

 Date: May 2007

Meta Object Facility (MOF) Versioning and Development
Lifecycle Specification, v2.0

OMG Available Specification
formal/07-05-01

Copyright © 2003-2005, Adaptive
Copyright © 2004-2005, International Business Machines
Copyright © 1997-2007, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a
Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface.. iii

1 Scope ... 1

2 Conformance ... 1

3 Normative References .. 1

4 Additional Information .. 1
4.1 Acknowledgements ...1

4.2 Proof of Concept ...2

4.3 Changes or Extensions to OMG Specifications ..2

5 Metamodel Specification .. 3
5.1 Package Dependencies ..3

5.2 Versioning Diagram ..3

5.3 Class Version ..4
5.3.1 Attributes .. 5
5.3.2 References ... 5
5.3.3 Operations .. 5

5.4 Class VersionHistory ...6
5.4.1 References ... 6
5.4.2 Operations .. 6

5.5 Class VersionedExtent ..6
5.5.1 Superclasses .. 6
5.5.2 References ... 6
5.5.3 Operations .. 6
5.5.4 Attributes .. 7
5.5.5 References ... 7

5.6 Context Diagram ..8
5.6.1 Class Session ... 8
5.6.2 Class Workspace .. 8
5.6.3 Class Configuration .. 10
5.6.4 Class Baseline .. 10
5.6.5 Class BaselineHistory ... 11
5.6.6 Class WorkspaceFactory .. 11
5.6.7 Class ConfigurationFactory ... 11
MOF Versioning and Lifecycle Development, v2.0 i

5.7 Development Lifecycle Diagram ...11
5.7.1 Class Element .. 12
5.7.2 Class Class ... 13

Index... 15
ii MOF Versioning and Lifecycle Development, v2.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
 iii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A - Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
iv

1 Scope

During a system’s evolution it will go through a number of iterations, driven by changes to a model at some level. The
model for an existing deployed system is a valuable asset for understanding that system and making minor changes for
bug fixes, etc. So it is important to preserve it when making broader changes for new functionality. The problem being
addressed by this specification is to manage the co-existence of multiple versions of such metadata in a Meta Object
Facility and their inclusion in different configurations (for example, a specific version of a Platform Independent Model
(PIM), the corresponding version of the derived Platform Specific Model (PSM), and the corresponding version of the
generated system).

A major problem related to the presence of multiple versions is to determine the correct one to use in response to a client
request such as obtaining all instances of Package (it would not generally be useful to return many different versions of
the same package), or even accessing the Features of a Class (again it would not be useful to return all Features the class
has ever had, especially when some have replaced others; and yet again it would not be sensible to return all versions of
those Features). An important requirement for version management is support of context: this is a client-specified
property related to metadata access requests that is used to select the appropriate versions.

A related problem is the lack of a consistent mechanism for determining the status of versions of models or artifacts with
respect to a development lifecycle (for example draft->approved->unit-tested->system-tested->live->withdrawn). This is
often the most useful way of specifying a context (see previous paragraph) and to control the operations that may be
applied to the metadata (e.g., to prohibit changes to the model for the ‘live’ version).

2 Conformance

A compliant implementation must implement the APIs generated by applying a MOF language binding to the metamodels
in this specification.

3 Normative References

MOF 2.0 Core Specification: formal/06-01-01

SPEM 1.1 Specification: formal//05-01-06

4 Additional Information

4.1 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Adaptive

• International Business Machines
MOF Versioning and Lifecycle Development, v2.0 1

• MetaMatrix

• Unisys

4.2 Proof of Concept

This specification represents the implementation in Adaptive’s Adaptive Repository™ product: a MOF compliant
repository that has been extended with this versioning capability and, as part of Adaptive’s IT Portfolio Manager ™
linked with SPEM to add a development lifecycle capability. The technology has been in the market for more than 2
years.

This specification is also designed to reflect the experience gained from standardizing different versioning products as
part of JSR 147 Workspace Versioning and Configuration Management http://www.jcp.org/aboutJava/communityprocess/
review/jsr147/.

4.3 Changes or Extensions to OMG Specifications

There are no required changes or extensions to OMG specifications.
2 MOF Versioning and Lifecycle Development, v2.0

5 Metamodel Specification

This chapter outlines the public elements of the Versioning package, which is defined as a MOF metamodel depicted in
the following UML diagrams. Note that the versioning API is automatically generated from this metamodel, following the
normal MOF generation rules which will be specific to the language mapping and so are not contained in this
specification. The remainder of this section explains the classes in the metamodel.

