Management of Event Domains

Revised Submission =

Submitted By

Alcatel

FUJITSU LIMITED

International Business Machines Corporation

NEC Corporation

Nippon Telegraph and Telephone (NTT) Corporation

Supported By
IONA Technologies, Plc.

January 6, 2000
OMG TC Document telecom/2000-01-01

Copyright 2000 Alcatel

Copyright 2000 FUJITSU LIMITED

Copyright 2000 International Business Machines Corporation
Copyright 2000 NEC Corporation

Copyright 2000 NTT Corporation

Submission Contact Points

Michel Ruffin

Alcatel Corporate Research Center
Route de Nozay

91461 Marcoussis cedex, France
telephone: +33-(0)1-69-63-13-57
facsimile: +33-(0)1-69-63-17-89
email: michel.ruffin@alcatel.fr

Masayoshi Shimamura

FUJITSU LIMITED

Nikko Fudousan Building, 15-16, Shinyokohama 2-chome
Kohoku-ku, Yokoham&22, Japan

telephone: +81-4876-4591

facsimile: +81-45-476-4726

email: shima@rp.open.cs.fujitsu.co.jp

David Chang

International Business Machines
11400 Burnet Road

Austin, TX 78758

telephone: +1512-838-0559
facsimile; +1-512-838-1032
email: dchang@austin.ibm.com

Michael J. Greenberg

NEC Corporation

305 Foster Street

Littleton, MA 01460-2004
telephone: +1978-742-8127
facsimile: +1-978-742-8557
e-mail: mjg@nectech.com

Hiroshi Shibata

NTT Corporation

Network Innovation Laboratories
3-9-11 Midori-chou Musashino-shi
Tokyo 180-8585, Japan

telephone: +84%22-59-3954
facsimile: +81-422-59-4810
email: shiba@ma.onlab.ntt.co.jp

Martin Chapman

IONA Technologies

Shelbourne Road

Dublin 4, Ireland

telephone: 853-1-662-5255
facsimile: +353-1-662-5244
email: mchapman@iona.com

! Alcatel’s contribution to this submission has been partly funded by the European ACTS project RETINA (AC0048).
3

Table of Contents

B © 1Y /T AT 8
R AN (o 11 (Yo (L= | == 110 | (= 9.....
2.1. Event DOmMain ArCHItECIUINE OVEIVIEW.iuui i eiii i ee it e e et e et e e e e e et e e et e e et e e et ee ettt ee st e e et s esaa e esanteeetnsessnnaeeens 9
2.2, Connection BetWeeN EVENT ChanNEIS. . .. covn ittt e e e e et e e e e e e e et e e e e e renans 10
D2 TR e V=] 0 11V7= L (L1] N 11
2.4. Sharing Event Type Offer and Subscription Information in the Event DQmain...........cccovevveeeiiieeiieeeieeneeenn, 12
2.5. Topology management of an EVENT DOMIAIN.........ciuuuiiiiiii e e e e e e et e et e e et e e e et e e e et e e eaneeaeeas 13
2.6. Connection of Clients 10 the EVENE DOMALNL.........cuuiiieiiei e e e e e e e e e e e e e et e et e ea e et e et eeaeeanes 13
2.7, QUAIILY Of SEIVICE PrOPEIIES . . euti ittt e et e e e e et e e e e e e et e e e st e e stt e e st e e st e sraeeetneesrnann 13.......
3. EVENE DOMAIN INTEIACES.t ittt e et e e e e e e e s e e e et e e eeaans 15........
3.1, The EVENtDOMAIN INEITACE. ... it e e e e e e e et e e et e e et e e et e esateesta e sen 18.....
3.1.1. F= 1o [0 I o 0 7= 1 0 T=Y N 19
3.1.2. {o T=Y = 1o 0 =V 1 1= £ 19
3.1.3. [o TS o 0 1= 1T 1= 19
3.1.4. L(=Y 00 [0\ V=T o] 4 T= T 1= 19
3.1.5. P2 (o [0 I o 0] 110 T=Y o1 1o 4 I 19
3.1.6. [o T=1 A= 1 o7 1 =Tt 470 L= 20
3.1.7. [o T o0 1 T=Y o3 1 o SN 20
3.1.8. (=Y 000\ V=T oo] o] =T o 1o o 1 20
3.1.9. [[T Ao 1 {=T A AT 1= 20
3.1.10. get SUBSCHPLION CRANNEIS. e e e e e e e et e et e e e e e et e e e e s eneeaneeanss 20
00 000 I IO o (] 1 02 21
T 2 o [A oY/ 1= 21
G 0t G TR o =Y Ao 1= 0141 Vo N 21
3.1.14. set default CONSUMET CRAMNEL. e e e et e e e e e e e eanas 21
3.1.15. set default SUPPIEIr CRANNEL.... ... e e e e e e et e e e s e e e e e e e e e eens 22
G0 A NS T o o1 o [0 1= 0 10 1= o J o0 YU = 22.......
I A R o o o [1= o 10 | e} 0] = 22......
G e I S oo T [1Yo o 10 1= o JE =T U] o =Y 22.....
G A K R o o1 [T=Yox o 10 1 T o] o= 23....
I 2 0 R o019 | 4 T=Yo Y 1 g [ox 48 [(=To I 01U 1= T o0 YU T = N 23
I 2 R oo 14 | T=Yod S 1 0 (o 08 [ig=Yo NN o 10 1 o0 0 FST [1= 23
I 22 oo 14 4 T=Yos Gl (g (o1 4 [(=To I 01U 1= TE=Y U]] o) =Y 23
I ZAC T oo 14 | 0 T=Yo S 1 0 (o 08 [ig=Yo NN o 10 1R 0T o] o)1= o 24
3.1.24. CONNECE SEQUENCE PUSH CONSUIMIE ... uituitiie ettt et e e e e e et e e e e s et e e aa e e aa e ea s et e sa e ea e st seteeassaneetnseensrenes 24
I 24 ST oo 4 1 0 T=Yod A=Y= [1= a Lot Y o 18 11 o0 0 =10/ = N 24
3.1.26. _cONNECt SEqUENCE PUSN SUDPIIEE . ..ctiiiiiiiitie ettt ettt e e e e e e e et et eee ettt r e e e e e e e eeeeeeennnne 24
I 2 R oo 4 | 4 T=Yod Y=Y [1= a Lot Y o 10 1 ST o] o] =Y 25
3.1.28. _connect push_consumMer WIth . Jf...........uuuuiiii et e e 25
3.1.29. _connect pull coNSUMEr Wt J0.......cooiiiiiii e 25
3.1.30. _connect push_supplier WIth..Q.........coooiiiiiii e eeeaee 26
S IR I oo o [1= A o 10 1 IR U1 o] o L= LY/ 1 1 o T (o 26
3.1.32. _connect_structured push_CONSUMEr WIthL.if........oouiiiiiiiiiiiiie e e e e e eeaeeaeas 26
3.1.33. _connect structured pull_conSUMEr WIth df.........uuuuuiiiiiie e 27
3.1.34. _connect structured push_sSupplier WIth . f...........oiiiiiii i 27
3.1.35. _connect structured pull_SUPPlEr WIth..i0.........oooeiiiiiiii e e e 27
3.1.36. _connect sequence_pPush_CONSUMEr WILN..i0........uuuuiiiiiieiiiii e 27
3.1.37. _connect sequence_pull_consumer WIth..ltL.........oooiiiiiiiiiiii e 28
3.1.38. _connect sequence push_ sSupplier WIth..l0........oouuuuii e 28
3.1.39. _connect sequence pull_Supplier WIth . dfl..........ueeii e 28

4

3.2, The EVENIDOMAINFACIONY N I A . o v ittt ettt et et e e et e e e et et et e et e e s e e e e e e s e et e e e eaaenrenneen 28

3.2.1. (o] (=X= (=TI =\Y/=) 1 Ao (0] 010> U1 29...
3.2.2. [T = 11 o (o 1 0= 11 T 29
3.2.3. Lo TSI VLT 01 o (o 12T 1 T 29
4, Typed EVENt DOMAIN INEEITACESovi ittt e e e e e et et e et e e e e et e e e e e e eenss 30

4.1. The TypedEVENtDOMAIN INTEIACE.cou e e e e et e e et e e et e e ettt e e et s e sateesaneeeannns 31
4.1.1. F= Lo [0 I 04 0 7T I od = 0 = 32
4.1.2. [T Y4 0TS0 I o o 7= 10T o= 1 32
4.1.3. F= o [0 I Y4 0 =T o I oT0] 1 1Y 1o) T 32....
4.1.4. set _default typed CONSUMET CRANMNEL.......cou e e e e e e eas 33
4.1.5. set_default SUPPIIEI CRANNEL. et e e e et e e e s e et e e e e e e e eaeeenaes 33
4.1.6. (ofe] a1 T=Y e d A/ o Y=To I o1 U] o W o0} g FS [/ T=Y 33
4.1.7. CONNECE TYPEA PUIL CONSUMIET. .. .e ittt ettt e et e e e et e et e et e et e et e e e e e b e et e eaneeaneeaneeanss 34
4.1.8. (oTo] a1 aT=Yo AT/ oX=To I 10 = =Y U o] o= 34
4.1.9. (oTo] a1 aT=Ye i xY/ o X=To I o101 | IESTUT 0] o] 7= N 34
4.1.10. _connect typed push_consumer With..id.........oouuuuieiiiii e 35
4.1.11. _connect typed pull consumMer WIth..i0..........ouuuuiiiiiii e 35
4.1.12. _connect typed push_ supplier WIth. Q0ooiiiii i e e 35
4.1.13. _connect typed pull_supplier WIth.if..........ooei e 36

4.2. The TypedEventDomaiNFaCtory INTEIACE.ccoui et e e e e ees 36
4.2.1. (ol (=Y= (=R A YA o T=Ye =N VZ=Y 01 Ao (0] o = o 36
4.2.2. fo T=Y = 1 Y =0 e (o 1 4 F= 1 F= 37.....
4.2.3. (o 1= Y o 1=To I XYL 0 1 0o (o) 1 0= 114 N YA

ST Mo Yol B Lo] 10 F= 1T 0 I 101 =T 7= (o3 38.....

