
Naming Service Specification

Version 1.0
New edition - April 2000

 paid up,
fied ver-
pyright in
g con-

ire use
y be
at are
r protect
Copyright 1996, AT&T/Lucent Technologies, Inc.
Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Limited
Copyright 1996, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Hewlett-Packard Company
Copyright 1995, 1996 HyperDesk Corporation
Copyright 1995, 1996 ICL plc
Copyright 1995, 1996 Ing. C. Olivetti & C.Sp
Copyright 1995, 1996 International Business Machines Corporation
Copyright 1996, International Computers Limited
Copyright 1995, 1996 Iona Technologies Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1996, Nortel Limited
Copyright 1995, 1996 Novell, Inc.
Copyright 1995, 1996 02 Technologies
Copyright 1995, 1996 Object Design, Inc.
Copyright 1999, Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Ontos, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1995, 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996, Sybase, Inc.
Copyright 1996, Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

 an
ent does

iable for
 profi
 Object

ize devel
 to indi-

-graphic,
thout

 in sub-

B,
n is a

ers to
NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may author-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, OR
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Ope
trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii
iii

iii

iv

iv

1-1
1-1

1-2
-3

1-3

 1-5

1-5

-1
2-1
-3

2-5
-5
-6
-7
-7
-8

2-8
10
10
Preface .
About the Object Management Group

What is CORBA? .

Associated OMG Documents .

Acknowledgments .

1. Service Description .
1.1 Overview .

1.2 Names .
1.2.1 Names Library . 1

1.3 Example Scenarios .

1.4 Design Principles .

1.5 Resolution of Technical Issues .

2. Naming Service Modules . 2
2.1 The CosNaming Module .

2.1.1 Binding Objects . 2
2.1.2 Resolving Names .
2.1.3 Unbinding Names . 2
2.1.4 Creating Naming Contexts 2
2.1.5 Deleting Contexts . 2
2.1.6 Listing a Naming Context 2
2.1.7 The BindingIterator Interface 2

2.2 The Names Library .
2.2.1 Creating a Library Name Component 2-
2.2.2 Creating a Library Name 2-
Naming Service V1.0 April 2000 i

Contents

-10
-11
2.2.3 The LNameComponent Interface 2
2.2.4 The LName Interface . 2
ii Naming Service V1.0 April 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Naming Service V1.0 April 2000 iii

ards
o

only
e

mat.
ons,

y
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote. (Th
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320
pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of the CORBA Services
specifications:

• AT&T/Lucent Technologies, Inc.

• AT&T/NCR

• BNR Europe Limited

• Cooperative Research Centre for Distributed Systems Technology (DSTC Pt
Ltd).

• Digital Equipment Corporation
iv Naming Service V1.0 April 2000

• Gradient Technologies, Inc.

• Groupe Bull

• Hewlett-Packard Company

• HyperDesk Corporation

• ICL plc

• Ing. C. Olivetti & C.Sp

• International Business Machines Corporation

• International Computers Limited

• Iona Technologies Ltd.

• Itasca Systems, Inc.

• Nortel Limited

• Novell, Inc.

• 02 Technologies

• Object Design, Inc.

• Object Management Group, Inc.

• Objectivity, Inc.

• Ontos, Inc.

• Oracle Corporation

• Persistence Software

• Servio, Corp.

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Taligent, Inc.

• Tandem Computers, Inc.

• Teknekron Software Systems, Inc.

• Tivoli Systems, Inc.

• Transarc Corporation

• Versant Object Technology Corporation
Naming Service V1.0 Acknowledgments April 2000 v

vi Naming Service V1.0 April 2000

Service Description 1
et
o an
t,

ming

ows
 a
Contents

This chapter contains the following topics.

1.1 Overview

A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a s
of name bindings in which each name is unique. Different names can be bound t
object in the same or different contexts at the same time. There is no requiremen
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a na
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph all
more complex names to reference an object. Given a context in a naming graph,

Topic Page

“Overview” 1-1

“Names” 1-2

“Example Scenarios” 1-3

“Design Principles” 1-5

“Resolution of Technical Issues” 1-5
Naming Service V1.0 April 2000 1-1

1

ess.

ames

 and

sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution proc
Figure 1-1 shows an example of a naming graph.