Note: Where ‘isReadOnly = true’ there are generally specific operations for updating the value either directly or
indirectly.

5.1 Package Dependencies
The dependencies with other packages are depicted here.

Figure 5.1 - Package Dependencies

Packages Versioning and StateMachine are defined by this specification.

5.2 Versioning Diagram
The package provides the core versioning service. A VersionHistory and an initial Version is created automatically when
a new VersionedExtent is created. The VersionHistory of a given VersionedExtent contains all versions of that
VersionedExtent.

A VersionedExtent is the object that determines which Version from a given VersionHistory is currently selected in a
given Workspace, and whether or not changes are being made to that extent in that workspace (i.e., whether or not that
VersionedExtent is checked out). To provide key performance optimizations (such as copy based Workspaces), each
Workspace must have its own set of VersionedExtents. This also ensures that each Workspace can decide independently
which Version that is selected and whether or not that VersionedExtent is checked out. So each Workspace that wants to
select a Version from a given VersionHistory has its own VersionedExtent for that VersionHistory, which means a
VersionHistory is related to more than one VersionedExtent (in particular, is related to a different VersionedExtent for
each different Workspace that selects a Version from that VersionHistory).
MOF Versioning and Lifecycle Development, v2.0 3

Figure 5.2 - Versioning Diagram

5.3 Class Version
Each instance of Version is a snapshot of a VersionedExtent.
4 MOF Versioning and Lifecycle Development, v2.0

5.3.1 Attributes
id, type = String, isReadOnly = true

• This attribute is an id for the version that is unique within the VersionHistory of that version.

• The format of the string is implementation-defined.

label, type = Label, multivalued [0..*], isReadOnly = true

• A user assigned string that can be used to identify the version. Several can be applied to one version. Also, version
labels must be unique among all the version labels within the VersionHistory of that version.

annotation, type = String, [0..1]

• This attribute can contain a description of the version.

creationDate, type = Long, isReadOnly = true

• Used to record the timestamp when the Version object was created.

5.3.2 References
versionHistory, type = VersionHistory, isReadOnly = true

• The VersionHistory for this Version.

previousVersion, type = Version, [0..*], isReadOnly = true, inverse = nextVersion

• This refers to the immediately previous version (or versions, in case this Version resulted from a merge). Every
Version that is not the root version of a VersionHistory has at least one previousVersion.

nextVersion, type = Version, [0..*], isReadOnly = true, inverse = previousVersion

• This refers to ordered subsequent versions.

baseline, type = Baseline, [0..*], isReadOnly = true, inverse = version

• This refers to the Baselines that reference this Version.

5.3.3 Operations
addLabel (newLabel: Label) operation, return type = void

• Adds a label to the version. If that label currently appears on another version in the version history of this Version,
it is automatically removed from that other version. See the label attribute for further details.

removeLabel (oldLabel: Label) operation, return type = void

• Removes the indicated label from the version. See the label attribute for further details.

delete (), return type = void

• Removes the version object. This method also fixes up the links in the version graph so that it is still valid.
MOF Versioning and Lifecycle Development, v2.0 5

5.4 Class VersionHistory
A VersionHistory contains all versions of a given VersionedExtent.

5.4.1 References
rootVersion, type = Version, isReadOnly = true

• This refers to the initial version of the VersionedExtent. The rootVersion has no previousVersion. All other
versions have at least one previousVersion.

versions, type = Version, [1..*], isReadOnly = true

• This refers to all versions in this VersionHistory, including the rootVersion. Ordering of the versions is defined by
the previousVersion/nextVersion relations.

5.4.2 Operations
lookupByVersionId (id : String), return type = Version, [0..1], isQuery = true

• Returns the Version, if any, in this VersionHistory having the specified id.

lookupByLabel (label : Label), return type = Version, [0..1], isQuery = true

• Returns the version, if any, in this VersionedHistory having the specified label.

delete (), return type = void

• Removes the VersionHistory object. This method also deletes all Versions in the VersionHistory.

5.5 Class VersionedExtent
Represents a MOF Extent for which versioning has been enabled.

5.5.1 Superclasses
MOF:Extent

5.5.2 References
configuration, type = Configuration, isReadOnly = true

• The Configuration to which this VersionedExtent belongs.

