
Naming Service Specification

October 2004
Version 1.3

formal/04-10-03

An Available Specification of the Object Management Group, Inc.

Copyright © 1999, BEA Systems
Copyright © 1999, DSTC
Copyright © 1999, Iona Technologies Ltd.
Copyright © 1999, Inprise

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
Preface . iii

1. Service Description . 1-1
1.1 Overview . 1-2
1.2 Names . 1-2
1.3 Example Scenarios . 1-3
1.4 Design Principles . 1-4

2. Modules and Interfaces . 2-1
2.1 The CosNaming Module . 2-1

2.1.1 Resolution of Compound Names 2-4
2.2 NamingContext Interface . 2-4

2.2.1 Structures . 2-5
2.2.2 Exceptions . 2-6
2.2.3 Binding Objects . 2-7
2.2.4 Resolving Names . 2-9
2.2.5 Unbinding Names . 2-9
2.2.6 Creating Naming Contexts 2-9
2.2.7 Deleting Contexts . 2-10
2.2.8 Listing a Naming Context. 2-10

2.3 The BindingIterator Interface . 2-11
2.3.1 Operations . 2-11
2.3.2 Garbage Collection of Iterators 2-12

2.4 Stringified Names. 2-12
2.4.1 Basic Representation of Stringified Names . . . 2-12
2.4.2 Escape Mechanism . 2-13
October 2004 Naming Service, v1.3 i

Contents
2.5 URL schemes . 2-14
2.5.1 IOR. 2-14
2.5.2 corbaloc . 2-14
2.5.3 corbaname . 2-14
2.5.4 Converting between CosNames, Stringified Names,

and URLs . 2-17
2.6 Initial Reference to a NamingContextExt 2-18

3. Lightweight Naming Service. 3-1
3.1 Platform Independent Model . 3-1

3.1.1 Overview . 3-1
3.1.2 The CosLightweightNaming Package 3-4

3.2 Platform Specific Model: CORBA Service 3-14
3.2.1 Overview . 3-14
3.2.2 CosNaming Module . 3-15

Appendix A - OMG IDL . A-1

Appendix B - Conformance Requirements B-1
ii Naming Service, v1.3 October 2004

Preface
About This Document
Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

Associated OMG Documents
The CORBA documentation is organized as follows:
October 2004 Naming Service, v1.3 i

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies
• CORBA: Common Object Request Broker Architecture and Specification contains

the architecture and specifications for the Object Request Broker.
• CORBA Languages, a collection of language mapping specifications. See the

individual language mapping specifications.
• CORBA Services, a collection of specifications for OMG’s Object Services. See

the individual service specifications.
• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.

See the individual facility specifications.

• CORBA Domain Technologies
• CORBA Manufacturing, a collection of specifications that relate to the

manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

You may contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org
ii Naming Service, v1.3 October 2004

Acknowledgments
The following companies submitted and/or supported parts of the Interoperable
Naming Service specification:

• BEA Systems
• DSTC
• Inprise
• IONA Technologies, Ltd.
October 2004 Naming Service: Acknowledgments iii

iv Naming Service, v1.3 October 2004

Service Description 1
Note – “Interoperable Naming Service” will be referred to as “Naming Service”
throughout this specification.

Contents
This chapter contains the following topics.

Source Document(s)
This formal specification is based on the following OMG document(s):

• formal/00-11-01 - version 1.0
• formal/01-02-65 - version 1.1
• Editorial issue # 4246
• Lightweight Services specification - formal/04-10-01

Topic Page

“Overview” 1-2

“Names” 1-2

“Example Scenarios” 1-3

“Design Principles” 1-4
October 2004 Naming Service, v1.3 1-1

1

1.1 Overview
A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a set
of name bindings in which each name is unique. Different names can be bound to an
object in the same or different contexts at the same time. There is no requirement,
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a naming
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph allows
more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution process.
Figure 1-1 shows an example of a naming graph.

Figure 1-1 A Naming Graph

1.2 Names
Many of the operations defined on a naming context take names as parameters. Names
have structure. A name is an ordered sequence of components.

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2

parent

abc
def
1-2 Naming Service, v1.3 October 2004

1

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

component1/component2/component3

indicates a sequence of components.

Note – The slash (/) characters are simply a notation used here and are not intended to
imply that names are sequences of characters separated by slashes.

A name component consists of two attributes: the id attribute and the kind attribute.
Both the id attribute and the kind attribute are represented as IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code, executable,
postscript, or “ ”. The naming system does not interpret, assign, or manage these
values in any way. Higher levels of software may make policies about the use and
management of these values. This feature addresses the needs of applications that use
syntactic naming conventions to distinguish related objects. For example Unix uses
suffixes such as .c and .o. Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transform foo.c
to foo.o).

A sequence of id and kind pairs forming a name can be expressed as a single string
using the syntax described in Section 2.3, “The BindingIterator Interface,” on
page 2-11. This allows names to be written down easily or to be presented as a strings
in user interfaces. In addition, Section 2.4, “Stringified Names,” on page 2-12
describes a way to express a name relative to a particular naming context in URL
format. The URL representation provides a human-readable form of an object
reference that is named in some naming context.

1.3 Example Scenarios
This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that differ
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise-
wide naming server such as DCE CDS. The Naming Service is used to construct large,
enterprise-wide naming graphs where NamingContexts model “directories” or
“folders” and other names identify “document” or “file” kinds of objects. In other
words, the naming service is used as the backbone of an enterprise-wide filing system.
In such a system, non-object-based access to the naming service may well be as
commonplace as object-based access to the naming service.
October 2004 Naming Service: Example Scenarios 1-3

1

The Naming Service provides the principal mechanism through which most clients of
an ORB-based system locate objects that they intend to use (make requests of). Given
an initial naming context, clients navigate naming contexts retrieving lists of the names
bound to that context. In conjunction with properties and security services, clients look
for objects with certain “externally visible” characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externally
visible characteristics with other services (a name service, a properties service, and so
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, groups
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used to
identify contexts that list the names of services that are available in the system (e.g.,
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role and
can have a less sophisticated implementation. In this model, naming contexts represent
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing service.

