

Date: Aug 2015

Open Architecture Radar Interface Standard

FTF – Beta2

__

OMG Document Number: dtc/2015-09-05

Standard document URL: http://www.omg.org/spec/OARIS/1.0

Machine Consumable File(s): http://www.omg.org/OARIS/20150824

 http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-24-OARIS_IDL.zip

 http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-25-OARIS_Model.xml

 http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-26-OARIS_Model.eap

This OMG document replaces the submission document (c4i/2013-05-01, Alpha). It is an OMG Adopted

Beta specification and is currently in the finalization phase. Comments on the content of this document are

welcome, and should be directed to issues@omg.org by July 20, 2015.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on October 2, 2015. If you

are reading this after that date, please download the available specification from the OMG Specifications

Catalog.

http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-24-OARIS_IDL.zip
http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-25-OARIS_Model.xml
http://www.omg.org/spec/OARIS/20150824/dtc/2015-08-26-OARIS_Model.eap
mailto:issues@omg.org
http://www.omg.org/issues/

Open Architecture Radar Interface Standard (OARIS), v1.0

Copyright © 2013 BAE Systems

Copyright © 2013 THALES Group

Copyright © 2013 Selex ES

Copyright © 2013 DSTO

Copyright © 2013 Atlas Elektronik

Copyright © 2013 EADS Deutschland GmbH

Copyright © 2013 Object Management Group, Inc

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change without

notice.

LICENSES

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,

paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of

the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have

infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1)

both the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the

use of the specifications is for informational purposes and will not be copied or posted on any network computer or

broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no

modifications are made to this specification. This limited permission automatically terminates without notice if you

breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a

license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of

those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users

are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information, which is protected by copyright. All Rights Reserved.

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval

systems--without permission of the copyright owner.

Open Architecture Radar Interface Standard (OARIS), v1.0

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)

of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1)

and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48

C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the

Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated

above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494,

U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are

registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™, Unified

Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA

logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface Definition Language (IDL)™, and

OMG SysML™ are trademarks of the Object Management Group. All other products or company names mentioned

are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these

materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In the

event that testing suites are implemented or approved by Object Management Group, Inc., software developed using

this specification may claim compliance or conformance with the specification only if the software satisfactorily

completes the testing suites.

Open Architecture Radar Interface Standard (OARIS), v1.0

Open Architecture Radar Interface Standard (OARIS), v1.0

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing

the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a

Bug/Issue (http://www.omg.org/report_issue).

Open Architecture Radar Interface Standard (OARIS), v1.0

Table of Contents

OMG’s Issue Reporting Procedure .. 5

1 Scope ..18

2 Conformance ...18

3 Normative References ..21

4 Terms and Definitions ..21

5 Symbols ..23

6 Additional Information ..23

6.1 Acknowledgements ... 23

7 Open Architecture Radar Information Specification25

7.1 Introduction ... 25
7.1.1 Document Structure .. 25

7.2 Usage Overview ... 25
7.3 Common_Types... 44

7.3.1 anonymous_blob_type .. 45

7.3.2 identity_type ... 46
7.3.3 subsystem_id_type .. 46
7.3.4 system_track_id_type ... 46

7.3.5 time_type... 46
7.3.6 System_Track ... 46

7.3.6.1 system_track_type... 47

7.3.7 Coordinates_and_Positions ... 48

7.3.7.1 absolute_duration_type ... 55
7.3.7.2 altitude_coordinate_type ... 55

7.3.7.3 angle_of_climb_type... 55
7.3.7.4 azimuth_coordinate_type .. 56
7.3.7.5 azimuth_interval_type... 56

7.3.7.6 azimuth_qualification_type ... 56
7.3.7.7 azimuth_rate_type ... 56
7.3.7.8 cartesian_coordinate_type ... 56

7.3.7.9 cartesian_interval_type ... 57
7.3.7.10 cartesian_position_type ... 57
7.3.7.11 cartesian_velocity_component_type ... 57

7.3.7.12 cartesian_velocity_type ... 57
7.3.7.13 coordinate_kind_type .. 57
7.3.7.14 coordinate_orientation_type .. 57
7.3.7.15 coordinate_origin_type.. 59

7.3.7.16 coordinate_specification_type ... 59
7.3.7.17 course_type.. 60
7.3.7.18 covariance_matrix_type .. 60
7.3.7.19 diagonal_covariance_matrix_type .. 60
7.3.7.20 duration_type ... 60
7.3.7.21 elevation_coordinate_type .. 60

Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.22 elevation_interval_type ... 61

7.3.7.23 elevation_qualification_type ... 61
7.3.7.24 elevation_rate_type ... 61
7.3.7.25 full_covariance_matrix_type ... 61

7.3.7.26 height_interval_type .. 62
7.3.7.27 latitude_coordinate_type ... 62
7.3.7.28 latitude_interval_type .. 62
7.3.7.29 longitude_coordinate_type .. 62
7.3.7.30 longitude_interval_type ... 62

7.3.7.31 polar_position_type ... 63
7.3.7.32 polar_velocity_type ... 63
7.3.7.33 position_accuracy_coordinate_type .. 63
7.3.7.34 position_coordinate_type .. 63

7.3.7.35 range_coordinate_type .. 64
7.3.7.36 range_interval_type ... 64

7.3.7.37 range_qualification_type ... 64
7.3.7.38 range_rate_type ... 64

7.3.7.39 speed_interval_type ... 64
7.3.7.40 speed_type ... 65
7.3.7.41 velocity_accuracy_coordinate_type .. 65

7.3.7.42 velocity_coordinate_type .. 65
7.3.7.43 wgs84_position_type ... 65

7.3.7.44 wgs84_velocity_type ... 66
7.3.7.45 cartesian_position_accuracy_type ... 66
7.3.7.46 cartesian_velocity_accuracy_type ... 66

7.3.7.47 polar_position_accuracy_type ... 66

7.3.7.48 polar_velocity_accuracy_type ... 67
7.3.7.49 wgs84_position_accuracy_type .. 67
7.3.7.50 wgs84_velocity_accuracy_type .. 67

7.3.8 Shape_Model .. 67
7.3.8.1 figure_ref_point .. 70

7.3.8.2 general_polar_volume_type .. 70
7.3.8.3 polar_volume_type ... 70

7.3.8.4 sector_type .. 71
7.3.8.5 truncated_polar_volume_type... 71
7.3.8.6 truncated_sector_type ... 71

7.3.9 Requests .. 72

7.3.9.1 denial_reason_type ... 74
7.3.9.2 denial_type .. 74
7.3.9.3 error_reason_type ... 74

7.3.9.4 parameter_reference_type ... 75
7.3.9.5 request_ack_type... 75
7.3.9.6 request_id_type ... 75
7.3.9.7 common_use_case_interface .. 75

7.4 Subsystem_Domain ... 75
7.4.1 Encyclopaedic_Support .. 76

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.1.1 data_descriptor_type ... 76

7.4.1.2 url_type ... 76
7.4.2 Extended_Subsystem_Control .. 76

7.4.2.1 configuration_url_type .. 77

7.4.2.2 offline_test_result_details_type .. 77
7.4.2.3 offline_test_result_type... 77
7.4.2.4 offline_test_type ... 77

7.4.3 Recording_and_Replay ... 78
7.4.3.1 actual_time_type ... 78

7.4.3.2 change_threshold_type ... 78
7.4.3.3 parameter_type .. 79
7.4.3.4 rate_type .. 79
7.4.3.5 record_on_change_type .. 79

7.4.3.6 recorded_data_type ... 79
7.4.3.7 recorded_time_type... 79

7.4.3.8 recording_descriptor_type .. 79
7.4.3.9 recording_id_type ... 80

7.4.3.10 recording_set_type .. 80
7.4.3.11 recording_type ... 80
7.4.3.12 replay_set_type.. 80

7.4.3.13 replay_speed_type ... 80
7.4.4 Simulation_Support .. 80

7.4.4.1 fault_script_id_type .. 81
7.4.4.2 fault_script_ids_type ... 81
7.4.4.3 fault_script_type ... 81

7.4.4.4 fault_scripts_type .. 81

7.4.4.5 sim_mode_status_type .. 81
7.4.4.6 start_stop_sim_mode_request_type .. 82
7.4.4.7 stop_freeze_session_request_type .. 82

7.4.5 Subsystem_Control ... 82
7.4.5.1 service_name_type .. 85

7.4.5.2 battle_override_state_type .. 85
7.4.5.3 descriptor... 85

7.4.5.4 descriptor_sequence .. 86
7.4.5.5 device_identification_type .. 86
7.4.5.6 device_name_type... 86
7.4.5.7 event_type ... 86

7.4.5.8 fault ... 86
7.4.5.9 fault_list .. 87
7.4.5.10 health_state_reason_type .. 87

7.4.5.11 health_state_type ... 87
7.4.5.12 information_name_type .. 88
7.4.5.13 interest ... 88
7.4.5.14 interest_list .. 88
7.4.5.15 mastership_state_type ... 88
7.4.5.16 parameter_name_type ... 89

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.17 name_error_pair_type ... 89

7.4.5.18 name_error_sequence_type ... 89
7.4.5.19 parameter_name_sequence_type ... 89
7.4.5.20 name_value_pair_type .. 89

7.4.5.21 name_value_sequence_type .. 90
7.4.5.22 operational_mode_type ... 90
7.4.5.23 parameter_value_response_type ... 90
7.4.5.24 registration_type .. 90
7.4.5.25 service_type ... 90

7.4.5.26 service_health_type ... 90
7.4.5.27 service_indication_list_type .. 90
7.4.5.28 service_indication_type ... 91
7.4.5.29 service_information ... 91

7.4.5.30 service_list_type .. 91
7.4.5.31 subsystem_health_type.. 91

7.4.5.32 technical_state_type .. 91
7.4.5.33 version_type .. 92

7.4.5.34 Initial ... 93

7.5 Sensor_Domain ... 93
7.5.1 Clutter_Reporting ... 93

7.5.1.1 clutter_assessment_request_type .. 93
7.5.1.2 clutter_indication_type ... 93

7.5.1.3 clutter_map_cell_type ... 94
7.5.1.4 clutter_report_type .. 94
7.5.1.5 concentration_plot_cell_type .. 94

7.5.1.6 intensity_units_type .. 94

7.5.1.7 plot_concentration_report_type .. 95
7.5.1.8 plot_concentration_request_data_type ... 95

7.5.2 Plot_Reporting .. 95

7.5.2.1 plot_id_type .. 96
7.5.2.2 plot_strength_type... 96

7.5.2.3 sensor_plot_set_type ... 96
7.5.2.4 sensor_plot_type ... 96

7.5.2.5 sensor_orientation_type .. 97
7.5.3 Sensor_Control ... 98

7.5.3.1 selected_frequency_list_type .. 101
7.5.3.2... 101

7.5.3.3 transmission_frequency_state_type .. 101
7.5.3.4 all_frequencies_state_type .. 101
7.5.3.5 reported_frequency_state_type ... 102

7.5.3.6 frequency_band_type .. 102
7.5.3.7 transmission_frequency_mode_type ... 102
7.5.3.8 transmission_sector_set_type ... 102
7.5.3.9 transmission_sector_type .. 102
7.5.3.10 transmission_sector_power_level_type .. 103
7.5.3.11 sector_reference_type.. 103

Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.3.12 control_emission_state_type ... 103

7.5.3.13 test_target_scenario_type .. 103
7.5.3.14 test_target_scenario_independent_target_type ... 104
7.5.3.15 test_target_scenario_common_parameter_target_type 104

7.5.3.16 test_target_type ... 104
7.5.3.17 test_target_plus_scenario_type ... 105
7.5.3.18 test_target_scenario_id_type ... 105
7.5.3.19 test_target_scenario_state_type ... 105

7.5.4 Sensor_Performance ... 105

7.5.4.1 interference_report_type ... 106
7.5.4.2 interferer_kind... 106
7.5.4.3 interferer_type ... 107
7.5.4.4 jamming_magnitude_type ... 107

7.5.4.5 perfomance_bin_type .. 107
7.5.4.6 performance_assessment_report_type .. 107

7.5.4.7 performance_assessment_request_type .. 108
7.5.4.8 performance_beam_type ... 108

7.5.4.9 performance_sector_type .. 109
7.5.4.10 performance_type .. 109

7.5.5 Track_Reporting ... 109

7.5.5.1 sensor_track_id_type .. 110
7.5.5.2 environment_type ... 110

7.5.5.3 initiation_mode_type .. 111
7.5.5.4 recognition_type ... 111
7.5.5.5 sensor_track_type ... 111

7.5.5.6 sensor_track_set_type ... 112

7.5.5.7 track_phase_type... 112
7.5.6 Tracking_Control .. 112

7.5.6.1 track_info .. 113

7.5.6.2 track_priority_type .. 114
7.5.6.3 tracking_zone_set ... 114

7.5.6.4 tracking_zone .. 114
7.5.6.5 tracking_zone_type ... 114

7.5.6.6 tracking_zone_id_type .. 115

7.6 Radar_Domain .. 115
7.6.1 Air_Engagement_Support... 115

7.6.1.1 expected_hit_data_type... 115

7.6.1.2 miss_indication_data_type .. 116
7.6.1.3 projectile_kinematics_type ... 116

7.6.2 Engagement_Support .. 116

7.6.2.1 available_fire_control_channels_type .. 117
7.6.2.2 fire_control_channel_id_type ... 117
7.6.2.3 kill_assessment_result_type .. 117
7.6.2.4 kinematics_type .. 117

7.6.3 Missile_Guidance ... 117
7.6.3.1 downlink_report .. 119

Open Architecture Radar Interface Standard (OARIS), v1.0

7.6.3.2 downlink_request .. 119

7.6.3.3 frequency_channel_type ... 120
7.6.3.4 illumination_request_type ... 120
7.6.3.5 track_id_type... 120

7.6.3.6 uplink_report_type .. 120
7.6.3.7 uplink_request_type .. 120

7.6.4 Search .. 121
7.6.4.1 cued_search_cue_type .. 121
7.6.4.2 cued_search_report_type .. 121

7.6.5 Surface_Engagement_Support .. 121
7.6.5.1 splash_spotting_area_id_type ... 122
7.6.5.2 splash_spotting_area_position_type ... 122
7.6.5.3 splash_spotting_area_set_type .. 122

7.6.5.4 splash_spotting_area_type .. 122

7.7 Subsystem_Services .. 123
7.7.1 Encyclopaedic_Support .. 123

7.7.1.1 Receive_Encyclopaedic_Data... 123

7.7.1.1.1 Receive_Encyclopaedic_Data_CMS .. 123
7.7.1.1.2 Receive_Encyclopaedic_Data_Sub ... 124

7.7.2 Extended_Subsystem_Control .. 125

7.7.2.1 Manage Physical Configuration .. 125
7.7.2.1.1 Manage_Physical_Configuration_CMS ... 126

7.7.2.1.2 Manage_Physical_Configuration_Sub .. 126
7.7.2.2 Perform Offline Test ... 128

7.7.2.2.1 Perform_Offline_Test_CMS ... 128

7.7.2.2.2 Perform_Offline_Test_Sub ... 129

7.7.2.3 Restart ... 130
7.7.2.3.1 Restart_CMS ... 130
7.7.2.3.2 Restart_Sub ... 131

7.7.2.4 Shutdown .. 132
7.7.2.4.1 Shutdown_CMS .. 132

7.7.2.4.2 Shutdown_Sub .. 133
7.7.2.5 Startup ... 134

7.7.2.5.1 Startup_CMS ... 134
7.7.2.5.2 Startup_Sub ... 135

7.7.3 Recording_and_Replay ... 136
7.7.3.1 Control_Recording .. 136

7.7.3.1.1 Control_Recording_CMS ... 136
7.7.3.1.2 Control_Recording_Sub .. 137

7.7.3.2 Control_Replay ... 138

7.7.3.2.1 Control_Replay_CMS ... 138
7.7.3.2.2 Control_Replay_Sub ... 139

7.7.4 Simulation_Support .. 141
7.7.4.1 Define_Simulation_Scenario .. 141

7.7.4.1.1 Define_Simulation_Scenario_CMS .. 141
7.7.4.1.2 Define_Simulation_Scenario_Sub .. 142

Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.4.2 Control_Simulation ... 144

7.7.4.2.1 Control_Simulation_CMS ... 144
7.7.4.2.2 Control_Simulation_Sub ... 145

7.7.4.3 Define_Fault_Scripts .. 147

7.7.4.3.1 Define_Fault_Scripts_CMS .. 147
7.7.4.3.2 Define_Fault_Scripts_Sub .. 147

7.7.4.4 Control_Fault_Scripts ... 149
7.7.4.4.1 Control_Fault_Scripts_CMS ... 149
7.7.4.4.2 Control_Fault_Scripts_Sub ... 149

7.7.5 Subsystem_Control ... 151
7.7.5.1 Manage Technical State .. 151

7.7.5.1.1 Manage_Technical_State_CMS .. 151
7.7.5.1.2 Manage_Technical_State_Sub .. 152

7.7.5.2 Heartbeat_Signal ... 155
7.7.5.2.1 Heartbeat_Signal_CMS ... 156

7.7.5.2.2 Heartbeat_Signal_Sub ... 156
7.7.5.3 Provide_Subsystem_Identification ... 158

7.7.5.3.1 Provide_Subsystem_Identification_CMS ... 158
7.7.5.3.2 Provide_Subsystem_Identification_Sub ... 158

7.7.5.4 Provide_Health_State ... 160

7.7.5.4.1 Provide_Health_State_CMS ... 160
7.7.5.4.2 Provide_Health_State_Sub.. 162

7.7.5.5 Manage_Operational_Mode ... 165
7.7.5.5.1 Manage_Operational_Mode_CMS ... 165
7.7.5.5.2 Manage_Operational_Mode_Sub.. 165

7.7.5.5.3 Manage_Operational_Mode_CMS ... 166

7.7.5.5.4 Manage_Operational_Mode_Sub.. 166
7.7.5.6 Control_Battle_Override... 167

7.7.5.6.1 Control_Battle_Override_CMS .. 167

7.7.5.6.2 Control_Battle_Override_Sub ... 168
7.7.5.7 Manage_Subsystem_Parameters... 169

7.7.5.7.1 Manage_Subsystem_Parameters_CMS .. 170
7.7.5.7.2 Manage_Subsystem_Parameters_Sub ... 171

7.7.5.8 Provide_Subsystem_Services ... 174
7.7.5.8.1 Provide_Subsystem_Services_CMS ... 174
7.7.5.8.2 Provide_Subsystem_Services_Sub ... 175

7.7.5.9 Manage_Mastership .. 177

7.7.5.9.1 Manage_Mastership_CMS .. 177
7.7.5.9.2 Manage_Mastership_Sub .. 178

7.7.5.10 Register_Interest.. 182

7.7.5.10.1 Register_Interest_CMS ... 182
7.7.5.10.2 Register_Interest_Sub ... 183

7.8 Sensor_Services ... 184
7.8.1 Clutter_Reporting ... 184

7.8.1.1 Provide Area with Plot Concentration .. 184
7.8.1.1.1 Provide_Plot_Concentration_CMS ... 184

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.1.1.2 Provide_Plot_Concentration_Sub ... 184

7.8.1.2 Provide Clutter Assessment .. 186
7.8.1.2.1 Provide_Clutter_Assessment_CMS .. 186
7.8.1.2.2 Provide_Clutter_Assessment_Sub .. 187

7.8.2 Plot_Reporting .. 188
7.8.2.1 Provide_Plots .. 188

7.8.2.1.1 Provide_Plots_CMS .. 188
7.8.2.2 Provide_Sensor_Orientation ... 190

7.8.2.2.1 Provide_Sensor_Orientation_CMS ... 190

7.8.3 Sensor_Control ... 191
7.8.3.1 Manage_Frequency_Usage ... 191

7.8.3.1.1 Manage_Frequency_Usage_CMS ... 191
7.8.3.1.2 Manage_Frequency_Usage_Sub ... 192

7.8.3.2 Manage_Transmission_Sectors .. 195
7.8.3.2.1 Manage_Transmission_Sectors_CMS .. 196

7.8.3.2.2 Manage_Transmission_Sectors_Sub .. 197
7.8.3.3 Control_Emissions .. 198

7.8.3.3.1 Control_Emissions_CMS .. 198
7.8.3.3.2 Control_Emissions_Sub .. 199

7.8.3.4 Define_Test_Target_Scenario .. 201

7.8.3.4.1 Define_Test_Target_Scenario_CMS .. 201
7.8.3.4.2 Define_Test_Target_Scenario_Sub .. 202

7.8.3.5 Test_Target_Facility ... 204
7.8.3.5.1 Test_Target_Facility_CMS ... 204
7.8.3.5.2 Test_Target_Facility_Sub ... 205

7.8.4 Sensor_Performance ... 206

7.8.4.1 Provide_Interference_Reports .. 207
7.8.4.1.1 Provide_Interference_Reports_CMS .. 207
7.8.4.1.2 Provide_Interference_Reports_Sub .. 207

7.8.4.2 Provide_Nominal_Performance .. 209
7.8.4.2.1 Provide_Nominal_Performance_CMS.. 209

7.8.4.2.2 Provide_Nominal_Performance_Sub .. 210
7.8.4.3 Provide_Performance_Assessment ... 211

7.8.4.3.1 Provide_Performance_Assessment_CMS ... 211
7.8.4.3.2 Provide_Performance_Assessment_Sub ... 212

7.8.4.4 Provide_Jammer_Assessment... 213
7.8.4.4.1 Provide_Jammer_Assessment_CMS .. 213

7.8.4.4.2 Provide_Jammer_Assessment_Sub ... 214
7.8.5 Track_Reporting ... 216

7.8.5.1 Provide_Sensor_Tracks .. 216

7.8.5.1.1 Provide_Sensor_Tracks_CMS .. 216
7.8.6 Tracking_Control .. 218

7.8.6.1 Delete_Sensor_Track .. 218
7.8.6.1.1 Delete_Sensor_Track_CMS .. 218
7.8.6.1.2 Delete_Sensor_Track_Sub .. 218

7.8.6.2 Receive_Track_Information ... 220

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.6.2.1 Receive_Track_Information_CMS ... 220

7.8.6.2.2 Receive_Track_Information_Sub ... 221
7.8.6.3 Initiate_Track .. 222

7.8.6.3.1 Initiate_Track_CMS .. 222

7.8.6.3.2 Initiate_Track_Sub .. 223
7.8.6.4 Manage_Tracking_Zones ... 225

7.8.6.4.1 Manage_Tracking_Zones_CMS ... 225
7.8.6.4.2 Manage_Tracking_Zones_Sub ... 226

7.9 Radar_Services .. 227
7.9.1 Air_Engagement_Support... 227

7.9.1.1 Provide_Projectile_Positional_Information .. 227
7.9.1.1.1 Provide_Projectile_Positional_Information_CMS.. 227
7.9.1.1.2 Provide_Projectile_Positional_Information_Sub .. 228

7.9.2 Engagement_Support .. 229
7.9.2.1 Process_Target_Designation... 229

7.9.2.1.1 Process_Target_Designation_CMS .. 229
7.9.2.1.2 Process_Target_Designation_Sub ... 230

7.9.2.1.3 Sensor Track Reporting ... 231
7.9.2.1.4 Sensor Track Reporting ... 231

7.9.2.2 Support_Kill_Assessment ... 233

7.9.2.2.1 Support_Kill_Assessment_CMS ... 233
7.9.2.2.2 Support_Kill_Assessment_Sub ... 234

7.9.2.3 Support_Surface_Target_Engagement ... 235
7.9.2.3.1 Support_Surface_Target_Engagement_CMS ... 235
7.9.2.3.2 Support_Surface_Target_Engagement_Sub ... 236

7.9.2.3.3 Support_Surface_Target_Engagement_CMS ... 236

7.9.2.3.4 Support_Surface_Target_Engagement_Sub ... 236
7.9.2.3.5 sensor track reporting .. 236

7.9.3 Missile_Guidance ... 239

7.9.3.1 Perform_Illumination .. 239
7.9.3.1.1 Perform_Illumination_CMS ... 239

7.9.3.1.2 Perform_Illumination_Sub .. 240
7.9.3.2 Perform_Missile_Downlink .. 242

7.9.3.2.1 Perform_Missile_Downlink_CMS.. 242
7.9.3.2.2 Perform_Missile_Downlink_Sub .. 243

7.9.3.3 Perform_Missile_Uplink... 245
7.9.3.3.1 Perform_Missile_Uplink_CMS .. 245

7.9.3.3.2 Perform_Missile_Uplink_Sub ... 246
7.9.4 Search .. 247

7.9.4.1 Perform_Cued_Search .. 247

7.9.4.1.1 Perform_Cued_Search_CMS .. 247
7.9.4.1.2 Perform_Cued_Search_Sub .. 248

7.9.5 Surface_Engagement_Support .. 250
7.9.5.1 Perform_Splash_Spotting ... 250

7.9.5.1.1 Perform_Splash_Spotting_CMS ... 250
7.9.5.1.2 Perform_Splash_Spotting_Sub ... 251

Open Architecture Radar Interface Standard (OARIS), v1.0

7.9.5.1.3 Perform_Splash_Spotting_CMS ... 252

7.9.5.1.4 Perform_Splash_Spotting_Sub ... 252
7.9.5.1.5 Report measured splash positions ... 252

Open Architecture Radar Interface Standard (OARIS), v1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer

industry standards consortium that produces and maintains computer industry specifications for interoperable,

portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes

Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle

approach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified

Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG

Specifications are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

· CORBA/IIOP

· Data Distribution Services

· Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

· UML, MOF, CWM, XMI

· UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface

Specifications

· CORBAServices

· CORBAFacilities

Open Architecture Radar Interface Standard (OARIS), v1.0

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF

format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,

Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Open Architecture Radar Interface Standard (OARIS), v1.0

1 Scope
This specification primarily defines the interface between the CMS and a Radar system within a modular combat

system architecture for naval platforms. However, it is structured to aligned with the objective of dividing the

interface into three categories, namely subsystem services (interfaces applicable to any module within a combat

system), sensor services (interfaces applicable to any sensor component within a combat system) and radar services

(interfaces applicable to any radar component within a combat system), as illustrated below. As such it has potential

to provide the basis for specifications for other combat system sensors and subsystems.

Figure 1.1 - The OARIS specification exploits specialisation and generalisation to promote modularity and
extensibility

2 Conformance
In order to support utilization by a range of radars from simple navigation radars to complex multi-function radars the

RFP defines the following compliance levels:

 Level 1

The simplest radar operation providing just plots and tracks

 Level 2

Basic radar operation, but a complete interface supporting control and essential system configuration for a

combat system context

 Level 3A

In addition to basic operation (level 2), interfaces for training support

 Level 3B

In addition to basic operation (level 2), full system configuration interfaces

 Level 3C

In addition to basic operation (level 2), the full track and plot reporting interfaces

 class OARIS Combat System Architecture

Subsystem

Sensor Weapon

Radar Sonar Electro Optic Missile Torpedo Gun

Combat

Management

System

Comms System

Open Architecture Radar Interface Standard (OARIS), v1.0

 Level 3D

In addition to basic operation (level 2), the engagement support interface

 Level 3E

In addition to basic operation (level 2), the advanced radar interfaces

 Level 3F

In addition to basic operation (level 2), compliance with NNSI (Not supported in this version of the

response.)

 Level 3G

In addition to basic operation (level 2), compliance with METOC (Not supported in this version of the

response.)

Radars conforming to this specification shall indicate which compliance levels are supported. The following options

are possible:

 Level 1

 Level 2

 Any combination of levels 3A to 3E (in addition to level 2)

In order to comply with the specification levels the following respective interfaces shall be supported in full, with the

exception of level 3C where at least one of the environment types (Space/Air/Land/Surface) shall be supported and

appropriately qualified, e.g. level 3C Air and Surface:

Compliance

Level

Required Interfaces

1 Register Interest

Track Reporting

Plot Reporting

2 Control Interface Connection

Provide Subsystem Identification

Provide Subsystem Services

Manage Subsystem Parameters

Provide Health State

Manage Mastership

Manage Technical State

Exchange Heartbeat

Register Interest

Track Reporting

Plot Reporting

Manage Operational Mode

Manage Tracking Zones

Manage Frequency Usage

Manage Transmission Sectors

Control Battle Override

Open Architecture Radar Interface Standard (OARIS), v1.0

Control Emissions

3A Define Test Target Scenario

Define Fault Scripts

Control Simulation

Control Fault Script

Control Test Target Facility

Control Recording

Control Replay

Provide Simulation Data

3B Shutdown

Restart

Startup

Manage Physical Configuration

Perform Offline Test

Receive Encyclopedic Data

3C Receive Track Information

Delete Sensor Track

Initiate Track

Perform Cued Search

Provide Space Plots

Provide Land Plots

Provide Surface Plots

Provide Air Plots

Provide Sensor Space Tracks

Provide Sensor Land Tracks

Provide Sensor Surface Tracks

Provide Sensor Air Tracks

3D Process Target Designation

Provide Projectile Positional Information

Perform Missile Downlink

Perform Missile Uplink

Kill Assessment

Support Surface Engagement

Perform Splash Plotting

3E Provide Interference Reports

Provide Jammer Strobes

Open Architecture Radar Interface Standard (OARIS), v1.0

Provide Jammer Tracks

Provide Area with Plot Concentration

Provide Clutter Assessment

Provide Jamming Effect Assessment

Provide Performance Assessment

Provide Nominal Performance

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of

this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

 ALMAS (formal/2009-11-01)

 AMSM (formal/2010-11-02)

 CORBA (formal/2011-11-01,02,03)

 DDS (formal/2007-01-01)

 DIS (IEEE 1278.1–1995, IEEE 1278.1A–1998 and Enumeration and Bit-encoded values for use with IEEE

1278.1-1995)

 EVOT (formal/2008-08-01)

 HLA (IEEE 1516 2000-series and RPR-FOM 2.0)

 ISO 19111 (www.iso.org/)

 ISO 19115 (www.iso.org/)

 METOC RFP (c4i/08-12-02)

 NNSI RFP (c4i/07-12-01)

 Network Time Protocol (www.ntp.org)

 Precision Time Protocol (IEEE 1588 – http://www.ieee1588.com)

 SoaML (www.omg.org/spec/SoaML)

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

 AB (Architecture Board)

 ALMAS (Alert Management Service)

 AMSM (Application Management and Status Monitoring)

 API (Application Programming Interface)

 ATC (Air Traffic Control)

Open Architecture Radar Interface Standard (OARIS), v1.0

 BC (Business Committee)

 BCQ (Business Committee Questionnaire)

 BoD (Board of Directors)

 CCM (CORBA Component Model)

 CMS (Combat Management System)

 CORBA (Common Object Request Broker Architecture)

 CSIV2 (Common Secure Interoperability Protocol Version 2)

 CWM (Common Warehouse Metamodel)

 DAIS (Data Acquisition from Industrial Systems)

 DDS (Data Distribution Service)

 EDOC (Enterprise Distributed Object Computing)

 EJB (Enterprise Java Bean)

 EVOT (Enhanced View of Time)

 FTF (Finalization Task Force)

 GE (Gene Expression)

 GIOP (General Inter-Orb Protocol)

 GLS (General Ledger Specification)

 IDL (Interface Definition Language)

 IFF (Interrogation, Friend or Foe)

 IIOP (Internet Inter-Orb Protocol)

 IPR (Intellectual Property Right)

 ISO (International Organization for Standardization)

 LOI (Letter of Intent)

 MDA (Model Driven Architecture)

 METOC (Meteorological and Oceanographic)

 MOF (Meta Object Facility)

 MQS (MQSeries)

 NNSI (Naval Navigation System Interface)

 NS (Naming Service)

 OARIS (Open Architecture Radar Interface Standard)

 OASIS (Organization for Advancement of Structured Information Standards)

 OCL (Object Constraint Language)

Open Architecture Radar Interface Standard (OARIS), v1.0

 ODF (Open Document Format)

 OMA (Object Management Architecture)

 OMG (Object Management Group)

 OTS (Object Transaction Service)

 PIDS (Personal Identification Service)

 PIM (Platform Independent Model)

 PSM (Platform Specific Model)

 P&P (Policies and Procedures of the OMG Technical Process)

 RFC (Request For Call)

 RFP (Request For Proposal)

 RM-ODP (Reference Model of Open Distributed Processing)

 RTF (Revision Task Force)

 SEC (Security Service)

 SOA (Service Oriented Architecture)

 SoaML (Service oriented architecture Modeling Language)

 SOLAS (Safety Of Life At Sea)

 SPEM (Software Process Engineering Metamodel)

 TC (Technology Committee)

 TF (Task Force)

 TOS (Trading Object Service)

 UML (Unified Modeling Language)

 XMI (XML Metadata Interchange)

 XML (eXtensible Markup Language)

5 Symbols
No special symbols are introduced in this specification.

6 Additional Information

6.1 Acknowledgements
The following companies submitted this specification:

 BAE Systems

 Thales

The following companies supported this specification:

Open Architecture Radar Interface Standard (OARIS), v1.0

 Atlas Elektronik

 Cassidian

 DSTO

 John Hopkins University APL

 Selex ES

 US Navy

Open Architecture Radar Interface Standard (OARIS), v1.0

7 Open Architecture Radar Information Specification

7.1 Introduction
The specification is captured as an Enterprise Architect (EA) UML version 2.1 model, with this document being

automatically generated as a report from the model.

7.1.1 Document Structure

Figure 7.1 -Specification Master (Documentation diagram)

7.2 Usage Overview

Open Architecture Radar Interface Standard (OARIS), v1.0

Parent Package: Analysis Model (PIM)
The RFP defines a number of compliance levels as follows:

 Level 1: A simple radar which provides just plots and tracks

 Level 2: Basic radar operation, but a complete interface supporting control and essential system
configuration for a combat system context

 Level 3A: In addition to basic operation (level 2), interfaces for training support

 Level 3B: In addition to basic operation (level 2), full system configuration interfaces

 Level 3C: In addition to basic operation (level 2), the full track and plot reporting interfaces

 Level 3D: In addition to basic operation (level 2), the engagement support interface

 Level 3E: In addition to basic operation (level 2), the advanced radar interfaces

 Level 3F (compliance with NNSI) and Level 3G (compliance with METOC). These are not covered by
this response.

Radars conforming to this specification shall indicate which compliance levels are supported. The following
options are possible:

 Level 1

 Level 2

 Any combination of levels 3A to 3E (in addition to level 2)

The activity diagrams and the associated notes below show how the interfaces defined in 7.7 to 7.9 interact
in order to support these compliance levels.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.2 Compliance Level 1 (Activity diagram)

For compliance level 1, the radar powers up and commences track and plot reporting either without
intervention or using an out of scope facility, such as a maintainer interface. The CMS detects the presence
of the interface, registers interest then processes the incoming track and plot streams.

Issue OARIS 1 Control Interface Connection use case was redundant

 act Compliance Lev el 1

S
u

b
s

y
s

te
m

C
M

S

Register Interest

Plot Reporting
Track Reporting

CMS detects that an

interface to the

Subsystem is present

ActivityFinal

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

[Deregister Interest]

[Continue to receive tracks and plots]

[Interest Registered]

[Interest Deregistered]

Open Architecture Radar Interface Standard (OARIS), v1.0

 act Compliance Lev el 2 - Initialization

Subsystem CMS

Power

Applied

Prov ide Subsystem

Identification

Exchange Heart Beat

Control Interface Connection

Prov ide Subsystem

Serv ices

Register Interest

Manage Mastership

ActivityFinal

Manage Technical State

Prov ide Health State

Manage Subsystem

Parameters

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.3 Compliance Level 2 - Initialization (Activity diagram)

For compliance level 2 a more versatile startup sequence is supported, with the subsystem and CMS going
through a negotiation and configuration stage followed by more detailed interface control and reporting,
including management of reversionary modes.

 act Compliance Lev el 2 - Initialization

Subsystem CMS

Power

Applied

Prov ide Subsystem

Identification

Exchange Heart Beat Prov ide Subsystem

Serv ices

Register Interest

Manage Mastership

ActivityFinal

Manage Technical State

Prov ide Health State

Manage Subsystem

Parameters

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.4 Compliance Level 2 - Operational Mode (Activity diagram)

Level 2 continues to manage the operational mode while the CMS has mastership.

 act Compliance Lev el 2 - Operational Mode

CMS

Manage Operational Mode

ActivityFinal

Manage Subsystem Parameters has completed

successfully and has identified the currently

available operational modes and CMS has

mastership

 act Compliance Lev el 2 - Subsystem Setup

CMS

Control EmissionsManage Frequency Usage Manage Transmission

Sectors

Manage Tracking Zones Control Battle Ov erride

Provide Subsystem Services

has successfully executed and

CMS has mastership

Manage Technical State

ActivityFinal

[Subsystem is not ONLINE]

[Subsystem is ONLINE]

[Subsystem is ONLINE]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.5 Compliance Level 2 - Subsystem Setup (Activity diagram)

Level 2 caters for continuous management of sensor configuration when the CMS has mastership.

Figure 7.6 Compliance Level 3A - Fault Scripts and Test Targets (Activity diagram)

Level 3 provide for the simulation of faults and targets for test and training purposes.

 act Compliance Lev el 3A - Fault Scripts and Test Targets

Define Fault Scripts

Control Fault Script

Provide Subsystem

Services has

successfully

executed

Manage Mastership

Manage Technical State

Control Simulation

ActivityFinal

Define Test Target

Scenario

Control Test Target Facility

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

[CMS decides to activate

a fault script that has

been previously defined]

[CMS decides to define a fault script][CMS decides to define a test target scenario]

[Simulation mode is ON]

[CMS decides to activate a

test target scenario that has

been previously defined]

[CMS has mastership]

[Subsystem is in a READY or

ONLINE state]

[Subsystem is not in a

READY or ONLINE state]

[CMS has mastership]

[CMS does not have mastership]

[Simulation mode is OFF]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.7 Compliance Level 3A - Recording/Replay (Activity diagram)

Recording and replay facilities support recording and replay of subsystem parameters for the purposes of
training and/or post exercise review.

 act Compliance Lev el 3A - Recording/Replay

Control Recording

Control Replay

Subsystem is READY or

ONLINE, and CMS has

mastership

ActivityFinal

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

[If recording is to be replayed]

 act Compliance Lev el 3A - Simulation

Prov ide Simulation Data

ActivityFinal

Control Simulation

Subsystem is READY or

ONLINE, and CMS has

mastership

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

C
M

S

[CMS starts or allows Simulation

Scenario to continue]

[CMS ends simulation Scenario]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.8 Compliance Level 3A - Simulation (Activity diagram)

The simulation interfaces are used to support training.

Issue OARIS 1 Control Interface Connection use case was redundant

 act Compliance Lev el 3B - Macro State Management

Shutdown Restart
Startup

Control Interface Connection

Successful, CMS has mastership

of subsystem

ActivityFinal

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.9 Compliance Level 3B - Macro State Management (Activity diagram)

These interfaces provide for more finely grained control of startup and shutdown.

 act Compliance Lev el 3B - Macro State Management

Shutdown Restart
Startup

Provide Subsystem Services

Successful, CMS has mastership

of subsystem

ActivityFinal

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Open Architecture Radar Interface Standard (OARIS), v1.0

 act Compliance Lev el 3B - Manage Physical Configuration

CMS

Manage Physical

Configuration

Manage Mastership

Manage Technical State

ActivityFinal

Provide Subsystem

Services has successfully

executed

[CMS has mastership]

[CMS does not have mastership]

[CMS has mastership]

[Request Current Configuration]

[Request Change to Configuration]

[Subsystem is in STANDBY]

[Subsystem is not in STANDBY]

[Subsystem is in STANDBY]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.10 Compliance Level 3B - Manage Physical Configuration (Activity diagram)

These interfaces support more detailed control of the subsystem configuration.

 act Compliance Lev el 3B - Manage Physical Configuration

CMS

Manage Physical

Configuration

Manage Mastership

Manage Technical State

ActivityFinal

Provide Subsystem

Services has successfully

executed

[Request Change to Configuration]

[Request Current Configuration]

[CMS does not have mastership]

[CMS has mastership]

[CMS has mastership]

[Subsystem is in STANDBY]

[Subsystem is not in STANDBY]

[Subsystem is in STANDBY]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.11 Compliance Level 3B - Perform Offline Test (Activity diagram)

Offline test provides a mechanism for diagnosing subsystem failures, after which the subsystem's technical
state is adjusted accordingly.

 act Compliance Lev el 3B - Perform Offline Test

Perform Offline Test

Control Interface Connection

Successful (Subsystem is able to

communicate with the CMS),

Subsystem is in any state except for

ONLINE, CMS has mastership of

subsystem

Manage Technical State

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

The subsystem initiates

this state change to

FAILED, and uses this

service to report the

change to the CMS

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

[Detection of critical failure requires subsystem to transition to FAILED]

[No critical failures detected]

 act Compliance Lev el 3B - Perform Offline Test

Perform Offline Test

Provide Subsystem Services

Successful (Subsystem is able to

communicate with the CMS),

Subsystem is in any state except for

ONLINE, CMS has mastership of

subsystem

Manage Technical State

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

The subsystem initiates

this state change to

FAILED, and uses this

service to report the

change to the CMS

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

[Detection of critical failure requires subsystem to transition to FAILED]

[No critical failures detected]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.12 Compliance Level 3B - Receive Encyclopaedic Data (Activity diagram)

The subsystem is able to receive relevant encyclopaedic data from the CMS.

 act Compliance Lev el 3B - Receiv e Encyclopaedic Data

CMS

Receiv e Encyclopaedic

Data

Provide Subsystem

Services has successfully

executed and CMS has

mastership

ActivityFinal

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.13 Compliance Level 3C - Advanced Track Management (Activity diagram)

The sensor supports detailed track management.

 act Compliance Lev el 3C - Adv anced Track Management

Delete Sensor TrackReceiv e Track Information Initiate Track Perform Cued Search

Subsystem is READY and

Simulation Mode is ON, or

Subsytem is ONLINE; CMS

has mastership

Track Reporting

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Track Reporting is also

occurring as an

ongoing process

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.14 Compliance Level 3C - Advanced Track and Plot Reporting (Activity diagram)

The sensor supports reporting tracks and plots selectively based on the operational environment
(space/air/land/surface).

 act Compliance Lev el 3C - Adv anced Track and Plot Reporting

Prov ide Air Plots

Prov ide Surface Plots

Prov ide Land Plots

Prov ide Space Plots Prov ide Sensor Space

Track

Prov ide Sensor Surface

Track

Prov ide Sensor Air Tracks

Prov ide Sensor Land

Tracks

Register Interest

S
u

b
s

y
s

te
m

ActivityFinal

This diagram is valid

for any of the Plot and

Track services depicted

on this diagram in lieu

of the Provide

Plots/Tracks container.

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Interface

Connection

Successful

Prov ide plots/tracks

container

[Interest Deregistered]

[Interest Registered]

[Deregister Interest]

[Continue to receive tracks and plots]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.15 Compliance Level 3D - Air Engagement Support (Activity diagram)

Level 3D provides additional information to support air engagements, including missile links and kill
assessment.

 act Compliance Lev el 3D - Air Engagement Support

Subsystem CMS

Process Target

Designation

Perform Missile UplinkPerform Missile Downlink

Perform Illumination

Kill Assessment

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

CMS has determined an

engagement is required against an

air track, CMS has mastership,

Subsystem is ONLINE or READY (for

simulated engagements only)

Track Reporting

ActivityFinal

Prov ide Projectile

Positional Information

[If service required]

[Il lumination required]

[Missile communications required]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.16 Compliance Level 3D - Surface Engagement Support - Fire Control Radar (Activity diagram)

This provides additional surface engagement support for fire control.

