
Public Key Infrastructure Specification

This OMG document replaces the submission document ec/2000-02-01. It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by April 15, 2001.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 18, 2001. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMG Adopted Specification

Public Key Infrastructure Specification

Final Adopted Specification
February 2001

Copyright 2000, DSTC Pty Ltd (Cooperative Research Centre for Enterprise Distributed Systems Technology)
Copyright 2000, Baltimore Technologies PLC

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents

 . 1
 . 1

. 1

 . 2

. 2
. 2

2

. 3
3

. 3

3

 . 4

 . 4

1-1

-1

-2

-2
-2

2
2

3

-3

-3
4

4
-4

-5

5
6

-7
7

1-8
-8

-9
10

1

Preface .
About the Object Management Group .

What is CORBA? .

OMG Documents .

OMG Modeling .
Object Management Architecture Guide

OMG Interface Definition Language (IDL) Mapping
Specifications .

CORBAservices .
CORBAfacilities .

Object Frameworks and Domain Interfaces

Definition of CORBA Compliance .

Obtaining OMG Documents .

Acknowledgments .

1. Overview .

1.1 Introduction . 1

1.2 PKI Definitions . 1

1.2.1 PKI User . 1
1.2.2 Certificate . 1

1.2.3 Certificate Revocation List (CRL) 1-
1.2.4 Certificate and CRL Repository 1-

1.2.5 Certification Authority (CA) 1-2
1.2.6 Registration Authority (RA) 1-

1.2.7 Online Certificate Status Service 1

1.3 Specification Overview . 1
1.3.1 PKI Module . 1-

1.3.2 PKIAuthority . 1-
1.3.3 PKIRepository . 1

1.4 General PKI Usage Overview . 1

1.4.1 Overall View . 1-
1.4.2 Provider Information 1-

1.4.3 Polling Certificate Request 1
1.4.4 Certificate Request Using A Callback 1-

1.5 General Repository Usage Overview 1-7

1.6 Design Rationale .
1.6.1 Encoding to Representation Granularity . . . 1

1.6.2 Asynchronous and Interactive Messaging . . 1
1.6.3 Repository . 1-

1.6.4 Provider Details . 1-1
February 2001 PKI Adopted Specification 1

Contents

-11

-1

-1

-1

-1
-2

-2
-2

-3
-3

-4

4
4

6
9

0
10

11
12

12
13

4
4

5
5

16
7

17
1.7 Proof of Concept . 1

2. PKI Interfaces .2

2.1 Introduction . 2

2.2 Module PKI . 2

2.2.1 Opaque . 2
2.2.2 RepresentationType 2

2.2.3 Certificate . 2
2.2.4 CRL . 2

2.2.5 CertificateRequest . 2
2.2.6 CertificateStatusRequest 2

2.2.7 CertificateStatusResponse 2

2.3 Module PKIAuthority . 2-
2.3.1 Interface RegistrationAuthority 2-

2.3.2 Interface RegistrationAuthority_CB 2-
2.3.3 Interface CertificateAuthority 2-

2.3.4 Interface CertificateAuthority_CB 2-1
2.3.5 Interface RequestManager 2-

2.3.6 Interface RequestCertificateManager 2-
2.3.7 Interface RequestRevocationManager 2-

2.3.8 Interface RequestKeyUpdateManager 2-
2.3.9 Interface RequestKeyRecoveryManager . . 2-

2.3.10 Interface CertificateCallback 2-1
2.3.11 Interface RevocationCallback 2-1

2.3.12 Interface KeyUpdateCallback 2-1
2.3.13 Interface KeyRecoveryCallback 2-1

2.3.14 Interface CertificateStatusResponder 2-
2.3.15 Module PKIRepository 2-1

2.3.16 Interface Repository 2-

Appendix A - OMG IDL . A-1

Appendix B - Conformance Issues B-1
2 PKI Adopted Specification February 2001

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
PKI Adopted Specification February 2001 1

w-

r
ct
is
up-
pro-
dels.

eir cor-

enable
ing
elop-

of
oth
ata

ten-
rm,
eta-

s the
chitec-
dures

jects.
t.
ent.
loper’s
 has

a,
OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the follo
ing publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language fo
visualizing, specifying, constructing, and documenting the artifacts of distributed obje
systems. The specification includes the formal definition of a common Object Analys
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that s
ports model interchange between OA&D tools and metadata repositories. The UML
vides the foundation for specifying and sharing CORBA-based distributed object mo

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and th
responding models. The MOF provides the infrastructure for implementing CORBA-
based design and reuse repositories. The MOF specifies precise mapping rules that
the CORBA interfaces for metamodels to be automatically generated, thus encourag
consistency in manipulating metadata in all phases of the distributed application dev
ment cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange
any kind of metadata that can be expressed using the MOF specification, including b
model and metamodel information. The specification supports the encoding of metad
consisting of both complete models and model fragments, as well as tool-specific ex
sion metadata. XMI has optional support for interchange of metadata in differential fo
and for metadata interchange with tools that have incomplete understanding of the m
data.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describe
conceptual models upon which OMG standards are based. It defines the umbrella ar
ture for the OMG standards. It also provides information about the policies and proce
of OMG, such as how standards are proposed, evaluated, and accepted.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA ob
The IDL definition is the contract between the implementor of an object and the clien
IDL is a strongly typed declarative language that is programming language-independ
Language mappings enable objects to be implemented and sent requests in the deve
programming language of choice in a style that is natural to that language. The OMG
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Jav
Java to IDL, Lisp, and Smalltalk.
2 PKI Adopted Specification February 2001

ping
 uni-

liant
plica-
t can

ol-
on,
ction.

 to
ies

t

main
oms,

tions

oints

,

tion
e

ith its
y when
CORBAservices

Object Services are general purpose services that are either fundamental for develo
useful CORBA-based applications composed of distributed objects, or that provide a
versal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Comp
objects can be combined in many different ways and put to many different uses in ap
tions. They can be used to construct higher level facilities and object frameworks tha
interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include C
lection, Concurrency, Event, Externalization, Naming, Licensing, Life Cycle, Notificati
Persistent Object, Property, Query, Relationship, Security, Time, Trader, and Transa

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilit
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direc
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Do
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telec
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifica
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these p
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed informa
about Interworking compliance, refer to the Common Object Request Broker: Architectur
and Specification, Interworking Architecture chapter.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, w
membership, evaluating the responses. Specifications are adopted as standards onl
PKI Adopted Specification February 2001 3

 and

ge-

ms
representatives of the OMG membership accept them as such by vote. (The policies
procedures of the OMG are described in detail in the Object Management Architecture
Guide.)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.htm. To obtain print-on-demand
books in the documentation set or other OMG publications, contact the Object Mana
ment Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• DSTC Pty Ltd (Cooperative Research Centre for Enterprise Distributed Syste
Technology)

• Baltimore Technologies PLC
4 PKI Adopted Specification February 2001

Overview 1
y,

ach
air
Contents

This chapter contains the following topics.

Source Document(s)

This FTF Adopted Specification is based on the following OMG document:

• ec/2000-02-01 - submission document

1.1 Introduction

A Public Key Infrastructure (PKI) is a collection of components or entities for the
issuance, management, and revocation of digital certificates. Public key technolog
although not new, does have promise as a basis for a flexible method of providing
security in an online and distributed environment. For public key technology to re
this potential it must be possible to bind an identity to that of a public/private key p
(digital certificates) and then subsequently manage these using a PKI.

Topic Page

“Introduction” 1-1

“PKI Definitions” 1-2

“Specification Overview” 1-3

“General PKI Usage Overview” 1-5

“General Repository Usage Overview” 1-7

“Design Rationale” 1-8

“Proof of Concept” 1-11
February 2001 PKI Adopted Specification 1-1

1

 into
ter

ities

ic to
 and

 use a

e

 a

ntity
d. A
. A

ce
This document provides interfaces and operations in CORBA IDL to support the
functionality of a PKI. It describes a generic interface that allows standards to be
implemented behind these interfaces and operations. The specification also takes
consideration the possibility of specific CORBA extensions being designed at a la
date that utilize specific technology within the CORBA framework. The interfaces
provided in this document describe a standard method of interacting with PKI ent
in a CORBA environment.

1.2 PKI Definitions

The following sections describe major components of a PKI. These are not specif
this specification nor to any specific existing standard, but are common PKI terms
components.

1.2.1 PKI User

A PKI user refers to human users as well as applications and hosts that may also
PKI functionality.

1.2.2 Certificate

A certificate is a structured electronic document that binds some information to a
public/private key pair and is digitally signed by a trusted third party called a
Certification Authority or commonly referred to as a CA. This document will use th
term CA throughout.

1.2.3 Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is a structured electronic document signed by
CA that lists any certificates previously issued by that CA that are now revoked. A
certificate may be revoked for reasons that may include, but is not limited to, an e
or person changing or leaving a particular role or a private key being compromise
CRL is issued on a periodic basis with the period determined by policy of the CA
revoked certificate will remain on a CRL until the validity period of the certificate
expires.

1.2.4 Certificate and CRL Repository

A repository is a service provided for the storage and retrieval of certificates and
CRLs.

