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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
« XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
«  CORBAJ/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
*  CORBAservices
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. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso0.0rg

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

1.1 Introduction

This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE), provides support for
specification, design, and verification/validation stages. This new profile is intended to replace the existing UML Profile
for Schedulability, Performance and Time (formal/03-09-01).

MARTE consists in defining foundations for model-based description of real time and embedded systems. These core
concepts are then refined for both modeling and analyzing concerns. Modeling parts provides support required from
specification to detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based
analysis. In this sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to
support them. Hence, it provides facilities to annotate models with information required to perform specific analysis.
Especially, MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework
which intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

 Providing a common way of modeling both hardware and software aspects of a RTES in order to improve
communication between developers.

» Enabling interoperability between development tools used for specification, design, verification, code generation, etc.

« Fostering the construction of models that may be used to make quantitative predictions regarding real-time and
embedded features of systems taking into account both hardware and software characteristics.

2 Conformance

2.1 Overview

The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the
business management perspective and will benefit from having a common place for notations, vocabulary, and semantics
inside MARTE, it is a fact that a number of different specialized actors are involved. Consequently, the tools that are
currently in the market, which are those expected to evolve to support this specification, have different users and specific
target applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a
modular approach for conformance. This is similar to the UML compliance strategy, but in this case the compliance
points are not defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions
depend closely on the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary,
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.
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2.2 Extension Units and Features

In order to properly identify the elements of MARTE that will be required in each compliance case, the following
definitions are made:

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful.
Extension Units play the role of language units and/or individual meta-model packages as they are used in the definition
of conformance in UML.

FEATURES: There might be a number of specific Features which may or may not be present in a concrete
implementation. This variability may come from the concrete UML elements allowed to be used for the extension with
stereotypes, their semantic variations, envisioned difficulty for implementation, expected usage, presentation options, etc.
Though this is provided here for easier the description of tools compliance, its utilization is discourage in favor of the
implementation of complete extensionUnits.

The extensionUnits defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Section(s)
GRM Generic Resource Modeling Section 7
NFP Non-Functional Properties Section 8
VSL Value Specification Language (editing, and verification support) Annex B
ETM Enhanced Time Modeling Section 9
CHF Clock Handling Facilities (clock constraints, and clock value specification) Annex C
SRM Software Resource Modeling Section 14.1
HRM Hardware Resource Modeling Section 14.2
ECM Extended Component Modeling Section 11
ALM Allocation Modeling Section 12
RTM Real-Time objects Modeling (RTE MoCC) Section 13
GAM Generic quantitative Analysis Modeling Section 15
PAM Performance Analysis Modeling Section 17
SAM Schedulability Analysis Modeling Section 16
RSM Repetitive Structure Modeling Annex E
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2.3 Conformance of MARTE with UML

For the many of the extension units considered the Level 2 of conformance with UML may be sufficient. Though there
are some extension for which several language units in Level 3 of conformance with UML are necessary, in particular
Templates.

2.4 Conformance with MARTE

Tools vendors and MARTE implementers require a set of conformance definitions that allows them to better target their
particular users needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups
of Extension Units that may lead to useful compliance definitions.

2.4.1 Compliance Cases

Considering the Use cases of this specification, (described in section 6,), the compliance cases defined are:

 Software Modeling
« Constructs for modeling real-time and embedded (RTE) software applications and its non functional properties
(NFP).
» Hardware Modeling

« Constructs for modeling the high level hardware aspects of RTE systems, including its NFP.

- System Architecting
« It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plus the
allocation extension units.
» Performance Analysis
« It includes the extension units necessary to address the performance evaluation of RTES

« Schedulability Analysis
« It includes the extension units necessary to address the schedulability analysis of RTES

 Infrastructure Provider

« It includes the extension units necessary to address the definition and/or usage of platform specific services (like
OS services for example). This may be used to create RTOS services model libraries, as well as to specify the
services required to a platform in order to support higher level RT design methodologies.

» Methodologist
« Tools conforming to this compliance case are expected to support all the extension units required for the other
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance
levels: Base and Full. Each level indicates a concrete set of extension units and/or features that are consider as mandatory
at that level. The Base level is defined as a subset of the Full level. Extension units and/or features that are included in
the Full level, but are not in the Base level, are considered as optional at the Base level.
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2.4.2 Extension Units in each compliance case

The Extension Units that must be supported in each Compliance Cases are assigned in the following way:

» Software Modeling
¢ Base: RTM, GRM, NFP, ETM
* Full: SRM, ECM, ALM, VSL, CHF

» Hardware Modeling
¢ Base: HRM, GRM, NFP, ETM
 Full: ECM, ALM, VSL, CHF, RSM

« System Architecting
e Base: RTM, HRM, GRM, NFP, ETM
« Full: SRM, ECM, ALM, VSL, CHF, RSM

« Performance Analysis
e Base: PAM, GAM, GRM, NFP, ETM
* Full: VSL, CHF

« Schedulability Analysis
¢ Base: SAM, GAM, GRM, NFP, ETM
* Full: VSL, CHF

« Infrastructure Providing
¢ Base: SRM, GRM, ETM, NFP,
 Full: RTM, VSL, ALM, CHF

« Methodologist
¢ Base: : RTM, HRM, GRM, NFP, ETM, GAM
e Full: MARTE (ECM, ALM, SRM, PAM, SAM, VSL, CHF, RSM)

This is summarized in the table below.

Table 7.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | ETM | CHF | SRM | HRM ECM ALM | RTM | GAM | PAM SAM | RSM
Software Base X X X X

Full X X X X
Hardware Base X X X X

Full X X X X X
System Base X X X X X

Full X X X X X X
Performance Base X X X X X

Full X X
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Table 7.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | ETM | CHF | SRM | HRM | ECM ALM | RTM | GAM | PAM SAM | RSM
Schedulability Base X X X X X
Full X X
Infrastructure Base X X X X
Full X X X X
Methodologist Base X X X X X X
Full X X X X X X X X

2.4.3 Special additional compliance case and extension units

Tools that wish to serve AADL users should implement Section A.3 in Annex A of this specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

» UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) RFP (OMG document
number realtime/05-02-06)

« UML 2.0 Superstructure Specification (OMG document number formal/05-07-04)

« UML 2.1 Superstructure Specification convenience document (OMG document number ptc/06-01-02)
« UML 2.0 Infrastructure Specification (OMG document number ptc/04-10-14)

« XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols used in this specification.
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6 Additional Information

6.1 Scope of OMG RT/E related standards

The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL. In addition, it
uses the MOF 2.0 Queries, Views, and Transformation framework to define any model transformation rules (e.g., rules for
transforming a MARTE stereotype into a corresponding analysis model element).

« profile » «replace » «profile »
Marte seerrrassasee sosE SPT
7 hai

- Se,

/ -,

« uses » Sag € Uses »
.

4 \

‘\-‘
y2 \
« metam odel »
UML2 Superstructure (L3)

MOF 2.0QVT

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.
In addition, MARTE is related to the following other OMG specifications:

« The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This
specification provides, among other things, a generic metamodel for defining different qualities of service and is used
for specifying any such characteristics defined in the MARTE profile.

« The UML profile for Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e.,
deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML. [NB: Clearly, this is
something that we have to agree on as well.]

» The Executable UML Foundation specification (currently in progress) defines, among other things, a model of
causality for UML that is at the core of various scenario-based analysis methods (such as performance and
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the
Executable UML Foundation spec.

The following OMG specifications deal with similar subject matter but are not considered relevant to this submission:
» The UML for SoC profile.
» The EDOC UML profile.
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6.2 Rationale and general principles

Since the adoption of the UML standard and its new advanced release UML2, this modeling language has been used for
development of a large number of time-critical and resource-critical systems (a significant number of these can be found
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain.
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML — so-called “heavyweight” extensions. Rather, the work
being done in the specification consisted in defining a standard way of using these capabilities to represent concepts and
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this section is to describe the domain of interest for this current profile; i.e. the real-time and
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of four main sub
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain

Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size,
power consumption, etc.) the design of embedded systems requires optimization.

The designed system will be embedded in a real application, either software or hardware. Therefore, the produced code
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g. ASIC, FPGA).

Embedded systems distinguish themselves especially by following specific characteristics: heterogeneity (hardware /
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user
interfaces modes), criticality, real-time and consumption constraints.

Reactive domain

Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming
from some environment; The main goal of such reactive systems is actually to control, supervise, or simply collaborate or
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played
down and abstracted somehow in the system description.
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The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in a timely
manner in response to environment stimuli through actuators for example. The reactions may depend on a local or global
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain

Applications for control/command domain are usually dedicated to manage the execution of a process or object of the
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e. processing
the signal coming from the sensor) and then managed (i.e. taking into account the process state) in order to build the
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis: (1) the
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3)
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it
is necessary to have user information functions (via a specific APl or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis and information
output. Three components involved in the development of control/command systems may be also identified: Sensors
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command
synthesis in open and closed loop; and output devices (e.g. screen, files, networks, etc.) related to information output.

6.2.1.1 Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing and mobile devices. A
common scenario is a radio signal tuned by a receiver, filtered, and decoded. These different stages require intensive data
computation to be performed, possibly in parallel, with the help of several computation units.

Many signal and image processing applications follow an organization in two high level stages: systematic signal
processing and intensive data processing.

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of
filters and regular processing applied on the input signals independently of the signal values. It results in a
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is
structured with front end systematic signal processing including signal digitalization, channel selection, and application of
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal
demodulation, etc.).
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Intensive data-flow computation is an important class of embedded applications requiring hardware architectures
description. It requires mainly being able to express potential parallel processing of data and parallel hardware
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain

Real-time systems sometimes include elements which do not deliver services in a totally safe or time-constrained way
(such as web application servers in an IP telephony system). These systems nonetheless have properties (delay
distribution, probability of failure of a service) which need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not
distinguishable from systems which are not primarily designated "real-time" systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any
system.

6.2.2 Guiding principles

This section aims in defining what have been the main guiding principles used to write this specification. The main
guiding principles are then as follows:

- The profile should support independent modeling of both software or hardware parts of RT/E systems and the
relationships between them.

» The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity).
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level
construct for implementation purposes.

« As much as possible, modelers should not be hindered in the way they use UML to represent their systems just to be
able to do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of
the moment.

» Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model
analysis methods has been one of the major impediments to their adoption.

« The profile must support all the current mainstream real-time technologies, design paradigms, and model analysis
techniques. However, it should also be fully open to new developments in all of these areas.

- It must foster construction of UML models that can be used to make quantitative and partitioning predictions and
analysis regarding hardware and software characteristics of the RT/E system. In particular, it is important to be able to
perform such analyses early in the development cycle. For that, it has to be possible to analyze partial models. It should
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools
should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML
model.
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6.2.3 How to use this specification

This section is aiming to describe which potential actors may use this specification and how they can do it. Of course,
neither the actors nor use cases described in this section represent an exclusive set for how this specification can be used,

but rather reflect on some of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.
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Figure 6.2 - Possible actors using the MARTE specification
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« Model Designer: These are modelers that design models dedicated to be applied in the context of the development

process of RT/E systems. Models may be used for usual specification, design or implementation stages. But models
may be also used for analyzing in order to determine whether they will meet their performance and schedulability
requirements.

« RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually
make trade-offs between implementing functionality in hardware, software, or both.

« Hardware Modeler: These are modelers specifically dedicated to hardware aspects of the RT/E systems
development.

» Hardware Architect: These are modelers concerned by designing hardware architecture.

« Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems
development.

« Software Architect: These are modelers concerned with designing software architecture.

Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis
methodologies.

Execution Platform Provider: These are developers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems and specific hardware components.
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« Methodology Provider: These are the individuals and teams who are responsible for defining model-based
methodology for RT/E domain. This category includes UML tool providers.

« Design Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based methodology for specifying, designing or/and implementing RT/E systems.

« Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.
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Figure 6.3 - Common use cases of the MARTE specification

Details of the use case “build Model”
« Actor: Modeler

« Description: A modeler builds a model iterating it through several stages defined in an appropriate development
process. According to a given methodology (see the “define Methodology” use case), a modeler uses appropriate UML
extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspects in the
model of their system.

« Deliverable: The result of this use case is a model of the user system containing all its RT/E specificities.

Details of the use case “adapt MARTE Specification”
« Actor: Methodology Provider and Execution Platform Provider

« Description: This use case consists in defining a specific MARTE sub-profile. The motivations to adapt MARTE may
be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE
specification is to define modeling rules in order to constraint the usage of the specification.

« Deliverable: The outcome of this use case is a definition of MARTE extension that takes the form a UML profile based
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”
» Actor: Methodology Provider
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« Description: This use case consists in defining how to use the MARTE specification for a given purpose. For example,
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL appendix)
or for avionics (see AADL appendix). One may also define model-based analysis methodology such as schedulability
or performance analysis.

« Deliverable: The outcome of this use case is a model-based methodology. This latter may include a process description,
a set of constraint rules and a set of required techniques that applies to the methodology. If necessary, this use case may
also include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use
case).

Details of the use case “annotate Model for Analysis”
« Actor: Model Analyst

« Description: The model analyst uses appropriate MARTE extensions, as defined for example in a specific analysis
methodology, in order to annotate appropriately models in order to perform a given analysis techniques.

- Deliverable: The outcome of this use case is a model annotated with MARTE extensions and ready for performing
specific analysis.
Details of the use case “analyze Model”

 Actor: Model Analyst

« Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or
performance analyses.

« Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”

« Actor: Execution Platform Provider

« Description: This use case consists in building model of execution platform for MARTE based developments of RT/E
systems.

« Deliverable: The outcome of this use case is a MARTE compatible execution platform model.

Details of the use case “provide Execution Platform”

 Actor: Execution Platform Provider
« Description: This use case consists in providing execution platform conform to a given model of platform.

« Deliverable: The outcome of this use case is an execution platform.

6.3 Approach and structure

6.3.1 Profile architecture

The profile is structured around two concerns, one to model the features of real-time and embedded systems and the other
to annotate application models so as to support analysis of system properties. These are shown by the RTEM package in
Figure 6.4, and the cluster of four “AnalysisModeling” packages, respectively. These two major parts share common
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concerns with describing time and the use of concurrent resources, which are contained in the shared package TCRM.
Finally the “AnalysisModeling” features are broken into a foundational generic part in the package GQAM, and three
packages for specific analysis domains, as shown. These first three domains are entirely concerned with time, however the
profile structure allows for adding additional analysis domains, such as power consumption, memory use or reliability. It
is the intention to encourage modular sub profiles like the three “AnalysisModeling” packages, for such domains.

MARTE foundations |

aprofiles wprofiles aprofiles aprofiles wprofiles
NFPs Time GRM GCM Alloc

A A
| |
] ]
MARTE design model | MARTE analysis model |
aprofiles aprofiles aprofiles aprofiles «profiles «profiles
RTEMoCC SRM HRM GQAM SAM PAM
MARTE annexes

aprofiles aprofiles amodelLibrarys
V5L R5M MARTE_ModelLibrary

Figure 6.4 - Architecture of the MARTE Profile
6.3.2 A foundation for model driven techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers,
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.
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Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model
6.3.3 Approach to modeling RT/E systems

Embedded systems are becoming increasing heterogeneous. This is true of applications, which combine intensive, often
heavily pipelined, data computation for signal processing, together with control mode switches and communication
protocols. This is true also of execution platforms, which comprise flexible or custom-made hardware, multi-core
processors, cache and bus hierarchies and so on. This is reflected in the design of such systems, which must try to fit best
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications.
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real-time
requirements, but power- and area-consumption or cost also play a role, Adequate modeling can of course be of great help
with this design activity by providing the support for design and analysis. The modeling support should also encompass
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing
aspects, based on appropriate time/cycle descriptions (see time model section below). Application modeling is further
described in chapter 9.

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains
also timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far

as the appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction
Set Simulators for instance). Execution platform modeling is further described in both chapters 10 (p. 99) and 14 (p. 175).

The allocation model describes the association matching applicative functions onto execution platform resources. It is
sometimes mandatory to provide timing information on this allocation link itself, rather that on its constituents, for
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is
further described in chapter 12 on page 141.
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Note: allocation is here reminiscent of the similar notion in the SysML proposal.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations
such as described in Annex E on page 413.

6.3.4 Approach to annotating for model analysis

Annotations use stereotypes which permit us to map model elements into the semantics of an analysis domain such as
schedulability, and give values for properties whichh are needed in order to carry out the analysis. We may distinguish
“input” properties which are needed to carry out the analysis, and “output” properties which are determined by the
analysis. However the modeler may also input required values of output properties, which can be used to determine how
well the system meets its requirements (another output property).

Analysis is not always simply “pass/fail”, and the particular goals of analysis are specific to its domain. Output properties
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allows automatic
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or
into C++ for implementation purpose.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to
define in different views or models the application (including functional and non functional characteristics), the hardware
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed,
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this
coupling.

6.4 How to read this specification

6.4.1 Structure of the document

The MARTE specification consists of five blocks of chapters:
« Block one gathers the introduction chapters (from chapter 1 to 6).

- Block two is the part | of the MARTE specification and it is intended to define the MARTE foundations. It conflates
chapters 7 to 12 respectively focused on: chapter 7, Core Elements, defines the basic elements for model-based
approach and specially for real-time embedded domains such as a causality model; chapter 8, Non-Functional
Properties modeling, defines a common framework for annotating models with quantitative and qualitative non-
functional information; chapter 9, Time modeling, defines the time as used within MARTE; chapter 10, Generic
Resource Modeling, specifies how to describe at system level resource models; chapter 0, General Component Model,
introdces a general componenet model suitable for RTES. This component model, called GCM, is build on top of the
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composite structure of the UML, and it is compatible with well-known component models such as the one of SysML,
CCM, AADL and EAST-ADL,; finally, chapter 12, Allocation modeling, defines concepts required to describe
allocation concerns.

 The third block is the part Il of the MARTE specification. It is intended to define the MARTE concepts for model-
based design of RTES. It consist of both following chapters: chapter 13, RTE Model of Compuation and
Communication, defines high-level concepts for designing qualitative and quantitative concerns of RTES (e.g.,
concurrency and synchronization); chapter 14, Detailed Resource Modeling, is split into two sub-sections respectively
dedicated to detailed modeling of software (section 14.1, SRM, “Software Resource Modeling™) and hardware (section
14.2, HRM, “Hardware Resource Modeling”) resources.

« The fourth block is focused on model-based analysis. It does not intend to define new analmysis technologies, but to
define the information required for annotating models on whoch external analysis techniques may be applied. It
consists of three chapters: chapter 15, Generic Quantitative Analysis Modeling, defines basis concept for specific
analysis technics; chapter 16, Schedulability Analysis Modeling, specializes the generic framework for performaing
schedulability analysis, whereas chapter 17, Performance Modeling, is the specialization for model-based performance
analysis.

 The last block contains all the MARTE annexes. The main information contained within these annexes is about
additional usefull value specification languages provided by MARTE (Annex B and Annex C): the Value Specification
Language (VDL), the Clocked Value Specification Language (CVSL) and the Clock Constraint Specification
Language (CCSL). Another important added value contained is a predefined MARTE model library (Annex D). This
latter annex described predefined primitive and data types required for defining the UML profile for MARTE itself, but
also usefull for user models. The annex part owns also a UML extension definition (Annex E, the Repetitive Structure
Modeling MARTE subprofile) intended to support specific system modeling consisting of repetitions of structural
elements, interconnected via a regular connection pattern. We call this kind of structures “repetitive structures”. Finally,
the annex block of MARTE owns an annex dedicated to describe the detailed semantics of each domain concepts
introduced within the specification (see following section which relates on how to use this Annex F).

6.4.2 Extension specification rationale and format convention

Each extensions proposed by MARTE have been conflated around one main concerns and detailed in separate chapters:
chapter 7 to chapter 18 and Annex E. Such chapters are then organized following the same patterns. The way to define
each sub profile contained within MARTE rely on a two stage process: a domain model specification and its underlying
UML profile design.

The first stage consists in defining of the required concepts (also called domain elements) related to one specific concern
(e.g., non-functional properties modelling and time modelling). The output of this stage is then called the domain model
which formalized through the definition of a meta-model and the detailled semantics descriptions of each of its elements.
In order to reduce the bulk of this document, we decided to gather all these detailed description within a common place,
the Annex F.

The second stage of the process we adopted for MARTE aims at desiging a UML profile (sections called “UML
representations™). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged values, specific
notations and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain
model for supporting RTES model-based engineering.

In order to minimize the impact of the MARTE proposed extensions on the model readability, firstly we try to reduce the
size of stereotype names as much as possible, but without scarifying too much their meaning. Secondly, we decide to
prefix the stereotypes only when required. A typical example was when we define stereotype that was inherited other
stereotypes.
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6.4.3 Conventions and typography

In the description of this specification, the following conventions have been used:

6.5

While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

No visibilities are presented in the diagrams, since all elements are public.
If a section is not applicable, it is not included.

Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement’,
‘ElementReference’).

Boolean meta-attribute names always start with “is’ (e.g., ‘isComposite’).
Enumeration types always end with “Kind” (e.g., ‘DependencyKind”).

In diagrams described in the rest of this docuement, the way of identifying an element external to the package being
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for
this sequence shall be the closest ancestor in the hierarchy which is common to both, the imported element, and the
package being described.
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Part | - MARTE Foundations

This Part contains the following chapters:
e 7 - Core Elements (CoreElements)
« 8- Non-functional Properties Modeling (NFPs)
* 9 - Time Modeling (Time)

¢ 10 - Generic Resource Modeling (GRM)

11 - General Component Model (GCM)

12 - Allocation Modeling (Alloc)
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7 Core Elements (CoreElements)

7.1 Overview

The concepts presented in this section serve as a general basis for the description of most elements in the domain view of
the rest of this specification. They are not new extensions to UML but a comprehensive set of related concepts that is

useful to define those others more elaborated, which are used to build the domain models of subsequent chapters of this
specification. They are split in two packages for convenience. The Foundations package holds the basic elements used to
represent the dual descriptor-instance nature of any modeling entity. These concepts may serve to different purposes for
modeling and analysis, and are the basis for structural modeling. The Causality package describes the basic elements

necessary for behavioral modeling, and their run-time semantics. Figure 7.1 shows these packages and their relationship.

MARTE::CoreEle ments

Foundations =——----- — Causality

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model is to provide a very
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded
systems, and will be later used when required to point out the various elements of that view that are covered and
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain
aspects, in particular for its further use as the basis for the definition of a richer timing model, which includes the timing
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at
full length in section 9. Other dedicated attribute properties for time-related concepts are also introduced further along this
specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each sub
package are described in next sections.
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Figure 7.2 - Architecture of the Causality package
7.2 Domain view

7.2.1 The Foundations package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements
at any level of specification will represent either one or the other of these two fundamental aspects, based on their
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other
elements that are described in terms of role-based models (like UML::ConnectableElement in collaborations or internal
structure diagrams, parts, ports, or roles ).
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Mode Element

name: String [0..1] et
0..1
* ownedElement
0.* 0. -
Instance Classifier
instance type

Figure 7.3 - Instance and Classifier root diagram of the Foundations package

As it is described in Chapter 8, values of non-functional properties (NFP) may be annotated on any model element
designated as such. In this way, further specializations of Classifiers or Instances may become kinds of
AnnotatedElements. In particular, time-based analysis methods operate on annotated models that are usually described
over a number of specific instances of the system. However, it is also useful to be able to associate NFP values with
classifiers. In this case it simply means that such values apply by default to all instances created on the basis of those
descriptors, and not that the classifier itself has that value. These default values can be further overridden in specific
instance cases. But, this uniform annotation of instances requires special care and may not always be appropriate. In case
of interface specifications, for example, there could be many realizations of the same interface, each with different service
characteristics described by means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature,
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics
when the corresponding stereotype is applied to extend user defined modeling elements.