Figure 7.17 Compliance Level 3D - Surface Engagement Support - Surveillance Radar (Activity diagram)

This provides additional surface engagement support for surveillance purposes.

 act Compliance Lev el 3D - Surface Engagement Support - Fire Control Radar

Subsystem CMS

Process Target

Designation

CMS has determined an engagement is

required against a surface track, CMS has

mastership, Subsystem is ONLINE

(simulated engagements may be

performed in READY as well)

ActivityFinal

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Track Reporting

 act Compliance Lev el 3D - Surface Engagement Support - Surv eillance Radar

Subsystem CMS

Support Surface

Engagement

Perform Splash Spotting

CMS has determined an engagement is

required against a surface track, CMS has

mastership, Subsystem is ONLINE

(simulated engagements may be

performed in READY as well)

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

ActivityFinal

Track Reporting

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.18 Compliance Level 3E - Automatic Interference Reporting (Activity diagram)

Level 3E provides for detailed interference reporting, including jammers.

 act Compliance Lev el 3E - Automatic Interference Reporting

Prov ide Jammer Tracks

Prov ide Jammer Strobes

Prov ide Interference

Reports
Prov ide Area with Plot

Concentration

Prov ide Clutter

Assessment

Register Interest

ActivityFinal

C
M

S
S

u
b

s
y

s
te

m

This diagram is valid

for any of the Plot and

Track services depicted

on this diagram in lieu

of the Provide

interference report

container.

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Interface

Connection

Successful

Prov ide interference

report container

[Interest Deregistered]

[Interest Registered]

[Continue to publish interference reports and tracks]

[Deregister interest]

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.19 Compliance Level 3E - Requested Interference Reports (Activity diagram)

These interfaces provide for reporting sensor specified and actual performance in addition to interference
related information.

7.3 Common_Types
Parent Package: Domain_Model
This package contains the types that are common to several areas of the model. Most of the content is in
three sub-packages: Coordinates_and_Positions, Shape_Model and Requests. General types are
captured at the top level.

 act Compliance Lev el 3E - Requested Interference Reports

Prov ide Jamming Effect

Assessment

Prov ide Nominal

Performance

Prov ide Performance

Assessment

Prov ide Area with Plot

Concentration

Prov ide Clutter

Assessment

ActivityFinal

Subsystem is

ONLINE

C
M

S

CMS and Subsystem

partitions indicate the

initiator of the service

only.For example a service

initiated by the CMS may

include a response from

the subsystem even

though the service is not in

the Subsystem swimlane.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.20 Domain Model (Logical diagram)

7.3.1 anonymous_blob_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLSequence octet
Package: Common_Types
Representation for a general binary type
Length = 1024

7.3.2 identity_type

Type: IDLEnum
Package: Common_Types
Identity according to STANAG 5516.

Table 7.1 - Attributes of IDLEnum identity_type

Attribute Notes

 PENDING

 UNKNOWN

 ASSUMED_FRIEND

 FRIEND

 NEUTRAL

 SUSPECT

 HOSTILE

7.3.3 subsystem_id_type

Type: IDLTypeDef unsigned short
Package: Common_Types
This type provides a unique id for different subsystems. Subsystem ids shall be allocated by the platform
integrator. Subsystem id equal to zero is reserved to imply applicability to all and any subsystem.
BaseType = unsigned short

7.3.4 system_track_id_type

Type: IDLTypeDef unsigned long
Package: Common_Types
System Track Identification

7.3.5 time_type

Type: IDLTypeDef TimeT
Package: Common_Types
based on start of Gregorian calendar (1582-10-15T 00:00UTC)
unit: 100 nano seconds
i.a.w CORBA Time Service Time T

7.3.6 System_Track

Parent Package: Common_Types

Issue OARIS 64 System Track should have a key

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.21 Domain Model (Logical diagram)

7.3.6.1 system_track_type

Type: IDLStruct
Package: System_Track
System track information is limited to information required by a subsystem for missile guidance.

Issue OARIS 64 System Track should have a key

Table 7.2 - Attributes of IDLStruct system_track_type

 class Domain Model

«idlStruct»

system_track_type

+ system_track_number: system_track_id_type

+ simulated: boolean

+ time_of_information: time_type

+ position_coordinate_system: coordinate_specification_type

+ position: position_coordinate_type

+ velocity_coordinate_system: coordinate_specification_type

+ velocity: velocity_coordinate_type

+ position_accuracy_coordinate_system: coordinate_specification_type

+ position_accuracy: position_accuracy_coordinate_type

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ max_range_limit: range_coordinate_type [0..1]

 class Domain Model

«idlStruct»

system_track_type

+ simulated: boolean

+ time_of_information: time_type

+ position_coordinate_system: coordinate_specification_type

+ position: position_coordinate_type

+ velocity_coordinate_system: coordinate_specification_type

+ velocity: velocity_coordinate_type

+ position_accuracy_coordinate_system: coordinate_specification_type

+ position_accuracy: position_accuracy_coordinate_type

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ max_range_limit: range_coordinate_type [0..1]

«key»

+ system_track_number: system_track_id_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

«key» system_track_number system_track_id_type

 simulated boolean

 time_of_information time_type

 position_coordinate_system
coordinate_specification_type

 position position_coordinate_type

 velocity_coordinate_system
coordinate_specification_type

 velocity velocity_coordinate_type

 position_accuracy_coordinate_system
coordinate_specification_type

 position_accuracy position_accuracy_coordinate_type

 velocity_accuracy_coordinate_system
coordinate_specification_type [0..1]

 velocity_accuracy velocity_accuracy_coordinate_type

[0..1]

 max_range_limit range_coordinate_type [0..1]

7.3.7 Coordinates_and_Positions

Parent Package: Common_Types
Definitions of types to describe positions, in accordance with the ISO 19111 abstract model.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.22 Accuracies (Logical diagram)

Issue OARIS 7 Origin for WGS84 and ECEF

 class Accuracies

«idlStruct»

wgs84_v elocity_accuracy_type

+ course_accuracy: course_type

+ angle_of_climb_accuracy: angle_of_climb_type [0..1]

+ speed_accuracy: speed_type

«idlStruct»

wgs84_position_accuracy_type

+ altitude_accuracy: altitude_coordinate_type [0..1]

+ latitude_accuracy: latitude_coordinate_type

+ longitude_accuracy: longitude_coordinate_type

«idlStruct»

polar_v elocity_accuracy_type

+ azimuth_rate_accuracy: azimuth_rate_type

+ elevation_rate_accuracy: elevation_rate_type [0..1]

+ range_rate_accuracy: range_rate_type [0..1]

«idlStruct»

polar_position_accuracy_type

+ azimuth_accuracy: azimuth_coordinate_type

+ elevation_accuracy: elevation_coordinate_type [0..1]

+ range_accuracy: range_coordinate_type [0..1]

«idlStruct»

cartesian_position_accuracy_type

+ x_coordinate_accuracy: cartesian_coordinate_type

+ y_coordinate_accuracy: cartesian_coordinate_type

+ z_coordinate_accuracy: cartesian_coordinate_type [0..1]

«idlStruct»

cartesian_v elocity_accuracy_type

+ x_dot_accuracy: cartesian_velocity_component_type

+ y_dot_accuracy: cartesian_velocity_component_type

+ z_dot_accuracy: cartesian_velocity_component_type [0..1]

«idlUnion»

position_accuracy_coordinate_type

«idlCase»

+ cartesian_position_accuracy: cartesian_position_accuracy_type

+ polar_position_accuracy: polar_position_accuracy_type

+ wgs84_position_accuracy: wgs84_position_accuracy_type

notes

To offer flexibil ity, three variants of coordinate system

representation are supported - corresponding to the

coordinate_kind_type enumerate. An implementation should

support one kind for each relevant interface as defined by the

coordinate_specification_type value, and it should only send data

of that variant and it should check that all data received is of that

variant. It should not implement conversion of data in an

unexpected variant. Receipt of such data constitutes an error in the

operation of the interface.

«idlUnion»

v elocity_accuracy_coordinate_type

«idlCase»

+ cartesian_velocity_accuracy: cartesian_velocity_accuracy_type

+ polar_velocity_accuracy: polar_velocity_accuracy_type

+ wgs84_velocity_accuracy: wgs84_velocity_accuracy_type

notes

To offer flexibil ity, three variants of coordinate system

representation are supported - corresponding to the

coordinate_kind_type enumerate. An implementation should

support one kind for each relevant interface as defined by the

coordinate_specification_type value, and it should only send data

of that variant and it should check that all data received is of that

variant. It should not implement conversion of data in an

unexpected variant. Receipt of such data constitutes an error in

the operation of the interface.

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Coordinates and Positions

«idlUnion»

position_coordinate_type

«idlCase»

+ cartesian_position: cartesian_position_type

+ polar_position: polar_position_type

+ wgs84_position: wgs84_position_type

notes

To offer flexibil ity, three variants of coordinate system representation are supported -

corresponding to the coordinate_kind_type enumerate. An implementation should support

one kind for each relevant interface as defined by the coordinate_specification_type

value, and it should only send data of that variant and it should check that all data

received is of that variant. It should not implement conversion of data in an unexpected

variant. Receipt of such data constitutes an error in the operation of the interface.

«idlStruct»

cartesian_position_type

+ x_coordinate: cartesian_coordinate_type

+ z_coordinate: cartesian_coordinate_type [0..1]

+ y_coordinate: cartesian_coordinate_type

«idlStruct»

polar_position_type

+ azimuth_coordinate: azimuth_coordinate_type

+ elevation_coordinate: elevation_coordinate_type [0..1]

+ range_coordinate: range_coordinate_type [0..1]

«idlStruct»

wgs84_position_type

+ altitude_coordinate: altitude_coordinate_type [0..1]

+ latitude_coordinate: latitude_coordinate_type

+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»

range_coordinate_type

tags

Range = 0 .. 1 e7

Resolution = 1

Unit = m

double

«idlTypedef»

azimuth_coordinate_type

tags

Range = 0 .. 2 pi

Resolution = 0.0001

Unit = rad

double

«idlTypedef»

elev ation_coordinate_type

tags

Range = -pi / 2 .. pi / 2

Resolution = 0.0001

Unit = rad

double

«idlTypedef»

latitude_coordinate_type

tags

Range = -pi / 2 .. pi / 2

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

longitude_coordinate_type

tags

Range = -pi .. pi

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

altitude_coordinate_type

tags

Range = -1 e4 .. 1 e6

Resolution = 1

Unit = m

«idlEnum»

coordinate_origin_type

«enum»

+ PLATFORM_REFERENCE_POINT

+ SENSOR_REFERENCE_POINT

+ ABSOLUTE_REFERENCE_POINT

«idlEnum»

coordinate_orientation_type

«enum»

+ NORTH_HORIZONTAL

+ NORTH_DOWN

+ EAST_NORTH_UP

+ EAST_NORTH_DOWN

+ NORTH_EAST_UP

+ NORTH_EAST_DOWN

+ EARTH_CENTRED

+ LAT_LONG_HEIGHT

+ STERN_KEEL

+ STERN_DECK_LEVEL

+ STERN_STARBOARD_MAST

+ STERN_STARBOARD_KEEL

«idlEnum»

coordinate_kind_type

«enum»

+ CARTESIAN

+ POLAR

+ WGS84

double

«idlTypedef»

cartesian_coordinate_type

tags

Range = -1 e7 .. 1 e7

Resolution = 1

Unit = m

«idlStruct»

coordinate_specification_type

+ kind: coordinate_kind_type

+ orientation: coordinate_orientation_type

+ origin: coordinate_origin_type

notes

Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.

Each attribute may be fixed by the standard to a particular value, or set to NEGOTIATED.

Negotiation means that the CMS and Subsystem are configured to use a particular value

on a platform instantiation basis. This is verified by both CMS and Subsystem software as

part of service availabil ity verification.

Choice of SI units and double base type reflects the use of

broadest international standard and a flexible representation

(it may represent very large and very small distances with

equal precision). It is noted that there are other military

international standards (e.g. STANAGs), which sometimes

make different choices. However, these often reflect pressures

to represent data in the most compact format - e.g. legacy

systems or secure wireless communication.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.23 Coordinates and Positions (Logical diagram)

 class Coordinates and Positions

«idlUnion»

position_coordinate_type

«idlCase»

+ cartesian_position: cartesian_position_type

+ polar_position: polar_position_type

+ wgs84_position: wgs84_position_type

notes

To offer flexibil ity, three variants of coordinate system representation are supported -

corresponding to the coordinate_kind_type enumerate. An implementation should support

one kind for each relevant interface as defined by the coordinate_specification_type

value, and it should only send data of that variant and it should check that all data

received is of that variant. It should not implement conversion of data in an unexpected

variant. Receipt of such data constitutes an error in the operation of the interface.

«idlStruct»

cartesian_position_type

+ x_coordinate: cartesian_coordinate_type

+ z_coordinate: cartesian_coordinate_type [0..1]

+ y_coordinate: cartesian_coordinate_type

«idlStruct»

polar_position_type

+ azimuth_coordinate: azimuth_coordinate_type

+ elevation_coordinate: elevation_coordinate_type [0..1]

+ range_coordinate: range_coordinate_type [0..1]

«idlStruct»

wgs84_position_type

+ altitude_coordinate: altitude_coordinate_type [0..1]

+ latitude_coordinate: latitude_coordinate_type

+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»

range_coordinate_type

tags

Range = 0 .. 1 e7

Resolution = 1

Unit = m

double

«idlTypedef»

azimuth_coordinate_type

tags

Range = 0 .. 2 pi

Resolution = 0.0001

Unit = rad

double

«idlTypedef»

elev ation_coordinate_type

tags

Range = -pi / 2 .. pi / 2

Resolution = 0.0001

Unit = rad

double

«idlTypedef»

latitude_coordinate_type

tags

Range = -pi / 2 .. pi / 2

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

longitude_coordinate_type

tags

Range = -pi .. pi

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

altitude_coordinate_type

tags

Range = -1 e4 .. 1 e6

Resolution = 1

Unit = m

«idlEnum»

coordinate_origin_type

«enum»

+ PLATFORM_REFERENCE_POINT

+ SENSOR_REFERENCE_POINT

+ ABSOLUTE_REFERENCE_POINT

+ EARTH_REFERENCED

«idlEnum»

coordinate_orientation_type

«enum»

+ NORTH_HORIZONTAL

+ NORTH_DOWN

+ EAST_NORTH_UP

+ EAST_NORTH_DOWN

+ NORTH_EAST_UP

+ NORTH_EAST_DOWN

+ EARTH_CENTRED

+ LAT_LONG_HEIGHT

+ STERN_KEEL

+ STERN_DECK_LEVEL

+ STERN_STARBOARD_MAST

+ STERN_STARBOARD_KEEL

«idlEnum»

coordinate_kind_type

«enum»

+ CARTESIAN

+ POLAR

+ WGS84

double

«idlTypedef»

cartesian_coordinate_type

tags

Range = -1 e7 .. 1 e7

Resolution = 1

Unit = m

«idlStruct»

coordinate_specification_type

+ kind: coordinate_kind_type

+ orientation: coordinate_orientation_type

+ origin: coordinate_origin_type

notes

Specifies the interpretation of position_coordinate_type and velocity_coordinate_type.

Each attribute may be fixed by the standard to a particular value, or set to NEGOTIATED.

Negotiation means that the CMS and Subsystem are configured to use a particular value

on a platform instantiation basis. This is verified by both CMS and Subsystem software as

part of service availabil ity verification.

Choice of SI units and double base type reflects the use of

broadest international standard and a flexible representation

(it may represent very large and very small distances with

equal precision). It is noted that there are other military

international standards (e.g. STANAGs), which sometimes

make different choices. However, these often reflect pressures

to represent data in the most compact format - e.g. legacy

systems or secure wireless communication.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.24 Covariance and Qualification (Logical diagram)

 class Cov ariance and Qualification

«idlStruct»

azimuth_qualification_type

+ spread: azimuth_coordinate_type [0..1]

+ accuracy: azimuth_coordinate_type

«idlStruct»

elev ation_qualification_type

+ spread: elevation_coordinate_type [0..1]

+ accuracy: elevation_coordinate_type

«idlStruct»

range_qualification_type

+ spread: range_coordinate_type [0..1]

+ accuracy: range_coordinate_type

«idlUnion»

cov ariance_matrix_type

«idlCase»

+ diagonal_covariance_matrix: diagonal_covariance_matrix_type

+ full_covariance_matrix: full_covariance_matrix_type

«idlStruct»

full_cov ariance_matrix_type

+ xx_variance: float

+ xy_variance: float

+ xz_variance: float

+ xvx_variance: float

+ xvy_variance: float

+ xvz_variance: float

+ yy_variance: float

+ yz_variance: float

+ yvx_variance: float

+ yvy_variance: float

+ yvz_variance: float

+ zz_variance: float

+ zvx_variance: float

+ zvy_variance: float

+ zvz_variance: float

+ vxvx_variance: float

+ vxvy_variance: float

+ vxvz_variance: float

+ vyvy_variance: float

+ vyvz_variance: float

+ vzvz_variance: float

«idlStruct»

diagonal_cov ariance_matrix_type

+ xx_variance: float

+ yy_variance: float

+ zz_variance: float

+ vxvx_variance: float

+ vyvy_variance: float

+ vzvz_variance: float

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.25 Intervals (Logical diagram)

 class Interv als

«idlStruct»

azimuth_interv al_type

+ start: azimuth_coordinate_type

+ stop: azimuth_coordinate_type

«idlStruct»

elev ation_interv al_type

+ start: elevation_coordinate_type

+ stop: elevation_coordinate_type

«idlStruct»

range_interv al_type

+ start: range_coordinate_type

+ stop: range_coordinate_type

«idlStruct»

latitude_interv al_type

+ start: latitude_coordinate_type

+ stop: latitude_coordinate_type

«idlStruct»

longitude_interv al_type

+ start: longitude_coordinate_type

+ stop: longitude_coordinate_type

«idlStruct»

height_interv al_type

+ start: altitude_coordinate_type

+ stop: altitude_coordinate_type

«idlStruct»

absolute_duration_type

+ start: time_type

+ stop: time_type

«idlStruct»

cartesian_interv al_type

+ start: cartesian_coordinate_type

+ stop: cartesian_coordinate_type

unsigned long long

«idlTypedef»

duration_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.26 Time Derivatives (Logical diagram)

 class Time Deriv ativ es

double

«idlTypedef»

azimuth_rate_type

tags

Range = -100 .. 100

Resolution = 1 e-4

Unit = rad/s

double

«idlTypedef»

elev ation_rate_type

tags

Range = -100 .. 100

Resolution = 1 e-4

Unit = rad/s

double

«idlTypedef»

range_rate_type

tags

Range = 0.0 .. 1 e5

Resolution = 0.01

Unit = m/s

double

«idlTypedef»

course_type

tags

Range = 0 .. 2 pi

Resolution = 1 e-3

Unit = rad

double

«idlTypedef»

speed_type

tags

Range = 0.0 .. 1 e5

Resolution = 0.01

Unit = m/s

double

«idlTypedef»

angle_of_climb_type

tags

Range = -pi/2 .. pi/2

Resolution = 1 e-3

Unit = Rad

«idlUnion»

v elocity_coordinate_type

«idlCase»

+ cartesian_velocity: cartesian_velocity_type

+ polar_velocity: polar_velocity_type

+ wgs84_velocity: wgs84_velocity_type

notes

To offer flexibil ity, three variants of coordinate system representation are

supported - corresponding to the coordinate_kind_type enumerate. An

implementation should support one kind for each relevant service as defined by

the coordinate_specification_type value, and it should only send data of that

variant and it should check that all data received is of that variant. It should not

implement conversion of data in an unexpected variant. Receipt of such data

constitutes an error in the operation of the interface.

double

«idlTypedef»

cartesian_v elocity_component_type

tags

Range = -1 e5 .. 1 e5

Resolution = 0.01

Unit = m/s

«idlStruct»

cartesian_v elocity_type

+ x_dot: cartesian_velocity_component_type

+ y_dot: cartesian_velocity_component_type

+ z_dot: cartesian_velocity_component_type [0..1]

«idlStruct»

polar_v elocity_type

+ azimuth_rate: azimuth_rate_type

+ elevation_rate: elevation_rate_type [0..1]

+ range_rate: range_rate_type [0..1]

«idlStruct»

wgs84_v elocity_type

+ course: course_type

+ angle_of_climb: angle_of_climb_type [0..1]

+ speed: speed_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.27 World Coordinates and Positions (Logical diagram)

7.3.7.1 absolute_duration_type

Type: IDLStruct
Package: Coordinates_and_Positions
This class represents a duration fixed to an absolute point in time.

Table 7.3 - Attributes of IDLStruct absolute_duration_type

Attribute Notes

 start time_type

 stop time_type

7.3.7.2 altitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
For positive values, height above coordinate system ellipsoid, for negative values, depth below; measured
in metres.
See diagram note on choice of SI units
Range = -1 e4 .. 1 e6
Resolution = 1
Unit = m

7.3.7.3 angle_of_climb_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

 class World Coordinates and Positions

«idlStruct»

wgs84_position_type

+ altitude_coordinate: altitude_coordinate_type [0..1]

+ latitude_coordinate: latitude_coordinate_type

+ longitude_coordinate: longitude_coordinate_type

double

«idlTypedef»

latitude_coordinate_type

tags

Range = -pi / 2 .. pi / 2

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

longitude_coordinate_type

tags

Range = -pi .. pi

Resolution = 1 e-7

Unit = rad

double

«idlTypedef»

altitude_coordinate_type

Open Architecture Radar Interface Standard (OARIS), v1.0

The angle representing the direction of travel relative to the horizontal. Up is positive.
Range = -pi/2 .. pi/2
Resolution = 1 e-3
Unit = Rad

7.3.7.4 azimuth_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
Axis in the azimuth direction, i.e. horizontal angle from the associated coordinate system reference.
Radians, positive clockwise from above.
See diagram note on choice of SI units
Range = 0 .. 2 pi
Resolution = 0.0001
Unit = rad

7.3.7.5 azimuth_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.4 - Attributes of IDLStruct azimuth_interval_type

Attribute Notes

 start azimuth_coordinate_type

 stop azimuth_coordinate_type

7.3.7.6 azimuth_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.5 - Attributes of IDLStruct azimuth_qualification_type

Attribute Notes

 spread azimuth_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.

This attribute is optional. Not all sensors are capable of

measuring it.

 accuracy azimuth_coordinate_type The accuracy of the measurement; equal to one standard

deviation of uncertainty.

7.3.7.7 azimuth_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
radians per second
Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

7.3.7.8 cartesian_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
See diagram note on choice of SI units
Range = -1 e7 .. 1 e7
Resolution = 1
Unit = m

Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.9 cartesian_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.6 - Attributes of IDLStruct cartesian_interval_type

Attribute Notes

 start cartesian_coordinate_type

 stop cartesian_coordinate_type

7.3.7.10 cartesian_position_type

Type: IDLStruct
Package: Coordinates_and_Positions
Coordinates in a Cartesian reference frame as described by a coordinate specification object

Table 7.7 - Attributes of IDLStruct cartesian_position_type

Attribute Notes

 x_coordinate cartesian_coordinate_type

 z_coordinate cartesian_coordinate_type [0..1] Optional as some sensors are 2D (horizontal plane or no

elevation information)

 y_coordinate cartesian_coordinate_type

7.3.7.11 cartesian_velocity_component_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions

Range = -1 e5 .. 1 e5
Resolution = 0.01
Unit = m/s

7.3.7.12 cartesian_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.8 - Attributes of IDLStruct cartesian_velocity_type

Attribute Notes

 x_dot cartesian_velocity_component_type

 y_dot cartesian_velocity_component_type

 z_dot cartesian_velocity_component_type [0..1]

7.3.7.13 coordinate_kind_type

Type: IDLEnum
Package: Coordinates_and_Positions

Table 7.9 - Attributes of IDLEnum coordinate_kind_type

Attribute Notes

«enum» CARTESIAN

«enum» POLAR

«enum» WGS84

7.3.7.14 coordinate_orientation_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLEnum
Package: Coordinates_and_Positions
This enumeration defines the set of coordinate systems, which compliant implementations may use. A
compliant implementation may not fully support all of these coordinate systems.

Issue OARIS 6 Inaccuracte documentation of enumerate in

coordinate_orientation_type

Table 7.10 - Attributes of IDLEnum coordinate_orientation_type

Attribute Notes

«enum» NORTH_HORIZONTAL Valid for Polar Coordinate Kind

Azimuth has origin (0.0) at North, positive clockwise,

measured in the horizontal plane

Elevation has origin (0.0) at the Horizontal, positive up,

measured in the vertical plane.

«enum» NORTH_DOWN Valid for Polar Coordinate Kind

Azimuth has origin (0.0) at North, clockwise positive,

measured in the horizontal plane

Elevation has origin (0.0) when pointing directly down,

and 180.0 degrees when pointing directly up, measured in

the vertical plane.

«enum» EAST_NORTH_UP Valid for Cartesian coordinate type

x is positive to the East

y is positive to the North

z is positive up

«enum» EAST_NORTH_DOWN Valid for Cartesian coordinate type

x is positive to the East

y is positive to the North

z is positive down

«enum» NORTH_EAST_UP Valid for Cartesian coordinate type

x is positive to the North

y is positive to the East

z is positive up

«enum» NORTH_EAST_DOWN Valid for Cartesian coordinate type

x is positive to the EastNorth

y is positive to the NorthEast

z is positive down

«enum» EARTH_CENTRED Cartesian system with origin at centre of the Earth

(absolute reference point)

x positive through Greenwich meridian

y positive through 90 degrees east (of Greenwich

meridian)

z positive through north pole

x & y are in the equatorial plane

«enum» LAT_LONG_HEIGHT WGS84 has unique well-defined orientation (NIMA

Technical Report TR8350.2)

«enum» STERN_KEEL Valid for Polar Coordinate Kind

This is a platform orientation relative frame

Azimuth has origin (0.0) in line with the ship's stern

(heading), measured anti-clockwise

Elevation has origin (0.0) when pointing directly down to

the keel (perpendicular to the current inclination of the

deck-level, not necessarily to the Earth's surface)

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

«enum» STERN_DECK_LEVEL Valid for Polar Coordinate Kind

This is a platform orientation relative frame

Azimuth has origin (0.0) in line with the ship's stern

(heading), measured anti-clockwise

Elevation has origin (0.0) when pointing parallel to the

deck-level (not necessarily parallel to the Earth's surface)

«enum» STERN_STARBOARD_MAST Valid for Cartesian coordinate type

This is a platform orientation relative frame

x is positive towards the stern (negative to bow)

y is positive to starboard (negative to port)

z is positive towards the mast (negative to keel)

«enum» STERN_STARBOARD_KEEL Valid for Cartesian coordinate type

This is a platform orientation relative frame

x is positive towards the stern (negative to bow)

y is positive to starboard (negative to port)

z is positive towards the keel (negative to mast)

7.3.7.15 coordinate_origin_type

Type: IDLEnum
Package: Coordinates_and_Positions

Issue OARIS 7 Origin for WGS84 and ECEF

Table 7.11 - Attributes of IDLEnum coordinate_origin_type

Attribute Notes

«enum» PLATFORM_REFERENCE_POINT The origin of the coordinate system is 'well known'

reference point for the platform (on which the CMS and

subsystem reside)

«enum» SENSOR_REFERENCE_POINT The origin for the coordinate system is the 'well known'

reference/datum point for the sensor, which is interacting

using the interface.

«enum» ABSOLUTE_REFERENCE_POINT The origin for the coordinate system is a fixed point in

Earth (WGS84) coordinates. This point is known to the

CMS and Subsystems using the interface by means

beyond the scope of the interface.

«enum» EARTH_REFERENCED This value signifies that the origin for the coordinate

system is well-defined with respect to the Earth by the

coordinate system. E.g. centre of the Earth for

Earth-Centred Earth-Fixed or the WGS84 spheroid for

WGS84

7.3.7.16 coordinate_specification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Specifies the interpretation of position_coordinate_type and velocity_coordinate_type. Each attribute may
be fixed by the standard to a particular value, or set to NEGOTIATED. Negotiation means that the CMS and
Subsystem are configured to use a particular value on a platform instantiation basis. This is verified by both
CMS and Subsystem software as part of service availability verification.

Table 7.12 - Attributes of IDLStruct coordinate_specification_type

Attribute Notes

 kind coordinate_kind_type

 orientation coordinate_orientation_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 origin coordinate_origin_type

7.3.7.17 course_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
The angle representing the direction of travel relative to North in the horizontal plane. Clockwise (facing
down) is positive.
Range = 0 .. 2 pi
Resolution = 1 e-3
Unit = rad

7.3.7.18 covariance_matrix_type

Type: IDLUnion
Package: Coordinates_and_Positions

Table 7.13 - Attributes of IDLUnion covariance_matrix_type

Attribute Notes

«idlCase» diagonal_covariance_matrix

diagonal_covariance_matrix_type

«idlCase» full_covariance_matrix

full_covariance_matrix_type

7.3.7.19 diagonal_covariance_matrix_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.14 - Attributes of IDLStruct diagonal_covariance_matrix_type

Attribute Notes

 xx_variance float

 yy_variance float

 zz_variance float

 vxvx_variance float

 vyvy_variance float

 vzvz_variance float

7.3.7.20 duration_type

Type: IDLTypeDef unsigned long long
Package: Coordinates_and_Positions
The length of a time interval (not fixed to an absolute point in time).
unit: 100 nano seconds

7.3.7.21 elevation_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
Axis in the direction of elevation, i.e. vertical angle from the associated coordinate system datum, radians,
positive up.
See diagram note on choice of SI units
Range = -pi / 2 .. pi / 2
Resolution = 0.0001
Unit = rad

Open Architecture Radar Interface Standard (OARIS), v1.0

7.3.7.22 elevation_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.15 - Attributes of IDLStruct elevation_interval_type

Attribute Notes

 start elevation_coordinate_type

 stop elevation_coordinate_type

7.3.7.23 elevation_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.16 - Attributes of IDLStruct elevation_qualification_type

Attribute Notes

 spread elevation_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.

This attribute is optional. Not all sensors are capable of

measuring it.

 accuracy elevation_coordinate_type The accuracy of the measurement; equal to one standard

deviation of uncertainty.

7.3.7.24 elevation_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
radians per second
Range = -100 .. 100
Resolution = 1 e-4
Unit = rad/s

7.3.7.25 full_covariance_matrix_type

Type: IDLStruct
Package: Coordinates_and_Positions
Full covariance matrix

Table 7.17 - Attributes of IDLStruct full_covariance_matrix_type

Attribute Notes

 xx_variance float

 xy_variance float

 xz_variance float

 xvx_variance float

 xvy_variance float

 xvz_variance float

 yy_variance float

 yz_variance float

 yvx_variance float

 yvy_variance float

 yvz_variance float

 zz_variance float

 zvx_variance float

 zvy_variance float

 zvz_variance float

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 vxvx_variance float

 vxvy_variance float

 vxvz_variance float

 vyvy_variance float

 vyvz_variance float

 vzvz_variance float

7.3.7.26 height_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.18 - Attributes of IDLStruct height_interval_type

Attribute Notes

 start altitude_coordinate_type

 stop altitude_coordinate_type

7.3.7.27 latitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
Degrees north (positive), south (negative) relative to coordinate system datum.
See diagram note on choice of SI units
Range = -pi / 2 .. pi / 2
Resolution = 1 e-7
Unit = rad

7.3.7.28 latitude_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.19 - Attributes of IDLStruct latitude_interval_type

Attribute Notes

 start latitude_coordinate_type

 stop latitude_coordinate_type

7.3.7.29 longitude_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
Degrees east (positive), west (negative) relative to coordinate system datum.
See diagram note on choice of SI units
Range = -pi .. pi
Resolution = 1 e-7
Unit = rad

7.3.7.30 longitude_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.20 - Attributes of IDLStruct longitude_interval_type

Attribute Notes

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 start longitude_coordinate_type

 stop longitude_coordinate_type

7.3.7.31 polar_position_type

Type: IDLStruct
Package: Coordinates_and_Positions
Coordinates in a polar reference frame as a described by a coordinate specification object

Table 7.21 - Attributes of IDLStruct polar_position_type

Attribute Notes

 azimuth_coordinate azimuth_coordinate_type

 elevation_coordinate elevation_coordinate_type

[0..1]

Optional as some sensors provide no elevation

information

 range_coordinate range_coordinate_type [0..1] Optional as some sensor provide no range information

(e.g. most passive sensors)

7.3.7.32 polar_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions
Velocity defined in a polar reference frame as a described by a coordinate specification object

Table 7.22 - Attributes of IDLStruct polar_velocity_type

Attribute Notes

 azimuth_rate azimuth_rate_type

 elevation_rate elevation_rate_type [0..1] Optional as some sensors provide no elevation

information

 range_rate range_rate_type [0..1] Optional as some sensor provide no range information

(e.g. most passive sensors)

7.3.7.33 position_accuracy_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as
defined by the coordinate_specification_type value, and it should only send data of that variant and it should
check that all data received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.

Table 7.23 - Attributes of IDLUnion position_accuracy_coordinate_type

Attribute Notes

«idlCase» cartesian_position_accuracy

cartesian_position_accuracy_type

«idlCase» polar_position_accuracy

polar_position_accuracy_type

«idlCase» wgs84_position_accuracy

wgs84_position_accuracy_type

7.3.7.34 position_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as
defined by the coordinate_specification_type value, and it should only send data of that variant and it should

Open Architecture Radar Interface Standard (OARIS), v1.0

check that all data received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.
case type = coordinate_kind_type

Table 7.24 - Attributes of IDLUnion position_coordinate_type

Attribute Notes

«idlCase» cartesian_position cartesian_position_type

«idlCase» polar_position polar_position_type

«idlCase» wgs84_position wgs84_position_type

7.3.7.35 range_coordinate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
Axis in range, i.e. linear distance from the coordinate system datum. Metres.
See diagram note on choice of SI units
Range = 0 .. 1 e7
Resolution = 1
Unit = m

7.3.7.36 range_interval_type

Type: IDLStruct
Package: Coordinates_and_Positions

Table 7.25 - Attributes of IDLStruct range_interval_type

Attribute Notes

 start range_coordinate_type

 stop range_coordinate_type

7.3.7.37 range_qualification_type

Type: IDLStruct
Package: Coordinates_and_Positions
Qualifies a measurement with attributes of accuracy and, if possible, variability.

Table 7.26 - Attributes of IDLStruct range_qualification_type

Attribute Notes

 spread range_coordinate_type [0..1] The spread of the measurement. The combined measures

of spread should encompass the full extent of the plot.

This attribute is optional. Not all sensors are capable of

measuring it.

 accuracy range_coordinate_type The accuracy of the measurement; equal to one standard

deviation of uncertainty.

7.3.7.38 range_rate_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
metres per second
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

7.3.7.39 speed_interval_type

Type: IDLStruct

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Coordinates_and_Positions
This class represents a range of speeds.

Table 7.27 - Attributes of IDLStruct speed_interval_type

Attribute Notes

 min speed_type The minimum speed.

 max speed_type The maximum speed.

7.3.7.40 speed_type

Type: IDLTypeDef double
Package: Coordinates_and_Positions
metres per second
Range = 0.0 .. 1 e5
Resolution = 0.01
Unit = m/s

7.3.7.41 velocity_accuracy_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant interface as
defined by the coordinate_specification_type value, and it should only send data of that variant and it should
check that all data received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.

Table 7.28 - Attributes of IDLUnion velocity_accuracy_coordinate_type

Attribute Notes

«idlCase» cartesian_velocity_accuracy

cartesian_velocity_accuracy_type

«idlCase» polar_velocity_accuracy

polar_velocity_accuracy_type

«idlCase» wgs84_velocity_accuracy

wgs84_velocity_accuracy_type

7.3.7.42 velocity_coordinate_type

Type: IDLUnion
Package: Coordinates_and_Positions
To offer flexibility, three variants of coordinate system representation are supported - corresponding to the
coordinate_kind_type enumerate. An implementation should support one kind for each relevant service as
defined by the coordinate_specification_type value, and it should only send data of that variant and it should
check that all data received is of that variant. It should not implement conversion of data in an unexpected
variant. Receipt of such data constitutes an error in the operation of the interface.
case type = coordinate_kind_type

Table 7.29 - Attributes of IDLUnion velocity_coordinate_type

Attribute Notes

«idlCase» cartesian_velocity cartesian_velocity_type

«idlCase» polar_velocity polar_velocity_type

«idlCase» wgs84_velocity wgs84_velocity_type

7.3.7.43 wgs84_position_type

Type: IDLStruct
Package: Coordinates_and_Positions
Coordinate in the WGS84 reference system.

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.30 - Attributes of IDLStruct wgs84_position_type

Attribute Notes

 altitude_coordinate altitude_coordinate_type [0..1] Optional as some sensors as 2D (work in horizontal

plane) and some other functions do not supply or require

this information either.

 latitude_coordinate latitude_coordinate_type

 longitude_coordinate longitude_coordinate_type

7.3.7.44 wgs84_velocity_type

Type: IDLStruct
Package: Coordinates_and_Positions
Velocity defined in the WGS84 grid system

Table 7.31 - Attributes of IDLStruct wgs84_velocity_type

Attribute Notes

 course course_type

 angle_of_climb angle_of_climb_type [0..1] Optional as some sensors as 2D (work in horizontal

plane) and some other functions do not supply or require

this information either.

 speed speed_type

7.3.7.45 cartesian_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of Cartesian position

Table 7.32 - Attributes of IDLStruct cartesian_position_accuracy_type

Attribute Notes

 x_coordinate_accuracy cartesian_coordinate_type

 y_coordinate_accuracy cartesian_coordinate_type

 z_coordinate_accuracy cartesian_coordinate_type

[0..1]

Optional as some sensors are 2D (horizontal plane or no

elevation information)

7.3.7.46 cartesian_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of Cartesian velocity

Table 7.33 - Attributes of IDLStruct cartesian_velocity_accuracy_type

Attribute Notes

 x_dot_accuracy cartesian_velocity_component_type

 y_dot_accuracy cartesian_velocity_component_type

 z_dot_accuracy cartesian_velocity_component_type

[0..1]

Optional as some sensors are 2D (horizontal plane or no

elevation information)

7.3.7.47 polar_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of polar position

Table 7.34 - Attributes of IDLStruct polar_position_accuracy_type

Attribute Notes

 azimuth_accuracy azimuth_coordinate_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 elevation_accuracy elevation_coordinate_type [0..1] Optional as some sensors provide no elevation

information

 range_accuracy range_coordinate_type [0..1] Optional as some sensor provide no range information

(e.g. most passive sensors)

7.3.7.48 polar_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of polar velocity

Table 7.35 - Attributes of IDLStruct polar_velocity_accuracy_type

Attribute Notes

 azimuth_rate_accuracy azimuth_rate_type

 elevation_rate_accuracy elevation_rate_type [0..1] Optional as some sensors provide no elevation

information

 range_rate_accuracy range_rate_type [0..1] Optional as some sensor provide no range information

(e.g. most passive sensors)

7.3.7.49 wgs84_position_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of a WGS84 position

Table 7.36 - Attributes of IDLStruct wgs84_position_accuracy_type

Attribute Notes

 altitude_accuracy altitude_coordinate_type [0..1] Optional as some sensors as 2D (work in horizontal

plane) and some other functions do not supply or require

this information either.

 latitude_accuracy latitude_coordinate_type

 longitude_accuracy longitude_coordinate_type

7.3.7.50 wgs84_velocity_accuracy_type

Type: IDLStruct
Package: Coordinates_and_Positions
The accuracy of the components of a WGS84 velocity

Table 7.37 - Attributes of IDLStruct wgs84_velocity_accuracy_type

Attribute Notes

 course_accuracy course_type

 angle_of_climb_accuracy angle_of_climb_type

[0..1]

Optional as some sensors as 2D (work in horizontal

plane) and some other functions do not supply or require

this information either.

 speed_accuracy speed_type

7.3.8 Shape_Model

Parent Package: Common_Types

Issue OARIS 41 C++ for general_polar_volume_type does not compile

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Domain Model

«idlStruct»

figure_ref_point

+ position: position_coordinate_type

«idlStruct»

truncated_polar_v olume

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ centre_elevation: elevation_coordinate_type

+ delta_elevation: elevation_coordinate_type

+ inner_range: range_coordinate_type

+ outer_range: range_coordinate_type

«idlStruct»

polar_v olume

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ centre_elevation: elevation_coordinate_type

+ delta_elevation: elevation_coordinate_type

«idlStruct»

sector

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

«idlStruct»

truncated_sector

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ inner_range: range_coordinate_type

+ outer_range: range_coordinate_type

«idlUnion»

general_polar_v olume_type

«idlCase»

+ sector: sector

+ polar_volume: polar_volume

+ truncated_sector: truncated_sector

+ truncated_polar_volume: truncated_polar_volume

+origin

0..1

+origin
0..1 +origin

0..1

+origin

0..1

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Domain Model

«idlStruct»

figure_ref_point

+ position: position_coordinate_type

«idlStruct»

truncated_polar_v olume_type

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ centre_elevation: elevation_coordinate_type

+ delta_elevation: elevation_coordinate_type

+ inner_range: range_coordinate_type

+ outer_range: range_coordinate_type

«idlStruct»

polar_v olume_type

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ centre_elevation: elevation_coordinate_type

+ delta_elevation: elevation_coordinate_type

«idlStruct»

sector_type

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

«idlStruct»

truncated_sector_type

+ centre_bearing: azimuth_coordinate_type

+ delta_bearing: azimuth_coordinate_type

+ inner_range: range_coordinate_type

+ outer_range: range_coordinate_type

«idlUnion»

general_polar_v olume_type

«idlCase»

+ sector: sector_type

+ polar_volume: polar_volume_type

+ truncated_sector: truncated_sector_type

+ truncated_polar_volume: truncated_polar_volume_type

+origin

0..1

+origin
0..1

+origin

0..1

+origin

0..1

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.28 Domain Model (Logical diagram)

7.3.8.1 figure_ref_point

Type: IDLStruct
Package: Shape_Model
A figure_ref_point specifies a reference point for a figure.
This reference point is a mathematically meaningful point of the figure. For a circle it is the centre of the
circle, for a polygon it is the centre of gravity of the polygon, etc.

When rotating the figure, the figure_ref_point acts as the rotation point.

When a figure is not slaved to a track its figure_ref_point shall be mapped on a (moving) geo point.
When the figure is slaved to an object (track, point) its figure_ref_point shall be mapped on an offset
position which is relative to the master object.

Table 7.38 - Attributes of IDLStruct figure_ref_point

Attribute Notes

 position position_coordinate_type

7.3.8.2 general_polar_volume_type

Type: IDLUnion
Package: Shape_Model
This class allow definition of a volume in space, bounded by standard polar coordinates (azimuth, elevation
and range). The different options allow the dimension of either range, elevation or both to be omitted.

Issue OARIS 41 C++ for general_polar_volume_type does not compile

Table 7.39 - Attributes of IDLUnion general_polar_volume_type

Attribute Notes

«idlCase» sector sector_type The general polar volume is a sector

«idlCase» polar_volume polar_volume_type The general polar volume is a polar volume

«idlCase» truncated_sector truncated_sector_type The general polar volume is a truncated sector

«idlCase» truncated_polar_volume

truncated_polar_volume_type

The general polar volume is a truncated polar volume.

7.3.8.3 polar_volume_type

Type: IDLStruct
Package: Shape_Model
A polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its centre bearing
and centre elevation, its bearing delta and elevation delta.
The origin is the figure reference point of the Polar Volume.

Table 7.40 - Attributes of IDLStruct polar_volume_type

Attribute Notes

 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate

system (true north, heading/course) and the centre

bearing line of the volume.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a

specified centre bearing line.

 centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured

counterclockwise between the horizontal plane and the

centre elevation line of the volume.

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side of

a specified centre elevation line.