1.2.5 Certification Authority (CA)

A Certification Authority (CA) performs a number of functions relating to the issuan
and management of public key certificates. These include:

• Accepting and verifying requests for certificates
1-2 PKI Adopted Specification February 2001

1

ple

nd

hin
milar
 the

A

es

RLs.
ot

 to

ith a
nd

lar
• Revoking certificates and issuing CRLs

• Servicing requests for certificate status information

• Key management issues such as re-keying and re-certification

The CA may also certify the keys of other CAs so that the PKI can scale to multi
domains.

1.2.6 Registration Authority (RA)

A Registration Authority (RA) accepts requests for certificates on behalf of a CA a
verifies the binding between the public/private key pair and the attributes being
certified. Typically one or more RAs exist to provide a means for scaling a PKI wit
a single management domain. The relationship between the RAs and the CA is si
to the relationship between bank branches and the bank. While the branches are
“face” of the organization, the bank has the ultimate authority for the granting of
transactions. So a request for a certificate may be made on a particular RA, the R
may verify Proof Of Possession (POP) of the private key and then request the
certificate from the CA. The certificate obtained is from the CA but the RA provid
the point of contact and may perform functions such as POP and checking
authentication based on policy.

1.2.7 Online Certificate Status Service

This is a service used to determine the status of a certificate without the use of C
Since CRLs can only be issued periodically, any revocation during this period is n
known until the next issue of the CRL. Essentially this provides an online service
check the validity of a particular certificate and hence a more timely method of
obtaining status information.

1.3 Specification Overview

This specification describes interfaces, constants, and constructs for interacting w
PKI through CORBA objects. The general design fits around existing standards a
implementations and defines generic interfaces for the interaction with PKI
components. This allows (but is not limited to) the wrapping of existing
implementations. The major interfaces of this specification are shown (in rectangu
boxes) in Figure 1-1 on page 1-4.
February 2001 PKI Adopted Specification Specification Overview 1-3

1

e
cribed
ing

e

nd
Figure 1-1 PKI Overview

There are other interfaces defined that are used to assist in the interaction with th
above interfaces and allow for asynchronous messaging. These interfaces are des
later in more detail. The functions of the major interfaces relate to the correspond
descriptions in Section 1.2, “PKI Definitions,” on page 1-2.

1.3.1 PKI Module

This module describes common type definitions and constants that are used by th
other modules.

1.3.2 PKIAuthority

This module outlines 14 interfaces for interacting with PKI authorities through the
management of certificates. The major interfaces are CertificateAuthority,
RegistrationAuthority, and CertificateStatusResponder. The rest are employed to
maintain the interactive and asynchronous behavior that is typical using a PKI.

1.3.3 PKIRepository

This module provides interfaces and operations to store and retrieve certificates a
CRLs.

RegistrationAuthority

CertificateStatusResponder CertificateAuthority

Repository

CORBA

PKI User
1-4 PKI Adopted Specification February 2001

1

faces

. The

ess
A

enge
ns the

al

the
ent to

 of a
 will
sues.

ate

n in
he
1.4 General PKI Usage Overview

This section describes some typical usage scenarios for interaction with the inter
described in this specification. As mentioned earlier there is the potential for
communication between PKI users to have an interactive and asynchronous nature
asynchronicity comes from the fact that an authority will have policy regarding the
issuance and management of certificates that may involve some out of band proc
(e.g., a phone call or email message). Complicating this even further is that the C
may need to interact with the clients to obtain more information and so a single
invocation may not be sufficient to complete a particular request. For example a
certificate request to an authority may require that POP is performed using a chall
response mechanism. This requires that the client decrypts a challenge and retur
result to the authority.

In addressing the asynchronous and interactive nature of PKI messaging addition
interfaces have been added. These are the RequestManager and Callback interfaces.
A RequestManager object is created by the authority. This is then used for any
subsequent operations and status enquiries for a particular request. The callback
interfaces are implemented at the client side and are used by the target to notify
client that a status change has occurred. This gives two possible methods for a cli
interact with a CA or RA. The client can continuously poll the RequestManager
object for a status change or it can register a local callback object and be notified
status change. Whether an authority supports polling only or polling and callbacks
depend on the level of conformance as described in Appendix B - Conformance Is

Some example scenarios describing suggested behavior are overviewed in
Section 1.4.3, “Polling Certificate Request,” on page 1-6 and Section 1.4.4, “Certific
Request Using A Callback,” on page 1-7.

1.4.1 Overall View

Typical operations that are expected from the set of specified interfaces are show
Figure 1-2 on page 1-6. This diagram is included to show an overall structure of t
specified interfaces.
February 2001 PKI Adopted Specification General PKI Usage Overview 1-5

1

 what
or as

Figure 1-2 Interface Structure

1.4.2 Provider Information

Before a client makes requests to an authority it can obtain general details about
the authority provides. This may include general details such as version and vend
well as specifics about supported types including whether an authority can handle
callbacks in addition to polling.
1-6 PKI Adopted Specification February 2001

1

ued

he

ation,

n of

ity.

to

n of
oller

et.

f
ch
es.
l

ant
gh

s
ven a
a
1.4.3 Polling Certificate Request

The following example is that of a client making a request to have a certificate iss
by a CA or RA.

• After constructing a certificate request message, using a supported standard, t
message can be encapsulated and invoked through the request_certificate
operation. This returns a reference to a RequestCertificateManager object.

• The client can then poll using either status or get_certificate_request_result

operations and check the status until a change occurs. If using the status oper
then the results will have to be obtained through an extra get result operation.
Results can then be processed.

• After processing, if more interaction is required (for example, proving possessio
the private key through a challenge response), then this is made through the
manager object using the continue_request_certificate operation until a success
(or failure) is reached.

1.4.4 Certificate Request Using A Callback

This example uses a call back to request issuance of a certificate from an author

• After constructing a request, using a supported standard, the message can be
encapsulated and invoked through the request_certificate_with_CB operation
passing in a reference to a client side CertificateCallback object. A reference to a
RequestCertificateManager object is also returned (as in the above example)
be used if more interaction is required for this request.

• The client can then wait (or perform other tasks) until the reply handler’s notify
operation is called by the target. Once notified the results can be processed.

• After processing, if more interaction is required (for example, proving possessio
the private key through a challenge response), then this is made through the p
object using the continue_request_certificate operation until a success (or
failure) is reached, again using the callback object for notification from the targ

1.5 General Repository Usage Overview

The PKI repository is defined as a service provided for the storage and retrieval o
certificates, CRL’s, and certificate pairs (collectively termed PKI values herein). Su
PKI values are bound within the repository to a PKI principal, or user of PKI servic
A PKI principal has some form of identifying name that distinguishes that principa
within the repository. For example, there may be multiple certificates bound to the
principal “Bob” within the repository. The PKI repository is designed to be conform
with respect to existing standards (specifically X.500 and LDAP), yet flexible enou
to allow implementation using other services (e.g., databases, flat files).

An entry for a principal in the repository is assumed to have a number of attribute
attached to it, where such attributes contain one or more values. Attributes are gi
name, which facilitates the efficient search of the repository for specific values of
February 2001 PKI Adopted Specification General Repository Usage Overview 1-7

1

ring

itory.

RL

as

ses.

tant
vices
r
 to

 data

these

y can
 rules

ing
 a
principal matching a particular attribute. For example, the CRL for the principal
“BobCA” may be stored under an attribute with a name of “crl;binary”. Thus, the
attribute with the name “crl;binary” is used when finding CRLs for “BobCA.”

In most cases, the repository implementor will have default attribute names for sto
and retrieving PKI values, and clients should not have to specify exactly which
attribute names are to be used when storing and retrieving PKI values in the repos
In the above example, the repository implementator may specify that the default
attribute to use for storing CRLs for a principal is the attribute with the name
“crl;binary”. In such cases, the client only needs to provide the principal and the C
to the repository. It is assumed that this will suffice for most clients and repository
implementations (in particular, those implementations that use LDAP). Provision h
been made for repository operations that allow the client to specify the particular
attribute under which a given PKI value may be bound to a principal, and for
determining the default attribute the repository implementor will use in specific ca

1.6 Design Rationale

The design describes interfaces that have generic functionality that can support
different underlying PKI standards. The wrapping of existing standards is an impor
issue with regard to this submission. There is also a reliance on other CORBA ser
for some functionality, primarily for security which is discussed in Section 5.6. Ou
goal was to consider functionality requirements to meet those of the RFP but also
meet those of Internet X.509 PKI Certificate Management Protocols IETF RFC 2510
and Internet X.509 PKI Online Certificate Status Protocol IETF RFC 2560.

1.6.1 Encoding to Representation Granularity

In this design a significant decision was made as to how best to represent certain
structures in CORBA. This is significant in this case because there are standards
already defined and implemented that must be considered. Integrating to handle
standards is a significant issue being addressed by this specification. As a result,
existing standards have different methods of encoding these structures so that the
be transported between entities. Encoding of these in the general case is encoding
of ASN.1. This means that these types of structures can be represented as
PKI::Opaque (i.e., a sequence of bytes).

