
Management of Event Domains
Specification

Version 1.0
June 2001

Copyright 2000, Alcatel
Copyright 2000, FUJITSU LIMITED
Copyright 2000, International Business Machines
Copyright 2000, NEC
Copyright 2000, Nippon Telegraph and Telephone (NTT) Corporation
Copyright 2000, Object Management Group (OMG)

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver-
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having con-
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protect-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable for
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Object
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize devel-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indi-
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in sub-
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB,
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a
trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . v

1. Specification Description . 1-1
1.1 Overview . 1-1

1.2 Architectural Features . 1-2

1.3 Event Domain Architecture Overview 1-2

1.4 Connection Between Event Channels 1-4

1.5 Event Forwarding . 1-5

1.5.1 Sharing Event Type Offer and Subscription
Information in the Event Domain 1-6

1.5.2 Topology Management of an Event Domain . . 1-8
1.5.3 Connection of Clients to the Event Domain . . 1-8

1.5.4 Quality of Service Properties 1-8

1.6 Conformance Statement . 1-8

2. Event Domain Interfaces . 2-1
2.1 CosEventDomain Interface . 2-1

2.2 The EventDomain Interface . 2-6
2.2.1 add _channel . 2-7

2.2.2 get_all_channels . 2-8
2.2.3 get_channel . 2-8

2.2.4 remove_channel . 2-8
2.2.5 add_connection . 2-8

2.2.6 get_all_connections . 2-9
2.2.7 get_connection . 2-9

2.2.8 remove_connection . 2-9
June 2001 Management of Event Domains, v1.0 i

2.2.9 get_offer_channels . 2-10
2.2.10 get_subscription_channels 2-10

2.2.11 destroy . 2-10
2.2.12 get_cycles . 2-10

2.2.13 get_diamonds . 2-10
2.2.14 set_default_consumer_channel 2-11

2.2.15 set_default_supplier_channel 2-11
2.2.16 connect_push_consumer 2-11

2.2.17 connect_pull_consumer 2-12
2.2.18 connect_push_supplier 2-12

2.2.19 connect_pull_supplier 2-13
2.2.20 connect_structured_push_consumer 2-13

2.2.21 connect_structured_pull_consumer 2-13
2.2.22 connect_structured_push_supplier 2-14

2.2.23 connect_structured_pull_supplier 2-14
2.2.24 connect_sequence_push_consumer 2-14

2.2.25 connect_sequence_pull_consumer 2-15
2.2.26 connect_sequence_push_supplier 2-15

2.2.27 connect_sequence_pull_supplier 2-15
2.2.28 connect_push_consumer_with_id 2-16

2.2.29 connect_pull_consumer_with_id 2-16
2.2.30 connect_push_supplier_with_id 2-17

2.2.31 connect_pull_supplier_with_id 2-17
2.2.32 connect_structured_push_consumer_with_id . 2-18

2.2.33 connect_structured_pull_consumer_with_id . . 2-18
2.2.34 connect_structured_push_supplier_with_id . . . 2-18

2.2.35 connect_structured_pull_supplier_with_id . . . 2-19
2.2.36 connect_sequence_push_consumer_with_id . . 2-19

2.2.37 connect_sequence_pull_consumer_with_id . . . 2-20
2.2.38 connect_sequence_push_supplier_with_id . . . 2-20

2.2.39 connect_sequence_pull_supplier_with_id 2-20
2.2.40 The EventDomainFactory Interface 2-21

2.2.41 create_event_domain . 2-21
2.2.42 get_all_domains . 2-22

2.2.43 get_event_domain . 2-22

3. Typed Event Domain Interfaces . 3-1

3.1 The CosTypedEventDomainAdmin Module 3-1

3.2 The TypedEventDomain Interface 3-4

3.2.1 add_typed_channel . 3-5
3.2.2 get_typed_channel . 3-5
ii Management of Event Domains, v1.0 June 2001

3.2.3 add_typed_connection 3-5

3.2.4 set_default_typed_consumer_channel 3-6
3.2.5 set_default_supplier_channel 3-6

3.2.6 connect_typed_push_consumer 3-6
3.2.7 connect_typed_pull_consumer 3-7

3.2.8 connect_typed_push_supplier 3-7
3.2.9 connect_typed_pull_supplier 3-8

3.2.10 connect_typed_push_consumer_with_id 3-8
3.2.11 connect_typed_pull_consumer_with_id 3-9

3.2.12 connect_typed_push_supplier_with_id 3-9
3.2.13 connect_typed_pull_supplier_with_id 3-10

3.3 The TypedEventDomainFactory Interface 3-11
3.3.1 create_typed_event_domain 3-11

3.3.2 get_all_typed_domains 3-11
3.3.3 get_typed_event_domain 3-12

4. Log Domain Interfaces . 4-1
4.1 The DsLogDomainAdmin Module 4-1

4.2 The EventLogDomain Interface . 4-2
4.2.1 add _log . 4-3

4.2.2 get_log . 4-4
4.2.3 add_typed _log . 4-4

4.2.4 get_typed_log 4-4

4.3 The EventLogDomainFactory Interface 4-4
4.3.1 create_event_log_domain 4-5

4.3.2 get_all_event_log_domains 4-5
4.3.3 get_event_log_domain 4-5

Appendix A - Complete IDL . A-1
June 2001 Management of Event Domains, v1.0 iii

iv Management of Event Domains, v1.0 June 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by several hundred members, including information system vendors, software
developers and users. Founded in 1989, the OMG promotes the theory and practice of
object-oriented technology in software development. The organization's charter
includes the establishment of industry guidelines and object management specifications
to provide a common framework for application development. Primary goals are the
reusability, portability, and interoperability of object-based software in distributed,
heterogeneous environments. Conformance to these specifications will make it possible
to develop a heterogeneous applications environment across all major hardware
platforms and operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
June 2001 Management of Event Domains, v1.0 v

Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:
vi Management of Event Domains, v1.0 June 2001

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Alcatel

• FUJITSU LIMITED

• International Business Machines Corporation

• IONA Technologies, Plc.

• NEC Corporation

• Nippon Telegraph and Telephone (NTT) Corporation
June 2001 Managment of Event Domains: Acknowledgments vii

viii Management of Event Domains, v1.0 June 2001

 Overview 1
This document was created based on the Management of Event Domain FTF Final
Adopted specification (dtc/00-08-01) and the FTF report (dtc/00-12-03).

Contents

This chapter contains the following sections.

1.1 Introduction

This document specifies an architecture and interfaces for managing event domains. As
used throughout this document, an event domain is a set of one or more event channels
that are grouped together for the purposes of management, and/or for providing
enhanced capabilities to the clients of those channels such as improved scalability. The
event channels that are managed by an event domain support one of the channel
interfaces defined in the OMG Notification Service specification. Following the
structure of the OMG Notification Service, a generic domain interface is defined for
managing generic, untyped channels. Another domain interface is defined that can
manage both untyped and typed channels. Additionally, a specialized domain is

Section Title Page

“Introduction” 1-1

“Architectural Features” 1-2

“Architecture Overview” 1-2

“Connection Between Event Channels” 1-4

“Event Forwarding” 1-5

“Conformance Statement” 1-9
June 2001 Management of Event Domains, v1.0 1-1

1

defined that can manage both channels and logs as defined by the OMG Telecom Log
Service specification. Note that event domains may contain one or more disjointed
topologies of interconnected channels, and possibly one or more channels that are not
connected to any other channels.

1.1.1 Key Features

The main features of the event domains defined in this specification are as follows:

• They extend all of the features of the OMG Notification Service to the domain
level, which allows managing a group of channels as a related entity. Client
applications developed to the Notification Service interfaces can use the channels
within a domain unchanged.

• They provide an interface for readily setting up and managing connections between
event channels.

• Even when connections between event channels are changed during runtime, it is
still possible to acquire the EventType information offered by all upstream channels,
and the EventType information subscribed to by all downstream channels.

• They can detect when a new connection between channels leads to the creation of
cycle or diamond configurations.

• They provide clients with interfaces to connect themselves to the event domain.

1.1.2 Architectural Features

The architectural features supported by this specification are described in this chapter.
After looking at the overall structure, the following items are explained.

• Connections between event channels,

• Event forwarding within a channel topology,

• Sharing of event offer and subscription information in the event domain,

• Topology management,

• Connection management of clients to the domain.

1.2 Architecture Overview

The service architecture is outlined in this section. An event domain defined in this
specification extends the features supported by event channels as defined by the
Notification Service to groups of inter-related channels. Interfaces are defined that
enable the creation and management of these groups of inter-related channels, and for
forming and managing connections between channels within a domain.

The event domains defined by this specification are designed to manage a group of
event channels that support the interfaces defined by the OMG Notification Service
specification. A clear goal of this specification is to define the capability to manage an
inter-related group of channels that can be created via an implementation of the OMG
1-2 Management of Event Domains, v1.0 June 2001

1

Notification Service. This will enable implementations of this specification that can
manage channels that are created using existing implementations of the OMG
Notification Service. While this point may seem insignificant, it is subtly important
due to the reality that implementations of the OMG Notification Service are already
commercially available, and end-users require tools that enable the management of
groups of inter-related channels created using their existing products. Another way to
state this goal is that this specification is defined to ensure that new Notification
Service implementations are not required in order to support the channels necessary for
management by event domains.

Figure 1-1 shows the relationships of the interfaces defined in this specification, and
those of the OMG Notification Service. In this figure, the IDL module names are
abbreviated as follows:

• NC: CosNotifyComm

• NCA: CosNotifyChannelAdmin

• EDA: CosEventDomainAdmin

Figure 1-1 General Architecture of the Event Domain.

EventDomain

EDA::EventDomain

NCA::Channel
NCA::ConsumerAdmin NCA::SupplierAdmin

Channel Channel

NCA::Channel
NCA::ConsumerAdmin NCA::SupplierAdmin

NC::PushSupplier
PushSupplier

NC::SequencePushSupplier
SequencePushSupplier

NC::PushConsumer PushConsumer

NC::SequencePushConsumer SequencePullConsumer

NC::StructuredPushConsumer StructuredPushConsumeStructuredPushSupplier NC::StructuredPushSupplier

NC::PullSupplier
PullSupplier

StructuredPullSupplier NC::StructuredPullSupplier

NC::SequencePullSupplier
SequencePullSupplier

PullConsumer

StructuredPullConsumer

SequencePullConsumer

NC::PullConsumer

NC::StructuredPullConsumer

NC::SequencePullConsumer

NCA::ProxyPushSupplier

NCA::ProxyPullSupplier

NCA::StructuredProxyPushSupplier

NCA::StructuredProxyPullSupplier

NCA::SequenceProxyPushSupplier

NCA::SequenceProxyPullSupplier

NCA::ProxyPushConsumer

NCA::ProxyPullConsumer

NCA::StructuredProxyPullConsumer

NCA::SequenceProxyPullConsumer

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPullConsumer

NCA::SequenceProxyPullConsumer

NCA::StructuredProxyPushConsumer

NCA::SequenceProxyPushConsumer

NCA::StructuredProxyPullSupplier

NCA::SequenceProxyPullSupplier

NCA::StructuredProxyPushSupplier

NCA::SequenceProxyPushSupplier

NC CosNotifyComm
NCA CosNotifyChannelAdmin
EDA CosEventDomainAdmin
June 2001 Management of Event Domains: Architecture Overview 1-3

1

Figure 1-1 represents the general architecture of the Event Domain. It shows the different
relationships it has with the elements it manages and the relationships that are between
those elements.

In this figure, the Event Domain manages classic Notification Service channels, which
are connected to be classic Notification Service clients (any structured, sequence
push/pull suppliers and consumers). Note that this figure shows only the version of an
event domain that supports untyped Notification Service channels. A subtype of this
domain is also defined that supports both untyped and typed Notification Service
channels, and another that supports logs as defined by the Telecom Log Service as well.