7.3.8.4 sector_type

Type: IDLStruct
Package: Shape_Model
A sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its bearing
delta, that together define the sector.
The origin is the figure reference point of the sector.
In case the sector is north oriented, the centre bearing is specified with respect to true north; otherwise it is
specified with respect to the object's (own ship/other track, point) heading/course.

Table 7.41 - Attributes of IDLStruct sector_type

Attribute Notes

 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate

system (true north, heading/course) and the centre

bearing line of the sector.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a

specified centre bearing line.

7.3.8.5 truncated_polar_volume_type

Type: IDLStruct
Package: Shape_Model
A truncated_polar_volume specifies a 3D volume based on a horizontal plane by means of its origin, its
centre bearing and centre elevation, its bearing delta and elevation delta, its inner range and outer range

Table 7.42 - Attributes of IDLStruct truncated_polar_volume_type

Attribute Notes

 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate

system (true north, heading/course) and the centre

bearing line of the volume.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a

specified centre bearing line.

 centre_elevation elevation_coordinate_type This attribute specifies the vertical angle measured

counterclockwise between the horizontal plane and the

centre elevation line of the volume.

 delta_elevation elevation_coordinate_type This attribute specifies the elevation delta on each side of

a specified centre elevation line.

 inner_range range_coordinate_type This attribute specifies the range that limits a volume; i.e.

the minimum distance from the volume's origin.

 outer_range range_coordinate_type This attribute specifies the range that limits a volume; i.e.

the maximum distance from the volume's origin.

7.3.8.6 truncated_sector_type

Type: IDLStruct sector_type
Package: Shape_Model
A truncated_sector specifies a 2D area in a horizontal plane by means of its origin, its centre bearing with its
bearing delta, and its inner range and outer range, that together define the truncated sector.
The origin is the figure reference point of the truncated sector.
In case the truncated sector is north oriented, the centre bearing is specified with respect to true north;
otherwise (object oriented) it is specified with respect to the object's (own ship/other track, point)

Open Architecture Radar Interface Standard (OARIS), v1.0

heading/course.

Table 7.43 - Attributes of IDLStruct truncated_sector_type

Attribute Notes

 centre_bearing azimuth_coordinate_type This attribute specifies the horizontal angle measured

clockwise between the Y-axis of the relevant coordinate

system (true north, heading/course) and the centre

bearing line of the truncated sector.

 delta_bearing azimuth_coordinate_type This attribute specifies the bearing delta on each side of a

centre bearing line.

 inner_range range_coordinate_type This attribute specifies the range that limits a truncated

sector; i.e. the minimum distance from the truncated

sector's origin.

 outer_range range_coordinate_type This attribute specifies the range that limits a truncated

sector; i.e. the maximum distance from the truncated

sector's origin.

7.3.9 Requests

Parent Package: Common_Types
This package contains common operations and associated parameters which are used by multiple
interfaces. This includes the operation to acknowledge a CMS request as accepted or denied, as well as an
operation to report errors while processing an accepted CMS request.

Issue OARIS 45 Request_ack_type/error_reason_type/denial_reason_type needs

more identifying information

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Domain Model

unsigned long long

«idlTypedef»

request_id_type

«idlInterface»

common_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack_type) : void

+ receive_error(request_id_type, error_reason_type) : void

string

«idlTypedef»

error_reason_type

tags

Length = 40

«idlStruct»

request_ack_type

+ accepted: boolean

string

«idlTypedef»

denial_reason_type

tags

Length = 40

0..1

+rejection

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.29 Domain Model (Logical diagram)

7.3.9.1 denial_reason_type

Type: IDLTypeDef string
Package: Requests
String which indicates rationale for rejection of the request. Is not valid when the request has been
accepted.
Length = 40

Issue OARIS 45 Request_ack_type/error_reason_type/denial_reason_type needs

more identifying information

7.3.9.2 denial_type

Type: IDLStruct
Package: Requests
Struct used within the receive_acknowledgement operation to provide information on (one of the reasons)
why a request has been rejected.

Table 7.44 - Attributes of IDLStruct denial_type

Attribute Notes

 reason denial_reason_type textual explanation of (one of) the reasons for rejection

 related_parameter parameter_reference_type [0..*] A reference to the parameter or parameters that relate to

the reason for rejection. If no related_parameters are

supplied the rejection relates to the whole request.

7.3.9.27.3.9.3 error_reason_type

 class Domain Model

unsigned long long

«idlTypedef»

request_id_type

«idlInterface»

common_use_case_interface

+ receive_acknowledgement(request_id_type, request_ack_type) : void

+ receive_error(request_id_type, error_reason_type) : void

string

«idlTypedef»

error_reason_type

tags

Length = 40

«idlStruct»

request_ack_type

+ accepted: boolean

string

«idlTypedef»

denial_reason_type

tags

Length = 40

«idlStruct»

denial_type

+ reason: denial_reason_type

+ related_parameter: parameter_reference_type [0..*]

string

«idlTypedef»

parameter_reference_type

tags

Length = 64

+rejection 0..1

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLTypeDef string
Package: Requests
A string which gives an indication of the error associated with processing of the request.
Length = 40

Issue OARIS 45 Request_ack_type/error_reason_type/denial_reason_type needs

more identifying information

7.3.9.4 parameter_reference_type

Type: IDLTypeDef string
Package: Requests
A string which refers to a parameter in a request using an implementation specific notation.
Length = 64

7.3.9.37.3.9.5 request_ack_type

Type: IDLStruct
Package: Requests
Struct used within the receive_acknowledgement operation to indicate acceptance or rejection (which
includes rationale).

Table 7.45 - Attributes of IDLStruct request_ack_type

Attribute Notes

 accepted boolean Attribute to indicate whether a request has been accepted

(1) or rejected (0).

7.3.9.47.3.9.6 request_id_type

Type: IDLTypeDef unsigned long long
Package: Requests
The purpose of the request_id is to uniquely relate responses of the subsystem (server) to requests of the
CMS (client). The request_id is set by the client. It is the responsibility of the client to specify a system-wide
unique request_id (e.g. based on a combination of client id and a sequence number / time of request).

7.3.9.57.3.9.7 common_use_case_interface

Type: IDLInterface
Package: Requests
Interface which includes operations common to all CMS interfaces.

Table 7.220 - Methods of IDLInterface common_use_case_interface

Method Notes Parameters

receive_acknowledgement() This operation is used by the

subsystem to indicate whether it has

accepted or rejected a request from

the CMS.

request_id_type request_id

request_ack_type request_ack

receive_error() This operation is used by the

subsystem to indicate an error in

processing a request.

request_id_type request_id

error_reason_type error_reason

7.4 Subsystem_Domain
Parent Package: Domain_Model
This package contains the Domain Models for the Encyclopaedic Support, Extended Subsystem Control,
Subsystem Control, Recording and Replay, and Simulation Support services.

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.1 Encyclopaedic_Support

Parent Package: Subsystem_Domain

Figure 7.30 Domain Model (Logical diagram)

7.4.1.1 data_descriptor_type

Type: IDLTypeDef string
Package: Encyclopaedic_Support
Standard description of the encyclopaedic data set
Length = 60

7.4.1.2 url_type

Type: IDLTypeDef string
Package: Encyclopaedic_Support
Representation of a Uniform Resource Locator see www.w3.org
Length = 255

7.4.2 Extended_Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Extended Subsystem Control service.

 class Domain Model

string

«idlTypedef»

data_descriptor_type

tags

Length = 60

string

«idlTypedef»

url_type

tags

Length = 255

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.31 Domain Model (Logical diagram)

7.4.2.1 configuration_url_type

Type: IDLTypeDef string
Package: Extended_Subsystem_Control
String which provides a url location for configuration data.
Length = 255

7.4.2.2 offline_test_result_details_type

Type: IDLTypeDef string
Package: Extended_Subsystem_Control
Subsystem specific detailed test results
Length = 4096

7.4.2.3 offline_test_result_type

Type: IDLEnum
Package: Extended_Subsystem_Control
Used to return the test results: failed, partial_pass or failed

Table 7.46 - Attributes of IDLEnum offline_test_result_type

Attribute Notes

 FAILED A number of tests were not successful, such that the

subsystem exceeded its failure threshold. Detailed

information is available upon request.

 PARTIAL_PASS A number of tests were not successful, but the subsystem

did not exceed its failure threshold. Detailed information

is available upon request.

 PASSED All tests were successful.

7.4.2.4 offline_test_type

 class Domain Model

string

«idlTypedef»

configuration_url_type

tags

Length = 255

«idlEnum»

offline_test_result_type

+ FAILED

+ PARTIAL_PASS

+ PASSED

string

«idlTypedef»

offline_test_type

string

«idlTypedef»

offline_test_result_details_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLTypeDef string
Package: Extended_Subsystem_Control
A subsystem specific string identifying the required test type.
Length = 255

7.4.3 Recording_and_Replay

Parent Package: Subsystem_Domain
Defines the domain model for the Recording and Replay interfaces.

Figure 7.32 Domain Model (Logical diagram)

7.4.3.1 actual_time_type

Type: IDLTypeDef time_type
Package: Recording_and_Replay
The current time (time of day). Used to indicate when playback should start. This allows synchronisation of
playback from different subsystems.

7.4.3.2 change_threshold_type

 class Domain Model

long

«idlTypedef»

recording_id_type

«idlStruct»

recording_descriptor_type

+ change_threshold: change_threshold_type

+ rate: rate_type

+ record_on_change: record_on_change_type

«idlStruct»

recorded_data_type

+ recorded_value: string

+ time_stamp: time_type

«idlStruct»

recording_set_type

«idlStruct»

replay_set_type

«idlStruct»

recording_type

float

«idlTypedef»

replay_speed_type

time_type

«idlTypedef»

actual_time_type

time_type

«idlTypedef»

recorded_time_type

«idlStruct»

parameter_type

+ parameter: string

float

«idlTypedef»

change_threshold_type

float

«idlTypedef»

rate_type

boolean

«idlTypedef»

record_on_change_type

+recording_id
1

+recording_descriptor 1..*
+recorded_data 1..*

+parameter 1..*

{in an associated

recording_set}

+parameter 1 +parameter1

{from the associated recording_set}

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLTypeDef float
Package: Recording_and_Replay
The amount by which a parameter shall change in order to be recorded, when recording on change

7.4.3.3 parameter_type

Type: IDLStruct
Package: Recording_and_Replay
Identified the parameter to be recorded

Table 7.47 - Attributes of IDLStruct parameter_type

Attribute Notes

 parameter string

7.4.3.4 rate_type

Type: IDLTypeDef float
Package: Recording_and_Replay
Defined the rate at which the parameter is to be recorded for periodic recording

7.4.3.5 record_on_change_type

Type: IDLTypeDef boolean
Package: Recording_and_Replay
Boolean specifying record on change (true) or periodic (false)

7.4.3.6 recorded_data_type

Type: IDLStruct
Package: Recording_and_Replay
Data recorded against the specified parameter

Table 7.48 - Attributes of IDLStruct recorded_data_type

Attribute Notes

 recorded_value string This needs to reference allowable values defined by the

possible recording parameters - see 'recording

parameters'.

 time_stamp time_type

7.4.3.7 recorded_time_type

Type: IDLTypeDef time_type
Package: Recording_and_Replay
The time in a recording. This is used to indicate the position in the recording at which playback should start.

7.4.3.8 recording_descriptor_type

Type: IDLStruct
Package: Recording_and_Replay
Specifies the recording characteristics required for each parameter

Table 7.49 - Attributes of IDLStruct recording_descriptor_type

Attribute Notes

 change_threshold change_threshold_type When record_on_change is true, any change greater than

the change_threshold from the last recorded value shall

be recorded. This only applies for numeric quantities i.e.

not enumerated types, and is ignored otherwise.

 rate rate_type Specifies recording rate when record_on_change is false.

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 record_on_change record_on_change_type Indicates whether to record all changes greater than the

change threshold or record at the specified rate.

7.4.3.9 recording_id_type

Type: IDLTypeDef long
Package: Recording_and_Replay
Used to identify a specific recording. The subsystem shall manage a number of recordings and associate
recording ids with them in a subsystem dependent way. Once associated, it passes that reference through
the parameter recording_id to the CMS so that the CMS may ask for a specific recording later on. Again, the
CMS manages the relationship between the recording_id and the recording it requested to be made in a
system dependent way.

There is no intention to model the method either the subsystem or the CMS uses to manage the relationship
between recording_id and the recordings as this is transparent to the interface and would unnecessarily
restrict the choices available to the designers.

7.4.3.10 recording_set_type

Type: IDLStruct
Package: Recording_and_Replay
A set of recording descriptors specifying what is to be recorded

7.4.3.11 recording_type

Type: IDLStruct
Package: Recording_and_Replay
A recording: a set of recorded data

7.4.3.12 replay_set_type

Type: IDLStruct
Package: Recording_and_Replay
A set of parameters required to be replayed. These must exist in the associated recording set to be of any
use.

7.4.3.13 replay_speed_type

Type: IDLTypeDef float
Package: Recording_and_Replay
Controls the replay speed. 1.0 represents real time.

7.4.4 Simulation_Support

Parent Package: Subsystem_Domain

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.33 Domain Model (Logical diagram)

7.4.4.1 fault_script_id_type

Type: IDLTypeDef string
Package: Simulation_Support
Identifies a single fault script.
Length = 6

7.4.4.2 fault_script_ids_type

Type: IDLStruct
Package: Simulation_Support
This class represents a set of references to fault scripts

7.4.4.3 fault_script_type

Type: IDLStruct
Package: Simulation_Support
Definition of a fault script. The exact form of this is not yet defined, this class represents the essential
attributes. It would probably be some form of string, perhaps an XML document.

Table 7.50 - Attributes of IDLStruct fault_script_type

Attribute Notes

 details_of_fault string A description of the fault, such as is interpretable during

the simulation

7.4.4.4 fault_scripts_type

Type: IDLStruct
Package: Simulation_Support
This class represents a set of fault scripts

7.4.4.5 sim_mode_status_type

 class Domain Model

string

«idlTypedef»

fault_script_id_type

tags

Length = 6

«idlStruct»

fault_script_ids_type

«idlStruct»

fault_script_type

+ details_of_fault: string

«idlStruct»

fault_scripts_type

«idlStruct»

sim_mode_status_type

+ sim_mode_active: boolean

«idlStruct»

start_stop_sim_mode_request_type

+ start_simulation_mode: boolean

«idlStruct»

stop_freeze_session_request_type

+ reflect_values: boolean

+ run_internal_simulation_clock: boolean

+ update_attributes: boolean

+script_id

1+script_id

0..*

+script

0..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLStruct
Package: Simulation_Support
Whether simulated mode is in operation

Table 7.51 - Attributes of IDLStruct sim_mode_status_type

Attribute Notes

 sim_mode_active boolean Flag to indicate if the simulation mode is active.

7.4.4.6 start_stop_sim_mode_request_type

Type: IDLStruct
Package: Simulation_Support
A request to change the simulation mode

Table 7.52 - Attributes of IDLStruct start_stop_sim_mode_request_type

Attribute Notes

 start_simulation_mode boolean Flag to indicate if the simulation mode shall be started or

stopped.

7.4.4.7 stop_freeze_session_request_type

Type: IDLStruct
Package: Simulation_Support
A Simulation Management (SIMAN) request, sent from a Simulation Manager to request that one or more
entities either
a) pause their simulation session
or
b) stop their simulation session.

Table 7.53 - Attributes of IDLStruct stop_freeze_session_request_type

Attribute Notes

 reflect_values boolean Whether the entity or entities being stopped/frozen

should continue to reflect values when stopped/frozen.

 run_internal_simulation_clock boolean Whether the entity or entities being stopped/frozen

should continue to run their internal simulation clock

when stopped/frozen.

 update_attributes boolean Whether the entity or entities being stopped/frozen

should continue to update attributes when

stopped/frozen.

7.4.5 Subsystem_Control

Parent Package: Subsystem_Domain
Contains Structs used within the Subsystem Control service and a state diagram corresponding with the
Manage Technical State interface.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.34 Domain Model - 1 (Logical diagram)

 class Domain Model - 1

«idlEnum»

registration_type

«idlEnum»

+ REGISTER

+ DEREGISTER

«idlEnum»

information_name_type

«idlEnum»

+ AIR_PLOTS

+ SURFACE_PLOTS

+ LAND_PLOTS

+ SPACE_PLOTS

+ SENSOR_AIR_TRACKS

+ SENSOR_SURFACE_TRACKS

+ SENSOR_LAND_TRACKS

+ SENSOR_SPACE_TRACKS

+ JAMMER_STROBES

+ JAMMER_TRACKS

+ JAMMING_EFFECT_ASSESSMENTS

+ INTERFERENCE_REPORTS

«idlEnum»

technical_state_type

+ BIT

+ CALIBRATE

+ DORMANT

+ FAILED

+ OFFLINE

+ ONLINE

+ READY

+ STANDBY

«idlStruct»

health_state_reason_type

+ caused_by_fault: boolean

+ caused_by_technical_state: boolean

+ caused_by_simulation_mode: boolean

+ caused_by_operational_mode: boolean

«idlEnum»

health_state_type

«idlEnum»

+ AVAILABLE

+ DEGRADED

+ NOT_AVAILABLE

+ UNKNOWN

«idlEnum»

ev ent_type

«idlEnum»

+ OCCURRENCE

+ DISAPPEARANCE

«idlEnum»

mastership_state_type

«enum»

+ MASTERSHIP_FREE

+ MASTERSHIP_OTHER

+ MASTERSHIP_TO_CMS

«idlEnum»

serv ice_name_type

«idlEnum»

+ AIR_ENGAGEMENT_SUPPORT

+ CLUTTER_REPORTING

+ ENCYCLOPAEDIC_SUPPORT

+ ENGAGEMENT_SUPPORT

+ ENVIRONMENT_AND_STABILIZATION_LEVEL_3F

+ ENVIRONMENT_AND_STABILIZATION_LEVEL_3G

+ EXTENDED_SUBSYSTEM_CONTROL

+ JAMMER_REPORTING

+ MISSILE_GUIDANCE

+ PLOT_REPORTING_LEVEL_1

+ PLOT_REPORTING_LEVEL_3C

+ PLOT_REPORTING_LEVEL_3E

+ RECORDING_AND_REPLAY

+ SEARCH

+ SENSOR_CONTROL_LEVEL_2

+ SENSOR_PERFORMANCE

+ SIMULATION_SUPPORT

+ SUBSYSTEM_CONTROL_LEVEL_1

+ SUBSYSTEM_CONTROL_LEVEL_2

+ SURFACE_ENGAGEMENT_SUPPORT

+ TRACK_REPORTING_LEVEL_1

+ TRACK_REPORTING_LEVEL_3C

+ TRACK_REPORTING_LEVEL_3E

+ TRACKING_CONTROL_LEVEL_2

+ TRACKING_CONTROL_LEVEL_3C

+ SENSOR_CONTROL_LEVEL_3A

«idlStruct»

serv ice_indication_type

+ service_name: service_name_type

+ registration_indicator: boolean

«idlStruct»

serv ice_indication_list_type

«idlStruct»

serv ice_list_type

«idlStruct»

interest_list

«idlStruct»

interest

+ registration: registration_type

+ quality_of_service: string

+ recipient: string

«idlStruct»

serv ice_type

+ service_name: service_name_type

«idlStruct»

serv ice_information

+ information_name: information_name_type
+service_indication 0..*

+service_indication 0..*

0..* concerns

1..*0..*

concerns

1

+element 1..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.35 Domain Model - 2 (Logical diagram)

 class Domain Model - 2

«idlStruct»

parameter_name_sequence_type

«idlStruct»

parameter_name_type

+ parameter_name: string

«idlStruct»

name_v alue_sequence_type

«idlStruct»

name_v alue_pair_type

+ parameter_name: string

+ value: string

«idlStruct»

name_error_sequence_type

«idlStruct»

name_error_pair_type

+ parameter_name: string

+ error_indication: string

«idlStruct»

battle_ov erride_state_type

+ battle_override_applied: boolean

unsigned short

«idlTypedef»

operational_mode_type

«idlStruct»

v ersion_type

+ major_version: unsigned short

+ minor_version: unsigned short

«idlStruct»

dev ice_identification_type

+ product: device_name_type

+ serial_number: device_name_type

+ equipment_type: device_name_type

+ version: version_type

string

«idlTypedef»

dev ice_name_type

«idlStruct»

subsystem_health_type

+ health_state: health_state_type

+ health_state_reason: health_state_reason_type

+ subsystem_identification: device_identification_type

+ time_of_information: time_type

«idlStruct»

serv ice_health_type

+ service_name: service_name_type

+ health_state: health_state_type

+ health_state_reason: health_state_reason_type

+ time_of_information: time_type

«idlStruct»

fault

+ fault_name: string

+ event: event_type

+ simulated: boolean

+ overridden: boolean

+ fault_isolation_data: string

«idlStruct»

fault_list

«idlStruct»

descriptor

+ parameter_name: string

+ parameter_type: string

+ parameter_unit: string

+ typical_value: string [0..1]

+ parameter_range: string [0..1]

+ technical_state: technical_state_type [1..*]

+ applicable_operational_mode: operational_mode_type [0..*]

«idlStruct»

descriptor_sequence

+element 0..*
+element 0..* +element 0..*

+influences

1..*
1

+influences

0..*

1..*

+element 0..*

+element 0..*

+related_parameter

0..*

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.1 service_name_type

Type: IDLEnum
Package: Subsystem_Control
Enumeration of possible service names. Where a service may be offered at different compliance levels,
multiple names are introduced with _LEVEL_x postfix to indicate different parts.

Table 7.54 - Attributes of IDLEnum service_name_type

Attribute Notes

«idlEnum» AIR_ENGAGEMENT_SUPPORT

«idlEnum» CLUTTER_REPORTING

«idlEnum» ENCYCLOPAEDIC_SUPPORT

«idlEnum» ENGAGEMENT_SUPPORT

«idlEnum»

ENVIRONMENT_AND_STABILIZATION_LEVEL

_3F

«idlEnum»

ENVIRONMENT_AND_STABILIZATION_LEVEL

_3G

«idlEnum» EXTENDED_SUBSYSTEM_CONTROL

«idlEnum» JAMMER_REPORTING

«idlEnum» MISSILE_GUIDANCE

«idlEnum» PLOT_REPORTING_LEVEL_1

«idlEnum» PLOT_REPORTING_LEVEL_3C

«idlEnum» PLOT_REPORTING_LEVEL_3E

«idlEnum» RECORDING_AND_REPLAY

«idlEnum» SEARCH

«idlEnum» SENSOR_CONTROL_LEVEL_2

«idlEnum» SENSOR_PERFORMANCE

«idlEnum» SIMULATION_SUPPORT

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_1

«idlEnum» SUBSYSTEM_CONTROL_LEVEL_2

«idlEnum» SURFACE_ENGAGEMENT_SUPPORT

«idlEnum» TRACK_REPORTING_LEVEL_1

«idlEnum» TRACK_REPORTING_LEVEL_3C

«idlEnum» TRACK_REPORTING_LEVEL_3E

«idlEnum» TRACKING_CONTROL_LEVEL_2

«idlEnum» TRACKING_CONTROL_LEVEL_3C

«idlEnum» SENSOR_CONTROL_LEVEL_3A

7.4.5.2 battle_override_state_type

Type: IDLStruct
Package: Subsystem_Control
If the boolean is true the battle override is applied.

Table 7.55 - Attributes of IDLStruct battle_override_state_type

Attribute Notes

 battle_override_applied boolean Indicates if the battle override is applied or not.

7.4.5.3 descriptor

Type: IDLStruct
Package: Subsystem_Control
Type for parameter descriptors.

Open Architecture Radar Interface Standard (OARIS), v1.0

Issue OARIS 43 Emphasise uniqueness requirement on parameter names

Table 7.56 - Attributes of IDLStruct descriptor

Attribute Notes

 parameter_name string parameter_name values are unique within the scope of a

subsystem.

 parameter_type string

 parameter_unit string

 typical_value string [0..1] *optional*

 parameter_range string [0..1] *optional*

 technical_state technical_state_type [1..*] Technical state(s) in which this parameter may be

modified.

 applicable_operational_mode operational_mode_type

[0..*]

7.4.5.4 descriptor_sequence

Type: IDLStruct
Package: Subsystem_Control
Sequence of parameter descriptors, used in retrieving parameter descriptors.

7.4.5.5 device_identification_type

Type: IDLStruct
Package: Subsystem_Control
Identification data of the equipment.

Table 7.57 - Attributes of IDLStruct device_identification_type

Attribute Notes

 product device_name_type Name of the product. Example TRS3D

 serial_number device_name_type Serial number identifying the individual device.

 equipment_type device_name_type This describes the general type of the equipment.

Example: Air Surveillance Radar

 version version_type Version of the device.

7.4.5.6 device_name_type

Type: IDLTypeDef string
Package: Subsystem_Control
Name of an entry in the device identification.
Length = 64

7.4.5.7 event_type

Type: IDLEnum
Package: Subsystem_Control
Type of event

Table 7.58 - Attributes of IDLEnum event_type

Attribute Notes

«idlEnum» OCCURRENCE

«idlEnum» DISAPPEARANCE

7.4.5.8 fault

Type: IDLStruct
Package: Subsystem_Control
Class to represent a subsystem fault

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.59 - Attributes of IDLStruct fault

Attribute Notes

 fault_name string

 event event_type

 simulated boolean Indicates whether this fault is real or simulated/inserted.

 overridden boolean Indicates whether this fault is overridden by Battle

Override when determining the health state.

 fault_isolation_data string For instance cabinet id and rack id.

7.4.5.9 fault_list

Type: IDLStruct
Package: Subsystem_Control
A list of faults

7.4.5.10 health_state_reason_type

Type: IDLStruct
Package: Subsystem_Control
Reason for the health state

Table 7.60 - Attributes of IDLStruct health_state_reason_type

Attribute Notes

 caused_by_fault boolean

 caused_by_technical_state boolean

 caused_by_simulation_mode boolean

 caused_by_operational_mode boolean

7.4.5.11 health_state_type

Type: IDLEnum
Package: Subsystem_Control
Encapsulation of health state

Table 7.61 - Attributes of IDLEnum health_state_type

Attribute Notes

«idlEnum» AVAILABLE Service: Indicates that the service is available with

specified performance.

Subsystem: Indicates that all implemented services of the

subsystem have health state AVAILABLE.

«idlEnum» DEGRADED Service: Indicates that the service may perform its

operational task, but possibly with less than specified

performance.

Subsystem: Indicates that at least one of the implemented

services of the subsystem have health state other than

AVAILABLE.

«idlEnum» NOT_AVAILABLE Service: Indicates that the service is not available.

Subsystem: Indicates that all implemented services of the

subsystem have health state NOT_AVAILABLE.

«idlEnum» UNKNOWN Indicates that the subsystem may not determine the health

state of the service or subsystem (e.g. because BIT is not

running).

Issue OARIS 9 Receive Response for Subsystem Identification

7.4.5.12 identification_response_type

Type: IDLEnum

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Subsystem_Control
Response for the identification

Table 7.61 - Attributes of IDLEnum identification_response_type

Attribute Notes

 reject The interface partner may not work with this equipment.

 accept The interface partner may work with this equipment

7.4.5.137.4.5.12 information_name_type

Type: IDLEnum
Package: Subsystem_Control
Name of information

Table 7.62 - Attributes of IDLEnum information_name_type

Attribute Notes

«idlEnum» AIR_PLOTS

«idlEnum» SURFACE_PLOTS

«idlEnum» LAND_PLOTS

«idlEnum» SPACE_PLOTS

«idlEnum» SENSOR_AIR_TRACKS

«idlEnum» SENSOR_SURFACE_TRACKS

«idlEnum» SENSOR_LAND_TRACKS

«idlEnum» SENSOR_SPACE_TRACKS

«idlEnum» JAMMER_STROBES

«idlEnum» JAMMER_TRACKS

«idlEnum» JAMMING_EFFECT_ASSESSMENTS

«idlEnum» INTERFERENCE_REPORTS

7.4.5.147.4.5.13 interest

Type: IDLStruct
Package: Subsystem_Control
Encapsulation of interest in service

Table 7.63 - Attributes of IDLStruct interest

Attribute Notes

 registration registration_type

 quality_of_service string * optional *

 recipient string * optional *

7.4.5.157.4.5.14 interest_list

Type: IDLStruct
Package: Subsystem_Control
A list of interest

7.4.5.167.4.5.15 mastership_state_type

Type: IDLEnum
Package: Subsystem_Control
This enumeration represents the state of the mastership.
The subsystem Mastership may be either “free”, that is assigned to none and then available to anybody
asks for it, or assigned to somebody: CMS or not.

Table 7.64 - Attributes of IDLEnum mastership_state_type

Attribute Notes

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

«enum» MASTERSHIP_FREE Mastership state is “free”, the first received Mastership

request shall be satisfied.

«enum» MASTERSHIP_OTHER The Mastership is assigned to somebody other than CMS.

«enum» MASTERSHIP_TO_CMS The Mastership is assigned to CMS.

7.4.5.177.4.5.16 parameter_name_type

Type: IDLStruct
Package: Subsystem_Control
Typedef for strings representing names of parameters.

Issue OARIS 43 Emphasise uniqueness requirement on parameter names

Table 7.65 - Attributes of IDLStruct parameter_name_type

Attribute Notes

 parameter_name string parameter_name values are unique within the scope of a

subsystem.

7.4.5.187.4.5.17 name_error_pair_type

Type: IDLStruct
Package: Subsystem_Control
Combination of name of parameter (for which a request could not be processed) and an indication of the
error.

Issue OARIS 43 Emphasise uniqueness requirement on parameter names

Table 7.66 - Attributes of IDLStruct name_error_pair_type

Attribute Notes

 parameter_name string parameter_name values are unique within the scope of a

subsystem.

 error_indication string

7.4.5.197.4.5.18 name_error_sequence_type

Type: IDLStruct
Package: Subsystem_Control
sequence of error reports identifying the parameter names for which the request could not be processed,
including an indication of the error (e.g. unknown parameter, illegal value).

7.4.5.207.4.5.19 parameter_name_sequence_type

Type: IDLStruct
Package: Subsystem_Control
A sequence of strings (names). Used in request for parameters and parameter descriptors. If the sequence
is empty, the request is for all parameters.

7.4.5.217.4.5.20 name_value_pair_type

Type: IDLStruct
Package: Subsystem_Control
A generic struct for (name, value) pairs. Used in multiple situations.

Issue OARIS 43 Emphasise uniqueness requirement on parameter names

Table 7.67 - Attributes of IDLStruct name_value_pair_type

Attribute Notes

 parameter_name string parameter_name values are unique within the scope of a

subsystem.

 value string

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.227.4.5.21 name_value_sequence_type

Type: IDLStruct
Package: Subsystem_Control
Sequence of (name, value) pairs used in retrieving and modifying parameters.

7.4.5.237.4.5.22 operational_mode_type

Type: IDLTypeDef unsigned short
Package: Subsystem_Control
The value should be mapped to the corresponding operational mode. This mapping is retrieved through the
service 'Manage Subsystem Parameters'.

7.4.5.247.4.5.23 parameter_value_response_type

Type: IDLStruct
Package: Subsystem_Control
Response type for retrieving and modifying sequences of parameters.

Table 7.68 - Attributes of IDLStruct parameter_value_response_type

Attribute Notes

 request_id long

7.4.5.257.4.5.24 registration_type

Type: IDLEnum
Package: Subsystem_Control
Type of registration

Table 7.69 - Attributes of IDLEnum registration_type

Attribute Notes

«idlEnum» REGISTER

«idlEnum» DEREGISTER

7.4.5.267.4.5.25 service_type

Type: IDLStruct
Package: Subsystem_Control
Type of service

Table 7.70 - Attributes of IDLStruct service_type

Attribute Notes

 service_name service_name_type Only registrable services are allowed

7.4.5.277.4.5.26 service_health_type

Type: IDLStruct
Package: Subsystem_Control
Health of service

Table 7.71 - Attributes of IDLStruct service_health_type

Attribute Notes

 service_name service_name_type

 health_state health_state_type

 health_state_reason health_state_reason_type

 time_of_information time_type

7.4.5.287.4.5.27 service_indication_list_type

Type: IDLStruct

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Subsystem_Control
A list of service indications as used by Provide_Subsystem_Services.

7.4.5.297.4.5.28 service_indication_type

Type: IDLStruct
Package: Subsystem_Control
Indication of a service provided by the subsystem.

Table 7.72 - Attributes of IDLStruct service_indication_type

Attribute Notes

 service_name service_name_type Name of the service.

 registration_indicator boolean Indication whether the service is registered.

7.4.5.307.4.5.29 service_information

Type: IDLStruct
Package: Subsystem_Control
Information about a service

Table 7.73 - Attributes of IDLStruct service_information

Attribute Notes

 information_name information_name_type

7.4.5.317.4.5.30 service_list_type

Type: IDLStruct
Package: Subsystem_Control
A list of service names as used by Provide_Subsystem_Services.

7.4.5.327.4.5.31 subsystem_health_type

Type: IDLStruct
Package: Subsystem_Control
Type describing the health state of a subsystem

Table 7.74 - Attributes of IDLStruct subsystem_health_type

Attribute Notes

 health_state health_state_type Current health state

 health_state_reason health_state_reason_type Reason for last change of health state

 subsystem_identification device_identification_type

 time_of_information time_type

7.4.5.337.4.5.32 technical_state_type

Type: IDLEnum
Package: Subsystem_Control
Type which is used to indicate a technical state.

Table 7.75 - Attributes of IDLEnum technical_state_type

Attribute Notes

 BIT Subsystem is running Built-In-Test procedure. CMS

may communicate with subsystem, but subsystem shall

only respond affirmatively to a limited set of commands.

From this state the subsystem may transition to READY,

FAILED, CALIBRATE, STANDBY (transition may be

ordered before completion of BIT if Battle Override is

enabled), or OFFLINE.

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 CALIBRATE Subsystem is running calibration procedure. Subsystem

shall only respond to a limited set of commands from

CMS. From this state the subsystem may transition to

READY, FAILED, BIT, STANDBY (transition may be

ordered before completion of calibration if Battle

Override is enabled), or OFFLINE.

 DORMANT Interface between CMS and subsystem may or may not

exist. Some power is applied to the subsystem and

temperature control (e.g. cooling) is active. From this

state, the sub-system may transition to FAILED,

STANDBY, or OFFLINE.

 FAILED Subsystem is non-operational due to a critical fault such

as a primary power supply failure. CMS is able to

communicate with subsystem to perform diagnostics. In

the FAILED state, the health state of the sub-system and

nearly all associated services is NOT AVAILABLE or

UNKNOWN (provided via Health State). If the health

state of the sub-system or some services is DEGRADED,

the sub-system is not required to enter into this state.

From this state the sub-system may transition to BIT,

STANDBY, READY, CALIBRATE, DORMANT or

OFFLINE.

 OFFLINE No connection between CMS and Subsystem is open.

Main power is usually not applied to subsystem. From

OFFLINE, subsystem transitions to FAILED,

DORMANT, BIT, or STANDBY.

 ONLINE Subsystem is operational and may respond to all requests

from CMS. Simulation and diagnostics may be allowed

in this state. Radiation is allowed in this state but must be

commanded on via Control Emissions. From this state the

subsystem may transition to BIT, CALIBRATE, READY,

STANDBY, FAILED, or OFFLINE.

 READY Subsystem is ready for CMS to command full operation.

Simulation may be allowed in this state. Ready to

transition to ONLINE, self-tests and calibration has been

performed as necessary. Radiation is not allowed in the

READY state. From this state the subsystem may

transition to STANDBY, ONLINE, FAILED, BIT,

CALIBRATE, or OFFLINE.

 STANDBY Interface between CMS and subsystem is established.

Subsystem may not operate fully. Maintenance may be

performed in this state. From this state the sub-system

may transition to READY, CALIBRATE, BIT, FAILED,

DORMANT, or OFFLINE.

7.4.5.347.4.5.33 version_type

Type: IDLStruct
Package: Subsystem_Control
Version of the equipment

Table 7.76 - Attributes of IDLStruct version_type

Attribute Notes

 major_version unsigned short Major version number

 minor_version unsigned short Minor version number

Open Architecture Radar Interface Standard (OARIS), v1.0

7.4.5.357.4.5.34 Initial

Type: Initial State
Package: Subsystem_Control

7.5 Sensor_Domain
Parent Package: Domain_Model
This package contains the Domain Models for the Clutter Reporting, Plot Reporting, Sensor Control,
Sensor Performance, Track Reporting, and Tracking Control services.

7.5.1 Clutter_Reporting

Parent Package: Sensor_Domain
Contains Structs used within the Clutter Reporting service.

Figure 7.36 Domain Model (Logical diagram)

7.5.1.1 clutter_assessment_request_type

Type: IDLStruct
Package: Clutter_Reporting
CMS generated request for a clutter assessment.

Table 7.77 - Attributes of IDLStruct clutter_assessment_request_type

Attribute Notes

 requested_region general_polar_volume_type Region for which the CMS clutter request was generated.

7.5.1.2 clutter_indication_type

Type: IDLEnum
Package: Clutter_Reporting
Indicates if the clutter within the cell is of a specific type.

 class Domain Model

«idlStruct»

clutter_map_cell_type

+ cell_boundaries: general_polar_volume_type

+ clutter_type: clutter_indication_type

+ clutter_intensity: double

«idlStruct»

clutter_report_type

+ intensity_type: intensity_units_type

+ time_of_report: time_type

«idlStruct»

clutter_assessment_request_type

+ requested_region: general_polar_volume_type

«idlEnum»

clutter_indication_type

+ LAND

+ SEA

+ WEATHER

+ NO_STATEMENT

«idlEnum»

intensity_units_type

+ POWER_RECEIVED_LINEAR

+ POWER_RECEIVED_LOG_LINEAR

+ RCS_LINEAR

+ RCS_LOG_LINEAR

+ SNR_LINEAR

+ SNR_LOG_LINEAR

«idlStruct»

plot_concentration_request_data_type

+ region_of_plot_concentration_request: general_polar_volume_type

«idlStruct»

plot_concentration_report_type

+ time_of_report: time_type

«idlStruct»

concentration_plot_cell_type

+ cell_boundaries: general_polar_volume_type

+ plot_count: unsigned long long

+clutter_map_cell 1..*

+concentration_plot_cell 1..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.78 - Attributes of IDLEnum clutter_indication_type

Attribute Notes

 LAND

 SEA

 WEATHER

 NO_STATEMENT

7.5.1.3 clutter_map_cell_type

Type: IDLStruct
Package: Clutter_Reporting
Indicates the intensity and type of clutter for a defined geometric type.

Table 7.79 - Attributes of IDLStruct clutter_map_cell_type

Attribute Notes

 cell_boundaries general_polar_volume_type Indicates the boundaries of the cell for which clutter is

being reported.

 clutter_type clutter_indication_type Indicates whether the clutter is LAND, SEA,

WEATHER, or unspecified (NO_STATEMENT).

 clutter_intensity double Intensity of the clutter for the specified cell. Units

indicated by the intensity type attribute.

7.5.1.4 clutter_report_type

Type: IDLStruct
Package: Clutter_Reporting
Clutter report generated by the subsystem.

Table 7.80 - Attributes of IDLStruct clutter_report_type

Attribute Notes

 intensity_type intensity_units_type Indicates the units of the clutter intensity reported.

 time_of_report time_type Time of the clutter report.

7.5.1.5 concentration_plot_cell_type

Type: IDLStruct
Package: Clutter_Reporting
Indicates the plot concentration of a defined geometric type.

Table 7.81 - Attributes of IDLStruct concentration_plot_cell_type

Attribute Notes

 cell_boundaries general_polar_volume_type Specifies the dimension of the cell for which plot

concentration is being reported.

 plot_count unsigned long long The number of plots generated within the cell.

7.5.1.6 intensity_units_type

Type: IDLEnum
Package: Clutter_Reporting
Units of the clutter intensity

Table 7.82 - Attributes of IDLEnum intensity_units_type

Attribute Notes

 POWER_RECEIVED_LINEAR

 POWER_RECEIVED_LOG_LINEAR (e.g. dBm, dBW)

 RCS_LINEAR square meters

 RCS_LOG_LINEAR

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 SNR_LINEAR

 SNR_LOG_LINEAR

7.5.1.7 plot_concentration_report_type

Type: IDLStruct
Package: Clutter_Reporting
Plot concentration report as generated by the subsystem.

Table 7.83 - Attributes of IDLStruct plot_concentration_report_type

Attribute Notes

 time_of_report time_type Time of the plot concentration report.

7.5.1.8 plot_concentration_request_data_type

Type: IDLStruct
Package: Clutter_Reporting
CMS request for plot concentration of a specified region.

Table 7.84 - Attributes of IDLStruct plot_concentration_request_data_type

Attribute Notes

 region_of_plot_concentration_request
general_polar_volume_type

Region for which the plot concentration was requested.

7.5.2 Plot_Reporting

Parent Package: Sensor_Domain

Issue OARIS 63 Track Extractors may need to know where Radar is pointing

 class Domain Model

«idlStruct»

sensor_plot_set_type

«idlStruct»

sensor_plot_type

+ plot_id: plot_id_type [0..1]

+ position: position_coordinate_type

+ coordinate_specification: coordinate_specification_type

+ range_qualification: range_qualification_type [0..1]

+ azimuth_qualification: azimuth_qualification_type

+ elevation_qualification: elevation_qualification_type [0..1]

+ simulation_status: boolean

+ strength: plot_strength_type [0..1]

+ time_of_plot: time_type

+ additional_info: anonymous_blob_type

+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]

+ jammer_indication: boolean

unsigned short

«idlTypedef»

plot_strength_type

unsigned long

«idlTypedef»

plot_id_type

+plots

0..* 1

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.37 Domain Model (Logical diagram)

7.5.2.1 plot_id_type

Type: IDLTypeDef unsigned long
Package: Plot_Reporting
Identifier for a plot, unique within a given sensor. Such plot ids, should not be reused between sensor
subsystem restarts.

7.5.2.2 plot_strength_type

Type: IDLTypeDef unsigned short
Package: Plot_Reporting
Strength of the plot. The precise semantics of this type are sensor subsystem specific, but a typical
interpretation is as a signal to noise ratio in dB.

7.5.2.3 sensor_plot_set_type

Type: IDLStruct
Package: Plot_Reporting
Set of one or more sensor plots.

7.5.2.4 sensor_plot_type

Type: IDLStruct
Package: Plot_Reporting
One plot from a sensor.

The additional_info attribute is used for characteristics of the plot that are specific to certain sensors, and
therefore not in the general plot type, for example MTI or range rate.

Table 7.85 - Attributes of IDLStruct sensor_plot_type

 class Domain Model

«idlStruct»

sensor_plot_set_type

«idlStruct»

sensor_plot_type

+ plot_id: plot_id_type [0..1]

+ position: position_coordinate_type

+ coordinate_specification: coordinate_specification_type

+ range_qualification: range_qualification_type [0..1]

+ azimuth_qualification: azimuth_qualification_type

+ elevation_qualification: elevation_qualification_type [0..1]

+ simulation_status: boolean

+ strength: plot_strength_type [0..1]

+ time_of_plot: time_type

+ additional_info: anonymous_blob_type

+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]

+ jammer_indication: boolean

unsigned short

«idlTypedef»

plot_strength_type

unsigned long

«idlTypedef»

plot_id_type

«idlStruct»

sensor_orientation_type

+ azimuth: azimuth_coordinate_type

+ elevation: elevation_coordinate_type [0..1]

+ time_of_validity: time_type

+ sensor_coordinate_system: coordinate_orientation_type

+plots

0..* 1

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 plot_id plot_id_type [0..1] A unique identifier for the plot within the scope of the

sensor. This attribute is optional as not all sensors need to

provide such an identifier for each plot.

 position position_coordinate_type The position of the plot. This is the mean, central

position. Note the qualification attributes, which give

information on accuracy and spread estimates.

 coordinate_specification
coordinate_specification_type

This attribute defines the characteristics of the coordinate

system used

 range_qualification range_qualification_type [0..1] A measure of the spread and accuracy of the plot in range.

