementor as the default attribute for storing CRLs. How the given
CRL is matched against stored CRLs is provider implementation-dependent.

void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.21 publish_default_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified by
the repository implementor as the default attribute for storing certificate pairs.

void publish_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

Parameters

2.5.1.22 get_default_certificate_pair

Get the certificate pair(s) bound to the given principal under the attribute specified by
the repository implementor as the default attribute for storing certificate pairs.

PKI::CertificatePairList get_default_certificate_pair
 (in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted.

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be published.

2-32 PKI Adopted Specification February 2001

2

Parameters

Return Value

PKI::CertificatePairList containing requested certificate pairs.

2.5.1.23 delete_default_certificate_pair

Delete the specified certificate pair bound to the given principal under the attribute
specified by the repository implementor as the default attribute for storing certificate
pairs. How the given certificate pair is matched against stored certificate pairs is
provider implementation-dependent.

void delete_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.24 publish_delta_crl

Publish the given delta CRL for the given principal under the attribute specified by the
repository implementor as the default attribute for storing delta CRLs

void publish_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl);

Parameters

2.5.1.25 get_delta_crl

Get the delta CRL bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing delta CRLs.

PKI::CRL get_delta_crl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal, PrincipalAttributeError,
 PKIRepository::RepositoryError);

principal The principal to which the certificate pairs are bound.

principal The principal to which the certificate pairs are bound.

certificate_pair The certificate pair to be deleted.

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be published.

February 2001 PKI Adopted Specification Module PKIExtension 2-33

2

Parameters

Return Value

PKI::CRL containing the requested delta CRL.

2.5.1.26 delete_delta_crl

Delete the specified delta CRL bound to the given principal under the attribute
specified by the repository implementor as the default attribute for storing delta CRLs.
How the given CRL is matched against stored CRLs is provider implementation-
dependent.

void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

Parameters

2.5.1.27 publish_arl

Publish the given ARL for the given principal under the attribute specified by the
repository implementor as the default attribute for storing ARLs.

void publish_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);;

Parameters

2.5.1.28 get_arl

Get the ARL bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing ARLs.

PKI::CRL get_arl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);;

principal The principal to which the delta CRL is bound.

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be deleted.

principal The principal to which the ARL is bound.

arl The ARL to be published.

2-34 PKI Adopted Specification February 2001

2

Parameters

Return Value

PKI::CRL containing the requested ARL.

2.5.1.29 delete_arl

Delete the specified ARL bound to the given principal under the attribute specified by
the repository implementor as the default attribute for storing ARLs. How the given
ARL is matched against stored ARLs is provider implementation-dependent.

void delete_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(PKIRepository::UnknownPrincipal,
 RPKIRepository::epositoryError);

Parameters

principal The principal to which the ARL is bound.

principal The principal to which the ARL is bound.

arl The ARL to be deleted.

February 2001 PKI Adopted Specification A-1

OMGIDL A

A.1 PKI

#ifndef __PKI_IDL
#define __PKI_IDL

#pragma prefix “omg.org”

module PKI {

 typedef sequence <octet> Opaque;

 //Certificate Types
 typedef unsigned long CertificateType;
 const CertificateType UnknownCertificate = 0;
 const CertificateType X509v1Certificate = 1;
 const CertificateType X509v2Certificate = 2;
 const CertificateType X509v3Certificate = 3;
 const CertificateType PGPCertificate = 4;
 const CertificateType SPKICertificate = 5;
 const CertificateType X509v1AttributeCertificate = 6;
 const CertificateType CustomCertificate = 0x8000;

A-2 PKI Adopted Specification February 2001

A

 typedef sequence <CertificateType> CertificateTypeList;

 //Certificate Encoding Types
 typedef unsigned long EncodingType;
 const EncodingType UnknownEncoding = 0;
 const EncodingType DEREncoding = 1;
 const EncodingType BEREncoding = 2;
 const EncodingType Base64Encoding = 3;
 const EncodingType SExprEncoding = 4;
 const EncodingType CustomEncoding = 0x8000;

 // A representation type to deal with current existing PKI implementations
 // and standards.