ST P N (=0 =AVZ=T 0 1 Mo To | B o] o =11 0 I 01 0=Y 1 7= (ol <SP PPN 38
5.1.1. F= T o 1 [0 o PR 39
5.1.2. [0 T [0 o 39
Eo 0t I TR~ o [o I 7/ o 1Yo NN o o 0 40
o0t 0 S o = A 1V =0 (o o TS 40

5.2. The EventLogDomainFactory INTEIMACE.oouu et e e e e et e e et e e et e e et e e st e eeraeaes 40
5.2.1. (o] (=Y= (=R =\Y/=) 1 4 (oo o (o] 1 o= 11 o N 0........ 4
5.2.2. (o 1= A= =AY/ o o (oo T o (o 1 4= 110 L= 40
5.2.3. (o [T A=V L=T 0 1 [T o (0] o = 1 T & FU

Overview

This document specifies an architecture and interfaces for managimd domainsAs used throughout this
document, an event domain is a set of one or rement hlannelsthat are grouped together for the purposes

of management, and/or for providing enhanced capabilities to the clients of those channels such as improved
scalability. The event channels that are managed by an event daspgorsone of the channel interfaces

defined in the OMG Notification Service specification. Following the structure of the OMG Notification

Service, a generic domain interface is defined for managing generic, untyped channels. Another domain
interface is defined that can manage both untyped and typed channels. Additionally, a specialized domain is
defined that can manage both channels and logs as defined by the OMG Telecom Log Service specification.
Note that event domains may contain one or more disjoint topologies of interconnected channels, and possibly
one or more channels that are not connected to any other channels.

The main features of the event domains defined in this specification are as follows:

» They extend all of the features of the OMG Notification Service tadthkmainlevel, which allows
managing a group of channels as a related entity. Client applications developed to the Notification
Service interfaces can use the channels within a domain unchanged.

» They provide an interface for readily setting up and managimpections between event channels.

» Even when connections between event channels are changed during runtime, it is still possible to
acquire the EventType information offered by all upstream channels, and the EventType information
subscribed to by all downstream channels.

» They can detect when a new connection between channels leads to the creation of cycle or diamond
configurations.

» They provide clients with interfaces to connect themselves to the event domain.

Section 2 of this document provides a detailed description of the architecture underlying this specification.
The IDLs defined by this specification are listed and explained in sections 3 through 5.

Architectural Features

The architectural features supported by this specification are described in this chapter. After looking at the
overall structure, the following items are explained.

» Connections between event channels,

 Event forwarding within a channel topology,

 Sharing of event offer and subscription information in the event domain,
» Topology management,

» Connection management of clients to the domain.

2.1.Event Domain Architecture Overview

The service architecture is outlined in this section. An event domain defined in this specification extends the
features supported by event channels as defined by the Notification Service to groups refatesl

channels. Interfaces are defined that enable the creation and management of these groupeletéae
channels, and for forming and managing connections between channels within a domain.

The event domains defined by this specification are designed to manage a group of event channels that
support the interfaces defined by the OMG Notification Service specification. A clear goal of this
specification is to define the capability to manage arringdated group of channels that can be created via

an implementation of the OMG Notification Service. This will enable implementations of this specification
that can manage channels that are created using existing implementations of the OMG Notification Service.
While this point may seem insignificant, it is subtly important due to the reality that implementations of the
OMG Notification Service are already commercially available, and end-users require tools that enable the
management of groups of imteelated channels created using their existirggdpcts. Another way to state

this goal is that this specification is defined to ensure that new Notification Service implementations are not
required in order to support the channete@ssary for management by event domains.

The figure below shows the relationships of the interfaces defined in this specification, and those of the OMG
Noatification Service. In this figure, the IDL module names are abbreviated as follows:

* NC: CosNotifyComm
* NCA: CosNotifyChannelAdmin

* EDA: CosEventDomainAdmin

EDA::EventDomain
T

EventDomain

NC |CosNotifyComm
NCA |CosNotifyChannelAdmin
EDA|CosEventDomainAdmin

NCA::Channel
::ConsumerAdmin —l_ NCA::SupplierAdmin
T T

NCA::Channel
NCA::ConsumerAdmin NCA::SupplierAdnfin
T T T

p— <P ppli NCA::ProxyPushSupplier A "
ST L R e
PP NCA::ProxyPushConsumer QA StructuredProxyPushSupplier NC::PushConsumer
- NC::PullSuppli NCA: SlrucluredProxyPushConsumer NCA::ProxyPullSupplier
PullSupplier H +—> I— —l - PullConsumer
NCA::ProxyPullConsumer NCA:StructuredProxyPullSupplier NC PullConsumer
- NC: —I < > J— NCA::StructuredP
|StructuredPushSuppI|er H «———————» I— NCA::StructuredProxyPullConsumes —l H StructuredPushConsumel
NCA:: ProxyPushConsumer! ch ' ch ' PushConsumer
N annel i
y NC:: pp! NCA::SequenceProxyPushSupplier anne NCA: ProxyPullSuppl
| StructuredPullSupplier H B e —— I— —I —l +———> HStructuredPullConsumer
NCA:: ProxyPullConsumer NCA:: SequenceProxyPushConsumer NC::StructuredPullConsumer
S P—— NC::Seq ippli NCA::SequenceProxyP! S UG
equencePushSupplier H ‘+———» I— —ld———b H equencePullConsumer
NCA::SequenceProxyPushConsumer _INEA :SequenceProxyPullSupplier NC: SequencePushConsumer il
- NC:Seq ippli NCA: SequenceProxyPuIIConsumer NCA::SequenceProxyP
SequencePullSupplier H > |- -—{ «—— T H SequencePullConsumer
NCA::SequenceProxyPullConsumer NC::SequencePullConsumer

Figure 2-1: General Architecture of the Event Domain.

Figure 2-1 represents the general architecture of the Event Domain. It shows the different relationships it has
with the elements it manages and there are between those elements. In this figure, the Event Domain manages
classic Notification Service channels, which are connected to be classic Notification Service clients (any,
structured, sequence push/pull suppliers and consumers). Note that this figure shows only the version of an
event domain that supports untyped Natification Service channels. A subtype of this domain is also defined

that supports both untyped and typed Notification Service channels, and another that supports logs as defined
by the Telecom Log Service as well.

Note that a given channel within an event domain may be connected to any combination of other channels in
the same domain, endpoint suppliers, and endpoint consumers. Channels are interconnected using
Notification Service style proxy interfaces, while clients connect to channels using the interfaces and
mechanisms defined by the Notification Service. Alternatively, clients can use the operations supported by
the EventDomain to request connection to the default channel within the domain, or a specific channel
identified by the client.

Event domains have a notion of membership. Before a domain can be used to form a connection between two
channels, each channel must be added as a member of the domain. Channels may be members of multiple
domains. Thus, event domains assign identifiers to each channel that is added as a member, which uniquely
identifies that channel within the given domain.

2.2.Connection Between Event Channels

In the OMG Notification Service, endpoint suppliers connect to proxy consumers provided on event channels,
and endpoint consumers connect to proxy suppliers. Due to the facts that proxy consumers inherit the
endpoint consumer interface, and proxy suppliers inherit the endpoint supplier interface, even with the OMG
Notification Service by itself it is possible to connect two channels as suppliers and consumers of each
other’s events. This is achieved by creating a proxy supplier object within one channel (e.g., Channel A), and
a proxy consumer object within another channel (e.g., Channel B), connecting the proxy supplier of Channel
A as the supplier to Channel B's proxy consumer, and the proxy consumer of Channel B as the consumer of
Channel A’s proxy supplier.

While it is possible to achieve such connections using the interfaces defined in the OMG Notification Service
without any extensions, doing so is extremely cumbersome. Essential, the programmatic steps required
involve:

» Getting a reference to tigupplierAdmin instance from on&ventChannel

* Creating aProxyConsumerinstance using thiSupplierAdmin.

 Getting a reference to tt@onsumerAdmin instance from anothdfventChannel
 Creating aProxySupplier instance using thi€onsumerAdmin.

» Connect to théroxyConsumer using the obtaineBroxySupplier instance reference as input
parameter.

« Similarly, connect to th®roxySupplier using theProxyConsumerinstance reference as input
parameter.

An EventDomaininterface has been defined for handling the above steps in one operation. In addition, the
EventDomaininterface supports operations for managing the proxy instances and connections created as a
result of these steps, and for replying to queries about their status.

Instances supporting tlieventDomaininterface manage the event channels they logically contain, and any
connections between those channels. The interface supports operations for creating channels and registering
them with the domain. Upon registering a channel within its domain, the event domain assignsberiD

to the channel that is uniqgue among all channels within the same domain. Thereafter, this ID is used when
establishing, checking or removing connections between channels within the domain. Connections are defined
using aConnectiondata structure, which includes the fields displayed in the figure below. Details of the
procedures involved are given in section 3.

SupplierChannel

ConsumerChannel

ClientType

NotificationStyle

Figure 2-1: The structure of a Connection.

In this figure, theSupplierChanneaindConsumerChanndields are the MemberIDs of the two channels
involved in the connection. Note that an event domain can only be used to connect two channels that have
both been added as members of the target domainClibet Typefield indicates the form of events the two
channels will communicate with over the connection (i.e. Any, Structured, Sequence, or Typed), and the
NotificationStylefield indicates whether the two channels will communicate using push or pull style.

2.3.Event Forwarding

Using the interfaces supported by tReentDomaininterface, it is easy to create topologies of
interconnected channels. The topologies can be of arbitrary complexity, including topologies that contain
cyclesin the directed graph of inter-connected channelslimmondshapes in the graph of interconnected
channels meaning the same event may reach a point in the graph by more than one route.

This specification defines mechanisms that enable detection of cycles or diamonds in the graph of
interconnected channels as connections are established between channels using operations supported by the
EventDomaininterface. Quality of service properties can beugmin an event domain that control whether

or not cycles and/or diamond shaped topologies are allowed within the domain. For instance, the property
CycleDetectiortan be set to eithekuthorizeCyclesr ForbidCycles indicating whether or not the

operations that establish connections between channels within the domain should raise an exception if
establishing a particular connection will cause the introduction of a cycle into the topology of channels to

9

which the connection is being added.

Note that by allowing clients to turn on or off cycle and diamond detection in this fashion, whether or not
cyclical and/or diamond topologies are allowed within an event domain is controllable by end-users. This
allows for the possibility that there may in fact be scenarios in which end-users really do want to create such
topologies, and also allows for the poskil that the administrator of an event domain may want to prevent
end-users from creating such topologies. End-users who do choose to create topologies that contain cycles
should be aware of the fact that unless they set timeout on events, events that éterexirfill loop

endlessly through the topology. Likewise, end-users who choose to create topologies that contain diamonds
should be aware of the fact that consumers nezgive the same event multiple times (the number of times

that is equal to the number of paths by which the event may arrive at the consumer).

2.4.Sharing Event Type Offer and Subscription Information in the Event Domain

This section describes how event type offer and subscription information is shared, managed and referenced
across event channels in an event domain.