This is optional as not all sensors measure range.

 azimuth_qualification azimuth_qualification_type A measure of the spread and accuracy of the plot in

azimuth.

 elevation_qualification elevation_qualification_type

[0..1]

A measure of the spread and accuracy of the plot in

elevation. This is optional as not all sensors measure

elevation.

 simulation_status boolean If true, the plot is simulated. See also simulation support

services within this standard.

 strength plot_strength_type [0..1] The signal strength of the plot. This attribute is optional

as not all sensors measure a quantity which has

equivalence to strength.

 time_of_plot time_type The time at which the plot was measured.

 additional_info anonymous_blob_type Potentially classified information about the plot, which

may be used in a system specific way to distribute

information about a plot to other subsystems. Further

information about this attribute, including layout

semantics is outside of the scope of this interface

standard.

 splash_spotting_area_id
splash_spotting_area_id_type [0..1]

Indicates which splash spotting area the plot refers to - if

any - hence it is optional.

 jammer_indication boolean Indication whether or not a plot is from a source of

jamming.

Issue OARIS 63 Track Extractors may need to know where Radar is pointing

7.5.2.5 sensor_orientation_type

Type: IDLStruct
Package: Plot_Reporting
This class describes the orientation of the sensor at a particular moment in time. This is useful for plot
processing functionality such as track extraction as it allows instantaneous coverage of the sensor to be
estimated.

Table 7.86 - Attributes of IDLStruct sensor_orientation_type

Attribute Notes

 azimuth azimuth_coordinate_type The (azimuth) direction of the head of the sensor (e.g.

antenna, lens or hydro-phone)

 elevation elevation_coordinate_type [0..1] The (elevation) direction of the head of the sensor (e.g.

antenna, lens or hydro-phone). If not supplied either

horizontal is assumed or a constant angle is defined

through the Manage_Subsystem_Parameters use case.

 time_of_validity time_type The time for which is sensor orientation is valid

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 sensor_coordinate_system
coordinate_orientation_type

This attribute defines the interpretation of azimuth and

elevation.

Valid enumerates are:

NORTH_HORIZONTAL,

NORTH_DOWN,

STERN_KEEL,

STERN_DECK_LEVEL

7.5.3 Sensor_Control

Parent Package: Sensor_Domain
This package contains structs and type defs for managing frequency usage, transmission sectors, emission
control, and test target scenarios.

Issue OARIS 51 Unable to create transmission mode sectors

Issue OARIS 53 Semantics of sector_added unclear for use case manage_transmission_sectors

Issue OARIS 57 Response to a frequency range request to be supported by the PIM

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Domain Model

«idlStruct»

transmission_frequency_state

+ enabled: boolean

+ frequency_id: frequency_band_type

«idlEnum»

transmission_frequency_mode_type

+ AUTOMATIC_FREQUENCY_SELECTION

+ FIXED_FREQUENCY

+ FREQUENCY_DIVERSITY

+ RANDOM_AGILITY

«idlStruct»

frequency_range_set

+ available: boolean

+ end_frequency_id: frequency_band_type

+ start_frequency_id: frequency_band_type

«idlStruct»

selected_frequency_list

«idlUnion»

frequencies_set_request

«idlCase»

+ first_and_final_frequency: frequency_range_set

+ selected_frequencies: selected_frequency_list

«idlStruct»

all_frequencies_state

«idlStruct»

reported_frequency_state

+ enable: boolean

+ frequency_id: frequency_band_type

+ available: boolean

unsigned short

«idlTypedef»

frequency_band_type

notes

An index indicating a particular

frequency channel or band. The

actual frequency is typically not

of concern to the command team.

«idlEnum»

transmission_sector_power_lev el_type

+ FULL_RADIATE_POWER

+ INHIBIT

+ REDUCED_RADIATE_POWER

«idlStruct»

transmission_sector_type

+ power_level_transmission: transmission_sector_power_level_type

+ sector_added: boolean

+ sector_enabled: boolean

+ sector_id: short

+ sector_reference: sector_reference_type

+ sector_shape: general_polar_volume_type

«idlStruct»

transmission_sector_set_type

«idlEnum»

sector_reference_type

+ NORTH_RELATED

+ SHIP_RELATED

«idlUnion»

Shape_Model::general_polar_v olume_type

«idlCase»

+ sector: sector

+ polar_volume: polar_volume

+ truncated_sector: truncated_sector

+ truncated_polar_volume: truncated_polar_volume

«idlStruct»

control_emission_state

+ emission_activated: boolean

«idlStruct»

test_target_plus_scenario

+ test_target_id: unsigned short

+ test_target_parameter: anonymous_blob_type

«idlStruct»

test_target_scenario_independent_target

+ number_of_test_target: unsigned short

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id

«idlStruct»

test_target_scenario_common_parameter_target

+ initial_time: time_type

+ number_of_test_target: unsigned short

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id

+ volume_boundaries: general_polar_volume_type

«idlUnion»

test_target_scenario

«idlCase»

+ scenario_common_parameter_target: test_target_scenario_common_parameter_target

+ scenario_independent_target: test_target_scenario_independent_target

«idlStruct»

test_target

+ initial_time: time_type

+ position: wgs84_position_type

+ test_target_id: unsigned short

+ test_target_parameter: anonymous_blob_type

long

«idlTypedef»

test_target_scenario_id

«idlStruct»

test_target_scenario_state

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id

+targets 0..*

+selected_frequencies

0..*

+reported_frequencies

0..*

+sector 0..*

+targets_parameter

Open Architecture Radar Interface Standard (OARIS), v1.0

 class Domain Model

«idlStruct»

transmission_frequency_state_type

+ enabled: boolean

+ frequency_id: frequency_band_type

«idlEnum»

transmission_frequency_mode_type

+ AUTOMATIC_FREQUENCY_SELECTION

+ FIXED_FREQUENCY

+ FREQUENCY_DIVERSITY

+ RANDOM_AGILITY

«idlStruct»

selected_frequency_list_type

«idlStruct»

all_frequencies_state_type

«idlStruct»

reported_frequency_state_type

+ enable: boolean

+ frequency_id: frequency_band_type

+ available: boolean

unsigned short

«idlTypedef»

frequency_band_type

notes

An index indicating a particular

frequency channel or band. The

actual frequency is typically not

of concern to the command team.

A band refers to a discrete

frequency or a range of

frequencies; such bands may

overlap.

«idlEnum»

transmission_sector_power_lev el_type

+ FULL_RADIATE_POWER

+ INHIBIT

+ REDUCED_RADIATE_POWER

«idlStruct»

transmission_sector_type

+ power_level_transmission: transmission_sector_power_level_type

+ sector_enabled: boolean

+ sector_id: short

+ sector_reference: sector_reference_type

+ sector_shape: general_polar_volume_type

+ transmision_mode: transmission_frequency_mode_type

«idlStruct»

transmission_sector_set_type

«idlEnum»

sector_reference_type

+ NORTH_RELATED

+ SHIP_RELATED

«idlUnion»

Shape_Model::general_polar_v olume_type

«idlCase»

+ sector: sector_type

+ polar_volume: polar_volume_type

+ truncated_sector: truncated_sector_type

+ truncated_polar_volume: truncated_polar_volume_type

«idlStruct»

control_emission_state_type

+ emission_activated: boolean

«idlStruct»

test_target_plus_scenario_type

+ test_target_id: unsigned short

+ test_target_parameter: anonymous_blob_type

«idlStruct»

test_target_scenario_independent_target_type

+ number_of_test_target: unsigned short

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id_type

«idlStruct»

test_target_scenario_common_parameter_target_type

+ initial_time: time_type

+ number_of_test_target: unsigned short

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id_type

+ volume_boundaries: general_polar_volume_type

«idlUnion»

test_target_scenario_type

«idlCase»

+ scenario_common_parameter_target: test_target_scenario_common_parameter_target_type

+ scenario_independent_target: test_target_scenario_independent_target_type

«idlStruct»

test_target_type

+ initial_time: time_type

+ position: wgs84_position_type

+ test_target_id: unsigned short

+ test_target_parameter: anonymous_blob_type

long

«idlTypedef»

test_target_scenario_id_type

«idlStruct»

test_target_scenario_state_type

+ test_target_scenario_activated: boolean

+ test_target_scenario_id: test_target_scenario_id_type

+selected_frequencies

0..*

+reported_frequencies

0..*

+sector 0..*

+targets_parameter

+targets 0..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.38 Domain Model (Logical diagram)

Issue OARIS 57 Semantics of sector_added unclear for use case

manage_transmission_sectors

7.5.3.1 frequencies_set_requestselected_frequency_list_type

Type: IDLUnion
Package: Sensor_Control
A range or discrete set of frequencies

Table 7.86 - Attributes of IDLUnion frequencies_set_request

Attribute Notes

«idlCase» first_and_final_frequency

frequency_range_set

This case is used to enable or disable an entire frequency

band.

«idlCase» selected_frequencies selected_frequency_list This case is used to enable or disable discrete

frequencies.

7.5.3.2 frequency_range_set

Type: IDLStruct
Package: Sensor_Control
A range of frequencies

Table 7.87 - Attributes of IDLStruct frequency_range_set

Attribute Notes

 available boolean Indicates whether the CMS is enabling or disabling a

frequency band.

 end_frequency_id frequency_band_type A unique identifier for the upper end of the frequency

range.

 start_frequency_id frequency_band_type A unique identifier for the lower end of the frequency

range.

7.5.3.3 selected_frequency_list

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many frequencies which may be enabled/disabled by the CMS

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

7.5.3.47.5.3.3 transmission_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
State of frequency transmission

Table 7.87 - Attributes of IDLStruct transmission_frequency_state_type

Attribute Notes

 enabled boolean Indicates whether the CMS is enabling or disabling a

transmission frequency.

 frequency_id frequency_band_type A unique identifier for the transmission frequency.

7.5.3.57.5.3.4 all_frequencies_state_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many "available" or "not available" frequencies which may be enabled/disabled
by the CMS

Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.3.67.5.3.5 reported_frequency_state_type

Type: IDLStruct
Package: Sensor_Control
reported frequency state

Table 7.88 - Attributes of IDLStruct reported_frequency_state_type

Attribute Notes

 enable boolean Indicates whether the CMS is enabling or disabling a

transmission frequency.

 frequency_id frequency_band_type A unique identifier for the transmission frequency.

 available boolean Indicates whether a transmission frequency is available

or not available.

Issue OARIS 57 Response to a frequency range request to be supported by the PIM

7.5.3.77.5.3.6 frequency_band_type

Type: IDLTypeDef unsigned short
Package: Sensor_Control
An index indicating a particular frequency channel or band. The actual frequency is typically not of concern
to the command team.. A band refers to a discrete frequency or a range of frequencies; such bands may
overlap.

7.5.3.87.5.3.7 transmission_frequency_mode_type

Type: IDLEnum
Package: Sensor_Control
The mode

Table 7.89 - Attributes of IDLEnum transmission_frequency_mode_type

Attribute Notes

 AUTOMATIC_FREQUENCY_SELECTION The sensor always uses the same pre-selected frequency

 FIXED_FREQUENCY At each transmission sensor selects the frequency to be

used inside a pre-selected subset of frequencies

 FREQUENCY_DIVERSITY At each transmission sensor selects the frequency to be

used among the least jammed frequencies

 RANDOM_AGILITY At each transmission sensor random selects the frequency

to be used.

7.5.3.97.5.3.8 transmission_sector_set_type

Type: IDLStruct
Package: Sensor_Control
This struct contains zero to many transmission sectors which must be set/reset by the CMS.

7.5.3.107.5.3.9 transmission_sector_type

Type: IDLStruct
Package: Sensor_Control
Sector for transmission

Issue OARIS 51 Unable to create transmission mode sectors

Issue OARIS 53 Semantics of sector_added unclear for use case manage_transmission_sectors

Table 7.90 - Attributes of IDLStruct transmission_sector_type

Attribute Notes

 power_level_transmission
transmission_sector_power_level_type

Indicates the transmission power level of the sector.

 sector_added boolean

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 sector_enabled boolean Indicates whether the CMS is enabling or disabling a

transmission sector.

 sector_id short A unique identifier for the transmission sector.

 sector_reference sector_reference_type This indicates the reference system of the transmission

sector.

 sector_shape general_polar_volume_type Note that the azimuth dimension of the sector shape

(polar volume) applies to the horizon plane (i.e.

elevation=0)

 transmision_mode
transmission_frequency_mode_type

Indicates the transmission mode used within the sector

7.5.3.117.5.3.10 transmission_sector_power_level_type

Type: IDLEnum
Package: Sensor_Control
This enumeration allows specification of a CMS commanded power level for a sector.

Table 7.91 - Attributes of IDLEnum transmission_sector_power_level_type

Attribute Notes

 FULL_RADIATE_POWER

 INHIBIT

 REDUCED_RADIATE_POWER

7.5.3.127.5.3.11 sector_reference_type

Type: IDLEnum
Package: Sensor_Control
This enumeration specifies the sectors reference systems.

Table 7.92 - Attributes of IDLEnum sector_reference_type

Attribute Notes

 NORTH_RELATED

 SHIP_RELATED

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

7.5.3.137.5.3.12 control_emission_state_type

Type: IDLStruct
Package: Sensor_Control
Emission state

Table 7.93 - Attributes of IDLStruct control_emission_state_type

Attribute Notes

 emission_activated boolean Indicates whether the CMS is enabling or disabling the

sensor emission state.

7.5.3.147.5.3.13 test_target_scenario_type

Type: IDLUnion
Package: Sensor_Control
Scenario for test targets

Table 7.94 - Attributes of IDLUnion test_target_scenario_type

Attribute Notes

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

«idlCase» scenario_common_parameter_target

test_target_scenario_common_parameter_target_type

This case is used when a test target scenario is constituted

by a number of targets distributed in a defined

area/volume and having the same common parameters.

«idlCase» scenario_independent_target

test_target_scenario_independent_target_type

This case is used when a test target scenario is constituted

by a number of independent targets.

7.5.3.157.5.3.14 test_target_scenario_independent_target_type

Type: IDLStruct
Package: Sensor_Control
The scenario is defined by a number of independent targets, with each target having own characteristic
parameters.

Table 7.95 - Attributes of IDLStruct test_target_scenario_independent_target_type

Attribute Notes

 number_of_test_target unsigned short This is the number of the test targets composing the

scenario.

 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the

generation of a test target scenario.

 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

7.5.3.167.5.3.15 test_target_scenario_common_parameter_target_type

Type: IDLStruct
Package: Sensor_Control
The scenario is defined by a number of targets distributed in a defined area/volume and having the same
common parameters.

Table 7.96 - Attributes of IDLStruct test_target_scenario_common_parameter_target_type

Attribute Notes

 initial_time time_type This indicates the common initial time of the targets.

 number_of_test_target unsigned short This is the number of the test targets composing the

scenario.

 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the

generation of a test target scenario.

 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

 volume_boundaries general_polar_volume_type This indicates the area/volume boundaries where the test

targets are distributed.

7.5.3.177.5.3.16 test_target_type

Type: IDLStruct
Package: Sensor_Control
Encapsulation of a test target (simulated target to enable technical testing of a sensor)

Table 7.97 - Attributes of IDLStruct test_target_type

Attribute Notes

 initial_time time_type This attribute defines the relevant initial time.

 position wgs84_position_type This attribute defines the initial target position.

 test_target_id unsigned short A identifier for the test targets.

 test_target_parameter anonymous_blob_type This attribute defines:

- the target motion type, with the relevant motion

parameters

- the target generation parameters, such as injection type

(internal / external), attenuation law (constant /

variable-with-range), doppler type (0 / PRF/2).

Open Architecture Radar Interface Standard (OARIS), v1.0

7.5.3.187.5.3.17 test_target_plus_scenario _type

Type: IDLStruct
Package: Sensor_Control
Test target with its scenario

Table 7.98 - Attributes of IDLStruct test_target_plus_scenario _type

Attribute Notes

 test_target_id unsigned short A identifier for the test targets.

 test_target_parameter anonymous_blob_type This attribute defines:

- the target motion type, with the relevant motion

parameters

- the target generation parameters, such as injection type

(internal / external), attenuation law (constant /

variable-with-range), doppler type (0 / PRF/2).

7.5.3.197.5.3.18 test_target_scenario_id_type

Type: IDLTypeDef long
Package: Sensor_Control
This typedef is used to identify a specific test target scenario.

7.5.3.207.5.3.19 test_target_scenario_state_type

Type: IDLStruct
Package: Sensor_Control
scenario state

Table 7.99 - Attributes of IDLStruct test_target_scenario_state_type

Attribute Notes

 test_target_scenario_activated boolean Indicates whether the CMS is enabling or disabling the

execution of the test target scenario.

 test_target_scenario_id test_target_scenario_id_type A unique identifier for the test target scenario.

7.5.4 Sensor_Performance

Parent Package: Sensor_Domain

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.39 Domain Model (Logical diagram)

7.5.4.1 interference_report_type

Type: IDLStruct
Package: Sensor_Performance
Set of interferer objects in a report.

7.5.4.2 interferer_kind

Type: IDLEnum
Package: Sensor_Performance
Enumeration of the types of interferers that are known about.

Table 7.100 - Attributes of IDLEnum interferer_kind

Attribute Notes

 ACTIVE_NOISE Interference from active noise.

 CLUTTER Interference from clutter.

 SELF_SCREENING_JAMMER Interference from a jammer, which is self screening.

 STANDOFF_JAMMER Interference from a stand-off jammer

 STROBE Interference from a strobe jammer.

 class Domain Model

float

«idlTypedef»

performance_type

«idlStruct»

interference_report_type

«idlEnum»

interferer_kind

+ ACTIVE_NOISE

+ CLUTTER

+ SELF_SCREENING_JAMMER

+ STANDOFF_JAMMER

+ STROBE

+ OTHER_TYPE

+ NO_STATEMENT

«idlStruct»

interferer_type

+ timestamp: time_type

+ magnitude: jamming_magnitude_type [0..1]

+ affected_bands: frequency_band_type [1..*]

+ position: position_coordinate_type [0..1]

+ kind: interferer_kind

+ affected_volume: general_polar_volume_type [0..1]

+ position_coordinate_specification: coordinate_specification_type

unsigned short

«idlTypedef»

jamming_magnitude_type

«idlStruct»

perfomance_bin_type

+ start_range: range_coordinate_type

+ end_range: range_coordinate_type

+ value: performance_type [0..1]

«idlStruct»

performance_assessment_report_type

+ time_of_report: time_type

«idlStruct»

performance_assessment_request_type

+ azimuth_bin_count: unsigned short

+ range_bin_count: unsigned short

+ elevation_bin_count: unsigned short

+ start_azimuth: azimuth_coordinate_type [0..1]

+ end_azimuth: azimuth_coordinate_type [0..1]

+ start_elevation: elevation_coordinate_type [0..1]

+ end_elevation: elevation_coordinate_type [0..1]

+ min_range: range_coordinate_type [0..1]

+ max_range: range_coordinate_type [0..1]

+ applicable_mode: operational_mode_type

+ coordinate_orientation: coordinate_orientation_type

«idlStruct»

performance_beam_type

+ start_elevation: elevation_coordinate_type

+ end_elevation: elevation_coordinate_type

«idlStruct»

performance_sector_type

+ start_azimuth: azimuth_coordinate_type

+ end_azimuth: azimuth_coordinate_type

+interferers

1..*

+bin

1..*

+assessment_dimensions

1

+beam

1..*

+sector 1..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 OTHER_TYPE The interference source is of a different type to the other

declared interference kinds

 NO_STATEMENT The interference source could not be classified by the

sensor subsystem.

7.5.4.3 interferer_type

Type: IDLStruct
Package: Sensor_Performance
A single source of interference.

Table 7.101 - Attributes of IDLStruct interferer_type

Attribute Notes

 timestamp time_type Time to which the performance report applies.

 magnitude jamming_magnitude_type [0..1] The Effective Radiated Power (ERP) of the source of

interference. This is an optional attribute, which may not

all sensors may be able to calculate.

 affected_bands frequency_band_type [1..*] A list of frequency bands which are effected by the

source of interference.

 position position_coordinate_type [0..1] The source position of the interference. This is an

optional attribute that not all sensors may be able to

calculate.

 kind interferer_kind A classification of the interference source.

 affected_volume general_polar_volume_type [0..1] The volume in space, which the interference source is

affecting. This is an optional attribute, which may not all

sensors may be able to calculate.

 position_coordinate_specification
coordinate_specification_type

Specifies the coordinate system used to define the

interferer.

7.5.4.4 jamming_magnitude_type

Type: IDLTypeDef unsigned short
Package: Sensor_Performance
Target strength (Effective Radiated Power - ERP) of a jammer. The precise semantics of this type are
sensor subsystem specific, but a typical interpretation is as a signal to noise ratio in dB.

7.5.4.5 perfomance_bin_type

Type: IDLStruct
Package: Sensor_Performance
Value of performance in a volume of space. This is given as a signal excess in dB above noise floor for a
nominal 0dB target strength. For a current performance report, this noise floor shall include clutter and
jamming. These are not included in a nominal performance report.

Table 7.102 - Attributes of IDLStruct perfomance_bin_type

Attribute Notes

 start_range range_coordinate_type The start of the bin in range.

 end_range range_coordinate_type The end of the bin in range.

 value performance_type [0..1] The assessed level of performance.

If no value present, there is no performance data available

for this bin.

7.5.4.6 performance_assessment_report_type

Type: IDLStruct
Package: Sensor_Performance
Contains the results of a performance assessment.

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.103 - Attributes of IDLStruct performance_assessment_report_type

Attribute Notes

 time_of_report time_type The time of validity of the performance assessment.

7.5.4.7 performance_assessment_request_type

Type: IDLStruct
Package: Sensor_Performance
A performance assessment request consists of an overall volume of interest and a specification of a
number of 'bins' into which that volume is to be sub-divided. In response the sensor assess performance for
each 'bin'.
The coordinate origin for the request is the SENSOR_REFERENCE_POINT as defined in
coordinate_origin_type.

Table 7.104 - Attributes of IDLStruct performance_assessment_request_type

Attribute Notes

 azimuth_bin_count unsigned short Number of azimuth bins that the CMS would like in the

performance report. The subsystem should try to honour

this request but does not have to.

 range_bin_count unsigned short Number of range bins that the CMS would like in the

report. The subsystem should try to honour this request

but does not have to.

 elevation_bin_count unsigned short The number of elevation bins that the CMS would like in

the report. The subsystem should try to honour this

request but does not have to.

 start_azimuth azimuth_coordinate_type [0..1] Defines the start of the arc of azimuth (positive

orientation) of the volume in which the sensor's

performance is to be assessed.

 end_azimuth azimuth_coordinate_type [0..1] Defines the end of the arc of azimuth (positive

orientation) of the volume in which the sensor's

performance is to be assessed.

 start_elevation elevation_coordinate_type [0..1] Defines the start of the arc of elevation (positive

orientation) of the volume in which the sensor's

performance is to be assessed.

 end_elevation elevation_coordinate_type [0..1] Defines the end of the arc of elevation (positive

orientation) of the volume in which the sensor's

performance is to be assessed.

 min_range range_coordinate_type [0..1] Defines the minimum range of the volume in which the

sensor's performance is to be assessed.

 max_range range_coordinate_type [0..1] Defines the maximum range of the volume in which the

sensor's performance is to be assessed.

 applicable_mode operational_mode_type The performance assessment is to be in the context of this

operational mode of the sensor subsystem.

 coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this class.

Note that the origin is always the sensor reference point

and that the coordinate system is always polar.

7.5.4.8 performance_beam_type

Type: IDLStruct
Package: Sensor_Performance
Set of performance values for a line of points in space. Each value applies to a volume whose boundaries
may be inferred from the numbers of bins and the min and max values in the report.

Table 7.105 - Attributes of IDLStruct performance_beam_type

Attribute Notes

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 start_elevation elevation_coordinate_type The start of the beam in elevation (positive orientation).

 end_elevation elevation_coordinate_type The end of the beam in elevation (positive orientation).

7.5.4.9 performance_sector_type

Type: IDLStruct
Package: Sensor_Performance
A set of performance values for a sector of azimuth [start_azimuth..end_azimuth].

Table 7.106 - Attributes of IDLStruct performance_sector_type

Attribute Notes

 start_azimuth azimuth_coordinate_type The start of the sector of azimuth (positive orientation).

 end_azimuth azimuth_coordinate_type The end of the sector of azimuth (positive orientation).

7.5.4.10 performance_type

Type: IDLTypeDef float
Package: Sensor_Performance
Defined as a signal excess in dB above noise floor for a nominal 0dB target strength, when assessing
nominal performance or for the jammer when providing jammer assessment..

7.5.5 Track_Reporting

Parent Package: Sensor_Domain
This service provides facilities to report different types of sensor tracks.

Issue OARIS 14 IDL for sensor_track_set_type is wrong

Issue OARIS 47 No identity_type field on the sensor_track_type class

Issue OARIS 48 No Unknown / No Statement value for environment

 class Track Reporting - Sensor Track

«idlStruct»

Plot_Reporting::sensor_plot_type

+ plot_id: plot_id_type [0..1]

+ position: position_coordinate_type

+ coordinate_specification: coordinate_specification_type

+ range_qualification: range_qualification_type [0..1]

+ azimuth_qualification: azimuth_qualification_type

+ elevation_qualification: elevation_qualification_type [0..1]

+ simulation_status: boolean

+ strength: plot_strength_type [0..1]

+ time_of_plot: time_type

+ additional_info: anonymous_blob_type

+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]

+ jammer_indication: boolean

«idlStruct»

sensor_track_set_type
«idlStruct»

sensor_track_type

+ additional_information: anonymous_blob_type

+ covariance_matrix: covariance_matrix_type [0..1]

+ environment: environment_type

+ initiation_mode: initiation_mode_type [0..1]

+ jammer_indication: boolean

+ max_range_limit: range_coordinate_type [0..1]

+ position: position_coordinate_type

+ position_accuracy: position_accuracy_coordinate_type [0..1]

+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ position_coordinate_system: coordinate_specification_type

+ sensor_track_id: sensor_track_id_type

+ sensor_track_pre_recognition: recognition_type [0..1]

+ simulated: boolean

+ time_of_information: time_type

+ time_of_initiation: time_type

+ track_phase: track_phase_type

+ velocity: velocity_coordinate_type

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_coordinate_system: coordinate_specification_type

+element

0..*

+based_on 1..*

1

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.40 Track Reporting - Sensor Track (Logical diagram)

Figure 7.41 Track Reporting - Type Definitions (Logical diagram)

7.5.5.1 sensor_track_id_type

Type: IDLTypeDef unsigned long
Package: Track_Reporting
Sensor Track Identification

7.5.5.2 environment_type

Type: IDLEnum
Package: Track_Reporting

 class Track Reporting - Sensor Track

«idlStruct»

Plot_Reporting::sensor_plot_type

+ plot_id: plot_id_type [0..1]

+ position: position_coordinate_type

+ coordinate_specification: coordinate_specification_type

+ range_qualification: range_qualification_type [0..1]

+ azimuth_qualification: azimuth_qualification_type

+ elevation_qualification: elevation_qualification_type [0..1]

+ simulation_status: boolean

+ strength: plot_strength_type [0..1]

+ time_of_plot: time_type

+ additional_info: anonymous_blob_type

+ splash_spotting_area_id: splash_spotting_area_id_type [0..1]

+ jammer_indication: boolean

«idlStruct»

sensor_track_set_type

«idlStruct»

sensor_track_type

+ additional_information: anonymous_blob_type

+ covariance_matrix: covariance_matrix_type [0..1]

+ environment: environment_type [0..1]

+ initiation_mode: initiation_mode_type [0..1]

+ jammer_indication: boolean

+ max_range_limit: range_coordinate_type [0..1]

+ position: position_coordinate_type

+ position_accuracy: position_accuracy_coordinate_type [0..1]

+ position_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ position_coordinate_system: coordinate_specification_type

+ sensor_track_pre_identification: identity_type [0..1]

+ sensor_track_pre_recognition: recognition_type [0..1]

+ simulated: boolean

+ time_of_information: time_type

+ time_of_initiation: time_type

+ track_phase: track_phase_type

+ velocity: velocity_coordinate_type

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_coordinate_system: coordinate_specification_type

«key»

+ sensor_track_id: sensor_track_id_type

+based_on 1..*

1

+element

0..*

 class Track Reporting - Type Definitions

unsigned short

«idlTypedef»

recognition_type

«idlEnum»

env ironment_type

«idlEnum»

+ AIR

+ LAND

+ SURFACE

+ SUBSURFACE

+ SPACEunsigned long

«idlTypedef»

sensor_track_id_type

«idlEnum»

track_phase_type

«idlEnum»

+ DEAD_RECKONED

+ DELETED

+ LOST

+ TRACKED

«idlEnum»

initiation_mode_type

«idlEnum»

+ AUTOMATIC

+ EXTERNAL_REQUEST

«idlStruct»

Coordinates_and_Positions::

full_cov ariance_matrix_type

+ xx_variance: float

+ xy_variance: float

+ xz_variance: float

+ xvx_variance: float

+ xvy_variance: float

+ xvz_variance: float

+ yy_variance: float

+ yz_variance: float

+ yvx_variance: float

+ yvy_variance: float

+ yvz_variance: float

+ zz_variance: float

+ zvx_variance: float

+ zvy_variance: float

+ zvz_variance: float

+ vxvx_variance: float

+ vxvy_variance: float

+ vxvz_variance: float

+ vyvy_variance: float

+ vyvz_variance: float

+ vzvz_variance: float

«idlStruct»

Coordinates_and_Positions::

diagonal_cov ariance_matrix_type

+ xx_variance: float

+ yy_variance: float

+ zz_variance: float

+ vxvx_variance: float

+ vyvy_variance: float

+ vzvz_variance: float

«idlUnion»

Coordinates_and_Positions::cov ariance_matrix_type

«idlCase»

+ diagonal_covariance_matrix: diagonal_covariance_matrix_type

+ full_covariance_matrix: full_covariance_matrix_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Issue OARIS 48 No Unknown / No Statement value for environment
The militarysensor tracking environment

Table 7.107 - Attributes of IDLEnum environment_type

Attribute Notes

«idlEnum» AIR

«idlEnum» LAND

«idlEnum» SURFACE

«idlEnum» SUBSURFACE

«idlEnum» SPACE

7.5.5.3 initiation_mode_type

Type: IDLEnum
Package: Track_Reporting
Type of track initiation

Table 7.108 - Attributes of IDLEnum initiation_mode_type

Attribute Notes

«idlEnum» AUTOMATIC Automatic track initiation mode

«idlEnum» EXTERNAL_REQUEST Track initation on external request (e.g. from CMS)

7.5.5.4 recognition_type

Type: IDLTypeDef unsigned short
Package: Track_Reporting
The recognition_type indicates the type of the tracked object.
The type of the recognition_type is 'short'. This short number is mapped to a recognition_type.

7.5.5.5 sensor_track_type

Type: IDLStruct
Package: Track_Reporting
Encapsulation of a sensor track

Issue OARIS 48 No Unknown / No Statement value for environment

Issue OARIS 3 IDL does not explicitly define topics

Issue OARIS 47 No identity_type field on the sensor_track_type class

Table 7.109 - Attributes of IDLStruct sensor_track_type

Attribute Notes

 additional_information anonymous_blob_type Additional, vendor-specific information

 covariance_matrix covariance_matrix_type [0..1] * optional *

The number of elements in the covariance matrix is

dependent on the sensor.

 environment environment_type [0..1] Environment of the track (air, surface etc)

 initiation_mode initiation_mode_type [0..1] Initiation mode of track (automatic or externally

initiatied)

 jammer_indication boolean Indication whether or not a track is jamming.

 max_range_limit range_coordinate_type [0..1] Maximal range for a bearing track

 position position_coordinate_type

 position_accuracy position_accuracy_coordinate_type

[0..1]

* optional *

 position_accuracy_coordinate_system
coordinate_specification_type [0..1]

* optional *

 position_coordinate_system
coordinate_specification_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

«key» sensor_track_id sensor_track_id_type

 sensor_track_pre_identification identity_type [0..1] Identification information for the sensor track (if

available)

 sensor_track_pre_recognition recognition_type

[0..1]

Recognition information for the sensor track (if

available)

 simulated boolean

 time_of_information time_type

 time_of_initiation time_type

 track_phase track_phase_type Track phase (e.g. TRACKED, DELETED, LOST)

 velocity velocity_coordinate_type

 velocity_accuracy velocity_accuracy_coordinate_type

[0..1]

* optional *

 velocity_accuracy_coordinate_system
coordinate_specification_type [0..1]

* optional *

 velocity_coordinate_system
coordinate_specification_type

7.5.5.6 sensor_track_set_type

Type: IDLStruct
Package: Track_Reporting
A set of sensor tracks (to enable batch reporting)

7.5.5.7 track_phase_type

Type: IDLEnum
Package: Track_Reporting
The detection lifecycle phase of the track

Table 7.110 - Attributes of IDLEnum track_phase_type

Attribute Notes

«idlEnum» DEAD_RECKONED Track provided based on extrapolated position

(dead-reckoned)

«idlEnum» DELETED Track has been deleted.

«idlEnum» LOST Track has been lost

«idlEnum» TRACKED Regular update of new and existing track

7.5.6 Tracking_Control

Parent Package: Sensor_Domain
This package contains structs and type defs for managing tracking zones and sensor track information.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.42 Domain Model (Logical diagram)

7.5.6.1 track_info

Type: IDLStruct
Package: Tracking_Control
This struct identifies track information.

Table 7.111 - Attributes of IDLStruct track_info

Attribute Notes

 class Domain Model

unsigned long

«idlTypedef»

Track_Reporting::sensor_track_id_type

«idlStruct»

track_info

+ additional_information: anonymous_blob_type

+ system_track_id: system_track_id_type

+ track_priority: track_priority_type

+ identification_assigned_type: identity_type

short

«idlTypedef»

track_priority_type

«idlEnum»

Common_Types::identity_type

+ PENDING

+ UNKNOWN

+ ASSUMED_FRIEND

+ FRIEND

+ NEUTRAL

+ SUSPECT

+ HOSTILE

«idlStruct»

System_Track::system_track_type

+ simulated: boolean

+ time_of_information: time_type

+ position_coordinate_system: coordinate_specification_type

+ position: position_coordinate_type

+ velocity_coordinate_system: coordinate_specification_type

+ velocity: velocity_coordinate_type

+ position_accuracy_coordinate_system: coordinate_specification_type

+ position_accuracy: position_accuracy_coordinate_type

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ max_range_limit: range_coordinate_type [0..1]

«key»

+ system_track_number: system_track_id_type

«idlStruct»

tracking_zone

+ enable: boolean

+ shape: general_polar_volume_type

+ tracking_type: tracking_zone_type

+ tracking_zone_id: tracking_zone_id_type

«idlEnum»

tracking_zone_type

+ AUTOMATIC_TRACK_INITIATION

+ MULTIPATH_DEVOTED_TRACKING

+ TRACK_ON_JAMMER

«idlStruct»

tracking_zone_set

«idlUnion»

Shape_Model::general_polar_v olume_type

«idlCase»

+ sector: sector_type

+ polar_volume: polar_volume_type

+ truncated_sector: truncated_sector_type

+ truncated_polar_volume: truncated_polar_volume_type

short

«idlTypedef»

tracking_zone_id_type

A

+zone

0..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 additional_information anonymous_blob_type This is additional information that is not specified as part

of the interface. Candidate information includes:

- Track type,

- Track priority,

- Track Identification Category Assigned (Pending,

Friend, Assumed Friend, Neutral, Unknown, Suspect,

Hostile).

 system_track_id system_track_id_type

 track_priority track_priority_type

 identification_assigned_type identity_type

7.5.6.2 track_priority_type

Type: IDLTypeDef short
Package: Tracking_Control
The meaning of track_priority_type is to assign a priority among a set of tracks based on some criteria (i.e.
subsystem's time dedicated to a track analysis).

Example of values:
1 Track While Scan (TWS)
2 Low Priority Target (LPT)
3 High Priority Target (HPT)

7.5.6.3 tracking_zone_set

Type: IDLStruct
Package: Tracking_Control
This struct contains zero to many tracking zones which must be set/reset by the CMS.

7.5.6.4 tracking_zone

Type: IDLStruct
Package: Tracking_Control
This struct identifies a tracking zone.

Table 7.112 - Attributes of IDLStruct tracking_zone

Attribute Notes

 enable boolean Indicates whether the CMS is enabling or disabling a

tracking zone.

 shape general_polar_volume_type This is the polar volume of the zone.

 tracking_type tracking_zone_type This indicates the tracking zone type.

 tracking_zone_id tracking_zone_id_type A unique identifier for the tracking zone.

7.5.6.5 tracking_zone_type

Type: IDLEnum
Package: Tracking_Control
Identifies the type of a tracking zone.

Table 7.113 - Attributes of IDLEnum tracking_zone_type

Attribute Notes

 AUTOMATIC_TRACK_INITIATION Zones where the sensor is allowed to auto initiate new

tracks. Depending on the sensor type and its capabilities,

such a type of zones may be delimited in azimuth only, or

both in azimuth and elevation, or may have further range

bounds, and in some cases also additional constraints

(such as target type, velocity bounds, etc.).

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 MULTIPATH_DEVOTED_TRACKING Sectors where the sensor is required to use, for tracking

activities, devoted waveforms to reduce the multipath

effects. This capability is usually provided by

multifunctional radars. Such a type of sectors is usually

limited in azimuth only, below a defined elevation.

 TRACK_ON_JAMMER Sectors where the sensor is allowed to manage

Track-On-Jammer. Depending on the sensor type and its

capabilities, such a type of sectors may be delimited

either in azimuth only or both in azimuth and elevation.

7.5.6.6 tracking_zone_id_type

Type: IDLTypeDef short
Package: Tracking_Control
This typedef is used to identify a specific tracking zone.

7.6 Radar_Domain
Parent Package: Domain_Model
This package contains the Domain Models for the Air Engagement Support, Engagement Support, Missile
Guidance, Search, and Surface Engagement Support services.

7.6.1 Air_Engagement_Support

Parent Package: Radar_Domain

Figure 7.43 Domain Model (Logical diagram)

7.6.1.1 expected_hit_data_type

Type: IDLStruct
Package: Air_Engagement_Support
Expected hit identifies the target and the time a hit is expected. This data is used to initiate the evaluation of
a miss indication within the radar.

Table 7.114 - Attributes of IDLStruct expected_hit_data_type

Attribute Notes

 class Domain Model

«idlStruct»

expected_hit_data_type

+ expected_hit_time: time_type

+ track_id_descriptor: sensor_track_id_type

«idlStruct»

projectile_kinematics_type

+ time_stamp: time_type

+ position_descriptor: position_coordinate_type

+ velocity_descriptor: velocity_coordinate_type

«idlStruct»

miss_indication_data_type

+ miss_distance: polar_position_type

+ time_stamp: time_type

+kinematics_descriptor

1

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 expected_hit_time time_type Time when projectile is expected to hit the target.

 track_id_descriptor sensor_track_id_type The target track id.

7.6.1.2 miss_indication_data_type

Type: IDLStruct
Package: Air_Engagement_Support
Is sent once a hit or miss is noted.

Table 7.115 - Attributes of IDLStruct miss_indication_data_type

Attribute Notes

 miss_distance polar_position_type Closest distance of the projectile to the target expressed

in polar coordinates.

 time_stamp time_type Closest time of approach of the projectile to the target.

7.6.1.3 projectile_kinematics_type

Type: IDLStruct
Package: Air_Engagement_Support
Identifies the kinematics of the projectile that is expected to hit the target.

Table 7.116 - Attributes of IDLStruct projectile_kinematics_type

Attribute Notes

 time_stamp time_type The timestamp when the kinematics was valid/measured.

 position_descriptor position_coordinate_type The projectile's position.

 velocity_descriptor velocity_coordinate_type The projectile's velocity.

7.6.2 Engagement_Support

Parent Package: Radar_Domain

Figure 7.44 Domain Model (Logical diagram)

 class Domain Model

unsigned short

«idlTypedef»

av ailable_fire_control_channels_type

unsigned short

«idlTypedef»

fire_control_channel_id_type

«idlStruct»

kinematics_type

+ orientation: coordinate_orientation_type

+ position: cartesian_position_type

+ reference_position: coordinate_origin_type

+ time_stamp: time_type

+ velocity: cartesian_velocity_type

+ coordinate_kind: coordinate_kind_type

«idlEnum»

kill_assessment_result_type

+ PROBABLE_KILL

+ PROBABLE_MISS

+ NO_RESULT

«idlUnion»

Coordinates_and_Positions::v elocity_coordinate_type

«idlCase»

+ cartesian_velocity: cartesian_velocity_type

+ polar_velocity: polar_velocity_type

+ wgs84_velocity: wgs84_velocity_type

notes

To offer flexibil ity, three variants of coordinate system representation are supported

- corresponding to the coordinate_kind_type enumerate. An implementation should

support one kind for each relevant service as defined by the

coordinate_specification_type value, and it should only send data of that variant

and it should check that all data received is of that variant. It should not implement

conversion of data in an unexpected variant. Receipt of such data constitutes an

error in the operation of the interface.

Open Architecture Radar Interface Standard (OARIS), v1.0

7.6.2.1 available_fire_control_channels_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support
The number/amount of available fire control channels.

7.6.2.2 fire_control_channel_id_type

Type: IDLTypeDef unsigned short
Package: Engagement_Support
The fire control channel ID as assigned by the subsystem.

7.6.2.3 kill_assessment_result_type

Type: IDLEnum
Package: Engagement_Support
The possible outcomes of a kill assessment.

Table 7.117 - Attributes of IDLEnum kill_assessment_result_type

Attribute Notes

 PROBABLE_KILL Kill Probability > 50%

 PROBABLE_MISS Kill Probability < 50%

 NO_RESULT Assessment indeterminate

7.6.2.4 kinematics_type

Type: IDLStruct
Package: Engagement_Support
Target position/kinematics for which a fire control channel is requested to designate.

Table 7.118 - Attributes of IDLStruct kinematics_type

Attribute Notes

 orientation coordinate_orientation_type

 position cartesian_position_type

 reference_position coordinate_origin_type

 time_stamp time_type

 velocity cartesian_velocity_type

 coordinate_kind coordinate_kind_type

7.6.3 Missile_Guidance

Parent Package: Radar_Domain

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.45 Missile Guidance - Track (Logical diagram)

Figure 7.46 Illumination (Logical diagram)

 class Missile Guidance - Track

«idlStruct»

System_Track::system_track_type

+ simulated: boolean

+ time_of_information: time_type

+ position_coordinate_system: coordinate_specification_type

+ position: position_coordinate_type

+ velocity_coordinate_system: coordinate_specification_type

+ velocity: velocity_coordinate_type

+ position_accuracy_coordinate_system: coordinate_specification_type

+ position_accuracy: position_accuracy_coordinate_type

+ velocity_accuracy_coordinate_system: coordinate_specification_type [0..1]

+ velocity_accuracy: velocity_accuracy_coordinate_type [0..1]

+ max_range_limit: range_coordinate_type [0..1]

«key»

+ system_track_number: system_track_id_type

A system track may be based on a sensor track

(produced by a sensor on the same platform), but

may also be based on a link received track (not

modelled).

unsigned long

«idlTypedef»

Common_Types::

system_track_id_type

«idlUnion»

track_id_type

«idlCase»

+ sensor_track_id: sensor_track_id_type

+ system_track_id: system_track_id_type

notes

The track referred to by a missile guidance

command may either be a system track (provided

by the CMS) or a sensor track (if the object is

already tracked by the sensor). Therefore, the

track_id(s) in the missile guidance command may

be a sensor_track_id or a missile_track_id.