 struct RepresentationType EncodedData {
 EncodingType encoding_type;
 Opaque data;
 };

 typedef unsigned long AuthorityInfoType;
 const AuthorityInfoType UnkownMessage = 0;
 const AuthorityInfoType PKIXCMPGeneralMessage = 1;
 const AuthorityInfoType CustomMessage = 0x8000;

 struct AuthorityInfo {
 AuthorityInfoType authority_info_type;
 RepresentationType representation_type;
 };

 //
 // Certificate information - used in both the Certificate definition
 // and the PKIAuthority::RegistrationAuthorityProviderInfo definition.
 //
 struct CertificateInfo {
 CertificateType certificate_type;
 EncodingType encoding_type;
 };
 typedef sequence<CertificateInfo> CertificateInfoList;

 //Certificate
struct Certificate {

 CertificateType certificate_type;
 any representation_type;
 };
valuetype Certificate {
 private CertificateType certificate_type;
 private EncodedData data;
 };

February 2001 PKI Adopted Specification A-3

A

 typedef sequence <Certificate> CertificateList;

 //CRL Types
 typedef unsigned long CRLType;
 const CRLType UnknownCRL = 0;
 const CRLType X509v1CRL = 1;
 const CRLType X509v2CRL = 2;
 const CRLType X509V1ARL = 3;
 const CRLType CustomCRL = 0x8000;

 typedef sequence <CRLType> CRLTypeList;

 // Information about a CRL
 struct CRLInfo {
 CRLType crl_type;
 EncodingType encoding_type;
 };

typedef sequence<CRLInfo> CRLInfoList;

 //CRL
 struct CRL {
 CRLType crl_type;
 any representation_type;
 };

valuetype CRL {
 private CRLType crl_type;
 private EncodedData data;
 };

 //Certificate Request Type
 typedef unsigned long CertificateRequestType;
 const CertificateRequestType UnknownCertificateRequest = 0;
 const CertificateRequestType PKCS10CertificateRequest = 1;
 const CertificateRequestType PKIXCRMFCertificateRequest = 2;
 const CertificateRequestType PKIXCMCCertificateRequest = 3;
 const CertificateRequestType CustomCertificateRequest = 0x8000;

 typedef sequence <CertificateRequestType> CertificateRequestTypeList;

 // Information about a certificate request
 struct CertificateRequestInfo {
 CertificateRequestType cert_request_type;
 EncodingType encoding_type;
 };
 typedef sequence<CertificateRequestInfo> CertificateRequestInfoList;

A-4 PKI Adopted Specification February 2001

A

 //Certificate Request
 struct CertificateRequest {

 CertificateRequestType cert_request_type;
 any representation_type;
 };
valuetype CertificateRequest {
 private CertificateRequestType cert_request_type;
 private EncodedData data;
 };

 struct CertificatePair {
 Certificate forward;
 Certificate reverse;
 };
 typedef sequence<CertificatePair> CertificatePairList;

 //ContinueType
 typedef unsigned long ContinueType;
 const ContinueType UnknownContinue = 0;
 const ContinueType PKIXCMPContinue = 1;
 const ContinueType PKIXCMCContinue = 2;
 const ContinueType PKIXCMPConfirm = 3;
 const ContinueType PKIXCMCConfirm = 4;
 const ContinueType CustomContinue = 0x8000;

 //Continue Structure
 struct Continue {

 ContinueType continue_type;
 any representation_type;
 };
valuetype Continue {
 private ContinueType continue_type;
 private EncodedData data;
 };

 //ContinueData
 // Request indicates from client to target message exchange
 typedef Continue RequestData;

 //ContinueResponse
 // Response indicates from target to client message exchange
 typedef Continue ResponseData;

 // ConfirmData
 typedef Continue ConfirmData;

 //Certificate Revocation Type
 typedef unsigned long CertRevocationType;
 const CertRevocationType UnknownCertRevocation = 0;
 const CertRevocationType PKIXCMPCertRevocation = 1;

February 2001 PKI Adopted Specification A-5

A

 const CertRevocationType PKIXCMCCertRevocation = 2;
 const CertRevocationType CustomCertRevocation = 0x8000;

 // Information about Certificate revocation
 struct CertificateRevocationInfo {
 CertRevocationType cert_rev_type;
 EncodingType encoding_type;
 };
 typedef sequence <CertificateRevocationInfo>
CertificateRevocationInfoList;