The specification also allows for the possible future use of CORBA valuetype s. The
use of valuetype s for representing types including a specific CORBA certificate
would be useful. This specification allows for this by using an any type for the actual
representation. The following IDL snippets demonstrate the design for encapsulat
an outside encoded representation as well as a specific CORBA representation in
typesafe manner.

 struct RepresentationType {
 EncodingType encoding_type;
 Opaque data;
 };
1-8 PKI Adopted Specification February 2001

1

. The
ve

is

 for
een
ich

 the
a
cess
tion
ethod

been

e
y also
This

d
ar

rver
e

o

ge.

ence
quest
 struct Certificate {
 CertificateType certificate_type;
 any representation_type;
 };

This specification defines and recommends the use of the RepresentationType for
cases where it is logical that the representation is an encoded sequence of bytes
RepresentationType allows for the tagging of the specific encoding type. The abo
sample IDL shows the PKI::Certificate type where the actual representation is
implied to be that of the RepresentationType type, but it could be a valuetype for a
case where a specific CORBA representation was defined. Similar situations to th
example occur throughout the PKI module of the specification.

1.6.2 Asynchronous and Interactive Messaging

A significant design decision for this specification was in addressing the potential
asynchronous behavior combined with the potential for a level of interactivity betw
client and target entities. Each certification domain will have its own policy with wh
to manage certificate functionality. Depending on this policy it is possible for
significant delays to occur between an initial request and a returned result due to
possible need for an out of band exchange. For example, a CA may require that
phone call or some interaction via email is made as part of the authentication pro
adding a significant delay. If this is to be performed in a single synchronous invoca
the potential for lengthy delays may cause timeout problems. To address this, a m
of handling asynchronicity was added in the form of RequestManager and Callback
interfaces.

The potential for interactivity between an authority (CA or RA) and a client is also
possible. An example of this interactivity might be where a certificate request has
made using a public key, the authority requires assurance that the client is in
possession of the associated private key and policy dictates the use of a challeng
response. This will require an extra exchange of messages and that the client ma
be directly involved (by needing to supply a passphrase to unlock the private key).
interactivity for a request is addressed using the RequestManager interfaces. When a
request is initiated a RequestManager object reference is returned, and this is use
to perform further interaction, status checking, or to return results for that particul
request.

The interaction of client and authority entities in a PKI domain is typically a
combination of both an interactive dialogue, with state being maintained on the se
side, combined with asynchronous messaging behavior. This implies a server sid
model for asynchronous messaging. Since the CORBA Asynchronous Messaging
Service specification in principle provides a client side asynchronous model with n
changes to the server side it does not specifically suit this particular domain. Also
since the state and processing is on the server side it is logical for the callback
reference to be known by the server side authority for notification of a status chan
The RequestManager interface is created by the authority and then encapsulates
everything that relates to this particular request. The client entity receives a refer
to this interface after an initial request and continues to use it for as long as the re
is outstanding.
February 2001 PKI Adopted Specification Design Rationale 1-9

1

500

 PKI
ase. In
rm and
y
ge
l,
e
 in
t may
on in
ore

l

y for
ry if

 in

duce

e”
e

 to
d

is
 of

ached
r
1.6.3 Repository

The repository was primarily designed to allow for implementations that use the X.
or LDAP directory services, which is seen as being the predominant method of
repository implementation in existing services. However, it may be the case that a
repository is implemented using some other data storage service, such as a datab
either case, the data storage service generally has a schema that mandates the fo
the content of the data stored therein. As much as possible, the type of repositor
implementation, and the exact details of the schema that oversees the data stora
service, should be hidden from the client of the PKI repository service. In genera
when a client wishes to publish information in the repository, it is assumed that th
repository implementation has enough information to create the appropriate entry
the underlying data storage service according to the back-end schema. However, i
be the case that a repository implementation cannot gather the required informati
order to create an entry for a principal when a request is made by the client to st
information in the repository. For example, a database implementation of the PKI
repository may require that all entries contain a value for the “favorite milkshake”
field. In such cases, the repository implementation may ask for further information
from the client. The PKIPrincipal type in the IDL allows the client to pass additiona
attribute information as required.

 struct PKIPrincipal {
 PKIName name;
 PKIAttributeList attributes;
 };

In most cases, the client will pass a PKIPrincipal construct to the repository with no
attribute information. This is based on the assumption that there is already an entr
the given principal in the repository, or that the repository can create such an ent
this is the case. Clients should only pass attribute information within the Principal
type if the repository has requested such information due to schema problems.

The PKI repository design allows the client to obtain the schema of the repository
order to present any additional attribute information required by the repository
implementation. The Schema type is used to provide the client with two classes of
information: information on attributes (OID, name, description, syntax, etc.) and
information on syntaxes (OID, description). Given such a schema, a client may de
the necessary values for attributes that are missing or incorrectly supplied. For
example, if the repository notifies the client that a value for the “favorite milkshak
attribute is required, then the client may inspect the schema to lookup the attribut
definition for “favorite milkshake,” find the syntax definition to see how a “favorite
milkshake” value should be presented, and present that attribute information back
the repository within the PKIPrincipal structure. Each information class is represente
within the schema as a collection of attributes (name-to-value bindings). A name
defined to be a string, while a value can be any type (including another collection
attributes).

The attribute list provided within the schema for attribute definitions is assumed to
contain the name of each attribute used by the repository back-end. The value att
to each name is itself an attribute list, with names as defined in IETF RFC2252 fo
1-10 PKI Adopted Specification February 2001

1

es
y

t,
”).
 as
ide

ar

r
 and
ent
a

atus
 IDL
AttributeTypeDescriptions (“OID,” “NAME,” “DESCR,” “SYNTAX,” etc.). The value
attached to each name is a string whose value is interpreted as defined by IETF
RFC2252 (for example, the string attached to “OID” would represent an object
identifier value such as “1.2.3”). The choice of which AttributeTypeDescription nam
to provide within the attribute list is up to the repository implementor, although the
should provide at least the names “NAME,” “DESCR,” and “SYNTAX.”

The attribute list provided within the schema for syntax definitions is assumed to
contain names that represent the object identifier of each syntax used within the
attribute type definitions. The value attached to each name is itself an attribute lis
with names defined in IETF RFC2252 for SyntaxDescriptions (“OID” and “DESCR
The value attached to each of these names is a string whose value is interpreted
defined by IETF RFC2252. The choice of which SyntaxDescription names to prov
within the attribute list is up to the repository implementor, although they SHOULD
provide at least the name “DESCR.”

1.6.4 Provider Details

There are operations added to the interfaces that provide details about a particul
implementation. This design decision was based around the fact that different
underlying implementations may support different type formats and encodings. Fo
example a particular CA may only support ASN.1 DER encoded X.509 certificates
so a client entity will need to query the CA and determine this detail. This is pertin
in the case of a PKI, as a CA is often authoritative in a particular domain and so
client may not have the choice to be able to choose its own CA based solely on
supported types but be directed to use a particular one.

1.7 Proof of Concept

At the time of submission this design is currently being prototyped. The current st
of this prototype demonstrates that the IDL is usable and can be implemented. The
is known to be parsed by at least one IDL compiler.
February 2001 PKI Adopted Specification Proof of Concept 1-11

1

1-12 PKI Adopted Specification February 2001

PKI Interfaces 2
pe

t

s.
Contents

This chapter contains the following topics.

2.1 Introduction

This chapter describes the basic interfaces and some important constructs and ty
definitions that are relevant to the specification.

2.2 Module PKI

This module declares type definitions used by both the PKIAuthority and
PKIRepository modules. This section describes some of the particularly importan
constructs for clarity in understanding the interface operations in the rest of this
chapter. The complete IDL is included in Appendix A.

2.2.1 Opaque

 typedef sequence <octet> Opaque;

The Opaque type is used to represent encoded structures as a sequence of byte

Topic Page

“Introduction” 2-1

“Module PKI” 2-1

“Module PKIAuthority” 2-4

“Module PKIRepository” 2-17
February 2001 PKI Adopted Specification 2-1

2

e

2.2.2 RepresentationType

 struct RepresentationType {
 EncodingType encoding_type;
 Opaque data;
 };

This construct is defined to be able to represent encoded structures in a type saf
manner. This is recommended for implementations that are currently defined and
represent structures using ASN.1 encoding rules.

2.2.3 Certificate

 struct Certificate {
 CertificateType certificate_type;
 any representation_type;
 };

This is the construct defined to represent a certificate in CORBA.