Note that a given channel within an event domain may be connected to any
combination of other channels in the same domain, endpoint suppliers, and endpoint
consumers. Channels are interconnected using Notification Service style proxy
interfaces, while clients connect to channels using the interfaces and mechanisms
defined by the Notification Service. Alternatively, clients can use the operations
supported by the EventDomain to request connection to the default channel within
the domain, or a specific channel identified by the client.

Event domains have a notion of membership. Before a domain can be used to form a
connection between two channels, each channel must be added as a member of the
domain. Channels may be members of multiple domains. Thus, event domains assign
identifiers to each channel that is added as a member, which uniquely identifies that
channel within the given domain.

1.3 Connection Between Event Channels

In the OMG Notification Service, endpoint suppliers connect to proxy consumers
provided on event channels, and endpoint consumers connect to proxy suppliers. Due
to the facts that proxy consumers inherit the endpoint consumer interface, and proxy
suppliers inherit the endpoint supplier interface, even with the OMG Notification
Service by itself it is possible to connect two channels as suppliers and consumers of
each other’s events. This is achieved by creating a proxy supplier object within one
channel (e.g., Channel A), and a proxy consumer object within another channel (e.g.,
Channel B), connecting the proxy supplier of Channel A as the supplier to Channel B’s
proxy consumer, and the proxy consumer of Channel B as the consumer of Channel A’s
proxy supplier.

While it is possible to achieve such connections using the interfaces defined in the
OMG Notification Service without any extensions, doing so is extremely cumbersome.
Essentially, the programmatic steps required involve:

• Getting a reference to the SupplierAdmin instance from one EventChannel.

• Creating a ProxyConsumer instance using this SupplierAdmin.

• Getting a reference to the ConsumerAdmin instance from another
EventChannel.

• Creating a ProxySupplier instance using this ConsumerAdmin.

• Connect to the ProxyConsumer using the obtained ProxySupplier instance
reference as input parameter.
1-4 Management of Event Domains, v1.0 June 2001

1

• Similarly, connect to the ProxySupplier using the ProxyConsumer instance
reference as input parameter.

An EventDomain interface has been defined for handling the above steps in one
operation. In addition, the EventDomain interface supports operations for managing
the proxy instances and connections created as a result of these steps, and for replying
to queries about their status.

Instances supporting the EventDomain interface manage the event channels they
logically contain, and any connections between those channels. The interface supports
operations for creating channels and registering them with the domain. Upon
registering a channel within its domain, the event domain assigns a MemberID to the
channel that is unique among all channels within the same domain. Thereafter, this ID
is used when establishing, checking, or removing connections between channels within
the domain. Connections are defined using a Connection data structure, which includes
the fields displayed in Figure 1-2.

Figure 1-2 Structure of a Connection

In this figure, the SupplierChannel and ConsumerChannel fields are the
MemberIDs of the two channels involved in the connection. Note that an event domain
can only be used to connect two channels that have both been added as members of the
target domain. The ClientType field indicates the form of events the two channels will
communicate with over the connection (i.e., Any, Structured, Sequence, or Typed), and
the NotificationStyle field indicates whether the two channels will communicate
using push or pull style.

1.4 Event Forwarding

Using the interfaces supported by the EventDomain interface, it is easy to create
topologies of interconnected channels. The topologies can be of arbitrary complexity,
including topologies that contain cycles in the directed graph of inter-connected
channels, or diamond shapes in the graph of interconnected channels meaning the same
event may reach a point in the graph by more than one route.

SupplierChannel

ConsumerChannel

ClientType

NotificationStyle
June 2001 Management of Event Domains: Event Forwarding 1-5

1

This specification defines mechanisms that enable detection of cycles or diamonds in
the graph of interconnected channels as connections are established between channels
using operations supported by the EventDomain interface. Quality of service
properties can be set upon an event domain that control whether or not cycles and/or
diamond shaped topologies are allowed within the domain. For instance, the property
CycleDetection can be set to either AuthorizeCycles or ForbidCycles, indicating
whether or not the operations that establish connections between channels within the
domain should raise an exception if establishing a particular connection will cause the
introduction of a cycle into the topology of channels to which the connection is being
added.

Note that by allowing clients to turn on or off cycle and diamond detection in this
fashion, whether or not cyclical and/or diamond topologies are allowed within an event
domain is controllable by end-users. This allows for the possibility that there may in
fact be scenarios in which end-users really do want to create such topologies, and also
allows for the possibility that the administrator of an event domain may want to
prevent end-users from creating such topologies. End-users who do choose to create
topologies that contain cycles should be aware of the fact that unless they set timeout
on events, events that are not filtered will loop endlessly through the topology.
Likewise, end-users who choose to create topologies that contain diamonds should be
aware of the fact that consumers may receive the same event multiple times (the
number of times that is equal to the number of paths by which the event may arrive at
the consumer).

1.4.1 Sharing Event Type Offer and Subscription Information in the Event
Domain

This section describes how event type offer and subscription information is shared,
managed, and referenced across event channels in an event domain.

The offer_change mechanism defined by the Notification Service is such that when
an end-point supplier invokes offer_change on its proxy consumer to inform the
channel to which it is connected of a change in the set of event types it will potentially
be supplying, the channel is responsible for sharing this information with all of its
consumers. This is done by the channel invoking offer_change on all consumers to
which it was connected, assuming the supplier’s offer_change resulted in a change to
the union of all event types that the channel can receive (which is not necessarily the
case). Note that one or more of these “consumers” upon which a channel is invoking
offer_change could actually be the proxy consumer(s) of another channel. Thus, in a
topology of interconnected channels, these offer_change invocations can potentially
be propagated throughout the topology.

A similar scenario exists in the case of subscription_change. A channel is
responsible for invoking the subscription_change operation on all of its suppliers
whenever the change to a client’s subscriptions (due to filters being added or removed,
or filter constraints being added, removed, or modified) results in a change to the set of
event types being subscribed to by consumers of the channel’s events. As was the case
1-6 Management of Event Domains, v1.0 June 2001

1

for offer_change invocations, in a topology of interconnected channels these
subscription_change invocations can potentially be propagated throughout the
topology.

Note that this propagation of offer and subscription information is subject to the same
potential problems that arise when events are propagated throughout a topology of
interconnected channels. If the topology involved contains cycles or diamonds, offer
and subscription information can potentially be propagated endlessly, or at least the
same information may be forwarded to the same points in the topology multiple times.
End-users who choose to setup channel topologies that contain cycles or diamonds
should be aware of this situation, and should likely consider turning off offer and
subscription information propagation (this can be done using mechanisms supported by
the OMG Notification Service).

End-point suppliers of events to a channel that is part of a channel topology managed
by an event domain can obtain information about all types of events being subscribed
to by channels anywhere downstream in the channel topology by invoking
obtain_subscription_types on the proxy consumers they to which they are
connected. Whether a given channel relies on its internal database of subscription types
obtained from previous invocations of obtain_subscription_types that it has
propagated to all channels to which it is connected as a supplier and information
passed to it from its consumer channels from previous propagations of
subscription_change, or if it propagates every invocation of
obtain_subscription_types to its consumer channels in order to obtain updated
subscription information before replying to the end-point supplier's request is an
implementation decision. Figure 1-3 on page 1-8 depicts one possible implementation
of event subscription information propagation within a channel topology.

Similarly, end-point consumers of events supplied by a channel that is part of a channel
topology managed by an event domain can obtain information about all types of events
being offered to it by channels anywhere downstream in the channel topology by
invoking obtain_offered_types on the proxy suppliers they to which they are
connected. Once again, whether a given channel relies on its internal database of offer
types obtained from previous invocations of obtain_offered_types that it has
propagated to all channels to which it is connected as a consumer and information
passed to it from its consumer channels from previous propagations of offer_change,
or if it propagates every invocation of obtain_offered_types to its supplier channels
in order to obtain updated offer information before replying to the end-point supplier’s
request is an implementation decision.
June 2001 Management of Event Domains: Event Forwarding 1-7

1

Figure 1-3 Sharing Subscription Information in the Event Domain.

1.4.2 Topology Management of an Event Domain

The topology management functionality of an event domain provides domain clients
with cycle and diamond configuration detection while processing connection of
channels requests. These functionalities are enabled setting the CycleDetection and
DiamondDetection QoS at the Event Domain level.

1.4.3 Connection of Clients to the Event Domain

The connection of clients to the event domain functionality allows clients to either:

• Connect to a particular channel, given its unique channel identifier in the scope of
the event domain.

• Connect to the event domain itself. Such a connection is redirected toward a default
channel selected at the event domain level.

1.4.4 Quality of Service Properties

The standard Notification Service QoS administrative interface is inherited by the
interfaces of this specification that need to support QoS settings, which provides users
with a simple and already known way of setting QoS.

local
subscription

types
data 2

EventChannel1 EventChannel2 EventChannel3

 obtain_subscription_types(obtainID)

Supplier

obtain_subscription_types()

local
subscription

types
data 1

local
subscription

types
data 3

data3

data1 + data2 + data3

data2 + data3
1-8 Management of Event Domains, v1.0 June 2001

1

The table below lists levels at which additional QoS properties defined for the
Management of Event Domains are supported.

1.5 Conformance Statement

There are three levels of conformance in this specification:

Level 1: Implementation of just the CosEventDomainAdmin module.

Level 2: Implementation of the CosEventDomainAdmin and
CosTypedEventDomain modules.

Level 3: Implementation of all 3 modules, including the DsLogDomainAdmin
module.

Table 1-1 Additional QoS Properties Supported Levels

Property
Per-
Message

Per-
Proxy

Per-
Admin

Per-
Channel Per-Domain

CycleDetection X

DiamondDetection X
June 2001 Management of Event Domains: Conformance Statement 1-9

1

1-10 Management of Event Domains, v1.0 June 2001

 Event Domain Interfaces 2
Contents

This chapter contains the following sections.

2.1 Introduction

This chapter describes the semantic behavior of the interfaces that comprise the Event
Domain. The Event Domain IDL is defined within the CosEventDomainAdmin
module. For each interface in the module, a brief description of its purpose is provided,
along with an explanation of the semantics of each of its operations and attributes.

2.2 CosEventDomain Interface

#ifndef _COS_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_EVENT_DOMAIN_ADMIN_IDL_

// Event Domain Interface
#include "CosNotification.idl"
#include "CosEventComm.idl"
#include "CosNotifyComm.idl"
#include "CosNotifyChannelAdmin.idl"

module CosEventDomainAdmin {

Section Title Page

“Introduction” 2-1

“CosEventDomain Interface” 2-1

“The EventDomain Interface” 2-7
June 2001 Management of Event Domains, v1.0 2-1

2

// The following constant declarations define the Event Domain
// QoS property names and the associated values each property can
// take on. The name/value pairs for each Event Domain property
// are grouped, beginning with a string constant defined for the
// property name, followed by the values the property can take on.

const string CycleDetection = "CycleDetection";
const short AuthorizeCycles = 0; // Default value
const short ForbidCycles = 1;

const string DiamondDetection = "DiamondDetection";
const short AuthorizeDiamonds = 0; // Default value
const short ForbidDiamonds = 1;

// The following enum declaration defines the types that a channel
// can be of. It is used to specify channel types while externalizing
// and instantiating topologies.
enum ChannelType
{
CHANNEL,
TYPED_CHANNEL,
LOG_CHANNEL,
TYPED_LOG_CHANNEL
};

enum NotificationStyle {
Push,
Pull

};

typedef long MemberID;
typedef sequence <MemberID> MemberIDSeq;
typedef long ConnectionID;
typedef sequence <ConnectionID> ConnectionIDSeq;

struct Connection {
MemberID supplier_id;
MemberID consumer_id;
CosNotifyChannelAdmin::ClientType ctype;
NotificationStyle notification_style;
};

typedef MemberIDSeq Route;
typedef sequence<Route> RouteSeq;

typedef Route Cycle;
typedef sequence<Cycle> CycleSeq;

typedef RouteSeq Diamond;
typedef sequence<Diamond> DiamondSeq;

exception CycleCreationForbidden
{

Cycle cyc;
};
2-2 Management of Event Domains, v1.0 June 2001

2

exception DiamondCreationForbidden
{

Diamond diam;
};

// Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;

typedef long DomainID;
typedef sequence <DomainID> DomainIDSeq;
typedef long ItemID;

// EventDomain administrates EventChannels that reside in the same administrative domain
exception ConnectionNotFound {};
exception AlreadyExists {};

interface EventDomain :
CosNotification::QoSAdmin ,
CosNotification::AdminPropertiesAdmin {

MemberID add_channel (
in CosNotifyChannelAdmin::EventChannel channel);

MemberIDSeq get_all_channels ();

CosNotifyChannelAdmin::EventChannel get_channel (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void remove_channel (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

ConnectionID add_connection (
in Connection connection)

raises (CosNotifyChannelAdmin::ChannelNotFound,
CosEventChannelAdmin::TypeError,
AlreadyExists,
CycleCreationForbidden,
DiamondCreationForbidden);

ConnectionIDSeq get_all_connections ();

Connection get_connection (
in ConnectionID connection)

raises (ConnectionNotFound);

void remove_connection (
in ConnectionID connection)

raises (ConnectionNotFound);

CosNotifyChannelAdmin::ChannelIDSeq get_offer_channels (
in MemberID channel)
June 2001 Management of Event Domains: CosEventDomain Interface 2-3

2

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ChannelIDSeq get_subscription_channels (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void destroy();

// Cycle and diamond configurations listing
CycleSeq get_cycles();

DiamondSeq get_diamonds();

// Connection of clients to the domain
// - using no specific information
// - for any clients
void set_default_consumer_channel(in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_supplier_channel(in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer(in CosEventComm::PushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer(in CosEventComm::PullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushConsumer
connect_push_supplier(in CosEventComm::PushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier(in CosEventComm::PullSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for structured clients
CosNotifyChannelAdmin::StructuredProxyPushSupplier
connect_structured_push_consumer(in CosNotifyComm::StructuredPushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer(in CosNotifyComm::StructuredPullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier(in CosNotifyComm::StructuredPushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier(in CosNotifyComm::StructuredPullSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);
2-4 Management of Event Domains, v1.0 June 2001

2

// - for sequence clients
CosNotifyChannelAdmin::SequenceProxyPushSupplier
connect_sequence_push_consumer(in CosNotifyComm::SequencePushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer(in CosNotifyComm::SequencePullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier(in CosNotifyComm::SequencePushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier(in CosNotifyComm::SequencePullSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// - using a channel id
// - for any clients
CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer_with_id(in CosEventComm::PushConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer_with_id(in CosEventComm::PullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushConsumer
connect_push_supplier_with_id(in CosEventComm::PushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier_with_id(in CosEventComm::PullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for structured clients
CosNotifyChannelAdmin::StructuredProxyPushSupplier
connect_structured_push_consumer_with_id(in CosNotifyComm::StructuredPushConsumer
client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer_with_id(in CosNotifyComm::StructuredPullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier_with_id(in CosNotifyComm::StructuredPushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);
June 2001 Management of Event Domains: CosEventDomain Interface 2-5

2

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier_with_id(in CosNotifyComm::StructuredPullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for sequence clients
CosNotifyChannelAdmin::SequenceProxyPushSupplier
connect_sequence_push_consumer_with_id(in CosNotifyComm::SequencePushConsumer
client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer_with_id(in CosNotifyComm::SequencePullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier_with_id(in CosNotifyComm::SequencePushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier_with_id(in CosNotifyComm::SequencePullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

};

exception DomainNotFound {};

interface EventDomainFactory {

EventDomain create_event_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

DomainIDSeq get_all_domains ();

EventDomain get_event_domain (
in DomainID id)

raises (DomainNotFound);
};

};

#endif // _COS_EVENT_DOMAIN_ADMIN_IDL_
2-6 Management of Event Domains, v1.0 June 2001

2

2.3 The EventDomain Interface

The EventDomain interface encapsulates all behaviors supported by event domain
objects. Event domain objects are capable of managing one or more topologies of
interconnected untyped Notification Service channels.

The EventDomain interface inherits from the QoSAdmin and
AdminPropertiesAdmin interfaces defined in the CosNotifyChannelAdmin
module. Inheritance of these interfaces enables event domains to be configured to
support certain QoS and Admin property settings at the domain level. Following the
conventions established by the Notification Service, settings for properties at the
domain level that are also settable at the channel level would become the default
settings for these properties for all channels within the domain. However, awareness of
the new, higher level in the QoS hierarchy could only be supported by new
implementations of the Notification Service, since existing implementations are not
aware of the domain concept.

The EventDomain interface defines operations for adding new channels to a domain,
for retrieving a particular channel within the domain by unique ID, and for retrieving a
list of all channels that exist within the domain, and for removing a particular channel
from a domain.

The EventDomain interface also defines operations for forming connections between
two channels within its domain, for retrieving a particular connection by unique ID, for
retrieving a list of all connections that exist within the domain, and for removing a
particular connection from the domain.

In addition, the EventDomain interface supports an operation that, given the unique
ID of a channel within the target event domain, will return the list of all supplier
channels that are upstream within the same topology of interconnected channels as the
input channel. Likewise, the EventDomain interface supports an operation that, given
the unique ID of a channel within the target event domain, will return the list of all
consumer channels that are downstream within the same topology of interconnected
channels as the input channel.

The EventDomain interface also provides operations to externalize the topology of
the domain into a specific data structure and to instantiate a domain topology from
such a data structure.

A set of operations is also provided to allow the connection of clients to the Event
Domain, either using a default channel or specifying the identifier of a channel.

Lastly, the EventDomain interface supports an operation that can be invoked to
destroy the target domain.

2.3.1 add _channel

The add_ channel operation adds a channel to the target domain. This operation
takes the reference of a channel as input, and returns an identifier for the channel that
is unique among all channels contained within the domain. Note that this identifier
specifically represents the channel’s membership within the domain, and is not the
June 2001 Management of Event Domains: The EventDomain Interface 2-7

2

same as the identifier assigned to the channel by the factory that created it. Having the
domain assign its own identifiers to member channels enables channels created by
different factories to be added to the same domain, still guaranteeing uniqueness
among the identifiers assigned to channels within a domain. Thus, a particular channel
may belong to multiple domains, and have a different identifier assigned to it within
each domain to which it belongs.

2.3.2 get_all_channels

The get_all_channels operation returns a sequence of all of the unique identifiers
corresponding to all channels that currently exist within the target domain. Note these
are the identifiers that were assigned to the member channels when they were added to
the domain.

2.3.3 get_channel

The get_channel operation accepts as input a numeric value that is supposed to be
the unique identifier of a channel that currently exists within the target domain. If this
input value does not correspond to such a unique identifier, the ChannelNotFound
exception is raised. Otherwise, the operation returns the object reference of the channel
corresponding to the input identifier. Note the identifier supplied as input should be the
identifier assigned to the channel when it was added to the domain.

2.3.4 remove_channel

The remove_channel operation removes a channel from the target domain. The
operation takes as input the unique identifier of a channel within the domain. If the
supplied input parameter is not the unique identifier of a channel within the domain,
the ChannelNotFound exception is raised. Otherwise, the channel corresponding to
the supplied reference is removed from the target domain. Note the identifier supplied
as input should be the identifier assigned to the channel when it was added to the
domain.

2.3.5 add_connection

The add_connection operation is invoked to cause a connection to be formed
between two channels in the target domain.

The operation takes as input a data structure that describes the connection to be
formed. This structure contains the ID of the channel that is intended to be the supplier
in the relationship between the two channels, and the ID of the channel that is intended
to be the consumer in the relationship between the two channels. If either of these IDs
does not correspond to the ID of a channel that currently exists within the target
domain, the ChannelNotFound exception is raised. The input structure also contains
a flag that indicates the form of events that will be communicated between the two
channels over the connection, and another flag that indicates whether push or pull style
communication should be used.
2-8 Management of Event Domains, v1.0 June 2001

2

If the two channels indicated by the ID fields of the connection structure exist within
the target domain, but a connection between them already exists in the same direction
as indicated by their place in the structure (i.e., the existing connection is such that the
same channel that is the supplier in the relationship would also be the supplier as a
result of forming the new connection), the AlreadyExists exception is raised.

If the CycleDetection QoS property of the target event domain is set to the value of
ForbidCycle, and the creation of the requested connection would result in a cycle
being created within the topology of channels to which the connection is being added,
then the CycleCreationForbidden exception is raised. This exception contains as
data the sequence of channel member identifiers that would have formed the cycle.

Likewise, if the DiamondDetection QoS property of the target event domain is set to
the value of ForbidDiamond, and the creation of the requested connection would
result in a diamond being created within the topology of channels to which the
connection is being added, then the DiamondCreationForbidden exception is
raised. This exception contains as data a sequence of conflicting paths, each path being
a sequence of channel member identifiers.

Otherwise, the appropriate operations are invoked by the target event domain upon the
two channels involved in the connection in order to form the desired connection. Upon
successfully doing this, the operation assigns a numeric identifier to correspond to the
connection that is unique among all connection identifiers in the domain, and returns
this identifier as the result of the operation.

2.3.6 get_all_connections

The get_all_connections operation returns a sequence of all of the unique numeric
identifiers corresponding to all connections that currently exist within the target
domain.

2.3.7 get_connection

The get_connection operation accepts as input a numeric value that is supposed to
be the unique identifier of connection that currently exists within the target domain. If
this input value does not correspond to such a unique identifier, the
ConnectionNotFound exception is raised. Otherwise, the operation returns a data
structure that describes the connection corresponding to the input ID.

2.3.8 remove_connection

The remove_connection operation is invoked to remove an existing connection
between two channels in the target domain. The operation takes as input the unique
identifier of a connection that exists within the domain. If the input parameter does not
correspond to an existing connection within the domain, the ConnectionNotFound
exception is raised. Otherwise, the necessary operations are invoked upon the target
channels to remove the connection described by the corresponding connection
structure. Note that this operation does not remove the two channels involved. To
remove channels completely, their destroy operation must be invoked.
June 2001 Management of Event Domains: The EventDomain Interface 2-9

2

2.3.9 get_offer_channels

The get_offer_channels operation is invoked to obtain a list of all channels that
exist upstream in the target domain with respect to a given channel that exists within
the domain. The operation takes as input the unique ID of a channel that exists within
the domain. If the supplied ID does not correspond to a channel that exists within the
domain, the ChannelNotFound exception is raised. Otherwise, the sequence of IDs
of all channels that exist upstream with respect to the input channel is returned.

2.3.10 get_subscription_channels

The get_subscription_channels operation is invoked to obtain a list of all channels
that exist downstream in the target domain with respect to a given channel that exists
within the domain. The operation takes as input the unique ID of a channel that exists
within the domain. If the supplied ID does not correspond to a channel that exists
within the domain, the ChannelNotFound exception is raised. Otherwise, the
sequence of IDs of all channels that exist downstream with respect to the input channel
is returned.

2.3.11 destroy

The destroy operation is invoked to destroy the target domain. If connections between
channels within the domain exist that were established by the target domain, these
connections will be removed prior to destruction of the target domain.

2.3.12 get_cycles

The get_cycles operation is invoked to retrieve a list of cycles that exist within any
topology of channels formed by connections that were established between these
channels by the target domain. The operation accepts no input parameters, and returns
as a result a sequence of cycles, whereas each cycle is itself a sequence of member
identifiers that identify channels within the domain that are involved in the cycle.

2.3.13 get_diamonds

The get_diamonds operation is invoked to retrieve a list of diamonds that exist
within any topology of channels formed by connections that were established between
these channels by the target domain. The operation accepts no input parameters, and
returns as a result a sequence of diamonds, whereas each diamond is itself a sequence
of member identifiers of channels within the domain that are involved in the diamond.
2-10 Management of Event Domains, v1.0 June 2001

2

2.3.14 set_default_consumer_channel

The set_default_consumer_channel operation is invoked to specify a particular
channel within the target domain as the default channel to which consumers will be
connected when they invoke one of the connect_*_consumer operations supported
by the EventDomain interface, requesting in a single invocation that they be
connected to the domain.