Figure 1-1 A Naming Graph

1.2 Names

Many of the operations defined on a naming context take names as parameters. N
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

< component1 ; component2 ; component3 >

indicates the sequences of components.

Note – The semicolon (;) characters are simply the notation used in this document
are not intended to imply that names are sequences of characters separated by
semicolon.

A name component consists of two attributes: the identifier attribute and the kind
attribute. Both the identifier attribute and the kind attribute are represented as IDL
strings.

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2
1-2 Naming Service V1.0 April 2000

1

d
at use

es
e
.c to

tion
es not

tions

mes
eta
mes

hem.

it is
ould
ry
sts by

ote,
of the

 a
s are
 the

 the
e
cture

iffer

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code, executable,
postscript, or “ ” . The naming system does not interpret, assign, or manage these
values in any way. Higher levels of software may make policies about the use an
management of these values. This feature addresses the needs of applications th
syntactic naming conventions to distinguish related objects. For example Unix us
suffixes such as .c and .o. Applications (such as the C compiler) depend on thes
syntactic convention to make name transformations (for example, to transform foo
foo.o).

The lack of name syntax is especially important when considering internationaliza
issues. Software that does not depend on the syntactic conventions for names do
have to be changed when it is localized for a natural language that has different
syntactic conventions — unlike software that does depend on the syntactic conven
(which must be changed to adopt to new conventions).

To avoid issues of differing name syntax, the Naming Service always deals with na
in their structural form (that is, there are no canonical syntaxes or distinguished m
characters). It is assumed that various programs and system services will map na
from the representation into the structural form in a manner that is convenient to t

1.2.1 Names Library

To allow the representation of names to evolve without affecting existing clients,
desirable to hide the representation from client code. Ideally, names themselves w
be OMG IDL objects; however, names must be lightweight entities that can be ve
efficiently created and manipulated in memory and passed as parameters in reque
value. In order to simplify name manipulation and provide representation
independence, names can be presented to programs through the names library. N
however, it is not necessary to use the names library to use the basic operations
naming service.

The names library implements names as pseudo-objects. A client makes calls on
pseudo-object in the same way it makes calls on an ordinary object. Library name
described in pseudo-IDL. The names library supports two pseudo-IDL interfaces:
LNameComponent interface and the LName interface. The LNameComponent interface
defines the get and set operations associated with name component identifier and
kind attributes.The LName Interface includes operations for manipulating library nam
and library name component pseudo objects and producing and translating a stru
that can be passed as a parameter to a normal object request.

1.3 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that d
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.
Naming Service V1.0 Example Scenarios April 2000 1-3

1

e-
large,
ers"

ch a

lace as
might
 as

s of
Given
mes
look

lly
nd so

roups

d to
.g.,

and
esent

o
vice.

, a

the
 as
is
y

d to
how

tics

In one system, the Naming Service is implemented using an underlying enterpris
wide naming server such as DCE CDS. The Naming Service is used to construct
enterprise-wide naming graphs where NamingContexts model "directories" or "fold
and other names identify "document" or "file" kinds of objects. In other words, the
naming service is used as the backbone of an enterprise-wide filing system. In su
system, non-object-based access to the naming service may well be as commonp
object-based access to the naming service. For example, the name of an object
be presented to the DCE directory service as a null-terminated ASCII string such
“/.../DME/nls/moa-1/ID-1”.

The Naming Service provides the principal mechanism through which most client
an ORB-based system locate objects that they intend to use (make requests of).
an initial naming context, clients navigate naming contexts retrieving lists of the na
bound to that context. In conjunction with properties and security services, clients
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externa
visible characteristics with other services (a name service, a properties service, a
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, g
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are use
identify contexts that list the names of services that are available in the system (e
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role
can have a less sophisticated implementation. In this model, naming contexts repr
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used t
register the object references of a mail service, an information service, a filing ser

Given a handful of references to "root objects" obtained from the Naming Service
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system,
Naming Service is used sparingly and instead clients rely on other services such
query services to navigate through large collections of objects. Also, objects in th
scheme rarely register "external characteristics" with another service - instead the
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being use
provide both models of use at the same time. These two scenarios demonstrate
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and seman
which determine how frameworks of application and facilities objects locate other
objects.
1-4 Naming Service V1.0 April 2000

1

is is

ation

an-
ich
n of
 kind

 in a

other

her

he

curity

 of

y the
1.4 Design Principles

Several principles have driven the design of the Naming Service:

1. The design imparts no semantics or interpretation of the names themselves; th
up to higher-level software. The naming service provides only a structural
convention for names, e.g. compound names.