Mode Element

i

] Property « enumeration »
owned Propertles AggregationKind
* aggregation : AggregationKind [1] = none

Classffier L

none
shared
type| 0..1 composite

Figure 7.4 - Property diagram of the Foundations package

As the UML homonymous concept a property is a typed element that may be owned by a classifier. It has a multiplicity
in terms of upper and lower bounds, an aggregation kind, and a type (as a Classifier).
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7.2.2 The Causality::CommonBehavior package

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It
is aligned to the UML semantics basis, in the sense that there is no disembodied behavior: all behavior emanates from the
actions of structural entities. In particular since in UML a behavior is a kind of class, it is possible for a behavior to be its
own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML2
semantics description in Chapter 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts,
analogous definitions have been extracted from that OMG document.

CommonBehavior ‘
CoreElements::Foundation: CoreElements::Foundations:: type
ModelElement Classifier 0.1
Trigger owned Trigger Behaviore dClassifier
ﬁ? CoreElements::Foundation::

ModelElement

context 71 1

/mainBehavior

event,|, 1 ownedBehavior, « 0..1 {subsetownedW

Event action Behavior 0.1 parameter
B S

T

CompositeBehavior Action

Parameter | —

*

0.1

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior.
A behaviored classifier may have behavior specifications which illustrate specific scenarios of interest associated with
that classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that
starts executing when instances of that classifier are created and started is called main behavior. For many real-time
concurrent systems, this can be for example the behavior that initiates the activity of a thread, which continues until the
thread is terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic
behavior, and CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors
provide constraints among actions to determine when they execute and what inputs they have.
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An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the
effect activity of a transition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in section 9, under the name of TimedProcessing (for Actions) and
TimedEvents (for Events and Triggers).

7.2.3 The Causality::RunTimeContext package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this
reason, in this domain model, this concept is specialized into both important concepts: CompBehaviorExecution and
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is
obtained from the host instance.

In UMLZ2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution
results from the interaction of one or more participant instance.

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview section of its common behavior chapter.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances.

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to
the combination of the behavior executions of all its constituent parts.
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RunTimeC ontext
Causality::CommonBehavior:: Causality::C ommonBehavior:: Causality::CommonBehavior::
Event CompositeBehavior Action
event |4 behavior |1 effect | 0..1 0..1 | action
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1
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CoreElements::F oundations:: 1.7
Instance participant

Figure 7.6 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors
supported by the specification to state-based and activity-based approaches. The latter describe behaviors by specifying a
state machine that do not describe observable event occurrences, but that would implicitly induce event occurrences. This
intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed
Automata, and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be
described by each of the different specification mechanisms, because behaviors do not have the same expressive power.
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the
system.

7.2.4 The Causality::Invocation package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a
behavior, such as through an operation call.
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In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution.

A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination
occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by

timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions

to their common ancestor EventOccurrence.

Invocation
1 Causality::RunTimeC ontext: 1
execution Behavior Execution execution
Causality::RunTimeC ontext:
EventOccurrence
finish | 1 ‘ Z> ‘ 1 | start
—@f TerminationOccurrence StartOccurrence
endEvent startEvent
1 [{subset event} {subset event}| 1
. Causality :: ;
1 behavior behavior
TeminationEvent Oﬁ CommonBehavior:: H StartEvent
‘ Behavior ‘
Causality::CommonBehavior: Event

Figure 7.7 - The Invocation package
7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier

instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain

model specifies the general semantics of communication between concurrent units.
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Figure 7.8 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as a thread!. Threads are the root of a
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending of the
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified,
the developer may create an active object for each. According to the level of specification other forms of expressing
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those
which are not identified as concurrent units, are then usually called passive objects. These latter objects are then
associated to the active objects via a composition or shared relationships. The role of the active object is to run when
appropriate and call or delegate actions to the passive objects that it owns. Passive objects execute usually using the
concurrent resource of the caller active object.

Instances respond to messages that are generated by others executing communication actions. When these messages
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching
method by which a particular behavior is associated with a given message depends on the higher-level formalism used
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is
executed by a sender instance resulting in an InvocationOcurrence. The invocation event may represent the sending of a
signal or the call to an operation. As a result of the invocation event occurrence a Request is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);

1. It should be noted here that from the concurrency point of view, there is no distinction between threads, tasks, and processes. They all
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch
time and whether low-cost pointers can be used across the concurrency boundary).
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information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence
of an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are no
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs
used.

7.3 UML Representation

As stated before, this chapter does not define concrete extensions to UML, but it collects a number of primitive modeling
concepts to be use in the domain models of other chapters in this specification. Nevertheless all further concepts defined
in this specification may adopt the nature of Classifier or Instance presented here, and this is made according to: their
definition, the purpose of the annotation, and the intended semantics. In many cases these concepts are represented in
UML by a stereotype annotation on a concrete UML modeling element. When this is the case, the Classifier or Instance
intrinsic nature of the UML annotated element may define the corresponding nature, semantics, or concrete variations of
the MARTE concept that is intended to be represented with the annotation. As a consequence, explicit different semantics
may be defined for each MARTE modeling concept whether it is annotated on an instance or on a classifier; the
differentiation is then straightforward, since it is dependent directly on the fundamental nature of the corresponding UML
element that is annotated.
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8 Non-functional Properties Modeling (NFPs)

8.1 Overview

This chapter describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs).
It also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of
modeling constructs in order to specify this kind of properties in a detailed way.

The NFP modeling framework deals with the following requirements®:
» How NFPs are to be described, and particularly what NFPs should be considered.
» How particular instances of NFPs are to be attached to UML model elements.
« How relationships between different NFPs are to be defined.

» How to express constraints on or between NFPs in order to express requirements on the system model.

« Usability of the annotations should minimize the designer efforts?.

« To provide an open modeling framework, i.e. not tailored towards specifications of a particular modeling concern or a
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(QoS&FT) already defines a framework to express a similar concept to NFP, there are some reasons to define a different
one in the context of this specification.

For instance, the QoS&FT profile relies on a two-step annotation process: a) derive a Quality Model for each application
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model),
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce
not readeable models.

The QoS&FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value
specifications, however, Q0S&FT ignores some important attributes such as measurement sources, precision, and time
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently
begun to be applied to NFPs of more general services. There is still no common consensus about the concepts of NFP and

1. Alistof compliance with the MARTE RFP have been included in Annex. It also relates how this document deals with the initial MARTE
RFP requirements.

2. One of the major constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile.
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.
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QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provided a straightforward
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports already some
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance
“RTtimeValue” expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts proposed in the UML profile for
QoS&FT. However, some considerations to reduce the inherent usage complexity of the UML profile for Q0S&FT and to
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible,
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported
by TVL to annotate constant, variable, tuple and expression values. In this manner, we provide a flexible and
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices
of both UML profiles.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g.: resources,
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of
those model elements. It is convenient to group application properties into two categories: functional properties, which
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it).

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of
fundamental relevance and implies a number of design decisions. NFPs provide information about different
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sections, we will use metamodels to describe the domain viewpoint. Note that, although the intent
of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile’s users with
the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package
structure of the NFP framework is shown in Figure 8.1.
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Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in the Figure 8.1 are described in subsequent sections.

8.2.2 The NFP_Nature package

From an abstract viewpoint, a NFP (AbstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measure is a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be
computed either directly by applying the desired function to the set of realizations values, or by using theoretical
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory, measures are defined as a Quantity expressed in terms of a specific Unit. Quantities
can be basic or derived. BasicQuantities are for example length, mass, time, current, temperature or luminous intensity.
The units of measure for the basic quantities are organized in systems of measures, such as the universally accepted
Systeme International (SI) or International System of Units. Quantities expressed in the same unit can be compared.
DerivedQuantities (e.g., area, volume, force, frequency) may be obtained from basic quantities by explicit formulas.
Additionally, different units of the same physical quantity may be transformed to, or expressed in terms of, existing base
units through a given conversion factor and an offset factor.
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Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refer to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative
NFP is denoted by a label (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value
from a list of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular
domains, for example the choice of a scheduler type for a processor, or the choice of a statistical distribution for the
latency of a network. In both examples, the full specification of the property requires not only a qualitative value, but also
some quantitative parameters, as for instance: scheduler-type = roundRobin (quantumsSize) or latency-value = gamma
(mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements
are: step (a unit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service
(offered by a resource or by a component of some kind) 3,

3. The Step and Scenario model elements are defined in GQAM (Chapter 15), whilst the Resource and Service model elemnts are intro-
duced in GRM (Chapter 10)
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An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the
total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and
throughput of a service.

NFP_Annotation ‘

CoreElements::
Foundations:
ModelElement

1

Annotated % Annotated annotationConcern | ModelingConcern
Element * owner Model 1.* des cription: string [0..1]
’ * . 0.1 context
constrained Element
* ownedRule
. « enumeration »
NFP_Constraint . .
- ConstraintKind
kind: ConstraintKind [0..1] required
0.1 offered
contract
specification 1
MARTE:: VSL::
nfpValue Value Specification relev antNfp
NFPs::
- NFP_Declaration::
nfpDeclaration NEP

Figure 8.3 - Domain model for NFP annotations

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling
concern. In other words, a given modeling concern uses a set of NFPs which establishes the ontology of the domain. For
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional
annotations.

A NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system.
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support
a model element, as for example the throughput of a CPU (elements in this case are commonly software or hardware
resources). Contract constraints define conditional expressions that specifies relationships between offered and required
non-functional values. For instance, if a given model element (e.g., a computing resource) does not support a condition

A UML Profile for MARTE, Beta 1 35



on one or many of its NFP values (e.g., a processing capacity), other model element might change one or many of its NFP
values accordingly (e.g., the delay to execute a piece of code). In section 8.3.3.2, we give a detailed example of
NFP_Contraints usage.

8.2.4 The NFP_Declaration package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

NFP elements enclose two basic attributes: statistical qualifier and direction. Both have been adopted from the UML
profile for QOS&FT. A statisticalQualifier indicates the type of statistical measure of a given property (e.g., maximum,
minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the type of the
quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP values to be
compared with the relation “higher-quality-than” in order to identify what value represents the higher quality or
importance.

On the other hand, NFP elements have a TupleType (see Annex D for MARTE extended data types), called NFP_Type.
Two attributes define the body of NFP types: valueAttribute and exprAttribute. ExprAttribute is used to specify
expressions associated with NFPs. Hence, we are able to assign variables, literals, intervals, and other expressions. The
return value of the expression must be conform to the associated value attribute of NFP type.

NFP_Type adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to NFP
values (qualifierAttributes).

A NFP_Type with measurement unit is associated with physical measures. Units are attributes of most Quantitative NFP
elements and it is important to use standard forms. In Section 8.3.3.1, we show some pre-declared units largely used in
the domain (e.g., time units, data size units, transmission speed units) which can be used when specifying NFP values.

Examples of qualifiers are measurement precision and value source (see NFP Types Library in Section 8.3.3.1). Source is
a peculiarity of non-functional properties associated with the origin of specifications and Precision is the degree of
refinement in the instruments and methods used to obtain a result.
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Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units
and values may be assigned when declaring NFPs and NFP types.

The ability to specify all the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP
specifications needs to be composable. That means, it should be possible to specify NFP values at a fine-grained level and
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification
must ensure consistency between both levels. The process of composition and decomposition should be carried out in
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP
specifications can be based on existing ones.

8.3 UML Representation

This section describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support NFP modeling with UML is organized according to the application context of the domain
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly in a UML
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not
appear directly in any UML model.
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For instance, the abstract notion of a “Measure” is very useful as an abstraction in our framework, but will only be
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is
used extensively in MARTE to type and qualify non-functional properties.

In Section 8.3.3.2, we will describe some examples that use the whole extensions for NFP annotations with both tagged
values and UML constraints.

8.3.1 Profile diagrams

The Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following section.

« profile»
NFPs
« metaclass » «metaclass » « metaclass »
UML: :Classes: :Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
« stereo_type» « stereotype» « stereotype»
Unit Nfp NfpConstraint

convFactor. Real [0..1] kind: ConstraintKind [0..1]
convOffset: Real D..1]
baseUnit: Unit[0..1]

« stereotype»

VSL::DataTypes :TupleType « enumeration »
P GV ConstraintKind

tupleAttrib: Property [*]

required
offered
contract
« stereotype»
NfpType

v alueAttrib: Property [0..1] {subsets tupleAttrit}

unitAttrib: Property [0..1] {subs ets tupleAttrib}
exprAttrib: Property [0..1] {subsets tuple Attrib}

Figure 8.5 - UML profile diagram for NFPs modeling
8.3.2 Profile elements description

8.3.2.1 Nip

The Nfp stereotype maps the NFP domain element (Section F.2.10) denoted in Annex F. Note, however, that the attributes
of NFP, statistical qualifier and direction, are implemented in the library of NFP Types. The goal is to allow users
modifying these attributes at value specification level.
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Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values. Nfp is intended to declare, qualify and assign extended data types to NFP values.

Extensions
 Property (from UML.::StructuredClasses::Kernel)

Generalizations
« None

Associations
« None

Attributes
« None

Constraints

« None

8.3.2.2 NfpType

This NfpType stereotype maps the NFP_Type domain element (Section F.2.12) denoted in Annex F. Note, however, that
the qualifierAttributes role is not implemented in the UML view. In practical terms, the tupleAttribute inherited from
TupleType is sufficient to define qualifier attributes.

A Nfp type is a type whose instances are identified only by NFP value specifications. A Nfp Type contains specific
attributes to support the modeling of NFP tuple types.

Extensions
 DataType (from UML::StructuredClasses::Kernel)

Generalizations
» TupleType (from VSL::DataTypes) on Annex B.3.2.5.

Associations
« None

Attributes

« valueAttrib: Property [1]
both physical and non-physical NFP types have a value attribute, which serves as
placeholder to specify a value of NFPs.

« unitAttrib: Property [0..1]
measurement unit declaration that apply to all the value specifications of the NFP.
Usually, it is an enumeration data type with a list of the valid measurement units.
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« exprAttrib: Property [0..1]
attributes representing an expression. MARTE uses the VSL language to define
expressions.

Constraints

» None

8.3.2.3 NfpConstraint
This NfpConstraint stereotype maps the NFP_Constraint domain concept (Section F.2.11) denoted in Annex F.

NfpConstraint extends the UML mechanism for applying a condition or restriction to modelled elements. Specifically,
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time
expressions.

Extensions

 Constraint (from UML::StructuredClasses::Kernel)

Generalizations
+ None

Associations
» None

Attributes

« kind: ConstraintKind [0..1]
tagged definition qualifying NFP constraints by either required, offered, or contract nature.

Attributes
» None

Constraints

» None

8.3.2.4 Unit
This Unit stereotype maps the Unit domain element (Section F.2.18) denoted in Annex F.

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of
length such as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less stable
or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by a
numerical scale.

Unit is defined as a stereotype of EnumerationLiteral. This allows modelers to assign a list of allowed units to a particular
physical NFP type by means of a related Enumeration element. In this way, we bound the universe of legal units that
apply to a specific kind of NFPs.

40 A UML Profile for MARTE, Beta 1



Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the
value in terms of the specified measurement unit.

Extensions

» EnumerationLiteral (StructuredClasses::Kernel)

Generalizations
« None

Associations
« None

Attributes

« convFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by a numerical factor.

- offsetFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by applying an offset value
to them.

« baseUnit: Unit [0..1]
This attribute represent the base unit by which a derived measurement unit is created
Basic units do not require this attribute.

Constraints
« None

8.3.3 Examples

A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of
standard measures that can be used in straightforward way.

The following sections will describe respectively an example of NFP model library and examples of usage of such library.

8.3.3.1 Example of NFP model library definition

This section provides an example of NFP types model library definitions. This example corresponds to an excerpt of a
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.
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NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are special kind
of classifiers, similar to classes. A data type differs from a class in that instances of a data type are identified only by their
values. Like a class, data type may have attributes. In VVSL, we define four kinds of composite data types (data types
allowing attributes): IntervalType, CollectionType, ChoiceType and TupleType. data types with attributes of different
types are called TupleTypes (see Annex D in p.395 for MARTE extended data types). If a tuple type has attributes with
different types, then instances of that data type will contain attribute values matching the types of their corresponding
attributes. Particularly in MARTE, we define a set of pre-declared NFP types which are useful for the other sub-profiles.
However, other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the
VSL annex (Annex B, p. 353). The list of MARTE primitive types includes Real and DateTime in addition to the pre-
declared UML primitive types. However, note that the set of UML primitive types are completely redefined within
MARTE in order to allow specifying operators on these types (more rationales on this are provided in annex D.1).

General MARTE data types that are not NFP types are declared in the MARTE_DataTypes library (Annex D). This library
uses stereotypes of the VSL Profile for data types (see Annex B).

General MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called
NFP_CommonType is defined to factorize common NFP type attributes.

In addition to value, expression and unit attributes, NFP types are declared specifying a set of qualifier attributes required
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

« source: SourceKind [0..1]
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values
are estimated, calculated, required and measured.

« precision: Real [0..1]
degree of refinement in the performance of a measurement operation, or the degree of perfection in the
instruments and methods used to obtain a result. Precision is characterized in terms of a Real value, which
is the standard deviation of the measurement.

- statQ: StatisticaQualifierKind [0..1]
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum,
mean, percentile, distribution). This qualifier is defined in the domain model as an attribute of an NFP. We
define it here as an NFP_Type attribute to be able to specify it as a default value in a NFP, as well as
a part of the NFP value itself.

« dir: DirectionKind [0..1]
direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed
value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what value represents the higher quality or importance.
This qualifier is defined in the domain model as an attribute of an NFP. We define it here as an NFP_Type
attribute to be able to specify it as a default value in a NFP, as well as a part of the NFP value itself.

42 A UML Profile for MARTE, Beta 1



«modelLibrary »
MARTE Library::MeasurementUnits

« enumeration » «enumeration» « enumeration » «enumeration»
TimeUnitKind DataTxRateUnitKind| | FrequencyUnitKind DataSizeUnitKind
«unity s . .
«nit» tick « un!t » bk « un!t » Hz «unit » bits
«unit» ms {bas eUnit=s, convFacto~0.001} «unit » Kbis «unit» KHz «unit » bytes
«unit» us {paseUnit=ms, convFactor=0.001} «unit » Mb/s «unit» MHz «unit » KB
«unit» min {paseUnit=s, convFactor=60} «unit» GHz «unit » MB
«unit» hrs { base Unit=min, convF actor=60} « enumeration » «unit» pm «unit » GB
«unit» dys {paseUnit=hrs, convF actor=24} PowerUnitKind
«unit » W
«unit » mW
«unit » KW
A
i «modelLibrary»
« import » MARTE_Library::MARTE_PrimitiveTypes
]
«modelLibrary » x
MARTE_Library::MARTE_DataTypes «import »
4
« dataType» « dataType» «dataType»
«collectionType» «collectionType» «intervalType» «primitive »
{ collectionAtrib = vecbrElement } { collectionAttrib =matrixElement } {intervalAtrib =bound } | | VSL_Expression
IntegerVector IntegerMatrix Integerinterval
vectorElem: Integer D ..*] matrixElem: IntegerVector [0..*] | | bound: Integer [2]

A

1
«modelLibrary» «import »
MARTE_Library::BasicNFP _Types i

« dataType» «enumeration»
«enumeration» | | « enumeration » «nfpType» StatisticalQualifierKind
SourceKind DirectionKind {exprAtrib= expr } max
est ) NFP_CommonType min
meas incr mean
calo decr expr: VSL_Expression range
req source: SourceKind percent
statQ StatisticalQualifierkind distrib
dir: DirectionKind determ
ZF other

« dataType» «dataType» « dataType» « d?taTType» «dataType» «dataType»
«nfpType» «nfpType» «nfpType» (\;L?wﬁ)nbzegl) «nfpType» «nfpType»
{ valueAttrib =value } {vaueAtrib = value } {valueAttrib=value } NEP Real { valueAttrib = value } { valueAttrib= value }
NFP_Boolean NFP_Natural NFP_String = NFP_Integer NFP_DateTime

- . value: Real . )
value: Boolean value: UnlimitedNatural value: String value: Integer value: DateTime
« dataType» « dataType» «dataType» « dataType» « dataType»
«nfpType» «nfpType» «nfpType» «nfpType» «nfpType»

{ uritAtrib =unit } { unitAttrib= urit } { unitAttrib = wnit } { unitAttrib = urit } { unitAtrib= unit }
NFP_Duration NFP_DataTxRate NFP_Frequency NFP_Power NFP_DataSize
unit: Time UnitKind unit: DataTxRate UnitKind unit: FrequencyUnitKind unit: PowerUnitKind unit: DataSize UnitKind
clock: String precision: Real precision: Real precision : Real precision: Real

precision: Real

Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units
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Additionally, although not shown in Figure 8.6, we include a set of probability distribution operations that can apply to
the pre-declared NFP Types. Probability distribution is a fundamental concept to specify stochastic values. A probability
distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In
technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals. A
probability distribution is modeled in MARTE as the name of the function and a set of parameters allowing estimating the
function in terms of the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included
probability distribution function values are described by the following:

« bernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (a real value no greater than 1):

 binomial (prob: Real, trials: Integer)
binomial distribution has two parameters: a probability and the number of trials (a positive integer):

+ exp (mean: Real)
exponential distribution has one parameter, the mean value:

« gamma (k: Integer, mean: Real)
gamma distribution has two parameters (“k” a positive integer and the “mean”):

« normal (mean: Real, standDev: Real)
normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

« poisson (mean: Real)
Poisson distribution has a mean value:

« uniform (min: Real, max: Real)
uniform distribution has two parameters designating the start and end of the sampling interval:

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types,
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the
primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be
evaluated when a resource allocation at modelling level is done. Other properties may be evaluated when a given “real
time situation” is modelled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibrary»)
define a set of measurement units which are useful for the MARTE scope. We apply to this package the «unit» stereotype
defined in the NFP profile. As illustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for
example: “s” denoting the time unit for “seconds”. Other derived units are defined with basis on basic units. For instance,
“ms” denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001”. Modelers are able to define
further units in the same way.
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8.3.3.2 Usage example of NFP model libraries

We consider three annotation mechanisms: Tagged Values, Constraints, and (Instace Specification) Slots. Tagged values
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. This is useful if we define
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values.
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic_NFP_Types package (stereotyped
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Chapter 15), which uses
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

«modelLibrary»
BasicNFP_Types

« imp:ort »
i

i R

«profile »
GQAM
(Generic Quantitative
Analysis Modeling

hemman( APPl Hewwans UserModelForAnalysis

Figure 8.7 - General Structure for Declaring and Annotating NFPs

In the GQAM “profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in chapter 15
and some of its property definitions. The example’s intent is to show some particulars of the extension mechanisms used
in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the
stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSwT (context switch
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic_NFP_Types
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we
use the NFP qualifiers statQ (statistical qualifier), dir (direction) and unit (measurement unit) as default values of NFPs
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for
specific instances.
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« profile»
GOAM

« metaclass »
UML::InstanceSpecification

A

« stereotype»
GaExecHost

utilization: NFP_Real= (statQ= percent, dir= decr)
clockOvh NFP_Duration= (statQ= max, unit= us)
cntxtSwT. NFP_Duration= (statQ= max)

Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelforAnalysis (Figure 8.9). In this model, an
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown
in a compartment (see notation alternatives in the UML Superstructure document, Chapter of Profiles). We can see that
tagged values are specified as structured data types. For example, clockOvh is a tuple value that has expression and source
item values. The expression: “normal(50,7)” is a CallOperationExpression (see the VSL annex, package Expressions, for
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The
utilization tagged value is specified as an expression string making reference to a variable $ul. As a methodological rule
that we adopted in the analysis sections, variables indicate to analysis tools that these attributes must be computed and
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

UserModelForAnalysis

«gaExecHost »
uC: Controller

«gaExecHost »
utilization= (value= $u1, source= calc)
clockOvh= (expr= nomal (50, 7), source= est)
cntxtSwT= (value= 8, unit= us, source= meas)

(a) Extended Notation

UserModelForAnalysis

« gaExecHost»
uC: Controller

« gaExecHost »
utilization= ($u1, calc)
clockOvh= (nomal (50, 7), est)
cntxtSwT= (8, us, meas)

(a) Reduced Notation

Figure 8.9 - Example of user model for analysis with NFP annotations
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The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints.
Constraints commonly define relational expressions between two terms containing parameters, specified by means of
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage
that annotations are confined to classifiers’ instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (contraints and slots). An important aspect
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs
as stereotype attributes like in the formerlly illustrated mechanism. Our aim is to show how modelers can define their
owns NFPs and use them to specify NFP values by means of NfpContraints and Slots. Hence, in such cases, the semantics
of the defined NFPs is user—dependent"’.