On the same platform, different objects (targets

and own missiles) may be tracked by different

sensor types (e.g 3D radar, or ESM).

Therefore, for the same interface with a sensor, in

successive missile_guidance commands, the

referred system tracks may be a cartesian

point_track at one time and polar bearing_track at

the next time.

 class Illumination

«idlStruct»

illumination_request_type

+ target_track_id: track_id_type

+ own_missile_track_id: track_id_type [0..*]

+ il lumination_period: absolute_duration_type

+ frequency_channel: frequency_channel_type [0..1]

+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»

frequency_channel_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.47 Missile Uplink (Logical diagram)

Figure 7.48 Missile Downlink (Logical diagram)

7.6.3.1 downlink_report

Type: IDLStruct
Package: Missile_Guidance
Information downlinked by the missile to the radar.

Table 7.119 - Attributes of IDLStruct downlink_report

Attribute Notes

 own_missile_track_id track_id_type

 time_of_receipt time_type

 downlink_content anonymous_blob_type

7.6.3.2 downlink_request

Type: IDLStruct
Package: Missile_Guidance
request to downlink

Table 7.120 - Attributes of IDLStruct downlink_request

Attribute Notes

 class Missile Uplink

«idlStruct»

uplink_request_type

+ own_missile_track_id: track_id_type

+ frequency_channel: frequency_channel_type [0..1]

+ request_info: anonymous_blob_type

«idlStruct»

uplink_report_type

+ own_missile_track_id: track_id_type

+ uplink_info: anonymous_blob_type [0..1]

unsigned short

«idlTypedef»

frequency_channel_type

 class Missile Downlink

«idlStruct»

downlink_report

+ own_missile_track_id: track_id_type

+ time_of_receipt: time_type

+ downlink_content: anonymous_blob_type

«idlStruct»

downlink_request

+ own_missile_track_id: track_id_type

+ listening_period: absolute_duration_type

+ frequency_channel: frequency_channel_type [0..1]

+ additional_parameters: anonymous_blob_type

unsigned short

«idlTypedef»

frequency_channel_type

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 own_missile_track_id track_id_type

 listening_period absolute_duration_type Start of period during which downlinks shall be received

 frequency_channel frequency_channel_type [0..1]

 additional_parameters anonymous_blob_type

7.6.3.3 frequency_channel_type

Type: IDLTypeDef unsigned short
Package: Missile_Guidance
A frequency channel identifies a specific radar frequency.

7.6.3.4 illumination_request_type

Type: IDLStruct
Package: Missile_Guidance
semantics of selects association is implementation specific.

Table 7.121 - Attributes of IDLStruct illumination_request_type

Attribute Notes

 target_track_id track_id_type

 own_missile_track_id track_id_type [0..*]

 illumination_period absolute_duration_type

 frequency_channel frequency_channel_type [0..1]

 additional_parameters anonymous_blob_type

7.6.3.5 track_id_type

Type: IDLUnion
Package: Missile_Guidance
The track referred to by a missile guidance command may either be a system track (provided by the CMS)
or a sensor track (if the object is already tracked by the sensor). Therefore, the track_id(s) in the missile
guidance command may be a sensor_track_id or a missile_track_id.

Table 7.122 - Attributes of IDLUnion track_id_type

Attribute Notes

«idlCase» sensor_track_id sensor_track_id_type

«idlCase» system_track_id system_track_id_type

7.6.3.6 uplink_report_type

Type: IDLStruct
Package: Missile_Guidance
a report from uplink

Table 7.123 - Attributes of IDLStruct uplink_report_type

Attribute Notes

 own_missile_track_id track_id_type

 uplink_info anonymous_blob_type [0..1] * optional *

7.6.3.7 uplink_request_type

Type: IDLStruct
Package: Missile_Guidance
a request to downlink

Table 7.124 - Attributes of IDLStruct uplink_request_type

Attribute Notes

Open Architecture Radar Interface Standard (OARIS), v1.0

Attribute Notes

 own_missile_track_id track_id_type

 frequency_channel frequency_channel_type [0..1] * optional *

 request_info anonymous_blob_type

7.6.4 Search

Parent Package: Radar_Domain

Figure 7.49 Domain Model (Logical diagram)

7.6.4.1 cued_search_cue_type

Type: IDLStruct
Package: Search
Type used for specifying the constraints on a cued search.

Table 7.125 - Attributes of IDLStruct cued_search_cue_type

Attribute Notes

 speed_interval speed_interval_type [0..1] The range of track-speed to search for from the cue.

 volume general_polar_volume_type The region in the environment, in which the cue to search

for tracks is to be performed.

 coordinate_orientation coordinate_orientation_type The orientation of the polar coordinates used in this class.

Note that the origin is always the sensor reference point

and that the coordinate system is always polar.

7.6.4.2 cued_search_report_type

Type: IDLStruct
Package: Search
Data returned to the CMS to indicate the results of a cued search.

Table 7.126 - Attributes of IDLStruct cued_search_report_type

Attribute Notes

 found_track_id sensor_track_id_type [0..1]

7.6.5 Surface_Engagement_Support

Parent Package: Radar_Domain

 class Domain Model

«idlStruct»

cued_search_cue_type

+ speed_interval: speed_interval_type [0..1]

+ volume: general_polar_volume_type

+ coordinate_orientation: coordinate_orientation_type

«idlStruct»

cued_search_report_type

+ found_track_id: sensor_track_id_type [0..1]

+original_cue

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.50 Domain Model (Logical diagram)

7.6.5.1 splash_spotting_area_id_type

Type: IDLTypeDef unsigned short
Package: Surface_Engagement_Support
the area ID assigned by the sensor.

7.6.5.2 splash_spotting_area_position_type

Type: IDLStruct
Package: Surface_Engagement_Support
The area definition from the User (CMS) when Splash Spotting is defined using the service "activate splash
spotting area by position". The minimum and maximum available sizes are defined in "Manage
Subsystem Parameters".

Table 7.127 - Attributes of IDLStruct splash_spotting_area_position_type

Attribute Notes

 azimuth_max azimuth_coordinate_type when max is less than min, areas covers the north

azimuth

 azimuth_min azimuth_coordinate_type when min is less than max, areas covers the north

azimuth

 range_max range_coordinate_type limited to less than or equal to instrumented range

 range_min range_coordinate_type limited to greater than or equal to minimum visible range

7.6.5.3 splash_spotting_area_set_type

Type: IDLStruct
Package: Surface_Engagement_Support
A set consisting of splash spotting areas.

7.6.5.4 splash_spotting_area_type

Type: IDLStruct
Package: Surface_Engagement_Support

 class Domain Model

unsigned short

«idlTypedef»

splash_spotting_area_id_type

«idlStruct»

splash_spotting_area_type

+ shape: truncated_sector_type

+ area_id: splash_spotting_area_id_type

«idlStruct»

splash_spotting_area_position_type

+ azimuth_max: azimuth_coordinate_type

+ azimuth_min: azimuth_coordinate_type

+ range_max: range_coordinate_type

+ range_min: range_coordinate_type

«idlStruct»

splash_spotting_area_set_type

unsigned long

«idlTypedef»

Track_Reporting::sensor_track_id_type

+splash_spotting_area_descriptor 0..*

Open Architecture Radar Interface Standard (OARIS), v1.0

Definition of a single splash spotting area.

Issue OARIS 41 C++ for general_polar_volume_type does not compile

Table 7.128 - Attributes of IDLStruct splash_spotting_area_type

Attribute Notes

 shape truncated_sector_type Shape and size of the splash spotting area

 area_id splash_spotting_area_id_type Area ID of the splash spotting area.

7.7 Subsystem_Services
Parent Package: Service_Interfaces
Contains services associated with the Subsystem Domain.

7.7.1 Encyclopaedic_Support

Parent Package: Subsystem_Services

7.7.1.1 Receive_Encyclopaedic_Data

Parent Package: Encyclopaedic_Support

7.7.1.1.1 Receive_Encyclopaedic_Data_CMS

Type: IDLInterface common_use_case_interface
Package: Receive_Encyclopaedic_Data
This interface describes the process whereby the subsystem receives encyclopedic data.Such data is used
by the subsystem to perform self-adaptation to the prevailing environmental conditions.
This interface is modelled as a control interaction between the CMS and the subsystem rather than a data
flow interaction. The CMS controls the loading of subsystem encyclopaedic data by sending the location of
the data, rather than sending the data itself. Of course an implementation may move the encyclopaedic
data around a file system beforehand, but that is outside the scope of this standard.
The subsystem is aware of its real-time geographic position and orientation.
It is expected that the transfer of this data would be initiated at the start of the ‘mission of the day’. Updates
would only be envisaged when the current data set became inapplicable to the current mission.
Specific encyclopedic data might be requested by the subsystem. Alternatively, a default set of summary
data is sent. Such data, which is an example of ‘reference’ data, would generally be non-sensor in origin
and static i.e. not changing in real-time. In the simplest case this data might simply define clutter areas and
known jammer locations to assist the subsystem in effecting suitable mitigation for these effects. For a
subsystem such as a more complex multi-function radar this might include relevant extracts from a
commercial shipping database (Lloyd’s etc.), giving shipping lanes or ship movements or civil airline flight
plan data (Civil Aviation Authority etc), locations of wind-farms, major highways, significant structures and
potential sources of interference, such as other radars, including consorts, cellular phone masts etc. This
data would be used by the subsystem to contribute to the tactical picture. Alternatively, it could be used
within the automatic tracking function to enable the identification/elimination from the track picture of
non-hostile tracks. Such data could also include, for example, the reference data types communicated via
Link 16 such as hazard areas and other fixed point type data. Navigational charts might also be a part of
such data. The subsystem VOI (volume of interest) or other filter mechanisms might be supplied in a
request from the actor.

Pre-condition: Technical State The subsystem is in technical state STANDBY, READY or ONLINE
Pre-condition: Mastership Required The CMS has mastership
Pre-condition: Subsystem Services Provide Subsystem Services has completed successfully, in
particular this service is available.
Post-condition: Success The subsystem has received updated Encyclopedic Data.
Post-condition: No Success The subsystem has not received updated Encyclopedic Data

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.129 - Methods of IDLInterface Receive_Encyclopaedic_Data_CMS

Method Notes Parameters

encyclopaedic_data_loaded() The subsystem responds to the CMS

that the encyclopaedic data

previously requested has been loaded.

request_id_type request_id The

unique id for this request -

corresponds to the parameter in the

load_encyclopaedic_data request

7.7.1.1.2 Receive_Encyclopaedic_Data_Sub

Type: IDLInterface
Package: Receive_Encyclopaedic_Data

Table 7.130 - Methods of IDLInterface Receive_Encyclopaedic_Data_Sub

Method Notes Parameters

load_encyclopaedic_data() The CMS requests the subsystem to

load encyclopaedic data of a

particular type from a particular

location.

request_id_type request_id The

unique identifier for this request

url_type url The location of the file

containing the encyclopaedic data

data_descriptor_type

data_descriptor A description of the

type of encyclopaedic data (e.g. name

of the data set). It is expected that

implementations will specify a list of

descriptors known to particular

subsystems. Such a list may be

accessible at run-time through the

Manage Subsystem Parameters

interface.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.51 Alternate Flow - Receive Encyclopaedic Data (Sequence diagram)

Figure 7.52 Basic Flow - Receive Encyclopaedic Data (Sequence diagram)

7.7.2 Extended_Subsystem_Control

Parent Package: Subsystem_Services
Contains interfaces for the Extended Subsystem Control service.

7.7.2.1 Manage Physical Configuration

 sd Alternate Flow - Receiv e Encyclopaedic Data

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

Negative

Acknowledgement

Positive

Acknowledgement

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Receiv e Encyclopaedic Data

«idlInterface»

Receive_Encyclopaedic_Data_CMS

«idlInterface»

Receive_Encyclopaedic_Data_Sub

load_encyclopaedic_data(request_id_type, url_type, data_descriptor_type)

receive_acknowledgement(request_id_type,

request_ack_type)

encyclopaedic_data_loaded(request_id_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Manage Physical Configuration interface.

7.7.2.1.1 Manage_Physical_Configuration_CMS

Type: IDLInterface common_use_case_interface
Package: Manage Physical Configuration
The purpose of this interface is to provide a mechanism to exchange a physical configuration data file
between a subsystem and the CMS (potentially xml format). The exact format of the file is subsystem
specific. The purpose of the file is to support the maintainer with facilities to configure the internal parts of
the subsystem; also to be used as integration support.

Additional Information:

There are at least two cases where the CMS would provide a sub-system’s physical configuration. Case 1
is when the sub-system was able to detect a configuration change and the data must be manually entered
in sub-system configuration data (e.g. a servo type and serial number). Case 2 is when the sub-system is
being developed and changes to the configuration which cause changes in system behavior are being
tested.

Pre-condition: Subsystem must be in a STANDBY state in order for the CMS to request changes to
Physical Configuration Data. This precondition does not apply if the CMS is only requesting current
Physical Configuration Data to be provided by the subsystem.
Pre-condition: CMS must have mastership in order for the CMS to request changes to Physical
Configuration Data. This precondition does not apply if the CMS is only requesting current Physical
Configuration Data to be provided by the subsystem.
Post-condition: For a change in Physical Configuration Data Request, configuration data is properly
updated.

Table 7.131 - Methods of IDLInterface Manage_Physical_Configuration_CMS

Method Notes Parameters

receive_physical_configuration() Interface used by CMS to receive a

url to access physical configuration

data from the subsystem.

configuration_url_type

configuration_url
request_id_type request_id

receive_physical_configuration_su

ccess()

Interface used by CMS to receive an

indication from the subsystem that it

has successfully changed its physical

configuration data.

request_id_type request_id

7.7.2.1.2 Manage_Physical_Configuration_Sub

Type: IDLInterface
Package: Manage Physical Configuration

Table 7.132 - Methods of IDLInterface Manage_Physical_Configuration_Sub

Method Notes Parameters

change_physical_configuration() Interface used by the subsystem to

receive requests from the CMS to

change its physical configuration data

to align with data located at the url

specified in the request.

request_id_type request_id

configuration_url_type

configuraiton_url

provide_physical_configuration() Interface used by the subsystem to

receive requests from the CMS to

request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

provide its current physical

configuration data.

Figure 7.53 Manage Physical Configuration - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its physical configuration
data (also depicts alternate rejection and error paths).

 sd Manage Physical Configuration - Change

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

change_physical_configuration(request_id_type,

configuration_url_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_physical_configuration_success(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.54 Manage Physical Configuration - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current physical
configuration data (also depicts alternate rejection and error paths).

7.7.2.2 Perform Offline Test

Parent Package: Extended_Subsystem_Control
Contains the interface for offline testing.

7.7.2.2.1 Perform_Offline_Test_CMS

Type: IDLInterface common_use_case_interface
Package: Perform Offline Test
This is used to instruct the subsystem to perform offline test and return the results to the CMS. The nature of
the offline tests is subsystem specific

Issue OARIS 1 Control Interface Connection use case was redundant
Pre-condition: Control Interface ConnectionProvide Subsystem Services must have executed
successfully.
Pre-condition: The CMS must have Mastership
Pre-condition: The subsystem may be in any Technical State except for ONLINE

 sd Manage Physical Configuration - Request

«idlInterface»

Manage_Physical_Configuration_CMS

«idlInterface»

Manage_Physical_Configuration_Sub

alt

[Basic Flow]

[Request Rejected]

[Error Encountered]

provide_physical_configuration(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_physical_configuration(configuration_url_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Post-condition: For the response FAILED, the subsystem transitions to Technical State FAILED, but
otherwise remains in the previous Technical State.

Table 7.133 - Methods of IDLInterface Perform_Offline_Test_CMS

Method Notes Parameters

receive_detailed_test_results() Provides the CMS with subsystem

specific information concerning

offline test failures

request_id_type request_id

offline_test_result_details_type

offline_test_detailed_results

receive_test_results() Informs the CMS whether the offline

tests passed, passed partially, or

failed.

request_id_type request_id

offline_test_result_type test_results

7.7.2.2.2 Perform_Offline_Test_Sub

Type: IDLInterface
Package: Perform Offline Test

Table 7.134 - Methods of IDLInterface Perform_Offline_Test_Sub

Method Notes Parameters

perform_tests() Instructs the subsystem to perform

the offline tests.

request_id_type request_id

offline_test_type test_name Allows

a particular test to be selected. If null,

all tests are performed.

request_detailed_test_results() Asks the subsystem to provide

detailed information on the failures.

request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.55 Perform Offline Test (Sequence diagram)

This shows the required sequential behaviour for Perform_Offline_Test, See diagram embedded notes for
further explanation

7.7.2.3 Restart

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Restart interface.

7.7.2.3.1 Restart_CMS

Type: IDLInterface common_use_case_interface
Package: Restart
The purpose of this interface is to cause a normal transition to STANDBY and then to READY states as
defined by Manage Technical State.

Pre-condition: Sub-system is in ONLINE, READY, FAILED, BIT, or CALIBRATION
Pre-condition: CMS has mastership of sub-system
Post-condition: Sub-system is in READY state if successful, otherwise current state is reported by
subsystem.

Table 7.135 - Methods of IDLInterface Restart_CMS

Method Notes Parameters

 sd Perform Offline Test

«idlInterface»

Perform_Offline_Test_CMS

«idlInterface»

Perform_Offline_Test_Sub

The subsystem

executes the offl ine

tests

opt Detailed results required

In the event of a partial

pass or failure, detailed

results from the last test

may be requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The test request is

rejected for some

reason

Testing starts but fails

to complete for some

reason

perform_tests(request_id_type, offl ine_test_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_test_results(request_id_type, offl ine_test_result_type)

request_detailed_test_results(request_id_type)

receive_detailed_test_results(request_id_type, offl ine_test_result_details_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

receive_restart_state() Interface used by CMS to receive an

indication from the subsystem that it

has successfully performed restart.

request_id_type request_id

technical_state_type technical_state

7.7.2.3.2 Restart_Sub

Type: IDLInterface
Package: Restart

Table 7.136 - Methods of IDLInterface Restart_Sub

Method Notes Parameters

perform_restart() Interface used by the subsystem to

receive a request from the CMS to

execute a restart.

request_id_type request_id

Figure 7.56 Basic Flow - Restart (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to READY.

 sd Basic Flow - Restart

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

perform_restart(request_id_type)

receive_acknowledgement(request_id,

request_ack)

receive_restart_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.57 Alternative Flow - Restart (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY followed by a transition to
READY (depicts rejection and error paths).

7.7.2.4 Shutdown

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Shutdown interface.

7.7.2.4.1 Shutdown_CMS

Type: IDLInterface common_use_case_interface
Package: Shutdown
The purpose of this interface is to transition the sub-system to the STANDBY state from any other state as
defined by Manage Technical State. Note: this shall cause the Subsystem to cease radiating if it is in an
ONLINE state with emissions enabled.

Pre-condition: Subsystem is in ONLINE, READY, FAILED, BIT, or CALIBRATION
Pre-condition: CMS has mastership of subsystem.
Post-condition: Sub-system is in STANDBY state if successful, otherwise the current state is reported by

 sd Alternativ e Flow - Restart

«idlInterface»

Restart_CMS

«idlInterface»

Restart_Sub

alt Alternativ e Flows

[Subsystem rejects request to restart]

[Subsystem fails to restart]

command is

successfully

acknowledged but fails

before completion

perform_restart(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id,

error_reason)

receive_restart_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

the subsystem.

Table 7.137 - Methods of IDLInterface Shutdown_CMS

Method Notes Parameters

receive_shutdown_state() Interface used by CMS to receive an

indication from the subsystem that it

has successfully performed

shutdown.

request_id_type request_id

technical_state_type technical_state

7.7.2.4.2 Shutdown_Sub

Type: IDLInterface
Package: Shutdown

Table 7.138 - Methods of IDLInterface Shutdown_Sub

Method Notes Parameters

perform_shutdown() Interface used by the subsystem to

receive a request from the CMS to

execute a shutdown.

request_id_type request_id

Figure 7.58 Basic Flow - Shutdown (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition to STANDBY.

 sd Basic Flow - Shutdown

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

perform_shutdown(request_id_type)

receive_acknowledgement(request_id,

request_ack)

receive_shutdown_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.59 Alternative Flow - Shutdown (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition to STANDBY (depicts rejection and error
paths).

7.7.2.5 Startup

Parent Package: Extended_Subsystem_Control
Contains operations and sequence diagrams for the Startup interface.

7.7.2.5.1 Startup_CMS

Type: IDLInterface common_use_case_interface

 sd Alternativ e Flow - Shutdown

«idlInterface»

Shutdown_CMS

«idlInterface»

Shutdown_Sub

alt Alternativ e Flows

[Subsystem rejects request to shutdown]

[Subsystem reports shutdown failure]

command is

successfully

acknowledged but fails

before completion

perform_shutdown(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id,

error_reason)

receive_shutdown_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Startup
The purpose of this interface is to cause a normal transition from the STANDBY state to the READY state
using the transitions defined in the Manage Technical State service.

Pre-condition: Subsystem is in STANDBY State.
Pre-condition: CMS has mastership of subsystem.
Post-condition: Subsystem is in READY state if successful. If not execute successful, current state shall be
reported by subsystem.

Table 7.139 - Methods of IDLInterface Startup_CMS

Method Notes Parameters

receive_startup_state() Interface used by CMS to receive an

indication from the subsystem that it

has successfully performed startup.

request_id_type request_id

technical_state_type technical_state

7.7.2.5.2 Startup_Sub

Type: IDLInterface
Package: Startup

Table 7.140 - Methods of IDLInterface Startup_Sub

Method Notes Parameters

perform_startup() Interface used by the subsystem to

receive a request from the CMS to

execute startup.

request_id_type request_id

Figure 7.60 Basic Flow -Startup (Sequence diagram)

Basic flow for CMS requesting the subsystem to transition from STANDBY to READY.

 sd Basic Flow -Startup

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

perform_startup(request_id_type)

receive_acknowledgement(request_id,

request_ack)

receive_startup_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.61 Alternative Flow - Startup (Sequence diagram)

Alternate flow for CMS requesting the subsystem to transition from STANDBY to READY (depicts rejection
and error paths).

7.7.3 Recording_and_Replay

Parent Package: Subsystem_Services
Contains the interfaces controlling recording and replay.

7.7.3.1 Control_Recording

Parent Package: Recording_and_Replay
Contains the interface controlling the recording of information.

7.7.3.1.1 Control_Recording_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Recording
The interface describes how the CMS controls the recording of information. Such information may be used

 sd Alternativ e Flow - Startup

«idlInterface»

Startup_CMS

«idlInterface»

Startup_Sub

alt Alternativ e Flows

[Subsystem rejects request to startup]

[Subsystem fails to startup]

command is

successfully

acknowledged but fails

before completion

perform_startup(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id,

error_reason)

receive_startup_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

to support:

 Setting-to Work/Commissioning

 Equipment monitoring

 Performance monitoring and evaluation

 ‘Black Box’ recording

 Safety of Life at Sea (SOLAS) recording

 De-briefing

 Training

 Post exercise analysis
For the purposes of this interface, ‘recording’ is defined as the synchronous capture of real-time information
at a defined rate. Provision of additional ‘live’ real-time data for instrumentation purposes, i.e. for display
rather than recording, is outside the scope.

Each record within the recording must be identified and time-stamped.
The operation of the recording function must not affect normal operation of the subsystem.
For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.
Pre-condition: The subsystem must be in Technical State READY or ONLINE
Pre-condition: The CMS must have Mastership.
Post-condition: After successful termination, the recording is available for replay via Control_Replay, using
the identifier specified.
Post-condition: In the case of abnormal termination, there is a possible fault in the recording subsystem.

7.7.3.1.2 Control_Recording_Sub

Type: IDLInterface
Package: Control_Recording

Table 7.141 - Methods of IDLInterface Control_Recording_Sub

Method Notes Parameters

define_recording_set() Specifies what is to be recorded request_id_type request_id

recording_set_type

recording_parameters_list

start_recording() Starts the recording as specified. Note

that only one recording may be

running at a time.

request_id_type request_id

recording_id_type id

stop_recording() Stops the recording request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.62 Control Recording (Sequence diagram)

This shows the required sequential behaviour for Control_Recording, See diagram embedded notes for
further explanation.

7.7.3.2 Control_Replay

Parent Package: Recording_and_Replay
Contains the interfaces controlling the replay of information; either using the original interfaces or as a data
dump for offline processing.

7.7.3.2.1 Control_Replay_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Replay
This interface defines how the CMS controls the replay of information previously recorded using
Control_Recording
Replay is supported in two modes: REAL-TIME and RAW. REAL-TIME mode is used to replay in real time,
or at a multiple of real-time, data that was visible on other OARIS interfaces via the interfaces used during
recording. RAW mode is used to replay data that was visible on other OARIS interfaces and/or internal
subsystem data that was not available on other OARIS interfaces. In this case the data is merely transferred

 sd Control Recording

«idlInterface»

Control_Recording_CMS

«idlInterface»

Control_Recording_Sub

The subsystem records

the data as requested.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The recording request

is rejected for some

reason

Recording starts but

fails to complete for

some reason

define_recording_set(request_id_type, recording_set_type)

receive_acknowledgement(request_id_type,

request_ack_type)

start_recording(request_id_type, recording_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

stop_recording(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

to the CMS as a set of time-tagged values with no attempt made to reconstruct real-time behaviour.
One or more recordings must have been made using Control_Recording.
For simplicity, concurrent recording and replay is not supported.

Pre-condition: Provide Subsystem Services must have executed successfully.
Pre-condition: The subsystem must be in Technical State READY or ONLINE
Pre-condition: The CMS must have Mastership..
Pre-condition: In the case of abnormal termination, there is a possible fault in the replay subsystem.

Table 7.142 - Methods of IDLInterface Control_Replay_CMS

Method Notes Parameters

end_of_recording() The subsystem has reached the end of

the recording before a stop command

was received.

request_id_type request_id

receive_recording() Used to transfer a raw recording to

the CMS

request_id_type request_id

recording_type

requested_recording The raw

recording data.

7.7.3.2.2 Control_Replay_Sub

Type: IDLInterface
Package: Control_Replay

Table 7.143 - Methods of IDLInterface Control_Replay_Sub

Method Notes Parameters

resume_replay() Resumes replay following a stop

command

request_id_type request_id

actual_time_type actual_time The

current time (time of day) at which

playback should start. This allows

synchronisation of playback from

different subsystems.

replay_speed_type replay_speed

Controls the replay speed. 1.0

represents real time.

start_replay() Starts replay as specified request_id_type request_id

replay_set_type

replay_parameters_list
recording_id_type id

actual_time_type actual_time The

current time (time of day) at which

playback should start. This allows

synchronisation of playback from

different subsystems.

recorded_time_type recorded_time

The time in the recording at which

playback should start.

replay_speed_type replay_speed

Controls the replay speed. 1.0

represents real time.

stop_replay() Stops replay request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

upload_recording() Requests transfer of a raw recording request_id_type request_id

recording_id_type id

Figure 7.63 Control Replay (Sequence diagram)

This shows the required sequential behaviour for Control_Replay using real_time mode, See diagram
embedded notes for further explanation.

 sd Control Replay

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt resume

[replay resumed]

opt stop

[stop command issued before end]

loop optional stop/resume loop

The subsystem waits

until the specified time

then replays the data

on the interfaces where

the data was originally

recorded.

The subsystem resumes

replay of the data on

the interfaces where

the data was originally

recorded.

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is

rejected for some

reason

Processing proceeds as in case 1 (requested accepted,

processing succeeds), but a failure occurs before

completion

start_replay(request_id_type, replay_set_type,

recording_id_type, actual_time_type, recorded_time_type,

replay_speed_type)

receive_acknowledgement(request_id_type,

request_ack_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

resume_replay(request_id_type, actual_time_type, replay_speed_type)

receive_acknowledgement(request_id_type,

request_ack_type)

end_of_recording(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.64 Control Replay (RAW) (Sequence diagram)

This shows the required sequential behaviour for Control_Replay using raw mode, See diagram embedded
notes for further explanation.

7.7.4 Simulation_Support

Parent Package: Subsystem_Services

7.7.4.1 Define_Simulation_Scenario

Parent Package: Simulation_Support

7.7.4.1.1 Define_Simulation_Scenario_CMS

Type: IDLInterface
Package: Define_Simulation_Scenario
This describes how the contents of a simulation scenario are communicated between the CMS and the
subsystem.
The CMS provides the subsystem with a simulated environment which consists of simulated objects of
different kinds.

 sd Control Replay (RAW)

«idlInterface»

Control_Replay_CMS

«idlInterface»

Control_Replay_Sub

opt stop

[stop command issued before end]

The subsystem transfers

the data to the CMS

Replay terminates

alt

[request accepted, processing succeeds]

[request rejected]

[request accepted, processing fails]

The replay request is

rejected for some

reason

Processing proceeds as in case 1 (requested accepted, processing

succeeds), but a failure occurs before completion

upload_recording(request_id_type, recording_id_type)

receive_recording(request_id_type,

recording_type)

stop_replay(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

end_of_recording(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

A subsystem with built-in simulation capability may participate in this simulation not only by being a
consumer of the simulated environment but by contributing actively to it.
Radar type subsystems shall typically build simulated plots or tracks from the simulated environment, while
contributing simulated electromagnetic emissions to it. These simulated emissions may in turn be used and
detected by other (ESM type) simulations.
Weapon type subsystems when in simulation mode shall typically contribute simulated objects to the
simulation that represent the launch/firing and movement of own missiles, bullets or torpedoes and their
effect on other simulated objects.
Thus CMS and subsystem both contribute to the simulated environment. Together they form a simulation
federation.

The actor is the Combat Management System.

Relationship to ‘control simulation’
The definition of simulation mode and flow of commands to start/stop/freeze/resume a simulation scenario
are defined in ‘control simulation’.

Relationship to provision of tracks
A radar type subsystem shall provide tracks based on information from the simulated environment, as
described above. The interfaces that deal with the provision of tracks indicate whether tracks are simulated
or not under amplifying information. This indication should be set for all tracks that are reported in the
context of this interface.

Relationship to Receive geographic information
Geographic information is received by using ‘Receive geographic information’.

Pre-condition: Subsystem health state. The subsystem and the relevant subsystem services need to be in
the health state AVAILABLE or DEGRADED.
Pre-condition: CMS has mastership.
Pre-condition: Subsystem simulation mode. The subsystem must be in subsystem simulation mode ON to
participate in the simulation federation.
Pre-condition: Simulation scenario started. The actor must have started or resumed a simulation
scenario.
Pre-condition: Geographic information. The subsystem may need geographic information about its
simulated surroundings available locally or by means of other interfaces in order to calculate the
detectability or reachability of simulated objects due to obstacles in the surroundings.

Table 7.144 - Methods of IDLInterface Define_Simulation_Scenario_CMS

Method Notes Parameters

write_emitter_system_data_CMS() Write emitter system data anonymous_blob_type

emitter_system_data

write_radar_beam_data() Write radar beam data anonymous_blob_type

radar_beam_data

7.7.4.1.2 Define_Simulation_Scenario_Sub

Type: IDLInterface
Package: Define_Simulation_Scenario

Table 7.145 - Methods of IDLInterface Define_Simulation_Scenario_Sub

Method Notes Parameters

write_emitter_system_data_Sub() Write emitter system data anonymous_blob_type

Open Architecture Radar Interface Standard (OARIS), v1.0

emitter_system_data

write_environment_data() Write environment data anonymous_blob_type

environmental_entity_data

write_jammer_beam_data() Write jammer beam data anonymous_blob_type

jammer_beam_data

write_platform_data() Write platform data anonymous_blob_type

platform_data

Figure 7.65 Basic Flow - Define Simulation Scenario Data (Sequence diagram)

 sd Basic Flow - Define Simulation Scenario Data

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is

exchanged upon

event or change

in no specific

order.

opt

write_platform_data(anonymous_blob_type)

write_emitter_system_data(anonymous_blob_type)

write_jammer_beam_data(anonymous_blob_type)

write_environment_data(anonymous_blob_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.66 Basic Flow - Define Subsystem Scenario Data (Sequence diagram)

7.7.4.2 Control_Simulation

Parent Package: Simulation_Support

7.7.4.2.1 Control_Simulation_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Simulation
This service controls the simulation mode of a subsystem. This simulation mode is independent of the
operational mode of the subsystem. Simulation mode is either ON or OFF. “ON” has different meanings for
different kinds of subsystems. Effector type subsystems shall not engage real targets but shall simulate the
engagement instead. Sensor type subsystems may be fed with simulated targets which shall be reported as
plots or tracks. In each case while in simulation mode “ON” the subsystem shall strictly avoid any impact on
the environment that could be the result if simulation mode was “OFF”.

The actor is the Combat Management System.

Basic Flow – Control simulation mode

Start event – command of simulation-mode

The service is triggered by the actor. The actor commands the simulation mode which may be one of the
following:

 ON: This indicates that the subsystem shall operate in simulation mode

 OFF: This indicates that the subsystem shall stop operating in simulation mode and that any current
simulation shall be terminated

On occurrence of the trigger provision of subsystem-simulation-mode is executed.

Provision of subsystem-simulation-mode

 sd Basic Flow - Define Subsystem Scenario Data

«idlInterface»

Define_Simulation_Scenario_CMS

«idlInterface»

Define_Simulation_Scenario_Sub

All information is

exchanged upon

event or change

in no specific

order.

write_emitter_system_data(anonymous_blob_type)

write_radar_beam_data(anonymous_blob_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

After receipt of the simulation mode from the actor the subsystem responds with its subsystem simulation
mode.
The subsystem simulation mode may be one of the two:

 ON: This indicates that the subsystem is operating in simulation mode

 OFF: This indicates that the subsystem is not operating in simulation mode

Basic Flow – Control Simulation (Start/Resume, Stop/Freeze)

START/RESUME simulation scenario
Only when in simulation mode ON:
Upon provision of the START/RESUME command by the actor the simulation scenario starts or is resumed
after a previously issued FREEZE.

STOP/FREEZE simulation scenario
Only when in simulation mode ON:
Upon provision of the STOP/FREEZE command by the actor the simulation scenario stops or stays frozen.
The service ends.

Provision on initialization
The simulation mode shall be provided by the actor after initialization of the CMS.

The flow of information relevant to subsystem simulation are the subject of another service: Define
simulation scenario.
If simulation is stopped or frozen simulation time of the subsystem and the actor shall be also stopped.
The synchronization of simulation time may be performed using START/RESUME command.

Pre-condition: CMS has mastership.

Table 7.146 - Methods of IDLInterface Control_Simulation_CMS

Method Notes Parameters

sim_mode_status() Receive the status and mode of

simulation.

request_id_type request_id

sim_mode_status_type the_status

7.7.4.2.2 Control_Simulation_Sub

Type: IDLInterface common_use_case_interface
Package: Control_Simulation

Table 7.147 - Methods of IDLInterface Control_Simulation_Sub

Method Notes Parameters

start_resume_session() This request shall be initiated on

demand of the CMS. If the subsystem

is in simulation mode it shall

start/resume its simulation session

and acknowledges the request.

request_id_type request_id

start_stop_sim_mode() This request shall be initiated on

demand of the CMS to

activate/deactivate the simulation

mode of the subsystem. The

subsystem needs to acknowledge the

request.

request_id_type request_id

start_stop_sim_mode_request_type

the_request

stop_freeze_session() This request shall be initiated on request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

demand of the CMS. If the subsystem

is in simulation mode and the session

state is running the subsystem needs

to stop/freeze its session and

acknowledges the request.

stop_freeze_session_request_type

the_request

Figure 7.67 Basic Flow - Control Simulation Start/Resume (Sequence diagram)

 sd Basic Flow - Control Simulation Start/Resume

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

start_resume_session(request_id_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Control Simulation Stop/Freeze

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Accepted by Subsystem]

[Rejected by Subsystem]

request_ack.success == false

request_ack.success == true

stop_freeze_session(request_id_type,

stop_freeze_session_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.68 Basic Flow - Control Simulation Stop/Freeze (Sequence diagram)

Figure 7.69 Basic Flow - Control Simulation Mode (Sequence diagram)

7.7.4.3 Define_Fault_Scripts

Parent Package: Simulation_Support

7.7.4.3.1 Define_Fault_Scripts_CMS

Type: IDLInterface common_use_case_interface
Package: Define_Fault_Scripts
This enables a maintainer trainer to script a set of subsystem faults, the effects of which would be simulated
for training purposes. The faults may be scripted in relation to a specific simulation scenario. Each fault
script shall include a unique identifier.

Pre-condition: Subsystem Services Provide subsystem services has been completed successfully, in
particular this service is available.

Table 7.148 - Methods of IDLInterface Define_Fault_Scripts_CMS

Method Notes Parameters

fault_script_summary() This provides a list of all fault scripts

for a subsystem to the CMS for

confirmation.

request_id_type request_id

fault_scripts_type faults The list of

fault scripts

7.7.4.3.2 Define_Fault_Scripts_Sub

 sd Basic Flow - Control Simulation Mode

«idlInterface»

Control_Simulation_CMS

«idlInterface»

Control_Simulation_Sub

alt

[Rejected by Subsystem]

[Accepted by Subsystem]

[Accepted by CMS]

[Rejected by CMS]

request_ack.success == false

request_ack.success == false

request_ack.success == true

request_ack.success == true

start_stop_sim_mode(request_id_type,

start_stop_sim_mode_request_type)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack)

sim_mode_status(request_id_type,

sim_mode_status_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Type: IDLInterface
Package: Define_Fault_Scripts

Table 7.149 - Methods of IDLInterface Define_Fault_Scripts_Sub

Method Notes Parameters

add_fault_scripts() Adds the given fault scripts to the

subsystem's simulation.

request_id_type request_id

fault_scripts_type scripts The fault

scripts to be added

remove_fault_scripts() Removes the given fault scripts from

the subsystem's simulation.

request_id_type request_id

fault_script_ids_type fault_scripts

The ids of the fault scripts to be

removed

Figure 7.70 Alternative Flow - Define Fault Scripts (Sequence diagram)

 sd Alternativ e Flow - Define Fault Scripts

«idlInterface»

Define_Fault_Scripts_CMS

«idlInterface»

Define_Fault_Scripts_Sub

alt Unsuccessful Request

[Subsystem is unable to process request - e.g. script is not interpretable]

[Subsystem is unable to process request - e.g. a script id is not valid]

Negative

Acknowledgement

Positive

Acknowledgement

Applies to

remove_fault_scripts as well

add_fault_scripts(request_id_type,

fault_scripts_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.71 Basic Flow - Define Fault Scripts (Sequence diagram)

7.7.4.4 Control_Fault_Scripts

Parent Package: Simulation_Support

7.7.4.4.1 Control_Fault_Scripts_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Fault_Scripts
This enables a trainee, at a CMS Console to cause the generation of predefined fault messages for training
purposes(see also Define Fault Scripts). The subsystem shall output Fault Reports to the CMS which a
trainee may respond to via the CMS Console. Fault clearance messages shall also be sent to the CMS in
response to the trainee taking the appropriate action.

Pre-condition: Technical State Subsystem is in technical state READY or ONLINE
Pre-condition: Fault Script Subsystem has a fault scripts which has been defined previously
Pre-condition: Mastership Required The CMS has Mastership
Pre-condition: Subsystem Services Provide Subsystem Services has successfully completed; in
particular this service is available
Pre-condition: Simulation Mode Simulation Mode is ON
Post-condition: Success Subsystem has provided simulated fault and response to clearance action
Post-condition: Failure Subsystem has not provided simulated fault and response to clearance action

7.7.4.4.2 Control_Fault_Scripts_Sub

Type: IDLInterface
Package: Control_Fault_Scripts

 sd Basic Flow - Define Fault Scripts

«idlInterface»

Define_Fault_Scripts_Sub

«idlInterface»

Define_Fault_Scripts_CMS

add_fault_scripts(request_id_type,

fault_scripts_type)

receive_acknowledgement(request_id, request_ack)

fault_script_summary(request_id_type,

fault_scripts_type)

remove_fault_scripts(request_id_type,

fault_script_ids_type)

receive_acknowledgement(request_id_type,

request_ack_type)

fault_script_summary(request_id_type,

fault_scripts_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.150 - Methods of IDLInterface Control_Fault_Scripts_Sub

Method Notes Parameters

enable_fault_script() Causes the subsystem to indicate the

faults specified by the given fault

scripts when appropriately

stimulated. The faults remain in place

until they are cleared either by a call

to clear_fault or by an action on

another interface that would clear the

equivalent non-simulated fault.

request_id_type request_id

fault_script_ids_type scripts The

script ids to be enabled

clear_faults() Clears the faults defined by the given

fault scripts.

request_id_type request_id

fault_script_ids_type fault_scripts

The script ids to be cleared

Figure 7.72 Alternative Flow - Control Fault Scripts (Sequence diagram)

 sd Alternativ e Flow - Control Fault Scripts

«idlInterface»

Control_Fault_Scripts_CMS

«idlInterface»

Control_Fault_Scripts_Sub

alt Negativ e Acknowledgement

[Subsystem is unable to enact fault condition or fault id is not recognised]

alt Negativ e Acknowledgement

[Subsystem does not recognise fault id]

enable_fault_script(request_id_type,

fault_script_ids_type)

receive_acknowledgement(request_id_type,

request_ack_type)

clear_faults(request_id_type,

fault_script_ids_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.73 Basic Flow - Control Fault Scripts (Sequence diagram)

7.7.5 Subsystem_Control

Parent Package: Subsystem_Services
Contains interfaces for the Subsystem Control service.

7.7.5.1 Manage Technical State

Parent Package: Subsystem_Control
Contains operations and sequence diagrams for the Manage Technical State interface.

7.7.5.1.1 Manage_Technical_State_CMS

Type: IDLInterface common_use_case_interface
Package: Manage Technical State
Manage Technical State causes the subsystem to provide or change its technical state.

Special Requirements:

Initialization: Upon initialization, reset or power-on, the sub-system shall transition to a pre-defined state
and report the current state to the CMS.

Additional Information:

 sd Basic Flow - Control Fault Scripts

«idlInterface»

Control_Fault_Scripts_Sub

«idlInterface»

Control_Fault_Scripts_CMS

enable_fault_script(request_id_type,

fault_script_ids_type)

receive_acknowledgement(request_id_type,

request_ack_type)

clear_faults(request_id_type,

fault_script_ids_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

If a critical component of the subsystem becomes NOT AVAILABLE, the technical state shall transition to
FAILED.

All states may transition to OFFLINE, but the subsystem shall only do so in emergency situations or
catastrophic damage, to indicate an uncontrolled shutdown

Startup, Shutdown, and Restart explain the sequence of actions for nominal progression through the
technical states.

Pre-condition: If the CMS requests a Technical State to change, mastership of the subsystem is required.
Pre-condition: CMS is aware of the current subsystem state.
Pre-condition: CMS is aware of the possible technical states supported by the subsystem.
Post-condition: None.