 //Certificate Revocation
 struct CertRevocation {
 CertRevocationType cert_rev_type;
 any representation_type;
 };
valuetype CertRevocation {
 private CertRevocationType cert_rev_type;
 private EncodedData data;
 };

 //Certificate Revocation Respone
 typedef CertRevocation CertRevResponse;
 typedef CertRevocation CertRevRequest;

 //Key Recovery Type
 typedef unsigned long KeyRecoveryType;
 const KeyRecoveryType UnkownKeyRecovery = 0;
 const KeyRecoveryType PKIXCMPKeyRecovery = 1;
 const KeyRecoveryType PKIXCMCKeyRecovery = 2;
 const KeyRecoveryType CustomKeyRecovery = 0x8000;

 // Information about key recovery
 struct KeyRecoveryInfo {
 KeyRecoveryType key_rec_type;
 EncodingType encoding_type;
 };
 typedef sequence <KeyRecoveryInfo> KeyRecoveryInfoList;

 //Key Recovery Response
 struct KeyRecResponse {
 KeyRecoveryType key_recovery;
 any representation_type;
 };
valuetype KeyRecResponse {
 private KeyRecoveryType key_recovery;
 private EncodedData data;
 };

 //OCSP
 //Certificate status request type

A-6 PKI Adopted Specification February 2001

A

 typedef unsigned long CertificateStatusRequestType;
 const CertificateStatusRequestType
 UnknownCertificateStatusRequestType = 0;
 const CertificateStatusRequestType
 OCSPCertificateStatusRequest = 1;
 const CertificateStatusRequestType
 CustomCertificateStatusRequest = 0x8000;

 //Type for certificate status requests
 struct CertificateStatusRequest {
 CertificateStatusRequestType type;
 any value;
 };
valuetype CertificateStatusRequest {
 private CertificateStatusRequestType type;
 private EncodedData data;
 };

 //Certificate status response type
 typedef unsigned long CertificateStatusResponseType;
 const CertificateStatusResponseType
 UnknownCertificateStatusResponseType = 0;
 const CertificateStatusResponseType
 OCSPCertificateStatusResponse = 1;
 const CertificateStatusResponseType
 CustomCertificateStatusResponse = 0x8000;

 //Type for certificate status responses
 struct CertificateStatusResponse {
 CertificateStatusResponseType type;
 any value;
 };
valuetype CertificateStatusResponse {
 private CertificateStatusResponseType type;
 private EncodedData data;
 };

 typedef unsigned long PKIStatus;
 const PKIStatus PKISuccess = 0;
 const PKIStatus PKISuccessWithWarning = 1;
 const PKIStatus PKIContinueNeeded = 2;
 const PKIStatus PKIFailed = 3;
 const PKIStatus PKIPending = 4;
 const PKIStatus PKISuccessAfterConfirm = 5;
};
#endif

A.2 PKIAuthority

February 2001 PKI Adopted Specification A-7

A

#ifndef __PKIAUTHORITY_IDL
#define __PKIAUTHORITY_IDL

#include <PKI.idl>
#include <PKIRepository.idl>

#pragma prefix “omg.org”

module PKIAuthority {

 // Forward declaration...
 interface CertificateStatusResponder;

 interface RequestManager;
 interface RequestCertificateManager;
 interface RequestRevocationManager;
 interface RequestKeyUpdateManager;
 interface RequestKeyRecoveryManager;

 interface CertificateCallback;
 interface RevocationCallback;
 interface KeyUpdateCallback;
 interface KeyRecoveryCallback;

 struct AuthorityProviderInfo {
 string standardVersion;
 string standardDescription;
 string productVersion;
 string productDescription;
 string productVendor;
 PKI::CertificateInfoList supportedCertificates;
 PKI::CRLInfoList supportedCRLs;
 PKI::CertificateRequestInfoList supportedCertRequestTypes;
 PKI::CertificateRevocationInfo supportedCertRevocationTypes;
 PKI::KeyRecoveryInfoList supportedKeyRecoveryTypes;
 boolean callbackSupport;
 };
valuetype AuthorityProviderInfo {
 public string standardVersion;
 public string standardDescription;
 public string productVersion;
 public string productDescription;
 public string productVendor;
 public PKI::CertificateInfoList supportedCertificates;
 public PKI::CRLInfoList supportedCRLs;
 public PKI::CertificateRequestInfoList supportedCertRequestTypes;
 public PKI::CertificateRevocationInfoList
supportedCertRevocationTypes;
 public PKI::KeyRecoveryInfoList supportedKeyRecoveryTypes;
public PKI::Certificate publicKey;