Fields

2.2.4 CRL

This construct is the representation of a Certificate Revocation List.

 struct CRL {
 CRLType crl_type;
 any representation_type;
 };

certificate_type Describes the certificate type used, such as X509V1,
X509V2, X509V3, PGP, SPKI.

representation_type This is used to contain the actual representation of the
certificate. For existing PKI standards and
implementations this will be RepresentationType
defined in this module. A local value object type may
also be used here in representing a certificate in future
revisions of this document.
2-2 PKI Adopted Specification February 2001

2

s

Fields

2.2.5 CertificateRequest

The construct used to represent an encoded certificate request message.

 struct CertificateRequest {
 CertificateRequestType cert_request_type;
 any representation_type;
 };

Fields

2.2.6 CertificateStatusRequest

 struct CertificateStatusRequest {
 CertificateStatusRequestType type;
 any value;
 };

crl_type The type of CRL such as X509V1CRL, X509V2CRL,
X509V1ARL.

representation_type This is used to contain the actual representation of the
CRL. For existing PKI standards and implementations
this will be RepresentationType defined in this
module. A local value object type may also be used
here in representing a CRL in future revisions of this
document.

cert_request_type The type of certificate request message such as
PKCS10, PKIXCRMF, PKIXCMC.

representation_type This is used to contain the actual representation of the
certificate request message. For existing PKI standard
and implementations this will be
RepresentationType defined in this module. A
local value object type may also be used here in
representing a certificate request in future revisions of
this document.
February 2001 PKI Adopted Specification Module PKI 2-3

2

s

e
Fields

2.2.7 CertificateStatusResponse

 struct CertificateStatusResponse {
 CertificateStatusResponseType type;
 any value;
 };

Fields

2.3 Module PKIAuthority

2.3.1 Interface RegistrationAuthority

2.3.1.1 get_provider_info

Used to obtain a standard set of types supported by this authority.

AuthorityProviderInfo get_provider_info();

Return Value

AuthorityProviderInfo structure holding descriptions of supported types.

type The type of certificate status request such as OCSP.

value This is used to contain the actual representation of the certificate
status request message. For existing PKI standards and
implementations this will be RepresentationType defined in
this module. A local value object type may also be used here in
representing a certificate status request in future revisions of this
document.

type The type of certificate status response such as OCSP.

value This is used to contain the actual representation of the
certificate status response message. For existing PKI standard
and implementations this will be RepresentationType
defined in this module. A local value object type may also be
used here in representing a certificate status response in futur
revisions of this document.
2-4 PKI Adopted Specification February 2001

2

ple
e
2.3.1.2 get_authority_info

Used for passing general messages between client entity and authority. For exam
this may provide a method for a client to determine the authentication policy of th
authority.

PKI::PKIStatus get_authority_info(
 in PKI::AuthorityInfo in_authority_info,
 out PKI::AuthorityInfo out_authority_info
);

Parameters

Return Value

Status value

2.3.1.3 request_certificate

Called to make a request for a certificate from an authority such as a Certificate
Authority (CA) or Registration Authority (RA).

 RequestCertificateManager request_certificate
 (in PKI::CertificateRequest certificate_request);

Parameters

Return Value

RequestCertificateManager object reference to extract details regarding the
particular request, continue interaction, and obtain results.

2.3.1.4 request_revocation

Called to request revocation of a certificate from a (CA) or (RA).

RequestRevocationManager request_revocation
 (in PKI::CertRevRequest cert_rev_request);

in_authority_info The encoded message input to authority.

out_authority_info The encoded returned message from authority.

certificate_request PKI::CertificateRequest structure containing details
of the clients request.
February 2001 PKI Adopted Specification Module PKIAuthority 2-5

2

o

ils

level
nd
Parameters

Return Value

RequestRevocationManager object reference used to extract details pertaining t
the request continue interaction, and obtain results.

2.3.1.5 request_key_update

Called to request key update of a certificate from a (CA) or (RA).

 RequestKeyUpdateManager request_key_update
 (in PKI::CertificateRequest key_request);

Parameters

Return Value

RequestKeyUpdateManager object reference used to extract details pertaining to
the request, continue interaction, and obtain results.

2.3.1.6 request_key_recovery

RequestKeyRecoveryManager request_key_recovery
 (in PKI::CertificateRequest key_request);

Parameters

Return Value

RequestKeyRecoveryManager object reference that can be used to extract deta
pertaining to the request, continue interaction, and obtain results.

2.3.2 Interface RegistrationAuthority_CB

Interface defining operations that can be performed on a RegistrationAuthority_CB
object. This interface is used where the implementation provides conformance to
2, as described in Appendix B, Conformance Issues (i.e., supports both polling a
callbacks). This interface inherits operations from RegistrationAuthority .

cert_rev_request PKI::CertRevRequest structure containing details of
the client’s request for certificate revocation.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key update.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key recovery.
2-6 PKI Adopted Specification February 2001

2

o
2.3.2.1 request_certificate_with_CB

Called to make a request for a certificate from an authority such as a Certificate
Authority (CA) or Registration Authority (RA) using a callback object.

RequestCertificateManager request_certificate_with_CB
 (in CertificateCallback callback,
 in PKI::CertificateRequest certificate_request) ;

Parameters

Return Value

RequestCertificateManager object reference to extract details regarding the
particular request, continue interaction, and obtain results.

2.3.2.2 request_revocation_with_CB

Called to request revocation of a certificate from a (CA) or (RA) using a callback
object.

 RequestRevocationManager request_revocation_with_CB
 (in RevocationCallback callback,
 in PKI::CertRevRequest cert_rev_request) ;

Parameters

Return Value

RequestRevocationManager object reference used to extract details pertaining t
the request and obtain results.

callback The client’s callback CertificateCallback object used
by the target object to notify the client of a change in
status of the request.

certificate_request PKI::CertificateRequest structure containing details
of the client’s request.

callback The client’s callback RevocationCallback object that
is used by the target object to notify the client of a
change in status of the request.

cert_rev_request PKI::CertRevRequest structure containing details of
the client’s request.
February 2001 PKI Adopted Specification Module PKIAuthority 2-7

2

key

to
2.3.2.3 request_key_update_with_CB

Called to request key update of a certificate from a (CA) or (RA) using a callback
object.

 RequestKeyUpdateManager request_key_update_with_CB
 (in KeyUpdateCallback callback,
 in PKI::CertificateRequest key_request);

Parameters

Return Value

RequestKeyUpdateManager object reference used to extract details pertaining to
the request, continue interaction, and obtain results.

2.3.2.4 request_key_recovery_with_CB

Called to request key recovery from a (CA) or (RA) where the authority provides
archive using a callback object.

RequestKeyRecoveryManager request_key_recovery_with_CB
 (in KeyRecoveryCallback callback,
 in PKI::CertificateRequest key_request) ;

Parameters

Return Value

RequestKeyRecoveryManager object reference used to extract details pertaining
the request and obtain results.

callback The client’s callback KeyUpdateCallback object used
by target object to notify the client of a change in status
of the request.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key update.

callback The client’s callback KeyRecoveryCallback object
used by target object to notify the client of a change in
status of the request and return results.

key_request PKI::CertificateRequest structure containing details
of the client’s request for key recovery.
2-8 PKI Adopted Specification February 2001

2

etc.
2.3.3 Interface CertificateAuthority

Interface defining operations that can be performed on a CertificateAuthority object.
There is IDL inheritance of the RegistrationAuthority interface.

2.3.3.1 get_ca_certificate

Returns the certificates of the CertificateAuthority .

PKI::PKIStatus get_ca_certificate(
 out PKI::CertificateList certificate_list);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.3.2 get_CRL

Return the current CRL of the CertificateAuthority .

 PKI::PKIStatus get_crl (out PKI::CRL crl);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.3.3 get_certificate_status_responder

Return a reference to certificate status responder.

CertificateStatusResponder get_certificate_status_responder();

Return Value

Reference to CertificateStatusResponder object for the CA.

2.3.3.4 get_repository

Return a reference to the repository that the CA uses to store certificates, CRLs,

certificate_list List of certificates for CA.

crl The CRL published by the CertificateAuthority .
February 2001 PKI Adopted Specification Module PKIAuthority 2-9

2

level
nd

bject
ults

is
PKIRepository::Repository get_repository();

Return Value

PKIRepository::Repository object reference.

2.3.4 Interface CertificateAuthority_CB

Interface defining operations that can be performed on a CertificateAuthority_CB
object. This interface is used where the implementation provides conformance to
2, as described in Appendix B, Conformance Issues (i.e., supports both polling a
callbacks). This interface inherits operations from both RegistrationAuthority_CB
and CertificateAuthority , and adds no new operations.

2.3.5 Interface RequestManager

Generic base interface for a manager object. A manager object is a target side o
that is used by the client to extract details, continue interaction, and to obtain res
for a particular request.

2.3.5.1 status

A read only attribute representing the status of the transaction associated with th
poller object.

readonly attribute PKI::PKIStatus status;

2.3.5.2 transaction_ID

A read only attribute representing an identifier for a particular transaction.

readonly attribute long transaction_ID;

2.3.5.3 confirm_content

Operation to acknowledge negotiation is complete.

void confirm_content(in PKI::ConfirmData confirm_data);
2-10 PKI Adopted Specification February 2001

2

es
is for
Parameters

2.3.6 Interface RequestCertificateManager

Interface to extract details, continue interaction and extract results pertaining to a
particular certificate request. Inherits operations and attributes from
RequestManager interface.

2.3.6.1 continue_request_certificate

Used for continuing a certificate request that has already been initiated but requir
more interaction to complete the request. An example of the use of this operation
Proof Of Possession (POP) of the private key.

void continue_request_certificate
 (in PKI::RequestData request_data,
 in PKI::CertificateList certificates);

Parameters

2.3.6.2 get_certificate_request_result

Obtains final or interim results of a particular request.