Table 7.151 - Methods of IDLInterface Manage_Technical_State_CMS

Method Notes Parameters

receive_periodic_technical_state() Interface used by CMS to receive

periodic technical state reports from

the subsystem.

technical_state_type technical_state

receive_technical_state() Interface used by CMS to receive

technical state reports from the

subsystem which were the result of a

transition request from the CMS.

request_id_type request_id

technical_state_type technical_state

7.7.5.1.2 Manage_Technical_State_Sub

Type: IDLInterface
Package: Manage Technical State

Table 7.152 - Methods of IDLInterface Manage_Technical_State_Sub

Method Notes Parameters

change_technical_state() Interface used by the subsystem to

receive requests from the CMS to

change its technical state.

request_id_type request_id

technical_state_type technical_state

provide_technical_state() Interface used by the subsystem to

receive requests from the CMS to

provide its current technical state.

request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.74 Basic Flow - Manage Technical State - Change (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem changing its current technical state.

 sd Basic Flow - Manage Technical State - Change

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

change_technical_state(request_id_type,

technical_state_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_technical_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.75 Alternative Flow - Manage Technical State - Change (Sequence diagram)

Alternate flow depicting rejection and error cases for a CMS requesting the subsystem to change its
Technical State.

 sd Alternativ e Flow - Manage Technical State - Change

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

alt Alternativ e Flows

[Invalid State Condition Requested]

[Subsystem Rejects State Change Request]

[State Change Unsuccessful]

command is

successfully

acknowledged but fails

before completion

change_technical_state(request_id_type,

technical_state_type)

receive_acknowledgement(request_id,

request_ack)

receive_acknowledgement(request_id,

request_ack)

receive_acknowledgement(request_id,

request_ack)

receive_error(request_id_type, error_reason_type)

receive_technical_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.76 Basic Flow - Manage Technical State - Periodic Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports its technical state (without the need for a
CMS request).

Figure 7.77 Basic Flow - Manage Technical State - Request (Sequence diagram)

Flow of events which depicts the CMS requesting that the subsystem report on its current technical state.

7.7.5.2 Heartbeat_Signal

Parent Package: Subsystem_Control

 sd Basic Flow - Manage Technical State - Periodic Reporting

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

loop

[Periodic or Upon Change]

receive_periodic_technical_state(technical_state_type)

 sd Basic Flow - Manage Technical State - Request

«idlInterface»

Manage_Technical_State_CMS

«idlInterface»

Manage_Technical_State_Sub

provide_technical_state(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_technical_state(request_id_type,

technical_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.2.1 Heartbeat_Signal_CMS

Type: IDLInterface
Package: Heartbeat_Signal
The service describes how the availability of an established communication between CMS and the
subsystem as well as the subsystem itself shall be monitored. The heartbeat signal is triggered by Control
Interface Connection. The basic flow is asynchronous.

The actor is the Combat Management System.

Issue OARIS 1 Control Interface Connection use case was redundant
Pre-condition: Connection established Control interface connectionProvide Subsystem Services has
successfully established communication between CMS and the subsystem.
Post-condition: Interface is alive The heartbeat has been received successful.
Post-condition: Interface is not alive The heartbeat has not been received.

Issue OARIS 65 Heartbeat Signal has an empty topic type

Table 7.153 - Methods of IDLInterface Heartbeat_Signal_CMS

Method Notes Parameters

receive_subsystem_heartbeat_sign

al()

Receive the periodic heartbeat signal

to verify, that the connection is still

alive.

unsigned long count This parameter

is used with implementation specific

semantics for monitoring interface

participant liveliness.

7.7.5.2.2 Heartbeat_Signal_Sub

Type: IDLInterface
Package: Heartbeat_Signal

Issue OARIS 65 Heartbeat Signal has an empty topic type

Table 7.154 - Methods of IDLInterface Heartbeat_Signal_Sub

Method Notes Parameters

receive_cms_heartbeat_signal() Receive the periodic heartbeat signal

to verify, that the connection is still

alive.

unsigned long count This parameter

is used with implementation specific

semantics for monitoring interface

participant liveliness.

Issue OARIS 65 Heartbeat Signal has an empty topic type

Issue OARIS 2 Heartbeat Use Case Name

Issue OARIS 10 Heartbeat Signal Basic Flow Operations

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.78 Basic Flow - Exchange Heartbeat Signal (Sequence diagram)

 sd Basic Flow - Exchange Heartbeat

«idlInterface»

Heartbeat_Signal_CMS

«idlInterface»

Heartbeat_Signal_Sub

loop periodic

loop periodic

par

[Both run independently]

receive_heartbeat_signal()

receive_heartbeat_signal()

 sd Basic Flow - Heartbeat Signal

«idlInterface»

Heartbeat_Signal_CMS

«idlInterface»

Heartbeat_Signal_Sub

loop periodic

loop periodic

par

[Both run independently]

receive_cms_heartbeat_signal(unsigned

long)

receive_subsystem_heartbeat_signal(unsigned

long)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.3 Provide_Subsystem_Identification

Parent Package: Subsystem_Control

Issue OARIS 9 Receive Response for Subsystem Identification

7.7.5.3.1 Provide_Subsystem_Identification_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification
In order to enable two interface partners to connect to each other and to open mutual communication, one
partner shall initiate and the other to answer. The intention is to let the subsystem initiate the
communication.
Consequently, the subsystem introduces itself to the CMS identifying e.g. the type of subsystem, the
product and its version. That allows the CMS to decide whether it may work with that subsystem.

The actor is the Combat Management System.

The possibility that CMS and subsystem are connected without being capable to work with each other is a
consequence of a plug-&-play concept.
Although the interface is standardized the CMS may need a setup process to prepare it for a subsystem.
This process shall introduce the information necessary to configure functions of that particular CMS with
respect to the subsystem.
This may also be necessary on side of the subsystem.
The preparation for a subsystem may be done by means of system configuration data which are
implemented on installation of the combat system. It does not address security information.

Issue OARIS 1 Control Interface Connection use case was redundant
Pre-condition: Connection established.CMS and Subsystem can communicate with each other. Control
interface connection, basic flow “Install connection” is terminated with success or startup has been
processed successfully.
Post-condition: CMS and subsystem may work together. CMS and subsystem have verified that they may
work with each other.
They shall do some organization regarding the communication (out of scope).
Post-condition: CMS and subsystem may not work together. The interface between CMS and subsystem
is closed.

Issue OARIS 9 Receive Response for Subsystem Identification

Table 7.155 - Methods of IDLInterface Provide_Subsystem_Identification_CMS

Method Notes Parameters

receive_sub_identification_data() Receive the identification data from

the subsystem.

device_identification_type

identification
request_id_type the_request_id

receive_sub_response() Receive the response for the

identification from the subsystem.

request_id_type the_request_id

identification_response_type

response

7.7.5.3.2 Provide_Subsystem_Identification_Sub

Type: IDLInterface common_use_case_interface
Package: Provide_Subsystem_Identification

Table 7.156 - Methods of IDLInterface Provide_Subsystem_Identification_Sub

Open Architecture Radar Interface Standard (OARIS), v1.0

Method Notes Parameters

receive_cms_identification_data() Receive the identification data from

the CMS.

device_identification_type

identification
request_id_type the_request_id

Figure 7.79 Alternative Flow - Introduction of subsystems (Sequence diagram)

Issue OARIS 9 Receive Response for Subsystem Identification

 sd Alternativ e Flow - Introduction of subsystems

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

alt Alternativ e Flows

[CMS may not work with subsystem]

[CMS may work with subsystem, but Subsystem may not work with CMS]

accepted = false

accepted = true

accepted = false

receive_sub_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_cms_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.80 Basic Flow - Introduction of the subsystem (Sequence diagram)

7.7.5.4 Provide_Health_State

Parent Package: Subsystem_Control

7.7.5.4.1 Provide_Health_State_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Health_State
The service allows the CMS to monitor and evaluate the health state of the subsystem. The health state
information describes functional availability of the subsystem and the services it provides.

The service may be triggered by several possible situations:

 Periodic event, for example by internal clock,

 Actor (CMS) request,

 Health state change,

 Initialization (start-up),

 sd Basic Flow - Introduction of the subsystem

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

response = accept

response = accept

receive_sub_identification_data(device_identification_type,

request_id_type)

receive_cms_response(request_id_type,

identification_response_type)

receive_cms_identification_data(device_identification_type,

request_id_type)

receive_sub_response(request_id_type,

identification_response_type)

 sd Basic Flow - Introduction of the subsystem

«idlInterface»

Provide_Subsystem_Identification_CMS

«idlInterface»

Provide_Subsystem_Identification_Sub

accepted = true

accepted = true

receive_sub_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_cms_identification_data(device_identification_type,

request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

 Recovery of the subsystem after a failure.

In addition to the health state being provided, additional information may be provided to the CMS. In case of
a service, the information may include a list of detected faults. In case of a subsystem, the information may
include the list of services together with their health state, and for every service which has health state other
than AVAILABLE, a list of detected faults. This two dimensional structure is called the service availability
matrix.

The state NOT AVAILABLE may also describe the situation in which the service is not implemented. In this
case the list of faults shall be empty. In the state UNKNOWN, the subsystem may provide the reason for not
being able to evaluate health state (e.g. BIT process not running).

The service ends with success when the health state (possibly accompanied by additional information) is
provided to the actor.

Relationship to technical state.
The reported health state of the services is dependent on the technical state.
In the technical state ONLINE, the health state of the services is determined based on the detected faults (if
any).
In all technical states other than ONLINE (except OFFLINE), the health state of all services, except the
service Subsystem_Control, is NOT AVAILABLE.
The health state of the service Subsystem_Control shall then be DEGRADED, since some functions (e.g.
Control Battle Override) are not available in those technical states, and some functions are (e.g. Manage
Technical State).
In the technical state OFFLINE no communication at all is possible with the CMS so the health state is not
reported.

Relationship to battle override.
When Battle Override is set (see service Control Battle Override), certain faults are not taken into account
when determining the health state. These overridable faults generally refer to circumstances that may
cause damage to own equipments, but do not prohibit executing the requested task.

Relationship to simulation mode.
If the subsystem is in Simulation mode (technical state is ONLINE), only the faults for parts needed for the
simulated execution of the service are taken into account when determining the health state of a service.
For instance, if the transmitter is defective, the service Track_Reporting is reported AVAILABLE when in
Simulation mode, but is reported NOT AVAILABLE when not in Simulation mode.
Faults may also be simulated for training purposes (see service Define Fault Script). Therefore, irrespective
of the Simulation mode, all faults (real and simulated) are included in the reported list of detected faults,
each with an indication whether the fault is real or simulated.
If a real system part is simulated, faults of the simulated part should have a different identification.
For instance (see previous example) in Simulation mode, a simulated transmitter could be used, for which
the trainer has inserted a simulated fault.
Any faults in the real transmitter would be reported (real fault) as well as the injected fault in the simulated
transmitter (simulated fault). However, the health state of the service Track_Reporting would be based only
on the status of the simulated transmitter.

Reason for health state
Each reported health state other than AVAILABLE is accompanied by the reason(s) for that health. In this
way the CMS may for instance derive that although the technical state of the subsystem is STANDBY (and
NOT AVAILABLE for that reason), there are also faults that would prevent the service to become
AVAILABLE when the technical state would be switched to ONLINE.

Pre-condition: Subsystem technical state The subsystem is in technical state ONLINE or READY.
Post-condition: CMS awareness CMS is aware of the health state of the subsystem and/or its services.

Open Architecture Radar Interface Standard (OARIS), v1.0

Issue OARIS 67 receive error method from common use case interface not used

Table 7.157 - Methods of IDLInterface Provide_Health_State_CMS

Method Notes Parameters

receive_error() Transmit error reason to the CMS request_id_type request_id

error_reason_type error_reason

report_fault() Report a fault to CMS fault the_fault

report_service_health() Report health of service request_id_type request_id

service_health_type health

fault_list the_fault_list

report_subsystem_health() Report health of subsystem request_id_type request_id

subsystem_health_type health

7.7.5.4.2 Provide_Health_State_Sub

Type: IDLInterface
Package: Provide_Health_State

Table 7.158 - Methods of IDLInterface Provide_Health_State_Sub

Method Notes Parameters

request_service_health() Request service health request_id_type request_id

service_name_type service_name

request_subsystem_health() Request subsystem health request_id_type request_id

Figure 7.81 Basic Flow - Fault Reporting (Sequence diagram)

 sd Basic Flow - Fault Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Fault reporting on

event (occurrence

and disappearance)

report_fault(fault)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.82 Basic Flow - Service Health Reporting (Sequence diagram)

 sd Basic Flow - Serv ice Health Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Service health provision

on subsystem initiative

due to:

- Initialization (start-up)

- Recovery after failure

- Health state change

- Periodic (timed)

Service health provision

on CMS request

alt

[on subsystem initiative]

[on request]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

report_service_health(request_id_type, service_health_type,

fault_list)

request_service_health(request_id_type, service_name_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_service_health(request_id_type, service_health_type,

fault_list)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.83 Basic Flow - Subsystem Health Reporting (Sequence diagram)

 sd Basic Flow - Subsystem Health Reporting

«idlInterface»

Provide_Health_State_CMS

«idlInterface»

Provide_Health_State_Sub

Subsystem health

provision on CMS

request

Subsystem health provision on

subsystem initiative due to:

- Initialization (start-up)

- Recovery after failure

- Health state change

- Periodic (timed)

alt

[on subsystem initiative]

[on request]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.acccepted =

true

loop

[For all services provided by this subsystem]

Service health and corresponding fault l ists shall accompany subsystem health report only when

subsystem health is reported on request. For subsystem health provision on subsystem initiative,

the service health and corresponding fault l ists shall be reported on subsystem initiative

separately (see sequence diagram Service Health Reporting).

report_subsystem_health(subsystem_health)

request_subsystem_health(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_subsystem_health(request_id_type,

subsystem_health_type)

report_service_health(request_id_type, service_health_type,

fault_list)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.5 Manage_Operational_Mode

Parent Package: Subsystem_Control

7.7.5.5.1 Manage_Operational_Mode_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Operational_Mode
Subsystems provide several operational modes like long-range-detection, missile-detection, surface
surveillance etc. in case of surveillance radar, normal tracking, slaved, joystick controlled in case of fire
control radar etc.

Operational modes summarise a set of subsystem parameters optimising the subsystem with respect to an
operational purpose.

The names of modes of a specific type of subsystem (e.g. or a radar) differ from supplier to supplier.
Consequently, they shall be handled as configuration parameters. They shall be offered to the operator to
enable him for a selection and shall be transferred to the subsystem to achieve the intended reaction.

The definition of names of operational modes is not within the scope of this standard.

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

In the case where the CMS does not have mastership of the subsystem, a change of the operational mode
shall be indicated by informing the CMS about the new operational mode (see service "Provide health
state").

Configuration data like the set of available operational modes may be received at runtime but may also be
inserted by means of an automatic or manual setup process. Although automatic runtime transfer of such
information may be achieved through ‘Manage Subsystem Parameters’ it is not a mandatory requirement of
this standard for that mechanism to be used.

Pre-condition: Technical state READY or ONLINE.
Pre-condition: "Manage Subsystem Parameters" executed successfully
Pre-condition: CMS must have Mastership
Post-condition: Service ends with success - the subsystem is in the commanded operational state, the
CMS is informed that this is the case
Post-condition: Service ends with fail - the subsystem is still in the original operational state, the CMS has
the correct information regarding that state.

Table 7.159 - Methods of IDLInterface Manage_Operational_Mode_CMS

Method Notes Parameters

report_operational_mode() The current operational mode is

reported via this interface method.

request_id_type request_id

operational_mode_type

current_mode

7.7.5.5.2 Manage_Operational_Mode_Sub

Type: IDLInterface
Package: Manage_Operational_Mode

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.160 - Methods of IDLInterface Manage_Operational_Mode_Sub

Method Notes Parameters

request_get_operational_mode() The subsystem is requested to report

the current operational mode.

request_id_type request_id

request_set_operational_mode() The subsystem is requested to change

the operational mode to the given

new operational mode.

request_id_type request_id

operational_mode_type

new_operational_mode

7.7.5.5.3 Manage_Operational_Mode_CMS

Type: ActivityPartition
Package: Manage_Operational_Mode

7.7.5.5.4 Manage_Operational_Mode_Sub

Type: ActivityPartition
Package: Manage_Operational_Mode

Figure 7.84 Manage Operational Mode - get current operational mode (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "get current operational mode" of the service "Manage Operational Mode".

 sd Manage Operational Mode - get current operational mode

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

request_ack.success =

SUCCESS

request_ack.success =

ERROR_CODE

alt get current operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - error]

'error_reason' is the

current operation mode

that differs from the

requested mode.

request_get_operational_mode(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.85 Manage Operational Mode - set operational mode (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "set operational mode" of the service "Manage Operational Mode".

7.7.5.6 Control_Battle_Override

Parent Package: Subsystem_Control
This package contains interfaces for the Control Battle Override service.

7.7.5.6.1 Control_Battle_Override_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Battle_Override
The subsystem is requested to set/reset the Battle Override. When Battle Override is set the subsystem
disregards warnings on circumstances which may cause damage to own equipment, typically the
overtemperature protections.

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Provision of the Battle Override state

 sd Manage Operational Mode - set operational mode

«idlInterface»

Manage_Operational_Mode_CMS

«idlInterface»

Manage_Operational_Mode_Sub

alt set operational mode

[basic flow]

[alternate flow - request rejection]

[alternate flow - differing operational modes]

request_ack.success =

SUCCESS

request_ack.success =

ERROR_CODE

'error_reason' is the

current operation mode

that differs from the

requested mode.

alt operational mode change

[command: set operational mode]

[spontaneous operational mode change]

For spontaneous operational

mode change, request_id == 0.

request_set_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_operational_mode(request_id_type, operational_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

report_operational_mode(request_id_type, operational_mode_type)

report_operational_mode(request_id_type, operational_mode_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Subsystem shall keep CMS informed about the current Battle Override state and its changes (if any).

Lack of mastership
In the case where CMS does not have mastership of the subsystem, CMS shall be informed about the
current Battle Override state and its changes (if any).

Relationship to the subsystem health state
As long as the Battle Override is set, the subsystem internal overtemperature indications shall not result in
any heath state set to “NOT AVAILABLE” (see Provide health state).

Pre-condition: Mastership Required CMS has mastership of the subsystem
Pre-condition: Subsystem Services Provide subsystem services has been completed successfully.
Post-condition: Success The subsystem Battle Override is set/reset as requested and CMS is informed
that this is the case.
Post-condition: No Success The subsystem Battle Override is still equal to the original one and CMS has
the correct information regarding that state.

Table 7.161 - Methods of IDLInterface Control_Battle_Override_CMS

Method Notes Parameters

battle_override_setting() This metod is used by the subsystem

to return the current Battle Override

state.

request_id_type request_id

battle_override_state_type

battle_override_state

7.7.5.6.2 Control_Battle_Override_Sub

Type: IDLInterface
Package: Control_Battle_Override

Table 7.162 - Methods of IDLInterface Control_Battle_Override_Sub

Method Notes Parameters

set_battle_override() This method is used by the CMS to

send a Battle Override set/reset

request to the subsystem,

request_id_type request_id

battle_override_state_type

battle_override_state

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.86 Basic Flow - Control Battle Override - Set/Reset (Sequence diagram)

Figure 7.87 Alternative Flow - Control Battle Override - Set/Reset - loss of mastership (Sequence diagram)

7.7.5.7 Manage_Subsystem_Parameters

Parent Package: Subsystem_Control

 sd Basic Flow - Control Battle Ov erride - Set/Reset

«idlInterface»

Control_Battle_Override_Sub

«idlInterface»

Control_Battle_Override_CMS

set_battle_override(request_id_type, battle_override_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

battle_override_setting(request_id_type, battle_override_state_type)

 sd Alternativ e Flow - Control Battle Ov erride - Set/Reset - loss of mastership

«idlInterface»

Control_Battle_Override_CMS

«idlInterface»

Control_Battle_Override_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_battle_override(request_id_type,

battle_override_state_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

battle_override_setting(request_id_type,

battle_override_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.7.5.7.1 Manage_Subsystem_Parameters_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Subsystem_Parameters
The service allows the actor to obtain and modify the values of parameters of the subsystem. It also
provides the facilities to retrieve the descriptions of parameters available in a certain subsystem.

The actor of the service is the Combat Management System.

The service starts when the CMS requests one of the following:

 Parameter value retrieval

 Parameter value modification

 Retrieval of parameter descriptor,
with a list of parameter names (and values in case of modification).
A parameter value may be structured (e.g. a vector or a table).
The service ends when the subsystem has provided the requested information or modified the parameter
value.

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Parameter names used by a subsystem are to be unique within the scope of that subsystem. Requests for
parameter descriptions and to get and set current values are consequently well-defined. Parameter names
may be structured using a namespace scheme to promote uniqueness.

Unknown parameter
On receipt of a request for parameter value retrieval, parameter value modification or parameter descriptor
retrieval for an unknown parameter name, the subsystem responds with an indication “unknown
parameter”. Other (correctly identified) parameters in the same request are processed as requested.

Illegal parameter value
On receipt of a request for parameter value modification with a parameter value that is outside the allowable
range of the specified parameter, the subsystem responds with an indication “illegal parameter value” and
does not change the parameter value.
This includes inconsistencies of parameter type (e.g. real where integer is expected) and structure (e.g.
vector of 2 elements, where a vector of 3 is expected).
Other parameters with legal values in the same request are modified as requested.
In case of an illegal value for an element of a structured parameter, the entire parameter remains
unchanged.

Modification of parameter value
A parameter value may only be modified in the technical state(s) as specified in the descriptor of that
parameter.

Security
Access to the service may be restricted to certain parts of the CMS because of security restrictions.

Pre-condition: Subsystem technical state The subsystem is in a technical state other than OFFLINE.
Pre-condition: Mastership The CMS has mastership of the subsystem in case of parameter value
modification.

Issue OARIS 67 receive error method from common use case interface not used

Table 7.163 - Methods of IDLInterface Manage_Subsystem_Parameters_CMS

Method Notes Parameters

Open Architecture Radar Interface Standard (OARIS), v1.0

report_parameter_values() request_id_type request_id

name_value_sequence_type

the_name_value_set
name_error_sequence_type

the_name_error_set

report_parameter_descriptors() request_id_type request_id

descriptor_sequence

the_descriptor_sequence
name_error_sequence_type

the_name_error_set

receive_error() request_id_type request_id

error_reason_type error_reason

7.7.5.7.2 Manage_Subsystem_Parameters_Sub

Type: IDLInterface
Package: Manage_Subsystem_Parameters

Table 7.164 - Methods of IDLInterface Manage_Subsystem_Parameters_Sub

Method Notes Parameters

retrieve_parameter_values() request_id_type request_id

parameter_name_sequence_type

the_name_set

modify_parameter_values() request_id_type request_id

name_value_sequence_type

the_name_value_set

retrieve_parameter_descriptors() request_id_type request_id

parameter_name_sequence_type

the_name_set

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.88 Basic Flow - Parameter Retrieval (Sequence diagram)

 sd Basic Flow - Parameter Retriev al

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If name_sequence is

empty, all shall be

retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

retrieve_parameter_values(request_id_type,

parameter_name_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_parameter_values(request_id_type,

name_value_sequence_type,

name_error_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.89 Basic Flow - Parameter Value Modification (Sequence diagram)

 sd Basic Flow - Parameter Value Modification

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

alt

[basic flow]

[alternative flow: processing failed]

[alternative flow: request rejected]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

Mastership is required for modification of parameters.

Not satisfying this precondition shall lead to rejection of the request.

For each of the parameters in the name_value_sequence the subsystem shall check

whether:

- the parameter has a known parameter name,

- the new parameter value is valid,

- the parameter may be modified in the subsystems actual technical state,

- the parameter may be modified in the subsystems actual operational mode.

Each parameter not satisfying all conditions shall not be modified (for structured

parameters all elements need to satisfy these conditions), and a corresponding

name_error_pair shall be returned in the name_error_sequence.

Parameters satisfying the conditions shall be modified directly (during the processing

of the request), taking into account that for structured parameters all elements shall be

modified at the same moment, and a corresponding name_value_pair shall be

returned in the name_value_sequence.

modify_parameter_values(request_id_type,

name_value_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_parameter_values(request_id_type,

name_value_sequence_type,

name_error_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.90 Basic Flow - Parameter Descriptor Retrieval (Sequence diagram)

7.7.5.8 Provide_Subsystem_Services

Parent Package: Subsystem_Control

7.7.5.8.1 Provide_Subsystem_Services_CMS

Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services
Subsystems offer a number of services to a CMS. Some of the services are mandatory for the type of
subsystem, others are optional. New services may be known to the CMS or may not be known.
Consequently, the CMS needs to know which services are provided by a subsystem and the subsystem
needs to know which services the CMS is able to interact with.
The services considered here are the final versions of those that are specified and defined by the rest of this
standard. Some of them are not necessarily implemented by each product of the type of subsystem but also
not necessarily supported by each CMS.
The service-related information provided by the subsystem to the CMS deals with both, the interfaces
offered by the subsystem and the interfaces expected on CMS side which are necessary to use the service.

Lack of mastership
Mastership of the subsystem must not have an impact upon this interface.

Plug-&-Play aspect

 sd Basic Flow - Parameter Descriptor Retriev al

«idlInterface»

Manage_Subsystem_Parameters_CMS

«idlInterface»

Manage_Subsystem_Parameters_Sub

If the name_sequence

is empty, all shall be

retrieved

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

retrieve_parameter_descriptors(request_id_type,

parameter_name_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_parameter_descriptors(request_id_type,

descriptor_sequence,

name_error_sequence_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Both sides, subsystem and CMS, shall follow a technical evolution process which is not necessarily
coordinated. Therefore, the latest subsystem version may provide a service which is not yet supported by
the CMS or the CMS may be prepared to use a service which is not provided by the subsystem.
This may also cause inconsistencies regarding the interfaces to be made available on both sides. As the
subsystem may not have an own operator display, it is intended to use the health state of the subsystem if
an indication at CMS is to be achieved saying that the interface to the CMS is not implemented properly.

Configuration data of services
The information to be provided to the CMS as information about the implemented services may include
related configuration data and may include the information which parts of the service interfaces are
supported.

System integration test
After installation of a subsystem on-board, connecting the hardware interfaces with the related CMS
hardware interfaces and performing a setup process if applicable it is expected that an interface verification
procedure shall be performed. This procedure shall apply all negotiated interfaces so that an improper
implementation shall turn-up at that occasion, already. Insofar, the alternative flows should be considered
as an integration aid, only.

Spontaneous reporting
Interfaces for which registration/de-registration is considered as an optional facility are written, accordingly.
Registration/de-registration of recipients is done using standard registration mechanism (register interest)

Pre-condition: Subsystem identification. Provide subsystem identification has been passed successfully.
Post-condition: The CMS is aware of the services and related interfaces supported by the subsystem.
Post-condition: The subsystem is aware of the service-related interfaces the CMS may interact with.
Post-condition: The Services do not match. Each of the alternative flows indicates a fatal error which
means that the interface is not implemented properly. The CMS does not take any further action but alerts
the operator, accordingly.

Table 7.165 - Methods of Interface Provide_Subsystem_Services_CMS

Method Notes Parameters

receive_implemented_services() Receive services which are

implemented by a subsystem

request_id_type the_request_id

service_indication_list_type

service_indication_list

7.7.5.8.2 Provide_Subsystem_Services_Sub

Type: Interface common_use_case_interface
Package: Provide_Subsystem_Services

Table 7.166 - Methods of Interface Provide_Subsystem_Services_Sub

Method Notes Parameters

receive_supported_services() Receive services which are supported

by the CMS

request_id_type the_request_id

service_list_type

supported_service_list

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.91 Alternative Flow - Service negotiation (Sequence diagram)

 sd Alternativ e Flow - Serv ice negotiation

«interface»

Provide_Subsystem_Services_CMS

«interface»

Provide_Subsystem_Services_Sub

alt Altenativ e Flows

[Subsystem interface not found]

[CMS does not accept request]

[CMS interface not found]

[Subsystem does not accept request]

accepted == False

denial_reason == Interface xy not implemented

accepted == False

denial_reason == Request not accepted

accepted == True

accepted == False

denial_reason == Interface xy not implemented

accepted == False

denial_reason == Request not accepted

receive_implemented_services(request_id_type, service_indication_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

 sd Basic Flow - Serv ice negotiation

«interface»

Provide_Subsystem_Services_CMS

«interface»

Provide_Subsystem_Services_Sub

receive_implemented_services(request_id_type, service_indication_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_supported_services(request_id_type, service_list_type)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.92 Basic Flow - Service negotiation (Sequence diagram)

7.7.5.9 Manage_Mastership

Parent Package: Subsystem_Control
This package contains interfaces for the Manage Mastership service.

7.7.5.9.1 Manage_Mastership_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Mastership
Besides the CMS, the subsystem may be controlled via other control points, e.g. the subsystem local
control unit. This interface describes how the CMS, as any other actor, shall handle the exclusive control of
the subsystem (mastership). In fact, every subsystem may be controlled by only one actor at the same time.
Only the actor who has the mastership of a subsystem may have exclusive control of the subsystem.
Exclusive control means that the subsystem may accept only commands sent by the actor who has its
mastership.
The subsystem Mastership may be acquired in two ways:

1. PERIODIC MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a subsystem

send to it a periodic Mastership request; the subsystem may accept or deny. Once acquired, the
subsystem Mastership is released giving up the periodic Mastership requests sending. This happens
both in case of intentional decision and critical event as CMS unavailability or connection loss. As long
as CMS wants to maintain the Mastership of the subsystem, it shall continue the periodic Mastership
requests sending. The CMS is informed about the Mastership control state by receiving a periodic
message sent by the subsystem.

1. ASYNCHRONOUS MASTERSHIP REQUEST: The actor who wants to acquire the mastership of a

subsystem send to it an asynchronous request. the subsystem may accept or deny. Once acquired, the
mastership is until the mastership owner decides to intentionally release it or until a critical event, which
is mastership owner unavailability or connection failure, occurs. In case of intentional mastership
release, the CMS shall send an asynchronous mastership release request. In case of critical event, the
mastership of the subsystem is automatically released. This happens when the subsystem does no
longer receive the CMS heartbeat. The CMS is informed about the Mastership control state by receiving
an asynchronous message sent on change by the subsystem.

Mastership management rules
The subsystem Mastership assignment is controlled by the subsystem itself according to the following
rules:

 no more than one Master at any time, so the subsystem may not be commanded by more than one
control point

 the actor which wants to acquire the subsystem Mastership shall ask the subsystem for it, so no request
no assignment

 subsystem assigns the Mastership to any actor asking for it without any priority policy, no actor is "more
important" than any other.

 On each request, the mastership may be assigned only if it’s free, that is not already assigned (unless a
Mastership override request is received)

The Mastership management protocol is managed as follows:

 actor which wants to acquire the subsystem Mastership shall ask for it sending to the subsystem the
Mastership requests which could be asynchronous or periodic

 in case of periodic request for Mastership assignment, as long as the actual Master wants to maintain
the Mastership, it shall continue the periodic Mastership requests sending

Open Architecture Radar Interface Standard (OARIS), v1.0

 if the actual Master wants to release the Mastership in case of periodic request for Mastership
management, it shall give up the periodic Mastership requests sending, otherwise, in case of
asynchronous request, it shall send an asynchronous request for mastership release

 subsystem keeps informed about the actual Mastership state and its changes (if any).

At any time the subsystem Mastership may be either “free”, that is assigned to none and then available to
anybody asks for it, or assigned to somebody, where this somebody may be CMS or not. At the subsystem
power-on the Mastership is “free”, then:

 as long as the Mastership state is “free”, the first received Mastership request shall be satisfied
(whether the requestor is CMS or not)

 as long as the Mastership is assigned (to CMS or to somebody other than CMS), the current Master
shall maintain the Mastership possession until the Mastership owner is no longer available or decides
to release it

 as long as the Mastership is assigned (to CMS or to somebody other than CMS), Mastership requests
received from other than the current Master shall be no satisfied, unless a Mastership Override is
received, which shall force a Mastership switch to another Master

Note that the Mastership possession is required to control the subsystem (e.g. execute write commands to
it), but it is not required to communicate with subsystem and receive information from it.

Mastership Override
The Mastership management protocol could include a Mastership Override to force a Mastership switch
from a Master to another one.

Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Post-condition: Success The subsystem Mastership state is assigned to CMS or not assigned to CMS,
according to the CMS requests, and CMS is informed about.
Post-condition: No Success The subsystem Mastership state is not according to the CMS requests and
CMS has the correct information regarding that state (except in the case of connection loss).

Table 7.167 - Methods of IDLInterface Manage_Mastership_CMS

Method Notes Parameters

report_mastership_setting() This method is used by the subsystem

to return the mastership state.

mastership_state_type control_state

7.7.5.9.2 Manage_Mastership_Sub

Type: IDLInterface
Package: Manage_Mastership

Issue OARIS 66 Manage Mastership has an empty topic type

Table 7.168 - Methods of IDLInterface Manage_Mastership_Sub

Method Notes Parameters

acquire_mastership() This method is used by the CMS to

acquire the mastership.

unsigned long count This parameter

is used with implementation specific

semantics to manage subsystem

mastership.

release_mastership() This method is used by the CMS to

release the mastership.

unsigned long count This parameter

is used with implementation specific

semantics to manage subsystem

Open Architecture Radar Interface Standard (OARIS), v1.0

mastership.

Figure 7.93 Basic Flow - Mastership Acquisition - asynchronous request (Sequence diagram)

 sd Basic Flow - Mastership Acquisition - asynchronous request

«idlInterface»

Manage_Mastership_CMS

«idlInterface»

Manage_Mastership_Sub

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

command is successfully

acknowledged but fails

before completion

request_ack.success = true

request_ack.success = false

The subsystem does no

longer receive

Heartbeat from CMS

(CMS unavailabil ity or

connection loss)

The subsystem returns

the current Mastership

state as not assigned to

CMS, at timeout

expiration.

acquire_mastership()

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.94 Basic Flow - Mastership Acquisition - periodic request (Sequence diagram)

 sd Basic Flow - Mastership Acquisition - periodic request

«idlInterface»

Manage_Mastership_Sub

«idlInterface»

Manage_Mastership_CMS

loop periodic

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

request_ack.success =

true

request_ack.success =

false

command is

successfully

acknowledged but fails

before completion

The subsystem does no

longer receive

Heartbeat from CMS

(CMS unavailabil ity or

connection loss)

The subsystem returns

the current Mastership

state as not assigned to

CMS, at timeout

expiration.

acquire_mastership()

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.95 Basic Flow - Mastership Release - asynchronous request (Sequence diagram)

 sd Basic Flow - Mastership Release - asynchronous request

«idlInterface»

Manage_Mastership_CMS

«idlInterface»

Manage_Mastership_Sub

alt

[basic flow]

[Subsystem rejects request]

[Subsystem fails]

command is successfully

acknowledged but fails

before completion

request_ack.success = false

request_ack.success = true

release_mastership(unsigned

long)

receive_acknowledgement(request_id_type, request_ack_type)

report_mastership_setting(mastership_state_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.96 Basic Flow - Mastership Release - periodic request (Sequence diagram)

7.7.5.10 Register_Interest

Parent Package: Subsystem_Control

7.7.5.10.1 Register_Interest_CMS

Type: IDLInterface common_use_case_interface
Package: Register_Interest
This service allows the CMS to register (and deregister) interest in other services. It is explicitly meant to
address the possibility of CMS “subscribing” to information supplied by the subsystem, with the
understanding that the information shall be provided by the subsystem, without the need for further request.
Such mode of operation may be applicable for those services, which have been reported as such in Provide
subsystem services. This includes typically track and plot reporting services, but may involve other services
as well.

The service starts when the actor registers interest in information provided by a service. The registration
shall include information on:

 The service for which the actor wants to register / deregister his interest

 The information within the service for which the actor wants to register / deregister his interest

 The intended (direct or indirect) recipient(s) of the information provided by the subsystem.

 Any parameters of the provision needed such as Quality of Service parameters.

The service ends when the subsystem confirms registration / deregistration of interest.

 sd Basic Flow - Mastership Release - periodic request

«idlInterface»

Manage_Mastership_Sub

«idlInterface»

Manage_Mastership_CMS

loop periodic

CMS release the

mastership, avoiding

sending of acquire

message.

The subsystem returns

the current Mastership

state as not assigned to

CMS, at timeout

expiration.

report_mastership_setting(mastership_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Sensor health state The sensor and the service need to be in the health state AVAILABLE
or DEGRADED.

Issue OARIS 67 receive error method from common use case interface not used

Table 7.169 - Methods of IDLInterface Register_Interest_CMS

Method Notes Parameters

confirm_registration() Confirm registration of interest request_id_type request_id

receive_error() Receive an error if registration

unsuccessful

request_id_type request_id

error_reason_type error_reason

7.7.5.10.2 Register_Interest_Sub

Type: IDLInterface
Package: Register_Interest

Table 7.170 - Methods of IDLInterface Register_Interest_Sub

Method Notes Parameters

register_interest() Register interest in the service request_id_type request_id

interest_list the_interest_list

 sd Basic Flow - Interest Registration

«idlInterface»

Register_Interest_CMS

«idlInterface»

Register_Interest_Sub

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

register_interest(request_id_type, interest_list)

receive_acknowledgement(request_id_type,

request_ack_type)

confirm_registration(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.97 Basic Flow - Interest Registration (Sequence diagram)

7.8 Sensor_Services
Parent Package: Service_Interfaces
Contains services associated with the Sensor Domain.

7.8.1 Clutter_Reporting

Parent Package: Sensor_Services
Contains interfaces for the Clutter Reporting service.

7.8.1.1 Provide Area with Plot Concentration

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Area with Plot Concentration interface.

7.8.1.1.1 Provide_Plot_Concentration_CMS

Type: IDLInterface common_use_case_interface
Package: Provide Area with Plot Concentration
The Radar provides the combat management system with the number of plots in a specific sector. The
sector information consists of range, azimuth, and elevation. The number of plots observed in the region
may provide an indication of high clutter.

Additional Information:

The information may be developed when requested or based on scan histories. The choice of methods
depends upon radar design. The timestamp should indicate the oldest data used to create the report to
allow the CMS or an operator to determine the validity of the report (i.e. day old data mixed with recent is still
only as good as day old data).

Sector Information must consist of a measurement time stamp, range extents, azimuth extents, and
elevation extents in platform coordinates.

For radars which report plot concentration without a CMS request, the CMS shall begin to receive reports
upon registration of the Provide Plot Concentration interface.

Pre-condition: Radar in ONLINE State
Post-condition: None

Table 7.171 - Methods of IDLInterface Provide_Plot_Concentration_CMS

Method Notes Parameters

receive_periodic_plot_concentratio

n()

Interface used by CMS to receive

periodic plot concentration reports

from the subsystem.

plot_concentration_report_type

plot_concentration_report

receive_plot_concentration() Interface used by the CMS to receive

a requested plot concentration report

from the subsystem.

request_id_type request_id

plot_concentration_report_type

plot_concentratrion

7.8.1.1.2 Provide_Plot_Concentration_Sub

Type: IDLInterface
Package: Provide Area with Plot Concentration

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.172 - Methods of IDLInterface Provide_Plot_Concentration_Sub

Method Notes Parameters

provide_plot_concentration() Interface used by the subsystem to

receive a plot concentration request

from the CMS.

request_id_type request_id

plot_concentration_request_data_typ

e plot_request

Figure 7.98 Provide Plot Concentration - Report Requested by CMS (Sequence diagram)

Flow of events which depicts a subsystem that reports plot concentration following an explicit request from
the CMS (also depicts alternate rejection and error paths).

 sd Prov ide Plot Concentration - Report Requested by CMS

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

provide_plot_concentration(request_id_type,

plot_concentration_request_data_type)

receive_acknowledgement(request_id,

request_ack)

receive_plot_concentration(request_id_type,

plot_concentration_report_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.99 Provide Plot Concentration - Periodic (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports plot concentration reports (without the
need for a CMS request).

7.8.1.2 Provide Clutter Assessment

Parent Package: Clutter_Reporting
Contains operations and sequence diagrams for the Provide Clutter Assessment interface.

7.8.1.2.1 Provide_Clutter_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Provide Clutter Assessment
The radar reports visible clutter to the combat management system. The report shall include a map
(collection of cells) with information on range, azimuth, elevation and intensity in platform relative
coordinates. Clutter may be classified by type, Land, Sea, Weather (optional), etc.. Intensity may be
indicated by linear signal-to-noise ratio (SNR), log-linear SNR, linear power received, log-linear power
received (e.g. dBm, dBW), linear Radar Cross Section (square meters), or log-linear RCS (dbsm).

For radars which report clutter assessment without a CMS request, the CMS shall begin to receive reports
upon registration of the Provide Clutter Assessment interface.

Pre-condition: Radar is in ONLINE State
Pre-condition: The Radar is capable of distinguishing clutter from targets.
Post-condition: None

Table 7.173 - Methods of IDLInterface Provide_Clutter_Assessment_CMS

Method Notes Parameters

receive_clutter_assessment() Interface used by the CMS to receive

a requested clutter assessment report

from the subsystem.

request_id_type request_id

clutter_report_type clutter_report

receive_periodic_clutter_assessme

nt()

Interface used by CMS to receive

periodic clutter assessment reports

clutter_report_type clutter_report

 sd Prov ide Plot Concentration - Periodic

«idlInterface»

Provide_Plot_Concentration_CMS

«idlInterface»

Provide_Plot_Concentration_Sub

loop

[Periodic at interval specified in subsystem parameters]

receive_periodic_plot_concentration(plot_concentration_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

from the subystem.

7.8.1.2.2 Provide_Clutter_Assessment_Sub

Type: IDLInterface
Package: Provide Clutter Assessment

Table 7.174 - Methods of IDLInterface Provide_Clutter_Assessment_Sub

Method Notes Parameters

provide_clutter_assessment() Interface used by the subsystem to

receive a clutter assessment request

from the CMS.

request_id_type request_id

clutter_assessment_request_type

clutter_request

Figure 7.100 Provide Clutter Assessment (Sequence diagram)

Flow of events which depicts a subsystem that reports a clutter assessment following an explicit request
from the CMS (also depicts alternate rejection and error paths).

 sd Prov ide Clutter Assessment

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

alt

[Basic Flow]

[Unable to comply with request]

[Error encountered following an accepted request]

provide_clutter_assessment(request_id_type,

clutter_assessment_request_type)

receive_acknowledgement(request_id,

request_ack)

receive_clutter_assessment(request_id_type,

clutter_report_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.101 Periodic Clutter Reporting (Sequence diagram)

Flow of events which depicts a subsystem that periodically reports a clutter assessment (without the need
for a CMS request).

7.8.2 Plot_Reporting

Parent Package: Sensor_Services

7.8.2.1 Provide_Plots

Parent Package: Plot_Reporting

7.8.2.1.1 Provide_Plots_CMS

Type: IDLInterface
Package: Provide_Plots
Interface to the CMS for receiving plot updates.
This interface provides sensor plots to the CMS (filterable to air, surface, land and space environments).
The transfer of data is expected to take place asynchronously, although for certain classes of sensor it may
appear periodic

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed
Pre-condition: Register Interest The CMS has successfully registered interest in this service
Post-condition: Success CMS has received plot datastream

Table 7.175 - Methods of IDLInterface Provide_Plots_CMS

Method Notes Parameters

write_sensor_plot() This method receives a individual

plot update from the sensor. It is

expected to be called periodically

from the sensor.

sensor_plot_type plots The set of

plots

 sd Periodic Clutter Reporting

«idlInterface»

Provide_Clutter_Assessment_CMS

«idlInterface»

Provide_Clutter_Assessment_Sub

loop Periodic

[Interval specified in subsystem parameters]

receive_periodic_clutter_assessment(clutter_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

write_sensor_plot_set() This method receives a set of one or

more plot updates from the sensor. It

is expected to be called periodically

from the sensor.

sensor_plot_set_type plots The set of

plots

Figure 7.102 Basic Flow - Provide Plots (Individual) (Sequence diagram)

Figure 7.103 Basic Flow - Provide Plots (Sets) (Sequence diagram)

 sd Basic Flow - Prov ide Plots (Indiv idual)

«idlInterface»

Provide_Plots_CMS

«idlInterface»

plot_reporting_sub

loop

[periodic]

loop

[for each return]

This sequence diagram shows the

style of transferring plots individually

write_sensor_plot(sensor_plot_type)

 sd Basic Flow - Prov ide Plots (Sets)

«idlInterface»

plot_reporting_sub

«idlInterface»

Provide_Plots_CMS

loop

[periodic]

This sequence diagram shows the

batched style of updating plots, with

whole sets being transformed

atomically.

write_sensor_plot_set(sensor_plot_set_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Issue OARIS 63 Track Extractors may need to know where Radar is pointing

7.8.2.2 Provide_Sensor_Orientation

Parent Package: Plot_Reporting

7.8.2.2.1 Provide_Sensor_Orientation_CMS

Type: IDLInterface
Package: Provide_Sensor_Orientation
The interface to the CMS for receiving sensor orientation updates.
The sensor provides its orientation in the case that it has movement that is independent of that for the
overall platform. It is provided periodically with a frequency defined using the manage subsystem
parameters use case.

