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Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications Catalog is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
                                                                                                                                                                                iii        



• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A - Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

During a system’s evolution it will go through a number of iterations, driven by changes to a model at some level. The 
model for an existing deployed system is a valuable asset for understanding that system and making minor changes for 
bug fixes, etc. So it is important to preserve it when making broader changes for new functionality. The problem being 
addressed by this specification is to manage the co-existence of multiple versions of such metadata in a Meta Object 
Facility and their inclusion in different configurations (for example, a specific version of a Platform Independent Model 
(PIM), the corresponding version of the derived Platform Specific Model (PSM), and the corresponding version of the 
generated system).

A major problem related to the presence of multiple versions is to determine the correct one to use in response to a client 
request such as obtaining all instances of Package (it would not generally be useful to return many different versions of 
the same package), or even accessing the Features of a Class (again it would not be useful to return all Features the class 
has ever had, especially when some have replaced others; and yet again it would not be sensible to return all versions of 
those Features). An important requirement for version management is support of context: this is a client-specified 
property related to metadata access requests that is used to select the appropriate versions.

A related problem is the lack of a consistent mechanism for determining the status of versions of models or artifacts with 
respect to a development lifecycle (for example draft->approved->unit-tested->system-tested->live->withdrawn). This is 
often the most useful way of specifying a context (see previous paragraph) and to control the operations that may be 
applied to the metadata (e.g., to prohibit changes to the model for the ‘live’ version). 

2 Conformance

A compliant implementation must implement the APIs generated by applying a MOF language binding to the metamodels 
in this specification.

3 Normative References

MOF 2.0 Core Specification: formal/06-01-01

SPEM 1.1 Specification: formal//05-01-06

4 Additional Information

4.1 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Adaptive

• International Business Machines
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• MetaMatrix

• Unisys

4.2 Proof of Concept

This specification represents the implementation in Adaptive’s Adaptive Repository™ product: a MOF compliant 
repository that has been extended with this versioning capability and, as part of Adaptive’s IT Portfolio Manager ™ 
linked with SPEM to add a development lifecycle capability. The technology has been in the market for more than 2 
years.

This specification is also designed to reflect the experience gained from standardizing different versioning products as 
part of JSR 147 Workspace Versioning and Configuration Management  http://www.jcp.org/aboutJava/communityprocess/
review/jsr147/.

4.3 Changes or Extensions to OMG Specifications

There are no required changes or extensions to OMG specifications. 
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5 Metamodel Specification

This chapter outlines the public elements of the Versioning package, which is defined as a MOF metamodel depicted in 
the following UML diagrams. Note that the versioning API is automatically generated from this metamodel, following the 
normal MOF generation rules which will be specific to the language mapping and so are not contained in this 
specification. The remainder of this section explains the classes in the metamodel. 

Note:  Where ‘isReadOnly = true’ there are generally specific operations for updating the value either directly or 
indirectly.

5.1 Package Dependencies
The dependencies with other packages are depicted here.

Figure 5.1 - Package Dependencies

Packages Versioning and StateMachine are defined by this specification. 

5.2 Versioning Diagram 
The package provides the core versioning service. A VersionHistory and an initial Version is created automatically when 
a new VersionedExtent is created. The VersionHistory of a given VersionedExtent contains all versions of that 
VersionedExtent.

A VersionedExtent is the object that determines which Version from a given VersionHistory is currently selected in a 
given Workspace, and whether or not changes are being made to that extent in that workspace (i.e., whether or not that 
VersionedExtent is checked out). To provide key performance optimizations (such as copy based Workspaces), each 
Workspace must have its own set of VersionedExtents. This also ensures that each Workspace can decide independently 
which Version that is selected and whether or not that VersionedExtent is checked out. So each Workspace that wants to 
select a Version from a given VersionHistory has its own VersionedExtent for that VersionHistory, which means a 
VersionHistory is related to more than one VersionedExtent (in particular, is related to a different VersionedExtent for 
each different Workspace that selects a Version from that VersionHistory).
MOF Versioning and Lifecycle Development, v2.0        3



Figure 5.2 - Versioning Diagram

5.3 Class Version 
Each instance of Version is a snapshot of a VersionedExtent.  
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5.3.1 Attributes
id, type = String, isReadOnly = true

• This attribute is an id for the version that is unique within the VersionHistory of that version. 