4. Note that, in general, if modelers will use the different MARTE sub-profiles, they should follow the annotation mechanism of stereotype
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in
MARTE in order to support user model-defined (or library-defined) NFPs.
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Controller

«nfp» procUtiliz NFP_Real= (percent, decr)
«nfp» schedUtiliz NFP_Real= (percent, decr)
«nfp» contextSwitch NF P_Duration=(max)
«nfp» clockF req: NFP_F requency= (max, us)

Internal Composite Structure ofa
specific Controller instance

Al
«computingResource»
uC: Controller

proc Utiliz= ($u1, calc)

« scheduler »

«dockResource » {schedPolicy = F ixedPriority}

p1/procClock s1/sysSched
o 5
\‘ [ ]
N « nfpContraint » {kind=cfered}
\‘ {contextSwitctF= (8, us, meas) and
‘\ sched Utiliz== (5, percent) }
‘\
«nfpContraint » {kind= cortract}
{ procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFrec== (20, MHz) }

VSL Conditional

/ Expression

Condition If-True Expression If-False Expression

T T T

procUtiliz> (90, percent) ? clockFreq==(60, MHz) : clockFreq==(20, MHZz)

D N

VSL OperationCallExpression  VSL PropertyCallExpres sion VSL Tuple Specification
(VSL infix notation: (call toa property of (related tothe
call to the operation >, ‘Controller ) ‘NFP_Frequency’ NFP type)

‘greater than’ )
Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared
simmilar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this
case, the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the
predefined value qualifiers: statistical qualifier, direction and unit.

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure

diagram. These instance-level model elements are stereotyped with high-level modeling contructs, «computingResource»,
«scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, Section 10.3. At this stage, we
specify a set of NFP values by means of two NfpConstraints attached to the specific constrained elements. In both cases,
the constrainedElement (association end from the UML Contraint metaclass to UML Element metaclass) are the specific
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model elements to which the non-functional annotations apply, and the context (association end from the UML Contraint
metaclass to the UML Namespace metaclass) is the Controller node element, which actuates as a namespace context for
VSL expressions.

For instance, one of the NFP_Contraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and”
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other
CallOperationExpressions making reference to the equalTo (“==") operation, which has two operands. The first operand
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUTtiliz properties of Controller) and the
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time.
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller.
As in the first example (Figure 8.9), the utilization slot is specified by a variable $ul. The methodological rule indicates,
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.
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9 Time Modeling (Time)

This chapter contains both domain and UML viewpoints for time modeling. The chapter describes a general framework
for representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and
embedded systems. These serve as a base for the standard modeling elements defined in subsequent chapters of the
MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time),
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and
metric times are covered in this specification.

9.1 Overview

The time domain model described in this chapter identifies the set of time-related concepts and semantics that are
supported by this profile. The model is quite general, and a given application may need to use only a subset of its
proposed concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling,
design, performance analysis, schedulability analysis, implementation, etc). The concept of ordering (i.e., something
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways,
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral
flows (with minor variations at each level). They are known under different names in different contexts, and these names
are also often used with different meanings elsewhere (so there is no general consensus):

» Causal/temporal: in such models, one is only concerned about instruction precedence/dependency. These relations can
be partial in presence of concurrency. Cooperation between concurrent entities takes place as communications (i.e.,
through events). Communications themselves can be fully asynchronous, blocking (with the emitter awaiting a returned
reply), or hand-shake synchronization.

» Clocked/synchronous: this class of time abstraction adds a notion of simultaneity, and divides the time scale in a
discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the ““instantaneous
reaction’ abstraction. When the clock(s) is (are) linked to a regular pulse, clock ticks become the unit scale of a
discrete-time model (but this need not be the case in any “synchronous” temporal model).This level is used in hardware
modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in simulation

formalisms (as in MATLAB® / SIMULINK®, or in Hardware Description Languages such as SystemC/VHDL/Verilog
with &-cycles representing causal zero-delay dependencies), or in software modeling when relying on synchronous
languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain allows
clocked entities to be linked in a looser, asynchronous network where no single-clock domain is defined. It leads to the
notion of GALS (Globally-Asynchronous/Locally-Synchronous) domains. These are used in the field of system-level
models, for instance for SoC (System-on-Chip) design, where several levels of modeling — either software or hardware
— can be combined during the course of the design.

 Physical/real-time: this class of time abstraction demands the precise accurate modeling of real-time duration values,
for scheduling issues in critical systems. Physical time models can also be applied to clocked model, for instance to
derive the admissible speed of a reaction.

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the
CoreElements chapter of MARTE has provided a high-level view of the run-time semantics of real time and embedded
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systems. The Time modeling chapter enriches this view with explicit references to time-related concepts. The Invocation
package in the CoreElements chapter is also extended with the concept of SimultaneousOccurrenceSet. The notion of
instant has also to be revisited to deal with simultaneity. This is done in the TimeStructure®, which represents Time as a
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by
a time bhase. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not
directly bound to physical time. Hence, the idea to associate time structure with events, behaviors, and objects, or more
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we propose that objects, behavior executions, and event occurrences may
explicitly refer to clocks considered as accessors to the time structure.

9.2 Domain view

This chapter covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling chapter and their logical

grouping.

Optional aceess to time TimeValueS pecification
structure

TimeAccess TimeUsage

‘

Concepts Concepts Concepts
Time bases Cloc_ks Timed elements
Multiple Time Bases L ogical clocks Timed ewents
Instants C hronometric clocks Timed acions
Time structure relations Currenttime Timed constraints

Figure 9.1 - Overview of the time model concerns

These concerns are reflected in the structure of the time domain model which is partitioned into the following separate but
related groups of concepts:

« Concepts for modeling a simple form of time structured as a totally ordered set of instants owned by a time base
(TimeStructure concern as depicted in Figure 9.1).

» Concepts for modeling multiple time base models (TimeStructure concerns as depicted in Figure 9.1).

» Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification
concerns as depicted in Figure 9.1).

« Concepts for modeling entities bound to time (TimeUsage concerns as depicted in Figure 9.1).

1. TimeStructure is refined into both BasicTimeModels and MultipleTimeModels packages in the rest of the chapter.
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Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there
always exists at least one instant between the two. A TimeBase owns an ordered set of Instants. We consider only
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, can not be
fully represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable
nature of sets is not a limitation for practical uses.

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number,
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not
impose any restrictions on the precision and the scale of the representation.
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Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time
base from owing junction instants.

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense
time base. In this case, the former results from a discretization of the latter.

BasicTimeModels

<<enumeration>>
TimeNatureKind

discrete
dense

coveringTB

TimeBase

nature:TimeNatureKind

1

currentinstant
{subsets instants}

tb 1
{ ordere;dz instants
Instant
date: Real

DiscreteTimeBase
{nature = discrete }

Junctioninstant

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer,
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the

mathematical concept of real line R.
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9.2.2 The MultipleTimeModels package

MultipleTimeModels ‘

0..1 Lparen’(MTB
nestedMTBs
0.* tsRelations
MultipleTimeB ase Qﬁo* TimeStructureRelation
1 owningMTB 4
TimeBaseRelation TimelnstantRelation
. . {union,ordered}
ownedTBs | O. 0. [related Jls

- 2. -

BasicTimeModels : Basic TimeModels :
TimeBase {union,ordered) Junctiorinstant

/related TBs

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especially in the
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants,
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also
junction instants, because they are potentially observable instants (see the subsection 9.2.3 about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure.
TimeStructureRelation is an abstract class. It is subclassed into TimeBaseRelation and TimelnstantRelation, which are
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates O or more junction
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are
defined in concrete subclasses, as illustrated in the next 2 sections).
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9.2.2.1 Concrete time instant relations

TimelnstantRelation

A

CoincidenceRelation PrecedenceRelation TimelntervalMembership
{ subsets relateddls } { subsets relatedJls }
after |, 1 1 b efore
2.* Basic TimeModels : 0.”
coin cide ntJls Junctiorinstant members
{subsets relatedJls } { subsetsrelatedJls }
up per 1 low er 1
Timelnterval
BasicTimeModels: ase 1
TimeBase 1 isLow er Open: Boolean[1] timeInterval
isUpper Open: Boolean[1]

Figure 9.5 - TimelnstantRelation diagram of the time model

As shown in Figure 9.5, three concrete subclasses of the abstract TimelnstantRelation class are defined:
CoincidenceRelation, PrecedenceRelation, and TimelntervalMembership.

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning.
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an
equivalence relation over instants. A strong requirement is that adding coincidence does not introduce cyclic
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).
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ATimeBase

Legend:
Q instance of
Instant
:MultipleT imeBase BTimeBase
Instance of
CoincidenceRelation
CTimeBase

Figure 9.6 - Example of multiple time base with coincidences

PrecedenceRelation between junction instants from different time bases is a time instant relation weaker than coincidence.
It expresses a directional dependency: a junction instant owned by a time base may precede or follow junction instants
owned by other time bases.

A time interval on a time base is a convex set of junction instants owned by this time base. The convexity is the property
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time
interval is specified by its two bound junction instants. The TimelntervalMembership is a relation that characterizes
junction instants (members) which are either in the given time interval or are coincident with junction instants in this time
interval.

9.2.2.2 Concrete time base relations

As explained in the previous section, time instant relations induce relations on time bases of a multiple time base. Time
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines a relation A is finer
than B (or B is coarser than A) if for each junction instant in B there exists one and only one coincident junction instant
in A. This relation can be characterized by a mapping M from the coarser time base B to the finer time base A. This
mapping is injective and order-preserving (i.e., if b1 and b2 are two junction instants of B, and b1 is before b2, then al =
M(b1) and a2 = M(b2) are such that al is before a2 in time base A). Notice that the specific association between
DiscreteTimeBase and TimeBase (Figure 9.3, page 71) represents a coarser/finer relationship: the coarser time base, which
is discrete, results from a discretization of its covering time base (i.e., its coveringTB property), which is a dense time
base.

al a2 a3 a4 a5 ab a7 a8 a9 al10 atl1
A:TimeBase ~
A'is finer than B
B is coarser thanA
o
B:TimeBase < O—P
b1 b2 b3 b4 b5 ‘.\

More precisely, A is 2-finer than B

e

Figure 9.7 - Example of time relations between two time bases
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When the finer time base is also a discrete time base, more precise relations can be specified. For instance, the k-finer
relation is defined as follows. A is k-finer than B for k integer, k > 1, if A is finer than B and for any two consecutive
instants in B, there exist k-1 instants between the corresponding coincident instants in A. Figure 9.7 illustrates an example
where k=2.

Predefined time base relations are proposed in the TimeStructureRelation Library of MARTE. The semantics of these
relations is given in OCL.

9.2.3 The TimeAccesses package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the
TimeAccesses package, we introduce the concepts of Clock, TimeValue and DurationValue. These concepts are introduced
without any specific reference to physical time. Thus, they can be also applied to logical time. Clocks that refer to
physical time will be considered as specialized clocks.

The TimeAccesses package is subdivided into four packages as shown in Figure 9.8:
« The Clocks package introduces a general concept of clock.
» The TimeValues package defines the concepts of time value and instant value.
« The DurationValues package defines the concept of duration value.

The ChronometricClocks package contains a specialization of the initial clock concept.

TimeAccesses

Clocks EEsasass <M POr t>>=———<=ws  TimeValues
<<mport>>

I —1
ChronometricClocks  mws-<<import>>as= DurationValues

Figure 9.8 - Subpackage diagram of the TimeAccesses package

The “Value Specification Langauge” annex (Annex B) provides detailed definitions of abstract and concrete syntax for
specifying time expressions in MARTE.

9.2.3.1 The Clocks package

As indicated in Figure 9.9, Clock is an abstract class. A concrete clock is either a logical clock or a chronometric clock.
The latter is defined in another package (ChronometricClocks package on page 78).
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A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase
discrete time base allows access to the time structure. A clock, whose nature is dense, may indirectly refer to a dense
time base through the coveringTB property of its base.

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant
values: the clock “rolls over” when the currentTime value gets at the maximalValue. Note that in this case currentTime
maps on many junction instants.

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock.

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the
logical clock ticks at each occurrence of the definingEvent. Logical time is usually counted in the number of ticks. So, tick
is a predefined unit often used as the defaultUnit for a logical clock, and then the resolution of the clock is 1 (the default
value).

Clocks

BasicTimeModels: 1 Clock NFPs::NFP_Annotation:
DiscreteTimeBase AnnotatedElement

timeBase
nature: TimeNatureKind

resolution: Real=1.0

acceptedUnits

N FPs:: currenflTime: Real -
NFP_Nature:: 1.* maximalValue : R eal[0..1]
Unit 0.1 CoreElements::
defaultUnit 1 clockTick Cau sality::
{subsets 0..1 CommonBehavior:
acceptedUnits} definingEvent Event

LogicaClock

Figure 9.9 - Clocks diagram of the time model
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9.2.3.2 The TimeValues package

TimeValues ‘

NFPs:: unit
NFP_Nature::Unit 0.1
TimeValue
nature: TimeNatureKind
TimeAccesses:: 1

Clocks::Clo ck on Clock Zﬁ

BasicTimeModels:: 0.*
Junctionlnstant

InstantValue
denotedInstant

min 1 m ax 1

. TimelntervalValue
MultipleT imeMod els: 0..

Timelnterv al denoted Timelnterval isMinOpen: Boolean[1]
isMaxOpen: Boolean[1]

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways: either as a reference to a time instant or as a time span. The TimeValues
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense
or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “real” numbers for
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of
the time representation due to clock roll-over.

A TimelntervalValue is defined as a pair of instant values and denotes 0 or many time intervals (many results from

possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values).

When used in a time value specification, a time interval value indicates any time value in the interval.

The TimeValue class is abstract. It generalizes InstantValue, and DurationValue, which is introduced next.
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9.2.3.3 The DurationValues package

DurationValues

TimeAccesses::

TimeAccesses:: intervalValue
TimeValues:: DurationValue e TimeValues::
TimelntervalValue 1 TimeValue

minD 1 1 maxD

DurationintervalValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Figure 9.11 - DurationValues diagram of the time model

The DurationValues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two
instants. It characterizes the “extension” of a time interval. From the user’s point of view, a time interval is specified by
a TimelntervalValue. As explained in Section.9.2.3.2, a TimelntervalValue may denote 0, 1 or many time intervals, due to
possible clock roll-over. In the simple case when the clock has no defined maximalValue, the DurationValue of a

TimelntervalValue is defined by the difference between the max and min instant values of this time interval value. When
the maximalValue property is defined, the DurationValue is defined as the difference modulo maximalValue between the

max and min instant values of this time interval value.

A DurationintervalValue is defined by a pair of duration values, which specifies an interval of values. When used in
specification, a duration interval value indicates any duration value in the interval.
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9.2.3.4 The ChronometricClocks package

ChronometricClocks
. <<enumeration>>
Tim eAc cesses: Tim eStandardK ind
Clocks :Clock
TAI
uTo
Ut
UuTcC
TT
TDB
ChronometricClock $g§
Sider eal
referenceClock | standard: Time StandardKind[0..1] Local
0.1 stability : Real [0..1] GPS
offset DurationValue [0..1]
skew:Real[0..1] "'i
drit: Real[0.1] L
‘ PhysicalTime

Figure 9.12 - ChronometricClocks diagram of the time model

In Section 9.2.1, physical time has been characterized as a continuous and unbounded progression of physical instants.
The progression of physical time is perceived through event occurrences. Some events are considered as better candidates
to represent the (assumed) uniform progression of physical time. For instance, one may choose the period of the radiation
corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom (see the
definition of the second time unit). Today, this is the best known reference. More conveniently, one considers cyclic
events, whose occurrences are (more or less) periodic. Periodicity should be checked against the above mentioned best
referense. Usually, periodic event generators are called clocks. We have already used this term in a broader sense: there is
noreference to periodicity in clocks defined in Section 9.2.3. Therefore, we name ChronometricClock a clock that
implicitly refers to physical time.

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be
defined for chronometric clocks. Only a few are presented below.

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical time is
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties.
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When
omitted, the reference clock is supposed to be an "almost perfect clock”. Two clocks with the same rate may present an
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time)
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the
drift.
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Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities package

TimeRelated Entities

TimedConstraints

@ TimedObservations

TimedEventModels

4 TimedProcessingModels

ClockConstraints .
. -
--.‘._‘ <<;n:1port>>
<<import>> ] s
~a
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<<import>> “\-\
o <<import> [ ]
g ~
.,

Figure 9.14 - Subpackages of the TimeEntities package
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Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE proposes to
explicitly relate events, actions, messages... to time. The TimeRelatedEntities package is subdivided into the following
subpackages (Figure 9.14):

« the TimedElements package defines the key concept of TimedElement;

- the ClockConstraints package introduces constraints on clocks;

« the TimedObservations package provides concepts related to observation of timed entities;
- the TimedConstraint package specifies constraints on time-related observations;

- the TimedEventModels package deals with events whose occurrences are bound to time;

« the TimedProcessingModels package addresses executions bound to time.

9.2.4.1 The TimedElements package

TimedElements

CoreElements::

TimedElement 1 Foundations:
ModelElement

TimeAccesses:: 1.*
Clocks::Clock on

Figure 9.15 - TimedElement diagram of the time model

A timed element, introduced in the TimedElements package (Figure 9.15), is a most general concept. TimedElement is an
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with a model element. The
semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

ClockConstraints
NFPs::
NFP_An notation:
NfpCo nstraint
TimeAccesses:: 2. , 1 ccs:
7 ClockConstraint o ; e
Clocks::Clock constrainedClocks specification ClockConstraintSpecification
{subsets { redefines
constrainedElement } specffication }

Figure 9.16 - ClockConstraints diagram of the time model
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A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a
ClockConstraintSpecification. Clock constraint specifications are special value specifications described in Annex C
(Clock Constraint Specification Language). An example of clock constraint is that two clocks are harmonic with one
twice faster than the other.

9.2.4.3 The TimedObservations package

TimedOb servations
CoreElements::
TimedElements:: ’ ) observationContext Causality:
l | TimedObservation
Timed Element 0.. RunTimeCo ntext:
ZF CompBehaviorExecution
TimedIn stantObservation TimedDurationObservation CoreElements:
0.. Causality:
. ; . . exc RunTimeCo ntext:
obsKind:EventKind[0..1] obsKind:EventKind[0..2] Bl rvi i esie
<<enumeration>>
EventKind
1 eocc 0..1 | stim
start
CoreElements: CoreElements: finish
Causdity: 0.2 Causality: senq
RunTimeCo ntext: eocc Communication:: receve
EventOccurrence Request consume

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the
possible events are its sending, its receipt or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed
on a given clock. The obsKind property of the TimedInstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences,
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution,
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e. a
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request.
A Message is a kind of Request. The duration can be observed between two of the three events associated with a request
(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute.
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same
clock.
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9.2.4.4 The TimedConstraints package

TimedConstraints

VSL:TimeExpressions::
InstantExpression

ZF NFPs::

1 o
InstantPredicate I<———— TimedinstantConstraint NFP_Annotation:
specification NfpConstraint

1.* | observation {redefines
specification }

TimedElements:: N TimedConstraint

TimedObservation

1. | observation %7

Duration Predicate < ——————<@ TimedDuratio nConstraint TimedElements::
specification TimedElement
{redefines
specification }

VSL:TimeExpressions::
Duratio nExpression

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedInstantConstraint), or on the duration of
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is
"the constrained instant value belongs to a given time interval value" or "the constrained duration value belongs to a given
duration interval value". Instant and duration predicates contain usages of timed observations.

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

TimedEventModels

TimedEventOccurrences TimedEvents

Figure 9.19 - The TimeEventModels package

The TimeEventOccurrences package

An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property),
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover
the case of simultaneous occurrence set, introduced below.
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This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling chapter, an execution
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole
because their collective effect cannot reduce to the serialization of their individual effects. The concept of
SimultaneousOccurrenceSet is introduced to address this issue. A SimultaneousOccurrenceSet is an EventOccurrence, and
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive
synchronous modeling.

TimedEventModels
::Timed EventOccurrences

CoreElements::

Causality:: TimedElements::
RunTimeContext: Timed Element
EventOccurrence

0.* | occSet ZF
0..1
SimultaneousOccurrenceSet TimedEventOccurrence
0..1

1.% at

TimeAccesses::
TimeValues::
InstantValue

Figure 9.20 - TimedEventOccurrences diagram of the time model

The TimeEvents package

A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences.
The when property specifies when the first occurrence occurs. The Boolean attribute isRelative specifies whether the time
value is relative (the when property is a time duration value) or absolute (the when property is a time instant value). The
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition
attribute. The time values are specified by CVS expressions. CVS (Clocked Value Specification) is defined in Annex C.
A CVS::ClockedValueSpecification specifies a TimeValue, a CVS::DurationValueSpecification a DurationValue, and a
CVS::InstantValueSpecification an InstantValue.
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Timed EventModels
::TimedEvents

CoreElements:
TimedElements:: Causality::
Timed Element CommonBehavior:
Event

Timed Event

isRelative : Boolean
repetition: Integer[0..1]

1 when 0..1 |every
CVS:: CVs::
ClockedValueSpecification DurationValueSpecification

Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

TimedProcessingModels

TimedExecutions TimedProcessings

Figure 9.22 - The TimedProcessingModels package

The TimedExecutions package

A TimedExecution is a TimedElement that is a specialization of the
CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit
reference to clocks.