Pre-condition: Subsystem Services Provide Subsystem Services has successfully executed
Pre-condition: Register Interest The CMS has successfully registered interest in this service
Post-condition: Success CMS has received sensor orientation datastream

Table 7.176 - Methods of IDLInterface Provide_Sensor_Orientation_CMS

Method Notes Parameters

write_sensor_orientation() Informs the CMS of the orientation of

the sensor

sensor_orientation_type orientation

The orientation of the sensor

Figure 7.104 Basic Flow - Provide Sensor Orientation (Sequence diagram)

 sd Basic Flow - Prov ide Sensor Orientation

«idlInterface»

Provide_Sensor_Orientation_CMS

«idlInterface»

plot_reporting_sub

loop

[periodic]

Sensor's with independent movement

(e.g. surveillance and navigation radars

that rotate) provide regular updates on

its orientation. The frequency of updates

is defined using the manage subsystem

parameters use case.

write_sensor_orientation(sensor_orientation_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.3 Sensor_Control

Parent Package: Sensor_Services
This package contains interfaces for the Sensor Control service.

7.8.3.1 Manage_Frequency_Usage

Parent Package: Sensor_Control
This package contains interfaces for the Manage Frequency Usage service.

7.8.3.1.1 Manage_Frequency_Usage_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Frequency_Usage
This controls the sensor behaviour with respect to the transmission frequency management. Basing on a
discrete set of transmission frequencies offered by the sensor, CMS may disable/enable the use of a subset
of them. As well CMS may select the sensor transmission mode, i.e. how the sensor shall select the
transmission frequencies, among the set of transmission modes supported by the sensor.

The transmission mode defines how the sensor selects the transmission frequencies, which may be:

 Fixed Frequency: sensor always uses the same pre-selected frequency

 Frequency Diversity: at each transmission sensor selects the frequency to be used inside a
pre-selected subset of frequencies

 Automatic Frequency Selection: at each transmission sensor selects the frequency to be used among
the least jammed frequencies

 Random Agility: at each transmission sensor random selects the frequency to be used.

The availability of each of the above listed transmission modes depends on the sensor type and its
capabilities (not all the sensor types support all them). Besides a transmission mode supported by the
sensor may be “selectable” or “not selectable” according to the specific sensor rules and the state of
transmission frequencies.

Issue OARIS 63 How is the set of frequencies supported by a sensor determined by the CMS
Both the set of transmission frequencies offered by the sensor and the supported transmission modes
(names and characteristics) differ from sensor to sensor, so they shall be handled as configuration
parameters. The sensor reports all supported frequencies whether or not currently available or enabled.
Sensors cannot enable/disable the setting of the frequency usage at its own initiative, but at any time a
transmission frequency could become not available because of a fault (e.g. fault of the relevant oscillator),
and this could affect the effective availability of one or more sensor supported transmission modes.

Provision of the frequency usage state
Sensor shall keep CMS informed about the current availability of the frequency usage and its changes (if
any).

Provision of the transmission mode
Sensor shall keep CMS informed about the currently selected transmission mode, with the relevant
parameters, and its changes (if any).

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about both the

Open Architecture Radar Interface Standard (OARIS), v1.0

actual setting of the frequency usage and the actual transmission mode, with its changes (if any).

State of transmission frequencies
With respect to its operational use each sensor transmission frequency may be “enabled” or “disabled”,
according to the relevant setting. On the other hand, with respect to its health status, each transmission
frequency may be “available” or “not available” according to the presence of faults.
Note that a transmission frequency may be effectively selectable for the sensor transmission if it is both
“enabled” and not in fault.

Relationship to Manage Transmission Sectors
As well as the overall transmission mode, here specified, CMS may define sectors where a devoted
transmission mode is to be applied (see Manage Transmission Sectors).

Pre-condition: Mastership Required CMS has mastership of the sensor.
Pre-condition: Subsystem Services Provide subsystem services is successfully passed.
Pre-condition: Transmission Frequencies CMS knows the transmission frequencies offered by the sensor
and their actual availability.
Pre-condition: Selectable Transmission modes and frequencies CMS is aware of the currently selectable
transmission modes and transmission frequencies.
Post-condition: Success Both the setting of the frequency usage and the sensor transmission mode are
according to the request and CMS is informed that this is the case.
Post-condition: No Success Both the setting of the frequency usage and the sensor transmission mode are
unchanged with respect to the original one and CMS is informed that this is the case.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Issue OARIS 68 Name clash between operation and type for transmission_frequency_state

Issue OARIS 79 Typo in parameter for report_transmission_mode_state operation

Table 7.177 - Methods of IDLInterface Manage_Frequency_Usage_CMS

Method Notes Parameters

report_frequencies_state() Method used by the sensor to return

the current availability of the

frequency usage and its changes (if

any).

all_frequencies_state_type

frequencies_state

report_transmission_mode_state() Method used by the sensor to return

the selected transmission mode, with

the relevant parameters, and its

changes (if any).

request_id_type request_id

transmission_frequency_mode_type

trasmissionModeSettingtransmissi

onModeSetting

transmission_frequency_state_res

ponse()

Method used by the sensor to return

the actual setting of the frequency

usage modified according to the

request.

request_id_type request_id

selected_frequency_list_type

setting_message

7.8.3.1.2 Manage_Frequency_Usage_Sub

Type: IDLInterface
Package: Manage_Frequency_Usage
This is the Subsystem interface for managing frequency usage.

Issue OARIS 57 Response to a frequency range request to be supported by the PIM

Table 7.178 - Methods of IDLInterface Manage_Frequency_Usage_Sub

Method Notes Parameters

set_frequencies() Method used by the CMS to enable or

disable frequency bands or discrete

request_id_type request_id

frequencies_set_requestselected_freq

Open Architecture Radar Interface Standard (OARIS), v1.0

frequencies. uency_list_type request

set_transmission_mode() Method used by the CMS to select the

available sensor transmission mode.

request_id_type request_id

transmission_frequency_mode_type

trasmissionmode

Figure 7.106 Basic Flow - Frequency Availability Change Notification (Sequence diagram)

 sd Basic Flow - Frequency Av ailability Change Notification

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

loop periodic

Notification may be

periodic or upon

change

report_frequencies_state(all_frequencies_state)

 sd Basic Flow - Frequency Av ailability Change Notification

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

loop periodic

Notification may be

periodic or upon

change

The sensor reports all supported

frequencies whether or not currently

available or enabled

report_frequencies_state(all_frequencies_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.107 Basic Flow - Enable/Disable Frequency Usage (Sequence diagram)

Figure 7.108 Alternative Flow - Enable/Disable Frequency Usage - loss of mastership (Sequence diagram)

 sd Basic Flow - Enable/Disable Frequency Usage

«idlInterface»

Manage_Frequency_Usage_Sub

«idlInterface»

Manage_Frequency_Usage_CMS

set_frequencies(request_id, frequencies_set_request)

receive_acknowledgement(request_id_type, request_ack_type)

transmission_frequency_state_response(request_id_type, selected_frequency_list_type)

 sd Alternativ e Flow - Enable/Disable Frequency Usage - loss of mastership

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_frequencies(request_id_type, frequencies_set_request)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

transmission_sector_setting(request_id_type, transmission_sector_set_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.109 Basic Flow - Transmission Mode Selection (Sequence diagram)

Figure 7.110 Alternative Flow - Transmission Mode Selection - loss of mastership (Sequence diagram)

7.8.3.2 Manage_Transmission_Sectors

Parent Package: Sensor_Control
This package contains interfaces for the Manage Transmission Sectors service.

 sd Basic Flow - Transmission Mode Selection

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)

 sd Alternativ e Flow - Transmission Mode Selection - loss of mastership

«idlInterface»

Manage_Frequency_Usage_CMS

«idlInterface»

Manage_Frequency_Usage_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_transmission_mode(request_id_type, transmission_frequency_mode_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

report_transmission_mode_state(request_id_type, transmission_frequency_mode_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.3.2.1 Manage_Transmission_Sectors_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Transmission_Sectors
This determines the sectors where the sensor is allowed to radiate together with the relevant transmission
modes and parameters. Sectors may be delimited in azimuth only, or both in azimuth and elevation; for
each sector the sensor may be requested either to no transmit at all or to apply a proper transmission mode.
Typical transmission sectors types are:

 Transmit Inhibit Sectors
sectors where the sensor is not allowed to radiate. Depending on the sensor type and its capabilities, such
a type of sectors may be delimited in azimuth only, or both in azimuth and elevation.

 Reduced Radiate Power Sectors
sectors where the sensor shall radiate at reduced power. Depending on the sensor type and its capabilities,
such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.

 Transmission Mode Sectors
sectors where the sensor is required to apply a devoted transmission mode (see Manage Frequency
Usage). Depending on the sensor type and its capabilities, such a type of sectors may be delimited either in
azimuth only or both in azimuth and elevation, but they may not overlap each other.

 Blind Arc Sectors
sectors where the sensor is not allowed to radiate. Such a type of sectors may be delimited in azimuth only,
or both in azimuth and elevation, depending on the sensor type and its capabilities. (Note: the same as
"Transmit Inhibit Sectors”, with the difference that sectors are defined in Ship’s Reference System.)

Provision of the sensor transmission sectors setting
Sensor shall keep CMS informed about the actual setting of the transmission sectors and its changes (if
any).

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual
setting of the transmission sectors and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Transmission Sectors CMS is aware of which types of transmission sectors the sensor
may manage and of their current setting.
Post-condition: Success The setting of the transmission sectors has been modified according to the
request and CMS is informed that this is the case.
Post-condition: No Success The setting of the transmission sectors is unchanged with respect to the
original one and CMS is informed that this is the case.

Table 7.179 - Methods of IDLInterface Manage_Transmission_Sectors_CMS

Method Notes Parameters

transmission_sector_setting() Method used by the sensor to return

the actual setting of the transmission

sectors and its changes (if any).

request_id_type request_id

transmission_sector_set_type

setting_message

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.3.2.2 Manage_Transmission_Sectors_Sub

Type: IDLInterface
Package: Manage_Transmission_Sectors
This is the Subsystem interface for managing transmission sectors.

Table 7.180 - Methods of IDLInterface Manage_Transmission_Sectors_Sub

Method Notes Parameters

set_transmission_sector() Method used by the CMS to send a

set/reset transmission sector request

to the sensor.

request_id_type request_id

transmission_sector_set_type sector

Figure 7.111 Basic Flow - Manage Transmission Sectors - Enable/Disable (Sequence diagram)

 sd Basic Flow - Manage Transmission Sectors - Enable/Disable

«idlInterface»

Manage_Transmission_Sectors_Sub

«idlInterface»

Manage_Transmission_Sectors_CMS

i f

transmission_sector_set

dimension is null, the

operation

set_transmission_sector

get all the current

transmission sector

set_transmission_sector(request_id_type, transmission_sector_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

transmission_sector_setting(request_id, transmission_sector_set)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.112 Alternative Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip (Sequence
diagram)

7.8.3.3 Control_Emissions

Parent Package: Sensor_Control
This package contains interfaces for the Control Emissions service.

7.8.3.3.1 Control_Emissions_CMS

Type: IDLInterface common_use_case_interface
Package: Control_Emissions
The sensor is requested to inhibit/enable own emissions. In the case where the sensor is a radar, this shall
result in the Radiation on/off command.
Note that this interface just covers the software managed control of the emission state. For safety reasons
many sensors are supplied with an additional hardware control of own emission state, such as a pushbutton
directly connected to the transmitter.

Provision of the Emission state
Sensor shall keep CMS informed about the current state of emissions and its changes (if any).

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases

 sd Alternativ e Flow - Manage Transmission Sectors - Enable/Disable - loss of masterhip

«idlInterface»

Manage_Transmission_Sectors_CMS

«idlInterface»

Manage_Transmission_Sectors_Sub

The

transmission_sector_set

parameter must be not

null

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_transmission_sector(request_id_type, transmission_sector_set_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

transmission_sector_setting(request_id_type, transmission_sector_set)

Open Architecture Radar Interface Standard (OARIS), v1.0

It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the current
emissions state and its changes (if any).

Relationship to the Transmission Sectors management
As long as emissions are on, the sensor shall transmit in the sectors where transmission is allowed and
according to the relevant transmission modes and parameters, as determined through Manage
Transmission Sectors.

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Emissions State CMS is aware that actually the sensor may switch its emissions state, e.g.
both the technical state and the health state allow the sensor to switch to Radiation on, no engagement in
execution to switch to Radiation off, and so on.
Post-condition: Success The sensor emissions state is on/off as requested and CMS is informed that this
is the case.
Post-condition: No Success The sensor emissions state is still equal to the original one and CMS has the
correct information regarding that state

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.181 - Methods of IDLInterface Control_Emissions_CMS

Method Notes Parameters

control_emission_setting() Method used by the sensor to return

the current state of emissions and its

changes (if any).

request_id_type request_id

control_emission_state_type

emission_state

7.8.3.3.2 Control_Emissions_Sub

Type: IDLInterface
Package: Control_Emissions
This is the Subsystem interface for controlling emissions.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.182 - Methods of IDLInterface Control_Emissions_Sub

Method Notes Parameters

set_control_emission() Method used by the CMS to send an

Emissions on/off request to the

sensor.

request_id_type request_id

control_emission_state_type

control_emission_state

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.113 Basic Flow - Control Emissions - On/Off (Sequence diagram)

Figure 7.114 Alternative Flow - Control Emissions - On/Off - loss of masterhip (Sequence diagram)

 sd Basic Flow - Control Emissions - On/Off

«idlInterface»

Control_Emissions_Sub

«idlInterface»

Control_Emissions_CMS

set_control_emission(request_id, control_emission_state)

receive_acknowledgement(request_id_type,

request_ack_type)

control_emission_setting(request_id_type,

control_emission_state_type)

 sd Alternativ e Flow - Control Emissions - On/Off - loss of masterhip

«idlInterface»

Control_Emissions_CMS

«idlInterface»

Control_Emissions_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_control_emission(request_id_type, control_emission_state)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

control_emission_setting(request_id_type,

control_emission_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.3.4 Define_Test_Target_Scenario

Parent Package: Sensor_Control
This package contains interfaces for the Define Test Target Scenario service.

7.8.3.4.1 Define_Test_Target_Scenario_CMS

Type: IDLInterface common_use_case_interface
Package: Define_Test_Target_Scenario
This specifies the interactions for defining and modifying a test target scenario. A Test Target scenario
consists of a number of Test Targets to be generated according to their characteristics (positions, motion
law, generation parameters) with the purpose of producing stimuli devoted to the execution of an internal
functional test of the sensor.
A number of Test Target scenarios may be maintained in a sensor internal Test Targets scenarios
database, where each scenario is identified by a unique identification number. Write accesses to this
database shall rejected if the sensor Mastership is not actually assigned to CMS, but the possession of the
sensor Mastership is not required for executing read accesses.
The generation of the so defined Test Target scenarios may be activated as specified in Control Test Target
Facility. For the generation mechanism see the interface Control Test Target Facility

One or more Test Target scenarios may be maintained in a sensor internal Test Targets scenarios
database, where each scenario is identified by an unique identification number. The number of available
Test Target scenarios is accessed by Manage subsystem parameters.

Depending on the sensor type and its capabilities, a Test Target scenario may be constituted by:

a) a number of independent targets, with each target having own characteristic parameters; so the
scenario is defined by:

 number of targets

and for each target

 the initial target position with the relevant initial time

 target parameters

b) a number of targets distributed in a defined area/volume and having the same common parameters,
so the scenario is defined by:

 number of targets

 area/volume boundaries

 common initial time

 common targets parameters

Target parameters define:
a. the target motion type, with the relevant motion parameters
b. the target generation parameters, such as injection type (internal / external), attenuation law

(constant / variable-with-range), doppler type (0 / PRF/2).

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Test Target Facility Test Target facility is supported by the sensor and CMS is aware of
which types of Test Target the sensor may manage
Post-condition: Success Write access:
The specified Test Target scenario is modified according to the request and CMS is informed that this is the
case.

Read access:

Open Architecture Radar Interface Standard (OARIS), v1.0

The requested Test Target scenario is reported to CMS.
Post-condition: No Success Write access:
The specified Test Target scenario is unchanged and CMS is informed about the denial reason.

Read access:
The requested Test Target scenario is not reported to CMS and CMS is informed about the denial reason.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.183 - Methods of IDLInterface Define_Test_Target_Scenario_CMS

Method Notes Parameters

test_target_scenario_setting() Method used by the sensor to return

the identification number of the

modified or created test target

scenario.

request_id_type request_id

test_target_scenario_id_type

test_target_scenario_id

test_target_scenario_setting_all_fe

ature()

Method used by the sensor to return

the required test target scenario with

its parameters.

request_id_type request_id

test_target_scenario_type

test_target_features

7.8.3.4.2 Define_Test_Target_Scenario_Sub

Type: IDLInterface
Package: Define_Test_Target_Scenario
This is the Subsystem interface for defining test target scenarios.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.184 - Methods of IDLInterface Define_Test_Target_Scenario_Sub

Method Notes Parameters

read_test_target_scenario() Method used by the CMS to send to

the sensor a read request of a

specified Test Target scenario.

request_id_type request_id

test_target_scenario_id_type

test_target_scenario_id

write_test_target_scenario() Method used by the CMS to send to

the sensor a write request of a

specified Test Target scenario.

request_id_type request_id

test_target_scenario_type

test_target_scenario

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.115 Basic Flow - Write a Target Test Target Scenario (Sequence diagram)

Figure 7.116 Alternative Flow - Write a Target Test Target Scenario - loss of mastership (Sequence diagram)

 sd Basic Flow - Write a Target Test Target Scenario

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

write_test_target_scenario(request_id_type,

test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

test_target_scenario_setting(request_id_type,

test_target_scenario_id_type)

 sd Alternativ e Flow - Write a Target Test Target Scenario - loss of mastership

«idlInterface»

Define_Test_Target_Scenario_CMS

«idlInterface»

Define_Test_Target_Scenario_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

write_test_target_scenario(request_id_type,

test_target_scenario_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.117 Basic Flow - Inspect a Test Target Scenario (Sequence diagram)

7.8.3.5 Test_Target_Facility

Parent Package: Sensor_Control
This package contains interfaces for the Test Target Facility service.

7.8.3.5.1 Test_Target_Facility_CMS

Type: IDLInterface common_use_case_interface
Package: Test_Target_Facility
The sensor is requested to activate/deactivate the execution of its internal functional test and stimulation
realized by means of test targets generation. A number of Test Target scenarios may be defined and
modified as specified in Define Test Target Scenario, each scenario is identified by a proper identification.
At any time no more than one Test Target scenario may be active.

Test Target generation mechanism (applicable to some sensors)
The Test Target generation consists of the injection of proper signals at different points of the receiver chain
in order to produce the relevant detections in input to the RMC (Radar Management Computer); these Test
Target detections are processed by the RMC as the real ones, so they shall generate one o more plots
(“Test Target” plots) and tracks (“Test Target” tracks).
Such a generation mechanism is controlled by the RMC driving a devoted hardware, its purpose is to
execute an on-line BITE of the complete receiver chain.
Test Target generation is executed while the radar is working in operational mode, so Test Target
detections and real detections live together, forming “Test Target” plots and tracks at the same time as real
plots and tracks. This implies that CMS shall receive “Test Target” plots and tracks together with real plots
and tracks.

Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual
state of the Test Target generation and its changes (if any).

Provision of the Test Target generation state
Sensor shall keep CMS informed about the actual state of the Test Target generation and its changes (if

 sd Basic Flow - Inspect a Test Target Scenario

«idlInterface»

Define_Test_Target_Scenario_Sub

«idlInterface»

Define_Test_Target_Scenario_CMS

read_test_target_scenario(request_id_type,

test_target_scenario_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

test_target_scenario_setting_all_feature(request_id_type,

test_target_scenario_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

any).

Relationship to the subsystem health state
As long as a Test Target scenario is in generation sensor checks the relevant returns at different points of
the receiver chain, up to form plots in the same positions where Test Targets have been generated. The
relevant results contribute to the sensor health state.

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Test Target facility Test Target facility is supported by the sensor and CMS is aware of the
current availability of the Test Target generation.
Post-condition: Success The state of the Test Target generation is modified according to the request and
CMS is informed that this is the case.
Post-condition: No Success The state of the Test Target generation is unchanged with respect the original
one and CMS is informed about the denial reason.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.185 - Methods of IDLInterface Test_Target_Facility_CMS

Method Notes Parameters

notify_test_target() Method used by the sensor to return

the actual state of the Test Target

generation consistent with the

request.

request_id_type request_id

test_target_scenario_state_type

test_target_scenario_state

7.8.3.5.2 Test_Target_Facility_Sub

Type: IDLInterface
Package: Test_Target_Facility
This is the Subsystem interface for testing target facilities.

Issue OARIS 59 Manage Frequency Usage classes don't all follow class naming convention

Table 7.186 - Methods of IDLInterface Test_Target_Facility_Sub

Method Notes Parameters

set_test_target_facility_state() Method used by the CMS to send an

activation request of a specified Test

Target scenario.

request_id_type request_id

test_target_scenario_state_type

scenario_state

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.118 Basic Flow - Activate/Deactivate Test Target Facility (Sequence diagram)

Figure 7.119 Alternative Flow - Activate/Deactivate Test Target Facility - loss of mastership (Sequence
diagram)

7.8.4 Sensor_Performance

 sd Basic Flow - Activ ate/Deactiv ate Test Target Facility

«idlInterface»

Test_Target_Facility_Sub

«idlInterface»

Test_Target_Facility_CMS

set_test_target_facility_state(request_id, test_target_scenario_state)

receive_acknowledgement(request_id_type,

request_ack_type)

notify_test_target(request_id_type,

test_target_scenario_state_type)

 sd Alternativ e Flow - Activ ate/Deactiv ate Test Target Facility - loss of mastership

«idlInterface»

Test_Target_Facility_CMS

«idlInterface»

Test_Target_Facility_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_test_target_facil ity_state(request_id_type, test_target_scenario_state)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

notify_test_target(request_id_type,

test_target_scenario_state_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Parent Package: Sensor_Services

7.8.4.1 Provide_Interference_Reports

Parent Package: Sensor_Performance

7.8.4.1.1 Provide_Interference_Reports_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Interference_Reports
This describes the process whereby the subsystem provides a set of reports on sources of interference,
including jammers. The data shall, therefore, in general, be non-real-time but should, where appropriate, be
time-tagged and shall be updated when any observed data changes.
The sensor need not be radiating but shall at least be receiving. The subsystem VOI (volume of interest) or
other filter mechanisms might be supplied in a request to the subsystem
For a nominal effect assessment, the request might contain data on number, strength/Effective Radiated
Power (ERP), type and deployment of jammers and other interferers affecting radar operations. For
example, for each interferer

 Sensor time-tag

 Interference type - active noise, self-screening jammer, standoff jammer etc

 Strength/Effective Radiated Power

 Locations - strobes etc.

 Affected sectors

 Frequency bands affected

Pre-condition: Technical State The subsystem is in technical state ONLINE.
Pre-condition: Subsystem Services The Provide Subsystem Services Service has been completed
successfully
Pre-condition: Register Interest The Register Interest Service has been executed successfully to register
interest in Interference Reports.
Post-condition: Success The CMS has received Interference Reports
Post-condition: Failure The CMS receives no Interference Reports

Table 7.187 - Methods of IDLInterface Provide_Interference_Reports_CMS

Method Notes Parameters

interference_report_response() Provides an updated set of

interference reports to the CMS.

request_id_type request_id

interference_report_type

interference_report The report on

interference

interference_report_periodic() Provides an updated set of

interference reports to the CMS.

interference_report_type

interference_report The report on

interference

7.8.4.1.2 Provide_Interference_Reports_Sub

Type: IDLInterface
Package: Provide_Interference_Reports

Issue OARIS 41 C++ for general_polar_volume_type does not compile

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.188 - Methods of IDLInterface Provide_Interference_Reports_Sub

Method Notes Parameters

volume_for_interference_reports() This allows definition of the volume

in space which is of interest with

regard to the provision of interference

reports.

request_id_type request_id The

unique identifier for this request. This

is referenced in acknowledgement

and any error reporting regarding this

definition of the volume of interest.

polar_volume_type volume The

volume in space

coordinate_orientation_type

coordinate_orientation specifies the

orientation of the polar volume

Figure 7.120 Alternative Flow - Provide Interference Reports (Sequence diagram)

 sd Alternativ e Flow - Prov ide Interference Reports

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

alt Unsuccessful Request

[Subsystem unable to fi lter interference reports to the requested volume of interest]

[Subsystem error occurs whilst preparing interference reports as requested]

positive

acknowledgement

negative

acknowledgement

volume_for_interference_reports(request_id_type, polar_volume_type,

coordinate_orientation_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.121 Basic Flow - Provide Interference Reports (Sequence diagram)

7.8.4.2 Provide_Nominal_Performance

Parent Package: Sensor_Performance

7.8.4.2.1 Provide_Nominal_Performance_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Nominal_Performance
This is incremental to Register Interest, which deals with the subscription to subsystem functions. It
provides an indication of the expected performance of the available subsystem services such as those
presented in Provide Subsystem Services, based upon the current environmental conditions (See Receive
Meteorological Data - METOC).
The subsystem need not be radiating to provide this assessment. This interface is more targeted towards a
subsystem such as the complex MFR than the 2D surveillance radar. The most basic example of
performance would be reporting of the nominal coverage, in elevation, azimuth and range, given an
assumed operating regime with no jamming and with default clutter conditions. Other examples might be
that the actor requests the probability of detection for a specified target type or perhaps the probability of
correct automatic classification of such a target within a specified sector of coverage under current
environmental conditions.

Pre-condition: Technical State The Subsystem is in the Technical State ONLINE.
Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed
successfully.

 sd Basic Flow - Prov ide Interference Reports

«idlInterface»

Provide_Interference_Reports_CMS

«idlInterface»

Provide_Interference_Reports_Sub

loop periodic

opt Volume of Interest Supplied

[CMS supplies Volume of Interest]

volume_for_interference_reports(request_id_type, polar_volume_type,

coordinate_orientation_type)

receive_acknowledgement(request_id_type,

request_ack_type)

interference_report_response(request_id_type, interference_report_type)

interference_report_periodic(interference_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Post-condition: Success The CMS is aware of the Nominal Performance of the Subsystem
Post-condition: Failure The CMS is not aware of the Nominal Performance of the Subsystem

Table 7.189 - Methods of IDLInterface Provide_Nominal_Performance_CMS

Method Notes Parameters

nominal_performance_response() The subsystem responds to the

previous nominal performance

request with its determination of the

requested aspect of nominal

performance.

request_id_type request_id The

unique id from the request

performance_assessment_report_typ

e report The report on nominal

performance

7.8.4.2.2 Provide_Nominal_Performance_Sub

Type: IDLInterface
Package: Provide_Nominal_Performance
Subsystem interface for provision of nominal performance assessment.

Table 7.190 - Methods of IDLInterface Provide_Nominal_Performance_Sub

Method Notes Parameters

nominal_performance_request() The CMS requests nominal

performance of the subsystem in the

current environmental conditions.

The aspect of performance requested

is a parameter of the request.

request_id_type request_id The

unique id which identifies this

request. It is used to mark replies

from the sensor relating to this

request.

performance_assessment_request_ty

pe request The details of the

performance request

 sd Alternativ e Flow - Prov ide Nominal Performance

«idlInterface»

Provide_Nominal_Performance_CMS

«idlInterface»

Provide_Nominal_Performance_Sub

alt Unsuccessful Request

[Susbystem unable to calculate requested nominal performance]

[Subsystem encounters an irrecoverable condition in determining nominal performance]

negative

acknowledgement

positive

acknowledgement

nominal_performance_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.122 Alternative Flow - Provide Nominal Performance (Sequence diagram)

Figure 7.123 Basic Flow - Provide Nominal Performance (Sequence diagram)

7.8.4.3 Provide_Performance_Assessment

Parent Package: Sensor_Performance

7.8.4.3.1 Provide_Performance_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Performance_Assessment
This is incremental to Register Interest, which deals with the subscription to subsystem functions and
Provide Nominal Performance which provides the subsystem nominal performance. This interface reports
the real-time performance of the available subsystem functions against the goals of the mission. The
reported performance is that currently being attained by the subsystem subject to the current operating
regime and environmental conditions, including any clutter and jamming and taking account of any
mitigation/cancellation of such effects by the subsystem.
This interface is aimed at a subsystem such as an MFR radar. Information is provided to the Command
function allowing decisions to be made on the achieved performance, which is often considerably different
to the anticipated performance level as reported through the Provide Nominal Performance Service.
The most basic example of performance would be reporting of the radar coverage, in elevation, azimuth
and range, for the current operating regime and environmental conditions. This would take account of any
clutter and jamming present. Other examples might be that the actor requests the probability of detection for
a specified target type or perhaps the probability of correct automatic classification of such a target within a
specified range under current environmental conditions N.B. if the radar is operating in an appropriate mode
then real-time clutter and/or jamming data might be available to the radar subsystem. Otherwise the actor
would have to supply any known data to the subsystem for performance assessment (see Receive
Encyclopaedic Data and Receive Geographic Information). If no environmental data is specified then the
design performance would be reported.

Pre-condition: Technical State The Subsystem is in the technical state ONLINE.
Pre-condition: Subsystem Services The Provide Subsystem Services Service has completed
successfully.
Post-condition: Success The CMS is aware of the assessed performance of the subsystem
Post-condition: Failure The CMS is not aware of the assessed performance of the subsystem
coord kind = POLAR
orientation = NEGOTIATED
origin = SENSOR_REFERENCE_POINT

 sd Basic Flow - Prov ide Nominal Performance

«idlInterface»

Provide_Nominal_Performance_Sub

«idlInterface»

Provide_Nominal_Performance_CMS

nominal_performance_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

nominal_performance_response(request_id_type, performance_assessment_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Table 7.191 - Methods of IDLInterface Provide_Performance_Assessment_CMS

Method Notes Parameters

performance_assessment_response

()

The subsystem responds to the

previous performance assessment

request with its assessment of the

requested aspect of actual

performance.

request_id_type request_id The

unique identifier for this assessment.

This identifier is supplied by the

CMS when the assessment is

requested.

performance_assessment_report_typ

e performance_assessment The

details of the assessment

7.8.4.3.2 Provide_Performance_Assessment_Sub

Type: IDLInterface
Package: Provide_Performance_Assessment
Subsystem interface for provision of current performance assessment.
Note that the coordinates are always polar for this service and that the origin is always the sensor reference
point as per the coordinates and positions package.

Table 7.192 - Methods of IDLInterface Provide_Performance_Assessment_Sub

Method Notes Parameters

performance_assessment_request() The CMS requests assessment of

actual performance of the subsystem.

The aspect of performance requested

is a parameter of the request.

request_id_type request_id The

unique identifier for this assessment.

This identifier is contained in all

related replies from the sensor.

performance_assessment_request_ty

pe request Details of the assessment

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.124 Alternate Flow - Provide_Performance_Assessment (Sequence diagram)

Figure 7.125 Basic Flow - Provide Performance Assessment (Sequence diagram)

7.8.4.4 Provide_Jammer_Assessment

Parent Package: Sensor_Performance

7.8.4.4.1 Provide_Jammer_Assessment_CMS

Type: IDLInterface common_use_case_interface

 sd Alternate Flow - Prov ide_Performance_Assessment

«idlInterface»

Provide_Performance_Assessment_CMS

«idlInterface»

Provide_Performance_Assessment_Sub

alt Unsuccessful Request

[Subsystem is in an incorrect internal mode for making the assessment]

[Subsystem encouters an irrecoverable error condition in performing the performance assessment]

positive

acknowledgement

negative

acknowledgement

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

 sd Basic Flow - Prov ide Performance Assessment

«idlInterface»

Provide_Performance_Assessment_Sub

«idlInterface»

Provide_Performance_Assessment_CMS

performance_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

performance_assessment_response(request_id_type, performance_assessment_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Provide_Jammer_Assessment
This interface describes the process whereby the subsystem provides a periodic assessment of the effects
of actual jamming on the detection and tracking performance of the subsystem. The actual subsystem
performance vs the nominal (see Provide Nominal Performance) shall be reported so that this data is
current and real-time. This should include the effects on (spatial) coverage caused by any jamming. The
impact on frequencies used e.g. operating band limitations is dealt with in Provide Interference Reports
Mastership is not required.
The radar need not be radiating in the ONLINE state but shall at least be receiving. The subsystem VOI
(volume of interest) or other filter mechanisms might be supplied in a request to the subsystem.
The kind of information which could be provided in the returned assessment, depending on any jamming
mitigation strategy (frequency agility, moving target indication, low side-lobe levels, main beam or side-lobe
cancellation, side-lobe blanking etc.) might then include:

 Noise floor pre-/post-jammer cancellation, as applicable

 Degradation in detectability (compared with the nominal)

Pre-condition: Technical State The subsystem is in the technical state ONLINE
Pre-condition: Subsystem Services The Provide Subsystem Services Service has been successfully
executed
Pre-condition: Register Interest The Register Interest Service has completed successfully.
Post-condition: Success CMS has received Jamming Effect Assessments
Post-condition: No Success The CMS has not received Jamming Effect Assessments.

Table 7.193 - Methods of IDLInterface Provide_Jammer_Assessment_CMS

Method Notes Parameters

jammer_assessment_response() request_id_type request_id

performance_assessment_report_typ

e report

7.8.4.4.2 Provide_Jammer_Assessment_Sub

Type: IDLInterface
Package: Provide_Jammer_Assessment

Table 7.194 - Methods of IDLInterface Provide_Jammer_Assessment_Sub

Method Notes Parameters

jammer_assessment_request() request_id_type request_id

performance_assessment_request_ty

pe jammer_assessment_request

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.126 Alternate Flow - Provide Jammer Assessment (Sequence diagram)

 sd Alternate Flow - Prov ide Jammer Assessment

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

alt Negativ e Acknowledgement

[Subsystem has incorrect internal mode for request]

[Subsystem processing produces irrecoverable error after initial positive Ackowledgement]

negative

acknowledgement

positive

acknowledgement

jammer_assessment_request(request_id_type,

performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

 sd Basic Flow - Prov ide Jammer Assessment

«idlInterface»

Provide_Jammer_Assessment_CMS

«idlInterface»

Provide_Jammer_Assessment_Sub

jammer_assessment_request(request_id_type, performance_assessment_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

jammer_assessment_response(request_id_type,

performance_assessment_report_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.127 Basic Flow - Provide Jammer Assessment (Sequence diagram)

7.8.5 Track_Reporting

Parent Package: Sensor_Services

7.8.5.1 Provide_Sensor_Tracks

Parent Package: Track_Reporting

7.8.5.1.1 Provide_Sensor_Tracks_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Sensor_Tracks
This service allows the CMS to obtain an overview of (real and/or simulated) air / land / space / surface
objects observed or simulated. Information may cover all aspects of a track such as kinematic and
amplifying information.
The service does not cover:

 additional track information provision dedicated for engagement support,

 special search functions such as cued search, volume search and horizon search (however, if such a
search function is initiated by means of another service, the tracks shall be provided by this service),

Although the service focuses on radar as an example of a sensor, the service also applies to other sensors,
like IR/EO sensors and ECM/ESM sensors.

The actor is the Combat Management System.

The service starts when:

 if the service does provide registration capabilities: the service "Register interest" has completed
successfully, or

 if the service does not provide registration capabilities: the service "Provide subsystem services" has
completed successfully for this service.

The sensor provides, periodically or on event, a set of sensor tracks observed by the sensor. These may be
sensor point or bearing tracks. The set of sensor tracks includes:

 Track updates of existing and new sensor tracks. These are provided when there are sufficient
measurements (e.g. plots) in the last observation cycle, which may be associated with the sensor track.

 Dead-reckoned tracks. These are sensor track updates for which in the last observation cycle there are
no measurements that may be associated with the sensor track. For dead-reckoned tracks, the sensor
track information (e.g. kinematics) is extrapolated. The dead-reckoned tracks may become"normal"
tracks again if, in the next scan, there are measurement(s) that may be associated with the track.
Alternatively, dead-reckoned tracks (after n unsuccessful scans) may become lost tracks.

 Lost tracks. These are sensor track updates that are reported once, if in the last n scans, there are no
measurements that may be associated with the sensor track. The value of n is typically a sensor
parameter that is managed by the service "Manage subsystem parameters".

Some sensors are not capable of reporting lost and/or dead-reckoned tracks.
The sensor may also provide single sensor tracks periodically or on event.

The service ends with success when:

 if the service does provide registration capabilities: the service "Register interest" has completed
successfully for a deregistration request, or

 if the service does not provide registration capabilities: the sensor is shutdown using service "Shut
down".

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Sensor health state The sensor and the service need to be in the health state AVAILABLE
or DEGRADED
Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) need to be set

1
.

1
 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,

“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.195 - Methods of IDLInterface Provide_Sensor_Tracks_CMS

Method Notes Parameters

write_sensor_track() The method represents a write of a

single sensor track (air, land, space or

surface) to the CMS.

The write may be periodic or not.

sensor_track_type the_sensor_track

write_sensor_track_set() The method represents a single write

of a set of sensor tracks to the CMS.

The write may be:

- periodic or not

- include all tracks observed during a

sensor scan

- be an update of just one track (a set

of 1) if this is how the sensor works

sensor_track_set_type the_track_set

Figure 7.128 Basic Flow - Sensor Track Reporting (Individual) (Sequence diagram)

 sd Basic Flow - Sensor Track Reporting (Indiv idual)

«idlInterface»

track_reporting_sub

«idlInterface»

Provide_Sensor_Tracks_CMS

This sequence diagram shows the style of reporting tracks individually.

Depending on the requested services, all tracks are reported or for instance

only tracks with a certain environment or jamming indication.

The messages may be sent periodically or on event (when a new track

update is available)

loop

[periodic]

write_sensor_track(sensor_track_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.129 Basic Flow - Sensor Track Reporting (Sets) (Sequence diagram)

7.8.6 Tracking_Control

Parent Package: Sensor_Services
This package contains interfaces for the Tracking Control service.

7.8.6.1 Delete_Sensor_Track

Parent Package: Tracking_Control
This package contains interfaces for the Delete Sensor Track service.

7.8.6.1.1 Delete_Sensor_Track_CMS

Type: IDLInterface common_use_case_interface
Package: Delete_Sensor_Track
The sensor is requested to remove a specified track from its internal Track Data Base; obviously the deleted
track may come back (with another track identification number) within a few seconds if it was a living track.

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may delete that track
Post-condition: Success CMS is informed of the successful deletion of the required track, and the next
track reporting shall no contain the deleted track. Obviously the deleted track may come back within a few
seconds if it was a living target, but with another identification number.
Post-condition: No Success CMS is informed of the request rejection and of the denial reason. No impact
on the sensor track management evolution.

7.8.6.1.2 Delete_Sensor_Track_Sub

Type: IDLInterface

 sd Basic Flow - Sensor Track Reporting (Sets)

«idlInterface»

track_reporting_sub

«idlInterface»

Provide_Sensor_Tracks_CMS

loop

[periodic]

This sequence diagram shows the style of reporting tracks in batches; sets

containing one or more tracks are reported atomically.

Depending on the requested services, all tracks are reported or for instance only

tracks with a certain environment or jamming indication.

The messages may be sent periodically or on event (when a new track update is

available)

write_sensor_track_set(sensor_track_set_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Package: Delete_Sensor_Track
This is the Subsystem interface for deleting sensor tracks.

Table 7.196 - Methods of IDLInterface Delete_Sensor_Track_Sub

Method Notes Parameters

delete_track() Method used by the CMS to send a

track deletion request, specifying the

identification number of the track to

be deleted.

sensor_track_id_type trackId

request_id_type request_id

Figure 7.130 Basic Flow - Delete Sensor Track (Sequence diagram)

 sd Basic Flow - Delete Sensor Track

«idlInterface»

Delete_Sensor_Track_Sub

«idlInterface»

Delete_Sensor_Track_CMS

The deleted track is not included

in the next track reporting returned

by the sensor.

delete_track(sensor_track_id_type, request_id)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.131 Alternative Flow - Delete Sensor Track (Sequence diagram)

7.8.6.2 Receive_Track_Information

Parent Package: Tracking_Control
This package contains interfaces for the Receive Track Information service.

7.8.6.2.1 Receive_Track_Information_CMS

Type: IDLInterface common_use_case_interface
Package: Receive_Track_Information
CMS may provide information belonging to a sensor track in order to enable for a coordinated presentation
of the sensor track both on CMS consoles and a dedicated radar console. The track information which may
be supplied are:

1. External track identification number
2. Additional Information – this is not specified as part of the interface, candidate information includes:

 Track type

 Track priority

 Track Identification Category Assigned (Pending, Friend, Assumed Friend, Neutral, Unknown,
Suspect, Hostile)

Track identities management
Each sensor track shall have an “Internal Track Identification Number” and may one or more additional
“External Track Identification Numbers”. The former shall be assigned by the sensor when the track is
formed and, as long as the track is alive, it cannot changed for any reason. The latter shall be set to “none”
when the track is formed and then overwritten, during the track life, to report the track identity/ies externally
assigned to the track.
All track identification numbers shall be reported together with the track data, but the track identification
shall be made through the “Internal Track Identification Number”.

 sd Alternativ e Flow - Delete Sensor Track

«idlInterface»

Delete_Sensor_Track_CMS

«idlInterface»

Delete_Sensor_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

delete_track(sensor_track_id_type, request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Tracking capability Tracking capability is supported by the sensor, and CMS is aware that
actually the sensor may manage that track
Pre-condition: Technical State Sensor is working in Operational
Post-condition: Success CMS is informed of the successful execution of the request, and the next track
reporting shall contain the identified track with the provided information.
Post-condition: No Success CMS is informed of the request rejection and of the denial reason. No impact
on the sensor track management evolution.

7.8.6.2.2 Receive_Track_Information_Sub

Type: IDLInterface
Package: Receive_Track_Information
This is the Subsystem interface for receiving track information.

Table 7.197 - Methods of IDLInterface Receive_Track_Information_Sub

Method Notes Parameters

insert_info_track() Method used by the CMS to send a

receive track information request,

specifying the track identification

number and related track information.

request_id_type request_id

sensor_track_id_type trackId

track_info trackInfo

Figure 7.132 Basic Flow - Receive Track Information (Sequence diagram)

 sd Basic Flow - Receiv e Track Information

«idlInterface»

Receive_Track_Information_Sub

«idlInterface»

Receive_Track_Information_CMS

The sensor shall

provide the track

updates as per

"Provide Sensor

Tracks".

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,

request_ack_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.133 Alternative Flow - Receive Track Information (Sequence diagram)

7.8.6.3 Initiate_Track

Parent Package: Tracking_Control
This package contains interfaces for the Initiate Track service.

7.8.6.3.1 Initiate_Track_CMS

Type: IDLInterface common_use_case_interface
Package: Initiate_Track
The sensor is requested to start tracking on a new target based on given information, such as positional
data and additionally also kinematic data. Sensor replies indicating the request acceptance or rejection. If
accepted, the initiation of a new track shall be attempted as required, and the relevant result shall be
reported later through an “externally designated track initiation report” containing the identification number
of the resulting track (if any).