The operation accepts as input a number value that should be the unique member ID of
one of the channels within the target event domain. If the input value does correspond
to the member ID of one of the channels within the target domain, that channel
becomes the default channel within the domain for consumer connections. If, however,
there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for consumers
is set to the first channel added to the target domain.

2.3.15 set_default_supplier_channel

The set_default_supplier_channel operation is invoked to specify a particular
channel within the target domain as the default channel to which suppliers will be
connected when they invoke one of the connect_*_supplier operations supported by
the EventDomain interface, requesting in a single invocation that they be connected
to the domain.

The operation accepts as input a number value that should be the unique member ID of
one of the channels within the target event domain. If the input value does correspond
to the member ID of one of the channels within the target domain, that channel
becomes the default channel within the domain for supplier connections. If, however,
there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for suppliers is
set to the first channel added to the target domain.

2.3.16 connect_push_consumer

The connect_push_consumer operation is invoked to connect a push style
consumer of events in the form of CORBA::Anys to the event domain. The operation
accepts as input the reference to either an Event or Notification Service style push
consumer of events in the form of CORBA::Anys. The type of the input parameter is
CosEventComm::PushConsumer (an Event Service style push consumer), but due
to interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PushConsumer interface (i.e., a Notification Service style push
consumer).

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
June 2001 Management of Event Domains: The EventDomain Interface 2-11

2

for consumers within the domain to connect the input consumer to this channel. The
channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.17 connect_pull_consumer

The connect_pull_consumer operation is invoked to connect a pull style consumer
of events in the form of CORBA::Anys to the event domain. The operation accepts as
input the reference to either an Event or Notification Service style pull consumer of
events in the form of CORBA::Anys. The type of the input parameter is
CosEventComm::PullConsumer (an Event Service style pull consumer), but due
to interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PullConsumer interface (i.e., a Notification Service style pull
consumer).

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for consumers within the domain to connect the input consumer to this channel. The
channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.18 connect_push_supplier

The connect_push_supplier operation is invoked to connect a push style supplier
of events in the form of CORBA::Anys to the event domain. The operation accepts as
input the reference to either an Event or Notification Service style push supplier of
events in the form of CORBA::Anys. The type of the input parameter is
CosEventComm::PushSupplier (an Event Service style push supplier), but due to
interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PushSupplier interface (i.e., a Notification Service style push
supplier).

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.
2-12 Management of Event Domains, v1.0 June 2001

2

2.3.19 connect_pull_supplier

The connect_pull_supplier operation is invoked to connect a pull style supplier of
events in the form of CORBA::Anys to the event domain. The operation accepts as
input the reference to either an Event or Notification Service style pull supplier of
events in the form of CORBA::Anys. The type of the input parameter is
CosEventComm::PullSupplier (an Event Service style pull supplier), but due to
interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PullSupplier interface (i.e., a Notification Service style pull
supplier).

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.

2.3.20 connect_structured_push_consumer

The connect_structured_push_consumer operation is invoked to connect a push
style consumer of events in the form of structured events to the event domain. The
operation accepts as input the reference to a Notification Service style consumer of
events in the form of structured events that uses push mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for consumers within the domain to connect the input consumer to this channel. The
channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.21 connect_structured_pull_consumer

The connect_structured_pull_consumer operation is invoked to connect a pull
style consumer of events in the form of structured events to the event domain. The
operation accepts as input the reference to a Notification Service style consumer of
events in the form of structured events that uses pull mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for consumers within the domain to connect the input consumer to this channel. The
June 2001 Management of Event Domains: The EventDomain Interface 2-13

2

channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.22 connect_structured_push_supplier

The connect_structured_push_supplier operation is invoked to connect a push
style supplier of events in the form of structured events to the event domain. The
operation accepts as input the reference to a Notification Service style supplier of
events in the form of structured events that uses push mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.

2.3.23 connect_structured_pull_supplier

The connect_structured_pull_supplier operation is invoked to connect a pull style
supplier of events in the form of structured events to the event domain. The operation
accepts as input the reference to a Notification Service style supplier of events in the
form of structured events that uses pull mode of interaction with its channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.

2.3.24 connect_sequence_push_consumer

The connect_sequence_push_consumer operation is invoked to connect a push
style consumer of events in the form of sequence events to the event domain. The
operation accepts as input the reference to a Notification Service style consumer of
events in the form of sequence events that uses push mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
2-14 Management of Event Domains, v1.0 June 2001

2

for consumers within the domain to connect the input consumer to this channel. The
channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.25 connect_sequence_pull_consumer

The connect_sequence_pull_consumer operation is invoked to connect a pull
style consumer of events in the form of sequence events to the event domain. The
operation accepts as input the reference to a Notification Service style consumer of
events in the form of sequence events that uses pull mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for consumers within the domain to connect the input consumer to this channel. The
channel’s default ConsumerAdmin will be used to create the appropriate proxy
supplier instance, and the proxy supplier’s connect operation will be invoked to
connect the consumer to the channel. The reference of the proxy supplier created on
behalf of the client is returned as the result of the operation.

2.3.26 connect_sequence_push_supplier

The connect_sequence_push_supplier operation is invoked to connect a push
style supplier of events in the form of sequence events to the event domain. The
operation accepts as input the reference to a Notification Service style supplier of
events in the form of sequence events that uses push mode of interaction with its
channel.

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.

2.3.27 connect_sequence_pull_supplier

The connect_sequence_pull_supplier operation is invoked to connect a pull style
supplier of events in the form of sequence events to the event domain. The operation
accepts as input the reference to a Notification Service style supplier of events in the
form of sequence events that uses pull mode of interaction with its channel.
June 2001 Management of Event Domains: The EventDomain Interface 2-15

2

If the target domain contains no channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the
event domain proceeds to invoke the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The
channel’s default SupplierAdmin will be used to create the appropriate proxy
consumer instance, and the proxy consumer’s connect operation will be invoked to
connect the supplier to the channel. The reference of the proxy consumer created on
behalf of the client is returned as the result of the operation.

2.3.28 connect_push_consumer_with_id

The connect_push_consumer_with_id operation is invoked to connect a push
style consumer of events in the form of CORBA::Anys to a specific channel within
the event domain. The operation accepts two input parameters. The first is as the
reference to either an Event or Notification Service style push consumer of events in
the form of CORBA::Anys. The type of the input parameter is
CosEventComm::PushConsumer (an Event Service style push consumer), but due
to interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PushConsumer interface (i.e., a Notification Service style push
consumer). The second input parameter is an integer value that should correspond to
the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.29 connect_pull_consumer_with_id

The connect_pull_consumer_with_id operation is invoked to connect a pull style
consumer of events in the form of CORBA::Anys to a specific channel within the
event domain. The operation accepts two input parameters. The first is as the reference
to either an Event or Notification Service style pull consumer of events in the form of
CORBA::Anys. The type of the input parameter is
CosEventComm::PullConsumer (an Event Service style pull consumer), but due
to interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PullConsumer interface (i.e., a Notification Service style pull
consumer). The second input parameter is an integer value that should correspond to
the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
2-16 Management of Event Domains, v1.0 June 2001

2

input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.30 connect_push_supplier_with_id

The connect_push_supplier_with_id operation is invoked to connect a push style
supplier of events in the form of CORBA::Anys to a specific channel within the event
domain. The operation accepts two input parameters. The first is as the reference to
either an Event or Notification Service style push supplier of events in the form of
CORBA::Anys. The type of the input parameter is
CosEventComm::PushSupplier (an Event Service style push supplier), but due to
interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PushSupplier interface (i.e., a Notification Service style push
supplier). The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.31 connect_pull_supplier_with_id

The connect_pull_supplier_with_id operation is invoked to connect a pull style
supplier of events in the form of CORBA::Anys to a specific channel within the event
domain. The operation accepts two input parameters. The first is as the reference to
either an Event or Notification Service style pull supplier of events in the form of
CORBA::Anys. The type of the input parameter is CosEventComm::PullSupplier
(an Event Service style pull supplier), but due to interface inheritance this could also
be a reference to an object supporting the CosNotifyComm::PullSupplier interface
(i.e., a Notification Service style pull supplier). The second input parameter is an
integer value that should correspond to the unique member ID of one of the channels
within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
June 2001 Management of Event Domains: The EventDomain Interface 2-17

2

the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.32 connect_structured_push_consumer_with_id

The connect_structured_push_consumer_with_id operation is invoked to
connect a push style consumer of events in the form of structured events to a specific
channel within the event domain. The operation accepts two input parameters. The first
is as the reference to a Notification Service style push consumer of events in the form
of structured events. The second input parameter is an integer value that should
correspond to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.33 connect_structured_pull_consumer_with_id

The connect_structured_pull_consumer_with_id operation is invoked to connect
a pull style consumer of events in the form of structured events to a specific channel
within the event domain. The operation accepts two input parameters. The first is as
the reference to a Notification Service style pull consumer of events in the form of
structured events. The second input parameter is an integer value that should
correspond to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.34 connect_structured_push_supplier_with_id

The connect_structured_push_supplier_with_id operation is invoked to connect
a push style supplier of events in the form of structured events to a specific channel
within the event domain. The operation accepts two input parameters. The first is as
2-18 Management of Event Domains, v1.0 June 2001

2

the reference to a Notification Service style push supplier of events in the form of
structured events. The second input parameter is an integer value that should
correspond to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.35 connect_structured_pull_supplier_with_id

The connect_structured_pull_supplier_with_id operation is invoked to connect a
pull style supplier of events in the form of structured events to a specific channel
within the event domain. The operation accepts two input parameters. The first is as
the reference to a Notification Service style pull supplier of events in the form of
structured events. The second input parameter is an integer value that should
correspond to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.36 connect_sequence_push_consumer_with_id

The connect_sequence_push_consumer_with_id operation is invoked to
connect a push style consumer of events in the form of sequence events to a specific
channel within the event domain. The operation accepts two input parameters. The first
is as the reference to a Notification Service style push consumer of events in the form
of sequence events. The second input parameter is an integer value that should
correspond to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
June 2001 Management of Event Domains: The EventDomain Interface 2-19

2

the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.37 connect_sequence_pull_consumer_with_id

The connect_sequence_pull_consumer_with_id operation is invoked to connect
a pull style consumer of events in the form of sequence events to a specific channel
within the event domain. The operation accepts two input parameters. The first is as
the reference to a Notification Service style pull consumer of events in the form of
sequence events. The second input parameter is an integer value that should correspond
to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input consumer to this channel. The channel’s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and
the proxy supplier’s connect operation will be invoked to connect the consumer to the
channel. The reference of the proxy supplier created on behalf of the client is returned
as the result of the operation.

2.3.38 connect_sequence_push_supplier_with_id

The connect_sequence_push_supplier_with_id operation is invoked to connect
a push style supplier of events in the form of sequence events to a specific channel
within the event domain. The operation accepts two input parameters. The first is as
the reference to a Notification Service style push supplier of events in the form of
sequence events. The second input parameter is an integer value that should correspond
to the unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.39 connect_sequence_pull_supplier_with_id

The connect_sequence_pull_supplier_with_id operation is invoked to connect a
pull style supplier of events in the form of sequence events to a specific channel within
the event domain. The operation accepts two input parameters. The first is as the
2-20 Management of Event Domains, v1.0 June 2001

2

reference to a Notification Service style pull supplier of events in the form of sequence
events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the
second input parameter, the CosNotifyChannelAdmin::ChannelNotFound
exception is raised. Otherwise, the event domain proceeds to invoke the appropriate
operations upon the channel corresponding to the member ID passed as the second
input parameter to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and
the proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the proxy consumer created on behalf of the client is
returned as the result of the operation.

2.3.40 The EventDomainFactory Interface

The EventDomainFactory interface defines operations for creating and managing
event domains. It supports a routine that creates new instances of event domains and
assigns unique numeric identifiers to them. In addition, the EventDomainFactory
interface supports a routine that can return the unique identifiers assigned to all event
domains created by a given instance of EventDomainFactory, and another routine
which, given the unique identifier of an event domain created by a target
EventDomainFactory instance, returns the object reference of that event domain.