The offer_changamechanism defined by the Notification Service is such that when an end-point supplier
invokesoffer_changen its proxy consumer to inform the channel to which it is connected of a change in the
set of event types it will potentially be supplying, the channel is responsible for sharing this information with
all of its consumers. This is done by the channel invokiffgr_changeon all consumers to which it was
connected, assuming the suppliesféer_changeesulted in a change to the union of all event types that the
channel can receive (which is not necessarily the case). Note that one or more of these “congumners”
which a channel is invokingffer_changeould actually be the proxy consumer(s) of another channel. Thus,
in a topology of interconnected channels, theer_changenvocations can potentially be propagated
throughout the topology.

A similar scenario exists in the casesafbscription_changeA channel is responsible for invoking the
subscription_changeperation on all of its suppliers whenever the change to a client’s subscriptions (due to
filters being added or removed, or filter constraints being added, removed, or modified) results in a change to
the set of event types being subscribed to by consumers of the channel’s events. As was the case for
offer_changenvocations, in a topology of interconnected channels thabscription_changmvocations

can potentially be propagated throughout the topology.

Note that this propagation of offer and subscription information is subject to the same potential problems

that arise when events are propagated throughout a topology of interconnected channels. If the topology
involved contains cycles or diamonds, offer and subscription information can potentially be propagated
endlessly, or at least the same information may be forwarded to the same points in the topdtiptg mu

times. End-users who choose to setup channel topologies that contain cycles or diamonds should be aware of
this situation, and should likely consider turning off offer and subscription information propagation (this can

be done using mechanisms supported by the OMG Noatification Service).

End-point suppliers of events to a channel that is part of a channel topology managed by an event domain can
obtain information about all types of events being subscribed to by channels anywhere downstream in the
channel topology by invokingbtain_subscription_typesm the proxy consumers they to which they are
connected. Whether a given channel relies on its internal database of subscription types obtained from
previous invocations afbtain_subscription_typehat it has propagated to all channels to which it is

connected as a supplier and information passed to it from its consumer channels from previous propagations
of subscription_changeor if it propagates every invocation obtain_subscription_typédse its consumer

channels in order to obtain updated subscription information before replying to the end-point supplier's
request is an implementation decision. Figure 2-3 below depicts one possible implementation of event
subscription information propagation within a channel topology.

Similarly, end-point consumers of events supplied by a channel that is part of a channel topology managed by
an event domain can obtain information about all types of events being offered to it by channels anywhere
downstream in the channel topology by invokirtgtain_offered_typesn the proxy suppliers they to which

they are connected. Once again, whether a given channel relies on its internal database of offer types
obtained from previous invocations albtain_offered_typethat it has propagated to all channels to which it

is connected as a consumer and information passed to it from its consumer channels from previous

10

propagations obffer_changeor if it propagates every invocation obtain_offered_type® its supplier
channels in order to obtain updated offer information before replying to the end-point supplier’s request is an
implementation decision.

obtain_subscription_types(obtainID) obtain_subscription_types(obtainID)

obtain_subscription_types()

—> —>
Supplier > EventChannell EventChannel2 EventChannel3
-
-
datal + data2 + data3

data3

subscription

types
data 2

Figure 2-1: Sharing Subscription Information in the Event Domain.

2.5.Topology management of an Event Domain

The topology management functiditof an event domain provides domain clients with cycle and diamond
configuration detection while processing connection of channels requests. These fulitderara enabled
setting theCycleDetectionandDiamondDetectionQoS at the Event Domain level.

2.6.Connection of Clients to the Event Domain
The connection of clients to the event domain functionality allows clients to either:
» Connect to a particular channel, given its unique channel identifier in the scope of the event domain.
» Connect to the event domain itself. Such a connection is redirected toward a default channel selected at

the event domain level.

2.7.Quality of Service properties

The standard Notification Service QoS administrative interface is inherited by the interfaces of this

specification that need to support Qo&tisgs, which provides users with a simple and already known way
of setting QoS.

The table below lists levels at which additional QoS properties defined for the Management of Event
Domains are supported.

Property Per-Message Per-Proxy Per-Admin Per-Channel Per-Domain

CycleDetection X

11

DiamondDetection

Table 2-1: Additional QoS properties supported levels.
The following section defines and describes the interfaces supported by the generic event domain. Section 4 provides

definition and description of the interfaces supported by the typed event domain, while section 5 provides similar coverage of
the interfaces supported by event domains that also support logs as members.

12

3. Event Domain Interfaces

This section describes the semantic behavior of the interfaces that comprise the Event Domain. The Event
Domain IDL is defined within th&€osEventDomainAdminmodule. For each interface in the module, a

brief description of its purpose is provided, along with an explanation of the semantics of each of its
operations and attributes. A more detailed explanation of the behavior of each functional aspect of the Event
Domain is given in section 2 of this document.

#ifndef _COS_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_EVENT_DOMAIN_ADMIN_IDL_

/I Event Domain Interface

#include "CosNatification.idl"
#include "CosEventComm.idl"
#include "CosNotifyComm.idl"
#include "CosNotifyChannelAdmin.idl"

module CosEventDomainAdmin {

/I The following constant declarations define the Event Domain

/I QoS property names and the associated values each property can
/I take on. The name/value pairs for each Event Domain property

/I are grouped, beginning with a string constant defined for the

/I property name, followed by the values the property can take on.

const string CycleDetection
const short AuthorizeCycles

= "CycleDetection";
const short ForbidCycles = 1;

0; // Default value

const string DiamondDetection
const short AuthorizeDiamonds

= "DiamondDetection";
= O;
const short ForbidDiamonds = 1;

/I Default value

/I The following enum declaration defines the types that a channel
/I can be of. It is used to specify channel types while externalizing
/I and instantiating topologies.
enum ChannelType
{

CHANNEL,

TYPED_CHANNEL,

LOG_CHANNEL,

TYPED_LOG_CHANNEL

k

enum NotificationStyle {
Push,
Pull

3

typedef long MemberID;

typedef sequence <MemberIlD> MemberlDSeq;
typedef long ConnectionID;

typedef sequence <ConnectionID> ConnectionIDSeq;

struct Connection {
MemberID supplier_id;
MemberID consumer_id;
CosNotifyChannelAdmin::ClientType ctype;
NotificationStyle notification_style;

k

typedef MemberlDSeq Route;
typedef sequence<Route> RouteSeq;

typedef Route Cycle;
typedef sequence<Cycle> CycleSeq;

typedef RouteSeq Diamond;
typedef sequence<Diamond> DiamondSeq;

exception CycleCreationForbidden

Cycle cyc;

exception DiamondCreationForbidden

Diamond diam;

13

h

/I Forward declarations
interface ConsumerAdmin;
interface SupplierAdmin;

typedef long DomainiD;
typedef sequence <DomainID> DomainlDSegq;
typedef long ItemlID;

/I EventDomain administrates EventChannels that reside in the same administrative domain
exception ConnectionNotFound {};
exception AlreadyExists {};

interface EventDomain :
CosNatification::QoSAdmin ,
CosNotification::AdminPropertiesAdmin {

MemberID add_channel (
in CosNotifyChannelAdmin::EventChannel channel);

MemberIDSeq get_all_channels ();

CosNotifyChannelAdmin::EventChannel get_channel (
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

void remove_channel (
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

ConnectionID add_connection (
in Connection connection)
raises (CosNotifyChannelAdmin::ChannelNotFound,
CosEventChannelAdmin::TypeError,
AlreadyExists,
CycleCreationForbidden,
DiamondCreationForbidden);

ConnectionIDSeq get_all_connections ();

Connection get_connection (
in ConnectionID connection)
raises (ConnectionNotFound);

void remove_connection (
in ConnectionID connection)
raises (ConnectionNotFound);

CosNotifyChannelAdmin::ChannellDSeq get_offer_channels (
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ChannellDSeq get_subscription_channels (
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

void destroy();

/I Cycle and diamond configurations listing
CycleSeq get_cycles();

DiamondSeq get_diamonds();

/I Connection of clients to the domain

/I - using no specific information

/I - for any clients

void set_default_consumer_channel(in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_supplier_channel(in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer(in CosEventComm::PushConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer(in CosEventComm::PullConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

14

CosNotifyChannelAdmin::ProxyPushConsumer .
connect_push_supplier(in CosEventComm::PushSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier(in CosEventComm::PullSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I - for structured clients

CosNotifyChannelAdmin::StructuredProxyPushSupplier

connect_structured_push_consumer(in CosNotifyComm::StructuredPushConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer(in CosNotifyComm::StructuredPullConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier(in CosNotifyComm::StructuredPushSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier(in CosNotifyComm::StructuredPullSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I - for sequence clients

CosNotifyChannelAdmin::SequenceProxyPushSupplier

connect_sequence_push_consumer(in CosNotifyComm::SequencePushConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer(in CosNotifyComm::SequencePullConsumer client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier(in CosNotifyComm::SequencePushSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier(in CosNotifyComm::SequencePullSupplier client)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I - using a channel id
/I - for any clients
CosNotifyChannelAdmin::ProxyPushSupplier
connect_push_consumer_with_id(in CosEventComm::PushConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullSupplier
connect_pull_consumer_with_id(in CosEventComm::PullConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPushConsumer
connect_push_supplier_with_id(in CosEventComm::PushSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::ProxyPullConsumer
connect_pull_supplier_with_id(in CosEventComm::PullSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I - for structured clients
CosNotifyChannelAdmin::StructuredProxyPushSupplier
connect_structured_push_consumer_with_id(in CosNotifyComm::StructuredPushConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullSupplier
connect_structured_pull_consumer_with_id(in CosNotifyComm::StructuredPullConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPushConsumer
connect_structured_push_supplier_with_id(in CosNotifyComm::StructuredPushSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::StructuredProxyPullConsumer
connect_structured_pull_supplier_with_id(in CosNotifyComm::StructuredPullSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

15

/I - for sequence clients
CosNotifyChannelAdmin::SequenceProxyPushSupplier
connect_sequence_push_consumer_with_id(in CosNotifyComm::SequencePushConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullSupplier
connect_sequence_pull_consumer_with_id(in CosNotifyComm::SequencePullConsumer client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPushConsumer
connect_sequence_push_supplier_with_id(in CosNotifyComm::SequencePushSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosNotifyChannelAdmin::SequenceProxyPullConsumer
connect_sequence_pull_supplier_with_id(in CosNotifyComm::SequencePullSupplier client,
in MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

exception DomainNotFound {};

interface EventDomainFactory {

k
k

EventDomain create_event_domain(
in CosNotification::QoSProperties initialQoS
in CosNotification::AdminProperties initialAdmin,
out DomainID id)
raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

DomainlDSeq get_all_domains ();
EventDomain get_event_domain (

in DomainID id)
raises (DomainNotFound);

#endif // _COS_EVENT_DOMAIN_ADMIN_IDL_

Table 3-1: The CosEventDomainAdmin Module.