Two instants values startinstant and finishinstant are associated with an execution and they correspond to the occurrence
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an
execution. Since a timed execution may refer to several clocks (on property), several time values are possible.
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In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the
startinstant of the communication and the receipt instant being its finishinstant). In what follows, Behavior, Action, and
Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

TimedProcessingModels
;:TimedExecutions

CoreElements:
Causality:: Timed Elements:

RunTimeContext: Timed Element
BehaviorExecution

— 1

Timed Execution

executionDuration | 1.* startinstant | 1..* finishinstant | 1..*
TimeAccesses:: TimeA ccesses::
DurationValues:: TimeValues::

Duration Value InstantValue

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

The TimedProcessings package
TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a

known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing.

For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation lasting for a given duration.
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Timed Processing Models
;:TimedProcessings
CoreElements:: CoreElements:: CoreElements::
Causality : Causality:: Causality::
CommonBehavior: Communication:: Common Behavior::
Behavior Requ est Action
Timed Behavior TimedMessage Timed Action

\ I

V Delay

Timed Processing

0.1 duration start| 0..1 finish | 0..1
CoreElements::
CVS:: Causality:: Timed Elements::
Duration ValueSpecification CommonBehavior: Timed Element
Event

Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML Representation
This section describes the UML extensions required to support the concepts defined in the Time Modeling domain view.
Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others need

no extensions at all. Most of the time-related stereotypes extend metaclasses from UML.::Classes::Kernel,
UML::CommonBehaviors and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

«profile» « modelLibrary»
NFPs TimeTypesLibrary
. 7 .
o, P ~e
<< i?’hport» <<import>> <<import>>
- ~
~ 'n’ \\
] 47\. .'r 4‘~—‘
«profile» i _— «profile » «modelL ibrary »
VSL::DataTypes [<=——<<import>> Time pe= === <ApPly > nemmeaey TimeL ibrary

Figure 9.25 - Time profile dependencies diagram
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For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model
elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and
MultipleTimeModels packages. These concepts constitute the semantic domain of the Time model. The corresponding
concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

<<metaclass>>
UML::Classes::Kernel::

Package

<<metaclass>>
UML::Classes::Kernel::

InstanceSpecification

<<metaclass>>
UML::Classes::Kemel:C

lass

A

<<stereotyp e>
Timed Do main

<<stereotype>>

<< stereotype>>
Clock

ClockType

standard: TimeStandardKind[0..1] nature: TimeNatureKind[1]
unitType: Enumeration[0..1]
unit on 1 typeE isLogical: Boolean[1]=false
0.1 1 resolAttr:Property[0..1]
maxValAttr: Property[0..1]
offsetAttr: Property[0..1]
getTime Operation[0..1]
setTime: Operation[0..1]
indexToValue: Operation[0..1]

<<stereotyp e>
NFPs::Unit

<<stereotype>>
TimedElement

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

<<stereotype>

<<metaclass>> TimedValueSpecification

UML::Classes::Kernel:: -
Value Specification

<<stereotype>>
TimedElement

interpretation: Time Inte rpr etation Kind[O0.. 1]

Figure 9.27 - UML extensions for Time modeling (2)

9.3.1.3 Constraint stereotypes

Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks. As TimedElement,
both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the specification, and the context
of the constraint. Note that VSL is convenient to express various timed constraints.
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<<stereotype>>

NFP_Profile:

NfpConstraint
<<stereotype>>
TimedConstraint <<stereotype>>

ClockConstraint
interpretation: Timelnter pretatonKind
<<stereotype>>
TimedElement

Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation stereotypes

TimedObservation is an abstract stereotype of TimedInstantObservation and TimedDurationObservation. It allows time
expressions to refer to either in a common way. As a TimedElement, a TimedObservation makes reference to clocks. The
optional obsKind attribute may specify the kind of the observed event(s).

<<stere oty pe>> <<stere oty pe>> <<metaclass>>
: TimedInstantObserv ation UML::CommonBehaviors:
Timed Element . .
SimpleTime::
obskKind: EventKind [0.. 1] TimeObser vation
<<stere oty pe>> 1
Timed Ob ser vation
<<stere oty pe>> <<metaclass>>
TimedDurationObserv ation UML::CommonBehaviors:
SimpleTime::
obsKind: EventKind [0 2] DurationObs ervat ion

Figure 9.29 - UML extensions for Time modeling (4)

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.

<<metaclass>>
UML::CommonB ehaviors:
SimpleTime::
TimeEvent

A

<<stere oty pe>>
<<metaclass>> ever f <<s tereotyp e>
UML::Classes: Kernel: y TimedEvent — = Timedaeyn'\)ent
ValueSpecification 0.1 0.1 repetition: Integer[0 ..1]

Figure 9.30 - UML extensions for Time modeling (5)
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9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and
whose instants and durations are explicitly bound to clocks.

<<met aclass>>

<<metaclass>> <<metaclass>> UML: iInteractions:
UML::Actions:: UML: CommonB ehaviors: : Basiclnteractions:
Action Behavior ’

Message

! ‘ ]

tart
<<metaclass>> :
UML::CommonB ehaviors:: | 01 <<stereotype>> duration UMS?}E@ZZIS-S;:ner-
Communication:: finish TimedProcessing 0.1 0.1 ValueSp ecification
Ev ent 0.1

y

<<stereotype>>
Timed Element

Figure 9.31 - UML extensions for Time modeling (6)
9.3.2 Profile elements description

9.3.2.1 Clock

The Clock stereotype maps the Clock domain element (section F.3.2) denoted in Annex F. It also relates to the
ChronometricClock domain element (Section F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock exists in a
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A
Clock is also characterized by its resolution, and optionally by its offset (its initial instant value) and its maximal value.
The values of these attributes are contained in the slots of the stereotyped InstanceSpecification.

Extensions
« None.

Generalizations
e InstanceSpecification (from UML::Classes::Kernel).

Associations

e type: ClockType[1]
specifies the ClockType whose this Clock is an instance.

e unit: NFPs::Unit[0..1]
defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous
tick unit. When defined, this unit must be of the unitType specified in the ClockType.
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Attributes

e standard: TimeStandardKind[0..1]
references the system of time adopted by the clock. This property is not defined for a logical clock.

Constraints

[1] The owner of a class stereotyped by Clock must be a Package stereotyped by TimedDomain.
base_Class.owner.ocllsTypeOf(TimedDomain)

[2] The base_InstanceSpecification of the ClocklnstanceSpecification must be an InstanceSpecification of the base_Class
of its type property.

self.base_InstanceSpecification.classifier->includes(self.type.base_Class)
[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.
self.unit->notEmpty( ) implies self.type.unitType.ownedLiteral->includes(self.unit)
[4] A logical clock does not have a defined standard.

self.type.isLogical implies self.standard->isEmpty( )

9.3.2.2 ClockConstraint
The ClockConstraint stereotype maps the ClockConstraint domain element (section F.3.3, p. 446) denoted in Annex F.

A ClockConstraint is a Constraint that imposes dependency between clocks. A ClockConstraint refers to a set of clocks
and possibly to other model elements. The clocks in the constrained elements must belong to the on clock set of this
ClockConstraint. The specification of the constraint is usually an opaque expression using a dedicated language: CCSL
(Clock Constraint Specification Language) defined in Annex C.

Extensions
¢ None

Generalizations
«  NfpConstraint (from NFPs)

*  TimedElement

Associations

e None
Attributes
e None

Constraints
[1] The owner of a constraint stereotyped by ClockConstraint must be a Package stereotyped by TimedDomain.

base_Constraint.owner.ocllsTypeOf(TimedDomain)

[2] The constrained clocks are members of the on clock set of the ClockConstraint
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self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.oclIsTypeOf(Clock))

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element (section F.3.21) denoted in Annex F. It also related
indirectly to Clock (section F.3.2) and ChronometricClock (section F.3.1).

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

Extensions
e Class (from UML.::Classes::Kernel)

Note — The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML
specification. Using UML.::Classes::Kernel::Class does not preclude usage of Class from UML.::StructuredClasses.

Generalizations
* None

Associations
¢ None

Attributes

e nature: TimeNatureKind [1]
specifies the nature dense or discrete of the time represented by this ClockType.

e unitType: UML::Classes::Kernel::Enumeration [0..1]
is the type of units supported by this ClockType.

e isLogical: Boolean [1] = false
specifies whether this ClockType reads a logical time or not. When isLogical is false, the ClockType reads a
chronometric time, i.e., a time bound to physical time.

e maxValAttr: Property [0..1]
the maxValAttr property refers to a property of the base class. This property declares a read only attribute which
determines the maximalValue of the associated Clock, value at which the clock rolls over. The maximal value is
expressed with the clock's unit as a unity.

o offsetAttr: Property [0..1]
the offsetAttr property refers to a property of the base class. This property declares a read only attribute which
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock's unit as a
unity.

o resolAttr: Property [0..1]
the resolAttrib property refers to a property of the base class. This property declares a read only attribute which
determines the resolution of the associated Clock. The resolution is expressed with the clock's unit as a unity.
When resolution is not defined, the granularity is arbitrarily small. This is the case for dense time.

e getTime: UML::Classes::Kernel::Operation [0..1]
the getTime property refers to an operation of the base class that returns the current time.

e setTime: UML::Classes::Kernel::Operation [0..1]
the setTime property refers to an operation of the base class that sets the current time.
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e indexToValue: UML.::Classes::Kernel::Operation [0..1]
the indexToValue property refers to an operation of the base class that yields the instant value associated with an
instant specified by its index.

Constraints
¢ None
9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element (section F.3.25) denoted in Annex F. It also
related indirectly to TimedInstantConstraint (section F.3.32) and TimedDurationConstraint (section F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

Extensions
* None

Generalizations
*  NfpConstraint (from NFPs)

¢ TimedElement

Associations
e None

Attributes

e interpretation: TimelnterpretationKind [1]
specifies whether the constraint applies to an instant value or to a duration value.

Constraints

[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain
base_Constraint.owner.ocllsTypeOf(TimedDomain)
[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimelnterpretationKind::any

9.3.2.5 TimedDomain
The TimedDomain stereotype maps the MultipleTimeBase domain element (section F.3.17) denoted in Annex F.

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their
behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.
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Extensions
e Package (from UML::Classes::Kernel::Package)

Generalizations
« None

Associations

* None
Attributes
¢ None

Constraints
* None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element (section F.3.27) denoted
in Annex F.

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the
time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

Extensions
e DurationObservation (from UML::CommonBehaviors::SimpleTime::DurationObservation).

Generalizations
¢  TimedObservation

Associations
¢ None

Attributes
e 0bsKind: EventKind [0..2] specifies the kind of the observed events.

Constraints
* None

9.3.2.7 TimedElement (abstract)
The TimedElement stereotype maps the TimedElement domain element (section F.3.28) denoted in Annex F.

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.

A UML Profile for MARTE, Beta 1 77



Extensions
e None

Generalizations
* None

Associations
e on:Clock [1..*] references a set of Clocks.

Attributes
« None

Constraints
¢ None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element (section F.3.29) denoted in Annex F. It also related
indirectly to TimedEventOccurrence (section F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when

value is considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property.

Extensions
e TimeEvent (from CommonBehaviors::SimpleTime)

Generalizations
¢  TimedElement

Associations

e every: UML.::Classes::Kernel::ValueSpecification [0..1]
is an optional owned specification of the duration value between two successive occurrences
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying
the TimedValueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

Attributes

e repetition: Integer[0..1]
is an optional repetition factor. When defined, repetition is the number of successive
occurrences of the TimedEvent. Its absence is interpreted as an unbounded repetition.

Constraints
[4] A TimedEvent is bound to one Clock.

on->size() =1
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[5] The optional repetition property of a TimedEvent must be not defined when every is not defined.

every->isEmpty( ) implies repetition->isEmpty( )

9.3.2.9 TimedInstantObservation

The TimedInstantObservation stereotype maps the TimedInstantObservation domain element (Section F.3.33) denoted in
Annex F.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence, and observed on a clock. The
obsKind attribute may specify the kind of the observed event.

Extensions
e TimeObservation (from UML::CommonBehaviors::SimpleTime::TimeObservation)

Generalizations
¢ TimedObservation

Associations
e None

Attributes
e obsKind: EventKind [0..1] specifies the kind of the observed event.

Constraints
« None

9.3.2.10 TimedObservation (abstract)

The TimedObservation stereotype maps the TimedObservation domain element (section F.3.34, p. 460) denoted in Annex
F.

TimedObservation is an abstract stereotype generalizing both stereotypes, TimedInstantObservation (Section 9.3.2.9) and
TimedDurationObservation (section 9.3.2.6). It allows time expressions to refer to either in a common way. As a
TimedElement, a TimedObservation makes reference to clocks.

Generalizations
¢ TimedElement

Associations

¢ None
Attributes
¢ None

Constraints
e None
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9.3.2.11 TimedProcessing

The TimedProcessing stereotype maps the TimedProcessing domain element (section F.3.36) denoted in Annex F. It also
related indirectly to TimedEventOccurrence (section F.3.30), TimedBehavior (section F.3.24), TimedAction (section
F.3.23), TimedMessage (section F.3.34) and TimedExecution (section F.3.31).

The TimedProcessing stereotype represents activities that have known start and finish times or a known duration, and
whose instants and durations are explicitly bound to Clocks.

Extensions
e Action (from UML.::Actions)

e Behavior (from UML::CommonBehaviors)

« Message (from UML.::Interactions::Basiclnteractions)

Generalizations
¢ TimedElement

Associations

e duration: UML::Classes::Kernel::ValueSpecification [0..1]
is an optional owned specification of the duration of an execution for Action and Behavior, or the
duration of a transmission for a Message. By default this duration is read on the on Clock of this
TimedProcessing, if it is unique. By applying the TimedValueSpecification stereotype to this
ValueSpecification, another Clock can be chosen.

o finish: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the end of execution of the processing, for Action or Behavior;
the receipt for a Message.

o start: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the start of execution of the processing, for Action or Behavior;
the sending for a Message.

Attributes
e None

Constraints
[1] Not all three properties are empty.

duration->notEmpty( ) or ( start->notEmpty( ) and finish->notEmpty( ) )

9.3.2.12 TimedValueSpecification

The TimedValueSpecification stereotype maps the TimeValue domain element (section F.3.44), InstantValue domain
element (section F.3.14) and DurationValue domain element (section F.3.10) denoted in Annex F.

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.
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Extensions
*  ValueSpecification (from UML::Classes::Kernel::ValueSpecification).

Generalizations
¢ TimedElement

Associations
* None

Attributes
e interpretation: TimelnterpretationKind[0..1] specifies whether the time values are instant values or duration values.

Constraints
¢ None

9.3.2.13 TimelnterpretationKind (from TimeTypesLibrary)

TimelnterpretationKind is an enumeration type that defines literals used to specify the way to interpret a time expression.

Literals

e duration indicates that the typed elements are time spans.

e instant indicates that the typed elements are instants.

e any indicates that the typed elements can be durations or instants.

9.3.2.14 TimeNatureKind (from TimeTypesLibrary)

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time value.

Literals
e discrete indicates that the typed elements are from a discrete set.
e dense indicates that the typed elements are from a dense set.

9.3.3 Examples

9.3.3.1 Chronometric clocks

The MARTE::TimeLibrary contains the description (IdealClock, a class stereotyped by ClockType) and an instance
(idealClIk) of an "ideal" clock. Starting with this clock, the user can define new chronometric clocks, as shown in Figure
9.32. These chronometric clocks may present deviations with respect to the ideal clock.
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<<dockType >> <<clockT ype >>
{nature = discrete, unitTyp e = TimeUnitKind, { nature = dense, unifT ype = TimeU nitKind ,
resolAtir=re soluton, getTime = currentTime } gefTime = aurrentTime }
Chronometric IdealClock
resolution: R eal {read Only} currenfTime():Real
asrrentTime( ): =
( ): Real ~
‘t
Imp orte d from
MARTE: TimeLibrary
<<timeD omain>>
Application TimeDo main P
w_a
A‘r
S
<<clock>> <<clock>>
{ unit='s, standard = UTC} - {unit=s}
cc1:Chro nometric f, idealC lk:dea|Clock
~~
~\
resolution = 0.01 S T
<<dokConstraint>> { kind = required} N

{ Clock cis idealClk dis cretized By 0.001;
a1 isPeriodicOn cperiod10;

<<clock>> o2 isPeriodicOn cperiod10;
{ unit = s, standard = UTC} o a1l haSStab|||ty1E'5,
cc2:Chro nometric jm—we e a2 hasStability 1E5;

ac1,cc2haveOffset [0.5] mswrt idealC Ik;

resolution = 0.01 }

Figure 9.32 - Example of chronometric clocks

First, the user specifies a new ClockType: Chronometric, which is discrete, not logical (i.e., chronometric), and with a
read only attribute (resolution).

Instances of clocks belong to timed domains. In this example only one time domain is considered, and it owns 3 clocks:
idealClk, which is an instance of IdealClock, ccl and cc2, which are two instances of Chronometric.

ccl and cc2 use s (second) as their unit of time, have a resolution of 0.01 s and adopt the UTC system of time. The
deviations of these clocks with respect to the ideal one are specified by a clock constraint. Clock constraints are expressed
using a simple declarative language, called CCSL (Clock Constraint Specification Language), described in Annex C.

The clock constraint in Figure 9.32 imposes to cc1 and cc2 to be almost periodic (stability=10-5), with a period of 10 ms,
and with an offset between the two clocks no greater than 5 ms. Note that the 10 ms period must be consistent with the
given resolution (0.01 s = 10 ms). The first line, in the body of the constraint, declares a clock c, local to the constraint
and not part of the system. c is defined as an ideal discrete clock whose resolution is 0.001 s = 1 ms. The other lines are
constraints. Figure 9.33 represents a time structure that satisfies the given clock constraint.
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Figure 9.33 - Instants of clocks ccl and cc2

9.3.3.2 Logical clocks

In this simplified example, a processor executes the same code for several controllers (Figure 9.34). The processor is a
\Voltage Scaling processor: its frequency can be dynamically controlled. For simplicity, only two frequencies are
considered: the frequency in the full power mode, and the frequency in the low power mode, which is half the former. The
Boolean attribute inLowPower indicates the running mode of the processor. The control must be applied periodically (the
period attribute of the Controller) by executing some code (pidCode which is an OpaqueBehavior). The behavior of the
controller is specified by a state machine (ctriBeh).

stm ctriBeh ( p: NFP_Du ration))

<<clockType>>
{nature=discrete, afterp
resolAttr=resolution,
isLogical }
Processor proc ctrl period: NFP_Duration

inLowPower: Boolean .
resolution: Real {readOnly} entry pidCode

Figure 9.34 - Example of timed control

1 0.* Controller

pidCode is a behavior that is executed in a fixed and known number of processor cycles. This can be modeled with a
logical clock. To this end, the class Processor is stereotyped by ClockType. This mixture of physical time (period of
activation) and logical time (execution duration expressed in processor cycles) is usual in control applications. Figure
9.35 represents instances and a clock constraint. The TimedDomain is not explicitly represented. There are two instances
of Controller, with periods of activation equal to 1 and 2 ms, respectively. Each execution of pidCode takes 100 cycles of
the processor, which is expressed by a TimedProcessing. The dependency between the processor cycle duration and the
physical time is specified by a ClockConstraint. The constraint specification indicates that the local Clock c is a discrete
clock with a period of 1 us (1E-6 s). Clock pr is derived from c. The period of pr is 20 us when running in the low power
mode, and 10 us in the full power mode. The trigger of the transition labeled "after p" in the state machine, implicitly
declares a TimeEvent with isRelative = true and when = p. This TimeEvent is stereotyped by TimedEvent with on =
idealCIk.
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<<clock>>
c1: Controller prPr ocessor c2: Controller
period = (value=1,unitEms) resolution = 1 period = (\alue=2 unit=ms)
H
t
<<clockConstraint>> <timedProcessing>>
{Clock cis idealClk discretizedBy 1E-6; {9n= pr,
<<clock>> pr = c filteredBy 0B(1.0M9)if pr.inLowPower, duration =100 }
{unt=s} ===="1  pr=cfilteredBy0B(1.0"9)if not pr.inLowPower; <<opaqueBehavor>>
idealClk:ldealClock } pidCode

Figure 9.35 - Clocks and TimedProcessing
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10 Generic Resource Modeling (GRM)

10.1 Overview

The objective of this package is to offer the concepts that are necessary to model a general platform for executing real-
time embedded applications. The generic resource model (GRM) includes the features which are required for dealing

with:
» Modeling of executing platforms at different level of details. The level of granularity needed for platform modeling

depends on the concern motivating the description of the platform, as for example the type of the platform, the type of
the application, or the type of analysis to be carried out on the model.

« Modeling of both "hardware™ (e.g., memory units or physical communication channels) and "software" (e.g., real-time
operating systems) platform.

Both sections 14.1 and 14.2 provide a specialization of this general resource model for software and hardware related
platforms respectively.

Figure 10.1 describes the dependencies of the GRM package with other sub-packages of MARTE.

MARTE::MARTE_Library::
Basic_NFP_Types

— | - —
MARTE: i MARTE:: MARTE::
NFPs ! Time CoreElements
i i i i
b : E ;
| : :
GRM

Figure 10.1 - Dependencies of the GeneralResourceModel (GRM) package

The different facets of the GRM are grouped in individual packages, following the structure shown in Figure 10.2:
» The ResourceCore package defines the basic elements and their relationships.
» The ResourceTypes package defines fundamental types of resources as well as the basic services that they provide.

« The ResourceManagement package defines specific management resources and their associated services.
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GRM

ResourceCore }‘
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7 B \
P" \ \‘
VN — T —

’ ResourceTypes

\, ResourceUsages
‘\

/ 77 i\ \
l" /"’ “\ ‘\

- A

ResourceManagement Scheduling

Figure 10.2 - Architecture of the GeneralResourceModel (GRM) package

The purpose and contents of each sub-package are described in next sections.

10.2 Domain view

10.2.1 The ResourceCore package

The basic partitioning into classifiers and instances made in the Foundations package is used here to describe the nature
of the basic resource elements, depicted in the class diagram in Figure 10.3. The central concept of the GRM is the notion
of a Resource. A Resource represents a physically or logically persistent entity that offers one or more ResourceServices.
Resources and its services are the available means to perform the expected duties and/or satisfy the requirements for
which the system under consideration is aimed.

MARTE::Core Eements: ‘ 0.* 1.* | MARTE:CoreElements:
Foundations::Instance instance  type Foundations:Classffier
MARTE:CoreElements:: MARTE:CoreElements::Causality :: gntext
Causality::RunTimeContext Common Be havior::BehavioredClassifier 1
::BehaviorExecution 4&
ownedbehavior )
0.* 1> Resource
Resourcelnstance = =
instance type | resMutt: Integer [0..1] MARTE:: CoreElements:
Causality::Commo nBehavior
context 1 context ¥ 4 ::Behavior
) 0.* pServices
exeServices - 1. \; {subset ownedbehavior}
. . instance 1.* .
Resource ServiceExecution ResourceService

0.* type

Figure 10.3 - Instance/Classifier nature of core resource elements
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As shown in Figure 10.4, Resources and their respective instances are also kinds of AnnotatedElements, hence values of
non-functional properties (NFPs) may be annotated on them. In particular, as a type of classifier, Resources may have
NFPs declared on it. As it is also shown in Figure 10.4, besides the NFP specifications, a resource has an optional set of
referenced clocks, normally only one, but more in general.