A-8 PKI Adopted Specification February 2001

A

 public string providerHomeURL;
 public string providerPublicKeyURL;
};

 exception UnsupportedTypeException {
 string description;
 };

 exception UnsupportedEncodingException {
 string description;
 };

 exception MalformedDataException {
 string description;
 };

 exception UnexpectedContinueException {
 string description;
 };

 exception InvalidCallbackException {
 string description;
 };

 interface RegistrationAuthority {

 AuthorityProviderInfo get_provider_info();

 PKI::PKIStatus get_authority_info(
 in PKI::AuthorityInfo in_authority_info_req,
 out PKI::AuthorityInfo out_authority_info_resp
)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestCertificateManager request_certificate
 (in PKI::CertificateRequest certificate_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestRevocationManager request_revocation
 (in PKI::CertRevRequest cert_rev_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyUpdateManager request_key_update
 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyRecoveryManager request_key_recovery

February 2001 PKI Adopted Specification A-9

A

 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RegistrationAuthority_CB : RegistrationAuthority
 {

 RequestCertificateManager request_certificate_with_CB
 (in CertificateCallback callback,
 in PKI::CertificateRequest certificate_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestRevocationManager request_revocation_with_CB
 (in RevocationCallback callback,
 in PKI::CertRevRequest cert_rev_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyUpdateManager request_key_update_with_CB
 (in KeyUpdateCallback callback,
 in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyRecoveryManager request_key_recovery_with_CB
 (in KeyRecoveryCallback callback,
 in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateAuthority : RegistrationAuthority {

 PKI::PKIStatus get_ca_certificate(
 out PKI::CertificateList certificate_list)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_crl (out PKI::CRL crl);

CertificateStatusResponder get_certificate_status_responder();

 PKIRepository::Repository get_repository()
 raises(PKIRepository::RepositoryError);
 };

 interface CertificateAuthority_CB : RegistrationAuthority_CB,
 CertificateAuthority {
 };

A-10 PKI Adopted Specification February 2001

A

 abstract interface RequestManager {

 readonly attribute PKI::PKIStatus status;

 readonly attribute long transaction_ID;

 void confirm_content(in PKI::ConfirmData confirm_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

 MalformedDataException);
 };

 interface RequestCertificateManager : RequestManager {

 void continue_request_certificate
 (in PKI::RequestData request_data,
 in PKI::CertificateList certificates)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_certificate_request_result
 (out PKI::CertificateList certificates,
 out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestRevocationManager : RequestManager {

 void continue_request_revocation
 (in PKI::RequestData request_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_request_revocation_result
 (out PKI::CertRevResponse cert_rev_response,
 out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestKeyUpdateManager : RequestManager {

 void continue_key_update
 (in PKI::RequestData request_data,
 in PKI::Certificate certificate)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_request_key_update_result
 (out PKI::Certificate certificate,

February 2001 PKI Adopted Specification A-11

A

 out PKI::ResponseData response_data)
raises (UnsupportedTypeException,UnsupportedEncodingException,

 MalformedDataException);
 };

 interface RequestKeyRecoveryManager : RequestManager {

 void continue_key_recovery
 (in PKI::RequestData request_data)
 raises
(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_request_key_recovery_result
 (out PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateCallback {

 void notify_result(in RequestCertificateManager req_cert_manager,
 in PKI::PKIStatus status,
 in PKI::CertificateList certificates,
 in PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 };

 interface RevocationCallback {

 void notify_result(in RequestRevocationManager req_rev_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface KeyUpdateCallback {

 void notify_result(in RequestKeyUpdateManager
req_key_update_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface KeyRecoveryCallback {

A-12 PKI Adopted Specification February 2001

A

 void notify_result(in RequestKeyRecoveryManager
req_key_recover_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateStatusResponder {

PKI::PKIStatus request_certificate_status(
 in PKI::CertificateStatusRequest request,
 out PKI::CertificateStatusResponse response)

raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };
};
#endif

A.3 PKIRepository
// PKIRepository.idl
#ifndef __PKIREPOSITORY_IDL
#define __PKIREPOSITORY_IDL