PKI::PKIStatus get_certificate_request_result
 (out PKI::CertificateList certificates,
 out PKI::ResponseData response_data);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

confirm_data Message to confirm content is correct and received.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

certificates List of certificates, possibly partially formed.

certificates A list of certificates.

response_data PKI::ResponseData structure containing details of the
request thus far.
February 2001 PKI Adopted Specification Module PKIAuthority 2-11

2

res

2.3.7 Interface RequestRevocationManager

Interface to extract details, continue interaction and extract results pertaining to a
particular revocation request. Inherits operations and attributes from
RequestManager interface.

2.3.7.1 continue_request_revocation

Used for continuing a revocation request that has already been initiated but requi
more interaction to complete the request.

 void continue_request_revocation
 (in PKI::RequestData request_data);

Parameters

2.3.7.2 get_request_revocation_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_revocation_result
 (out PKI::CertRevResponse cert_rev_response,
 out PKI::ResponseData response_data);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.8 Interface RequestKeyUpdateManager

Interface to extract details, continue interaction, and extract results pertaining to a
particular key update request. Inherits attributes and operations from
RequestManager interface.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

cert_rev_response PKI::CertRevResponse structure containing details
of the response of the the revocation request.

response_data PKI::ResponseData structure containing details of
the request thus far for continuing the request.
2-12 PKI Adopted Specification February 2001

2

uires

uires
2.3.8.1 continue_key_update

Used for continuing a key recovery request that has already been initiated but req
more interaction to complete the request.

void continue_key_update
 (in PKI::RequestData request_data,
 in PKI::Certificate certificate);

Parameters

2.3.8.2 get_request_key_update_result

Obtains final or interim results of a particular request.

 PKI::PKIStatus get_request_key_update_result
 (out PKI::Certificate certificate,
 out PKI::ResponseData response_data) ;

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.9 Interface RequestKeyRecoveryManager

Interface to extract details, continue interaction and extract results pertaining to a
particular key recovery request. Inherits attributes and operations from
RequestManager interface.

2.3.9.1 continue_key_recovery

Used for continuing a key recovery request that has already been initiated but req
more interaction to complete the request.

void continue_key_recovery
 (in PKI::RequestData request_data);

request_data PKI::RequestData structure containing details for
the continuation of the initial request.

certificate PKI::Certificate

certificate The new certificate after key update.

response_data PKI::ResponseData structure containing details of
the request thus far.
February 2001 PKI Adopted Specification Module PKIAuthority 2-13

2

Parameters

2.3.9.2 get_request_key_recovery_result

Obtains final or interim results of a particular request.

PKI::PKIStatus get_request_key_recovery_result
 (out PKI::ResponseData response_data);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

2.3.10 Interface CertificateCallback

 Callback interface implemented at client side for being notified of a result.

2.3.10.1 notify_result

void notify_result(
 in RequestCertificateManager req_cert_manager,
 in PKI::PKIStatus status,
 in PKI::CertificateList certificates,
 in PKI::ResponseData response_data) ;

Parameters

2.3.11 Interface RevocationCallback

Callback interface implemented at client side for being notified of a result.

request_data PKI::RequestData structure containing details for the
continuation of the initial request.

response_data PKI::ResponseData structure containing details of the
request thus far.

req_cert_manager An object reference to a RequestCertificateManager
object that maintains details of a certificate request.

status PKI::Status indicating current status of request.

certificates A list of certificates.

response_data PKI::ResponseData structure that holds details of the
server side response for the request.
2-14 PKI Adopted Specification February 2001

2

erim

erim
2.3.11.1 notify_result

Used by the server side to notify the reply handler that there is a result, either int
or final.

void notify_result(in RequestRevocationManager req_rev_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data) ;

Parameters

2.3.12 Interface KeyUpdateCallback

Callback interface implemented at client side for being notified of a result.

2.3.12.1 notify_result

Used by the server side to notify the reply handler that there is a result, either int
or final.

void notify_result(in RequestKeyUpdateManager req_key_update_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data) ;

Parameters

2.3.13 Interface KeyRecoveryCallback

Callback interface implemented at client side for being notified of a result.

req_rev_manager An object reference to a
RequestRevocationManager object that maintains
details of a request revocation request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details of the
server side response for the request.

req_key_update_manager An object reference to a
RequestKeyUpdateManager object that
maintains details of a key update request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details
of the server side response for the request.
February 2001 PKI Adopted Specification Module PKIAuthority 2-15

2

erim

tus
2.3.13.1 notify_result

Used by the server side to notify the reply handler that there is a result, either int
or final.

void notify_result
 (in RequestKeyRecoveryManage req_key_recover_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data) ;

Parameters

2.3.14 Interface CertificateStatusResponder

Interface for an online certificate status responder.

2.3.14.1 request_certificate_status

Obtains details for the request of a certificate status from an online certificate sta
server.

PKI::PKIStatus request_certificate_status(
 in PKI::CertificateStatusRequest request,
 out PKI::CertificateStatusResponse response);

Parameters

Return Value

PKI::PKIStatus indicating the status of the request.

req_key_recover_manager An object reference to a
RequestKeyRecoveryManager object that
maintains details of a key recovery request.

status PKI::Status indicating current status of request.

response_data PKI::ResponseData structure that holds details
of the server side response for the request.

request PKI::CertificateStatusRequest structure containing details
of the request.

response PKI::CertificateStatusResponse structure containing
details of the return response.
2-16 PKI Adopted Specification February 2001

2

en

2.4 Module PKIRepository

2.4.1 Interface Repository

Interface for a repository for the storage and retrieval of certificates and CRLs.

2.4.1.1 get_provider_info

Get the provider info for this PKI repository.

RepositoryProviderInfo get_provider_info();

Return Value

RepositoryInfo construct containing general details relating the provider
implemented repository.

2.4.1.2 get_schema

Called to retrieve details of the schema used for the particular repository.

Schema get_schema();

Return Value

Schema construct containing lists of attribute and syntax definitions.

2.4.1.3 publish_certificate

Publish a certificate for the given principal, under the attribute specified by the giv
attribute name.

void publish_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name);

Parameters

principal The principal to which the certificate is to be bound.

certificate The certificate to be published.

attr_name The name of the attribute under which this certificate is to be
stored in the repository entry of the principal.
February 2001 PKI Adopted Specification Module PKIRepository 2-17

2

d by
i.e.,
ues),

te
2.4.1.4 get_certificate

Get the certificate(s) associated with a given principal, under the attribute specifie
the given attribute name. If there are no certificates bound to the given principal (
the given attribute does not exist, or that attribute exists but has no certificate val
then a list of length 0 is returned.

PKI::CertificateList get_certificate(
 in PKIPrincipal principal, in string attr_name);

Parameters

Return Value

The (possibly empty) list of certificates bound to the entry in the repository for the
given principal, where such certificates (if any) are stored as values of the given
attribute.

2.4.1.5 delete_certificate

Deletes the given certificate stored against the given principal under the attribute
specified by the given name. How the given certificate is matched against stored
certificates is implementation-dependent.

void delete_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name);

Parameters

2.4.1.6 publish_crl

Publish the given certificate revocation list for the given principal under the attribu
specified by the given name.

void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
 in string attr_name);

principle The principal whose certificates are to be returned.

attr_name The name of the attribute containing the certificate(s) in the
repository entry of the given principal.

principal The principal whose certificate is to be deleted.

certificate The certificate to be deleted.

attr_name The name of the attribute containing the certificate in the
repository entry of the given principal.
2-18 PKI Adopted Specification February 2001

2

ified

 by

Parameters

2.4.1.7 get_crl

Get the CRL associated with a given principal, under the attribute specified by the
given name.

PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name);

Parameters

Return Value

PKI::CRL structure containing the CRL.

2.4.1.8 delete_crl

Deletes the given CRL stored against the given principal under the attribute spec
by the given name. How the given CRL is matched against stored CRL is
implementation-dependent.

void delete_crl(in PKIPrincipal principal,
 in PKI::CRL crl,in string attr_name) ;

Parameters

2.4.1.9 publish_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified
the given name.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published.

attr_name The name of the attribute under which this crl is to be stored in
the repository entry of the principal.

principal The principal to which the CRL is bound.

attr_name The name of the attribute under which this crl is to be stored in
the repository entry of the principal.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted.

attr_name The name of the attribute under which this crl is stored in the
repository entry of the principal.
February 2001 PKI Adopted Specification Module PKIRepository 2-19

2

bute

void publish_certificate_pair(
 in PKIPrincipal principal, in PKI::CertificatePair certPair,
 in string attr_name);

Parameters

2.4.1.10 get_certificate_pair

Get the certificate pair(s) associated with a given principal, under the attribute
specified by the given name. If there are no certificate pair(s) bound to the given
principal (i.e., the given attribute does not exist, or that attribute exists but has no
certificate pair values), then a list of length 0 is returned.

PKI::CertificatePairList get_certificate_pair(
 in PKIPrincipal principal, in string attr_name);

Parameters

Return Value

PKI::CertificatePairList containing the requested certificate pairs.