Given a handful of references to “root objects” obtained from the Naming Service, a
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such as
query services to navigate through large collections of objects. Also, objects in this
scheme rarely register “external characteristics” with another service - instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used to
provide both models of use at the same time. These two scenarios demonstrate how
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semantics
which determine how frameworks of application and facilities objects locate other
objects.

1.4 Design Principles
Several principles have driven the design of the Naming Service:

1. The design imparts no semantics or interpretation of the names themselves; this is
up to higher-level software.

2. The design supports distributed, heterogeneous implementation and administration
of names and name contexts.
1-4 Naming Service, v1.3 October 2004

1

3. Naming service clients need not be aware of the physical site of name servers in a
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

4. The Naming Service is a fundamental object service, with no dependencies on other
interfaces.

5. Name contexts of arbitrary and unknown implementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

6. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of the
above features contribute to making this possible.

7. The design does not address namespace administration. It is the responsibility of
higher-level software to administer the namespace.
October 2004 Naming Service: Design Principles 1-5

1

1-6 Naming Service, v1.3 October 2004

Modules and Interfaces 2
Note – “Interoperable Naming Service” will be referred to as “Naming Service”
throughout this specification.

Contents
This chapter contains the following topics.

2.1 The CosNaming Module
The CosNaming module is a collection of interfaces that together define the Naming
Service. This module contains three interfaces:

• The NamingContext interface
• The BindingIterator interface
• The NamingContextExt interface

This section describes these interfaces and their operations in detail.

Topic Page

“The CosNaming Module” 2-1

“NamingContext Interface” 2-4

“The BindingIterator Interface” 2-11

“Stringified Names” 2-12

“URL schemes” 2-14

“Initial Reference to a NamingContextExt” 2-18
October 2004 Naming Service, v1.3 2-1

2

The CosNaming module is shown below.

Note – Istring was a “placeholder for a future IDL internationalized string data type”
in the original specification. It is maintained solely for compatibility reasons.

// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

missing_node, not_context, not_object
};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};
2-2 Naming Service, v1.3 October 2004

2

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed,

 InvalidName, AlreadyBound
);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator bi

);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long, how_many, out BindingList bl);
void destroy();

};
October 2004 Naming Service: The CosNaming Module 2-3

2

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName sn)
raises(

NotFound, CannotProceed,
InvalidName
);

};
};
#endif // _COSNAMING_IDL_

2.1.1 Resolution of Compound Names
In this specification operations that are performed on compound names recursively
perform the equivalent of a resolve operation on all but the last component of a name
before performing the operation on the final name component. The general form is
defined as follows:

ctx->op(<c1; c2; ...; cn>) equiv

ctx->resolve(<c1>)->resolve(<c2; cn-1>)->op(<cn>)

where ctx is a naming context, <c1; ...; cn> a compound name, and op a naming
context operation.

Note – The intermediate components, <c1: ...; cn> of the compound name must have
been bound using bind_context or rebind_context to take part in the resolve.

2.2 NamingContext Interface
The following sections describe the naming context data types and interface in detail.
2-4 Naming Service, v1.3 October 2004

2

2.2.1 Structures

2.2.1.1 NameComponent
struct NameComponent {

Istring Id;
Istring kind;

};

A name component consists of two attributes: the identifier attribute - id and the kind
attribute - kind.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters,
excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field
must match in order for two NameComponents to be considered identical. This
applies for zero-length (empty) fields as well. Name comparisons are case sensitive.

An implementation may place limitations on the characters that may be contained in a
name component, as well as the length of a name component. For example, an
implementation may disallow certain characters, may not accept the empty string as a
legal name component, or may limit name components to some maximum length.

2.2.1.2 Name
A name is a sequence of NameComponents. The empty sequence is not a legal
name. An implementation may limit the length of the sequence to some maximum.
When comparing Names for equality, each NameComponent in the first name must
match the corresponding NameComponent in the second Name for the names to be
considered identical.

2.2.1.3 Binding
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

This type is used by the NamingContext::list, BindingIterator::next_n, and
BindingIterator::next_one operations. A Binding contains a Name in the member
binding_name, together with the BindingType of that Name in the member
binding_type.
October 2004 Naming Service: NamingContext Interface 2-5

2

Note – The binding_name member is incorrectly typed as a Name instead of a
NameComponent. For compatibility with the original CosNaming specification
this incorrect definition has been retained. The binding_name is used as a
NameComponent and will always be a Name with length of 1.

The value of binding_type is ncontext if a Name denotes a binding created with
one of the following operations:

• bind_context

• rebind_context

• bind_new_context

For bindings created with any other operation, the value of BindingType is nobject.

2.2.2 Exceptions
The Naming Service exceptions are defined below.

2.2.2.1 NotFound

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

This exception is raised by operations when a component of a name does not identify
a binding or the type of the binding is incorrect for the operation being performed. The
why member explains the reason for the exception and the rest_of_name member
contains the remainder of the non-working name:

• missing_node
The first name component in rest_of_name denotes a binding that is not bound
under that name within its parent context.

• not_context
The first name component in rest_of_name denotes a binding with a type of
nobject when the type ncontext was required.