#include <PKI.idl>
#pragma prefix "omg.org"

module PKIRepository {

 valuetype RepositoryProviderInfo {
 public string standardDescription;
 public string standardVersion;
 public string productDescription;
 public string productVersion;
 public string productVendor;
 public PKI::CertificateInfoList supportedCertificates;
 public PKI::CRLInfoList supportedCRLs;
 public PKI::CertificateInfoList supportedCrossCertificates;
 };

 exception UnknownPrincipal {
 string name;
 };
 exception RepositoryError {
 string name;
 };
 exception DuplicatePrincipal {

February 2001 PKI Adopted Specification A-13

A

 string name;
 };

 valuetype PKIPrincipalValue {
 private string name;
 private PKI::CertificateList certificates;
 private PKI::CertificatePairList;
 private PKI::CRL crl;
 private PKI::CRL delta;
 private PKI::CRL arl;
 };

 interface Repository {

 readonly attribute RepositoryProviderInfo info;

 void publish(in PKIPrincipalValue principal)
 raises (DuplicatePrincipal, RepositoryError);

 PKIPrincipalValue locate (in string name)
 raises (UnknownPrincipal, RepositoryError);

 void delete (in string name)
 raises (UnknownPrincipal, RepositoryError);

 void update (in PKIPrincipalValue principal)
 raises (UnknownPrincipal, RepositoryError);
 };
};
#endif

A.4 PKIExtension
// PKIExtension.idl
#include<PKI.idl>
#include<PKIRepository.idl>

module PKIExtension {

 valuetype RepositoryMappingInfo {
 public string user_attribute_name;
 public string ca_attribute_name;
 public string crl_attribute_name;
 public string certificatePair_attribute_name;
 public string deltaCRL_attribute_name;
 public string arl_attribute_name;
 };

 typedef string PKIName;
 typedef sequence <PKIName> PKINameList;

A-14 PKI Adopted Specification February 2001

A

 struct PKIAttribute {
 string name;
 any value;
 };
 typedef sequence <PKIAttribute> PKIAttributeList;

 struct PKIPrincipal {
 PKIName name;
 PKIAttributeList attributes;
 };

 struct Schema {
 PKIAttributeList attribute_defs;
 PKIAttributeList syntax_defs;
 };

 enum PrincipalAttributeErrorReason {
 MissingPKIAttributes,
 InvalidPKIAttributes
 };

 exception PrincipalAttributeError {
 PrincipalAttributeErrorReason reason;
 PKIPrincipal principal;
 PKINameList attribute_names;
 };

 // renamed to LDAPRepository
 interface LDAPRepository : PKIRepository::Repository {

 // New method
 RepositoryMappingInfo mapping();

 Schema get_schema();

 void publish_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)
 raises (PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CertificateList get_certificate(
 in PKIPrincipal principal, in string attr_name)
 raises (PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)

February 2001 PKI Adopted Specification A-15

A

 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_crl(in PKIPrincipal principal,
 in PKI::CRL crl,in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_certificate_pair(
 in PKIPrincipal principal, in PKI::CertificatePair certPair,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CertificatePairList get_certificate_pair(
 in PKIPrincipal principal, in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_certificate_pair(
 in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair,
 in string attr_name)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CertificateList get_user_certificate(in PKIPrincipal principal)
 raises(UnknownPrincipal,RepositoryError);

 void delete_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

A-16 PKI Adopted Specification February 2001

A

 void publish_ca_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CertificateList get_ca_certificates(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_ca_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CRL get_default_crl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CertificatePairList get_default_certificate_pair(
 in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_delta_crl(in PKIPrincipal principal,
 in PKI::CRL delta_crl)
 raises(PKIRepository::UnknownPrincipal, PrincipalAttributeError,
 PKIRepository::RepositoryError);

February 2001 PKI Adopted Specification A-17

A

 PKI::CRL get_delta_crl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void publish_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(PKIRepository::UnknownPrincipal,
 PrincipalAttributeError,
 PKIRepository::RepositoryError);

 PKI::CRL get_arl(in PKIPrincipal principal)
 raises(PKIRepository::UnknownPrincipal,
 PKIRepository::RepositoryError);

 void delete_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(PKIRepository::UnknownPrincipal,
 RPKIRepository::epositoryError);

 };
};

A-18 PKI Adopted Specification February 2001

A

February 2001 PKI Adopted Specification B-1

Conformance Issues B

B.1 Introduction

This chapter specifies the conformance requirements to be met for an implementation
to be conformant to the CORBA Public Key Infrastructure.