2.3.41 create_event_domain

The create_event_domain operation is invoked to create a new instance of event
domain. This operation accepts two input parameters. The first input parameter is a list
of name-value pairs that specify the initial QoS property settings for the new event
domain. The second input parameter is a list of name-value pairs that specify the initial
administrative property settings for the new event domain. If no implementation of the
EventDomain interface exists that can support all of the requested QoS property
settings, the UnsupportedQoS exception is raised. This exception contains as data a
sequence of data structures, each of which identifies the name of a QoS property in the
input list whose requested setting could not be satisfied, along with an error code and
a range of settings for the property which could be satisfied.

Likewise, if no implementation of the EventDomain interface exists that can support
all of the requested administrative property settings, the UnsupportedAdmin
exception is raised. This exception contains as data a sequence of data structures, each
of which identifies the name of an administrative property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property which could be satisfied.

If neither of these exceptions is raised, the create_event_domain operation will
return a reference to an event domain. In addition, the operation assigns to this new
event domain a numeric identifier that is unique among all event domains created by
the target object. This numeric identifier is returned as an output parameter.
June 2001 Management of Event Domains: The EventDomain Interface 2-21

2

2.3.42 get_all_domains

The get_all_domains operation returns a sequence of all of the unique numeric
identifiers corresponding to event domains that have been created by the target object.

2.3.43 get_event_domain

The get_event_domain operation accepts as input a numeric value that is supposed
to be the unique identifier of an event domain that has been created by the target
object. If this input value does not correspond to such a unique identifier, the
DomainNotFound exception is raised. Otherwise, the operation returns the object
reference of the event domain corresponding to the input identifier.
2-22 Management of Event Domains, v1.0 June 2001

 Typed Event Domain Interfaces 3
Contents

This chapter contains the following sections.

3.1 Introduction

This chapter describes the semantic behavior of the interfaces that comprise the Typed
Event Domain. The Typed Event Domain IDL is defined within the
CosTypedEventDomainAdmin module. For each interface in the module, a brief
description of its purpose is provided, along with an explanation of the semantics of
each of its operations and attributes.

A Typed Event Domain is essentially equivalent to the Event Domain described in the
previous chapter, with the exception that it may contain a combination of untyped and
typed Notification Service channels.

Section Title Page

“Introduction” 3-1

“The CosTypedEventDomainAdmin Module” 3-2

“The TypedEventDomain Interface” 3-4

“The TypedEventDomainFactory Interface” 3-11
June 2001 Management of Event Domains, v1.0 3-1

3

3.2 The CosTypedEventDomainAdmin Module

#ifndef _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

// Typed Event Domain Interface
#include "CosTypedEventComm.idl"
#include "CosTypedEventChannelAdmin.idl"
#include "CosTypedNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"

module CosTypedEventDomainAdmin {

struct TypedConnection {
CosEventDomainAdmin::MemberID supplier_id;
CosEventDomainAdmin::MemberID consumer_id;
CosTypedEventChannelAdmin::Key typed_interface;
CosEventDomainAdmin::NotificationStyle notification_style;
};

interface TypedEventDomain :
CosEventDomainAdmin::EventDomain {

CosEventDomainAdmin::MemberID add_typed_channel (
in CosTypedNotifyChannelAdmin::TypedEventChannel channel);

CosTypedNotifyChannelAdmin::TypedEventChannel get_typed_channel (
in CosEventDomainAdmin::MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// Form typed connection between two channels
CosEventDomainAdmin::ConnectionID add_typed_connection (in TypedConnection
connection)
raises (CosNotifyChannelAdmin::ChannelNotFound,

 CosEventChannelAdmin::TypeError,
 CosEventDomainAdmin::AlreadyExists,
 CosEventDomainAdmin::CycleCreationForbidden,
 CosEventDomainAdmin::DiamondCreationForbidden);

// Set default channels for typed clients
void set_default_typed_consumer_channel (in CosEventDomainAdmin::MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_typed_supplier_channel (in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// Connection of clients to the domain
// - using no specific information
// - for typed clients
CosTypedNotifyChannelAdmin::TypedProxyPushSupplier
connect_typed_push_consumer(in CosTypedEventComm::TypedPushConsumer client,

in CosTypedNotifyChannelAdmin::Key uses_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,

CosEventChannelAdmin::TypeError);
3-2 Management of Event Domains, v1.0 June 2001

3

CosTypedNotifyChannelAdmin::TypedProxyPullSupplier
connect_typed_pull_consumer(in CosEventComm::PullConsumer client,

in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPushConsumer
connect_typed_push_supplier(in CosEventComm::PushSupplier client,

in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported

CosTypedNotifyChannelAdmin::TypedProxyPullConsumer
connect_typed_pull_supplier(in CosTypedEventComm::TypedPullSupplier client,

in CosTypedNotifyChannelAdmin::Key uses_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,

CosEventChannelAdmin::TypeError);

// - using a channel id
// - for typed clients
CosTypedNotifyChannelAdmin::TypedProxyPushSupplier
connect_typed_push_consumer_with_id(in CosTypedEventComm::TypedPushConsumer client,

in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,
CosEventChannelAdmin::TypeError);

CosTypedNotifyChannelAdmin::TypedProxyPullSupplier
connect_typed_pull_consumer_with_id(in CosEventComm::PullConsumer client,

in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPushConsumer
connect_typed_push_supplier_with_id (in CosEventComm::PushSupplier client,

in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPullConsumer
connect_typed_pull_supplier_with_id(in CosTypedEventComm::TypedPullSupplier client,

in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,
CosEventChannelAdmin::TypeError);

interface TypedEventDomainFactory {

TypedEventDomain create_typed_event_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);
June 2001 Management of Event Domains: The CosTypedEventDomainAdmin Module 3-3

3

CosEventDomainAdmin::DomainIDSeq get_all_typed_domains ();

TypedEventDomain get_typed_event_domain (
in CosEventDomainAdmin::DomainID id)

raises (CosEventDomainAdmin::DomainNotFound);
};

};

#endif // _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

3.3 The TypedEventDomain Interface

The TypedEventDomain interface encapsulates all behaviors supported by typed
event domain objects. Typed event domain objects are capable of managing one or
more topologies of interconnected channels, where each channel may be capable of
supporting both typed and untyped communication.

The TypedEventDomain interface inherits from the EventDomain interface defined
in the CosEventDomainAdmin module. This interface in turn inherits from the
QoSAdmin and AdminPropertiesAdmin interfaces defined in the
CosNotifyChannelAdmin module. Due to the inheritance of these latter two
interfaces, typed event domains can be configured to support certain QoS and Admin
property settings.

In addition, inheritance of the EventDomain interface implies that an instance of the
TypedEventDomain interface supports the following capabilities:

• Can add an untyped channel to its domain.

• Can remove a typed or untyped channel from its domain (note that the same
remove _channel operation can be used for both typed and untyped channels).

• Can retrieve the reference of an untyped channel that exists within its domain by
unique ID.

• Can retrieve a list of all channels (both untyped and typed) that exist within the
domain.

• Can form connections between channels within its domain.

• Can retrieve a structure describing a connection by unique ID.

• Can retrieve a list of all connections that exist within the domain.

• Can remove a particular connection from the domain.

• Given the unique ID of a channel within the domain, can return the list of all
supplier channels that are upstream within the same topology of interconnected
channels as the input channel.

• Given the unique ID of a channel within the domain, can return the list of all
consumer channels that are downstream within the same topology of interconnected
channels as the input channel.

• Can be destroyed.
3-4 Management of Event Domains, v1.0 June 2001

3

In addition, as described below the TypedEventDomain interface defines an
operation for adding a new instance of a typed channel to a domain, and an operation
for returning the reference of an existing typed channel given that channel’s unique ID.
It also supports an operation for forming a typed connection between two typed
channels belonging to the domain, and operations enabling clients of typed event
channels to request connections to the domain.

3.3.1 add_typed_channel

The add_typed_channel operation adds a typed channel to the target domain. This
operation takes the reference to a typed channel as input, and returns an identifier for
the channel that is unique among all channels (both typed and untyped) contained
within the domain. Note that this identifier specifically represents the channel’s
membership within the domain, and is not the same as the identifier assigned to the
channel by the factory that created it. Having the domain assign its own identifiers to
member channels enables channels created by different factories to be added to the
same domain, still guaranteeing uniqueness among the identifiers assigned to channels
within a domain. Thus, a particular channel may belong to multiple domains, and have
a different identifier assigned to it within each domain to which it belongs.

3.3.2 get_typed_channel

The get_typed_channel operation accepts as input a numeric value that is supposed
to be the unique identifier of a typed channel that currently exists within the target
domain. If this input value does not correspond to such a unique identifier, the
ChannelNotFound exception is raised. Otherwise, the operation returns the object
reference of the channel corresponding to the input identifier. Note that the identifier
supplied should be one that was assigned to a channel as a result of invoking
add_typed _channel on the target domain.

3.3.3 add_typed_connection

The add_typed_connection operation is used to form a typed connection between
two typed channels that belong to the target domain. The operation accepts as input a
data structure that describes the desired connection. This data structure includes the
member IDs of the supplier and consumer channels involved in the new connection, the
fully qualified name of the strongly typed interface the two channels will use to
interact (this is required to connect two typed channels), and a flag indicating whether
push or pull style communication will be used.

If either of the two member IDs passed as input does not correspond to the ID of a
channel that is a member of the target domain, the ChannelNotFound exception is
raised. If either of the two channels involved in the connection are not designed to use
the supplied interface (e.g., if this is push-style communication, the consumer channel
must support this interface, and the supplier channel must be designed to use this
interface), the TypeError exception is raised. If a connection between the two
channels involved in the operation already exists within the domain in the same
direction that would result in this new connection being formed, the AlreadyExists
June 2001 Management of Event Domains: The TypedEventDomain Interface 3-5

3

exception is raised. If cycle detection on the target domain is enabled, and the addition
of the desired connection would create a cycle in the topology that this connection
would be part of, the CycleCreationForbidden exception is raised. Likewise, if
diamond detection on the target domain is enabled, and the addition of the desired
connection would create a diamond in the topology that this connection would be part
of, the DiamondCreationForbidden exception is raised.

If none of these exception conditions exist, the target domain invokes the appropriate
operations on the two channels involved in the connection, in order to create the
desired connection. A ID is assigned to represent the connection that is unique among
all other connection IDs within the target domain, and this value is returned as the
result of the operation.

3.3.4 set_default_typed_consumer_channel

The set_default_typed_consumer_channel operation is invoked to specify a
particular channel within the target domain as the default channel to which typed
consumers will be connected when they invoke one of the
connect_typed_*_consumer operations supported by the TypedEventDomain
interface, requesting in a single invocation that they be connected to the domain.

The operation accepts as input a number value that should be the unique member ID of
one of the channels within the target event domain. If the input value does correspond
to the member ID of one of the channels within the target domain, that channel
becomes the default channel within the domain for typed consumer connections. If,
however, there is no channel within the domain that has the input value as its member
ID, the CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for typed
consumers is set to the first typed channel added to the target domain.

3.3.5 set_default_supplier_channel

The set_default_typed_supplier_channel operation is invoked to specify a
particular channel within the target domain as the default channel to which typed
suppliers will be connected when they invoke one of the connect_typed_*_supplier
operations supported by the TypedEventDomain interface, requesting in a single
invocation that they be connected to the domain.

The operation accepts as input a number value that should be the unique member ID of
one of the channels within the target event domain. If the input value does correspond
to the member ID of one of the channels within the target domain, that channel
becomes the default channel within the domain for typed supplier connections. If,
however, there is no channel within the domain that has the input value as its member
ID, the CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for typed
suppliers is set to the first typed channel added to the target domain.
3-6 Management of Event Domains, v1.0 June 2001

3

3.3.6 connect_typed_push_consumer

The connect_typed_push_consumer operation is invoked to connect a push style
consumer of typed events to the target domain. The operation accepts two input
parameters. The first is the reference to a typed push consumer. The second input
parameter is the fully qualified name of the interface supported by the input typed push
consumer that the domain should use to send typed events to it.