• not_object
The first name component in rest_of_name denotes a binding with a type of
ncontext when the type nobject was required.

2.2.2.2 CannotProceed

exception CannotProceed {
NamingContext cxt;
2-6 Naming Service, v1.3 October 2004

2

Name rest_of_name;
};

This exception is raised when an implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned naming context.

The cxt member contains the context that the operation may be able to retry from.

The rest_of_name member contains the remainder of the non-working name.

2.2.2.3 InvalidName

exception InvalidName {};

This exception is raised if a Name is invalid. A name of length zero is invalid
(containing no name components). Implementations may place further limitations on
what constitutes a legal name and raise this exception to indicate a violation.

2.2.2.4 AlreadyBound

exception AlreadyBound {};

Indicates an object is already bound to the specified name. Only one object can be
bound to a particular Name in a context.

2.2.2.5 NotEmpty

exception NotEmpty {};

This exception is raised by destroy if the NamingContext contains bindings. A
NamingContext must be empty to be destroyed.

2.2.3 Binding Objects
The binding operations name an object in a naming context. Once an object is bound,
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind, rebind, bind_context, and rebind_context.
bind_new_context also creates a binding, see Section 2.2.6, “Creating Naming
Contexts,” on page 2-9.

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);
October 2004 Naming Service: NamingContext Interface 2-7

2

2.2.3.1 bind
Creates an nobject binding in the naming context.

2.2.3.2 rebind
Creates an nobject binding in the naming context even if the name is already bound
in the context.

If already bound, the previous binding must be of type nobject; otherwise, a
NotFound exception with a why reason of not_object is raised.

2.2.3.3 bind_context
Creates an ncontext binding in the parent naming context. Attempts to bind a nil
context raise a BAD_PARAM exception.

2.2.3.4 rebind_context
Creates an ncontext binding in the naming context even if the name is already bound
in the context.

If already bound, the previous binding must be of type ncontext; otherwise, a
NotFound exception with a why reason of not_context will be raised.

2.2.3.5 Usage
If a binding with the specified name already exists, bind and bind_context raise an
AlreadyBound exception.

If an implementation places limits on the number of bindings within a context, bind
and bind_context raise the IMP_LIMIT system exception if the new binding cannot
be created.

Naming contexts bound using bind_context and rebind_context participate in
name resolution when compound names are passed to be resolved; naming contexts
bound with bind and rebind do not.

Use of rebind_context may leave a potential orphaned context (one that is
unreachable within an instance of the Name Service). Policies and administration tools
regarding potential orphan contexts are implementation-specific.

If rebind or rebind_context raise a NotFound exception because an already
existing binding is of the wrong type, the rest_of_name member of the exception has
a sequence length of 1.
2-8 Naming Service, v1.3 October 2004

2

2.2.4 Resolving Names
The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrowing”
the object to the appropriate type. That is, clients typically cast the returned object
from Object to a more specialized interface. The IDL definition of the resolve
operation is:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. These contexts can be federated between different Naming Service instances.

2.2.5 Unbinding Names
The unbind operation removes a name binding from a context. The definition of the
unbind operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

2.2.6 Creating Naming Contexts
The Naming Service supports two operations to create new contexts: new_context
and bind_new_context.

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

2.2.6.1 new_context
This operation returns a new naming context. The new context is not bound to any
name.

2.2.6.2 bind_new_context
This operation creates a new context and creates an ncontext binding for it using the
name supplied as an argument.
October 2004 Naming Service: NamingContext Interface 2-9

2

2.2.6.3 Usage
If an implementation places limits on the number of naming contexts, both
new_context and bind_new_context can raise the IMP_LIMIT system exception
if the context cannot be created. bind_new_context can also raise IMP_LIMIT if
the bind would cause an implementation limit on the number of bindings in a context
to be exceeded.

2.2.7 Deleting Contexts
The destroy operation deletes a naming context.

void destroy()
raises(NotEmpty);

This operation destroys its naming context. If there are bindings denoting the destroyed
context, these bindings are not removed. If the naming context contains bindings, the
operation raises NotEmpty.

2.2.8 Listing a Naming Context
The list operation allows a client to iterate through a set of bindings in a naming
context.

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

list returns the bindings contained in a context in the parameter bl. The bl parameter
is a sequence where each element is a Binding containing a Name of length 1
representing a single NameComponent.

The how_many parameter determines the maximum number of bindings to return in
the parameter bl, with any remaining bindings to be accessed through the returned
BindingIterator bi.

• A non-zero value of how_many guarantees that bl contains at most how_many
elements. The implementation is free to return fewer than the number of bindings
requested by how_many. However, for a non-zero value of how_many, it may
not return a bl sequence with zero elements unless the context contains no bindings.

• If how_many is set to zero, the client is requesting to use only the
BindingIterator bi to access the bindings and list returns a zero length sequence
in bl.

• The parameter bi returns a reference to an iterator object.
• If the bi parameter returns a non-nil reference, this indicates that the call to list

may not have returned all of the bindings in the context and that the remaining
bindings (if any) must be retrieved using the iterator. This applies for all values of
how_many.
2-10 Naming Service, v1.3 October 2004

2

• If the bi parameter returns a nil reference, this indicates that the bl parameter
contains all of the bindings in the context. This applies for all values of
how_many.

2.3 The BindingIterator Interface
The BindingIterator interface allows a client to iterate through the bindings using the
next_one or next_n operations:

If a context is modified in between calls to list, next_one, or next_n, the behavior of
further calls to next_one or next_n is implementation-dependent.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

2.3.1 Operations

2.3.1.1 next_one
The next_one operation returns the next binding. It returns true if it is returning a
binding, false if there are no more bindings to retrieve. If next_one returns false, the
returned Binding is indeterminate.