B.2 Conformance

There are 2 defined levels of conformance for the CORBA Public Key Infrastructure.

• Level 1 : Polling Only

The first defined conformance level is for implementations that support polling only.
For conformance to this level the following must be supported.

• Module PKIAuthority

• Interface RegistrationAuthority

• Interface CertificateAuthority

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Module PKIRepository

• All specified constructs and interfaces

B.2.1 Level 2 : Polling and Callback

The second defined conformance level is for implementations that support both polling
and callbacks. For conformance to this level the following must be supported.

B-2 PKI Adopted Specification February 2001

B

• Module PKI

• All specified constructs must be supported.

• Module PKIAuthority

• Interface RegistrationAuthority_CB

• Interface CertificateAuthority_CB

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Interface CertificateCallback

• Interface RevocationCallback

• Interface KeyUpdateCallback

• Interface KeyRecoveryCallback

• Module PKIRepository

• All specified constructs and interfaces

	Preface
	About the Object Management Group
	What is CORBA?
	OMG Documents
	OMG Modeling
	Object Management Architecture Guide
	OMG Interface Definition Language (IDL) Mapping Specifications
	CORBAservices
	CORBAfacilities
	Object Frameworks and Domain Interfaces
	Definition of CORBA Compliance
	Obtaining OMG Documents
	Acknowledgments
	Overview
	1.1 Introduction
	1.2 PKI Definitions
	1.2.1 PKI User
	1.2.2 Certificate
	1.2.3 Certificate Revocation List (CRL)
	1.2.4 Certificate and CRL Repository
	1.2.5 Certification Authority (CA)
	1.2.6 Registration Authority (RA)
	1.2.7 Online Certificate Status Service

	1.3 Specification Overview
	1.3.1 PKI Module
	1.3.2 PKIAuthority
	1.3.3 PKIRepository

	1.4 General PKI Usage Overview
	1.4.1 Overall View
	1.4.2 Provider Information
	1.4.3 Polling Certificate Request
	1.4.4 Certificate Request Using A Callback

	1.5 General Repository Usage Overview
	1.6 Design Rationale
	1.6.1 Encoding to Representation Granularity
	1.6.2 Asynchronous and Interactive Messaging
	1.6.3 Repository
	1.6.4 Provider Details

	1.7 Proof of Concept

	PKI Interfaces
	2.1 Introduction
	2.2 Module PKI
	2.2.1 PKIStatus Constants
	2.2.2 EncodingType
	2.2.3 Opaque
	2.2.4 EncodedData RepresentationType
	2.2.5 CertificateType
	2.2.6 EncodingType
	2.2.7 AuthorityInfoType
	2.2.8 Certificate
	2.2.9 CRL
	2.2.10 CertificateRequest
	2.2.11 CertificateStatusRequest
	2.2.12 CertificateStatusResponse
	2.2.13 Exceptions

	2.3 Module PKIAuthority
	2.3.1 Interface RegistrationAuthority
	2.3.2 Interface RegistrationAuthority_CB
	2.3.3 Interface CertificateAuthority
	2.3.4 Interface CertificateAuthority_CB
	2.3.5 Interface RequestManager
	2.3.6 Interface RequestCertificateManager
	2.3.7 Interface RequestRevocationManager
	2.3.8 Interface RequestKeyUpdateManager
	2.3.9 Interface RequestKeyRecoveryManager
	2.3.10 Interface CertificateCallback
	2.3.11 Interface RevocationCallback
	2.3.12 Interface KeyUpdateCallback
	2.3.13 Interface KeyRecoveryCallback
	2.3.14 Interface CertificateStatusResponder

	2.4 Module PKIRepository
	2.4.1 PKIPrincipalValue
	2.4.2 Interface Repository

	2.5 Module PKIExtension
	2.5.1 Interface LDAPRepository

	OMG IDL
	Conformance Issues