3.1.The EventDomain Interface

TheEventDomaininterface encapsulates all behaviors supported by event domain objects. Event domain
objects are capable of managing one or more topologies of interconnected untyped Notification Service

channels.

The EventDomaininterface inherits from th©oSAdmin andAdminPropertiesAdmin interfaces defined
in the CosNotifyChannelAdmin module. Inheritance of these interfaces enables event domains to be
configured to support certain QoS and Admin propertiirsgs at the domain level. Following the

conventions established by the Notification Servicéjrags for properties at the domain level that are also
settable at the channel level would become the default settings for these properties for all channels within the
domain. However, awareness of the new, higher level in the QoS hierarchy could only be supported by new
implementations of the Notification Service, since existing implementations are not aware of the domain
concept.

TheEventDomaininterface defines operations for adding new channels to a domain, for retrieving a
particular channel within the domain by unique ID, and for retrieving a list of all channels that exist within
the domain, and for removing a particular channel from a domain.

The EventDomaininterface also defines operations for forming connections between two channels within its
domain, for retrieving a particular connection by unique ID, for retrieving a list of all connections that exist
within the domain, and for removing a particular connection from the domain.

In addition, theEventDomaininterface supports an operation that, given the unique ID of a channel within

16

the target event domain, will return the list of all supplier channels that are upstream within the same
topology of interconnected channels as the input channel. LikewisEyviigDomaininterface supports an
operation that, given the unigue ID of a channel within the target event domain, will return the list of all
consumer channels that are downstream within the same topology of interconnected channels as the input
channel.

A set of operations is also provided to allow the connection of clients to the Event Domain, either using a
default channel or specifying the identifier of a channel.

Lastly, theEventDomaininterface supports an operation that can be invoked to destroy the target domain.

3.1.1. add _channel

Theadd_ channebperation adds a channel to the target domain. This operation takes the reference of a
channel as input, and returns an identifier for the channel that is unique among all channels contained within
the domain. Note that this identifier specifically represents the channel’s membership within the domain, and
is not the same as the identifier assigned to the channel by the factory that created it. Having the domain
assign its own identifiers to member channels enables channels created by different factories to be added to
the same domain, still guaranteeing uniqueness among the identifiers assigned to channels within a domain.
Thus, a particular channel may belong to multiple domains, and have a different identifier assigned to it
within each domain to which it belongs.

3.1.2. get_all_channels

Theget_all_channelgperation returns a sequence of all of the unique identifiers corresponding to all
channels that currently exist within the target domain. Note these are the identifiers that were assigned to the
member channels when they were added to the domain.

3.1.3. get_channel

Theget_channebperation accepts asput a numeric value that is supposed to be the unique identifier of a
channel that currently exists within the target domain. If this input value does not correspond to such a unique
identifier, theChannelNotFoundexception is raised. Otherwise, the operation returns the object reference of
the channel corresponding to the input identifier. Note the identifier supplied as input should be the identifier
assigned to the channel when it was added to the domain.

3.1.4. remove_channel

Theremove_channalperation removes a channel from the target domain. The operation takes as input the
unique identifier of a channel within the domain. If the supplied input parameter is not the unique identifier of
a channel within the domain, tli&hannelNotFoundexception is raised. Otherwise, the channel

corresponding to the supplied reference is removed from the target domain. Note the identifier supplied as
input should be the identifier assigned to the channel when it was added to the domain.

3.1.5. add_connection

Theadd_connectiomperation is invoked to cause a connection to be formed between two channels in the
target domain.

The operation takes as input a data structure that describes the connection to be formed. This structure
contains the ID of the channel that is intended to be the supplier in the relationship between the two channels,
and the ID of the channel that is intended to be the consumer in the relationship between the two channels. If
either of these IDs does not correspond to the ID of a channel that currently exists within the target domain,
the ChannelNotFoundexception is raised. The input structure also contains a flag that indicates the form of
events that will be communicated between the two channels over the connection, and another flag that
indicates whether push or pull style communication should be used.

17

If the two channels indicated by the ID fields of the connection structure exist within the target domain, but a
connection between them already exists in the same direction as indicated by their place in the structure (i.e.,
the existing connection is such that the same channel that is the supplier in the relationship would also be the
supplier as a result of forming the new connection) AlreadyEXxists exception is raised.

If the CycleDetectionQoS property of the target event domain is set to the valk®dfidCycle, and the

creation of the requested connection would result in a cycle being created within the topology of channels to
which the connection is being added, then@yeleCreationForbidden exception is raised. This exception
contains as data the sequence of channel member identifiers that would have formed the cycle.

Likewise, if theDiamondDetectionQoS property of the target event domain is set to the value of
ForbidDiamond, and the creation of the requested connection would result in a diamond being created
within the topology of channels to which the connection is being added, then the
DiamondCreationForbidden exception is raised. This exception contains as data a sequence of conflicting
paths, each path being a sequence of channel member identifiers.

Otherwise, the appropriate operations are invoked by the target event domain upon the two channels involved
in the connection in order to form the desired connection. Upon successfully doing this, the operation assigns
a numeric identifier to correspond to the connection that is unique among all connection identifiers in the
domain, and returns this identifier as the result of the operation.

3.1.6. get_all_connections

Theget_all_connectioneperation returns a sequence of all of the unique numeric identifiers corresponding
to all connections that currently exist within the target domain.

3.1.7. get_connection

Theget_connectiomperation accepts asfut a numeric value that is supposed to be the unique identifier of
connection that currently exists within the target domain. If this input value does not correspond to such a
unique identifier, th&ConnectionNotFoundexception is raised. Otherwise, the operation returns a data
structure that describes the connection corresponding to the input ID.

3.1.8. remove_connection

Theremove_connectiooperation is invoked to remove an existing connection between two channels in the
target domain. The operation takes as input the unigue identifier of a connection that exists within the

domain. If the input parameter does not correspond to an existing connection within the domain, the
ConnectionNotFoundexception is raised. Otherwise, the necessary operations are invoked upon the target
channels to remove the connection described by the corresponding connection structure. Note that this
operation does not remove the two channels involved. To remove channels completely, their destroy operation
must be invoked.

3.1.9. get_offer_channels

Theget_offer_channelgperation is invoked to obtain a list of all channels that exist upstream in the target
domain with respect to a given channel that exists within the domain. The operation takes as input the unique
ID of a channel that exists within the domain. If the supplied ID does not correspond to a channel that exists
within the domain, th&€hannelNotFoundexception is raised. Otherwise, the sequence of IDs of all

channels that exist upstream with respect to the input channel is returned.

3.1.10. get_subscription_channels

Theget_subscription_channetgeration is invoked to obtain a list of all channels that exist downstream in
the target domain with respect to a given channel that exists within the domain. The operation takes as input
the unique ID of a channel that exists within the domain. If the supplied ID does not correspond to a channel
that exists within the domain, tl@hannelNotFoundexception is raised. Otherwise, the sequence of IDs of

18

all channels that exist downstream with respect to the input channel is returned.

3.1.11. destroy

The destroy operation is invoked to destroy the target domain. If connections between channels within the
domain exist that were established by the target domain, these connections will be removed prior to
destruction of the target domain.

3.1.12. get_cycles

Theget_cycle®peration is invoked to retrieve a list of cycles that exist within any topology of channels
formed by connections that were established between these channels by the target domain. The operation
accepts noriput parameters, and returns as a result a sequence of cycles, whereas each cycle is itself a
sequence of member identifiers that identify channels within the domain that are involved in the cycle.

3.1.13. get_diamonds

Theget_diamondsperation is invoked to retrieve a list of diamonds that exist within any topology of

channels formed by connections that were established between these channels by the target domain. The
operation accepts naput parameters, and returns as a result a sequence of diamonds, whereas each diamond
is itself a sequence of member identifiers of channels within the domain that are involved in the diamond.

3.1.14. set_default_consumer_channel

Theset_default_consumer_chanmogleration is invoked to specify a particular channel within the target
domain as the default channel to which consumers will be connected when they invoke one of the
connect_*_consumaperations supported by the EventDomain interface, requesting in a single invocation
that they be connected to the domain.

The operation accepts agput a number value that should be the uniqgue member ID of one of the channels
within the target event domain. If the input value does correspond to the member ID of one of the channels
within the target domain, that channel becomes the default channel within the domain for consumer
connections. If, however, there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for consumers is set to the first
channel added to the target domain.

3.1.15. set_default_supplier_channel

Theset_default_supplier_channgberation is invoked to specify a particular channel within the target
domain as the default channel to which suppliers will be connected when they invoke one of the
connect_*_supplieoperations supported by the EventDomain interface, requesting in a single invocation
that they be connected to the domain.

The operation accepts agput a number value that should be the uniqgue member ID of one of the channels
within the target event domain. If the input value does correspond to the member ID of one of the channels
within the target domain, that channel becomes the default channel within the domain for supplier
connections. If, however, there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for suppliers is set to the first channel
added to the target domain.

3.1.16. connect_push_consumer

Theconnect_push_consumaperation is invoked to connect a push style consumer of events in the form of

19

CORBA::Anys to the event domain. The operation accepta@g the reference to either an Event or
Notification Service style push consumer of events in the form of CORBA::Anys. The type of the input
parameter i€osEventComm::PushConsumeKan Event Service style push consumer), but due to interface
inheritance this could also be a reference to an object supportifgpsidotifyComm::PushConsumer
interface (i.e., a Notification Service style push consumer).

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.17. connect_pull_consumer

Theconnect_pull_consumeperation is invoked to connect a pull style consumer of events in the form of
CORBA::Anys to the event domain. The operation accepta@d the reference to either an Event or
Notification Service style pull consumer of events in the form of CORBA::Anys. The type of the input
parameter i€osEventComm::PullConsumer(an Event Service style pull consumer), but due to interface
inheritance this could also be a reference to an object supportifgpsgidotifyComm::PullConsumer
interface (i.e., a Notification Service style pull consumer).

If the target domain contains no channels, @wsNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsuolie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.18. connect_push_supplier

Theconnect_push_suppli@peration is invoked to connect a push style supplier of events in the form of
CORBA::Anys to the event domain. The operation accepta@d the reference to either an Event or
Notification Service style push supplier of events in the form of CORBA::Anys. The type of the input
parameter i€osEventComm::PushSupplier(an Event Service style push supplier), but due to interface
inheritance this could also be a reference to an object supportifigpsidotifyComm::PushSupplier
interface (i.e., a Notification Service style push supplier).