Further calls to next_one after it has returned false have undefined behavior.

2.3.1.2 next_n
next_n returns, in the parameter bl, bindings not yet retrieved with list or previous
calls to next_n or next_one. It returns true if bl is a non-zero length sequence; it
returns false if there are no more bindings and bl is a zero-length sequence.

The how_many parameter determines the maximum number of bindings to return in
the parameter bl:

• A non-zero value of how_many guarantees that bl contains at most how_many
elements. The implementation is free to return fewer than the number of bindings
requested by how_many. However, it may not return a bl sequence with zero
elements unless there are no bindings to retrieve.

• A zero value of how_many is illegal and raises a BAD_PARAM system
exception.

next_n returns false with a bl parameter of length zero once all bindings have been
retrieved. Further calls to next_n after it has returned a zero-length sequence have
undefined behavior.
October 2004 Naming Service: The BindingIterator Interface 2-11

2

2.3.1.3 destroy
The destroy operation destroys its iterator. If a client invokes any operation on an
iterator after calling destroy, the operation raises OBJECT_NOT_EXIST.

2.3.2 Garbage Collection of Iterators
Clients that create iterators but never call destroy can cause an implementation to
permanently run out of resources. To protect itself against this scenario, an
implementation is free to destroy an iterator object at any time without warning, using
whatever algorithm it considers appropriate to choose iterators for destruction. In order
to be robust in the presence of garbage collection, clients should be written to expect
OBJECT_NOT_EXIST from calls to an iterator and handle this exception
gracefully.

2.4 Stringified Names
Names are sequences of name components. This representation makes it difficult for
applications to conveniently deal with names for I/O purposes, human or otherwise.
This specification defines a syntax for stringified names and provides operations to
convert a name in stringified form to its equivalent sequence form and vice-versa (see
Section 2.5.4, “Converting between CosNames, Stringified Names, and URLs,” on
page 2-17).

A stringified name represents one and only one CosNaming::Name. If two names
are equal, their stringified representations are equal (and vice-versa).

The stringified name representation reserves use of the characters ‘/’, ‘.’, and ‘\’. The
forward slash ‘/’ is a name component separator; the dot ‘.’ separates id and kind
fields. The backslash ‘\’ is an escape character (see Section 2.4.2, “Escape
Mechanism,” on page 2-13).

2.4.1 Basic Representation of Stringified Names
A stringified name consists of the name components of a name separated by a
‘/’ character. For example, a name consisting of the components “a,” “b,” and “c” (in
that order) is represented as

a/b/c

Stringified names use the ‘.’ character to separate id and kind fields in the stringified
representation. For example, the stringified name

a.b/c.d/.
2-12 Naming Service, v1.3 October 2004

2

represents the CosNaming::Name:

The single ‘.’ character is the only representation of a name component with empty id
and kind fields.

If a name component in a stringified name does not contain a ‘.’ character, the entire
component is interpreted as the id field, and the kind field is empty. For example:

a/./c.d/.e

corresponds to the CosNaming::Name:

If a name component has a non-empty id field and an empty kind field, the stringified
representation consists only of the id field. A trailing ‘.’ character is not permitted.

2.4.2 Escape Mechanism
The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a
stringified name. The meaning of any other character following a ‘\’ is reserved for
future use.

2.4.2.1 NameComponent Separators
If a name component contains a ‘/’ slash character, the stringified representation uses
the ‘\’ character as an escape. For example, the stringified name

a/x\/y\/z/b

represents the name consisting of the name components “a,” “x/y/z,” and “b.”

2.4.2.2 Id and kind Fields
The backslash escape mechanism is also used for ‘.’, so id and kind fields can contain
a literal ‘.’. To illustrate, the stringified name

a\.b.c\.d/e.f

Index id kind
0 a b
1 c d
2 <empty> <empty>

Index id kind
0 a <empty>
1 <empty> <empty>
2 c d
3 <empty> e
October 2004 Naming Service: Stringified Names 2-13

2

represents the CosNaming::Name:

2.4.2.3 The Escape Character
The escape character ‘\’ must be escaped if it appears in a name component. For
example, the stringified name:

a/b\\/c

represents the name consisting of the components “a,” “b\,” and “c.”

2.5 URL schemes
This section describes the Uniform Resource Locator (URL) schemes available to
represent a CORBA object and a CORBA object bound in a NamingContext.

2.5.1 IOR
The string form of an IOR (IOR:<hex_octets>) is a valid URL. The scheme name is
IOR and the text after the ‘:’ is defined in the CORBA 2.3 specification, Section
13.6.6. The IOR URL is robust and insulates the client from the encapsulated transport
information and object key used to reference the object. This URL format is
independent of Naming Service.

2.5.2 corbaloc
It is difficult for humans to exchange IORs through non-electronic means because of
their length and the text encoding of binary information. The corbaloc URL scheme
provides URLs that are familiar to people and similar to ftp or http URLs.

The corbaloc URL is described in the CORBA 2.3 Specification, Section 13.6.6. This
URL format is independent of the Naming Service.

2.5.3 corbaname
A corbaname URL is similar to a corbaloc URL. However a corbaname URL also
contains a stringified name that identifies a binding in a naming context.