2.4.1.11 delete_certificate_pair

Deletes the given certificate pair stored against the given principal under the attri
specified by the given name. How the given certificate is matched against stored
certificate pairs is provider implementation-dependent.

void delete_certificate_pair(
 in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair,
 in string attr_name);

principal The principal to which the certificate pair is bound.

certPair The certificate pair to be published.

attr_name The name of the attribute under which this certificate pair is to
be stored in the repository entry of the principal.

principal The principal to which the certificate pair is bound.

attr_name The name of the attribute under which this certificate pair is
stored in the repository entry of the principal.
2-20 PKI Adopted Specification February 2001

2

he

d by
Parameters

2.4.1.12 publish_user_certificate

Publish a given certificate for the given principal under the attribute specified by t
repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

void publish_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate) ;

Parameters

2.4.1.13 get_user_certificate

Get the certificate(s) for the given principal under the attribute specified by the
repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

PKI::CertificateList get_user_certificate(in PKIPrincipal principal);

Parameters

Return Value

PKI::CertificateList containing the list of requested user certificates.

2.4.1.14 delete_user_certificate

Delete the given certificate bound to the given principal under the attribute specifie
the repository implementator as the default attribute for storing certificates to be
interpreted as user certificates.

void delete_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate) ;

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be deleted.

attr_name The name of the attribute under which this certificate pair is
stored in the repository entry of the principal.

principal The principal to which the certificate is bound.

certificate The user certificate to be published.

principal The principal to which the certificate is bound.
February 2001 PKI Adopted Specification Module PKIRepository 2-21

2

he

the
eted

d by
Parameters

2.4.1.15 publish_ca_certificate

Publish a given certificate for the given principal under the attribute specified by t
repository implementator as the default attribute for storing certificates to be
interpreted as CA certificates.

void publish_ca_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate);

Parameters

2.4.1.16 get_ca_certificates

Get the certificate(s) bound to the given principal under the attribute specified by
repository implementor as the default attribute for storing certificates to be interpr
as CA certificates.

PKI::CertificateList get_ca_certificates(in PKIPrincipal principal);

Parameters

Return Value

PKI::CertificateList containing requested CA certificates.

2.4.1.17 delete_ca_certificate

Delete the given certificate bound to the given principal under the attribute specifie
the repository implementator as the default attribute for storing certificates to be
interpreted as CA certificates.

void delete_ca_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate) ;

principal The principal to which the certificate is bound.

certificate The user certificate to be deleted.

principal The principal to which the CA certificate is bound.

certificate The certificate to be published.

principal The principal to which the CA certificates are bound.
2-22 PKI Adopted Specification February 2001

2

 by
n
Parameters

2.4.1.18 publish_default_crl

Publish the given CRL for the given principal under the attribute specified by the
repository implementor as the default attribute for storing CRLs.

void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl);

Parameters

2.4.1.19 get_default_crl

Get the CRL bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing CRLs.

PKI::CRL get_default_crl(in PKIPrincipal principal);

Parameters

Return Value

The PKI::CRL containing the requested CRL.

2.4.1.20 delete_default_crl

Delete the specified CRL bound to the given principal under the attribute specified
the repository implementor as the default attribute for storing CRLs. How the give
CRL is matched against stored CRLs is provider implementation-dependent.

void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl);

principal The principal to which the CA certificate is bound.

certificate The certificate to be deleted.

principal The principal to which the CRL is bound.

crl The certificate revocation list to be published.

principal The principal to which the CRL is bound.
February 2001 PKI Adopted Specification Module PKIRepository 2-23

2

 by

 by

e
te
Parameters

2.4.1.21 publish_default_certificate_pair

Publish the given certificate pair for the given principal under the attribute specified
the repository implementor as the default attribute for storing certificate pairs.

void publish_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair) ;

Parameters

2.4.1.22 get_default_certificate_pair

Get the certificate pair(s) bound to the given principal under the attribute specified
the repository implementor as the default attribute for storing certificate pairs.

PKI::CertificatePairList get_default_certificate_pair
 (in PKIPrincipal principal);

Parameters

Return Value

PKI::CertificatePairList containing requested certificate pairs.

2.4.1.23 delete_default_certificate_pair

Delete the specified certificate pair bound to the given principal under the attribut
specified by the repository implementor as the default attribute for storing certifica
pairs. How the given certificate pair is matched against stored certificate pairs is
provider implementation-dependent.

void delete_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair) ;

principal The principal to which the CRL is bound.

crl The certificate revocation list to be deleted.

principal The principal to which the certificate pair is bound.

certificate_pair The certificate pair to be published.

principal The principal to which the certificate pairs are bound.
2-24 PKI Adopted Specification February 2001

2

 the

e

Ls.
Parameters

2.4.1.24 publish_delta_crl

Publish the given delta CRL for the given principal under the attribute specified by
repository implementor as the default attribute for storing delta CRLs

void publish_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl);

Parameters

2.4.1.25 get_delta_crl

Get the delta CRL bound to the given principal under the attribute specified by th
repository implementor as the default attribute for storing delta CRLs.

PKI::CRL get_delta_crl(in PKIPrincipal principal);

Parameters

Return Value

PKI::CRL containing the requested delta CRL.

2.4.1.26 delete_delta_crl

Delete the specified delta CRL bound to the given principal under the attribute
specified by the repository implementor as the default attribute for storing delta CR
How the given CRL is matched against stored CRLs is provider implementation-
dependent.

void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl);

principal The principal to which the certificate pairs are bound.

certificate_pair The certificate pair to be deleted.

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be published.

principal The principal to which the delta CRL is bound.
February 2001 PKI Adopted Specification Module PKIRepository 2-25

2

 by
n
Parameters

2.4.1.27 publish_arl

Publish the given ARL for the given principal under the attribute specified by the
repository implementor as the default attribute for storing ARLs.

void publish_arl(in PKIPrincipal principal, in PKI::CRL arl);

Parameters

2.4.1.28 get_arl

Get the ARL bound to the given principal under the attribute specified by the
repository implementor as the default attribute for storing ARLs.

PKI::CRL get_arl(in PKIPrincipal principal);

Parameters

Return Value

PKI::CRL containing the requested ARL.

2.4.1.29 delete_arl

Delete the specified ARL bound to the given principal under the attribute specified
the repository implementor as the default attribute for storing ARLs. How the give
ARL is matched against stored ARLs is provider implementation-dependent.

void delete_arl(in PKIPrincipal principal, in PKI::CRL arl);

Parameters

principal The principal to which the delta CRL is bound.

delta_crl The delta CRL to be deleted.

principal The principal to which the ARL is bound.

arl The ARL to be published.

principal The principal to which the ARL is bound.

principal The principal to which the ARL is bound.

arl The ARL to be deleted.
2-26 PKI Adopted Specification February 2001

OMG IDL A
A.1 PKI

#ifndef __PKI_IDL
#define __PKI_IDL

#pragma prefix “omg.org”

module PKI {

 typedef sequence <octet> Opaque;

 //Certificate Types
 typedef unsigned long CertificateType;
 const CertificateType UnknownCertificate = 0;
 const CertificateType X509v1Certificate = 1;
 const CertificateType X509v2Certificate = 2;
 const CertificateType X509v3Certificate = 3;
 const CertificateType PGPCertificate = 4;
 const CertificateType SPKICertificate = 5;
 const CertificateType X509v1AttributeCertificate = 6;
 const CertificateType CustomCertificate = 0x8000;

 typedef sequence <CertificateType> CertificateTypeList;

 //Certificate Encoding Types
 typedef unsigned long EncodingType;
 const EncodingType UnknownEncoding = 0;
 const EncodingType DEREncoding = 1;
 const EncodingType BEREncoding = 2;
 const EncodingType Base64Encoding = 3;
 const EncodingType SExprEncoding = 4;
 const EncodingType CustomEncoding = 0x8000;
February 2001 PKI Adopted Specification A-1

A

 // A representation type to deal with current existing PKI implementations
 // and standards.

 struct RepresentationType {
 EncodingType encoding_type;
 Opaque data;
 };

 typedef unsigned long AuthorityInfoType;
 const AuthorityInfoType UnkownMessage = 0;
 const AuthorityInfoType PKIXCMPGeneralMessage = 1;
 const AuthorityInfoType CustomMessage = 0x8000;

 struct AuthorityInfo {
 AuthorityInfoType authority_info_type;
 RepresentationType representation_type;
 };

 //
 // Certificate information - used in both the Certificate definition
 // and the PKIAuthority::RegistrationAuthorityProviderInfo definition.
 //
 struct CertificateInfo {
 CertificateType certificate_type;
 EncodingType encoding_type;
 };
 typedef sequence<CertificateInfo> CertificateInfoList;

 //Certificate
 struct Certificate {
 CertificateType certificate_type;
 any representation_type;
 };

 typedef sequence <Certificate> CertificateList;

 //CRL Types
 typedef unsigned long CRLType;
 const CRLType UnknownCRL = 0;
 const CRLType X509v1CRL = 1;
 const CRLType X509v2CRL = 2;
 const CRLType X509V1ARL = 3;
 const CRLType CustomCRL = 0x8000;

 typedef sequence <CRLType> CRLTypeList;