If the target domain contains no channels, @wsNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s
connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

3.1.19. connect_pull_supplier

Theconnect_pull_supplieoperation is invoked to connect a pull style supplier of events in the form of
CORBA::Anys to the event domain. The operation accepta@d the reference to either an Event or
Notification Service style pull supplier of events in the form of CORBA::Anys. The type of the input
parameter i€osEventComm::PullSupplier (an Event Service style pull supplier), but due to interface
inheritance this could also be a reference to an object supportifigosidotifyComm::PullSupplier
interface (i.e., a Natification Service style pull supplier).

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is
raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel
for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s

20

connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

3.1.20. connect_structured_push_consumer

Theconnect_structured_push_consuroperation is invoked to connect a push style consumer of events in
the form of structured events to the event domain. The operation acceppiathe reference to a

Notification Service style consumer of events in the form of structured events that uses push mode of
interaction with its channel.

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.21. connect_structured_pull_consumer

Theconnect_structured_pull_consurnageration is invoked to connect a pull style consumer of events in
the form of structured events to the event domain. The operation acceppiathe reference to a
Notification Service style consumer of events in the form of structured events that uses pull mode of
interaction with its channel.

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.22. connect_structured_push_supplier

Theconnect_structured_push_supplaeration is invoked to connect a push style supplier of events in the
form of structured events to the event domain. The operation accepigiashie reference to a Notification
Service style supplier of events in the form of structured events that uses push mode of interaction with its
channel.

If the target domain contains no channels, @wsNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s
connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

3.1.23. connect_structured_pull_supplier

Theconnect_structured_pull_supplieperation is invoked to connect a pull style supplier of events in the
form of structured events to the event domain. The operation accepiguashie reference to a Notification
Service style supplier of events in the form of structured events that uses pull mode of interaction with its
channel.

If the target domain contains no channels, @wsNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s
connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

21

3.1.24. connect_sequence_push_consumer

Theconnect_sequence_push_consuaparation is invoked to connect a push style consumer of events in
the form of sequence events to the event domain. The operation acceqistabé reference to a

Notification Service style consumer of events in the form of sequence events that uses push mode of
interaction with its channel.

If the target domain contains no channels, @wsNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.25. connect_sequence_pull_consumer

Theconnect_sequence_pull_consuroperation is invoked to connect a pull style consumer of events in the
form of sequence events to the event domain. The operation accepgaiethe reference to a Natification
Service style consumer of events in the form of sequence events that uses pull mode of interaction with its
channel.

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for consumers within the domain to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.26. connect_sequence_push_supplier

Theconnect_sequence_push_supptiperation is invoked to connect a push style supplier of events in the
form of sequence events to the event domain. The operation accepgaiethe reference to a Natification
Service style supplier of events in the form of sequence events that uses push mode of interaction with its
channel.

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsuokie the appropriate operations upon the default channel

for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s
connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

3.1.27. connect_sequence_pull_supplier

Theconnect_sequence_pull_supplageration is invoked to connect a pull style supplier of events in the
form of sequence events to the event domain. The operation accepaiethe reference to a Natification
Service style supplier of events in the form of sequence events that uses pull mode of interaction with its
channel.

If the target domain contains no channels, @wesNotifyChannelAdmin::ChannelNotFound exception is

raised. Otherwise, the event domain proceedsvokie the appropriate operations upon the default channel

for suppliers within the domain to connect the input supplier to this channel. The channel’s default
SupplierAdmin will be used to create the appropriate proxy consumer instance, and the proxy consumer’s
connect operation will be invoked to connect the supplier to the channel. The reference of the proxy consumer
created on behalf of the client is returned as the result of the operation.

22

3.1.28. connect_push_consumer_with_id

Theconnect_push_consumer_with digeration is invoked to connect a push style consumer of events in the
form of CORBA::Anys to a specific channel within the event domain. The operation accepispmo i
parameters. The first is as the reference to either an Event or Notification Service style push consumer of
events in the form of CORBA::Anys. The type of the input paramet@asEventComm::PushConsumer

(an Event Service style push consumer), but due to interface inheritance this could also be a reference to an
object supporting th€osNotifyComm::PushConsumerinterface (i.e., a Notification Service style push
consumer). The second input parameter is an integer value that should correspond to the unique member ID
of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.29. connect_pull_consumer_with_id

Theconnect_pull_consumer_with_agperation is invoked to connect a pull style consumer of events in the
form of CORBA::Anys to a specific channel within the event domain. The operation accepispmo i
parameters. The first is as the reference to either an Event or Notification Service style pull consumer of
events in the form of CORBA::Anys. The type of the input paramet&asEventComm::PullConsumer

(an Event Service style pull consumer), but due to interface inheritance this could also be a reference to an
object supporting th€osNotifyComm::PullConsumer interface (i.e., a Notification Service style pull
consumer). The second input parameter is an integer value that should correspond to the unique member ID
of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.30. connect_push_supplier_with_id

Theconnect_push_supplier_with_agberation is invoked to connect a push style supplier of events in the

form of CORBA::Anys to a specific channel within the event domain. The operation accepispmo i
parameters. The first is as the reference to either an Event or Notification Service style push supplier of
events in the form of CORBA::Anys. The type of the input paramet€uasEventComm::PushSupplier

(an Event Service style push supplier), but due to interface inheritance this could also be a reference to an
object supporting th€osNotifyComm::PushSupplierinterface (i.e., a Notification Service style push

supplier). The second input parameter is an integer value that should correspond to the unique member ID of
one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

23

3.1.31. connect_pull_supplier_with_id

Theconnect_pull_supplier_with_idperation is invoked to connect a pull style supplier of events in the form
of CORBA::Anys to a specific channel within the event domain. The operation acceptspgut@arameters.

The first is as the reference to either an Event or Notification Service style pull supplier of events in the form
of CORBA::Anys. The type of the input parametedesEventComm::PullSupplier (an Event Service

style pull supplier), but due to interface inheritance this could also be a reference to an object supporting the
CosNotifyComm::PullSupplier interface (i.e., a Notification Service style pull supplier). The second input
parameter is an integer value that should correspond to the unique member ID of one of the channels within
the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

3.1.32. connect_structured_push_consumer_with_id

Theconnect_structured_push_consumer_wittogdration is invoked to connect a push style consumer of
events in the form of structured events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style push consumer of events in
the form of structured events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.33. connect_structured_pull_consumer_with_id

Theconnect_structured_pull_consumer_withojebration is invoked to connect a pull style consumer of
events in the form of structured events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style pull consumer of events in
the form of structured events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.34. connect_structured_push_supplier_with_id

Theconnect_structured_push_supplier_withojgeration is invoked to connect a push style supplier of
events in the form of structured events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style push supplier of events in
the form of structured events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

24

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

3.1.35. connect_structured_pull_supplier_with_id

Theconnect_structured_pull_supplier_with_ageration is invoked to connect a pull style supplier of events
in the form of structured events to a specific channel within the event domain. The operation accepts two
input parameters. The first is as the reference to a Notification Service style pull supplier of events in the
form of structured events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

3.1.36. connect_sequence_push_consumer_with_id

Theconnect_sequence_push_consumer_witbpétation is invoked to connect a push style consumer of
events in the form of sequence events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style push consumer of events in
the form of sequence events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

3.1.37. connect_sequence_pull_consumer_with_id

Theconnect_sequence_pull_consumer_witlogdration is invoked to connect a pull style consumer of
events in the form of sequence events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style pull consumer of events in
the form of sequence events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input consumer to this channel. The channel’'s default
ConsumerAdmin will be used to create the appropriate proxy supplier instance, and the proxy supplier's
connect operation will be invoked to connect the consumer to the channel. The reference of the proxy supplier
created on behalf of the client is returned as the result of the operation.

25

3.1.38. connect_sequence_push_supplier_with_id

Theconnect_sequence_push_supplier_witlogdration is invoked to connect a push style supplier of

events in the form of sequence events to a specific channel within the event domain. The operation accepts
two input parameters. The first is as the reference to a Notification Service style push supplier of events in
the form of sequence events. The second input parameter is an integer value that should correspond to the
unique member ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

3.1.39. connect_sequence_pull_supplier_with_id

Theconnect_sequence_pull_supplier_withofgeration is invoked to connect a pull style supplier of events

in the form of sequence events to a specific channel within the event domain. The operation acceytsttwo i
parameters. The first is as the reference to a Notification Service style pull supplier of events in the form of
sequence events. The second input parameter is an integer value that should correspond to the unique membelt
ID of one of the channels within the target domain.

If the target domain does not contain a channel whose member ID is equivalent the second input parameter,
the CosNotifyChannelAdmin::ChannelNotFound exception is raised. Otherwise, the event domain

proceeds torivoke the appropriate operations upon the channel corresponding to the member ID passed as
the second input parameter to connect the input supplier to this channel. The channel’s default SupplierAdmin
will be used to create the appropriate proxy consumer instance, and the proxy consumer’s connect operation
will be invoked to connect the supplier to the channel. The reference of the proxy consumer created on behalf
of the client is returned as the result of the operation.

3.2.The EventDomainFactory Interface

The EventDomainFactory interface defines operations for creating and managing event domains. It
supports a routine that creates new instances of event domains and assigns unique numeric identifiers to
them. In addition, thé&ventDomainFactory interface supports a routine which can return the unique
identifiers assigned to all event domains created by a given instalseeofDomainFactory, and another
routine which, given the unique identifier of an event domain created by a tavgetDomainFactory

instance, returns the object reference of that event domain.

3.2.1. create_event_domain

Thecreate_eventdomainoperation is invoked to create a new instance of event domain. This operation
accepts tworiput parameters. The first input parameter is a list of name-value pairs that specifidhe in

QoS property settings for the new event domain. The second input parameter is a list of name-value pairs that
specify the initial administrative property settings for the new event domain. If no implementation of the
EventDomaininterface exists that can support all of the requested QoS propérhgsethe
UnsupportedQoSexception is raised. This exception contains as data a sequence of data structures, each of
which identifies the name of a QoS property in the input list whose requestedysmuld not be satisfied,

along with an error code and a range of settings for the property which could be satisfied.

Likewise, if no implementation of thEventDomaininterface exists that can support all of the requested
administrative property settings, thisupportedAdmin exception is raised. This exception contains as
data a sequence of data structures, each of which identifies the name of an administrative property in the
input list whose requestedttiag could not be satisfied, along with an error code and a range of settings for
the property which could be satisfied.

26

If neither of these exceptions is raised, theate_eventdomainoperation will return a reference to an event
domain. In addition, the operation assigns to this new event domain a numeric identifier that is unique among
all event domains created by the target object. This numeric identifier is returned as an output parameter.

3.2.2. get_all_domains

Theget_all_domain®peration returns a sequence of all of the unique numeric identifiers corresponding to
event domains that have been created by the target object.