If the target domain contains no typed channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the default
typed consumer channel within the domain does not support the ability to push events
to the specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchImplementation exception is raised.
If the input typed consumer does not actually support the interface passed as the
second input parameter, the CosEventChannelAdmin::TypeError exception is
raised.

If none of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the default channel for typed consumers within the domain
to connect the input consumer to this channel. The channel’s default
TypedConsumerAdmin will be used to create the appropriate typed proxy supplier
instance, and the typed proxy supplier’s connect operation will be invoked to connect
the consumer to the channel. The reference of the typed proxy supplier created on
behalf of the client is returned as the result of the operation.

3.3.7 connect_typed_pull_consumer

The connect_typed_pull_consumer operation is invoked to connect a pull style
consumer of typed events to the target domain. The operation accepts two input
parameters. The first is the reference to a typed pull consumer. The second input
parameter is the fully qualified name of the interface the client expects the default
channel to support, which it will use to pull typed events.

If the target domain contains no typed channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the default
typed consumer channel within the domain is not capable of creating any typed proxy
supplier that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the default channel for typed consumers within the domain
to connect the input consumer to this channel. The channel’s default
TypedConsumerAdmin will be used to create the appropriate typed proxy supplier
instance, and the typed proxy supplier’s connect operation will be invoked to connect
the consumer to the channel. The reference of the typed proxy supplier created on
behalf of the client is returned as the result of the operation.
June 2001 Management of Event Domains: The TypedEventDomain Interface 3-7

3

3.3.8 connect_typed_push_supplier

The connect_typed_push_supplier operation is invoked to connect a push style
supplier of typed events to the target domain. The operation accepts two input
parameters. The first is the reference to a typed push supplier. The second input
parameter is the fully qualified name of the interface the client expects the default
channel to support, which it will use to push typed events.

If the target domain contains no typed channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the default
typed supplier channel within the domain is not capable of creating any typed proxy
consumer that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the default channel for typed suppliers within the domain
to connect the input supplier to this channel. The channel’s default
TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect
the supplier to the channel. The reference of the typed proxy consumer created on
behalf of the client is returned as the result of the operation.

3.3.9 connect_typed_pull_supplier

The connect_typed_pull_supplier operation is invoked to connect a pull style
supplier of typed events to the target domain. The operation accepts two input
parameters. The first is the reference to a typed pull supplier. The second input
parameter is the fully qualified name of the interface supported by the input typed pull
supplier that the domain should use to pull typed events from it.

If the target domain contains no typed channels, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the default
typed supplier channel within the domain does not support the ability to pull events
from the specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchImplementation exception is raised.
If the input typed supplier does not actually support the interface passed as the second
input parameter, the CosEventChannelAdmin::TypeError exception is raised.

If none of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the default channel for typed suppliers within the domain
to connect the input supplier to this channel. The channel’s default
TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect
the supplier to the channel. The reference of the typed proxy consumer created on
behalf of the client is returned as the result of the operation.
3-8 Management of Event Domains, v1.0 June 2001

3

3.3.10 connect_typed_push_consumer_with_id

The connect_typed_push_consumer_with_id operation is invoked to connect a
push style consumer of typed events to a specific channel within the target domain.
The operation accepts three input parameters. The first is the reference to a typed push
consumer. The second input parameter is the fully qualified name of the interface
supported by the input typed push consumer that the channel to which the consumer
will be connected should use to send typed events to it. The third input parameter is the
member ID of the channel within the target domain to which the consumer should be
connected.

If no channel exists within the target domain that corresponds to the unique ID
supplied as the third input parameter, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel
specified by the third input parameter does not support the ability to push events to the
specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchImplementation exception is raised.
If the input typed consumer does not actually support the interface passed as the
second input parameter, the CosEventChannelAdmin::TypeError exception is
raised.

If none of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the channel specified by the third input parameter to
connect the input consumer to this channel. The channel’s default
TypedConsumerAdmin will be used to create the appropriate typed proxy supplier
instance, and the typed proxy supplier’s connect operation will be invoked to connect
the consumer to the channel. The reference of the typed proxy supplier created on
behalf of the client is returned as the result of the operation.

3.3.11 connect_typed_pull_consumer_with_id

The connect_typed_pull_consumer_with_id operation is invoked to connect a
pull style consumer of typed events to a specific channel within the target domain. The
operation accepts three input parameters. The first is the reference to a typed pull
consumer. The second input parameter is the fully qualified name of the interface the
client expects the channel to which it is attempting to connect to support, which it will
use to pull typed events. The third input parameter is the member ID of the channel
within the target domain to which the consumer should be connected.

If no channel exists within the target domain that corresponds to the unique ID
supplied as the third input parameter, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel
specified by the third input parameter is not capable of creating any typed proxy
supplier that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the channel specified by the third input parameter to
connect the input consumer to this channel. The channel’s default
TypedConsumerAdmin will be used to create the appropriate typed proxy supplier
June 2001 Management of Event Domains: The TypedEventDomain Interface 3-9

3

instance, and the typed proxy supplier’s connect operation will be invoked to connect
the consumer to the channel. The reference of the typed proxy supplier created on
behalf of the client is returned as the result of the operation.

3.3.12 connect_typed_push_supplier_with_id

The connect_typed_push_supplier_with_id operation is invoked to connect a
push style supplier of typed events to a specific channel within the target domain. The
operation accepts three input parameters. The first is the reference to a typed push
supplier. The second input parameter is the fully qualified name of the interface the
client expects the channel to which it is attempting to connect to support, which it will
use to push typed events. The third input parameter is the member ID of the channel
within the target domain to which the supplier should be connected.

If no channel exists within the target domain that corresponds to the unique ID
supplied as the third input parameter, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel
specified by the third input parameter is not capable of creating any typed proxy
consumer that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the channel specified by the third input parameter to
connect the input supplier to this channel. The channel’s default
TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect
the supplier to the channel. The reference of the typed proxy consumer created on
behalf of the client is returned as the result of the operation.

3.3.13 connect_typed_pull_supplier_with_id

The connect_typed_pull_supplier_with_id operation is invoked to connect a pull
style supplier of typed events to a specific channel within the target domain. The
operation accepts three input parameters. The first is the reference to a typed pull
supplier. The second input parameter is the fully qualified name of the interface
supported by the input typed pull supplier that the channel to which the consumer will
be connected should use to pull typed events from it. The third input parameter is the
member ID of the channel within the target domain to which the supplier should be
connected.

If no channel exists within the target domain that corresponds to the unique ID
supplied as the third input parameter, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel
specified by the third input parameter does not support the ability to pull events from
the specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchImplementation exception is raised.
If the input typed supplier does not actually support the interface passed as the second
input parameter, the CosEventChannelAdmin::TypeError exception is raised.
3-10 Management of Event Domains, v1.0 June 2001

3

If none of these exception conditions exist, the target domain proceeds to invoke the
appropriate operations upon the channel specified by the third input parameter to
connect the input supplier to this channel. The channel’s default
TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect
the supplier to the channel. The reference of the typed proxy consumer created on
behalf of the client is returned as the result of the operation.

3.4 The TypedEventDomainFactory Interface

The TypedEventDomainFactory interface defines operations for creating and
managing typed event domains. It supports a routine that creates new instances of
typed event domains and assigns unique numeric identifiers to them. In addition, the
TypedEventDomainFactory interface supports a routine which can return the
unique identifiers assigned to all event domains created by a given instance of
TypedEventDomainFactory, and another routine which, given the unique identifier
of a typed event domain created by a target TypedEventDomainFactory instance,
returns the object reference of that domain.

3.4.1 create_typed_event_domain

The create_typed_event_domain operation is invoked to create a new instance of
typed event domain. This operation accepts two input parameters. The first input
parameter is a list of name-value that specify the initial QoS property settings for the
new typed event domain. The second input parameter is a list of name-value pairs that
specify the initial administrative property settings for the new typed event domain. If
no implementation of the TypedEventDomain interface exists that can support all of
the requested QoS property settings, the UnsupportedQoS exception is raised. This
exception contains as data a sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property which could be
satisfied.

Likewise, if no implementation of the TypedEventDomain interface exists that can
support all of the requested administrative property settings, the UnsupportedAdmin
exception is raised. This exception contains as data a sequence of data structures, each
of which identifies the name of an administrative property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property which could be satisfied.

If neither of these exceptions is raised, the create_typed_event_domain operation
will return a reference to a typed event domain. In addition, the operation assigns to
this new typed event domain a numeric identifier that is unique among all typed event
domains created by the target object. This numeric identifier is returned as an output
parameter.
June 2001 Management of Event Domains: The TypedEventDomainFactory Interface 3-11

3

3.4.2 get_all_typed_domains

The get_all_typed_domains operation returns a sequence of all of the unique
numeric identifiers corresponding to typed event domains that have been created by the
target object.

3.4.3 get_typed_event_domain

The get_typed_event_domain operation accepts as input a numeric value that is
supposed to be the unique identifier of a typed event domain that has been created by
the target object. If this input value does not correspond to such a unique identifier, the
DomainNotFound exception is raised. Otherwise, the operation returns the object
reference of the typed event domain corresponding to the input identifier.
3-12 Management of Event Domains, v1.0 June 2001

 Log Domain Interfaces 4
Contents

This chapter contains the following sections.

4.1 Introduction

This chapter describes the semantic behavior of the interfaces that make up the Log
Domain. Log domains are a specialized type of event domain that may contain regular
Notification Service channels, typed Notification Service channels, and either regular
or typed notification style logs as defined by the Telecom Log Service.

Log Domain IDL defines a single DsLogDomainAdmin module. For each interface
in the module, a brief description of its purpose is provided, along with an explanation
of the semantics of each of its operations and attributes.

Section Title Page

“Introduction” 4-1

“The DsLogDomainAdmin Module” 4-2

“The EventLogDomain Interface” 4-3

“The EventLogDomainFactory Interface” 4-5
June 2001 Management of Event Domains, v1.0 4-1

4

4.2 The DsLogDomainAdmin Module

#ifndef _DS_LOG_DOMAIN_ADMIN_IDL_
#define _DS_LOG_DOMAIN_ADMIN_IDL_

// Event Log Domain Interface
#include "CosNotification.idl"
#include "CosNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"
#include "CosTypedEventDomainAdmin.idl"
#include "DsNotifyLogAdmin.idl"
#include "DsTypedNotifyLogAdmin.idl"

module DsLogDomainAdmin {

interface EventLogDomain :
CosTypedEventDomainAdmin::TypedEventDomain {

CosEventDomainAdmin::MemberID add_log (
in DsNotifyLogAdmin::NotifyLog log);

DsNotifyLogAdmin::NotifyLog get_log (
in CosEventDomainAdmin::MemberID log)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosEventDomainAdmin::MemberID add_typed_log (
in DsTypedNotifyLogAdmin::TypedNotifyLog log);

DsTypedNotifyLogAdmin::TypedNotifyLog get_typed_log (
in CosEventDomainAdmin::MemberID log)

raises (CosNotifyChannelAdmin::ChannelNotFound);
};

interface EventLogDomainFactory {

EventLogDomain create_event_log_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosEventDomainAdmin::DomainIDSeq get_all_event_log_domains ();

EventLogDomain get_event_log_domain (
in CosEventDomainAdmin::DomainID id)

raises (CosEventDomainAdmin::DomainNotFound);
};

};

#endif // _DS_LOG_DOMAIN_ADMIN_IDL_
4-2 Management of Event Domains, v1.0 June 2001

4

4.3 The EventLogDomain Interface

The EventLogDomain interface encapsulates all behaviors supported by event log
domain objects. Event log domain objects are capable of managing one or more
topologies of interconnected channels and logs, where each channel and log may be
capable of supporting both typed and untyped communication.