MARTE::NFPs::NFP_Annotation::
AnnotatedElement

0.* ownedElement
owner
O

0.* 1.* Resource
Resourcelnstance - - 0.1
instance type | resMult: Integer [0..1]
MARTE:NFPs:: provided

NFP_declaration:NFp  |Sulset value}

required
{subset value}

*

MARTE::Time::
TimeAccesses ::Clocks::Clock | referenceClocks

Figure 10.4 - NFP annotations and reference Clocks of a Resource

A second orthogonal aspect, which is also very important, is the necessity to differentiate between application and
platform elements. These latter are considered either as resources or resource services. Resources are used to model the
execution platform from a structural point of view, while the resource services supply the behavioral point of view. A
resource may be structurally described in terms of its internal resources - this is represented by the "owner-
ownedElement" association in Resource inherited from the ModelElement meta-class. For example, a processing resource
may be refined as a processor connected to a memory through a bus, if such level of detail is of interest for the modeler
or for the analysis method to be applied to the model.

The reference clock of a resource may be either a chronometric (i.e. "physical”) clock or a logical clock. In any case, a
clock is used as the reference unit for time related characteristics of the services provided by the resource. For example,
considering chronometric clocks, the "processing time" associated with functions in a computation library may be
expressed in terms of processor cycles rather than absolute time values. The reference clock (typically the processor
clock) would then allow translating such values into physical times.

The optional attribute resMult (resource multiplicity) is used to express the limited nature of an aggregated multi
elementary resource. When used it indicates the maximum number of instance of the elementary units of a particular type
of resource that are available through its corresponding services.

Resource and ResourceService, as well as their corresponding instance-based concepts, Resourcelnstance and
ResourceServiceExecution respectively, may also provide and/or require non-functional properties. A
ResourceServiceExecution is a kind of BehaviorExecution that represents a concrete instance of the realization of a
service, in the context of the instance of a resource.

A UML Profile for MARTE, Beta 1 87



MARTE::C oreElements::
Foundations::ModelElement

7

ResourceReference ResourceAmount

Figure 10.5 - Resource Reference, and ResourceAmount of the ResourceCore package

For convenience, as shown in Figure 10.5, two more abstract concepts are defined in this ResourceCore package:
» ResourceReference, to be used when modeling the dynamic creation of resources is required.

« ResourceAmount, representing a generic quantity of the "amount" provided by the resource. This may be mapped to
any significant quantification of the resource, like memory units, utilization, power, etc.

A resource can be a “black box,” in which case only the provided services are visible, or a “white box,” in which case its
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

» One black box resource (e.g., a real-time operating system), which abstracts the hardware hence considered as internal
elements.

« A collaboration between a software layer and a hardware layer.

« A collaboration between basically hardware elements. In this case, software features of the execution platform may be
represented by overheads on raw hardware performance figure.

« Any combination of these previous approaches depending on the type of development and analysis method applied by
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature.
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a
given platform may provide several views, corresponding to different anticipated use cases for the platform.

As it occurs with classifiers, the execution platform may be represented as a hierarchical structure of resources.
10.2.2 The ResourceTypes Package

Figure 10.6 presents the basic resource types defined along with their specific attributes. Next a description of each of
them is provided, including the interpretation of the resource base clock when necessary. A first characterization of
resources can be done using the two additional attribues shown, isProtected and isActive. Each of the specialized kinds
may be define by considering the Boolean values for them. isProtected implies the necessity to arbitrate access to the
resource or its services, while isActive means that it has its own course of action.
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GRM::ResourceCore::
Resource

resMul: Integer
isProtected : Boolean

isActive : Boolean

1

StorageResource

CommunicationResource

TimingResource

SynchResource

ConcurrencyResource

ComputingResource

DeviceResource

Figure 10.6 - Types of resources in the ResourceTypes package

» A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual
element in bits must be given. The reference clock corresponds to the pace at which data is updated in it, and hence it

determines the time it takes to access to one individual memory element. The level of granularity in the amount of

storage resources represented is up to the model designer. For example, if the storage resource represents a hard disk

drive, the element could be a block or a sector, and the speed of the clock to access such element would be directly
related to the disk rotation speed. The services provided by a storage resource are intended to move data between
memory and a processing unit (which can be a computing resource or a communication endpoint).

» A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of
time. It is defined as a kind of chronometric clock, and may represent a clock itself or a timer, in which case it acts

according to the clock that it has as a reference. This concept is used to model the SPT TimingMechanism. According

to the concrete kind of resource or timing mechanism that it represents, the referenced clock may be another

chronometric clock or a logical clock, as defined in the time chapter. A timing resource may have concrete services for

its management and operation. Figure 10.7 shows these services in the form of roles of associations with

ResourceService in the model of timing resources.
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MART E:: Time:: TimeAccesses ::
—@ GRM::ResourceCore:Resource ChronometricClocks::
ChronometricClock
0..1
referenceClock
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MARTE::Time: TimeAccesses : ‘
Clocks::Clock
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L get .
TimingResource ResourceService
reset

| |
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TimerResource

ClockResource

Duration: NFP_Duration
isPeriodic: Boolean

Figure 10.7 - Timing resources
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« A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent

execution flows, and in particular the mutual excusive access to shared resources. This general concept is further
specialized inside the context of the GRM in the Scheduling package.

A ComputingResource represents either virtual or physical processing devices capable of storing and executing
program code. Hence its fundamental service is to compute, what in fact is to change the values of data without
changing their location. It is active and protected.

A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution
concurrently with others, all of which take their processing capacity from a potentially different protected active
resource (eventually a ComputingResource). Concurrency may be physical or logical, when it is logical, the supplying
processing resource needs to be arbitrated with a certain policy. This root concept is further specialized in the
Scheduling package.

A DeviceResource typically represents an external device that may require specific services in the platform for its
usage and/or management. Active device resources may also be used to represent external specific purpose processing
units, whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their
internal behaviour is not a relevant part of the model under consideration.

As shown in Figure 10.8, two kinds of CommunicationResources are defined. A communication media has an attribute
for defining the size of the elements transmitted; as expected, this definition is related to the resource base clock. For
example, if the communication media represents a bus, and the clock is the bus speed, "element size" would be the
width of the bus, in bits. If the communication media represents a layering of protocols, "element size" would be the
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frame size of the uppermost protocol. A communication endpoint acts as a terminal for connecting to a communication
media, and it is characterized by the size of the packet handled by the endpoint. This size may or may not correspond to
the media element size.

CommunicationResource

7

CommunicationEndPoint CommunicationMedia

packetSize : Integer elementSize : Integer

Figure 10.8 - Kinds of Communication resource in the ResourceTypelResourceTypes package

Concrete services provided by CommunicationEndPoint include the sending and receiving of data, as well as a
notification service able to trigger an activity in the application. The fundamental service of a CommunicationMedia is to
transport information (e.g. message of data) from one location to another location.

Figure 10.9 denotes some other basic services that may be provided by resources:

GRM: :ResourceCore: 1.
ResourceService

A

+service

Acquire Release GetAmountAvailable Activate
isBlocking: Boolean
+amount
1.* | GRM::ResourceCore| 1.*
1. ::ResourceAmount
+amount
+amount

Figure 10.9 - Basic resource services of the ResourceTypeResourceTypes package

« Both Acquire and Release services correspond respectively to the allocation and de-allocation of some "amount™ from
the resource. For example, for a resource representing storage, the amount could be the memory size. As another
example, a resource could represent a single element (maximum amount available is "1"), and acquire/release would be
used to model mutual exclusive access.

 Activate corresponds to the application of a service on a given quantity. For example, activate a communication service
with the amount of data to be transferred as a parameter.

- GetAmountAvailable returns the amount of the resource that is currently available.

The behavior shown by each service (acquire, release, activate, etc.) of a concrete resource that offers it, shall be
described to the extent needed by the modeling concerns of that specific resource.
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10.2.3 The ResourceManagement Package

The elements in this package serve for modeling various resource management services, such as those found in most
operating systems. Figure 10.10 shows both types of resources that hold management services.

broke dResource
GRM::ResourceCore: managedResource

1.7 Resource

¥

ResourceBroker ResourceManager

broker | *

manager

* *

accCtrlPolicy | 1..* 1..*|, resCtrlPolicy

AccessControlPolicy ResourceControlPolicy

Figure 10.10 - Resource management

The ResourceBroker is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate

memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it.

The access control policy determines the criteria for determining and making effective the provision of resources, it can
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients,
etc.

On the other hand, the ResourceManager is responsible for creating, maintaining and deleting resources according to a
resource control policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more
chunks of heap memory. Once created and initialized, the resources are typically handed over to a resource broker. In
most practical cases, the resource manager and the resource broker are the same entity. However, since this is not always
true the two concepts are modeled separately (they can be easily combined by designating the same entity as serving both
purposes).

10.2.4 The Scheduling Package

Scheduling is the way of arranging behavior at run-time. At this level of description a Scheduler is defined as a kind of
ResourceBroker that brings access to its broked ProcessingResource or resources following a certain scheduling policy.
The concept of scheduling policy as it is presented here corresponds to the scheduling mechanism described in section
6.1.1 of SPT, since it refers specifically to the order to choose threads for execution. A ProcessingResource generalizes
the concepts of CommunicationMedia, ComputingResource, and active DeviceResource. It introduces an element that
abstracts the fundamental capability of performing any behavior assigned to the active classifiers of the modeled system.
Fractions of this capacity are brought to the SchedulableResources that require it.

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency. This means that it takes
the processing capacity from another active protected resource, usually a ProcessingResource, and competes for it with
others linked to the same scheduler under the basis of the concrete scheduling parameters that each SchedulableResource
has associated. In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing
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resource, instead they receive it from a SchedulableResource, which is in its turn effectively scheduled by another

scheduler. These intermediate SchedulableResource, play the role of a virtual processing resource, conducting the fraction
of capacity they receive fron their host scheduler to its dependent secondaryScheduler.

Figure 10.11 shows the relationships between all these elements, as well as the various kinds of scheduling policies and

the corresponding scheduling parameters.

Scheduling

GRM: ResourceCore:
Resource

ProcessingResource

% host | 1

SecondaryScheduler

«enumeration »
SchedPolicyKind

RoundRobin virtualPr ocessingUnits

TimeTableDriven
Undef

Other SchedulableResource

GRM::ResourceManagem | _1." " p CRM:ResourceManage | broker brokedResource
ent::AccessControlPolicy ment: :ResourceBroker . 1
% accCtrlPolicy
SchedulinglPolicy P 0.1/ mainScheduler
Scheduler * 1.*
policy: SchedPolicykind —
otherSchedPolicy : String policy schedule:OpaqueExpression prooessngUnlts
fsubset accCtriPolicy } {Subset brokedResour ce}

speedFactor:

(value = 1.0)

NFP_Real =

A

1 GRM::ResourceTypes:

GRM::ResourceTypes:
CommunicationMedia

EarliestDeadlineFirst host ComputingResource
FIFO dependentScheduler | 0..1
FixedPriority
LeastLaxityFirst * *
Y 1 0. schedulableResource

GRM :ResourceTypes:
ConcurrencyResource

GRM::ResourceTypes:
DeviceResource

{isActive =True}

1 schedParams

Scheduling Parameters

Figure 10.11 - The Scheduling package

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying

scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.)
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific

schedules which order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of
specification requires at least the identification of the common resource, its protecting mechanism, and the associated
protocol; this is what the MutualExclusionResource defines. Figure 10.12 shows this element. Its associated protocol,

represented by MutualExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the
parameters required by the protocol are represented by the ProtectionParameters element.
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GRM:: Res ourceManagement GRM::ResourceManagement GRM::ResourceTypes:
::AccessControlPolicy ::ResourceBroker SynchResource

scheduler /['0..1

‘ *
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ProtectProtocolKind MutualExclusionProtocol 1 *
R MutualExclusionResource

FIFO protocol: Protect Protoc olKind
NoPreemption otherProtec tProtocol:String protocol
PriorityCeiling %
Prioritylnheritance
StackBased
Undef ProtectionParameters .
Other

priorityCeilling: Integer
preemptionLevel: UnlimitedNatural

protectparams

Figure 10.12 - The MutualExclusionResources in the Scheduling Package
10.2.5 The ResourceUsage Package

When resources are used, their usage may consume part of the "amount” provided by the resource. Taking into account
these usages when reasoning about the system operation, is a central task in the evaluation of its feasibility. Figure 10.13
shows the model of a ResourceUsage, it links resources with concrete demands of usage over them. The concept of
UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. Two general forms
of usage are defined the StaticUsage and the DynamicUsage, each used according to the specific needs of the model. A
few concrete forms of usage are defined at this level of specification under the concept of UsageTypedAmount; those are
aimed to represent the consumption or temporary usage of memory, the time taken from a CPU, the energy from a power
supply and the number of bytes to be sent through a network.
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ResourceUsages

GRM::ResourceCore::ResourceAmount

]

GRM::ResourceCore:Resource UsageTypedAmount

MARTE::CoreElements:Causality
::CommonBehavior: :Event

execTime: NFP_Duration [*]
msgSize: NFP_DataSize [*]

. allocatedMlemory: NFP_DataSize [*]
0.1 | *1ewent requiredAmount | yseqmemory: NFP_DataSze [

1. * | powerPeak NFP_Power [*]

* a enery:NFP_Energy [*]

usedResources | 1.*

0.* usage

ResourceUsage
workoad 0.* MARTE::CoreElements: :Causality::
4 CommonBehavior::Behavior

]

UsageDemand

StaticUsage DynamicUsage

Figure 10.13 - Resource usage

10.3 UML Representation

This section describes the UML extensions provided to support the concepts defined in the presented domain view. The
stereotypes here provided are generic and may be used at different levels of specification.

10.3.1 Profile Diagrams

The UML extensions proposed for the modeling of resources at this level of specification are provided in the
MARTE::GRM profile and the MARTE::MARTE_Library::GRM_BasicTypes model library. They are shown in separate
figures for convenience.

Figure 10.14 shows the stereotypes defined for the root concepts defined for the modeling of resources. Figure 10.16
shows the relationships between stereotypes defined for scheduling. Figure 10.17 shows the UML elements that may be
extended with the GRService stereotype. And Figure 10.19 shows for convenience the model library that collects all the
utilitarian types defined for the GRM profile and which is formally presented in Annex D.

The MARTE::GRM package (stereotyped as profile) defines how the elements of the domain model extend metaclasses
of the UML metamodel. All the stereotypes defined in the GRM profile are then listed and described in alphabetical order.
The semantic descriptions of the concepts that these stereotypes represent are provided along Section 10.2 on page 99.
And the detailed descriptions of their corresponding concepts in the domain view are presented in Annex F in page 428.
Finally the elements in the GRM_Basic_Types model library are also described in alphabetical order.
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« profile »
GRM

« metaclass »
UML::Classes::Kernel:
Property

« metaclass »

UML::Classes:: Kernel:
InstanceSpecification

« metaclass »
UML::Classes ::Kernel::
Classifier

« metaclass »
. O UML::Composite Structures::
UML: :Interaction: :Basic e S Eues:

Interactions::Lifeline ConnectableElement

«metaclass »

/

« stereotype »
CommunicationE ndP oint

packetSize: Integer

T

« stereotype»
Resource

A \

resMult: I nteger = 1
isPratected: Boolean
isActive: Boolean

« stereotype »
StorageResource

elementSize: Integer

« stereotype »
SynchronizationResource

« stereotype »
MutualExdusionResource

protectKind: PratectProtocaKind=pricrity Inheritance

ceiling: Integer
otherProtectProtocol: String

isProtected:Bodean =true{IsReadOnly}

« stereotype »
ConcumrencyResource

« stereotype»
Scheduler

isPreemptible: Bodean = true

« stereotype »

SchedulableResource

schedPdicy: SchedPdicyKind = FixedPriority
otherSchedPolicy: String
schedule: OpaqueExpression

schedParams: SchedParameters [0..*]
isActiveBoolean = true {IsReadOnly}

«metaclass »

InternalStructures::
Connector

UML::Composite Structures::

« stereotype »
ProcessingResource

speedF actor: NFP_Real = (value =1.0)

« stereotype»
SeoondaryScheduler

« stereotype »

CommunicationMedia

eementSize: Integer

« stereotype »
ComputingResource

« stereotype »
DeviceResource

Figure 10.14 - UML extensions for GeneralResourceModeling
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« profile »
GRM

« stereotype»
Resource

« stereotype »
MARTE: :Time::ClockType

« stereotype »
TimingResource

L

« stereotype »
TimerResource

« stereotype »
ClockResource

duration:NFP_duration
isPeriodic : Boolean

Figure 10.15 - UML Extensions for timing mechanisms in the GRM profile

« profile »
GRM

« stereotype »
ComputingResource

« stereotype »
ProcessingR esource

host | 0.1

processingUnits '|* 0..*

mainScheduler |, 0..1

« stereotype »
MutualExclusionResource

ceiling: Integer
otherProte ctProtocol: Sting
is Protected: Boolean =true{lsReadOnly }

prote ctKind: ProtectProtoc oKind =Prioritylnheritanc e

*

« stereotype »
Scheduler

scheduler
0..1

isPreemptible: Boolean = true

sched Policy: Sched Policy Kind = Fixe dPriority
otherSchedPalicy: String

schedule: OpaqueExpres sion

host
0.1

« stereotype »
SecondaryScheduler

dependentScheduler | 0..1

schedulabledResources | 0--"

« stereotype »
SchedulableResource

sc hedparams: Sche dParameters [0..*]
is Ac tive: Bo olean =tru e{IsR eadOnly}

0..* | virtualProcessingUnits

protectedSharedResources

Figure 10.16 - Relationships between UML Extensions for scheduling in the GRM Profile
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« profile »
GRM

« metaclass »

UML::Interactions::BasicInteractions
::ExecutionSpecification

-~

«metaclass »
UML:Classes::Kemel:
BehavioralFeature

A

« stereotype »
GRService

owner: Resource[0..1]

| p»{ UML:CompositeStructures:

« metaclass »
UML::CommonBehaviors::
BasicBehaviors ::Behavior

« metaclass »

Collabarations::Collaboration

«metaclass »
UML::CompositeStructures::

Collaborations::CollaborationU se

« stereatype »
Acquire

is Blocking: Boolean

« stereotype »
Release

Figure 10.17 - UML Extensions for Services in the GRM Profile

« profie »
GRM

«metadass »
UML: :Classes: :Kernel::NamedEle ment

A

« stereotype»
ResourceUsage

execTime: N FP_Duration {ordered} [*]
msgSize: NFP_DataSize {ordered} [*]
dlocatedMemory: N FP_DataSize {ordered } [*]
usedMemory: NFP_DataSize {ordered} [*]

stbUsages | powerPeak:NFP_Power {ordered }[*]

energy:NFP_Energy {ordered }[*]

{ordered}
usedResouces

*

« stereotype»
Resource

Figure 10.18 - UML Extensions for resource usage in the GRM Profile
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« modd library »

MARTE::MARTE_Library::

GRM _Basic Types

« enumeration »
SchedPolicyKind

EarliestDe adlineFirst
FIFO

Fixe dPriority
LeastlLaxityFirst
RoundRobin

Time TableDriven

U ndef

Other

«enumeration »
ProtectProtocolKind

FIFO
NoPreemption
PriorityCeiling
Prioritylnheritance
Stac kBased

U ndef

« dataType »
«tupleType »
EDF Parameters

« dataT ype »
«tupleType »

FixedPriorityParameters

deadline: NFP_D uration

priority: Integer

i

Other ‘

«dataType »
« tupleType »
PeriodicServer Parameters

« dataType »
« tupleType »
PoolingParameters

« dataT ype »
« choiceType »

« enumeration »
PeriodicServerKind

Sporadic SchedParameters kind : Periodic Se v erKind period: NFP_Duration
Deferable edf: ED FParameters backgroundPriority : Integer overhead: NFP_Duration [0.."]
Undef initialBudg et: NFP_Duration

fp: Fixe dPriorityParam eters
Cther polling : PoolingParameters
server: Periodic ServerParamete 1s

replenishPeriod : NFP_Duration
maxPendingR eple nish : Integer

Figure 10.19 - Model library defining types used in the GRM profile (extract of Annex D)
10.3.2 Profile Elements Description

10.3.2.1 Acquire
The Acquire stereotype maps the Acquire domain element (section F.4.3) denoted in Annex F.

At this level of specification the amount to acquire is by default one and refers to the owner protected resource.

Extensions
e None.

Generalizations
*  GRService.

Attributes

« isBlocking: Boolean [0..1]
if true it indicates that any attempt to acquire the resource may result in a blocking situation if it is not
available. If false it indicates that the unavailability of the protected resource will not block the caller but it will
be returned as part of the service results instead.

Associations
e None.

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).
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10.3.2.2 ClockResource

The ClockResource stereotype maps the ClockResource domain element (section F.4.5) denoted in Annex F.

Extensions
¢ None

Generalizations
e TimingResource

Attributes
e None

Associations
* None

Constraints
* None

10.3.2.3 CommunicationEndPoint

The CommunicationEndPoint stereotype maps the CommunicationEndPoint domain element (section F.4.6) denoted in
Annex F.

Extensions
¢ None

Generalizations
e Resource

Attributes
e packetSize: Integer[0..1] the size of the packet handled by the endpoint.

Associations
* None

Constraints
« None

10.3.2.4 CommunicationMedia

The CommunicationMedia stereotype maps the CommunicationMedia domain element (section F.4.7) denoted in Annex
F.

Extensions
e Connector (from UML::CompositeStructures::InternalStructures).
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Generalizations
e ProcessingResource

Attributes
* elementSize: Integer[0..1] characterizes the size of the elements to be transmitted.

Associations
* None

Constraints
¢ None

10.3.2.5 ComputingResource

The ComputingResource stereotype maps the ComputingResource domain element (section F.4.9) denoted in Annex F.

Extensions
¢ None

Generalizations
e ProcessingResource

Attributes
e None

Associations
* None

Constraints
[1] The attribute isActive inherited from Resource is always true.

10.3.2.6 ConcurrencyResource

The ConcurrencyResource stereotype maps the ConcurrencyResource domain element (section F.4.10) denoted in Annex
F.

Extensions
¢ None

Generalizations

e Resource
Attributes
e None

A UML Profile for MARTE, Beta 1 101



Associations
e None

Constraints
* None

10.3.2.7 DeviceResource
The DeviceResource stereotype maps the DeviceResource domain element (section F.4.11) denoted in Annex F.

When it is active it can be considered as an external processing resource whose responsabilities will not be described in
detailed in the model under consideration.

Extensions
¢ None

Generalization

e Resource
Attributes
e None

Associations
* None

Constraints

¢ None

10.3.2.8 GRService

The GRService stereotype maps the ResourceService domain element (section F.4.26) denoted in Annex F.

It is a very general concept that helps in the definition of generic resource models able for further refinement.