3.2.3. get_event_domain

Theget_eventdomainoperation accepts asfut a numeric value that is supposed to be the unique identifier

of an event domain that has been created by the target object. If this input value does not correspond to such a
unique identifier, th&omainNotFound exception is raised. Otherwise, the operation returns the object
reference of the event domain corresponding to the input identifier.

27

4.

Typed Event Domain Interfaces

This section describes the semantic behavior of the interfaces that comprise the Typed Event Domain. The
Typed Event Domain IDL is defined within tt@osTypedEventDomainAdminmodule. For each interface

in the module, a brief description of its purpose is provided, along with an explanation of the semantics of
each of its operations and attributes.

A Typed Event Domain is essentially equivalent to the Event Domain described in the previous section, with
the exception that it may contain a combination of untyped and typed Notification Service channels. A more
detailed explanation of the behavior of each functional aspect of the Event Domain is given in section 2 of
this document.

#ifndef _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_
#define _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

/I Typed Event Domain Interface
#include "CosTypedEventComm.idl"
#include "CosTypedEventChannelAdmin.idl"
#include "CosTypedNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"

module CosTypedEventDomainAdmin {

struct TypedConnection {

k

interface TypedEventDomain :

channel);

CosEventDomainAdmin::MemberID supplier_id,;
CosEventDomainAdmin::MemberID consumer_id;
CosTypedEventChannelAdmin::Key typed_interface;
CosEventDomainAdmin::NotificationStyle notification_style;

CosEventDomainAdmin::EventDomain {

CosEventDomainAdmin::MemberID add_typed_channel (
in CosTypedNotifyChannelAdmin::TypedEventChannel

CosTypedNotifyChannelAdmin:: TypedEventChannel get_typed_channel (

in CosEventDomainAdmin::MemberlD channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I Form typed connection between two channels
CosEventDomainAdmin::ConnectionID add_typed_connection (in TypedConnection connection)
raises (CosNotifyChannelAdmin::ChannelNotFound,
CosEventChannelAdmin::TypeError,
CosEventDomainAdmin::AlreadyEXxists,
CosEventDomainAdmin::CycleCreationForbidden,
CosEventDomainAdmin::DiamondCreationForbidden);

/I Set default channels for typed clients
void set_default_typed_consumer_channel (in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

void set_default_typed_supplier_channel (in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound);

/I Connection of clients to the domain
/I - using no specific information
/I - for typed clients
CosTypedNotifyChannelAdmin:: TypedProxyPushSupplier
connect_typed_push_consumer(in CosTypedEventComm::TypedPushConsumer client,
in CosTypedNotifyChannelAdmin::Key uses_interface)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::NoSuchlmplementation,
CosEventChannelAdmin::TypeError);

CosTypedNotifyChannelAdmin:: TypedProxyPullSupplier
connect_typed_pull_consumer(in CosEventComm::PullConsumer client,
in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin::TypedProxyPushConsumer
connect_typed_push_supplier(in CosEventComm::PushSupplier client,
in CosTypedNotifyChannelAdmin::Key supported_interface)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::InterfaceNotSupported

CosTypedNotifyChannelAdmin:: TypedProxyPullConsumer
connect_typed_pull_supplier(in CosTypedEventComm::TypedPullSupplier client,

28

]) ~in CosTypedNotifyChannelAdmin::Key uses_interface))
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::NoSuchlmplementation,
CosEventChannelAdmin::TypeError);

/I - using a channel id
/I - for typed clients
CosTypedNotifyChannelAdmin:: TypedProxyPushSupplier
connect_typed_push_consumer_with_id(in CosTypedEventComm::TypedPushConsumer client,
in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::NoSuchlmplementation,
CosEventChannelAdmin::TypeError);

CosTypedNotifyChannelAdmin:: TypedProxyPullSupplier
connect_typed_pull_consumer_with_id(in CosEventComm::PullConsumer client,
in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin:: TypedProxyPushConsumer
connect_typed_push_supplier_with_id(in CosEventComm::PushSupplier client,
in CosTypedNotifyChannelAdmin::Key supported_interface,
in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::InterfaceNotSupported);

CosTypedNotifyChannelAdmin:: TypedProxyPullConsumer
connect_typed_pull_supplier_with_id(in CosTypedEventComm::TypedPullSupplier client,
in CosTypedNotifyChannelAdmin::Key uses_interface,
in CosEventDomainAdmin::MemberID channel)
raises (CosNotifyChannelAdmin::ChannelNotFound, CosTypedEventChannelAdmin::NoSuchlmplementation,
CosEventChannelAdmin::TypeError);

interface TypedEventDomainFactory {

TypedEventDomain create_typed_event_domain(
in CosNotification::QoSProperties initialQoS
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)
raises (CosNotification::UnsupportedQoS,
CosNotification::UnsupportedAdmin);

CosEventDomainAdmin::DomainiDSeq get_all_typed_domains ();

TypedEventDomain get_typed_event_domain (
in CosEventDomainAdmin::DomainID id)
raises (CosEventDomainAdmin::DomainNotFound);
3
3

#endif // _COS_TYPED_EVENT_DOMAIN_ADMIN_IDL_

Table 4-1: The CosTypedEventDomainAdmin Module.

4.1.The TypedEventDomain Interface

TheTypedEventDomaininterface encapsulates all behaviors supported by typed event domain objects.
Typed event domain objects are capable of managing one or more topologies of interconnected channels,
where each channel may be capable of supporting both typed and untyped communication.

The TypedEventDomaininterface inherits from thEventDomaininterface defined in the
CosEventDomainAdminmodule. This interface in turn inherits from t@SAdmin and
AdminPropertiesAdmin interfaces defined in thEosNotifyChannelAdmin module. Due to the

inheritance of these latter two interfaces, typed event domains can be configured to support certain QoS and

Admin property settings.

In addition, inheritance of thEventDomaininterface implies that an instance of thgpedEventDomain
interface supports the following capbiies:

» Can add an untyped channel to its domain

» Canremove a typed or untyped channel from its domain (note that thersaroge _channel
operation can be used for both typed and untyped channels)

29

 Can retrieve the reference of an untyped channel that exists within its domain by unique ID
 Can retrieve a list of all channels (both untyped and typed) that exist within the domain
 Can form connections between channels within its domain

 Can retrieve a structure describing a connection by unique 1D

 Can retrieve a list of all connections that exist within the domain

» Canremove a particular connection from the domain

» Given the unique ID of a channel within the domain, can return the list of all supplier channels that are
upstream within the same topology of interconnected channels as the input channel

» Given the unique ID of a channel within the domain, can return the list of all consumer channels that
are downstream within the same topology of interconnected channels as the input channel

« Can be destroyed

In addition, as described below tiigpedEventDomaininterface defines an operation for adding a new
instance of a typed channel to a domain, and an operation for returning the reference of an existing typed
channel given that channel’s unique ID. It also supports an operation for forming a typed connection between
two typed channels belonging to the domain, and operations enabling clients of typed event channels to
request connections to the domain.

4.1.1. add_typed_channel

Theadd_typed_channeperation adds a typed channel to the target domain. This operation takes the
reference to a typed channel as input, and returns an identifier for the channel that is unique among all
channels (both typed and untyped) contained within the domain. Note that this identifier specifically

represents the channel’s membership within the domain, and is not the same as the identifier assigned to the
channel by the factory that created it. Having the domain assign its own identifiers to member channels
enables channels created by different factories to be added to the same domain, still guaranteeing uniqueness
among the identifiers assigned to channels within a domain. Thus, a particular channel may belong to

multiple domains, and have a different identifier assigned to it within each domain to whicbrigsel

4.1.2. get_typed_channel

Theget_typed_channelperation accepts agput a numeric value that is supposed to be the unique
identifier of a typed channel that currently exists within the target domain. If this input value does not
correspond to such a unique identifier, tbleannelNotFoundexception is raised. Otherwise, the operation
returns the object reference of the channel corresponding to the input identifier. Note that the identifier
supplied should be one that was assigned to a channel as a result of iredgirtgped _channein the
target domain.

4.1.3. add_typed_connection

Theadd_typed_connectiamperation is used to form a typed connection between two typed channels that
belong to the target domain. The operation acceptssg a data structure that describes the desired
connection. This data structure includes the member IDs of the supplier and consumer channels involved in
the new connection, the fully qualified name of the strongly typed interface the two channels will use to
interact (this is required to connect two typed channels), and a flag indicating whether push or pull style
communication will be used.

If either of the two member IDs passed as input does not correspond to the ID of a channel that is a member
of the target domain, theéhannelNotFoundexception is raised. If either of the two channels involved in the
connection are not designed to use the supplied interface (e.g., if this is push-style communication, the
consumer channel must support this interface, and the supplier channel must be designed to use this

30

interface), thel'ypeError exception is raised. If a connection between the two channels involved in the
operation already exists within the domain in the same direction that would result in this new connection
being formed, thé\lreadyExists exception is raised. If cycle detection on the target domain is enabled, and
the addition of the desiredonection would create a cycle in the topology that this connection would be part
of, theCycleCreationForbiddenexception is raised. Likewise, if diamond detection on the target domain is
enabled, and the addition of the desiredigection would create a diamond in the topology that this
connection would be part of, ti@iamondCreationForbidden exception is raised.

If none of these exception caitidns exist, the target domain invokes the appropriate operations on the two
channels involved in the connection, in order to create the desired connection. A ID is assigned to represent
the connection that is unique among all other connection IDs within the target domain, and this value is
returned as the result of the operation.

4.1.4. set_default_typed_consumer_channel

Theset_default_typed_consumer_charopration is invoked to specify a particular channel within the

target domain as the default channel to which typed consumers will be connected when they invoke one of the
connect_typed_*_consumeperations supported by the TypedEventDomain interface, requesting in a single
invocation that they be connected to the domain.

The operation accepts agput a number value that should be the uniqgue member ID of one of the channels
within the target event domain. If the input value does correspond to the member ID of one of the channels
within the target domain, that channel becomes the default channel within the domain for typed consumer
connections. If, however, there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for typed consumers is set to the first
typed channel added to the target domain.

4.1.5. set_default_supplier_channel

Theset_default_typed_supplier_chanogkration is invoked to specify a particular channel within the

target domain as the default channel to which typed suppliers will be connected when they invoke one of the
connect_typed_*_suppli@perations supported by the TypedEventDomain interface, requesting in a single
invocation that they be connected to the domain.

The operation accepts agput a number value that should be the uniqgue member ID of one of the channels
within the target event domain. If the input value does correspond to the member ID of one of the channels
within the target domain, that channel becomes the default channel within the domain for typed supplier
connections. If, however, there is no channel within the domain that has the input value as its member ID, the
CosNotifyChannelAdmin::ChannelNotFound exception is raised.

Note that before this operation is invoked, the domain’s default channel for typed suppliers is set to the first
typed channel added to the target domain.