5.5.3 Operations
checkOut () operation, return type = null, isQuery = false

• Allows modifications to be performed on the content of this VersionedExtent.

checkIn (), return type = Version, isQuery = false

• Creates a new Version object with the current content of this VersionedExtent, disallows modifications to be made
to the content of this VersionedExtent until it is subsequently checked out. This Version is now available to other
Workspaces.
6 MOF Versioning and Lifecycle Development, v2.0

lookupByVersionId (id : String), return type = Version, [0..1] isQuery = true

• Returns the version, if any, of this VersionedExtent having the specified id.

lookupByLabel (label : String), return type = Version, [0..1], isQuery = true

• Returns the version, if any, of this VersionedExtent having the specified label.

delete (), return type = void

• Removes the VersionedExtent object.

setConfiguration (configuration : Configuration), return type = void

• Changes the configuration to which this VersionedExtent belongs.

5.5.4 Attributes
isCheckedOut, type = Boolean, isReadOnly = true

• A VersionedExtent is modifiable only if isCheckedOut is true.

annotation, type = String, [0..1]

• When isCheckedOut is true, this attribute contains the annotation attribute for the version that will be created when
this VersionedExtent is checked in. If the isCheckedOut is false that attribute does not exist and cannot be written
to.

5.5.5 References
versionHistory, type = VersionHistory, isReadOnly = true

• The VersionHistory that contains the versions for this VersionedExtent.

baseVersion, type = Version, isReadOnly = true

• The currently selected version for this VersionedExtent. This is the version that this VersionedExtent is currently
based on, but when checked-out, is not necessarily equal to. In particular, the base version of a checked-out
VersionedExtent is the Version content that was started with (i.e., that the current checked-out content is ‘based
on’).

previousVersion, type = Version, [1..*], isReadOnly = false

• When isCheckedOut is true, this reference identifies the versions that will be the previousVersion for the version
that will be created when this VersionedExtent is checked in.

conflict reference, type = Version, [0..*], isReadOnly = false, composite

• These are the conflicts created by a merge. After the client resolves the conflict (by appropriately modifying the
content of the VersionedExtent), the client indicates that the conflict has been resolved by adding the version to the
previousVersion list of the VersionedContext, and removing the version from the conflict list.

workspace, type = Workspace, [1], isReadOnly = true

• This reference identifies the Workspaces that contain this VersionedExtent.

MOF Versioning and Lifecycle Development, v2.0 7

5.6 Context Diagram
This section defines a metamodel for selecting specific Versions of Extents.

Figure 5.3 - Context Diagram

5.6.1 Class Session
This logically represents the client’s current session. By first attaching and selecting the Workspace through the Session,
the other MOF 2 APIs can transparently access specific versions without being aware of it.

5.6.2 Class Workspace
This selects a set of versions that are accessed together for a Session or Sessions. Unlike Session this is a persistent
object.

A Workspace selects versions via VersionedExtent objects.
8 MOF Versioning and Lifecycle Development, v2.0

An important constraint is that a Workspace may contain at most one VersionedExtent for a given VersionHistory and at
most one Configuration for a given BaselineHistory.

5.6.2.1 References

versionedExtent, type = VersionedExtent, [0..*], isReadOnly = true

• This refers to all VersionedExtents in this Workspace (inclusive of checked out extents).

configuration, type = Configuration, [0..*], isReadOnly = true

• This refers to all Configurations in this Workspace.

5.6.2.2 Operations

copy (workspace : Workspace), return type = Workspace, isQuery = false

• Returns a new workspace that selects the same configuration of Versions and Baselines as the specified workspace.

restore (version: Version), return type = VersionedExtent, isQuery = false

• Create a new VersionedExtent in this Workspace for the specified Version, or if the Version is a Baseline, a new
Configuration in this Workspace for the specified Baseline. This Workspace must not already select a Version for
the VersionHistory of the specified Version.

update (version : Version), return type = null, isQuery = false

• Updates the VersionedExtent in this Workspace for the VersionHistory of this Version to select the specified
Version, or if the Version is a Baseline, updates the Configuration in this Workspace for the BaselineHistory of
this Baseline to select the specified Baseline (which then updates the Workspace with each of the versions in that
Baseline).

merge (version : Version), return type = null, isQuery = false

• If the Version is not a Baseline, this merges the specified Version into the VersionedExtent in this Workspace for
the VersionHistory of this Version. If the version is a predecessor or equal to the baseVersion of the
VersionedExtent, the VersionedExtent is left unmodified. If the version is a successor of the baseVersion of the
VersionedExtent, the VersionedExtent is updated to select the version. If the version is not a predecessor of, equal
to, or a successor of the baseVersion of the VersionedExtent, the specified version is added to the conflict attribute
of the VersionedExtent.