Extensions
e Behavior (from UML::CommonBehaviors::BasicBehaviors)

«  BehaviorExecutionSpecification (from UML.::Interactions::Basiclnteractions)
«  BehavioralFeature (from UML.::Classes::Kernel)
¢ Collaboration (from UML.::CompositeStructures::Collaborations)

« CollaborationUse (from UML.::CompositeStructures::Collaborations)

Generalizations
« None

Attributes
e owner: Resource [0..1]  refers to the resource that owns the represented service.
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Associations
e None

Constraints
* None

10.3.2.9 MutualExclusionResource

The MutualExclusionResource stereotype maps the MutualExclusionResource domain element (section F.4.15) denoted in
Annex F.

Extensions
* None

Generalizations
* Resource

Attributes
e ceiling: Integer [0..1]
determines the concrete parameter used to characterize the protection access protocol, it is used for the

PriorityCeiling and the StackBased protocols. For the latter only positive values are to be used. It holds the
concept of ProtectionParameters of the domain model.

e otherProtectProtocol: String [0..1]
is used to annotate a protocol that is not included among the values of the
ProtectProtocolKind enumerated type.

e protectKind: ProtectProtocolKind [0..1]=PriorityInheritance
determines the type of protection protocol used to access the resource.

Associations
e scheduler: Scheduler [0..1] refers to the scheduler that will implement the protection protocol.

Constraints

[1] The attribute isProtected inherited from Resource is always true.

[2] The scheduling policy of the scheduler must be compatible to the kind of protectKind given to the
MutualExclusionResource.

10.3.2.10 ProcessingResource
The ProcessingResource stereotype maps the ProcessingResource domain element (section F.4.16) denoted in Annex F.

It is an active, protected, executing-type resource that is allocated to the execution of schedulable resources, and hence
any actions that use those schedulable resources to execute. In general, they abstract the processing capabilities of a
computing resource, a communication media or an active external device.

Extensions
¢ None
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Generalizations
e Resource

Attributes

e speedFactor: Real [0..1] = (value=1.0)
is a relative factor for annotating the processing speed expressed as a ratio to the speed of the
reference processingResource for the system under consideration. The amount of resource usages
specified for the entities in further usage models (like execution times for schedulability) assume a
normative value of 1.0, what means that they have been measured or estimated either in respect to
the reference system platform or directly over the platform used if it has speedFactor equal to 1.0.

Associations
e mainScheduler: Scheduler [0..1] s the scheduler that controls the access to its processing capacity.

Constraints
« None

10.3.2.11 Release
The Release stereotype maps the Release domain element (section F.4.19) denoted in Annex F.

At this level of specification the amount release is by default one and refers to the owner protected resource.

Extensions
¢ None

Generalizations

*  GRService
Attributes
e None

Associations
e None

Constraints
[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).
10.3.2.12 Resource

The Resource stereotype maps both Resource (section F.4.20) and Resourcelnstance domain elements (section F.4.23)
denoted in Annex F.

It is provided for further refinement and for the representation of generic resources from a holistic system wide
perspective. The nature of the concrete element extended defines the domain concept that it represents.

Extensions
» InstanceSpecification (from UML::Classes::Kernel)
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e Classifier (from UML.::Classes::Kernel)
e Property (from UML.::Classes::Kernel)
e Lifeline (from UML.::Interactions::Basiclnteractions)

e ConnectableElement (from UML::CompositeStructures::InternalStructures)

Generalizations
¢ None

Attributes

e resMult: Integer [0..1] =1
indicates the multiplicity of a resource. For a classifier it may specify the maximum number of instances of the
resource considered as available. By default only one instance is available.

« isProtected: Boolean [0..1]
if true it indicates that the access to the resource is protected by some kind of brokeringResource.

e isActive: Boolean [0..1]
if true it indicates that the resource has an initial behavior associated that allows it to possibly perform its
services autonomously or by the triggering and animation of behaviors on others.

Associations
e None

Constraints
* None

10.3.2.13 ResourceUsage

The ResourceUsage stereotype maps both ResourceUsage (section F.4.27) and UsageTypedAmount (section F.4.40)
domain elements denoted in Annex F.

Extensions
¢ NamedElement (from UML.::Classes::Kernel)

Generalizations
* None

Attributes
e execTime: NFP_Duration {ordered} [*]
time that the resource is in use due to the usage.

e msgSize: NFP_DataSize {ordered} [*]
amount of data transmitted by the resource.

e allocatedMemory: NFP_DataSize {ordered} [*]
amount of memory that is demanded from or returned to the resource. It may be a positive or
negative value
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e usedMemory: NFP_DataSize {ordered} [*]
amount of memory that will be used from a resource but that will be immediately returned, and
hence should be available while the usage is in course. This may be used to specify the required
free space in the stack for example.

e powerPeak:NFP_Power {ordered} [*]
power that should be available from the resource for its usage.

* energy:NFP_Energy {ordered} [*]
amount of energy that will be permanently consumed from a resource due to the usage.

Associations
« usedResources: Resource [0..*] {ordered}
list of resources that are used.

« subUsages: ResourceUsage {ordered} [0..*]
list of resourceUsages used to complement the description of the resourceUsage and generate
composite descriptions.

Constraints

[1] To consider the ResourceUsage fully specified, if the list usedResources is empty the list subUsages should not be
empty and viceversa. Further refinements of ResoureUsage may define additional attributes that may bring implicit
elements into the usedResources list.

[2] If the list usedResources has only one element, all the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak and energy) refer to this unique Resource and at least one of them must
be present.

[3] If the list usedResources has more than one element, all of the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak, and energy) that are present, must have that number of elements, and
they will be considered to match one to one.

[4] If the list subUsages is not empty, and any of the optional lists of attributes (execTime, packetSize, allocatedMemory,
usedMemory, powerPeak, and energy) is present, then more than one annotation for the same resource and kind of
usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will
be considered in conflict, and hence the ResourceUsage inconsistent.

10.3.2.14 SchedulableResource

The SchedulableResource stereotype maps the SchedulableResource domain element (section F.4.29, p. 478) denoted in
Annex F.

It is an active resource able to perform actions using the processing capacity brought from a processing resource by the
scheduler that manages it.

Extensions
« None

Generalizations
e Resource
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Attributes
e schedParams: SchedParameters [0..*] parameters used to compete for processing capacity.

Associations

e dependentScheduler: SecondaryScheduler [0..1]
this scheduler takes its capacity from the schedulable resource, and in its turn shares it among its
nested served schedulable resources.

e host: Scheduler [0..1]
is the scheduler that controls the processing capacity that will be shared among the demanding
schedulable resources.

Constraints

[1] The policy used by the scheduler (host) must be compatible with the scheduling parameters (schedparams) of the

schedulable resource.

10.3.2.15 Scheduler

The Scheduler stereotype maps the Scheduler domain element (section F.4.30, p. 479) denoted in Annex F.

Extensions
¢ None

Generalizations
e Resource

Attributes

e isPreemptible: Boolean [0..1] = true
qualifies the capacity of the scheduler for preempting schedulable resources once the access to the
processing capacity has been granted upon the arrival of a new situation where a different
schedulabe resource has to execute.

»  otherSchedPolicy: String
is used to annotate a scheduling policy that is not included among the values of the
schedPolicyKind enumerated type.

e schedPolicy: schedPolicyKind [0..1] = fixedPriority
scheduling policy implemented by the scheduler.

e schedule: OpaqueExpression [0..1]
is the concrete schedule to use in the case of time table driven strategies. The format for expressing
the times for activation and suspension, the cycle time as well as the number and identification of
schedulable resources is user dependent.

Associations

¢ host: ComputingResource [0..1]
refers to the computing resource on which the scheduler runs. It may be or not the same computing
resource whose processing capacity it will control and share among the demanding scedulable
resources.
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e processingUnits: ProcessingResources [0..*]
list of ProcessingResources whose processing capacity is shared by the scheduler among the
schedulableResources it has associated.

«  protectedSharedResources: MutualExclusionResource[0..*]
list of the MutualExclusionResources to which access must be protected using the corresponding
protocol.

« schedulableResources: SchedulableResource [0..*]
list of schedulable resources that demand processing capacity from the scheduler.

Constraints

[1] The scheduling policy of the scheduler must be compatible with the scheduling parameters of all the schedulable
resources that it has associated.

[2] The scheduling policy of the scheduler must be compatible with the ProtectProtocolParameters of all the associated
MutualExclusionResources.

10.3.2.16 SecondaryScheduler

The SecondaryScheduler stereotype maps the SecondaryScheduler domain element (section F.4.33, p. 481) denoted in
Annex F.

A scheduler of this kind takes its capacity from the set of schedulable resources collected as virtual processing units, and
in its turn shares it among its nested served schedulable resources.

Extensions
* None

Generalizations
e Scheduler

Attributes
« None

Associations

« virtualProcessingUnits: SchedulableResource [0..*]
set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Constraints

[1] A SecondaryScheduler takes its capacity from the virtualProcessingUnits list of schedulable resources, so it is not
possible to have processing resources capacity through the processingUnits list inherited from Scheduler.

10.3.2.17 StorageResource

The StorageResource stereotype maps the StorageResource domain element (section F.4.35) denoted in Annex F.

Extensions
* None
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Generalizations

* Resource
Attributes
e elementSize: Integer [0..1] is the size in bits of the basic storage unit.

Associations
* None

Constraints
¢ None

10.3.2.18 SynchronizationResource

The SynchronizationResource stereotype maps the SynchResource domain element (section F.4.36) denoted in Annex F.

Extensions
¢ None

Generalizations

e Resource
Attributes
e None

Associations
* None

Constraints
* None

10.3.2.19 TimerResource

The TimerResource stereotype maps the TimerResource domain element (section F.4.37) denoted in Annex F.

Extensions
¢ None

Generalizations
e TimingResource

Attributes

e duration: NFP_Duration [0..1]
interval after which the timer will make evident the elapsed time.
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e isPeriodic: Boolean [0..1]
if true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic
repetitive way. If false, it will do it only one time after it is started.

10.3.2.20 TimingResource

The TimingResource stereotype maps the TimingResource domain element (section F.4.38) denoted in Annex F.

Extensions
¢ None

Generalizations
e Resource

e ClockType (from MARTE::Time)

Attributes
e None

Associations
* None

Constraints
* None

10.3.3 GRM model library elements description

This elements are described here for convenience, they constitute the GRM_BasicTypes model library, a part of the
MARTE::MARTE_Library model library, which is presented in Annex D.

10.3.3.1 EDFParameters
This dataType is a tupleType that defines the parameter used to characterize an EDF schedulable resource.

Attributes

» deadline: NFP_Duration [0..1]
relative deadline used to schedule each activation of the schedulable resource in the
context of an EDF scheduler.

10.3.3.2 FixedPriorityParameters

This dataType is a tupleType that defines the parameter used to characterize a fixed priority schedulable resource.

Attributes
e priority: Integer [0..1] priority used to schedule the schedulable resource in a fixed priority scheduler.

10.3.3.3 NoParams

This is an empty utility dataType used in choiceTypes to indicate the absence of a value.
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10.3.3.4 PeriodicServerKind

This enumeration defines the kind of periodic server.

Literals
e sporadic indicates the sporadic server scheduling algorithm.

e deferrable indicates the deferrable server scheduling algorithm.
e undef indicates the scheduling algorithm of the server is not defined.

e other the scheduling algorithm of the server is none of the described in this enumerated.

10.3.3.5 PeriodicServerParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule the kinds of periodic servers
defined.

Generalizations
*  FixedPriorityParameters

Attributes
e kind: PeriodicServerKind [0..1]
indicates the type of periodic server.

e backgroundPriority: Integer [0..1]
is the priority used to run the server when it is in the background.

« initialBudget: NFP_Duration [0..1]
is the full ammount of execution time available for a cycle of the server.

e replenishPeriod: NFP_Duration [0..1]
is the replenishment period defined for the server.

¢ maxPendingReplenish: Integer [0..1]
is the maximum number of replenishments that can be stored in the queue of pending replenishments, it limits
the number of times a schedulable resource may block itself in the time frame of a cycle period.

10.3.3.6 PoolingParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule a schedulable resource with the
polling policy kind. It represents the scheduling mechanism by which there is a periodic task that polls for the arrival of
its input event. Thus, execution of the actions associated to the event may be delayed until the next period.

Generalizations
e FixedPriorityParameters

Attributes

e period: NFP_Duration [0..1]
is the polling period, the time between successive inquiries for the arrival of an activation event.
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overhead: NFP_Duration [0..*]
list of duration time values that characterize the polling overhead, it is typically characterized by the minimum,
maximum and average values.

10.3.3.7 ProtectProtocolKind

This is an enumerated type that list the kinds of protection protocols to use in the access to shared resources. It
corresponds to the homonymous concept of of the domain view, whose class description is described in Annex F.

Literals

FIFO
this means basically exclusive access with no protection.

NoPreemption
no other concurrent activity may be executed while the resource is in use

PriorityCeiling
uses the immediate priority ceiling resource protocol. This is equivalent to Ada's Priority Ceiling, or the
POSIX priority protect protocol. It requires the specification of an integer value to indicate the ceiling.

PriorityInheritance
it uses the basic priority inheritance protocol.

StackBased
it uses the Stack Resource Protocol (SRP). This is similar to the priority ceiling protocol but works
for non-priority-based policies. It requires the specification of the preemption level.

Undef
the protocol is not specified.

Other
the protocol is not included in this enumerated type, but it is specified using a user-defined string.

10.3.3.8 SchedParameters

This is a ChoiceType that contains the different kinds of parameters that are necessary to specify the contention privileges

ofa

schedulable resource in comparison to others unther the same scheduler. It maps to the SchedulingParameters concept

of the domain view, whose class description is described in Annex F.

Attributes

112

edf: EDFParameters [0..1]
parameters used in the arliest deadline first scheduling policy.

fp: FixedPriorityParameters [0..1]
parameters used in the fixed priority scheduling policy.

polling: PollingParameters [0..1]
parameters used when a polling mechanism is used to start schedulable resources running under a fixed priority
scheduling policy.

server: PeriodicServerParameters [0..1]
parameters used when the schedulable resources are scheduled in a periodic server that runs under a fixed
priority scheduling policy.
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10.3.3.9 SchedPolicyKind

This enumeration defines the kinds of scheduling policies defined. It maps to the homonymous concept of the domain
view, whose class description is described in Annex F.

Literals

e EarliestDeadlineFirst
the scheduler applies the earliest deadline first algorithm.

« FIFO
the activations of schedulable resources are served in a first come first served basis.

e FixedPriority
the scheduler applies the fixed priority policy.

e LeastLaxityFirst
the scheduler applies the least laxity first algorithm to do the scheduling.

¢ RoundRobin
the scheduler shares the processing resource in a round robin way.

e TimeTableDriven
the scheduler applies a predefined fixed repetitive schedule.

e Undef
the scheduling policy in not specified.

e Other
the scheduling policy is none of the included in this enumerated type, but it is specified using a
user-defined string.

10.4 Examples

The general resource model is planned to be used not only for further extension in the software and hardware platform
models, or in the analysis models of this specification, but also as a way to described resources and platform architectures
at a very high level, when design choices and analysis techniques to use for the verification are probably still undecided.
The illustration in Figure 10.20 shows a simple example of the platform description for a teleoperated robot using a
deployment diagram. This example is further revisited to illustrate the usage of schedulability analysis annotations in
section 16.3.3.

The system platform is composed of two processors interconnected through a CAN bus, and a robot arm whose servo
control cards are connected by means of a backpanel VME bus.
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<<ComputingResource>
{speedFactor=(10)}
NT_Station

<<Communication Media>>
{speedFactor=(1.0)}

<< StorageResour ce>>
{elementSize=1024 x1024x8,
resMult=256}

<<CommunicationMedia>>
{speedFactor=(85)}

<<ComputingResource>>
{speedFactor=(0.6)}
Controller

VME_Bus

<<DeviceResource>>
{speedFactor=(1.0)}
Robot Arm

Figure 10.20 - Simple example of usage of the GRM Profile at a high architectural level

The first processor is a teleoperation station (NT_Station); it hosts a GUI application, where the operator commands the
robot and where information about the system status is displayed. The second processor (Controller) is an embedded

microprocessor that implements the controller of the robot servos and its associated instrumentation. Figure 10.21 shows
a possible software architecture for this example.
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<<Computing Resour ce>> <<ComputingResource>>
{sp eedFacto r=(1.0)} {speedFactor=(0.6)}
NT_Station Controller

<<MutuaE xclusionResource>> Controller_Communication

Display_Data +Send Status(S: Staus)
+ Await Command(): Command

+ Read (): Data

+ Write(D: Data)
i R <<SchedulableResource> |-~ <<S géed ulablegeﬁ/l ource>
mman: lanager
<< SchedulableRes ource> <<SchedulableResource>> Reporter I g
Display_Refresher Command_Interpreter - T: Task - T Task
- T: Task - T: Task - Report() - Manage()
- Update_Display() - Process Event()
- Update_Graphics() Pan Trajectornt) v <<SchedulableResource>
/ <<MutualExclusionResource>>|. Servos_Controller
v Servos_Data — T Tax
Station_Communication o} D& Control_Servos()
+ . Data - s )
+Send Command(C: Comman + Set(D: Data) - Control Algorithms()
+Awail_Stus(): gn\us 9 - Do Control()

Figure 10.21 - Example of usage of the GRM Profile to annotate initial structural architectural choices

The software of the Controller processor contains three active classes and a passive one which is used by the active
classes to communicate. Servo_Controller is a periodic task that is triggered by a ticker timer with a period of 5 ms. The
Reporter task periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms. The
Command_Manager task is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter task
handles the events that are generated by the operator using the GUI control elements. The Display Refresher task updates
the GUI data by interpreting the status messages that it receives through the CAN bus. Display_Data is a protected object
that provides the embodied data to the active tasks in a safe way. Both processors have a specific communication software
library and a background task for managing the communication protocol.

According to the initial specification the system has at least three end-to-end flows of independent stimuli subject to hard
real-time requirements. Each one interferes with the others by sharing the processing resources (Station, Controller and
CAN_Bus) and by accessing the protected objects.

One is the basic control algorithm that executes the Control_Servos procedure with a period (and expectably a deadline)
of 5 ms. The second is the Report procedure that transfers the sensors and servos status data across the CAN bus, to
refresh the display with a period (and deadline) of 100 ms. Finally, the user commands that tipically have a sporadic
triggering pattern, but whose minimum inter-arrival time between events could be bounded to 1 s.

For illustration purposes Figure 10.22 shows a closer view of the end-to-end flow that makes the periodic reports every
tenth of a second by means of a sequence diagram. There, they have been annotated the deadline specification as well as
the periodic timing stimuli and the lifelines instances of the resources involved.
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Figure 10.22 - Use of the GRM Profile to annotate behavioral specification instances
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11 Generic Component Model (GCM)

11.1 Overview

The MARTE GeneralComponentModel presents additional concepts (w.r.t usual component paradigms) that have been
identified as necessary to address the modeling of artifacts in the context of real-time and embedded systems component
based approaches. Figure 7.1 shows the dependencies of this package.

MARTE::CoreElements
A
[ ]
[ ]
[ ]
[ ]
[ )
[ )
E

GeneralComponentModel

Figure 11.1 - Dependencies of the GeneralComponentModel package

Additionally, the MARTE general component model defines shortcut notations that help in simplifying the modeling and
are useful in the application of component base strategies in the real-time and embedded systems domains.

11.2 Domain View

11.2.1 The GeneralComponentModel Package

The general component model introduced in this specification proposes mainly refinements to the UML structured
classes. This model provides a common denominator among various component models, which in principle do not target
exclusively the real-time and embedded domain. The purpose is to provide in MARTE a model as general as possible, that
is not tied to specific execution semantics, on which real-time characteristics can be applied later on. The MARTE general
component model relies mainly on UML structured classes, on top of which a support SysML blocks has been added.
Providing a support for Lightweight-CCM, AADL and EAST-ADLZ2 have also influenced the definition of some
refinements of the MARTE General Component Model.
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MARTE::CoreElements::Foundatio ns

:: Property
MARTE:Causality::CommonBehavior::
BehavioredClassifier
ownedPorts 1 0.1
InteractionPort StructuredComponent
owner
endPort . 1
ownedConnectors

*

Figure 11.2 - The bulk of the MARTE GeneralComponentModel package

AssemblyConnector

Asse mblyPart
/parts

endPart

A StructuredComponent defines a self-contained entity of a system, which may encapsulate structured data and behavior.
A MARTE structured component specializes the BehavioredClassifier classifier. It owns properties that can be used as
AssemblyParts within an internal component description, attributes, or member ends of an association. When used as an
assembly part, a property is indicated in the parts reference. As mentioned in the CoreElements package, Property is
similar to the corresponding UML definition, i.e. it has a multiplicity in terms of upper and lower bounds, an aggregation
kind and a type (as a Classifier). InteractionPorts are a special kind of properties owned by a structured component. An
interaction port defines an explicit interaction point through which components may be connected (linked) through an
AssemblyConnector. One may also directly connect structured component with no port. In any case, related ports need to
be compatible regarding their provided/required services or flow specifications and directions.

Underlying execution semantics (i.e., what happens when the component is in operation, when it receives external
stimuli) are left undefined at this stage so that multiple component models may match the definition above.
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InteractionPort

FlowPort

direction: DirectionKind

isConjugated: Boolean [1]= false
/isAtomic: Boolean [1] = false

0.1 | specification

FlowSpecification

ow ner
1

« enumeration »
DirectionKind

in
out
inout

Foundations::
Property

FlowProperty

property| direction: DirectionK

ind [1]

Figure 11.3 - Flow ports of the GeneralComponentModel package

One of the main reasons to have refined the UML component model within this specification is to support both message-
and flow- oriented communication schemas.

FlowPorts have been introduced to enable flow-oriented communication paradigm between components. A flow port
enables to specify the nature of flow that it may relay. A flow port may handle incoming (in), outgoing (out) or

bidirectional (inout) flows. If a flow port is atomic, the "type" association role, inherited from Property, is used to specify

the nature of the flow and its "direction" attribute is used to specify the direction. If the port is not atomic, the

"specification” association role is used to specify the nature of the flow using a FlowSpecification. The flow direction has

to be fixed for each FlowProperty owned by the FlowSpecification then. An atomic flow port typed by a Signal,
specifying an incoming flow direction, maps to a Reception of the signal. An atomic flow port typed by a signal,

specifying an outgoing flow direction, declares the ability for the port to relay the signal over connectors. Flow properties
support incoming and outgoing signals the same way.

« enumeration »
DirectionKind

in
out
inout

SignalFeature

direction: DirectionKind [1]

Figure 11.4 - Message ports of the GeneralComponentModel package
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Message ports support a request/reply communication paradigm. In one hand, they may provide or/and require services
(ServiceSpecification) and in other hand they may also publish or/and consume signals defined in SignalSpecifications.
SignalSpecifications have a set of SignalFeatures defining published (out) and consumed (in) signals, which are specified
by the direction attribute. Particularly, atomic message ports (attribute isAtomic to true) cannot require and provide
services. If the direction value of an atomic message ports is "in" (resp. "out"), it "consumes" (resp. "produces™) one and
only one signal. If the value is inout, the atomic message port is able to consume and publish event occurrences of the
referenced signal. ServiceSpecifications are defined by a set of ServiceFeatures.