2.5.3.1 corbaname Examples
corbaname::555xyz.com/dev/NContext1#a/b/c

Index id kind
0 a.b c.d
1 e f
2-14 Naming Service, v1.3 October 2004

2

This example denotes a naming context that can be contacted in the same manner as a
corbaloc URL at 555xyz.com with a key of “dev/NContext1”. The “#” character
denotes the start of the stringified name ,“a/b/c” . This name is resolved against the
context to yield the final object.

corbaname::555xyz.com#a/b/c

When an object key is not specified, as in the above example, the default key of
“NameService” is used to contact the naming context.

corbaname:rir:#a/b/c

This URL will resolve the stringified name “a/b/c” against the naming context returned
by resolve_initial_references(“NameService”).

corbaname:rir:
corbaname:rir:/NameService

The above URLs are equivalent to corbaloc:rir: and reference the naming context
returned by resolve_initial_references(“NameService”).

corbaname:atm:00033...#a/b/c
corbaname::55xyz.com,atm:00033.../dev/NCtext#a/b/c

These last URLs illustrate support of multiple protocols as allowed by corbaloc
URLs. atm: is an example only and is not a defined URL protocol at this time.

Note – Unlike stringified names, corbanames cannot be compared directly for
equality as the address specification can differ for corbaname URLs with the same
meaning.

2.5.3.2 corbaname Syntax
 The full corbaname BNF is:

<corbaname> = “corbaname:”<corbaloc_obj>[“#”<string_name>]
<corbaloc_obj> = <obj_addr_list> [“/”<key_string>]
<obj_addr_list> = as defined in a corbaloc URL
<key_string> = as defined in a corbaloc URL
<string_name>= stringified Name | empty_string

Where:

corbaloc_obj: portion of a corbaname URL that identifies the naming context. The
syntax is identical to its use in a corbaloc URL.

obj_addr_list: as defined in a corbaloc URL.

key_string: as defined in a corbaloc URL.

string_name: a stringified Name with URL escapes as defined below.
October 2004 Naming Service: URL schemes 2-15

2

2.5.3.3 corbaname Character Escapes
corbaname URLs use the escape mechanism described in the Internet Engineering
Task Force (IETF) RFC 2396. These escape rules insure that URLs can be transferred
via a variety of transports without undergoing changes. The character escape rules for
the stringified name portion of a corbaname are:

US-ASCII alphanumeric characters are not escaped. Characters outside this range are
escaped, except for the following:

“;” | “/” | “:” | “?” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

2.5.3.4 corbaname Escape Mechanism
The percent ‘%’ character is used as an escape. If a character that requires escaping is
present in a name component it is encoded as two hexadecimal digits following a “%”
character to represent the octet. (The first hexadecimal character represent the high-
order nibble of the octet, the second hexadecimal character represents the low-order
nibble.) If a ‘%’ is not followed by two hex digits, the stringified name is syntactically
invalid.

2.5.3.5 Examples

2.5.3.6 corbaname Resolution
corbaname resolution can be implemented as a simple extension to corbaloc URL
processing. Given a corbaname:

corbaname:<corbaloc_obj>[“#” <string_name>]

The corbaname is resolved by:

1. First constructing a corbaloc URL of the form:
corbaloc:<corbaloc_obj>.

If the <corbaloc_obj> does not contain a key string, a default key of
“NameService” is used.

Stringified Name After URL Escapes Comment

a.b/c.d a.b/c.d URL form identical

<a>.b/c.d %3ca%3e.b/c.d Escaped “<“ and “>”

a.b/ c.d a.b/%20%20c.d Escaped two “ “ spaces

a%b/c%d a%25b/c%25d Escaped two “%” percents

a\\b/c.d a%5c%5cb/c.d Escaped “\” character,
which is already escaped
in the stringified name
2-16 Naming Service, v1.3 October 2004

2

2. This is converted to a naming context object reference with
CORBA::ORB::string_to_object.

3. The <string_name> is converted to a CosNaming::Name.

4. The resulting name is passed to a resolve operation on the naming context.

5. The object reference returned by the resolve is the result.

Implementations are not required to use the method described and may make
optimizations appropriate to their environment.

2.5.4 Converting between CosNames, Stringified Names, and URLs
The NamingContextExt interface, derived from NamingContext, provides the
operations required to use URLs and stringified names.

module CosNaming {
// ...
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName sn)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};

2.5.4.1 to_string
This operation accepts a Name and returns a stringified name. If the Name is invalid,
an InvalidName exception is raised.
October 2004 Naming Service: URL schemes 2-17

2

2.5.4.2 to_name
This operation accepts a stringified name and returns a Name. If the stringified name
is syntactically malformed or violates an implementation limit, an InvalidName
exception is raised.

2.5.4.3 resolve_str
This is a convenience operation that performs a resolve in the same manner as
NamingContext::resolve. It accepts a stringified name as an argument instead of a
Name.

2.5.4.4 to_url
This operation takes a corbaloc URL <address> and <key_string> component such
as

• :myhost.555xyz.com

• :myhost.555xyz.com/a/b/c

• atm:00002112...,:myhost.xyz.com/a/b/c

for the first parameter, and a stringified name for the second. It then performs any
escapes necessary on the parameters and returns a fully formed URL string. An
exception is raised if either the corbaloc address and key parameter or name parameter
are malformed.

It is legal for the stringified_name to be empty. If the address is empty, an
InvalidAddress exception is raised.

2.5.4.5 URL to Object Reference
Conversions from URLs to objects are handled by CORBA::ORB::string_to_object
as described in the CORBA 2.3 Specification, Section 13.6.6.

2.6 Initial Reference to a NamingContextExt
An initial reference to an instance of this interface can be obtained by calling
resolve_initial_references with an ObjectID of NameService.
2-18 Naming Service, v1.3 October 2004

Lightweight Naming Service 3
Note – This chapter is based on the Lightweight Services specification (ptc/04-07-03).

Contents
This chapter contains the following topics.