2. The design supports distributed, heterogeneous implementation and administr
of names and name contexts.

3. Names are structures, not just character strings. A struct is necessary to avoid
encoding information syntactically in the name string (e.g., separating the hum
meaningful name and its type with a “.”, and the type and version with a “!”), wh
is a bad idea with respect to the generality, extensibility, and internationalizatio
the name service. The structure define includes a human-chosen string plus a
field.

4. Naming service clients need not be aware of the physical site of name servers
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on
interfaces.

6. Name contexts of arbitrary and unknown implementation may be utilized toget
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of t
above features contribute to making this possible.

8. The design does not address name security since there is currently no OMG se
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not address namespace administration. It is the responsibility
higher-level software to administer the namespace.

1.5 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architecture document1 as follows:

• Naming standards: Encapsulation of existing naming standards and protocols is
allowed using naming contexts. Transparent encapsulation is made possible b
design features outlined above.

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
Naming Service V1.0 Design Principles April 2000 1-5

1

s.

ext,

in a

ntext,
oes

laced

e we
t
• Federation of namespaces: The specification supports distributed federation of
namespaces; no assumptions are made about centralized or universal function
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root cont
and existing graphs may be joined at any point.

• Scope of names: Name contexts define name scope. Names must be unique with
context. Objects may have multiple names, and may exist in multiple name
contexts. Name contexts may be named objects nested within another name co
and cycles are permitted. The name itself is not a full-fledged ORB object, but d
support structure, so it may have multiple components. No requirements are p
on naming conventions, in order to support a wide variety of conventions and
existing standards.

• Operations: The specification supports bind, unbind, lookup, and sequence
operations on a name context. It does not support a rename operation, becaus
do not see how to implement this correctly in a distributed environment withou
transactions.
1-6 Naming Service V1.0 April 2000

Naming Service Modules 2
ng
Contents

This chapter contains the following sections.

2.1 The CosNaming Module

The CosNaming Module is a collection of interfaces that together define the nami
service. This module contains two interfaces:

• The NamingContext interface
• The BindingIterator interface

This section describes these interfaces and their operations in detail.

The CosNaming Module is shown below. Note that Istring is a placeholder for a
future IDL internationalized string data type.

module CosNaming
{

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

Section Title Page

“The CosNaming Module” 2-1

“The Names Library” 2-8
NamingService v1.0 The CosNamingModule April 2000 2-1

2

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
 raises(NotEmpty);
void list (in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};
2-2 NamingService v1.0 The CosNamingModule April 2000

2

und,

s that
s are

e is
t
.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};
};

The following sections describe the operations of the NamingContext interface:

• binding objects
• name resolution
• unbinding
• creating naming contexts
• deleting contexts
• listing a naming context

2.1.1 Binding Objects

The binding operations name an object in a naming context. Once an object is bo
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind , rebind , bind_context , and rebind_context .

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind

Creates a binding of a name and an object in the naming context. Naming context
are bound using bind do not participate in name resolution when compound name
passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< c1 ; c2 ; ... ; cn >, obj) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind(< cn >, obj)

rebind

Creates a binding of a name and an object in the naming context even if the nam
already bound in the context. Naming contexts that are bound using rebind do no
participate in name resolution when compound names are passed to be resolved
NamingService v1.0 The CosNamingModule April 2000 2-3

2

 to be

 the

 to be

ing”
t
e

.
bind_context

Names an object that is a naming context. Naming contexts that are bound using
bind_context() participate in name resolution when compound names are passed
resolved.

A bind_context operation that is passed a compound name is defined as follows:

ctx->bind_context(< c1 ; c2 ; ... ; cn >, nc) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_context(< cn >, nc)

rebind_context

Creates a binding of a name and a naming context in the naming context even if
name is already bound in the context. Naming contexts that are bound using
rebind_context() participate in name resolution when compound names are passed
resolved.

Table 2-1 describes the exceptions raised by the binding operations.