• The format of the string is implementation-defined.

label, type = Label, multivalued [0..*], isReadOnly = true

• A user assigned string that can be used to identify the version. Several can be applied to one version. Also, version 
labels must be unique among all the version labels within the VersionHistory of that version.

annotation, type = String, [0..1] 

• This attribute can contain a description of the version.

creationDate, type = Long, isReadOnly = true

• Used to record the timestamp when the Version object was created.

5.3.2 References
versionHistory, type = VersionHistory, isReadOnly = true

• The VersionHistory for this Version.

previousVersion, type = Version, [0..*],  isReadOnly = true, inverse = nextVersion

• This refers to the immediately previous version (or versions, in case this Version resulted from a merge).  Every 
Version that is not the root version of a VersionHistory has at least one previousVersion.

nextVersion, type = Version, [0..*], isReadOnly = true, inverse = previousVersion

• This refers to ordered subsequent versions.

baseline, type = Baseline, [0..*], isReadOnly = true, inverse = version

• This refers to the Baselines that reference this Version.

5.3.3 Operations
addLabel (newLabel: Label) operation, return type = void

• Adds a label to the version.  If that label currently appears on another version in the version history of this Version, 
it is automatically removed from that other version.  See the label attribute for further details.

removeLabel (oldLabel: Label) operation, return type = void

• Removes the indicated label from the version. See the label attribute for further details.

delete (), return type = void

• Removes the version object. This method also fixes up the links in the version graph so that it is still valid.  
MOF Versioning and Lifecycle Development, v2.0        5



5.4 Class VersionHistory 
A VersionHistory contains all versions of a given VersionedExtent.

5.4.1 References
rootVersion, type = Version, isReadOnly = true

• This refers to the initial version of the VersionedExtent. The rootVersion has no previousVersion.  All other 
versions have at least one previousVersion.

versions, type = Version, [1..*], isReadOnly = true

• This refers to all versions in this VersionHistory, including the rootVersion. Ordering of the versions is defined by 
the previousVersion/nextVersion relations.

5.4.2 Operations
lookupByVersionId (id : String), return type = Version, [0..1], isQuery = true

• Returns the Version, if any, in this VersionHistory having the specified id.

lookupByLabel (label : Label), return type = Version, [0..1],  isQuery = true

• Returns the version, if any, in this VersionedHistory having the specified label.

delete (), return type = void

• Removes the VersionHistory object.  This method also deletes all Versions in the VersionHistory.  

5.5 Class VersionedExtent
Represents a MOF Extent for which versioning has been enabled. 

5.5.1 Superclasses
MOF:Extent

5.5.2 References
configuration, type = Configuration, isReadOnly = true

• The Configuration to which this VersionedExtent belongs.

5.5.3 Operations
checkOut () operation, return type = null, isQuery = false

• Allows modifications to be performed on the content of this VersionedExtent.

checkIn (), return type = Version, isQuery = false

• Creates a new Version object with the current content of this VersionedExtent, disallows modifications to be made 
to the content of this VersionedExtent until it is subsequently checked out. This Version is now available to other 
Workspaces. 
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lookupByVersionId (id : String), return type = Version, [0..1] isQuery = true

• Returns the version, if any, of this VersionedExtent having the specified id.

lookupByLabel (label : String), return type = Version, [0..1],  isQuery = true

• Returns the version, if any, of this VersionedExtent having the specified label.

delete (), return type = void

• Removes the VersionedExtent object.  

setConfiguration (configuration : Configuration), return type = void

• Changes the configuration to which this VersionedExtent belongs.

5.5.4 Attributes
isCheckedOut, type = Boolean, isReadOnly = true 

• A VersionedExtent is modifiable only if isCheckedOut is true.

annotation, type = String, [0..1] 

• When isCheckedOut is true, this attribute contains the annotation attribute for the version that will be created when 
this VersionedExtent is checked in. If the isCheckedOut is false that attribute does not exist and cannot be written 
to.