Causality:: CommonBehavior:
Action

InvocationAction InteractionPort

BroadcastSignalAction ServiceCallAction FlowSendAction
signalTo ProduoeJ/* %rvinoCall$ * dataToSendJ/ *
SignalFeature ServiceFeature FlowProperty

Figure 11.5 - Kinds of InvocationAction in the GeneralComponentModel package

In order to deal with the specific case of communication actions for components, the Action concepts introduced in the
CoreBehaviorModel package has been specialized into the InvocationAction classifer. This action models a
communication action between components via its exposed ports and it refined in three kinds of invocation actions:
BroadcastSignal Action enables a component a send a signal on a port, ServiceCallAction is used to call a service
provided by a component though one its ports, and FlowSendAction enables a component to send a data flow via ports.

11.3 UML Representation

The concepts presented in the domain view of the General Component Model are here mapped to concrete UML
stereotypes for implementing in practice the corresponding extensions to UML. The stereotypes proposed extend those
elements of UML that better catch the semantics, expressiveness, and notation of the concepts introduced, but there is not
formal relationship between these UML meta-classes and the concepts used in the domain view for its semantic
definition.
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11.3.1 Profile Diagrams

« profile »
GeneralC omponentModel
- « enumeration »
« epum'eratl'on » BF eatureKind
« metgclass_» DirectionKind TS ERESS B :
InvocationAction . n
in Port
out out
A ; inout
inout .
? required
provided
« stereotype »
SendFlowAdtion «stereotype» « sterectype»
FlowPort MessagePort
lisAtomic: Boolean [1] = false /isAtomic: Boolean[1] = fase
isConjugated: Boolean [1] = false isConjugated: Boolean[1] = false
direction: DirectionKind kind: BFeatureKind [0..1]
« metaclass » «metaclass » « metaciass »
Property Behavioral Feature Interface
i L A
« stereotype » « stereotype » « stereotype » « stereotype »
FlowProperty FlowBF eature FlowSpecification BFeatureSpecification
drection: DirectionKind [1] kind: BFeatureKind [1] direction: DirectionKind [0.1] kind : BF eatureKind [0..1]

Figure 11.6 - UML2 profile of the MARTE GeneralComponentModel
11.3.2 Profile Elements Description

This section describes in details each elements introduced in the profile diagram described previously. The following list
is sorted in alphabetical order.

11.3.2.1 BFeatureKind

It is used with atomic flow (or message) ports to specify the direction of a flow element or a signal that types the port. It
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal
specification), or the direction of its owned properties.

Literals

e in used to model a signal reception.

e out used to model signal sending capability.

e inout used to model that a given signal may be both received and sent.

e required used to model that an operation is required.

e provided used to model that an operation is provided.
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e regpro used to model that an interface define both required and provided operations.

11.3.2.2 BFeatureSpecification

The BFeatureSpecification stereotype maps to both SignalSpecifcation and ServiceSpecifcation domain elements as
described in Annex F.

A BFeatureSpecification provides a way to define specialized interface that allows for defining its nature in terms of
either its ability to receive and send UML signals, or of its provided and required operations.

Extensions
* Interface.

Generalizations
« None.

Attributes

e kind: BFeatureKind [0..1]
nature of the BFeatureSpecification. If present, all the BehavioralFeature contained in the interface will of
the specified kind.

Associations
¢ None

Constraints

[1] A flow specification owns only properties, it cannot own operation or reception.

Notation

When applying the stereotype using its iconographical or shape forms, following icons are proposed: 3 for
BFeatureSpecifcation with kind = in; ® for BFeatureSpecifcation with kind = out; 3 for BFeatureSpecifcationvith kind
= inout; Cfor BFeatureSpecifcation with kind = required; O for BFeatureSpecifcation with kind = provided; ¢ for
BFeatureSpecifcation with kind = regpro. Figure 11.7 describes an example using different graphical forms applying
UML stereotypes.

Figure 11.7 describes an example using different graphical forms applying UML stereotypes.

« interface » 2 —
«signal » «bFeatureSpecification» «interface » ¢nterface » A
Start {direction =inout} SpeedSensorFS «bFeatureS pecification» ,
SpeedSensorF S SpeedSensorFS R )
targetSpeed: Integer[1] A Start() egStarterSigS
A Start() A Start()

(iv) shape form
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kind = regpro AN «interface » ) 0 O
- «bFeatureSpeciﬁcation» «interface » C (

. SpeedSensorFS SpeedSensorFS SpeedSensorFS

Figure 11.7 - Examples of BFeatureSpecification

11.3.2.3 DirectionKind
This enumeration maps the DirectionKind domain concept defined in Annex F.

It is used with atomic flow (or message) ports to specify the direction of a flow element or a signal that types the port. It
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal
specification), or the direction of its owned properties.

Literals

* in The direction of the information flow is from outside to inside of the owning entity. When related to a signal, it is
usual to say that the signal is consumed.

* out The direction of the information flow is from inside to outside of the owning entity. When related to a signal, it is

usual to say that the signal is produced or published.
e inout The information flow is bidirectional.
11.3.2.4 FlowBFeature
This FlowBFeature stereotype maps both SignalFeature and ServiceFeature domain elements as described in Annex F.

A FlowBFeature specifies the nature of a BehavioralFeature owned by interfaces stereotyped as "BFeatureSpecification™.
If kind is in, out or inout, the BehavioralFeature will be a Reception while if kind is required or provided, it is expected
to be an Operation.

Extensions
»  BehavioralFeature (from UML::Kernel).

Generalizations
e None.

Attributes
e kind: BFeatureKind [1]  nature of the FlowBFeature.

Associations
 None.

Constraints

[1] If kind is in, out or inout, the extended BehavioralFeature has to be a Reception.
[2] If kind is required or provided, the extended BehavioralFeature has to be an Operation.

[3] kind= proreq does not apply.
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11.3.2.5 FlowPort

This stereotype maps the concept of FlowPort defined in Annex F. A FlowPort may relay incoming, outgoing or
bidirectional flows The nature of the flow can be specified by a property type in the case of an atomic flow port. A flow
can be also specified in terms of flow specifications and flow properties, in the case of a non-atomic flow port.

Extenssions
e Port (from UML::Ports)

Generalizations
e None.

Attributes

e isAtomic: Boolean [1] = false
If true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port. An atomic
port is typed by a Classifier, Signal, a DataType or a PrimitiveType.

« isConjugated: Boolean [1] = false
If true, the port is said to be a conjugated port. In this case, all the directions of the flow properties
(FlowProperty) specified by a FlowSpecification that types a port are relayed in the opposite direction
(e.g., an incoming flow property is treated as an outgoing flow property by the FlowPort). By default,
the value is false. This attribute applies only to non-atomic ports.

e direction: DirectionKind [0..1]
It specifies the direction of the port when the port is atomic. In other case, this property is not
applicable.

Associations
¢ None

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.
[2] If a port is non-atomic, it cannot specify a direction.

self.isAtomic = false implies self.direction->size() = 0
[3] A conjugated port cannot be an atomic port.

self.isConjugated = true implies self.isAtomic = false

[4] The type of a non-atomic flow port has to be a flow specification (i.e. an interface stereotyped with
"flowSpecification™).

Notation

When a flow port is atomic, the following graphical notation may be used: 3 for incoming atomic flow ports; ® for
outgoing atomic flow ports; 3 for bidirectional atomic flow ports. Figure 11.8 shows an example of a Speedometer
class owning a port called outSpeed. This port is an outgoinf atomic flow port typed as Integer. That means that instances
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of this Speedometer class can send outSpeed Integer data to other external elements connected to this port (Note that
Figure 11.9.i used the stereotype notation mixing both text and icon forms, whereas Figure 11.9.ii uses only the icon

form).
« flowPort »
outSpeed: Integer [1]
Speedometer
isAtomic= true k
drection = aut

(i) icon + extform

Figure 11.8 - Example of atomic flow port

outSpeed: Integer [1]
Speedometer

(i) iconform

When a flow port is non-atomic, the following icon may be used for the stereotype (Figure 11.9): <.

« interface »
« flowSpecification » {direction = inout}
SpeedSensorF S

B cSpeed: SpeedDT
A cTime: Time

Figure 11.9 - Example of non-atomic flow port

11.3.2.6 FlowProperty

Speedometer ;

(i) text+ iconforms

« flowPort »
outSpeed: SpeedSensorFS

Speedometer [

(ii) iconform

outSpeed: SpeedSensorFS

This stereotype maps the FlowProperty domain concept defined in Annex F. A FlowProperty defines the type and the
direction of a single flow element carried through flow ports. It may relate to a Classifier, a Signal, a PrimitiveType or a
DataType. A flow property isused by as part of a flow specification to characterize the type of a non-atomic flow port.

Extensions
e Property

Generalizations
* None

Attributes

« direction: DirectionKind [1]  direction of the flow property.

Associations
¢ None

Constraints
¢ None
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Notation

When applying the stereotype using its iconographical form, following icons are proposed: 3 for incoming flow
properties; ® for outgoing flow properties; 3 for bidirectional flow properties. Figure 11.10 describes an example using
both textual and iconographical forms of the stereotype.

«interface » «interface »
« flowSpecification » {direction = inout « flowSpecification » {direction = inout}
SpeedSensorFS SpeedSensorF S
« flowProperty » { direction =out } cSpeed: SpeedDT B cSpeed SpeedDT
« flowProperty » { direction =in} cTime: Time A cTime: Time
(i) text form (i) icon form

Figure 11.10 - Example of flow properties

11.3.2.7 FlowSendAction

This stereotype maps the FlowSendAction domain concept defined in Annex F. A FlowSendAction is used to send a flow
to other connected components. In that case, connected component ports indicate that they accept this type of flow in
input.

Extensions
e InvocationAction (from UML2::CompositeStructure).

Generalizations

¢ None
Attributes
e None

Associations
* None

Constraints
* None

Notation

Within activity diagrams, a FlowSendAction is notated with a convex pentagon, -

where:

<flow-send-action> ::= 'send(' (<flow-propertys'="
<value-specification>)+') wvia '<port-name>

<value-specification> defined in VSL (Annex B, p.353).
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<port-name> ::= <string-litterals>
<flow-property> ::= <string-litterals>
<string-litterals> defined in VSL (Annex B, p.353).

Figure 11.11 depicts an example of a flow send action consisting in sending the integer value 4 via its port called
outSpeed.

send (4) via outSpeed>

Figure 11.11 - Example of FlowSendAction within an activity diagram

11.3.2.8 FlowSpecification

This stereotype has been defined to specialize interfaces used to type flow port (domain concept introduced in Annex F)
in order to enable the description of the different data a flow port may relay.

Extensions
¢ Interface.

Generalizations
« None.

Attributes

« direction: DirectionKind [0..1]
specifies if the interfaces is an in, out or inout data flow interface. That means respectively that the interface
owns only in, out or inout FlowProperty. The services of a ServiceSpecification are its owned operations.

Associations
e None

Constraints
[1] If the direction of flow specification is "in", all its owned flow property must be conformed to this direction (i.e.,
only in flow properties).

[2] If the direction of flow specification is "out", all its owned flow property must be conformed to this direction (i.e.,
only out flow properties).

Notation

When applying the stereotype using its iconographical or shape forms, following icons are proposed: 3 for in flow
specifications; ® for out flow specifications; 3 for inout flow specifications. Figure 11.12 describes an example using
different graphical forms applying UML stereotypes.

Figure 11.12 describes an example using different graphical forms applying UML stereotypes.
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« interface » :
« fowSpecificaiion » < interface » > «interfce» B )

L A flowSpecification »
direcon = inout SpeedSensorF S «
{nggdgr;nslgﬁ:us} peedsensor SpeedSensorFS SpeedSensorF S

(i) text form (ii) icon form (iil) icon + textform (iv) shape form
Figure 11.12 - Example of flow specification

11.3.2.9 MessagePort
This stereotype maps the MessagePort domain concept defined in Annex F.

Extensions
e Port (from UML::Ports)

Generalizations
e None

Attributes

e /isAtomic: Boolean [1] = false
if true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port.

« isConjugated: Boolean [1] = false
if true, the port is said to be a conjugated port. In this case, all the directions of the flow properties
(FlowProperty) specified by a FlowSpecification that types a non-atomic port are relayed in the
opposite direction (e.g., an incoming flow property is treated as an outgoing flow property by the
FlowPort). By default, the value is false and this attribute applies only to non-atomic ports.

e kind: BFeatureKind [0..1]
specifies the kind of the port when the port is atomic. In other case, this property is not applicable.

Associations
« None

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.
[2] If a port is non-atomic, it cannot specify a kind.
self.isAtomic = false implies self.kind->size() = 0
[3] A conjugated port cannot be an atomic port.
self.isConjugated = true implies self.isAtomic = false
[4] If a message port is atomic then its type has to be a Signal.

[5] If a port is atomic, valid values for kind are only in, out or inout.
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Notation

When a message port is atomic, the following graphical notation may used: 3 for one port consuming signal occurrences
according to its type (i.e. direction value set to in); ® for one port producing signal occurrences according to its type (i.e.
direction value set to out); ® for one port consuming and producing signal occurrences according to its type (i.e.
direction value set to inout).

Figure 11.13 denotes an example of UML component owning a message port as defined in this specification. The
CarSpeedRegulator component has an atomic message port typed by the Start Signal. That means its potential instances
will consume Start signal occurrences.

« msgPort » ) E
«signal » on: Start[1] 2] on: Start [1]
Start 43 CarSpeedRegulator CarSpeedRegulator
V4
targetSpeed: Integer[1]
drection = out

Figure 11.13 - Example of atomic message port

When a message port is non-atomic, the following icon may be used for the stereotype (Example in Figure 11.14): <.

2 | « msgPort» 3
CarSpeedReguator engineCmd: EClInterface [1] CarSpeedR egulator engineCmd: EClinterface [1]
(i) text + icon forms (ii) icon form

Figure 11.14 - Example of non-atomic message port
11.4 Examples

11.4.1 Automotive Example

The example shown in Figure 11.15 denotes the interface description for the example of component model depicted
previously. The package SpeedRegulatorinterfaces consists of three interface definitions and one signal declaration. The
Reglnterface is a UML2 interface stereotyped with "signalSpecification™ and "“serviceSpecification™ because it specifies
respectively that the Start signal may be consumed (This latter has been previously declared within the package
SignalDeclarations) and the controlEngine service is required. The EClInterface interface is stereotyped as
serviceSpecification (in this case, the graphical representation of this interface shown at top-right side of Figure 11.15
only displays its associated iconographic representation " *). This interface defines the controlEngine required service
(denoted here by the icon " " placed before the operation name). Finally, the SpeedInterface interface is a
"signalSpecification” interface that declares a produced signal, Start (in this case, we only used the textual form of the
stereotype). The three previous interfaces are examples of applying the stereotypes defined in the general component
model (GCM) of MARTE. We have illustrated the usage of stereotypes following the three possibilities offered by UML.:
textual and iconographic form (e.g., Reglnterface), only iconographic form (e.g., EClinterface) and only textual form (e.g.,
SpeedInterface).
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SpeedRegulatorinterfaces

«interface »

interf
« sig1aISpec'rfic;tiggnlatséerF:'geeSpec'rﬁcation » Eglr?:e?f?o: <©
A Start() ( controlEngine (in torque: Real [1])
< controlEngine(in torque: Real [1])

SignalDeclarations

« interface »
: « signalSpecification»
« signal » Speedinterface

Start
B Start()

targetSpeed: Integer [1]

Figure 11.15 - Interfaces definition for a speed regulator example

The example shown in Figure 11.16 denotes a CarSpeedRegulator composite class: its exposed ports and its internal parts.
This class has two ports stereotyped with "msgPort": regOn and engineCmd. The former port is an atomic port and its
direction is set to out (Note that the attribute values of the applied stereotype are shown in the comment symbol attached
to the stereotyped port). The port is typed with the Start signal (see previous definition of this signal in the package
SignalDeclarations in Figure 11.15). CarSpeedRegulator exposes then to its environment a port through which it can
consume Start signal occurrences. The second port exposed by CarSpeedRegulator is called engineCmd. It is a port
stereotyped by "msgPort". Note that the attribute values of the applied stereotype are not shown in this case, because we
apply here the default values, i.e., isAtomic = false and isConjugated = false. The direction property of the stereotype
does not apply in this case because the type of the port is an interface stereotyped with "serviceSpecification" (this latter,
EClInterface, defines a required service as denoted in Figure 11.15.).

In addition, CarSpeedRegulator owns also two parts: spm and rgm. The spm part specifies an output atomic flow port
(port stereotyped with "flowPort") which can relay outside the outSpeed data typed as Integer. The rgm part defines firstly
an atomic input flow port (port stereotyped with "“flowPort™) through which the integer inSpeed data can be relayed from
outside (i.e., from its environment). The second port owned by the rgm part (the rp port) is a message port (stereotype "
msgPort" and associated icon " ). This port is typed byt the Reglnterface which defines both a required service and a
input signal (see the detailed definition of the interface in Figure 11.15).

130 A UML Profile for MARTE, Beta 1



SpeedR egulatorinterfaces
A
CarWithSpeedRegulator i
CarSpeedRegulator
isAtomic =true - ——
;redioln =out k « flowPort » « fowPort » 5?2{3;; :;Ue k

\outSpeed:Integer[ﬂ inSpeed: Integer [1]1-4
spm:Speedometer[1] A /

« msgPort»

‘Regul 1
rp: Regnterface [1] rgmReguiator [1]

« msgPort»
egOn: Start[1]
.

bl
N o
isAtomic = true k
drection = in

«msgPort »
engineCmd: EClnterface [1]
O

Figure 11.16 - Example of UML composite classes and parts with specialized MARTE ports

« msgPort»
regOn: Start[1]
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CarSpeedRegulator @

isAtomic = true k
direction =in

Figure 11.17 - Example of UML component with specialized MARTE ports

11.4.2 Avionics Example

Figure 11.18 illustrates a Trajectory component used in a Flight Management System inspired from an avionics textbook.
This component computes a trajectory and generates continuous navigation commands to other equipment. Trajectory
depends on three components, defined in related packages, to perform its tasks: FlightPlan, Location, and Database.

Trajectory makes use of flight plan data, as well as the current plane location to perform computations. It explicitly calls
the getLocation and getFlightPlan required services, to access these data when needed. These services are defined in the
LocationAccess and FlightPlanAccess interfaces, bound to two dedicated message ports.

Trajectory also makes use of performance and fuel consummation parameters stored in its cache. It happens that a pilot
changes these parameters, initially stored in the database, when the FMS is in operation. If so, the Database component
notifies Trajectory that new parameters need to be taken into account. This information is pushed through an atomic flow
port to the Trajectory component. The 3 icon indicates that the direction of the Trajectory flow port is "in". The flow
port is typed by a ParameterUpdated signal that contains new parameter data.

When computations are completed, Trajectory generates navigation commands as a data flow specified by the
NavCommand flow specification. The data flow is transmitted to external equipment through a dedicated flow port. The
<> ‘icon indicates that the port is typed by a flow specification and therefore it is not atomic.
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Figure 11.18 - Trajectory component definition

Figure 11.19 illustrates the internal structure of the simple FMS. It shows how the Trajectory component, along with
FlightPlan, Location and Database, is used as a part of the FlightMangementSystem composite structure. One can
distinguish boundary ports, owned by FlightManagementSystem and defined at the component boundaries. These ports
relay incoming data inside a component (e.g., cdsCom, cdsDisplay, irs, radio) or outgoing data to other connected
components (e.g., extNav). The other ports indicated in the composite structure relate to component parts (e.g., fp, loc,
update, nav, owned by the :Trajectory part). These ports are used to tie parts together using connectors and define a
component assembly. Within a component assembly, connected ports need to define compatible types and directions.
Message ports need to be typed by a common interface (e.g., PlanAccess), a left-hand port providing this interface (e.g.,
traj) and a right-hand port requiring this interface (e.g., fp). Flow ports need to be typed by a common flow element or
flow-specification (e.g., ParameterUpdated), with opposite directions on the left-hand and right-hand ports (e.g. ,src and
handler).

A boundary port can be connected to a port owned by a part in order to relay a service invocation or a data flow to the
component assembly (e.g., cdsDisplay and cds). In that case, port directions are relayed as well.
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Figure 11.19 - FlightManagementSystem internal structure

Note — Both Figure 11.18 and Figure 11.19 are compatible with the SysML block definition diagrams and internal block

diagrams.
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12 Allocation Modeling (Alloc)

This chapter contains both domain and UML viewpoints for allocation modeling.

12.1 Overview

Allocation of functional application elements onto the available resources (the execution platform) is main concern of
real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communication resources and services.

The MARTE profile defines relevant application and execution platform models (chapter 13 and chapter 14). A MARTE
allocation is an association between a MARTE application and a MARTE execution platform. Application elements may
be any UML element suitable for modeling an application, with structural and behavioral aspects. An execution platform
is represented as a set of connected resources, where each resource provides services to support the execution of the
application. So resources are basically structural elements, while services are rather behavioral elements.

Application and execution platform models are built separately, before their pairing through the allocation process. Often
this requires prior adjustment (inside each model) to abstract/refine its components to allow a direct match. Allocation can
be viewed as a "horizontal" association, and abstraction/refinement layering as a "vertical" one, with the abstract version
relying on constructs introduced in the more refined model. While different in role, allocation and refinement share a lot
of formal aspects, and so both will be described here. This dual function was recognized in SPT, where allocation was
called realization, while refinement was used as such.

Application and execution platform elements can be annotated with time information based on logical or physical clocks.
Allocation and refinement should provide relations between these timing under the form of constraints between the clocks
and their ticks. Other similar non-functional properties definable from the NFPs package (such as space requirement, cost,
or power consumption) can also be considered.

Note: we do not use here the UML notion of deployment, but rather a SysML-inspired notion of allocation to emphasize
the fact that Execution Platform models should themselves be abstract and not seen as concretization models.

In the simplest case application elements are untimed, without explicit logical clocks attached. Asynchronous parts can
also be attached to fully independent virtual clocks. In this simple case the timed allocation provides a physical duration
(and maybe other constraints) to the execution of this given application function on this given execution platform service
or resource. In the more general case timed allocations provide constraints between the virtual logical clocks on the
application side and the more physical technical clocks on the platform side. Clocks on the application side can be
important as they allow the user for visualizing a possible scheduling, maybe computed by subsequent tools and
respecting the provided scheduling constraints, rather than being provided by the user himself.

Refinement (or its inverse abstraction) should also relate the more abstract clocks to the mode refined. On the application
side, abstraction grouping could amount to performing a number of operations in a single instruction (by parallelization,
vectorization, or by replacing a task body by a simple call to it). Atomic instants at some level can be subdivided into
many micro-steps at a more refined level. On the execution platform side, abstraction can help define new services built
as collaborations between resource elements and lower-level services; these services can be generic, or ad-hoc to help
represent simply the allocation of application functions using them. Again here the clocks can be subdivided to represent
the division of service calls into more atomic services.
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Allocation can be specified in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association
between a group of structural elements and a group of resources. Behavioral allocation is an association between a set of
behavioral elements and a service provided by the execution platform. When clear from context, hybrid allocations can
also be allowed (for instance when an implicit service is uniquely defined for a resource). At the finer level of detail,
behavioral allocation deals with the mapping of UML actions to resources and services.

The next subsection considers how resources can be grouped to collaborate and provide a given service, possibly with a
given scenario. The following subsection describes the principles of the Allocation process (between two previously
independent models). The last part deals with NFP annotations.