2.1.2 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrow
the object to the appropriate type. That is, clients typically cast the returned objec
from Object to a more specialized interface. The OMG IDL definition of the resolv
operation is:

Table 2-1 Exceptions Raised by Binding Operations

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be able to continue the
operation at the returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name
Only one object can be bound to a particular name in a
context. The bind and the bind_context operations raise
the AlreadyBound exception if the name is bound in the
context; the rebind and rebind_context operations unbind
the name and rebind the name to the object passed as an
argument.
2-4 NamingService v1.0 The CosNamingModule April 2000

2

ltiple

he

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse mu
contexts. A compound resolve is defined as follows:

ctx->resolve(< c1 ; c2 ; ... ; cn >) ≡
ctx->resolve(< c1 ; c2 ; ... ; cn-1 >)->resolve(< cn >)

Table 2-2 describes the exceptions raised by the resolve operation.

2.1.3 Unbinding Names

The unbind operation removes a name binding from a context. The definition of t
unbind operation is:

void unbind(in Name n)
 raises (NotFound, CannotProceed, InvalidName);

An unbind operation that is passed a compound name is defined as follows:

ctx->unbind(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->unbind(< cn >)

Table 2-3 describes the exceptions raised by the unbind operation.

Table 2-2 Exceptions Raised by Resolve Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be able to continue the
operation at the returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

Table 2-3 Exceptions Raised by Unbind Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be able to continue the
operation at the returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)
NamingService v1.0 The CosNamingModule April 2000 2-5

2

as the

ment.
ext in
d by

e.
2.1.4 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context
and bind_new_context .

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_context

This operation returns a naming context implemented by the same naming server
context on which the operation was invoked. The new context is not bound to any
name.

bind_new_context

This operation creates a new context and binds it to the name supplied as an argu
The newly-created context is implemented by the same naming server as the cont
which it was bound (that is, the naming server that implements the context denote
the name argument excluding the last component).

A bind_new_context that is passed a compound name is defined as follows:

ctx->bind_new_context(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_new_context(< cn >)

Table 2-4 describes the exceptions raised when new contexts are being created.

2.1.5 Deleting Contexts

The destroy operation deletes a naming context:.

Table 2-4 Exceptions Raised by Creating New Contexts

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be able to continue the
operation at the returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is
invalid; implementations may place other restrictions on
names.)

AlreadyBound Indicates an object is already bound to the specified nam
Only one object can be bound to a particular name in a
context.
2-6 NamingService v1.0 The CosNamingModule April 2000

2

is a

he
void destroy()
raises(NotEmpty);

If the naming context contains bindings, the NotEmpty exception is raised.

2.1.6 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

The list operation returns at most the requested number of bindings in BindingList
bl .

• If the naming context contains additional bindings, the list operation returns a
BindingIterator with the additional bindings.

• If the naming context does not contain additional bindings, the binding iterator
nil object reference.

2.1.7 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using t
next_one or next_n operations:

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

next_one

This operation returns the next binding. If there are no more bindings, false is returned.
NamingService v1.0 The CosNamingModule April 2000 2-7

2

t is

re
grams

s are
+

 for

ribed

gh the

next_n

This operation returns at most the requested number of bindings.

destroy

This operation destroys the iterator.

2.2 The Names Library

To allow the representation of names to evolve without affecting existing clients, i
desirable to hide the representation of names from client code. Ideally, names
themselves would be objects; however, names must be lightweight entities that a
efficient to create, manipulate, and transmit. As such, names are presented to pro
through the names library.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library name
described in pseudo-IDL (to suggest the appropriate language binding). C and C+
clients1 use the same client language bindings for pseudo-IDL (PIDL) as they use
IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As desc
in Section 2.1, “The CosNaming Module,” the naming service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service throu
NamingContext interface.