3.1 Platform Independent Model

3.1.1 Overview
This section defines the Platform Independent Model (PIM) for the Lightweight
Naming Service. The Lightweight Naming Service is intended to be a subset of the
Naming Service Specification. The packages, interfaces, and classes appearing in this
chapter are intended to model this subset and should map to the IDL for their
counterparts in the Naming Service Specification (Version 1.2, September 2002,

Topic Page

“Platform Independent Model” 3-1

“Platform Specific Model: CORBA Service” 3-14
October 2004 Naming Service, v1.3 3-1

3

formal/02-09-02). The descriptions of the interfaces, operations and their semantics
are also intended to be identical to those defined by the Naming Service Specification
(Version 1.2, September 2002, formal/02-09-02) over this same subset.

Figure 3-1 - Lightweight Naming Service Packages

Figure 3-2 - Lightweight Naming Service Interfaces and Classes

CosNaming
<<CORBAModule>>

NamingContext

bind()
rebind()
resolve()
unbind()
bind_new_context()
destroy()

(from CosNaming)

<<CORBAInterface>>
3-2 Naming Service, v1.3 October 2004

3

Figure 3-3 - Lightweight Naming Service Data Types

stri ng
(from CORBA)

<<CORBAp ri mit ive>>

Istring
(from CosNaming)

< <CORBATypede f>>

Na me Compon ent

id : Istring
kind : Istring

(from CosNaming)

<<CORBAS truct>>

Name
(from CosNaming)

<<CORBASequence>>

1..*

index : long {0..*}

0..1

1..*

0..1

index : long {0..*}

NotFoundReason

missing_node : NotFoundReason
not_context : NotFoundReason
not_object : NotFoundReason

(f rom Naming Context)

<<CORBAEnum>>
October 2004 Naming Service: Platform Independent Model 3-3

3

3.1.2 The CosLightweightNaming Package
The CosLightweightNaming package is a collection of interfaces, datatypes, and
exceptions that together define the Lightweight Naming Service. Unlike the full
CosNamingService, this package supports only the NamingContext interface.

3.1.2.1 Istring

Description

Istring is a "placeholder for a future IDL internationalized string data type" in the
original CosNaming specification. It is maintained solely for compatibility reasons.

Attributes
No additional attributes

Operations
No additional operations

Associations
No associations

Constraints
No additional constraints

Semantics
No additional semantics

stri ng
(from CORBA)

<<CORBAprimitive>>

Istring
(from CosNaming)

<<CORBATypedef>>
3-4 Naming Service, v1.3 October 2004

3

3.1.2.2 Name

Description

A name is a sequence of NameComponents.

Attributes
No attributes

Operations
No operations

Associations

component: NameComponent[1..*]

A name consists of an ordered list of NameComponents.

Constraints
No constraints

Semantics
A name is a sequence of NameComponents. The empty sequence is not a legal name.
An implementation may limit the length of the sequence to some maximum. When
comparing Names for equality, each NameComponent in the first name must match
the corresponding NameComponent in the second Name for the names to be
considered identical.

NameCompone nt

id : Istring
kind : Istring

(from CosNaming)

<<CORBASt ruct>>

Name
(from CosNaming)

<<CORBASequence>>

1..*

inde x : lo ng {0. .*}

0..1

1..*

0..1

inde x : lo ng {0. .*}
October 2004 Naming Service: Platform Independent Model 3-5

3

3.1.2.3 NameComponent

Description
The NameComponent represents one segment of the name, consisting of two parts
represented as attributes.

Attributes

id: Istring [1]

An arbitrary length string holding the main component of the name.
(Comment:This is usually the name iteslf.)

kind: Istring [1]

An arbitrary length string holding the additonal component of the name.
(Comment: This is usually some characterization of the name.)

Operations
No operations

Associations
No associations

Constraints
No constraints

Semantics
A name component consists of two attributes: the identifier attribute, id, and the kind
attribute, kind.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters,
excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field
must match in order for two NameComponents to be considered identical. This applies
for zero-length (empty) fields as well. Name comparisons are case sensitive.

An implementation may place limitations on the characters that may be contained in a
name component, as well as the length of a name component. For example, an
implementation may disallow certain characters, may not accept the empty string as a
legal name component, or may limit name components to some maximum length.
3-6 Naming Service, v1.3 October 2004

3

3.1.2.4 NamingContext

Description

A NamingContext is a container hosting a set of name bindings.

Attributes
No attributes.

Operations

bind(in n: Name, in obj: Object)

Creates an object binding in the naming context. If a binding with the specified name
already exists, bind will raise an AlreadyBound exception. If an implementation
places limits on the number of bindings within a context, bind will raise the
IMP_LIMIT system exception if the new binding cannot be created. The operation
may also raise NotFound, CannotProceed, or InvalidName.

rebind(in n: Name, in obj: Object)

Creates an object binding in the naming context even if the name is already bound in
the context. If already bound, the previous binding must be of type object; otherwise, a
NotFound exception with a why reason of not_object is raised. If rebind raises a
NotFound exception because an already existing binding is of the wrong type, the
rest_of_name member of the exception has a sequence length of 1. The operation may
also raise CannotProceed or InvalidName.

resolve (in n: Name): Object)

The resolve operation retrieves an object bound to a name in a given context. The
given name must exactly match the bound name. The naming service does not return
the type of the object. Clients are responsible for "narrowing" the object to the
appropriate type. That is, clients typically cast the returned object from Object to a
more specialized interface.