• If the Version is a Baseline, this merges the specified Baseline into the Configuration in this Workspace for the
BaselineHistory of this Baseline. If the Baseline is a predecessor or equal to the +baseline of the Configuration, the
Configuration is left unmodified. If the Baseline is a successor of the +baseline of the Configuration, the
Configuration is updated to select the Baseline. If the Baseline is not a predecessor of, equal to, or a successor of
the +baseline of the Configuration, the specified Baseline is added to the previousBaseline property of the
Configuration, and each of the versions of the specified Baseline are merged into the Workspace.

lookupByVersionHistory (versionHistory : VersionHistory), return type = VersionedExtent, [0..1] isQuery = true

• Returns the VersionedExtent, if any, in this Workspace for the specified versionHistory.

getVersionSet (), return type = VersionedExtent, [0..*] isQuery = true

• Returns the VersionedExtents, inclusive of those that are checked out, that are being referenced by this Workspace.

getCheckedOutVersionSet (), return type = VersionedExtent, [0..1] isQuery = true

• Returns only the VersionExtents referenced by this Workspace that have a status of checked out.
MOF Versioning and Lifecycle Development, v2.0 9

5.6.3 Class Configuration
Selects a Baseline for the Workspace and determines the other Configurations that are the members of this Configuration.

5.6.3.1 Attributes

annotation, type = String

• The annotation of a new Configuration that is used for the annotation of a new Baseline that is created through the
makeBaseline operation.

5.6.3.2 References

baseline, type = Baseline, [1..1], isReadOnly = true

• The Baseline that is used by this Configuration to select a set of Versions.

previousBaseline, type = Baseline, [1..*], isReadOnly = true

• This reference identifies the baselines that will be the previousVersion for the baseline that will be created when
makeBaseline is applied to this Configuration.

member, type = Configuration, [0..*], isReadOnly = true, inverse = member-of

• Configurations which are logically included in this Configuration.

member-of, type = Configuration, [0..*], isReadOnly = false, inverse = member

• Configurations which logically include this Configuration.

versionedExtents, type = VersionedExtents, [0..*], isReadOnly = true, inverse = configuration

• The VersionedExtents that belong to this Configuration.

5.6.3.3 Operations

makeBaseline (), return type = void isQuery = true

• Creates a new Baseline based upon the Versions selected in the Workspace by the versionedExtents of this
Configuration. This also copies the annotation into the new Baseline and removes the annotation from the
Configuration.

getBaselineHistory (), return type = BaselineHistory isQuery = true

• Returns the BaselineHistory for this Configuration.

5.6.4 Class Baseline
Selects a set of Versions, with no two versions from the same VersionHistory.

5.6.4.1 Superclasses

Version

5.6.4.2 References

configuration, type = Configuration, [0..*], isReadOnly = true, inverse = baseline

• Configurations that refer to this Baseline.
10 MOF Versioning and Lifecycle Development, v2.0

member, type = Configuration, [0..*], isReadOnly = true, inverse = member-of

• Baselines which are logically included in this Baseline.

member-of, type = Configuration, [0..*], isReadOnly = true, inverse = member

• Baselines which logically include this Baseline.

5.6.5 Class BaselineHistory
A BaselineHistory contains all the Baselines, just as a VersionHistory contains all Versions of a given Versioned Extent.

5.6.5.1 Superclasses

VersionHistory

5.6.6 Class WorkspaceFactory
Creates instances of Workspace

5.6.6.1 Superclasses

MOF::Identifiers::Factory

5.6.6.2 Operations

create (), return type = Workspace, isQuery = false

• Returns a new workspace that selects no Versions.

create(configuration : Configuration), return type = Workspace, [0..1] isQuery = false

• Creates a Workspace based upon a Configuration. The Versions that are returned from the Configuration Baseline
are restored into a new Workspace and Configuration. The new Workspace Configuration has its base set to the
Configuration supplied.

5.6.7 Class ConfigurationFactory
Creates instances of Configuration.

5.6.7.1 Superclasses

MOF::Identifiers::Factory

5.6.7.2 Operations

create (workspace : Workspace), return type = Configuration, isQuery = false

• Returns a new Configuration with no Baseline for the specified Workspace.