Note – It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-IDL interfaces: the LNameComponent
interface and the LName interface.

interface LNameComponent { // PIDL
exception NotSet{};
string get_id()

raises(NotSet);
void set_id(in string i);
string get_kind()

raises(NotSet);
void set_kind(in string k);
void destroy();

};

1.As anticipated
2-8 NamingService v1.0 The CosNamingModule April 2000

2

tion:

above.

ons
interface LName { // PIDL
exception NoComponent{};
exception OverFlow{};
exception InvalidName{};
LName insert_component(in unsigned long i,

in LNameComponent n)
raises(NoComponent, OverFlow);

LNameComponent get_component(in unsigned long i)
 raises(NoComponent);

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

unsigned long num_components();
boolean equal(in LName ln);
boolean less_than(in LName ln);
Name to_idl_form()

raises(InvalidName);
void from_idl_form(in Name n);
void destroy();

};

LName create_lname(); // C /C++
LNameComponent create_lname_component(); // C/C++

2.2.1 Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ func

LNameComponent create_lname_component();// C/C++

The returned pseudo-object can then be operated on using the operations listed

2.2.2 Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function.

LName create_lname(); // C/C++

The returned pseudo-object reference can then be operated on using the operati
listed above.

2.2.3 The LNameComponent Interface

A name component consists of two attributes: the identifier attribute and the kind
attribute. The LNameComponent interface defines the operations associated with
these attributes.

string get_id()
raises(NotSet);
NamingService v1.0 The CosNamingModule April 2000 2-9

2

een
void set_id(in string k);
string get_kind()

raises(NotSet);
void set_kind(in string k);

get_id

The get_id operation returns the identifier attribute’s value. If the attribute has not
been set, the NotSet exception is raised.

set_id

The set_id operation sets the identifier attribute to the string argument.

get_kind

The get_kind operation returns the kind attribute’s value. If the attribute has not b
set, the NotSet exception is raised.

set_kind

The set_kind operation sets the kind attribute to the string argument.

2.2.4 The LName Interface

The following operations are described in this section:

• destroying a library name component pseudo object

• creating a library name

• inserting a name component

• getting the ith name component

• deleting a name component

• number of name components

• testing for equality

• testing for order

• producing an idl form

• translating an idl form

• destroying a library name pseudo object

2.2.4.1 Destroying a Library Name Component Pseudo Object

The destroy operation destroys library name component pseudo-objects.
2-10 NamingService v1.0 The CosNamingModule April 2000

2

o
he

s one
void destroy();

2.2.4.2 Inserting a Name Component

A name has one or more components. Each component except the last is used t
identify names of subcontexts. (The last component denotes the bound object.) T
insert_component operation inserts a component after positioni.

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

If component i-1 is undefined and component i is greater than 1, the
insert_component operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the Overflow
exception is raised.

2.2.4.3 Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1.

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

2.2.4.4 Deleting a Name Component

The delete_component operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name ha
fewer component and components previously identified as i+1...n are now identified as
i...n-1.

2.2.4.5 Number of Name Components

The num_components operation returns the number of components in a library
name.
NamingService v1.0 The CosNamingModule April 2000 2-11

2

 as

is a
ing

is a
ing

of
and
unsigned long num_components();

2.2.4.6 Testing for Equality

The equal operation tests for equality with library name

boolean equal(in LName ln);

ln.

2.2.4.7 Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.

boolean less_than(in LName ln);

This operation returns true if the library name is less than the library name ln passed
an argument. The library implementation defines the ordering on names.

2.2.4.8 Producing an IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. Several operations in the NamingContext interface have arguments of an
IDL-defined structure, Name. The following PIDL operation on library names
produces a structure that can be passed across the IDL request.

Name to_idl_form()
raises(InvalidName);

If the name is of length 0, the InvalidName exception is returned.

2.2.4.9 Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. The NamingContext interface defines operations that return an IDL struct
type Name. The following PIDL operation on library names sets the components
kind attribute for a library name from a returned IDL defined structure, Name.

void from_idl_form(in Name n);

2.2.4.10 Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects

void destroy();
2-12 NamingService v1.0 The CosNamingModule April 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Names
	1.2.1 Names Library

	1.3 Example Scenarios
	1.4 Design Principles
	1.5 Resolution of Technical Issues

	2. Naming Service Modules
	2.1 The CosNaming Module
	2.1.1 Binding Objects
	2.1.2 Resolving Names
	2.1.3 Unbinding Names
	2.1.4 Creating Naming Contexts
	2.1.5 Deleting Contexts
	2.1.6 Listing a Naming Context
	2.1.7 The BindingIterator Interface

	2.2 The Names Library
	2.2.1 Creating a Library Name Component
	2.2.2 Creating a Library Name
	2.2.3 The LNameComponent Interface
	2.2.4 The LName Interface