Additional Information

Data reported in the “externally designated track initiation request”
The provided information depends on the sensor type and its capabilities, typically they are:
• Identification number of the designation (mandatory)
• Position and time (mandatory)
• Accuracy of the provided positional data (optional)
• Velocity and relevant accuracy (optional)
• Track characteristics (optional)

 sd Alternativ e Flow - Receiv e Track Information

«idlInterface»

Receive_Track_Information_CMS

«idlInterface»

Receive_Track_Information_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

The sensor shall not

provide the track

updates as per

"Provide Sensor

Tracks".

insert_info_track(request_id_type, sensor_track_id_type, track_info)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Data reported in the “externally designated track initiation report”

The purpose is this report is to inform CMS about the final result of the track initiation request, i.e. it reports
to CMS if the track has been successfully initiated or not, and (in case of success) the identification number
of the new formed track.
The provided information depends on the sensor type and its capabilities, typically they are:
• Identification number of the designation (mandatory)
• Initiation result (mandatory)
• Identification number of the initiated track, if any (mandatory)

• other info (optional).

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Post-condition: Success The setting of the tracking zones has been modified according to the request and
CMS is informed that this is the case.
Post-condition: No Success The setting of the tracking zones is unchanged with respect to the original one
and CMS is informed that this is the case.

Table 7.198 - Methods of IDLInterface Initiate_Track_CMS

Method Notes Parameters

report_track() Method used by the sensor to issue an

"externally designated track initiation

report” containing data of the

successfully initiated track.

request_id_type request_id

sensor_track_id_type id_report

7.8.6.3.2 Initiate_Track_Sub

Type: IDLInterface
Package: Initiate_Track
This is the Subsystem interface for initiating tracks.

Table 7.199 - Methods of IDLInterface Initiate_Track_Sub

Method Notes Parameters

initiate_track() Method used by the CMS to send an

"externally designated track initiation

request”, specifying a timed position

and kinematic.

request_id_type request_id

system_track_type track_info

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.134 Basic Flow Initiate Track (Sequence diagram)

Figure 7.135 Alternative Flow - Initiate Track - loss of mastership (Sequence diagram)

 sd Basic Flow Initiate Track

«idlInterface»

Initiate_Track_Sub

«idlInterface»

Initiate_Track_CMS

The sensor shall provide the

track updates as per "Provide

Sensor Tracks".

initiate_track(request_id_type, system_track)

receive_acknowledgement(request_id_type,

request_ack_type)

report_track(request_id_type, sensor_track_id_type)

 sd Alternativ e Flow - Initiate Track - loss of mastership

«idlInterface»

Initiate_Track_CMS

«idlInterface»

Initiate_Track_Sub

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

initiate_track(request_id_type, system_track)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

7.8.6.4 Manage_Tracking_Zones

Parent Package: Tracking_Control
This package contains interfaces for the Manage Tracking Zones service.

7.8.6.4.1 Manage_Tracking_Zones_CMS

Type: IDLInterface common_use_case_interface
Package: Manage_Tracking_Zones
This controls the sensor tracking behaviour in selected zones, which may be 1D (delimited in azimuth only),
2D (have additional elevation bounds) or 3D (have further range bounds). Depending on the zone type the
sensor may be requested to modify its normal tracking behaviour, such as enable/disable the capability to
auto initiate new tracks, or the capability of managing Track-On-Jammer. A list of typical tracking zones is

 Automatic Track Initiation Zones
zones where the sensor is allowed to auto initiate new tracks. Depending on the sensor type and its
capabilities, such a type of zones may be delimited in azimuth only, or both in azimuth and elevation, or may
have further range bounds, and in some cases also additional constraints (such as target type, velocity
bounds, etc.).
• Track-On-Jammer Sectors
sectors where the sensor is allowed to manage Track-On-Jammer. Depending on the sensor type and its
capabilities, such a type of sectors may be delimited either in azimuth only or both in azimuth and elevation.
• Multipath Devoted Tracking Sectors
sectors where the sensor is required to use, for tracking activities, devoted waveforms to reduce the
multipath effects. This capability is usually provided by multifunctional radars. Such a type of sectors is
usually limited in azimuth only, below a defined elevation.

The supported tracking zone types (names and characteristics) differ from sensor to sensor, so they shall
be handled as configuration parameters. They shall be offered to the operator to enable him for a selection
and then transferred to the sensor to achieve the intended response.

Special Requirements
Provision of the sensor tracking zones setting
Sensor shall keep CMS informed about the actual setting of the tracking zones and its changes (if any).

Issue OARIS 75 Inconsistent mechanisms for determining subsystem state across use cases
It is the CMS's responsibility to initiate the determination of initial state by making a request for information
to the subsystem.

Additional Information
Lack of mastership
In the case where CMS does not have mastership of the sensor, CMS shall be informed about the actual

setting of the tracking zones and its changes (if any).

Pre-condition: Mastership Required CMS has mastership of the sensor
Pre-condition: Subsystem Services Provide subsystem services is successfully passed
Pre-condition: Tracking zones setting CMS is aware of which types of tracking zones the sensor may
manage and of their current setting.
Post-condition: Success The setting of the tracking zones has been modified according to the request and
CMS is informed that this is the case.
Post-condition: No Success The setting of the tracking zones is unchanged with respect to the original one
and CMS is informed that this is the case.

Table 7.200 - Methods of IDLInterface Manage_Tracking_Zones_CMS

Method Notes Parameters

tracking_zone_setting() Method used by the CMS to send an request_id_type request_id

Open Architecture Radar Interface Standard (OARIS), v1.0

enable/disable tracking zone request

to the sensor.

tracking_zone_set setting_message

7.8.6.4.2 Manage_Tracking_Zones_Sub

Type: IDLInterface
Package: Manage_Tracking_Zones
This is the Subsystem interface for managing tracking zones.

Table 7.201 - Methods of IDLInterface Manage_Tracking_Zones_Sub

Method Notes Parameters

set_tracking_zone() Method used by the sensor to return

the actual setting of the tracking

zones modified according to the

request.

request_id_type request_id

tracking_zone_set zone

Figure 7.136 Basic Flow - Manage Tracking Zone - Enable/Disable (Sequence diagram)

 sd Basic Flow - Manage Tracking Zone - Enable/Disable

«idlInterface»

Manage_Tracking_Zones_Sub

«idlInterface»

Manage_Tracking_Zones_CMS

If tracking_zone_set

dimension is null, the

operation

set_tracking_zone get

all the current tracking

zones.

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,

request_ack_type)

tracking_zone_setting(request_id, tracking_zone_set)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.137 Alternative Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership (Sequence
diagram)

7.9 Radar_Services
Parent Package: Service_Interfaces
Contains services associated with the Radar Domain.

7.9.1 Air_Engagement_Support

Parent Package: Radar_Services

7.9.1.1 Provide_Projectile_Positional_Information

Parent Package: Air_Engagement_Support

7.9.1.1.1 Provide_Projectile_Positional_Information_CMS

Type: IDLInterface common_use_case_interface
Package: Provide_Projectile_Positional_Information
Fire control radars suitable for Close-In-Weapon-Systems need the capability to observe the projectiles in
flight, to measure at which distance they pass the target so that related shot corrections for the gun may be
calculated, automatically. The measured distance in azimuth and elevation is called miss indication in the
following.

 sd Alternativ e Flow - Manage Tracking Zone - Enable/Disable - loss of Mastership

«idlInterface»

Manage_Tracking_Zones_CMS

«idlInterface»

Manage_Tracking_Zones_Sub

In the operation

set_tracking_zone, the

tracking_zone_set

parameter must be not

null

alt

[Subsystem rejects request]

[Subsystem fails]

command is

successfully

acknowledged but fails

before completion

set_tracking_zone(request_id_type, tracking_zone_set)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

tracking_zone_setting(request_id_type, tracking_zone_set)

Open Architecture Radar Interface Standard (OARIS), v1.0

This capability may be available in a non-close-in-weapon-system environment, too. It may also be
available for phased-array radars.

Mastership of the subsystem must not have any impact upon the miss indication capability.

See also service 'Process Target Designation'.

Pre-condition: "Process Target Designation" was successfully carried out and a target is being tracked.
Pre-condition: CMS must have mastership.

Table 7.202 - Methods of IDLInterface Provide_Projectile_Positional_Information_CMS

Method Notes Parameters

report_miss_indication() Via this message, the subsystem

reports to the CMS the miss

indication.

miss_indication_data_type

MissIndicationData
request_id_type RequestID

7.9.1.1.2 Provide_Projectile_Positional_Information_Sub

Type: IDLInterface
Package: Provide_Projectile_Positional_Information

Table 7.203 - Methods of IDLInterface Provide_Projectile_Positional_Information_Sub

Method Notes Parameters

request_miss_indication() Request the subsystem to report a

miss indication.

request_id_type RequestID

expected_hit_data_type

ExpectedHitData

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.138 Provide projectile positional information - Request reporting of miss indications (Sequence
diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "request reporting of miss indications" of the service 'Provide projectile position information'.

7.9.2 Engagement_Support

Parent Package: Radar_Services

7.9.2.1 Process_Target_Designation

Parent Package: Engagement_Support

7.9.2.1.1 Process_Target_Designation_CMS

Type: IDLInterface common_use_case_interface
Package: Process_Target_Designation
Fire control radars are designed to perform one target engagement at a time with respect to an air, surface
or land target and provide the necessary information for a fire control solution regarding that target.

The CMS selects a track and requests the fire control radar to acquire and track the target behind that track.
If the acquisition is successful the radar starts tracking the target and reporting fire control information.

Some fire control radars provide information about one or more other targets appearing in its field of view
and may even provide associated sensor tracks. This is, however, not within the scope of this service
interface but covered by "Provide sensor tracks".

The fire control information may be plots and/or tracks, depending on the product.

 sd Prov ide projectile positional information - Request reporting of miss indications

«idlInterface»

Provide_Projectile_Positional_Information_CMS

«idlInterface»

Provide_Projectile_Positional_Information_Sub

alt request reporting of miss indication

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop CMS updates target position and v elocity

[until subsystem reports miss indication.]

request_miss_indication(request_id_type, expected_hit_data_type)

receive_acknowledgement(request_id_type, request_ack_type)

request_miss_indication(request_id_type, expected_hit_data_type)

report_miss_indication(miss_indication_data_type, request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

On receiving the de-designation request the fire control radar stops following the target and stops providing
fire control information.

Phased array radars may include fire control capabilities as well. If they do, they provide a number of ‘virtual
fire control radars’. To the extent that these virtual fire control radars are comparable in function and
performance, there may be no need for the CMS to select a specific fire control channel to be used for a
particular engagement.

In the case where the CMS looses or releases mastership of the subsystem, the subsystems ceases all fire
control activities.

A target designation to a weapon with its own fire control capabilities may be done in an analogous way. In
that sense, the service (interface) may also be employed by weapon systems.

Pre-condition: Technical state READY or ONLINE.
Pre-condition: CMS must have Mastership.

Table 7.204 - Methods of IDLInterface Process_Target_Designation_CMS

Method Notes Parameters

receive_fire_control_channel_relea

sed()

Via this message, the subsystem

confirms the release of a target

acquisition.

request_id_type RequestID

fire_control_channel_id_type

FireControlChannelID

receive_target_acquired() Via this message, the subsystem

confirms the target acquisition.

request_id_type RequestID

sensor_track_id_type TrackID

fire_control_channel_id_type

FireControlChannel

receive_target_dedesignation() Via this message, the subsystem

reports the de-designation of a target.

request_id_type RequestID

sensor_track_id_type TrackID

receive_target_designation_error() Via this message, the subsystem

reports an error during target

acquisition.

request_id_type RequestID

error_reason_type Error

7.9.2.1.2 Process_Target_Designation_Sub

Type: IDLInterface
Package: Process_Target_Designation

Table 7.205 - Methods of IDLInterface Process_Target_Designation_Sub

Method Notes Parameters

dedesignate_target() The subsystem is requested to

de-designate a fire control channel.

request_id_type RequestID

fire_control_channel_id_type

TrackID

designate_target_by_position() The subsystem is requested to

designate a fire control channel based

on a position/kinematics.

request_id_type RequestID

kinematics_type PositionVelocity

designate_target_by_track() The subsystem is requested to

designate a fire control channel based

on a track.

request_id_type RequestID

sensor_track_id_type TrackID

Open Architecture Radar Interface Standard (OARIS), v1.0

7.9.2.1.3 Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation
The sensor track reporting itself is not covered in this service interface. See the corresponding service
interface 'Sensor Track Reporting'.

7.9.2.1.4 Sensor Track Reporting

Type: InteractionOccurrence
Package: Process_Target_Designation
The sensor track reporting itself is not covered in this service interface. See the corresponding service
interface 'Sensor Track Reporting'.

 sd Process Target Designation - Designation by track

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by track

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

ref

Sensor Track Reporting

alt de-designate not receiv ed before timeout condition

designate_target_by_track(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_acquired(request_id_type, sensor_track_id_type,

fire_control_channel_id_type)

receive_fire_control_channel_released(request_id_type,

fire_control_channel_id_type)

receive_target_designation_error(request_id_type, error_reason_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.139 Process Target Designation - Designation by track (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "designate (target) by track" of the service "Process Target Designation".

Figure 7.140 Process Target Designation - Designation by position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "designate (target) by position" of the service "Process Target Designation".

 sd Process Target Designation - Designation by position

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

loop target loss

[while target may be tracked and/or acquired]

alt designation by position

[basic flow]

[request rejection]

[processing error]

loop target acquisition

[attempt acquisition]

request_ack.success = false

request_ack.success = true

request_ack.success = true

loop target reporting

[while target is acquired]

opt target succesfull acquired

[once target is acquired]

ref
Sensor Track Reporting

alt de-designate not receiv ed before timeout condition

designate_target_by_position(request_id_type, kinematics_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_acquired(request_id_type, sensor_track_id_type,

fire_control_channel_id_type)

receive_fire_control_channel_released(request_id_type,

fire_control_channel_id_type)

receive_target_designation_error(request_id_type, error_reason_type)

designate_target_by_position(request_id_type, kinematics_type)

receive_acknowledgement(request_id_type, request_ack_type)

designate_target_by_position(request_id_type, kinematics_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.141 Process Target Designation - De-designation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "de-designate (target)" of the service "Process Target Designation". It applies to a fire control
channel that has been designated by position or by track.

7.9.2.2 Support_Kill_Assessment

Parent Package: Engagement_Support

7.9.2.2.1 Support_Kill_Assessment_CMS

Type: IDLInterface common_use_case_interface
Package: Support_Kill_Assessment
With this service the subsystem provides of kill assessment information to the CMS. The information relates
to an above water engagement primarily against an air target.

The kill assessment report of the subsystem may be one of the three:

 PROBABLE-KILL. This indicates that the subsystem assumes the target to be killed.

 PROBABLE-MISS. This indicates that the subsystem assumes the target to be missed by the used
weapon system.

 NO-RESULT. This indicates that the subsystem was not able to determine a valid result for this request.

See also service (interface) "Process Target Designation".

 sd Process Target Designation - De-designation

«idlInterface»

Process_Target_Designation_CMS

«idlInterface»

Process_Target_Designation_Sub

alt dedesignation

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

This sequence diagram

applies to a fire control

channel that has been

designated by position or by

track.

dedesignate_target(request_id_type, fire_control_channel_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_target_dedesignation(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Service "Process Target Designation" successfully carried out.
Pre-condition: CMS must have Mastership.

Table 7.206 - Methods of IDLInterface Support_Kill_Assessment_CMS

Method Notes Parameters

report_kill_assessment_result() Via this message, the subsystem

reports the kill assessment to the

CMS.

request_id_type RequestID

kill_assessment_result_type

KillAssessmentReport

7.9.2.2.2 Support_Kill_Assessment_Sub

Type: IDLInterface
Package: Support_Kill_Assessment

Table 7.207 - Methods of IDLInterface Support_Kill_Assessment_Sub

Method Notes Parameters

request_kill_assessment() The subsystem is requested to

evaluate and report a kill assessment.

request_id_type RequestID

expected_hit_data_type

KillAssessmentData

 sd Basic Flow - Support Kill Assessment - Request Kill Assessment Support

«idlInterface»

Support_Kill_Assessment_CMS

«idlInterface»

Support_Kill_Assessment_Sub

loop kill assessment update

[unti l ki l l assessment report received]

alt request kill assessment support

[basic flow]

[request rejection]

[processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

request_kil l_assessment(request_id_type,

expected_hit_data_type)

receive_acknowledgement(request_id_type,

request_ack_type)

request_kil l_assessment(request_id_type,

expected_hit_data_type)

report_kil l_assessment_result(request_id_type,

kil l_assessment_result_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.142 Basic Flow - Support Kill Assessment - Request Kill Assessment Support (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "request kill assessment support " of the service "Support Kill Assessment".

7.9.2.3 Support_Surface_Target_Engagement

Parent Package: Engagement_Support

7.9.2.3.1 Support_Surface_Target_Engagement_CMS

Type: IDLInterface common_use_case_interface
Package: Support_Surface_Target_Engagement
This service is intended for fire control radars, as well as surveillance radar systems that have facilities to
perform surface target engagements by means of dedicated fire control channels. These fire control
channels may need a differently parameterized or more elaborate track algorithm, and they may be
combined with related splash spotting video.

The CMS requests the surface track to be engaged. The maximum number of tracks that may be engaged
simultaneously is determined by the radar.
The functionality may also be available for land targets, provided they may be tracked by the radar.

In the case where the CMS looses or releases mastership of the subsystem, a change of the availability of
fire control channels shall be indicated to the CMS. Fire control radars shall cease all fire control activities.

The set of operational modes that make fire control channels available, as well as the number of available
channels shall be provided by means of service "Manage Subsystem Parameters".

Pre-condition: Technical state ONLINE.
Pre-condition: CMS must have Mastership.
Post-condition: Service ends with success - check availability - the CMS is informed about the availability
of fire control channels.
Post-condition: Service ends with success - target designation - the radar provides a fire control track for
the selected sensor track.
Post-condition: Service ends with success - reporting - the CMS receives regular updates of the fire control
track.
Post-condition: Service ends with success - de-designation - the fire control channel is de-assigned and
has become available.
Post-condition: Service ends with fail - target designation - the fire control channel is not assigned; no fire
control track.
Post-condition: Service ends with fail - surface track is lost - the fire control channel is not assigned; the fire
control track is terminated. The CMS is informed about the availability of fire control channel.
Post-condition: Service ends with Fail - de-designation - the fire control channel is not assigned.

Table 7.208 - Methods of IDLInterface Support_Surface_Target_Engagement_CMS

Method Notes Parameters

report_availability_state_of_fire_c

ontrol_channels()

Via this interface method, the number

of available fire control channels are

returned from the subsystem to the

CMS. If no channel is available, the

value '0' is returned.

request_id_type RequestID

available_fire_control_channels_typ

e AvailableFireControlChannels

report_available_fire_control_cha

nnel()

Via this interface method, the number

of available fire control channels are

returned from the subsystem to the

CMS.

request_id_type RequestID

fire_control_channel_id_type

FireControlChannelID

report_selected_fire_control_chan

nel()

Via this interface method, the

selected fire control channel is

request_id_type RequestID

fire_control_channel_id_type

Open Architecture Radar Interface Standard (OARIS), v1.0

returned from the subsystem to the

CMS.
FireControlChannelID
sensor_track_id_type

SensorTrackId

7.9.2.3.2 Support_Surface_Target_Engagement_Sub

Type: IDLInterface
Package: Support_Surface_Target_Engagement

Table 7.209 - Methods of IDLInterface Support_Surface_Target_Engagement_Sub

Method Notes Parameters

dedesignate_fire_control_channel(

)

Request to the subsystem to

de-designate a fire control channel.

request_id_type RequestID

fire_control_channel_id_type

FireControlChannelID

designate_fire_control_channel() Request to the subsystem to designate

a fire control channel.

request_id_type request_id

sensor_track_id_type track_id

request_availability_of_fire_contr

ol_channels()

Request to the subsystem to report the

available fire control channels.

request_id_type RequestID

7.9.2.3.3 Support_Surface_Target_Engagement_CMS

Type: ActivityPartition
Package: Support_Surface_Target_Engagement

7.9.2.3.4 Support_Surface_Target_Engagement_Sub

Type: ActivityPartition
Package: Support_Surface_Target_Engagement

7.9.2.3.5 sensor track reporting

Type: InteractionOccurrence
Package: Support_Surface_Target_Engagement

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.143 Support surface target engagement - Check availability (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "check availability" of the service "Support surface target engagement".

 sd Support surface target engagement - Check av ailability

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

Returns the number of

available fire control

channels. If no channel is

available, the value '0' is

returned.

request_availabil ity_of_fire_control_channels(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_availabil ity_state_of_fire_control_channels(request_id_type,

available_fire_control_channels_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.144 Support surface target engagement - Designate fire control channel (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "designate fire control channel" of the service "Support surface target engagement".

 sd Support surface target engagement - Designate fire control channel

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt designate fire control channel

[basic flow]

[alternate flow: invalid track id]

[alternate flow: processing error]

loop report fire control track (asynchronous)

[while fire control channel is assigned]

This message corresponds with

the COMPLETE message.

Internally, the asynchronous

reporting of the fire control

channel has been triggered.

The reporting of fire control

tracks is part of sensor track

reporting.

When the reporting ends, the

number of available fire

control channels is reported.

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref

sensor track reporting

designate_fire_control_channel(request_id_type, sensor_track_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_selected_fire_control_channel(request_id_type,

fire_control_channel_id_type,

sensor_track_id_type)

report_available_fire_control_channel(request_id_type,

fire_control_channel_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.145 Support surface target engagement - Dedesignate fire control channel (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "De-designate fire control channel" of the service "Support surface target engagement".

7.9.3 Missile_Guidance

Parent Package: Radar_Services

7.9.3.1 Perform_Illumination

Parent Package: Missile_Guidance

7.9.3.1.1 Perform_Illumination_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Illumination
This service covers the control of target illumination to support a semi-active homing missile engagement.

The actor is the Combat Management System.

The service is triggered by the illumination request of the actor. Typically, illumination takes place during a
specific period within the engagement sequence.
The actor sends an illumination request to the radar.
On the requested start time, the radar starts illuminating the target with specified parameters.
During the illumination, the actor may provide updates of illumination parameters, e.g. to change the stop
time.
The service ends at stop time of the illumination.

 sd Support surface target engagement - Dedesignate fire control channel

«idlInterface»

Support_Surface_Target_Engagement_CMS

«idlInterface»

Support_Surface_Target_Engagement_Sub

alt dedesignate fire control channel

[basic flow]

[alternate flow: invalid fire control channel id]

[alternate flow: processing error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

dedesignate_fire_control_channel(request_id_type,

fire_control_channel_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_available_fire_control_channel(request_id_type,

fire_control_channel_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

If the radar may not fulfil the illumination request, this is reported to the actor and the service stops.

If during the illumination a radar fault takes place that prevents execution of illumination (e.g. illumination
frequency not more available), the health state of the Missile Guidance service (of which this service is
part) becomes DEGRADED (if the Missile Guidance service is still capable of performing uplinks and/or
downlinks) or NOT AVAILABLE, and the service stops.

If the target track becomes lost during the illumination, the service stops.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.
Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set

1
.

1
 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,

“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).

Table 7.210 - Methods of IDLInterface Perform_Illumination_CMS

Method Notes Parameters

complete() request_id_type request_id

7.9.3.1.2 Perform_Illumination_Sub

Type: IDLInterface
Package: Perform_Illumination

Table 7.211 - Methods of IDLInterface Perform_Illumination_Sub

Method Notes Parameters

request_illumination() request_id_type request_id

illumination_request_type request

provide_track() system_track_type track

Open Architecture Radar Interface Standard (OARIS), v1.0

 sd Basic Flow - Illumination

«idlInterface»

Perform_Illumination_CMS

«idlInterface»

Perform_Illumination_Sub

Same method is used when requesting il lumination for

the first time, as well as modifying the request later. In the

latter case, a new request (with new request_id) shall be

issued for the same target.

It is assumed that, at the moment of the il lumination request, the kinematics of the sensor tracks for target and

own_missile(s) as referred to by the il lumination_request are available to the subsystem.

This may be achieved in two ways:

1. The CMS provides the kinematics periodically to the subsystem, or

2. the subsystem itself is tracking the target and own_missile(s).

If this pre-condition is not satisfied, the receive_acknowledgement shall indicate that the request is not accepted.

When after some time the target and/or missile tracks are no longer available, the subsystem shall send receive _error

message with an appropriate error_reason.

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be il luminated as well and subsystem is not tracking the missile(s)]

Target to be

il luminated

For all missiles in

engagement (if

required)

opt target track

[subsystem is not tracking the target]

opt missile track

[missile(s) need to be il luminated as well and subsystem is not tracking the missile(s)]

loop illumination period

[during il lumination period]

request_ack.accepted =

true

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

false

request_ack.accepted =

true

Although not shown in this sequence diagram, processing may also fail after one

of more successful i l luminations but before the end of the il lumination period.

provide_track(system_track_type)

provide_track(system_track_type)

request_il lumination(request_id_type,

il lumination_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

provide_track(system_track_type)

provide_track(system_track)

complete(request_id_type)

receive_acknowledgement(request_id_type, request_ack)

receive_acknowledgement(request_id_type, request_ack)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.146 Basic Flow - Illumination (Sequence diagram)

7.9.3.2 Perform_Missile_Downlink

Parent Package: Missile_Guidance

7.9.3.2.1 Perform_Missile_Downlink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Downlink
The service describes the reception and provision of missile downlink information to the CMS.
Downlink consists of transmission of energy by the missile. The radar subsystem may track a missile based
on these downlink transmissions (beacon track). Provision of the beacon track of the missile to the CMS is
covered by service Provide sensor tracks.
This service handles the situation where the downlink also has content.
Generally, a sequence of downlinks is transmitted by the missile, on periodic basis or triggered by an uplink.
However, the CMS (or a dedicated missile subsystem) is responsible for evaluating the downlinks in this
sequence. The radar subsystem only receives downlinks and provides them to the CMS, and does not keep
track of the sequence. In the special case where the downlink contains own missile kinematics, this data
may also be used internally by the radar subsystem.

The actor is the Combat Management System.

Although the downlink may be evaluated by a missile subsystem (which is not part of the CMS), the
downlink is assumed to be passed to that missile subsystem via the CMS.

The service is triggered by the downlink request of the actor.
The actor sends a downlink request to the radar.
During the request listening period, the radar listens to transmissions that are in accordance with the
provided downlink parameters.
The radar reports to the actor the occurrence of the downlink, including the (decoded) content of the
downlink.
The information provided by the missile may vary depending on the applied missile fire control principle,
and lies outside the scope of the OARIS standard.
The information within the downlink may be used internally by the radar.
The service ends at the end of the listening period.

If the downlink transmission is interrupted, this is reported to the actor, and the service stops.

If during the downlink a radar fault takes place that prevents execution of the downlink, the health state of
the Missile Guidance service (of which this service is part) becomes DEGRADED (if the Missile Guidance
service is still capable of performing uplinks and/or illumination) or NOT AVAILABLE, and the service stops.

Relationship to missile uplink
For some missile types a downlink may be transmitted as a response to a received uplink (e.g. an
acknowledge of receipt). This relationship (including the inherent timing relationship) depends heavily on
the missile type and lies outside the scope of the OARIS standard.

Relationship to provide sensor tracks
If the downlink contains kinematic information about the missile, the radar subsystem may use this
information internally to improve the own missile track (provided service Provide sensor tracks or service
Process target designation).
It is also possible that the missile is tracked based on the fact that it transmits energy and not based on the
contents of the downlink. This so-called beacon tracking is covered by service Provide sensor tracks.

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.
Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set

1
.

1
 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,

“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase An engagement must be taking place.
Pre-condition: Missile downlink parameters The parameters of the missile downlink transmission must be
known to the radar. Note that this does not concern the content of the transmission, but rather the
transmission characteristics (e.g. frequency).

Table 7.212 - Methods of IDLInterface Perform_Missile_Downlink_CMS

Method Notes Parameters

report_downlink() request_id_type request_id

downlink_report the_downlink_info

complete() request_id_type request_id

7.9.3.2.2 Perform_Missile_Downlink_Sub

Type: IDLInterface
Package: Perform_Missile_Downlink

Table 7.213 - Methods of IDLInterface Perform_Missile_Downlink_Sub

Method Notes Parameters

request_downlink() request_id_type request_id

downlink_request request

provide_track() system_track_type track

Open Architecture Radar Interface Standard (OARIS), v1.0

 sd Basic Flow - Downlink

«idlInterface»

Perform_Missile_Downlink_CMS

«idlInterface»

Perform_Missile_Downlink_Sub

Downlink report may be

periodic or aperiodic.

loop downlink period

[during listening period]

The request_downlink operation has not been identified in the service Description.

The reasons for introducing it here are:

1. There are no provisions (e.g. services) to satisfy the missile downlink parameters precondition.

2. The CMS is only interested in downlink information from own missiles in fl ight belonging to an active engagement.

3. Generally, the missile downlink parameters (e.g. frequency) are engagement dependent.

opt missile track

[missile track is required and subsystem is not tracking the missile]

opt missile track

[missile track is required and subsystem is not tracking the missile]

Missile from which a

downlink shall be

received

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

Although not shown in this sequence diagram, processing may also fail after one of

more successful downlink reports but before the end of the listening period. (In this

case there is a positive acknowledgement followed by some downlinks and then an

error is received).

provide_track(system_track_type)

request_downlink(request_id_type,

downlink_request)

receive_acknowledgement(request_id_type,

request_ack_type)

provide_track(system_track)

report_downlink(request_id_type, downlink_report)

complete(request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.147 Basic Flow - Downlink (Sequence diagram)

7.9.3.3 Perform_Missile_Uplink

Parent Package: Missile_Guidance

7.9.3.3.1 Perform_Missile_Uplink_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Missile_Uplink
The service describes the execution of uplink of relevant information from the radar to the missile in flight
during an engagement.
Generally, a sequence of uplinks (of various types) must be transmitted to a missile during an engagement.
However, the CMS (or a dedicated missile subsystem) is responsible for planning and requesting the
correct sequence of uplinks. The radar subsystem only transmits an uplink on request of the CMS.
Therefore, this service starts with the request of a single uplink and ends when the radar subsystem has
transmitted the uplink.

The actor is the Combat Management System. Although the uplink may be initiated by a missile subsystem
(which is not part of the CMS), the uplink is assumed to be passed through the CMS to the radar subsystem.

The service is triggered by the uplink request of the actor.
The actor sends an uplink request to the radar.
At the requested time, the radar sends the uplink to the missile in accordance with the provided uplink
parameters.
The information provided to the missile may vary depending on the applied missile fire control principle, and
lies outside the scope of the OARIS standard.
The service ends when the radar has confirmed the transmission of the uplink.

If the radar may not fulfil the uplink request, this is reported to the actor and the service stops.

If during the uplink a radar fault takes place that prevents execution of the uplink (e.g. uplink frequency not
more available), the health state of the Missile Guidance service (of which this service is part) becomes
DEGRADED (if the Missile Guidance service is still capable of performing illumination and/or downlinks) or
NOT AVAILABLE, and the service stops.

If the missile track becomes lost during the uplink, the service stops.

Network Centric engagements
In Network-Centric or Network-Enabled systems, guidance of the missile may be transferred during the
flight of the missile to another surface platform. As the related technologies are still being developed, it shall
be too early to include specific NEC requirements here. However, care should be taken in the design of
OARIS that such capabilities could be included at a later date. This means that there should be no built-in
restrictions in the standard, which would prevent addition of such facilities in the future.

Relationship to missile downlink
For some missile types an uplink transmission may trigger the transmission of a downlink by the missile
(e.g. an acknowledge of receipt). This relation depends heavily on the missile type and lies outside the
scope of the OARIS standard.

Pre-condition: Sensor health state The sensor and the Missile Guidance service are in the health state
AVAILABLE or DEGRADED.
Pre-condition: Sensor parameters The relevant sensor parameters (e.g. allowed frequencies,
transmission sectors) are set

1
.

Open Architecture Radar Interface Standard (OARIS), v1.0

1
 The manner in which this is done is described in other services of the OARIS (“Manage frequency usage”,

“Manage transmission sectors”, “Control emissions” and “Manage subsystem parameters”).
Pre-condition: Engagement phase An engagement must be taking place.
Pre-condition: Known position of missile The position of the missile must be known, i.e. own missile track
must exist. The missile track may be provided by the CMS or by the radar subsystem itself.

Table 7.214 - Methods of IDLInterface Perform_Missile_Uplink_CMS

Method Notes Parameters

report_uplink_completed() request_id_type request_id

uplink_report_type report

7.9.3.3.2 Perform_Missile_Uplink_Sub

Type: IDLInterface
Package: Perform_Missile_Uplink

Table 7.215 - Methods of IDLInterface Perform_Missile_Uplink_Sub

Method Notes Parameters

request_uplink() request_id_type request_id

uplink_request_type request

provide_track() system_track_type track

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.148 Basic Flow - Uplink (Sequence diagram)

7.9.4 Search

Parent Package: Radar_Services

7.9.4.1 Perform_Cued_Search

Parent Package: Search

7.9.4.1.1 Perform_Cued_Search_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Cued_Search
The CMS Search Interface.
The subsystem is requested to undertake a cued search in the requested cue volume. The cue may be 1D
(azimuth only), 2D (has an additional elevation constraint), 3D (has a further range constraint) or 4D (has a

 sd Basic Flow - Uplink

«idlInterface»

Perform_Missile_Uplink_CMS

«idlInterface»

Perform_Missile_Uplink_Sub

opt missile track

[subsystem is not tracking the missile]

alt

[basic flow]

[alternative flow: request rejected]

[alternative flow: processing failed]

request_ack.accepted =

true

request_ack.accepted =

false

request_ack.accepted =

true

Missile to which the

uplink shall be

transmitted

provide_track(system_track_type)

request_uplink(request_id_type,

uplink_request_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_uplink_completed(request_id_type,

uplink_report_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_acknowledgement(request_id_type,

request_ack_type)

receive_error(request_id_type, error_reason_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

further target velocity constraint). The response of the subsystem is either to reject the cued search request
if it is invalid within the current mode/configuration or to provide a cue request reply containing data relating
to any resulting tracks.
Depending upon the individual radar it may be possible to predefine a cued search waveform
The cued search request may contain azimuth, elevation and range data along with time of the positional
data.

Pre-condition: Technical State The Subsystem is in Technical State ONLINE.
Pre-condition: Mastership The CMS has Mastership
Pre-condition: Subsystem Services The Provide Subsystem Services Service has been executed
successfully.
Post-condition: Success The CMS has received a 'Cued Search Report'
Post-condition: Failure The CMS has not received a 'Cued Search Report'

Table 7.216 - Methods of IDLInterface Perform_Cued_Search_CMS

Method Notes Parameters

report_cued_search_result() Send a report to the CMS containing

the results of a previously cued

search.

cued_search_report_type

result_report The result of the

search.

request_id_type request_id The

unique id relating to this cued search

request as supplied by the CMS.

7.9.4.1.2 Perform_Cued_Search_Sub

Type: IDLInterface
Package: Perform_Cued_Search
The Subsystem Search Interface.

Table 7.217 - Methods of IDLInterface Perform_Cued_Search_Sub

Method Notes Parameters

perform_cued_search() Request to subsystem to perform a

cued search in accordance with the

given set of constraints.

cued_search_cue_type constraint

The details of the constraints on

where the radar is to look for tracks.

request_id_type request_id The

unique id for this request. The radar

includes this in all replies relating to

this request.

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.149 Alternative Flow - Sensor does not Perform Cued Search (Sequence diagram)

 sd Alternativ e Flow - Sensor does not Perform Cued Search

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

opt Negativ e Acknowledgement

[Subsystem has incorrect internal mode for a cued search]

opt Subsystem search failure

[Subsystem encounters an error condition in performing a cued search]

Failure to form a track from a cued search is not

an error condition. This results in zero track ids

being returned in the report

perform_cued_search(cued_search_cue_type,

request_id_type)

receive_acknowledgement(request_id, request_ack)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.150 Basic Flow - Perform Cued Search (Sequence diagram)

7.9.5 Surface_Engagement_Support

Parent Package: Radar_Services

7.9.5.1 Perform_Splash_Spotting

Parent Package: Surface_Engagement_Support

7.9.5.1.1 Perform_Splash_Spotting_CMS

Type: IDLInterface common_use_case_interface
Package: Perform_Splash_Spotting
Surveillance radar systems may support engagements against surface targets by means of a splash
spotting video or measured splash positions. In the vicinity of the target a signal processing is applied which
is optimized to observe splashes of the shells hitting the sea surface.

The splash spotting information may be used to achieve shot corrections for a running engagement. The
engagement may use a fire control channel of the radar but also of another device like fire control radar.
The CMS requests the radar to localize a splash spotting area at a defined position derived from the target
kinematics.

The use of splash spotting areas may be limited to fire control channels of the radar. Then, only the
localization of a splash spotting area may be done in accordance with this service. Normally, it shall be
localized at the predicted hitting point.

These splash spotting areas shall not differ in terms of function and performance so that the selection of the
area to be applied to an engagement may be done by the radar, automatically. The CMS just indicates
where to localize it.

If mastership is lost during execution in any of the flows the services are terminated.

 sd Basic Flow - Perform Cued Search

«idlInterface»

Perform_Cued_Search_CMS

«idlInterface»

Perform_Cued_Search_Sub

The cued search report may contain an

empty list of track identifiers resulting from

the search.

perform_cued_search(cued_search_cue_type, request_id_type)

receive_acknowledgement(request_id_type,

request_ack_type)

report_cued_search_result(cued_search_report_type, request_id_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Pre-condition: Technical state ONLINE.
Pre-condition: Assigned fire control channel. - a fire control channel has been assigned using "Support
Surface Target Engagement"
Pre-condition: CMS must have Mastership
Post-condition: Success: The subsystem provides splash spotting videos as long as the splash spotting
areas are active.
Post-condition: No success: The subsystem does not perform as requested.

Table 7.218 - Methods of IDLInterface Perform_Splash_Spotting_CMS

Method Notes Parameters

confirm_reposition_splash_splotti

ng_area()

Via this method, the request for the

repositioning of a splash spotting area

is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaID

confirm_splash_spotting_area_dea

ctivation()

Via this method, the request for the

deactivation of a splash spotting area

is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaId

receive_splash_splotting_area_posi

tion()

Via this method, the request for a new

splash spotting area based on a

position is confirmed by the

subsystem.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaID

receive_splash_splotting_area_trac

k()

Via this method, the request for a new

splash spotting area based on a track

is confirmed by the subsystem.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaID

report_splash_spotting_area_activ

ation_state()

Via this interface, the splash spotting

areas are reported to the CMS.

request_id_type RequestID

splash_spotting_area_set_type

SplashSpottingAreaSet

7.9.5.1.2 Perform_Splash_Spotting_Sub

Type: IDLInterface
Package: Perform_Splash_Spotting

Table 7.219 - Methods of IDLInterface Perform_Splash_Spotting_Sub

Method Notes Parameters

activate_splash_spotting_area_by_

position()

Requests the subsystem to activate a

new splash spotting area based on a

area/position.

request_id_type RequestID

splash_spotting_area_position_type

SplashSpottingAreaPosition

activate_splash_spotting_area_by_

track()

Requests the subsystem to activate a

new splash spotting area based on a

sensor track.

request_id_type RequestID

sensor_track_id_type TrackID

deactivate_splash_spotting_area() Requests the subsystem to de-activate

a splash spotting area.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaID

report_splash_spotting_informatio

n()

Requests the subsystem to report

splash spotting information/splash

positions for an existing splash

spotting area.

request_id_type RequestID

splash_spotting_area_id_type

SplashSpottingAreaID

reposition_splash_spotting_area() Requests the subsystem to reposition request_id_type RequestID

Open Architecture Radar Interface Standard (OARIS), v1.0

a existing splash spotting area. splash_spotting_area_id_type

SplashSpottingAreaID
splash_spotting_area_position_type

SplashSpottingAreaPosition

request_splash_spotting_areas() Request the subsystem to report the

splash spotting areas to the CMS.

request_id_type RequestID

7.9.5.1.3 Perform_Splash_Spotting_CMS

Type: ActivityPartition
Package: Perform_Splash_Spotting

7.9.5.1.4 Perform_Splash_Spotting_Sub

Type: ActivityPartition
Package: Perform_Splash_Spotting

7.9.5.1.5 Report measured splash positions

Type: InteractionOccurrence
Package: Perform_Splash_Spotting

Figure 7.151 Perform Splash Spotting - Check Activation (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "check activation" of the service "Perform splash spotting".

 sd Perform Splash Spotting - Check Activ ation

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

request_splash_spotting_areas(request_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

report_splash_spotting_area_activation_state(request_id_type,

splash_spotting_area_set_type)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.152 Perform Splash Spotting - Activate Splash Spotting Area by Position (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "activate splash spotting area by position" of the service "Perform Splash Spotting".

 sd Perform Splash Spotting - Activ ate Splash Spotting Area by Position

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt activ ate splash spotting area by position

[basic flow]

[alternate flow: no inactive splash spotting area]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

activate_splash_spotting_area_by_position(request_id_type,

splash_spotting_area_position_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_splash_splotting_area_position(request_id_type,

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.153 Perform Splash Spotting - Re-position Splash Spotting Area (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "reposition splash spotting area" of the service "Perform splash spotting".

 sd Perform Splash Spotting - Re-position Splash Spotting Area

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt re-position splash spotting area

[basic flow]

[alternate flow: invalid splash spotting area parameters]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

reposition_splash_spotting_area(request_id_type,

splash_spotting_area_id_type, splash_spotting_area_position_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_reposition_splash_splotting_area(request_id_type,

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

 sd Perform Splash Spotting - Activ ate Splash Spotting Area by Fire Control Track

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

request_ack.success = false

request_ack.success = true

request_ack.success = true

alt activ ate splash spotting area by track

[basic flow]

[alternate flow: request rejected]

[alternate flow: error]

activate_splash_spotting_area_by_track(request_id_type,

sensor_track_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_splash_splotting_area_track(request_id_type,

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.154 Perform Splash Spotting - Activate Splash Spotting Area by Fire Control Track (Sequence
diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "activate splash spotting area by fire control track" of the service "Perform splash spotting".

Figure 7.155 Perform Splash Spotting - Report On Splash Splotting Information (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "report on splash spotting information" of the service "Perform splash spotting".

 sd Perform Splash Spotting - Report On Splash Splotting Information

«idlInterface»

Perform_Splash_Spotting_CMS

«idlInterface»

Perform_Splash_Spotting_Sub

alt report on splash spotting information

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

ref

Report measured splash positions

report_splash_spotting_information(request_id_type, splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

Open Architecture Radar Interface Standard (OARIS), v1.0

Figure 7.156 Perform Splash Spotting - Deactivate Splash Spotting Area (Sequence diagram)

This sequence diagram shows how the CMS and the subsystem operate with each other during the
operation "deactivate splash spotting area" of the service "Perform splash spotting".

 sd Perform Splash Spotting - Deactiv ate Splash Spotting Area

«idlInterface»

Perform_Splash_Spotting_Sub

«idlInterface»

Perform_Splash_Spotting_CMS

alt deactiv ate splash spotting area

[basic flow]

[alternate flow: rejection]

[alternate flow: error]

request_ack.success = false

request_ack.success = true

request_ack.success = true

deactivate_splash_spotting_area(request_id_type,

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

confirm_splash_spotting_area_deactivation(request_id_type,

splash_spotting_area_id_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_acknowledgement(request_id_type, request_ack_type)

receive_error(request_id, error_reason)