NamingContext

bind(n : Name, obj : Object)
rebind(n : Name, obj : Object)
resolve(n : Name) : Object
unbind(n : Name)
bind_new_context(n : Name) : NamingContext
destroy()

<<CORBAInterface>>
October 2004 Naming Service: Platform Independent Model 3-7

3

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. These contexts can be federated between different Naming Service instances.
The operation may raise NotFound, CannotProceed, or InvalidName.

unbind(in n: Name)

The unbind operation removes a name binding from a context. The operation may raise
NotFound, CannotProceed, or InvalidName.

bind_new_context (in n: Name): NamingContext

This operation creates a new context and creates an context binding for it using the
name supplied as an argument.

If an implementation places limits on the number of naming contexts,
bind_new_context can raise the IMP_LIMIT system exception if the context cannot
be created. bind_new_context can also raise IMP_LIMIT if the bind would cause an
implementation limit on the number of bindings in a context to be exceeded.

The operation may also raise NotFound, CannotProceed, or InvalidName.

destroy()

This operation destroys its naming context. If there are bindings denoting the destroyed
context, these bindings are not removed. If the naming context contains bindings, the
operation raises NotEmpty.

Associations
No association.

Constraints
No constraints.

Semantics
A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a set
of name bindings in which each name is unique. Different names can be bound to an
object in the same or different contexts at the same time. There is no requirement,
however, that all objects must be named. To resolve a name is to determine the object
associated with the name in a given context. To bind a name is to create a name
binding in a given context. A name is always resolved relative to a context - there are
no absolute names. Because a context is like any other object, it can also be bound to
a name in a naming context. Binding contexts in other contexts creates a naming graph
- a directed graph with nodes and labeled edges where the nodes are contexts. A
naming graph allows more complex names to reference an object. Given a context in a
naming graph, a sequence of names can reference an object. This sequence of names
(called a compound name) defines a path in the naming graph to navigate the
resolution process.
3-8 Naming Service, v1.3 October 2004

3

3.1.2.5 NamingContext::NotFoundReason

Description

The enumeration NotFoundReason specifies the reason that a NotFound exception
was raised with respect to resolution of a given name (which may be a component of a
larger name).

Attributes

missing_node

The first component of the given name is not bound within its parent context.

not_context

The first name component of the given name denotes a binding with a type of nobject
when the type ncontext was required.

not_object

The first name component of the given name denotes a binding with a type of ncontext
when the type nobject was required.

Operations
No operations

Associations
No associations

Constraints
No constraints

Semantics
This is an Enumeration type.

NotFoundReason

missing_node : NotFoundReason
not_context : NotFoundReason
not_object : NotFoundReason

(from NamingContext)

<<CORBAEnum>>
October 2004 Naming Service: Platform Independent Model 3-9

3

3.1.2.6 NamingContext::NotFound

Description

The NotFound user exception.

Attributes

why: NotFoundReason [1]

The why attribute explains the reason for the exception.

rest_of_name: Name [1]

The rest_of_name attribute contains the remainder of the non-working name:

Operations
No operations

Associations
No associations

Constraints
No constraints

Semantics
This exception is raised by operations when a component of a name does not identify
a binding, or the type of the binding is incorrect for the operation being performed.

UserException
(from CORBA)

<<CORBAException>>

NotFound

why : NotFoundReason
rest_of_name : Name

(from NamingContext)

<<CORBAException>>
3-10 Naming Service, v1.3 October 2004

3

3.1.2.7 NamingContext::CannotProceed

Description

The CannotProceed user exception.

Attributes

cxt: NamingContext [1]

The cxt attribute contains the context that the operation may be able to retry from.

rest_of_name: Name [1]

The rest_of_name attribute contains the remainder of the non-working name:

Operations
No operations

Associations
No associations.

Constraints
No constraints.

Semantics
This exception is raised when an implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned naming context.

UserException
(from CORBA)

<<CORBAException>>

CannotProceed

cxt : NamingContext
rest_of_name : Name

(from NamingContext)

<<CORBAException>>
October 2004 Naming Service: Platform Independent Model 3-11

3

3.1.2.8 NamingContext::InvalidName

Description

The InvalidName user exception.

Attributes
No attributes.

Operations
No operation.

Constraints
No constraints.

Semantics
This exception is raised if a Name is invalid. A name of length zero is invalid
(containing no name components). Implementations may place further limitations on
what constitutes a legal name and raise this exception to indicate a violation.

UserException
(from CORBA)

<<CORBAException>>

InvalidName
(from NamingContext)

<<CORBAException>>
3-12 Naming Service, v1.3 October 2004

3

3.1.2.9 NamingContext::AlreadyBound

Description

The AlreadyBound user exception.

Attributes
No attributes.

Operations
No operation.

Constraints
No constraints.

Semantics
Indicates an object is already bound to the specified name. Only one object can be
bound to a particular Name in a context. The lightweight naming service user must use
the “rebind” interface to explicitly bind a newobject reference to an existing name.

UserException
(from CORBA)

<<CORBAException>>

AlreadyBound
(from NamingContext)

<<CORBAException>>
October 2004 Naming Service: Platform Independent Model 3-13

3

3.1.2.10 NamingContext::NotEmpty

Description

The NotEmpty user exception.

Attributes
No attributes.

Operations
No operation.

Constraints
No constraints.

Semantics
This exception is raised by destroy if the NamingContext contains bindings. A
NamingContext must be empty to be destroyed.

3.2 Platform Specific Model: CORBA Service

3.2.1 Overview
The following sections specify a platform specific mapping of the Lightweight Naming
Service onto the CORBA platform. The resulting CORBA service is specified in
CORBA IDL and represents a fully compatible subset of the CosNamingService.