The EventLogDomain interface inherits from the TypedEventDomain interface
defined in the CosTypedEventDomainAdmin module. This inheritance enables an
EventLogDomain to maintain topologies of both typed and untyped channels, as
well as typed and untyped logs. The TypedEventDomain interface inherits from the
EventDomain interface defined in the CosEventDomainAdmin module. This
interface in turn inherits from the QoSAdmin and AdminPropertiesAdmin
interfaces defined in the CosNotifyChannelAdmin module. Due to the inheritance
of these latter two interfaces, event log domains can be configured to support certain
QoS and Admin property settings.

In addition, inheritance of the TypedEventDomain interface implies that an instance
of the EventLogDomain interface supports the following capabilities:

• Can add typed and untyped channels to its domain.

• Can remove a typed or untyped channel from its domain (note that the same
remove _channel operation can be used for typed and untyped channels and
logs).

• Can retrieve the reference of an untyped or typed channel that exists within its
domain by unique ID.

• Can retrieve a list of all channels and logs (untyped and typed) that exist within the
domain.

• Can form connections between channels and/or logs within its domain.

• Can retrieve a structured describing a connection by unique ID.

• Can retrieve a list of all connections that exist within the domain.

• Can remove a particular connection from the domain.

• Given the unique ID of a channel or log within the domain, can return the list of all
supplier channels and logs that are upstream within the same topology of
interconnected channels and logs as the input channel or log.

• Given the unique ID of a channel or log within the domain, can return the list of all
consumer channels and logs that are downstream within the same topology of
interconnected channels and logs as the input channel or log.

• Can be destroyed.

In addition, as described below the EventLogDomain interface defines operations for
adding new instances of typed and untyped logs to a domain, and operations for
returning the reference of an existing typed or untyped log given that log's unique ID.
June 2001 Management of Event Domains: The EventLogDomain Interface 4-3

4

4.3.1 add _log

The add_log operation adds an untyped Notification log to the target domain. This
operation takes the reference to an untyped Notification log as input, and returns an
identifier for the log that is unique among all channels and logs (typed and untyped)
contained within the domain. Note that this identifier specifically represents the log's
membership within the domain, and is not the same as the identifier assigned to the log
by the factory that created it. Having the domain assign its own identifiers to member
logs enables logs created by different factories to be added to the same domain, still
guaranteeing uniqueness among the identifiers assigned to logs within a domain. Thus,
a particular log may belong to multiple domains, and have a different identifier
assigned to it within each domain to which it belongs.

4.3.2 get_log

The get_log operation accepts as input a numeric value that is supposed to be the
unique identifier of an untyped log that currently exists within the target domain. If this
input value does not correspond to such a unique identifier, the ChannelNotFound
exception is raised. Otherwise, the operation returns the object reference of the log
corresponding to the input identifier. Note that the identifier supplied should be one
that was assigned to a log as a result of invoking add_log on the target domain.

4.3.3 add_typed _log

The add_typed_log operation adds a typed log to the target domain. This operation
takes the reference to a typed log as input, and returns an identifier for the log that is
unique among all channels and logs (typed and untyped) contained within the domain.
Note that this identifier specifically represents the log's membership within the domain,
and is not the same as the identifier assigned to the log by the factory that created it.
Having the domain assign its own identifiers to member logs enables logs created by
different factories to be added to the same domain, still guaranteeing uniqueness
among the identifiers assigned to logs within a domain. Thus, a particular log may
belong to multiple domains, and have a different identifier assigned to it within each
domain to which it belongs.

4.3.4 get_typed_log

The get_typed_log operation accepts as input a numeric value that is supposed to be
the unique identifier of a typed log that currently exists within the target domain. If this
input value does not correspond to such a unique identifier, the ChannelNotFound
exception is raised. Otherwise, the operation returns the object reference of the log
corresponding to the input identifier. Note that the identifier supplied should be one
that was assigned to a log as a result of invoking add_typed_log on the target
domain.
4-4 Management of Event Domains, v1.0 June 2001

4

4.4 The EventLogDomainFactory Interface

The EventLogDomainFactory interface defines operations for creating and
managing event log domains. It supports a routine that creates new instances of event
log domains and assigns unique numeric identifiers to them. In addition, the
EventLogDomainFactory interface supports a routine that can return the unique
identifiers assigned to all event log domains created by a given instance of
EventLogDomainFactory, and another routine which, given the unique identifier of
an event log domain created by a target EventLogDomainFactory instance, returns
the object reference of that domain.

4.4.1 create_event_log_domain

The create_event_log_domain operation is invoked to create a new instance of
event log domain. This operation accepts two input parameters. The first input
parameter is a list of name-value pairs that specify the initial QoS property settings for
the new event log domain. The second input parameter is a list of name-value pairs that
specify the initial administrative property settings for the new event log domain. If no
implementation of the EventLogDomain interface exists that can support all of the
requested QoS property settings, the UnsupportedQoS exception is raised. This
exception contains as data a sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the property that could be satisfied.

Likewise, if no implementation of the EventLogDomain interface exists that can
support all of the requested administrative property settings, the UnsupportedAdmin
exception is raised. This exception contains as data a sequence of data structures, each
of which identifies the name of an administrative property in the input list whose
requested setting could not be satisfied, along with an error code and a range of
settings for the property that could be satisfied.

If neither of these exceptions is raised, the create_event_log_domain operation will
return a reference to an event log domain. In addition, the operation assigns to this new
event log domain a numeric identifier that is unique among all event log domains
created by the target object. This numeric identifier is returned as an output parameter.

4.4.2 get_all_event_log_domains

The get_all_event_log_domains operation returns a sequence of all of the unique
numeric identifiers corresponding to event log domains that have been created by the
target object.

4.4.3 get_event_log_domain

The get_event_log_domain operation accepts as input a numeric value that is
supposed to be the unique identifier of an event log domain that has been created by
the target object. If this input value does not correspond to such a unique identifier, the
DomainNotFound exception is raised. Otherwise, the operation returns the object
reference of the event log domain corresponding to the input identifier.
June 2001 Management of Event Domains: The EventLogDomainFactory Interface 4-5

4

4-6 Management of Event Domains, v1.0 June 2001

 Complete IDL A
A.1 CosEventDomain Interface

#ifndef _COS_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_EVENT_DOMAIN_ADMIN_IDL_

// Event Domain Interface
#include "CosNotification.idl"
#include "CosEventComm.idl"
#include "CosNotifyComm.idl"
#include "CosNotifyChannelAdmin.idl"

module CosEventDomainAdmin {

// The following constant declarations define the Event Domain
// QoS property names and the associated values each property can
// take on. The name/value pairs for each Event Domain property
// are grouped, beginning with a string constant defined for the
// property name, followed by the values the property can take on.

const string CycleDetection = "CycleDetection";
const short AuthorizeCycles = 0; // Default value
const short ForbidCycles = 1;

const string DiamondDetection = "DiamondDetection";
const short AuthorizeDiamonds = 0; // Default value
const short ForbidDiamonds = 1;

// The following enum declaration defines the types that a channel
// can be of. It is used to specify channel types while externalizing
// and instantiating topologies.
enum ChannelType
{
CHANNEL,
June 2001 Management of Event Domains, v1.0 A-1

A

TYPED_CHANNEL,
LOG_CHANNEL,
TYPED_LOG_CHANNEL
};

enum NotificationStyle {
Push,
Pull

};

typedef long MemberID;
typedef sequence <MemberID> MemberIDSeq;
typedef long ConnectionID;
typedef sequence <ConnectionID> ConnectionIDSeq;

struct Connection {
MemberID supplier_id;
MemberID consumer_id;
CosNotifyChannelAdmin::ClientType ctype;
NotificationStyle notification_style;
};

typedef MemberIDSeq Route;
typedef sequence<Route> RouteSeq;

typedef Route Cycle;
typedef sequence<Cycle> CycleSeq;

typedef RouteSeq Diamond;
typedef sequence<Diamond> DiamondSeq;

exception CycleCreationForbidden
{

Cycle cyc;
};

exception DiamondCreationForbidden
{

Diamond diam;
};

// Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;

typedef long DomainID;
typedef sequence <DomainID> DomainIDSeq;
typedef long ItemID;

// EventDomain administrates EventChannels that reside in the same administrative domain
exception ConnectionNotFound {};
exception AlreadyExists {};
A-2 Management of Event Domains, v1.0 June 2001

A

interface EventDomain :
CosNotification::QoSAdmin ,
CosNotification::AdminPropertiesAdmin {

MemberID add_channel (
in CosNotifyChannelAdmin::EventChannel channel);

MemberIDSeq get_all_channels ();

CosNotifyChannelAdmin::EventChannel get_channel (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void remove_channel (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

ConnectionID add_connection (
in Connection connection)

raises (CosNotifyChannelAdmin::ChannelNotFound,
CosEventChannelAdmin::TypeError,
AlreadyExists,
CycleCreationForbidden,
DiamondCreationForbidden);

ConnectionIDSeq get_all_connections ();

Connection get_connection (
in ConnectionID connection)

raises (ConnectionNotFound);

void remove_connection (
in ConnectionID connection)

raises (ConnectionNotFound);

CosNotifyChannelAdmin::ChannelIDSeq get_offer_channels (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ChannelIDSeq get_subscription_channels (
in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void destroy();

// Cycle and diamond configurations listing
CycleSeq get_cycles();

DiamondSeq get_diamonds();

// Connection of clients to the domain
// - using no specific information
June 2001 Management of Event Domains: A-3

A

// - for any clients
void set_default_consumer_channel(in MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_supplier_channel(in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer(in CosEventComm::PushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer(in CosEventComm::PullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushConsumer
connect_push_supplier(in CosEventComm::PushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier(in CosEventComm::PullSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for structured clients
CosNotifyChannelAdmin::StructuredProxyPushSupplier
connect_structured_push_consumer(in CosNotifyComm::StructuredPushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer(in CosNotifyComm::StructuredPullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier(in CosNotifyComm::StructuredPushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier(in CosNotifyComm::StructuredPullSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for sequence clients
CosNotifyChannelAdmin::SequenceProxyPushSupplier
connect_sequence_push_consumer(in CosNotifyComm::SequencePushConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer(in CosNotifyComm::SequencePullConsumer client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier(in CosNotifyComm::SequencePushSupplier client)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier(in CosNotifyComm::SequencePullSupplier client)
A-4 Management of Event Domains, v1.0 June 2001

A

raises (CosNotifyChannelAdmin::ChannelNotFound);

// - using a channel id
// - for any clients
CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer_with_id(in CosEventComm::PushConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer_with_id(in CosEventComm::PullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushConsumer
connect_push_supplier_with_id(in CosEventComm::PushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier_with_id(in CosEventComm::PullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for structured clients
CosNotifyChannelAdmin::StructuredProxyPushSupplier
connect_structured_push_consumer_with_id(in CosNotifyComm::StructuredPushConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer_with_id(in CosNotifyComm::StructuredPullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier_with_id(in CosNotifyComm::StructuredPushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier_with_id(in CosNotifyComm::StructuredPullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// - for sequence clients
CosNotifyChannelAdmin::SequenceProxyPushSupplier
connect_sequence_push_consumer_with_id(in CosNotifyComm::SequencePushConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer_with_id(in CosNotifyComm::SequencePullConsumer client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);
June 2001 Management of Event Domains: A-5

A

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier_with_id(in CosNotifyComm::SequencePushSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier_with_id(in CosNotifyComm::SequencePullSupplier client,

in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

};

exception DomainNotFound {};

interface EventDomainFactory {

EventDomain create_event_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

DomainIDSeq get_all_domains ();

EventDomain get_event_domain (
in DomainID id)

raises (DomainNotFound);
};

};

#endif // _COS_EVENT_DOMAIN_ADMIN_IDL_

A.2 The CosTypedEventDomainAdmin Module

#ifndef _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

// Typed Event Domain Interface
#include "CosTypedEventComm.idl"
#include "CosTypedEventChannelAdmin.idl"
#include "CosTypedNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"

module CosTypedEventDomainAdmin {

struct TypedConnection {
CosEventDomainAdmin::MemberID supplier_id;
CosEventDomainAdmin::MemberID consumer_id;
CosTypedEventChannelAdmin::Key typed_interface;
CosEventDomainAdmin::NotificationStyle notification_style;
};