5.7 Development Lifecycle Diagram
This links to a very simple metamodel containing just two classes to represent the current State of an Element; and to
represent the Lifecycle related to a class. This could be left very simple and stand-alone or it could be merged/extended
with something like the SPEM 1.1 metamodel.
MOF Versioning and Lifecycle Development, v2.0 11

Figure 5.4 - State Machine Package

Above is the StateMachine package. Note that the properties are derived - hiding exactly how a more detailed metamodel
might link States to a Statemachine.

Figure 5.5 - State Machine Package with Properties

The Properties added by this specification are shown here: note that no Properties are added to the StateMachine package.

Class and Element are merged with MOF::Reflection allowing any element to have a State and any (meta)Class to have
an associated StateMachine as its Lifecycle.

This shows that a lifecycle StateMachine may be associated with a MOF Class, and each instance (represented by MOF’s
Reflective::Element) may have a State from that lifecycle.

5.7.1 Class Element

5.7.1.1 Attributes

None
12 MOF Versioning and Lifecycle Development, v2.0

5.7.1.2 References

currentState: State {readOnly}

• This represents the current state of development of the element (at this version) within the lifecycle associated with
its class.

5.7.1.3 Operations

changeState (state : State)

• This operation is required to change the state of an object. This enforces any permitted transitions defined by the
StateMachine.

5.7.1.4 Constraints

The currentState of an Element is a member of the states in the Lifecycle for that Element’s metaclass.

 inv: getMetaclass().lifecycle.state includes self.state

5.7.2 Class Class

5.7.2.1 Attributes

None

5.7.2.2 References

lifecycle: StateMachine

• This represents the set of States (and possibly transitions) that the instances of the class may undergo.
MOF Versioning and Lifecycle Development, v2.0 13

14 MOF Versioning and Lifecycle Development, v2.0

INDEX

A
attributes 5

B
BaselineHistory 11

C
Class Baseline 10
Class BaselineHistory 11
Class Class 13
Class Configuration 10
Class ConfigurationFactory 11
Class Element 12
Class Session 8
Class Version 4
Class VersionedExtent 6
Class VersionHistory 6
Class Workspace 8
Class WorkspaceFactory 11
Configuration 10
Context diagram 8

D
Development Lifecycle Diagram 11

I
issues/problems iv

L
Language Formalism 3

M
MOF

Reflection 12

O
Object Management Group, Inc. (OMG) iii
OMG specifications iii

P
Package dependencies 3
Platform Independent Model (PIM) 1
Platform Specific Model (PSM) 1

R
References 1

S
Session 8
State Machine Package with Properties 12
StateMachine package 12

T
typographical conventions iv

V
VersionedExtent 3
VersionHistory 3, 11
versioning API 3

versioning diagram 3

W
Workspace 8
MOF Versioning and Lifecycle Development, v2.0 15

16 MOF Versioning and Lifecycle Development, v2.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Additional Information
	4.1 Acknowledgements
	4.2 Proof of Concept
	4.3 Changes or Extensions to OMG Specifications

	5 Metamodel Specification
	5.1 Package Dependencies
	5.2 Versioning Diagram
	5.3 Class Version
	5.3.1 Attributes
	5.3.2 References
	5.3.3 Operations

	5.4 Class VersionHistory
	5.4.1 References
	5.4.2 Operations

	5.5 Class VersionedExtent
	5.5.1 Superclasses
	5.5.2 References
	5.5.3 Operations
	5.5.4 Attributes
	5.5.5 References

	5.6 Context Diagram
	5.6.1 Class Session
	5.6.2 Class Workspace
	5.6.2.1 References
	5.6.2.2 Operations

	5.6.3 Class Configuration
	5.6.3.1 Attributes
	5.6.3.2 References
	5.6.3.3 Operations

	5.6.4 Class Baseline
	5.6.4.1 Superclasses
	5.6.4.2 References

	5.6.5 Class BaselineHistory
	5.6.5.1 Superclasses

	5.6.6 Class WorkspaceFactory
	5.6.6.1 Superclasses
	5.6.6.2 Operations

	5.6.7 Class ConfigurationFactory
	5.6.7.1 Superclasses
	5.6.7.2 Operations

	5.7 Development Lifecycle Diagram
	5.7.1 Class Element
	5.7.1.1 Attributes
	5.7.1.2 References
	5.7.1.3 Operations
	5.7.1.4 Constraints

	5.7.2 Class Class
	5.7.2.1 Attributes
	5.7.2.2 References