4.1.6. connect_typed_push_consumer

Theconnect_typed_push_consurogeration is invoked to connect a push style consumer of typed events to
the target domain. The operation accepts it parameters. The first is the reference to a typed push
consumer. The second input parameter is the fully qualified name of the interface supported by the input
typed push consumer that the domain should use to send typed events to it.

If the target domain contains no typed channelsGbeNotifyChannelAdmin::ChannelNotFound

exception is raised. If the default typed consumer channel within the domain does not suppadlitytte ab

push events to the specified typed interface, GbeTypedNotifyChannelAdmin::NoSuchimplementation
exception is raised. If the input typed consumer does not actually support the interface passed as the second
input parameter, th€osEventChannelAdmin::TypeError exception is raised.

If none of these exception caitidns exist, the target domain proceedsrtedke the appropriate operations
31

upon the default channel for typed consumers within the domain to connect the input consumer to this
channel. The channel’'s default TypedConsumerAdmin will be used to create the appropriate typed proxy
supplier instance, and the typed proxy supplier’s connect operation will be invoked to connect the consumer
to the channel. The reference of the typed proxy supplier created on behalf of the client is returned as the
result of the operation.

4.1.7. connect_typed_pull_consumer

Theconnect_typed_pull_consumaperation is invoked to connect a pull style consumer of typed events to
the target domain. The operation accepts mmt parameters. The first is the reference to a typed pull
consumer. The second input parameter is the fully qualified name of the interface the client expects the
default channel to support, which it will use to pull typed events.

If the target domain contains no typed channelsGbeNotifyChannelAdmin::ChannelNotFound

exception is raised. If the default typed consumer channel within the domain is not capable of creating any
typed proxy supplier that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceausteithe appropriate operations
upon the default channel for typed consumers within the domain to connect the input consumer to this
channel. The channel’'s default TypedConsumerAdmin will be used to create the appropriate typed proxy
supplier instance, and the typed proxy supplier’s connect operation will be invoked to connect the consumer
to the channel. The reference of the typed proxy supplier created on behalf of the client is returned as the
result of the operation.

4.1.8. connect_typed_push_supplier

Theconnect_typed_push_suppl@peration is invoked to connect a push style supplier of typed events to

the target domain. The operation accepts it parameters. The first is the reference to a typed push
supplier. The second input parameter is the fully qualified name of the interface the client expects the default
channel to support, which it will use to push typed events.

If the target domain contains no typed channelsGbeNotifyChannelAdmin::ChannelNotFound

exception is raised. If the default typed supplier channel within the domain is not capable of creating any
typed proxy consumer that supports that interface specified by the second input parameter, the
CosTypedNotifyChannelAdmin::InterfaceNotSupported exception is raised.

If neither of these exception conditions exist, the target domain proceausteithe appropriate operations

upon the default channel for typed suppliers within the domain to connect the input supplier to this channel.
The channel’s default TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the typed proxy consumer created on behalf of the client is returned as the result of
the operation.

4.1.9. connect_typed_pull_supplier

Theconnect_typed_pull_supplieperation is invoked to connect a pull style supplier of typed events to the
target domain. The operation accepts twaLit parameters. The first is the reference to a typed pull supplier.
The second input parameter is the fully qualified name of the interface supported by the input typed pull
supplier that the domain should use to pull typed events from it.

If the target domain contains no typed channelsGbeNotifyChannelAdmin::ChannelNotFound

exception is raised. If the default typed supplier channel within the domain does not suppoititiheogiull
events from the specified typed interface, @@sTypedNotifyChannelAdmin::NoSuchimplementation
exception is raised. If the input typed supplier does not actually support the interface passed as the second
input parameter, th€osEventChannelAdmin::TypeError exception is raised.

If none of these exception caitidns exist, the target domain proceedsrtedke the appropriate operations

32

upon the default channel for typed suppliers within the domain to connect the input supplier to this channel.
The channel’s default TypedSupplierAdmin will be used to create the appropriate typed proxy consumer
instance, and the typed proxy consumer’s connect operation will be invoked to connect the supplier to the
channel. The reference of the typed proxy consumer created on behalf of the client is returned as the result of
the operation.

4.1.10. connect_typed_push_consumer_with_id

Theconnect_typed_push_consumer_withopgération is invoked to connect a push style consumer of typed
events to a specific channel within the target domain. The operation acceptsipguegarameters. The first

is the reference to a typed push consumer. The second input parameter is the fully qualified name of the
interface supported by the input typed push consumer that the channel to which the consumer will be
connected should use to send typed events to it. The third input parameter is the member ID of the channel
within the target domain to which the consumer should be connected.

If no channel exists within the target domain that corresponds to the unique ID supplied as the third input
parameter, th€osNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel specified
by the third input parameter does not support thiéitglho push events to the specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchimplementationexception is raised. If the input typed consumer
does not actually support the interface passed as the second input parameter, the
CosEventChannelAdmin::TypeError exception is raised.

If none of these exception caitidns exist, the target domain proceedsrtaedke the appropriate operations

upon the channel specified by the third input parameter to connect the input consumer to this channel. The
channel’'s default TypedConsumerAdmin will be used to create the appropriate typed proxy supplier instance,
and the typed proxy supplier’s connect operation will be invoked to connect the consumer to the channel. The
reference of the typed proxy supplier created on behalf of the client is returned as the result of the operation.

4.1.11. connect_typed_pull_consumer_with_id

Theconnect_typed_pull_consumer_withofkeration is invoked to connect a pull style consumer of typed
events to a specific channel within the target domain. The operation acceptsipguegarameters. The first

is the reference to a typed pull consumer. The second input parameter is the fully qualified name of the
interface the client expects the channel to which it is attempting to connect to support, which it will use to
pull typed events. The third input parameter is the member ID of the channel within the target domain to
which the consumer should be connected.

If no channel exists within the target domain that corresponds to the unique ID supplied as the third input
parameter, th€osNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel specified

by the third input parameter is not capable of creating any typed proxy supplier that supports that interface
specified by the second input parameter,Gles TypedNotifyChannelAdmin::InterfaceNotSupported
exception is raised.

If neither of these exception conditions exist, the target domain proceausteithe appropriate operations

upon the channel specified by the third input parameter to connect the input consumer to this channel. The
channel’'s default TypedConsumerAdmin will be used to create the appropriate typed proxy supplier instance,
and the typed proxy supplier’s connect operation will be invoked to connect the consumer to the channel. The
reference of the typed proxy supplier created on behalf of the client is returned as the result of the operation.

4.1.12. connect_typed_push_supplier_with_id

Theconnect_typed_push_supplier_withojgeration is invoked to connect a push style supplier of typed
events to a specific channel within the target domain. The operation acceptsiguegarameters. The first

is the reference to a typed push supplier. The second input parameter is the fully qualified name of the
interface the client expects the channel to which it is attempting to connect to support, which it will use to
push typed events. The third input parameter is the member ID of the channel within the target domain to
which the supplier should be connected.

33

If no channel exists within the target domain that corresponds to the unique ID supplied as the third input
parameter, th€osNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel specified

by the third input parameter is not capable of creating any typed proxy consumer that supports that interface
specified by the second input parameter,Gtees TypedNotifyChannelAdmin::InterfaceNotSupported

exception is raised.

If neither of these exception conditions exist, the target domain proceausteithe appropriate operations

upon the channel specified by the third input parameter to connect the input supplier to this channel. The
channel’'s default TypedSupplierAdmin will be used to create the appropriate typed proxy consumer instance,
and the typed proxy consumer’s connect operation will be invoked to connect the supplier to the channel. The
reference of the typed proxy consumer created on behalf of the client is returned as the result of the operation.

4.1.13. connect_typed_pull_supplier_with_id

Theconnect_typed_pull_supplier_with_ageration is invoked to connect a pull style supplier of typed

events to a specific channel within the target domain. The operation acceptsiueparameters. The first

is the reference to a typed pull supplier. The second input parameter is the fully qualified name of the
interface supported by the input typed pull supplier that the channel to which the consumer will be connected
should use to pull typed events from it. The third input parameter is the member ID of the channel within the
target domain to which the supplier should be connected.

If no channel exists within the target domain that corresponds to the unique ID supplied as the third input
parameter, th€osNotifyChannelAdmin::ChannelNotFound exception is raised. If the channel specified
by the third input parameter does not support thiétglo pull events from the specified typed interface, the
CosTypedNotifyChannelAdmin::NoSuchimplementationexception is raised. If the input typed supplier
does not actually support the interface passed as the second input parameter, the
CosEventChannelAdmin::TypeError exception is raised.

If none of these exception caitidns exist, the target domain proceedsrtedke the appropriate operations

upon the channel specified by the third input parameter to connect the input supplier to this channel. The
channel’'s default TypedSupplierAdmin will be used to create the appropriate typed proxy consumer instance,
and the typed proxy consumer’s connect operation will be invoked to connect the supplier to the channel. The
reference of the typed proxy consumer created on behalf of the client is returned as the result of the operation.

4.2.The TypedEventDomainFactory Interface

The TypedEventDomainFactoryinterface defines operations for creating and managing typed event

domains. It supports a routine that creates new instances of typed event domains and assigns unique numeric
identifiers to them. In addition, thEypedEventDomainFactoryinterface supports a routine which can

return the unique identifiers assigned to all event domains created by a given instance of
TypedEventDomainFactory, and another routine which, given the unique identifier of a typed event domain
created by a targ@typedEventDomainFactoryinstance, returns the object reference of that domain.

4.2.1. create_typed_event _domain

Thecreate_typed_evendomainoperation is invoked to create a new instance of typed event domain. This
operation accepts twaput parameters. The first input parameter is a list of name-value that specify the
initial QoS property settings for the new typed event domain. The seppntiparameter is a list of name-
value pairs that specify the initial administrative property settings for the new typed event domain. If no
implementation of th&@ypedEventDomaininterface exists that can support all of the requested QoS
property settings, theinsupportedQoSexception is raised. This exception contains as data a sequence of
data structures, each of which identifies the name of a QoS property in the input list whose requisged se
could not be satisfied, along with an error code and a range of settings for the property which could be
satisfied.

Likewise, if no implementation of th€ypedEventDomaininterface exists that can support all of the
requested administrative property settings,WimsupportedAdmin exception is raised. This exception

34

contains as data a sequence of data structures, each of which identifies the name of an administrative
property in the input list whose requestedtisg could not be satisfied, along with an error code and a range
of settings for the property which could be satisfied.

If neither of these exceptions is raised, theate_typed_everdomainoperation will return a reference to a
typed event domain. In addition, the operation assigns to this new typed event domain a numeric identifier
that is unique among all typed event domains created by the target object. This numeric identifier is returned
as an output parameter.