UserException
(from CORBA)

<<CORBAException>>

NotEmpty
(from NamingContext)

<<CORBAException>>
3-14 Naming Service, v1.3 October 2004

3

3.2.2 CosNaming Module

#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#endif

module CosNaming
{
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

3.2.2.1 Istring

 typedef string Istring;

3.2.2.2 NameComponent

 struct NameComponent
 {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;

3.2.2.3 NamingContext

 interface NamingContext
 {

 enum NotFoundReason { missing_node, not_context, not_object };

 exception NotFound

 {
 NotFoundReason why;
 Name rest_of_name;
 };

 exception CannotProceed
 {
 NamingContext cxt;
 Name rest_of_name;
 };

 exception InvalidName {};
 exception AlreadyBound {};
 exception NotEmpty {};

October 2004 Naming Service: Platform Specific Model: CORBA Service 3-15

3

 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
 void destroy()
 raises(NotEmpty);
 };

};
#endif // _COSNAMING_IDL_
3-16 Naming Service, v1.3 October 2004

OMG IDL A
// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
 typedef string Istring;

 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;

 enum BindingType { nobject, ncontext };

 struct Binding {
 Name binding_name;
 BindingType binding_type;
 };

 // Note: In struct Binding, binding_name is incorrectly defined
 // as a Name instead of a NameComponent. This definition is
 // unchanged for compatibility reasons.
 typedef sequence <Binding> BindingList;

 interface BindingIterator;

 interface NamingContext {
 enum NotFoundReason { missing_node, not_context, not_object };

 exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
 };
October 2004 Naming Service, v1.3 A-1

A

 exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
 };

 exception InvalidName{};

 exception AlreadyBound {};

 exception NotEmpty{};

 void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed, InvalidName, AlreadyBound
);

 void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

 void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

 void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

 Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

 void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

 NamingContext new_context();
 NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

 void destroy() raises(NotEmpty);

 void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi
);

 };

 interface BindingIterator {
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many, out BindingList bl);
 void destroy();
 };
A-2 Naming Service, v1.3 October 2004

A

 interface NamingContextExt: NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string(in Name n) raises(InvalidName);
 Name to_name(in StringName sn)

raises(InvalidName);

 exception InvalidAddress {};

 URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

 Object resolve_str(in StringName sn)
raises(

NotFound, CannotProceed,
InvalidName,

);

};
};

#endif // _COSNAMING_IDL_
October 2004 Naming Service, v1.3 A-3

A

A-4 Naming Service, v1.3 October 2004

Conformance Requirements B
B.1 Optional Interfaces
There are no optional interfaces in this specification. A compliant implementation must
implement all of the functionality and interfaces described.

B.2 Documentation Requirements
A compliant implementation must document all of the following:

• any limitations to the character values or character sequences that may be used in a
name component

• any limitations to the length (including minimum or maximum) of a name
component

• any limitations to number of name components in a name

• any limitations to the maximum number of bindings in a context

• any limitations to the total number of bindings (implementation-wide)

• any limitations to the maximum number of contexts

• the means provided to deal with orphaned contexts and bindings

• Any policy for dealing with potentially orphaned naming contexts. Orphaned
contexts are contexts that are not bound in any other context within a naming
server.

• Any policy for destroying binding iterators that are considered to be no longer in
use.

• Under what circumstances, if any, a CannotProceed exception is raised.
October 2004 Naming Service, v1.3 B-1

B

B-2 Naming Service, v1.3 October 2004

Index
B
BindingIterator interface 2-11

next_n operation 2-11
next_one operation 2-11

C
compound name 1-2, 1-3
CORBA

contributors 1-iii
documentation set 1-i

CosNaming module
OMG IDL 2-2–2-4

D
destroy operation 2-12

N
name 1-2

binding 1-2
binding operations 2-7
component attributes 1-3
components 1-2
compound 1-3
resolution 1-2
simple 1-3

name binding 1-2
namespace adminstration 1-5

name-to-object association 1-2
naming context 1-2, 1-5

deleting 2-10
naming graph 1-2

example 1-2
naming service

and internationalization 2-2
design of 1-4

NamingContext interface 2-4
bind operation 2-8
bind_context operation 2-8
bind_new_context operation 2-9
destroy operation 2-10
list operation 2-10
new_context operation 2-9
rebind operation 2-8
rebind_context operation 2-8
resolve operation 2-9
unbind operation 2-9

O
Object Management Group 1-i

address of 1-ii

S
simple name 1-3
October 2004 Naming Service, v1.3 Index-1

Index
Index-2 Naming Service, v1.3 October 2004

	Preface
	1. Service Description
	1.1 Overview
	1.2 Names
	1.3 Example Scenarios
	1.4 Design Principles

	2. Modules and Interfaces
	2.1 The CosNaming Module
	2.1.1 Resolution of Compound Names

	2.2 NamingContext Interface
	2.2.1 Structures
	2.2.2 Exceptions
	2.2.3 Binding Objects
	2.2.4 Resolving Names
	2.2.5 Unbinding Names
	2.2.6 Creating Naming Contexts
	2.2.7 Deleting Contexts
	2.2.8 Listing a Naming Context

	2.3 The BindingIterator Interface
	2.3.1 Operations
	2.3.2 Garbage Collection of Iterators

	2.4 Stringified Names
	2.4.1 Basic Representation of Stringified Names
	2.4.2 Escape Mechanism

	2.5 URL schemes
	2.5.1 IOR
	2.5.2 corbaloc
	2.5.3 corbaname
	2.5.4 Converting between CosNames, Stringified Names, and URLs

	2.6 Initial Reference to a NamingContextExt

	3. Lightweight Naming Service
	3.1 Platform Independent Model
	3.1.1 Overview
	3.1.2 The CosLightweightNaming Package

	3.2 Platform Specific Model: CORBA Service
	3.2.1 Overview
	3.2.2 CosNaming Module

	A. OMG IDL
	B. Conformance Requirements