5.5.5 References
versionHistory, type = VersionHistory, isReadOnly = true

• The VersionHistory that contains the versions for this VersionedExtent.

baseVersion, type = Version, isReadOnly = true

• The currently selected version for this VersionedExtent. This is the version that this VersionedExtent is currently 
based on, but when checked-out, is not necessarily equal to. In particular, the base version of a checked-out 
VersionedExtent is the Version content that was started with (i.e., that the current checked-out content is ‘based 
on’).

previousVersion, type = Version, [1..*], isReadOnly = false

• When isCheckedOut is true, this reference identifies the versions that will be the previousVersion for the version 
that will be created when this VersionedExtent is checked in.

conflict reference, type = Version, [0..*], isReadOnly = false, composite

• These are the conflicts created by a merge. After the client resolves the conflict (by appropriately modifying the 
content of the VersionedExtent), the client indicates that the conflict has been resolved by adding the version to the 
previousVersion list of the VersionedContext, and removing the version from the conflict list.

workspace, type = Workspace, [1], isReadOnly = true

• This reference identifies the Workspaces that contain this VersionedExtent. 
 

MOF Versioning and Lifecycle Development, v2.0        7



5.6  Context Diagram
This section defines a metamodel for selecting specific Versions of Extents.

Figure 5.3 - Context Diagram

5.6.1 Class Session
This logically represents the client’s current session. By first attaching and selecting the Workspace through the Session, 
the other MOF 2 APIs can transparently access specific versions without being aware of it. 

5.6.2 Class Workspace
This selects a set of versions that are accessed together for a Session or Sessions. Unlike Session this is a persistent 
object.

A Workspace selects versions via VersionedExtent objects.
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An important constraint is that a Workspace may contain at most one VersionedExtent for a given VersionHistory and at 
most one Configuration for a given BaselineHistory.

5.6.2.1  References

versionedExtent, type = VersionedExtent, [0..*], isReadOnly = true

• This refers to all VersionedExtents in this Workspace (inclusive of checked out extents).

configuration, type = Configuration, [0..*], isReadOnly = true

• This refers to all Configurations in this Workspace.

5.6.2.2  Operations

copy (workspace : Workspace), return type = Workspace, isQuery = false

• Returns a new workspace that selects the same configuration of Versions and Baselines as the specified workspace.

restore (version: Version), return type = VersionedExtent, isQuery = false

• Create a new VersionedExtent in this Workspace for the specified Version, or if the Version is a Baseline, a new 
Configuration in this Workspace for the specified Baseline. This Workspace must not already select a Version for 
the VersionHistory of the specified Version.

update (version : Version), return type = null, isQuery = false

• Updates the VersionedExtent in this Workspace for the VersionHistory of this Version to select the specified 
Version, or if the Version is a Baseline, updates the Configuration in this Workspace for the BaselineHistory of 
this Baseline to select the specified Baseline (which then updates the Workspace with each of the versions in that 
Baseline). 

merge (version : Version), return type = null, isQuery = false

• If the Version is not a Baseline, this merges the specified Version into the VersionedExtent in this Workspace for 
the VersionHistory of this Version. If the version is a predecessor or equal to the baseVersion of the 
VersionedExtent, the VersionedExtent is left unmodified. If the version is a successor of the baseVersion of the 
VersionedExtent, the VersionedExtent is updated to select the version. If the version is not a predecessor of, equal 
to, or a successor of the baseVersion of the VersionedExtent, the specified version is added to the conflict attribute 
of the VersionedExtent.

• If the Version is a Baseline, this merges the specified Baseline into the Configuration in this Workspace for the 
BaselineHistory of this Baseline. If the Baseline is a predecessor or equal to the +baseline of the Configuration, the 
Configuration is left unmodified. If the Baseline is a successor of the +baseline of the Configuration, the 
Configuration is updated to select the Baseline. If the Baseline is not a predecessor of, equal to, or a successor of 
the +baseline of the Configuration, the specified Baseline is added to the previousBaseline property of the 
Configuration, and each of the versions of the specified Baseline are merged into the Workspace.

lookupByVersionHistory (versionHistory : VersionHistory), return type = VersionedExtent, [0..1] isQuery = true

• Returns the VersionedExtent, if any, in this Workspace for the specified versionHistory.

getVersionSet (), return type = VersionedExtent, [0..*] isQuery = true

• Returns the VersionedExtents, inclusive of those that are checked out, that are being referenced by this Workspace.

getCheckedOutVersionSet (), return type = VersionedExtent, [0..1] isQuery = true

• Returns only the VersionExtents referenced by this Workspace that have a status of checked out. 
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5.6.3 Class Configuration
Selects a Baseline for the Workspace and determines the other Configurations that are the members of this Configuration.

5.6.3.1 Attributes

annotation, type = String

• The annotation of a new Configuration that is used for the annotation of a new Baseline that is created through the 
makeBaseline operation.