 // Information about a CRL
 struct CRLInfo {
A-2 PKI Adopted Specification February 2001

A

 CRLType crl_type;
 EncodingType encoding_type;
 };
 typedef sequence<CRLInfo> CRLInfoList;

 //CRL
 struct CRL {
 CRLType crl_type;
 any representation_type;
 };

 //Certificate Request Type
 typedef unsigned long CertificateRequestType;
 const CertificateRequestType UnknownCertificateRequest = 0;
 const CertificateRequestType PKCS10CertificateRequest = 1;
 const CertificateRequestType PKIXCRMFCertificateRequest = 2;
 const CertificateRequestType PKIXCMCCertificateRequest = 3;
 const CertificateRequestType CustomCertificateRequest = 0x8000;

 typedef sequence <CertificateRequestType> CertificateRequestTypeList;

 // Information about a certificate request
 struct CertificateRequestInfo {
 CertificateRequestType cert_request_type;
 EncodingType encoding_type;
 };
 typedef sequence<CertificateRequestInfo> CertificateRequestInfoList;

 //Certificate Request
 struct CertificateRequest {
 CertificateRequestType cert_request_type;
 any representation_type;
 };

 struct CertificatePair {
 Certificate forward;
 Certificate reverse;
 };
 typedef sequence<CertificatePair> CertificatePairList;

 //ContinueType
 typedef unsigned long ContinueType;
 const ContinueType UnknownContinue = 0;
 const ContinueType PKIXCMPContinue = 1;
 const ContinueType PKIXCMCContinue = 2;
 const ContinueType PKIXCMPConfirm = 3;
 const ContinueType PKIXCMCConfirm = 4;
 const ContinueType CustomContinue = 0x8000;
February 2001 PKI Adopted Specification A-3

A

 //Continue Structure
 struct Continue {
 ContinueType continue_type;
 any representation_type;
 };

 //ContinueData
 // Request indicates from client to target message exchange
 typedef Continue RequestData;

 //ContinueResponse
 // Response indicates from target to client message exchange
 typedef Continue ResponseData;

 // ConfirmData
 typedef Continue ConfirmData;

 //Certificate Revocation Type
 typedef unsigned long CertRevocationType;
 const CertRevocationType UnknownCertRevocation = 0;
 const CertRevocationType PKIXCMPCertRevocation = 1;
 const CertRevocationType PKIXCMCCertRevocation = 2;
 const CertRevocationType CustomCertRevocation = 0x8000;

 // Information about Certificate revocation
 struct CertificateRevocationInfo {
 CertRevocationType cert_rev_type;
 EncodingType encoding_type;
 };
 typedef sequence <CertificateRevocationInfo>
CertificateRevocationInfoList;

 //Certificate Revocation
 struct CertRevocation {
 CertRevocationType cert_rev_type;
 any representation_type;
 };

 //Certificate Revocation Respone
 typedef CertRevocation CertRevResponse;
 typedef CertRevocation CertRevRequest;

 //Key Recovery Type
 typedef unsigned long KeyRecoveryType;
 const KeyRecoveryType UnkownKeyRecovery = 0;
 const KeyRecoveryType PKIXCMPKeyRecovery = 1;
 const KeyRecoveryType PKIXCMCKeyRecovery = 2;
 const KeyRecoveryType CustomKeyRecovery = 0x8000;

 // Information about key recovery
 struct KeyRecoveryInfo {
A-4 PKI Adopted Specification February 2001

A

 KeyRecoveryType key_rec_type;
 EncodingType encoding_type;
 };
 typedef sequence <KeyRecoveryInfo> KeyRecoveryInfoList;

 //Key Recovery Response
 struct KeyRecResponse {
 KeyRecoveryType key_recovery;
 any representation_type;
 };

 //OCSP
 //Certificate status request type
 typedef unsigned long CertificateStatusRequestType;
 const CertificateStatusRequestType
 UnknownCertificateStatusRequestType = 0;
 const CertificateStatusRequestType
 OCSPCertificateStatusRequest = 1;
 const CertificateStatusRequestType
 CustomCertificateStatusRequest = 0x8000;

 //Type for certificate status requests
 struct CertificateStatusRequest {
 CertificateStatusRequestType type;
 any value;
 };

 //Certificate status response type
 typedef unsigned long CertificateStatusResponseType;
 const CertificateStatusResponseType
 UnknownCertificateStatusResponseType = 0;
 const CertificateStatusResponseType
 OCSPCertificateStatusResponse = 1;
 const CertificateStatusResponseType
 CustomCertificateStatusResponse = 0x8000;

 //Type for certificate status responses
 struct CertificateStatusResponse {
 CertificateStatusResponseType type;
 any value;
 };

 typedef unsigned long PKIStatus;
 const PKIStatus PKISuccess = 0;
 const PKIStatus PKISuccessWithWarning = 1;
 const PKIStatus PKIContinueNeeded = 2;
 const PKIStatus PKIFailed = 3;
 const PKIStatus PKIPending = 4;
 const PKIStatus PKISuccessAfterConfirm = 5;
};
#endif
February 2001 PKI Adopted Specification A-5

A

A.2 PKIAuthority

#ifndef __PKIAUTHORITY_IDL
#define __PKIAUTHORITY_IDL

#include <PKI.idl>
#include <PKIRepository.idl>

#pragma prefix “omg.org”

module PKIAuthority {

 // Forward declaration...
 interface CertificateStatusResponder;

 interface RequestManager;
 interface RequestCertificateManager;
 interface RequestRevocationManager;
 interface RequestKeyUpdateManager;
 interface RequestKeyRecoveryManager;

 interface CertificateCallback;
 interface RevocationCallback;
 interface KeyUpdateCallback;
 interface KeyRecoveryCallback;

 struct AuthorityProviderInfo {
 string standardVersion;
 string standardDescription;
 string productVersion;
 string productDescription;
 string productVendor;
 PKI::CertificateInfoList supportedCertificates;
 PKI::CRLInfoList supportedCRLs;
 PKI::CertificateRequestInfoList supportedCertRequestTypes;
 PKI::CertificateRevocationInfo supportedCertRevocationTypes;
 PKI::KeyRecoveryInfoList supportedKeyRecoveryTypes;
 boolean callbackSupport;
 };

 exception UnsupportedTypeException {
 string description;
 };

 exception UnsupportedEncodingException {
 string description;
 };

 exception MalformedDataException {
A-6 PKI Adopted Specification February 2001

A

 string description;
 };

 exception UnexpectedContinueException {
 string description;
 };

 exception InvalidCallbackException {
 string description;
 };

 interface RegistrationAuthority {

 AuthorityProviderInfo get_provider_info();

 PKI::PKIStatus get_authority_info(
 in PKI::AuthorityInfo in_authority_info,
 out PKI::AuthorityInfo out_authority_info
)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestCertificateManager request_certificate
 (in PKI::CertificateRequest certificate_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestRevocationManager request_revocation
 (in PKI::CertRevRequest cert_rev_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyUpdateManager request_key_update
 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyRecoveryManager request_key_recovery
 (in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RegistrationAuthority_CB : RegistrationAuthority
 {

 RequestCertificateManager request_certificate_with_CB
 (in CertificateCallback callback,
 in PKI::CertificateRequest certificate_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
February 2001 PKI Adopted Specification A-7

A

 RequestRevocationManager request_revocation_with_CB
 (in RevocationCallback callback,
 in PKI::CertRevRequest cert_rev_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyUpdateManager request_key_update_with_CB
 (in KeyUpdateCallback callback,
 in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 RequestKeyRecoveryManager request_key_recovery_with_CB
 (in KeyRecoveryCallback callback,
 in PKI::CertificateRequest key_request)
 raises(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateAuthority : RegistrationAuthority {

 PKI::PKIStatus get_ca_certificate(
 out PKI::CertificateList certificate_list)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_crl (out PKI::CRL crl);

CertificateStatusResponder get_certificate_status_responder();

 PKIRepository::Repository get_repository()
 raises(PKIRepository::RepositoryError);
 };

 interface CertificateAuthority_CB : RegistrationAuthority_CB,
 CertificateAuthority {
 };

 interface RequestManager {

 readonly attribute PKI::PKIStatus status;

 readonly attribute long transaction_ID;

 void confirm_content(in PKI::ConfirmData confirm_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestCertificateManager : RequestManager {
A-8 PKI Adopted Specification February 2001

A

 void continue_request_certificate
 (in PKI::RequestData request_data,
 in PKI::CertificateList certificates)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_certificate_request_result
 (out PKI::CertificateList certificates,
 out PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestRevocationManager : RequestManager {

 void continue_request_revocation
 (in PKI::RequestData request_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_request_revocation_result
 (out PKI::CertRevResponse cert_rev_response,
 out PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestKeyUpdateManager : RequestManager {

 void continue_key_update
 (in PKI::RequestData request_data,
 in PKI::Certificate certificate)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 PKI::PKIStatus get_request_key_update_result
 (out PKI::Certificate certificate,
 out PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface RequestKeyRecoveryManager : RequestManager {

 void continue_key_recovery
 (in PKI::RequestData request_data)
 raises
(UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
February 2001 PKI Adopted Specification A-9