4.2.2. get_all_typed _domains

Theget_all_typed_domairmgperation returns a sequence of all of the unique numeric identifiers
corresponding to typed event domains that have been created by the target object.

4.2.3. get_typed_event_domain

Theget_typed_eventiomainoperation accepts agput a numeric value that is supposed to be the unique
identifier of a typed event domain that has been created by the target object. If this input value does not
correspond to such a unique identifier, themainNotFound exception is raised. Otherwise, the operation

returns the object reference of the typed event domain corresponding to the input identifier.

35

S.

Log Domain Interfaces

This section describes the semantic behavior of the interfaces that make up the Log Domain. Log domains are
a specialized type of event domain that may contain regular Notification Service channels, typed Noatification
Service channels, and either regular or typed notification style logs as defined by the Telecom Log Service.

Log Domain IDL defines a singlBsLogDomainAdmin module. For each interface in the module, a brief
description of its purpose is provided, along with an explanation of the semantics of each of its operations and
attributes. A more detailed explanation of the behavior of each functional aspect of the Event Domain is

given in section 2 of this document.

#ifndef _DS_LOG_DOMAIN_ADMIN_IDL_
#define _DS_LOG_DOMAIN_ADMIN_IDL_

/I Event Log Domain Interface

#include "CosNoatification.idl"

#include "CosNotifyChannelAdmin.idl"
#include "CosEventDomainAdmin.idl"
#include "CosTypedEventDomainAdmin.idl"
#include "DsNotifyLogAdmin.idl"

#include "DsTypedNotifyLogAdmin.idl"

module DsLogDomainAdmin {

interface EventLogDomain :
CosTypedEventDomainAdmin:: TypedEventDomain {

CosEventDomainAdmin::MemberID add_log (

DsNotifyLogAdmin::NotifyLog get_log (
raises (CosNotifyChannelAdmin::ChannelNotFound);

CosEventDomainAdmin::MemberID add_typed_log (
DsTypedNotifyLogAdmin::TypedNotifyLog get_typed_log (

raises (CosNotifyChannelAdmin::ChannelNotFound);

interface EventLogDomainFactory {

EventLogDomain create_event_log_domain(

raises (CosNotification::UnsupportedQoS,

CosEventDomainAdmin::DomainiDSeq get_all_event_log_domains ();
EventLogDomain get_event_log_domain (

raises (CosEventDomainAdmin::DomainNotFound);

k
k

#endif // _DS_LOG_DOMAIN_ADMIN_IDL_

in DsNotifyLogAdmin::NotifyLog log);

in CosEventDomainAdmin::MemberID log)

in DsTypedNotifyLogAdmin::TypedNotifyLog log);

in CosEventDomainAdmin::MemberID log)

in CosNotification::QoSProperties initialQoS
in CosNotification::AdminProperties initialAdmin,
out CosEventDomainAdmin::DomainID id)

CosNotification::UnsupportedAdmin);

in CosEventDomainAdmin::DomainID id)

Table 5-1: The DsLogDomainAdmin Module.

5.1.The EventLogDomain Interface

TheEventLogDomaininterface encapsulates all behaviors supported by event log domain objects. Event log
domain objects are capable of managing one or more topologies of interconnected channels and logs, where
each channel and log may be capable of supporting both typed and untyped communication.

The EventLogDomaininterface inherits from th&@ypedEventDomaininterface defined in the
CosTypedEventDomainAdminmodule. This inheritance enablesBwentLogDomainto maintain

36

topologies of both typed and untyped channels, as well as typed and untyped loggpEhEventDomain
interface inherits from thEventDomaininterface defined in th€osEventDomainAdminmodule. This
interface in turn inherits from th@oSAdmin andAdminPropertiesAdmin interfaces defined in the
CosNotifyChannelAdmin module. Due to the inheritance of these latter two interfaces, event log domains
can be configured to support certain QoS and Admin propettiyngs.

In addition, inheritance of th€ypedEventDomaininterface implies that an instance of the
EventLogDomaininterface supports the following capkties:

» Can add typed and untyped channels to its domain

» Canremove a typed or untyped channel from its domain (note that thersaroge _channel
operation can be used for typed and untyped channels and logs)

» Can retrieve the reference of an untyped or typed channel that exists within its domain by unique 1D
» Canretrieve a list of all channels and logs (untyped and typed) that exist within the domain

» Can form connections between channels and/or logs within its domain

* Can retrieve a structured describing a connection by unique 1D

» Can retrieve a list of all connections that exist within the domain

» Canremove a particular connection from the domain

 Given the unique ID of a channel or log within the domain, can return the list of all supplier channels
and logs that are upstream within the same topology of interconnected channels and logs as the input
channel or log

» Given the unique ID of a channel or log within the domain, can return the list of all consumer channels
and logs that are downstream within the same topology of interconnected channels and logs as the input
channel or log

» Can be destroyed

In addition, as described below tB&entLogDomaininterface defines operations for adding new instances
of typed and untyped logs to a domain, and operations for returning the reference of an existing typed or
untyped log given that log's unique ID.

5.1.1. add _log

Theadd_logoperation adds an untyped Noatification log to the target domain. This operation takes the
reference to an untyped Notification log as input, and returns an identifier for the log that is unique among all
channels and logs (typed and untyped) contained within the domain. Note that this identifier specifically
represents the log’'s membership within the domain, and is not the same as the identifier assigned to the log
by the factory that created it. Having the domain assign its own identifiers to member logs enables logs
created by different factories to be added to the same domain, still guaranteeing uniqueness among the
identifiers assigned to logs within a domain. Thus, a particular log may belong to multiple domains, and have
a different identifier assigned to it within each domain to which it belongs.

5.1.2. get_log

Theget_logoperation accepts asput a numeric value that is supposed to be the unique identifier of an
untyped log that currently exists within the target domain. If this input value does not correspond to such a
unique identifier, th&ChannelNotFoundexception is raised. Otherwise, the operation returns the object
reference of the log corresponding to the input identifier. Note that the identifier supplied should be one that
was assigned to a log as a result of invokamtgl_logon the target domain.

37

5.1.3. add_typed log

Theadd_typed_logperation adds a typed log to the target domain. This operation takes the reference to a
typed log as input, and returns an identifier for the log that is unique among all channels and logs (typed and
untyped) contained within the domain. Note that this identifier specifically represents the log’s membership
within the domain, and is not the same as the identifier assigned to the log by the factory that created it.
Having the domain assign its own identifiers to member logs enables logs created by different factories to be
added to the same domain, still guaranteeing uniqueness among the identifiers assigned to logs within a
domain. Thus, a particular log may belong to multiple domains, and have a different identifier assigned to it
within each domain to which it belongs.

5.1.4. get_typed_log

Theget_typed_logperation accepts asput a numeric value that is supposed to be the unique identifier of a
typed log that currently exists within the target domain. If this input value does not correspond to such a
unique identifier, th&ChannelNotFoundexception is raised. Otherwise, the operation returns the object
reference of the log corresponding to the input identifier. Note that the identifier supplied should be one that
was assigned to a log as a result of invokiaiyl_typed_lo@n the target domain.

5.2.The EventLogDomainFactory Interface

The EventLogDomainFactory interface defines operations for creating and managing event log domains. It
supports a routine that creates new instances of event log domains and assigns unique numeric identifiers to
them. In addition, thé&ventLogDomainFactory interface supports a routine which can return the unique
identifiers assigned to all event log domains created by a given instaBsenfLogDomainFactory, and

another routine which, given the unique identifier of an event log domain created by a target
EventLogDomainFactoryinstance, returns the object reference of that domain.

5.2.1. create_event_log_domain

Thecreate_eventog_domairoperation is invoked to create a hew instance of event log domain. This
operation accepts twoput parameters. The first input parameter is a list of name-value pairs that specify the
initial QoS property settings for the new event log domain. The secgnd parameter is a list of name-value
pairs that specify the initial administrative property settings for the new event log domain. If no
implementation of th&ventLogDomain interface exists that can support all of the requested QoS property
settings, th&JnsupportedQoSexception is raised. This exception contains as data a sequence of data
structures, each of which identifies the name of a QoS property in the input list whose requitisigd e d

not be satisfied, along with an error code and a range of settings for the property which could be satisfied.

Likewise, if no implementation of thEventLogDomaininterface exists that can support all of the requested
administrative property settings, thisupportedAdmin exception is raised. This exception contains as
data a sequence of data structures, each of which identifies the name of an administrative property in the
input list whose requestedttiag could not be satisfied, along with an error code and a range of settings for
the property which could be satisfied.

If neither of these exceptions is raised, theate_eventolg_domairoperation will return a reference to an
event log domain. In addition, the operation assigns to this new event log domain a numeric identifier that is
unique among all event log domains created by the target object. This numeric identifier is returned as an
output parameter.

5.2.2. get_all_event_log_domains

Theget_all_eventdg_domain®peration returns a sequence of all of the unique numeric identifiers
corresponding to event log domains that have been created by the target object.

38

5.2.3. get_event_log_domain

Theget_event dg_domairoperation accepts asput a numeric value that is supposed to be the unique
identifier of an event log domain that has been created by the target object. If this input value does not
correspond to such a unique identifier, themainNotFound exception is raised. Otherwise, the operation
returns the object reference of the event log domain corresponding to the input identifier.

39

Tables of illustrations

Figures:

Figure 2-1: General ArchiteCture Of the EVENE DOMAIN.ccutieiiiiiieeeiiittee e e et e e e e eetbeeeeeeiteeseeesaeesesassaseeessisseeeesabaeeeeaastasee e e s asseeeeesassssseseastbesseaassasssesssnnnens 10
[0 101N W A (=W (LU (e (U (<X 0) =Y @) [1= 1o] F R 11
Figure 2-3: Sharing Subscription INformation in the EVENT DOMIAIN........cc.ueiii i et it e e eete e e e eetb e e e e eetteeseeetteeeesaaaeeeessasaseeessssteeeesasbbeeeseeassseesesssnnseeesanrrees 13

Tables:

Table 2-1: Additional Q0S PropertieS SUPPOIEU IEVELS...........cciiiiieecee ettt sttt st e et e e et eeeta e e s ebeeeabeeesabeesabeseasseeasseessee s nsseeanseeassseessseesatasesseesnreesreenns
Table 3-1: The CosEventDomainAdmin Module.............. .
Table 4-1: The CosTypedEventDomainAdmin Module.... .
Table 5-1: The DSLOGDOMAINAAMIN IMOUUIE..........cciuiiiitie ettt ettt e e et e e beeeeaeeesabeeesseesbaeeasseesabeeeaseeessseeassssaesneenssaesasseeasseeanseeansesesnsaesabeeeseeenseeens 38

40