5.6.3.2 References

baseline, type = Baseline, [1..1], isReadOnly = true

• The Baseline that is used by this Configuration to select a set of Versions.

previousBaseline, type = Baseline, [1..*], isReadOnly = true

• This reference identifies the baselines that will be the previousVersion for the baseline that will be created when 
makeBaseline is applied to this Configuration.

member, type = Configuration, [0..*], isReadOnly = true, inverse = member-of

• Configurations which are logically included in this Configuration.

member-of, type = Configuration, [0..*], isReadOnly = false, inverse = member

• Configurations which logically include this Configuration.

versionedExtents, type = VersionedExtents, [0..*], isReadOnly = true, inverse = configuration

• The VersionedExtents that belong to this Configuration.

5.6.3.3 Operations

makeBaseline (), return type = void isQuery = true

• Creates a new Baseline based upon the Versions selected in the Workspace by the versionedExtents of this 
Configuration. This also copies the annotation into the new Baseline and removes the annotation from the 
Configuration.

getBaselineHistory (), return type = BaselineHistory isQuery = true

• Returns the BaselineHistory for this Configuration.

5.6.4 Class Baseline
Selects a set of Versions, with no two versions from the same VersionHistory.

5.6.4.1 Superclasses

Version

5.6.4.2 References

configuration, type = Configuration, [0..*], isReadOnly = true, inverse = baseline

• Configurations that refer to this Baseline. 
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member, type = Configuration, [0..*], isReadOnly = true, inverse = member-of

• Baselines which are logically included in this Baseline.

member-of, type = Configuration, [0..*], isReadOnly = true, inverse = member

• Baselines which logically include this Baseline.

5.6.5 Class BaselineHistory
A BaselineHistory contains all the Baselines, just as a VersionHistory contains all Versions of a given Versioned Extent.

5.6.5.1 Superclasses

VersionHistory

5.6.6 Class WorkspaceFactory 
Creates instances of Workspace

5.6.6.1 Superclasses

MOF::Identifiers::Factory

5.6.6.2 Operations

create (), return type = Workspace, isQuery = false

• Returns a new workspace that selects no Versions.

create(configuration : Configuration), return type = Workspace, [0..1] isQuery = false

• Creates a Workspace based upon a Configuration. The Versions that are returned from the Configuration Baseline 
are restored into a new Workspace and Configuration. The new Workspace Configuration has its base set to the 
Configuration supplied.

5.6.7 Class ConfigurationFactory 
Creates instances of Configuration.

5.6.7.1 Superclasses

MOF::Identifiers::Factory

5.6.7.2 Operations

create (workspace : Workspace), return type = Configuration, isQuery = false

• Returns a new Configuration with no Baseline for the specified Workspace.

5.7 Development Lifecycle Diagram
This links to a very simple metamodel containing just two classes to represent the current State of an Element; and to 
represent the Lifecycle related to a class. This could be left very simple and stand-alone or it could be merged/extended 
with something like the SPEM 1.1 metamodel.
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Figure 5.4 - State Machine Package

Above is the StateMachine package. Note that the properties are derived - hiding exactly how a more detailed metamodel 
might link States to a Statemachine.

Figure 5.5 - State Machine Package with Properties

The Properties added by this specification are shown here: note that no Properties are added to the StateMachine package.

Class and Element are merged with MOF::Reflection allowing any element to have a State and any (meta)Class to have 
an associated StateMachine as its Lifecycle.

This shows that a lifecycle StateMachine may be associated with a MOF Class, and each instance (represented by MOF’s 
Reflective::Element) may have a State from that lifecycle.

5.7.1 Class Element

5.7.1.1 Attributes

None
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5.7.1.2 References

currentState: State {readOnly}

• This represents the current state of development of the element (at this version) within the lifecycle associated with 
its class.

5.7.1.3 Operations

changeState (state : State) 

• This operation is required to change the state of an object. This enforces any permitted transitions defined by the 
StateMachine.

5.7.1.4 Constraints

The currentState of an Element is a member of the states in the Lifecycle for that Element’s metaclass.

 inv: getMetaclass().lifecycle.state includes self.state

5.7.2 Class Class

5.7.2.1 Attributes

None

5.7.2.2 References

lifecycle: StateMachine 

• This represents the set of States (and possibly transitions) that the instances of the class may undergo. 
MOF Versioning and Lifecycle Development, v2.0        13
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