A-6 Management of Event Domains, v1.0 June 2001

A

interface TypedEventDomain :
CosEventDomainAdmin::EventDomain {

CosEventDomainAdmin::MemberID add_typed_channel (
in CosTypedNotifyChannelAdmin::TypedEventChannel channel);

CosTypedNotifyChannelAdmin::TypedEventChannel get_typed_channel (
in CosEventDomainAdmin::MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

// Form typed connection between two channels
CosEventDomainAdmin::ConnectionID add_typed_connection (in TypedConnection
connection)
raises (CosNotifyChannelAdmin::ChannelNotFound,

 CosEventChannelAdmin::TypeError,
 CosEventDomainAdmin::AlreadyExists,
 CosEventDomainAdmin::CycleCreationForbidden,
 CosEventDomainAdmin::DiamondCreationForbidden);

// Set default channels for typed clients
void set_default_typed_consumer_channel (in CosEventDomainAdmin::MemberID channel)

raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_typed_supplier_channel (in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

// Connection of clients to the domain
// - using no specific information
// - for typed clients
CosTypedNotifyChannelAdmin::TypedProxyPushSupplier
connect_typed_push_consumer(in CosTypedEventComm::TypedPushConsumer client,

in CosTypedNotifyChannelAdmin::Key uses_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,

CosEventChannelAdmin::TypeError);

CosTypedNotifyChannelAdmin::TypedProxyPullSupplier
connect_typed_pull_consumer(in CosEventComm::PullConsumer client,

in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPushConsumer
connect_typed_push_supplier(in CosEventComm::PushSupplier client,

in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported

CosTypedNotifyChannelAdmin::TypedProxyPullConsumer
connect_typed_pull_supplier(in CosTypedEventComm::TypedPullSupplier client,

in CosTypedNotifyChannelAdmin::Key uses_interface)
raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,

CosEventChannelAdmin::TypeError);

// - using a channel id
// - for typed clients
CosTypedNotifyChannelAdmin::TypedProxyPushSupplier
June 2001 Management of Event Domains: A-7

A

connect_typed_push_consumer_with_id(in CosTypedEventComm::TypedPushConsumer client,
in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,
CosEventChannelAdmin::TypeError);

CosTypedNotifyChannelAdmin::TypedProxyPullSupplier
connect_typed_pull_consumer_with_id(in CosEventComm::PullConsumer client,

in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPushConsumer
connect_typed_push_supplier_with_id (in CosEventComm::PushSupplier client,

in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPullConsumer
connect_typed_pull_supplier_with_id(in CosTypedEventComm::TypedPullSupplier client,

in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)

raises (CosTypedNotifyChannelAdminCosTypedEventChannelAdmin::NoSuchImplementation,
CosEventChannelAdmin::TypeError);

interface TypedEventDomainFactory {

TypedEventDomain create_typed_event_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosEventDomainAdmin::DomainIDSeq get_all_typed_domains ();

TypedEventDomain get_typed_event_domain (
in CosEventDomainAdmin::DomainID id)

raises (CosEventDomainAdmin::DomainNotFound);
};

};

#endif // _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

A.3 The DsLogDomainAdmin Module

#ifndef _DS_LOG_DOMAIN_ADMIN_IDL_
#define _DS_LOG_DOMAIN_ADMIN_IDL_

// Event Log Domain Interface
#include "CosNotification.idl"
#include "CosNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"
A-8 Management of Event Domains, v1.0 June 2001

A

#include "CosTypedEventDomainAdmin.idl"
#include "DsNotifyLogAdmin.idl"
#include "DsTypedNotifyLogAdmin.idl"

module DsLogDomainAdmin {

interface EventLogDomain :
CosTypedEventDomainAdmin::TypedEventDomain {

CosEventDomainAdmin::MemberID add_log (
in DsNotifyLogAdmin::NotifyLog log);

DsNotifyLogAdmin::NotifyLog get_log (
in CosEventDomainAdmin::MemberID log)

raises (CosNotifyChannelAdmin::ChannelNotFound);

CosEventDomainAdmin::MemberID add_typed_log (
in DsTypedNotifyLogAdmin::TypedNotifyLog log);

DsTypedNotifyLogAdmin::TypedNotifyLog get_typed_log (
in CosEventDomainAdmin::MemberID log)

raises (CosNotifyChannelAdmin::ChannelNotFound);
};

interface EventLogDomainFactory {

EventLogDomain create_event_log_domain(
in CosNotification::QoSProperties initialQoS ,
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)

raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosEventDomainAdmin::DomainIDSeq get_all_event_log_domains ();

EventLogDomain get_event_log_domain (
in CosEventDomainAdmin::DomainID id)

raises (CosEventDomainAdmin::DomainNotFound);
};

};

#endif // _DS_LOG_DOMAIN_ADMIN_IDL_
June 2001 Management of Event Domains: A-9

A

A-10 Management of Event Domains, v1.0 June 2001

Index
A
add _channe l2-8
add _lo g4-3
add_connection 2-9
add_typed _log4-4
add_typed_channel 3-5
add_typed_connection 3-5
Architectural Features 1-2

C
connect_pull_consumer 2-12
connect_pull_consumer_with_id 2-17
connect_pull_supplier 2-13
connect_pull_supplier_with_id 2-18
connect_push_consumer 2-12
connect_push_consumer_with_id 2-16
connect_push_supplier 2-13
connect_push_supplier_with_id 2-17
connect_sequence_pull_consumer 2-15
connect_sequence_pull_consumer_with_id 2-20
connect_sequence_pull_supplier 2-16
connect_sequence_pull_supplier_with_id 2-21
connect_sequence_push_consumer 2-15
connect_sequence_push_consumer_with_id 2-20
connect_sequence_push_supplier 2-16
connect_sequence_push_supplier_with_id 2-21
connect_structured_pull_consumer 2-14
connect_structured_pull_consumer_with_id 2-19
connect_structured_pull_supplier 2-15
connect_structured_pull_supplier_with_id 2-20
connect_structured_push_consumer 2-14
connect_structured_push_consumer_with_id 2-18
connect_structured_push_supplier 2-14
connect_structured_push_supplier_with_id 2-19
connect_typed_pull_consumer 3-7
connect_typed_pull_consumer_with_id 3-9
connect_typed_pull_supplier 3-8
connect_typed_pull_supplier_with_id 3-10
connect_typed_push_consumer 3-7
connect_typed_push_consumer_with_id 3-9
connect_typed_push_supplier 3-8
connect_typed_push_supplier_with_id 3-10
Connection of Clients to the Event Domain 1-7
CORBA

contributors 3
documentation set 2

CosEventDomain Interface 2-1, A-1
CosTypedEventDomainAdmin Module 3-1, A-7
create_event_log_domain 4-5
create_typed_event_domain 3-11

D
destroy 2-11
DsLogDomainAdmin Module 4-1, A-9

E
Event Forwarding 1-5
Event Type Offer 1-6
EventDomain Interface 2-7
EventDomainFactory Interface

create_event_domain 2-22
get_all_domains 2-22
get_event_domain 2-22

EventLogDomain Interface 4-2
EventLogDomainFactory Interface 4-4

G
get_all_channels 2-8
get_all_connections 2-10
get_all_event_log_domains 4-5
get_all_typed_domains 3-12
get_channel 2-9
get_connection 2-10
get_cycles 2-11
get_diamonds 2-11
get_event_log_domain 4-5
get_log 4-4
get_offer_channels 2-10
get_subscription_channels 2-11
get_typed_channel 3-5
get_typed_event_domain 3-12
get_typed_log 4-4

O
Object Management Group 1

address of 3

R
remove_channel 2-9
remove_connection 2-10

S
set_default_consumer_channel 2-11
set_default_supplier_channel 2-12, 3-6
set_default_typed_consumer_channel 3-6
Subscription Information 1-6

T
Topology management of an Event Domain 1-7
TypedEventDomain Interface 3-4
TypedEventDomainFactory Interface 3-11
June 2001 Management of Event Domains, v1.0 Index-1

Index
Index-2 Management of Event Domains, v1.0 June 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Overview
	1.1 Introduction
	1.1.1 Key Features
	1.1.2 Architectural Features

	1.2 Architecture Overview
	1.3 Connection Between Event Channels
	1.4 Event Forwarding
	1.4.1 Sharing Event Type Offer and Subscription Information in the Event Domain
	1.4.2 Topology Management of an Event Domain
	1.4.3 Connection of Clients to the Event Domain
	1.4.4 Quality of Service Properties

	1.5 Conformance Statement

	2. Event Domain Interfaces
	2.1 Introduction
	2.2 CosEventDomain Interface
	2.3 The EventDomain Interface
	2.3.1 add _channel
	2.3.2 get_all_channels
	2.3.3 get_channel
	2.3.4 remove_channel
	2.3.5 add_connection
	2.3.6 get_all_connections
	2.3.7 get_connection
	2.3.8 remove_connection
	2.3.9 get_offer_channels
	2.3.10 get_subscription_channels
	2.3.11 destroy
	2.3.12 get_cycles
	2.3.13 get_diamonds
	2.3.14 set_default_consumer_channel
	2.3.15 set_default_supplier_channel
	2.3.16 connect_push_consumer
	2.3.17 connect_pull_consumer
	2.3.18 connect_push_supplier
	2.3.19 connect_pull_supplier
	2.3.20 connect_structured_push_consumer
	2.3.21 connect_structured_pull_consumer
	2.3.22 connect_structured_push_supplier
	2.3.23 connect_structured_pull_supplier
	2.3.24 connect_sequence_push_consumer
	2.3.25 connect_sequence_pull_consumer
	2.3.26 connect_sequence_push_supplier
	2.3.27 connect_sequence_pull_supplier
	2.3.28 connect_push_consumer_with_id
	2.3.29 connect_pull_consumer_with_id
	2.3.30 connect_push_supplier_with_id
	2.3.31 connect_pull_supplier_with_id
	2.3.32 connect_structured_push_consumer_with_id
	2.3.33 connect_structured_pull_consumer_with_id
	2.3.34 connect_structured_push_supplier_with_id
	2.3.35 connect_structured_pull_supplier_with_id
	2.3.36 connect_sequence_push_consumer_with_id
	2.3.37 connect_sequence_pull_consumer_with_id
	2.3.38 connect_sequence_push_supplier_with_id
	2.3.39 connect_sequence_pull_supplier_with_id
	2.3.40 The EventDomainFactory Interface
	2.3.41 create_event_domain
	2.3.42 get_all_domains
	2.3.43 get_event_domain

	3. Typed Event Domain Interfaces
	3.1 Introduction
	3.2 The CosTypedEventDomainAdmin Module
	3.3 The TypedEventDomain Interface
	3.3.1 add_typed_channel
	3.3.2 get_typed_channel
	3.3.3 add_typed_connection
	3.3.4 set_default_typed_consumer_channel
	3.3.5 set_default_supplier_channel
	3.3.6 connect_typed_push_consumer
	3.3.7 connect_typed_pull_consumer
	3.3.8 connect_typed_push_supplier
	3.3.9 connect_typed_pull_supplier
	3.3.10 connect_typed_push_consumer_with_id
	3.3.11 connect_typed_pull_consumer_with_id
	3.3.12 connect_typed_push_supplier_with_id
	3.3.13 connect_typed_pull_supplier_with_id

	3.4 The TypedEventDomainFactory Interface
	3.4.1 create_typed_event_domain
	3.4.2 get_all_typed_domains
	3.4.3 get_typed_event_domain

	4. Log Domain Interfaces
	4.1 Introduction
	4.2 The DsLogDomainAdmin Module
	4.3 The EventLogDomain Interface
	4.3.1 add _log
	4.3.2 get_log
	4.3.3 add_typed _log
	4.3.4 get_typed_log

	4.4 The EventLogDomainFactory Interface
	4.4.1 create_event_log_domain
	4.4.2 get_all_event_log_domains
	4.4.3 get_event_log_domain

	Appendix A - Complete IDL