A

 PKI::PKIStatus get_request_key_recovery_result
 (out PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateCallback {

 void notify_result(in RequestCertificateManager req_cert_manager,
 in PKI::PKIStatus status,
 in PKI::CertificateList certificates,
 in PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);

 };

 interface RevocationCallback {

 void notify_result(in RequestRevocationManager req_rev_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface KeyUpdateCallback {

 void notify_result(in RequestKeyUpdateManager
req_key_update_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface KeyRecoveryCallback {

 void notify_result(in RequestKeyRecoveryManager
req_key_recover_manager,
 in PKI::PKIStatus status,
 in PKI::ResponseData response_data)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };

 interface CertificateStatusResponder {

PKI::PKIStatus request_certificate_status(
 in PKI::CertificateStatusRequest request,
A-10 PKI Adopted Specification February 2001

A

 out PKI::CertificateStatusResponse response)
 raises (UnsupportedTypeException,UnsupportedEncodingException,
 MalformedDataException);
 };
};
#endif

A.3 PKIRepository

#define __PKIREPOSITORY_IDL

#include <PKI.idl>

#pragma prefix “omg.org”

module PKIRepository{

 typedef string PKIName;
 typedef sequence <PKIName> PKINameList;

 struct PKIAttribute {
 string name;
 any value;
 };
 typedef sequence <PKIAttribute> PKIAttributeList;

 struct PKIPrincipal {
 PKIName name;
 PKIAttributeList attributes;
 };

 struct Schema {
 PKIAttributeList attribute_defs;
 PKIAttributeList syntax_defs;
 };

 struct RepositoryProviderInfo {
 string standardDescription;
 string standardVersion;
 string productDescription;
 string productVersion;
 string productVendor;
 PKI::CertificateInfoList supportedCertificates;
 PKI::CRLInfoList supportedCRLs;
 PKI::CertificateInfoList supportedCrossCertificates;
 string user_attribute_name;
 string ca_attribute_name;
 string crl_attribute_name;
 string certificatePair_attribute_name;
 string deltaCRL_attribute_name;
February 2001 PKI Adopted Specification A-11

A

 string arl_attribute_name;
 };

 exception UnkownPrincipal {
 PKIPrincipal principal;
 };

 enum PrincipalAttributeErrorReason {
 MissingPKIAttributes,
 InvalidPKIAttributes
 };

 exception PrincipalAttributeError {
 PrincipalAttributeErrorReason reason;
 PKIPrincipal principal;
 PKINameList attribute_names;
 };

 exception RepositoryError {
 string reason;
 };

 interface Repository {

 RepositoryProviderInfo get_provider_info();

 Schema get_schema();

 void publish_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)
 raises (UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CertificateList get_certificate(
 in PKIPrincipal principal, in string attr_name)
 raises (UnkownPrincipal,RepositoryError);

 void delete_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate, in string attr_name)
 raises(UnkownPrincipal,RepositoryError);

 void publish_crl(in PKIPrincipal principal, in PKI::CRL crl,
 in string attr_name)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CRL get_crl(in PKIPrincipal principal, in string attr_name)
 raises(UnkownPrincipal,RepositoryError);

 void delete_crl(in PKIPrincipal principal,
 in PKI::CRL crl,in string attr_name)
A-12 PKI Adopted Specification February 2001

A

 raises(UnkownPrincipal,RepositoryError);

 void publish_certificate_pair(
 in PKIPrincipal principal, in PKI::CertificatePair certPair,
 in string attr_name)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CertificatePairList get_certificate_pair(
 in PKIPrincipal principal, in string attr_name)
 raises(UnkownPrincipal,RepositoryError);

 void delete_certificate_pair(
 in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair,
 in string attr_name)
 raises(UnkownPrincipal,RepositoryError);

 void publish_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CertificateList get_user_certificate(in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_user_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(UnkownPrincipal,RepositoryError);

 void publish_ca_certificate(
 in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(UnkownPrincipal, PrincipalAttributeError,RepositoryError);

 PKI::CertificateList get_ca_certificate(in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_ca_certificate(in PKIPrincipal principal,
 in PKI::Certificate certificate)
 raises(UnkownPrincipal,RepositoryError);

 void publish_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CRL get_default_crl(in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_default_crl(in PKIPrincipal principal, in PKI::CRL crl)
 raises(UnkownPrincipal,RepositoryError);

 void publish_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
February 2001 PKI Adopted Specification A-13

A

 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CertificatePairList get_default_certificate_pair(
 in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_default_certificate_pair(in PKIPrincipal principal,
 in PKI::CertificatePair certificate_pair)
 raises(UnkownPrincipal,RepositoryError);

 void publish_delta_crl(in PKIPrincipal principal,
 in PKI::CRL delta_crl)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CRL get_delta_crl(in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_delta_crl(in PKIPrincipal principal, in PKI::CRL delta_crl)
 raises(UnkownPrincipal,RepositoryError);

 void publish_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(UnkownPrincipal,PrincipalAttributeError,RepositoryError);

 PKI::CRL get_arl(in PKIPrincipal principal)
 raises(UnkownPrincipal,RepositoryError);

 void delete_arl(in PKIPrincipal principal, in PKI::CRL arl)
 raises(UnkownPrincipal,RepositoryError);

 };
};
#endif
A-14 PKI Adopted Specification February 2001

Conformance Issues B
ation

re.

ly.
B.1 Introduction

This chapter specifies the conformance requirements to be met for an implement
to be conformant to the CORBA Public Key Infrastructure.

B.2 Conformance

There are 2 defined levels of conformance for the CORBA Public Key Infrastructu

B.2.1 Level 1 : Polling Only

The first defined conformance level is for implementations that support polling on
For conformance to this level the following must be supported.

• Module PKI

• All specified constructs

• Module PKIAuthority

• Interface RegistrationAuthority

• Interface CertificateAuthority

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Module PKIRepository

• All specified constructs and interfaces
February 2001 PKI Adopted Specification B-1

B

lling
B.2.2 Level 2 : Polling and Callback

The second defined conformance level is for implementations that support both po
and callbacks. For conformance to this level the following must be supported.

• Module PKI

• All specified constructs must be supported.

• Module PKIAuthority

• Interface RegistrationAuthority_CB

• Interface CertificateAuthority_CB

• Interface RequestManager

• Interface RequestCertificateManager

• Interface RequestRevocationManager

• Interface RequestKeyUpdateManager

• Interface RequestkeyRecoveryManager

• Interface CertificateCallback

• Interface RevocationCallback

• Interface KeyUpdateCallback

• Interface KeyRecoveryCallback

• Module PKIRepository

• All specified constructs and interfaces
B-2 PKI Adopted Specification February 2001

	Preface
	About the Object Management Group
	What is CORBA?

	OMG Documents
	OMG Modeling
	Object Management Architecture Guide
	OMG Interface Definition Language (IDL) Mapping Specifications
	CORBAservices
	CORBAfacilities
	Object Frameworks and Domain Interfaces

	Definition of CORBA Compliance
	Obtaining OMG Documents
	Acknowledgments

	Overview
	1.1 Introduction
	1.2 PKI Definitions
	1.2.1 PKI User
	1.2.2 Certificate
	1.2.3 Certificate Revocation List (CRL)
	1.2.4 Certificate and CRL Repository
	1.2.5 Certification Authority (CA)
	1.2.6 Registration Authority (RA)
	1.2.7 Online Certificate Status Service

	1.3 Specification Overview
	1.3.1 PKI Module
	1.3.2 PKIAuthority
	1.3.3 PKIRepository

	1.4 General PKI Usage Overview
	1.4.1 Overall View
	1.4.2 Provider Information
	1.4.3 Polling Certificate Request
	1.4.4 Certificate Request Using A Callback

	1.5 General Repository Usage Overview
	1.6 Design Rationale
	1.6.1 Encoding to Representation Granularity
	1.6.2 Asynchronous and Interactive Messaging
	1.6.3 Repository
	1.6.4 Provider Details

	1.7 Proof of Concept

	PKI Interfaces
	2.1 Introduction
	2.2 Module PKI
	2.2.1 Opaque
	2.2.2 RepresentationType
	2.2.3 Certificate
	2.2.4 CRL
	2.2.5 CertificateRequest
	2.2.6 CertificateStatusRequest
	2.2.7 CertificateStatusResponse

	2.3 Module PKIAuthority
	2.3.1 Interface RegistrationAuthority
	2.3.2 Interface RegistrationAuthority_CB
	2.3.3 Interface CertificateAuthority
	2.3.4 Interface CertificateAuthority_CB
	2.3.5 Interface RequestManager
	2.3.6 Interface RequestCertificateManager
	2.3.7 Interface RequestRevocationManager
	2.3.8 Interface RequestKeyUpdateManager
	2.3.9 Interface RequestKeyRecoveryManager
	2.3.10 Interface CertificateCallback
	2.3.11 Interface RevocationCallback
	2.3.12 Interface KeyUpdateCallback
	2.3.13 Interface KeyRecoveryCallback
	2.3.14 Interface CertificateStatusResponder

	2.4 Module PKIRepository
	2.4.1 Interface Repository

	OMG IDL
	Conformance Issues