Grouping process (Abstraction/Refinement)

Allocations concerns groups of elements. Such grouping of resources was already included in the service definition. The
intention is as follows: grouping, together with the associations already existing at each side (application or platform),
should provide a way to represent a change of atomicity level (abstraction/refinement) inside each model. If a number of
application actions (sets of instructions or subprogram) can be realized atomically as a platform service, itself being made
of several resources collaborating according to a given scenario, then this scheme allows for linking them by an atomic
mapping between the two models. The preliminary process of constructing the entities to be matched is conducted
separately, inside each model. This shows a separation of concern between service definition and actual mapping of
matching elements.

Groups of services could themselves be viewed as compound services. Keeping the two levels is useful to discriminate
between generic services, built on the platform in full isolation, and ad-hoc services, only introduced to cover specific
needs of a particular application.

Allocation process

Allocation results in both spatial distribution and temporal scheduling. Spatial distribution is the allocation of
computations to processing elements, of data to memories, and of data/control dependencies to communication resources.
Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource. Scheduling is represented as a relation between the respective time bases of
application and platform elements.

In turn, the potential analysis performed due to allocation mapping may refine "back" the temporal aspects of
applications, to reflect the results of constraints (scheduling, resource allocation and sharing) imposed by the execution
platform. It may do so according to a possible refinement of the Time model at the application level.

Structural allocation enforces the corresponding behavioral allocation of encapsulated behaviors, so that contained
elements "inherits" the allocation of compound structures unless otherwise stated at their level (and then the proper
execution platform communication pattern should be feasible). For example, if a Behavior is executed in the context of a
particular object, and this object is allocated to a particular ComputingResource C1 for execution, then any
uml::CallBehaviorAction would by default use the "Call" service provided by C1. However, if the called Behavior
belongs to an object to which another ComputingResource is allocated, it uses the "RemoteProcedureCall™ service
provided by C1 to reach C2 - assuming a communication path exists between C1 and C2.

The allocation model could offer different allocation alternatives for a given application element, so that there is an actual
choice on how to map application functions and objects to various parts of the execution platform. The mapping can then
be refined and made more precise in several ways by model transformations directed by analysis techniques.

Both spatial and temporal allocations have to be mutually and globally consistent to ensure a correct execution of the
application by its deployment on the execution platform. This is in general the topic of analysis techniques that the
current MARTE profile aims to offer. But the profile itself only describes the means to describe (total or partial)
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allocations, some of which may be provided by users, some computed by advanced analysis techniques in any advanced
design methodology associated with the profile. In usage the allocation model can be made to represent relations that are
issued to the user from an analysis tool, not just provided by human edition.

Allocations should also comply with, or at least not contradict, the local associations and dependencies internal to both
the application and the execution platform. For instance two actions connected by a dependency link should not be
mapped to disconnected parts of the platform. Other well-formedness rules for maintaining structural and behavioral
consistency are listed below.

Application actions and services both derive from TimedAction, hence have "start" and "end" time value specifications
(related to different or to the same logical clock).

When an application action is allocated to an execution platform service, it implies a coincidence relation between all
"start" events on the time base supporting the application action, and all "start" events on the time base supporting the
execution platform service.

The same coincidence relation is implied for the "end" events on respective time bases. This enforces relations between
logical clocks defined by the application, and logical clocks defined by the execution platform.

12.2 Domain View

Figure 12.1 shows a general view of allocation, while Figure 12.2 shows the refinement relations. Allocations are
annotated with NfpConstraints as built from the NFP section of this document and refinement are more precisely
annotated with ClockConstraints as defined in the Time Model section (chapter 9). Allocations provide links between
independent models, while refinement/abstraction works by changing the focus on an underlying similar structure.

Allocations
source
= ApplicationAllocationEnd
1 *
target
Allocation —— — ExecutionPlatformAllocationEnd

1 *

impliedConstraint | NFP_Annotation::

+ | NFP_Constraint

Figure 12.1 - The allocation model

Allocations are used to associate individual application elements to individual execution platform elements. The role of
the time constraints in such case is to provide correlations of some sort between the logical/virtual time bases used as
activation conditions on the application side, and the more technical/physical time bases used as processor rates in the
execution platform side.
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Allocation as from SysML can map structural to structural, and behavioral to behavioral or structural elements.
Time::ClockConstraint specializes NFP_Annotations::NfpConstraint, using such constraints provides time links between
the clients and the suppliers..

Allocations
general
Refinement refined AllocationEnd
1.*
* constraint
] Time::
TlmeReIatedEnFltles. Application Execution Platform
Cloeib e 2l AllocationEnd AllocationEnd
ClockConstraint

Figure 12.2 - The Refinement model

Refinement can deal with both application models and execution platform model. A single element on the more abstract
side can be associated with a number of elements (a group) in the more refined side. In case a group of (structural)
resources and (behavioral) services are grouped to form a more abstract behavioral element (a higher-level service), then
a collaboration use scenarios or something similar should be introduced to indicate how the cooperation of the more basic
entities form the more abstract service is implemented.

For instance on the application side a "task" call can be refined as its body, or arrange of operations can be parallelized
(or vectorized) as a single instruction. On the execution platform side a service or transaction can be realized by a
sequence of protocol steps.

12.3 UML Representation

The UML view for allocation is strongly inspired from the SysML solution. The SysML solution is satisfactory, but we
wanted to emphasize three important points. First, the allocation is a mechanism aiming at defining a mapping from the
logical parts (the application model elements) of the model to some more physical parts (the execution platform). Second,
there can be several possible allocations and all of them imply a cost that affects the time budget, the power budget or the
budget of any other non functional property. Last, there can be at least two reasons to make an allocation: to perform a
spatial distribution of artifacts onto resources or resource services, or to schedule algorithmic parts onto available
resources.

The allocation package includes all these three points.
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12.3.1 Profile Diagrams

The first step is to identify what can be allocated, the logical view-behavior or structure-, and what can serve as a target
of an allocation, the physical view-a resource or a service-. The stereotype Allocated and its specialization (Figure 12.3),
ApplicationAllocationEnd and ExecutionPlatformAllocationEnd are used for this matter.

Alloc
«stereotype» | > «metaclass»
Allocated NamedElement
fallocatedTo
ustereotype» g «stereotype»
ApplicationAllocationEnd | /allocatedFrom ExecutionPlatformAllocationEnd

Figure 12.3 - The stereotype "allocated"

The second step is to identify what is allocated onto what and what are the reasons for such an allocation and what are the
constraints implied by this allocation, hence the definition of the stereotype Allocate.

Alloc
G ‘ «enumeration» | «enumeration»
AllocationNature AllocationKind
UML.::Abstraction , L
spatialDistribution structural
A | timeScheduling behavioral
hybrid

WU imphedConstraizi N:ri;te::gﬁ:;::
Allocate * NfpConstraint

kind : AllocationKind
nature : AllocationNature

Figure 12.4 - The stereotype "allocate”

As in SysML, a special attention is given to activities since the notation is natural to allocate a set of actions to a
structural element (classifier, instance or part). We define the stereotype AllocateActivityGroup (Figure 12.5), which
name is less misleading than AllocateActivityPartition that would suggest an actual partition of activity nodes. We intend
to represent possible allocations; we anticipate several cases where activity nodes will be shared by several allocate
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activity groups. In this case, that means the shared activity nodes can be allocated either to one activity partition (an
instance of the classifier, the instance itself or the instance playing the part represented by the activity partition) or to the
other. The isUnique property explicitly prevents an activity node from being allocated to several groups. This does not
mean the node cannot be shared by several groups, it only means that once we have made the final decision of the
allocation, the node is actually allocated to only one group.

Alloc

«metaclass»

‘ «stereotype» ‘ ‘
UML::ActivityPartition

AllocateActivityGroup >

isUnique : Boolean = false ‘

Figure 12.5 - The stereotype "AllocateActivityGroup"

For the purpose of specifying refinement, the abstraction mechanism offered by UML and the UML keyword refine are
enough. Defining abstractions is useful in bottom-up approaches while making refinement is useful in top-down approach.

Alloc
' constraint «stereotype»
«stereotype» - TImeMoﬂgl::
ClockRefine + | ClockConstraint
v
«metaclass»
UML::Dependency

Figure 12.6 - The stereotype "clockRefine"

Concerning the refinement we also think it is important to emphasize the fact that the refinement process implies some
additional constraints that mostly concern clocks as defined in the Time Model package.

12.3.2 Profile elements description

12.3.2.1 Allocate (from Alloc)
The Allocate stereotype maps the Allocation domain element (section F.6.1) denoted in Annex F.

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements from a logical context,
application model elements, to named elements described in a more physical context, execution platform model elements.
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The dependency Allocate can be used either to specify one possible allocation, in which case, a space exploration tool
may determine what the best allocations are, or to specify an actual allocation in the system. The context in which the
allocate dependency is used should be sufficient to know in which case we are.

As a named element, a dependency can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
allocation is required, offered, etc.

When the nature is TimeScheduling, the allocate dependency represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions
e Abstraction (from Dependencies).

Associations

e ?impliedConstraint: NFPs::NfpConstraint [*]
The set of constraints implied by the allocation. Allocating an application model element on a resource
has a cost. This cost is described using a set of non functional property constraints.

Attributes

e ?kind: AllocationKind [1]
This differentiates the kind of allocations, whether both allocated elements on each side are structural, behavioral
or whether this is an hybrid allocation.

e nature: AllocationNature [1]
This identifies the purpose of the allocation, whether the allocation is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are
scheduled according to a given scheduler.

Constraints

[1] When the kind is structural, suppliers and clients must all be structural elements: classes, instance specifications or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML.::Action and the clients must be
behavioral elements, a UML::BehavioralFeature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time::TimedElement and the
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The "allocate" relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points "from™ the elements being allocated "to" the elements that are the targets of the
allocation

A UML Profile for MARTE, Beta 1 141



12.3.2.2 AllocateActivityGroup (from Alloc)

AllocateActivityGroup is used to depict an allocation relationship on an Activity. It is an extension of the metaclass
UML.::ActivityPartition.

AllocateActivityGroup is a standard UML.::ActivityPartition, with modified constraints such that any actions within the
partition must result in an "allocate” dependency between the activity used by the action, and the element that the
partition represents.

Since we also intend to represent possible allocations, we anticipate several cases where activity nodes will be shared by
several allocate activity groups (Figure 12.12.9). In this case, that means the shared activity nodes can be allocated either
to one activity partition (an instance of the classifier, the instance itself or the instance playing the part represented by the
activity partition) or to the other. The isUnique property explicitly prevents an activity node from being allocated to
several groups. This does not mean the node cannot be shared by several groups, it only means that once we have made
the final decision of the allocation, the node is actually allocated to only one group.

Extensions
« ActivityPartition (from IntermediateActivities).

Attributes

e isUnique: Boolean=false
This specifies whether or not the actions contained in the partition can actually be allocated to several partitions
(the default) or can only be allocated to only one.

Constraints

[1] All Actions appearing in an AllocateActivityGroup will be the /suppliers (from) end of a single Allocate dependency.
The element represented by the AllocateActivityGroup will be the /client (to) end of the same Allocate dependency.
This allows for defining non functional property constraints applying to all contained actions.

Notation

For brevity, the keyword used on an AllocateActivityGroup is "allocate"”, rather than the stereotype name
("allocateActivityGroup™).

12.3.2.3 Allocated (from Alloc)
The Allocated stereotype maps the AllocationEnd domain element (section F.6.2, p. 492) denoted in Annex F.

The stereotype Allocated applies to any named element that has at least one allocation relationship with another named
element. Allocated named elements may be designated by either the /from or /to end of an "allocate” dependency.

The stereotype Allocated provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any "allocate" dependency. With this stereotype you can allocate anything on anything. To
make it clear you want to allocate something logical, from the application model, to something more physical (a resource
or a resource service), more specific stereotypes-ApplicationAllocationEnd and ExecutionPlatformAllocationEnd-should
be used instead.

The stereotype Allocated is kept as a concrete stereotype to keep some compatibility with the SysML stereotype that has
the same name, but more specific stereotypes-ApplicationAllocationEnd and ExecutionPlatformAllocationEnd-should be
used instead when possible.
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Extensions
¢ NamedElement (from Dependencies)

Associations
* None

12.3.2.4 AllocationNature (from Alloc)

AllocationNature is an enumeration type that defines literals used to specify the purpose of the allocation.

Literals

spatialDistribution
It indicates that the suppliers are distributed on the clients. Spatial distribution is the allocation of
computations to processing elements, of data to memories, and of data/control dependencies to
communication resources.

timeScheduling
It indicates that the allocation consists in a temporal/behavioural ordering of the suppliers, the order being
given by the clients. Scheduling is the temporal/behavioral ordering of the activities (computations, data
storage movements or communication) allocated to each resource.

12.3.2.5 AllocationKind (from Alloc)

AllocationKind is an enumeration type that defines literals used to specify the kind of named elements that are used as
clients and suppliers.

Literals

e structural indicates that the suppliers and the clients are all structural named elements
e behavioral indicates that the suppliers and the clients are all behavioral named elements
e hybrid indicated that the suppliers and the clients are not of the same kind

12.3.2.6 ApplicationAllocationEnd (from Alloc)

The ApplicationAllocationEnd stereotype maps the ApplicationAllocationEnd domain element (section F.6.3) denoted in
Annex F.

An ApplicationAllocationEnd is an Allocated named element on the logical side of the model, the application. It identifies
an application model element that can be allocated to a resource or a resource service.

Generalizations
¢ Allocated (MARTE::Alloc).

Associations

e ?/allocatedTo: ExecutionPlatformAllocationEnd [*]
The resources or resource services that are clients of an “allocate” whose client is extended by this
stereotype. This property is the union of all clients to which this instance is the supplier. This
association is derived from any “allocate” dependency
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Semantics

The stereotype ApplicationAllocationEnd identifies application model elements that are allocated to resources. Its
allocatedTo attribute is derived from any “allocate” dependency and allows for tracing the resources on to which this
element is allocated.

Notation

For brevity the keyword used on an ApplicationAllocationEnd is “app_allocated,” rather than the stereotype
name(“applicationAllocationEnd”).

12.3.2.7 ClockRefine (from Alloc)
The ClockRefine stereotype maps the Refinement domain element (section F.6.5) denoted in Annex F.

ClockRefine is a dependency based on UML::Dependency. It is a mechanism for associating one abstract timed element
to refined timed elements. The refinement process implies some additional constraints between the clocks of the abstract
element and the clocks of the refined elements.

When a set of timed elements is to be allocated to execution platform elements they should first be grouped using the
ClockRefine dependency. ClockConstraint should be associated with this dependency to specify relations between the
clocks of the general element and the clocks of the refined ones.

Extensions
e Dependency (from Dependencies).

Associations
e constraints: Time:ClockConstraint [*] The set of constraints implied by the refinement.

Constraints

[1] A single "clockRefine" dependency shall have only one supplier (from), but may have one or many clients (to).
context ClockRefine
inv: base_Dependency.from->size()=1 and base_Dependency.to->size()>=1

[2] The client and the suppliers must be Time::TimedElement.

Notation

The “clockRefine” relationship is a dashed line with an open arrow head. The arrow points in the direction of the
refinement. In other words, the directed line points “from” the element being refined “to” the elements that are the refined
elements.

12.3.2.8 ExecutionPlatformAllocationEnd (from Alloc)

The ExecutionPlatformAllocationEnd stereotype maps the ExecutionPlatformAllocationEnd domain element (section
F.6.4) denoted in Annex F.

An ExecutionPlatformAllocationEnd is an Allocated named element on the physical side of the model (the execution
platform). It identifies a resource or a resource service to which application model elements can be allocated.

144 A UML Profile for MARTE, Beta 1



The stereotype ExecutionPlatformAllocationEnd identifies resources onto which application model elements are
allocated. Its allocatedFrom attribute is derived from any “allocate” dependency and allows for tracing the application
model elements that are allocated.

Generalizations
e Allocated (MARTE::Alloc) on page 146.

Associations

e /allocatedFrom: ApplicationAllocationEnd [*]
The application model elements that are suppliers of an "allocate" whose supplier is extended by
this stereotype. The allocatedFrom elements are not necessarily derived from the same "allocate"
dependency. A given resource can be the client of several application model elements, each of
which is allocated using a separate “allocate” dependency. The association is derived from any
“allocate” dependency.

Notation

For brevity the keyword used on an ExecutionPlatformAllocationEnd is “ep_allocated,” rather than the stereotype name
(“executionPlatformAllocationEnd”).

12.4 Examples

12.4.1 Unix process

Figure 12.12.7 shows an example of allocations with three layers. The first layer describes the application point of the
view, the second layer represents the operating system internals and the last layer shows the hardware parts. We use
structured classifiers to represent both hardware and software resources.

The example models the design of a given operating system family, not a particular implementation. It represents a typical
Unix operating system. A VxWorks model or an embedded Unix model would show a different partition of memory (e.g.,
no virtual memory). An Arinc653 OS model would show the explicit "partitions" as both space and time partitioning of
hardware resources.

A refinement down to Posix threads would show further partitioning of the CPU resources without further partitioning of
Memory.
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Figure 12.7 - Allocation of Unix processes

The diagram shows several resources such as computing resources, communication media and storage (using stereotypes
defined in GRM), and how these resources can be grouped using a structured classifier and how they can be allocated to
more physical resources.

The lower layer in the diagram represents the hardware elements.

The top layer is the view from the application: a (Unix, in this example) process is a group involving a time shared access
to a computing resource, and a “spatial” partition in the virtual memory.

The intermediate layer is the implementation internals. The VirtualMemory is the high-level view as seen from the
application process. Physically, this virtual memory relies on two types of physical storage (the actual physical memory
and a hard disk).

This diagram is for illustration purpose. Often hard real-time application do not need to model the virtual memory and
swap space, since a prior analysis based on a simpler model would have verified that the worst case memory requirement
does not exceed available RAM memory.

12.4.2 System on Chip

To illustrate the use of the stereotype “clockRefine” we take the example of a system on chip (Figure 12.12.8). We first
decide that we need to have a digital signal processor (e.g. the OAK+) to compute floating point operations and a Risc
processor (e.g., an ARM 7) to control the whole application. The two processors are meant to communicate but we do not
elaborate on the communication itself at this point (cf. the upper part of Figure 12.12.8).
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SoC «clockType»
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i | «ep_allocated» | \ )
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GDP

Figure 12.8 - Communication refinement

We then decide to refine the communication (cf. the lower part of Figure 12.12.8). We use a double port Ram for the
communication. The bus coming from the OAK+ is the GDP bus and the bus coming from the ARM7 conforms to the
AMBA High-performance Bus specification. The "clockRefine" dependency specifies that these two connectors (GDP,
AHB) and this part (ram : DPRAM) are refinements of the connector comm. Each named element involved in these
structured classifiers are typed by a class stereotyped “clockType™ (cf. the right part of Figure 12.12.8), which means
there is no a priori assumption on relative rates of each part of this diagram. Additionally, the clock constraints associated
with the dependency constrain these rates by stating that:

 The clock of the instance that is to be used to conform to the role ram, is the same than the macroscopic clock perceived
for the global communication between the OAK+ and the ARM7;

» The clock of this instance is finer than the clock of the two busses (b1 : GDP and b2 : AHB). This is probably an over
specification and the Time Model chapter (cf. Chapter 9) offers several clock relations that allows for defining
constraints more accurate.

Note that using a single dependency rather than three separate ones gives a stronger specification because the dependency
identifies a common context that gathers all four constrained elements.

12.4.3 Allocate activity group

To illustrate the use of the stereotype AllocateActivityGroup with take the example of a system described using an
activity (Figure 12.12.9). The activity groups (P1 and P2) represent processors that are the potential clients for the actions
of the activity. Because of the nature of the processor (digital signal processor or general purpose processor) and
because of the physical localization of sensors (used by actions inpC, outW and outZ) some processing elements cannot
be executed by one processor or another. For instance, the operation operl requires a hardware coprocessor not included
on processor P2. However, the operation oper2 can be allocated to both processors even though the cost of the allocation
(not represented here) could be different. An analysis tool could use this information to choose the best allocation
regarding, for instance, to a time budget.
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Had we wanted to represent the allocation cost, we would have used the non functional property constraints defined in
NFP chapter. For clarity, we can either draw explicitly dependencies or draw a separate table that would present the cost
of each allocation.

wallocates . s — opori —  outW ——
P1 i L
—l inpC = .. I__________| _ﬂ—) .
R = e
wallocates 1 oper2 —_—  oulZ |_
P2 |

Figure 12.9 - Actions shared between two allocate activity groups
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Part || - MARTE Design Model

This Part contains the following chapters.
¢ 13 - RTE Model of Computation and Communication (RTEMoCC)
e 14 - Detailed Resource Modeling (DRM)
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13 RTE Model of Computation & Communication
(RTEMoCC)

13.1 Overview

MARTE::CoreEIementSJ MARTE: :GRM MARTE: :GCM
\:‘s\ ﬁ.\ —4/'
n“. : g
] ™ ' e
RTEMoCC

Figure 13.1 - Dependencies of the RTEMoCC package

As illustrated by Figure 13.1, the RTEMoCC package of MARTE is depending of both GRM and CoreElements packages,
but also on the CoreElements package. The concern of the RTEMoCC package is to provide high-level modeling concepts
to deal with real-time and embedded features modeling. In comparison with usual application domains, RT systems (in
short RTS) development requires possibilities of modeling on one hand quantitative features such as deadline and period
and, in other the hand, qualitative features that are related to behavior, communication and concurrency. The next section
will describe a domain model defining the MARTE concepts for RT/E high-level modeling constructs to support both
aspects.

13.2 Domain View

One first important issue to deal with when modeling RTE applications is concurrency. In order to handle that feature, this
specification proposes the concept of RtUnit as depicted in Figure 13.2. It provides high-level constructs for real-time and
embedded application modeling based on the MARTE foundations introduced in Part | (within both CoreElements and
GRM packages). An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns
one or several schedulable resources (GRM::Scheduling::SchedulableResource). If its dynamic attribute is set to true, the
schedulable resources are created dynamically when required. In other case, the real-time unit has a pool of schedulable
resources. When no schedulable resource is available , the real-time unit may either wait indefinitely for a resource to be
released, wait for only a given amount of time (specified by its poolWaitingTime attribute), increase its pool thread
dynamically to adapt to the demand, or generate an exception.

Hence, a real-time unit may be seen as an autonomous execution resource, able to handle different messages at the same
time. It can manage concurrency and real-time constraints attached to incoming messages. An RtUnit is a unit of
concurency that encapsulates in a single entity both the object and the process paradigms, which means that concurrency
control is encapsulated within the unit. Any real-time unit can invoke services of other real-time units, or send data flows,
without worrying about concurrency issues. Real-time units are some kind of tasks servers that can satisfy several
requests from several real-time units at the same time, enabling intra-unit parallelism if necessary. An RtUnit owns also a
concurrency and behavior controller for managing message constraints according to its current state and the concurrent
execution constraints attached to the messages.
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An application owns at least one main RtUnit. Following creation, each real-time unit that has a main (which is indicated
by setting the isMain attribute to true) starts invoking a main real-time service, which executes until the real-time unit is
terminated. Like any other real-time units, the main service of a main unit may perform explicit receive actions during its
execution, in order to accept any received events. A receive action by a real-time unit leads to a direct activation of the
appropriate service specification. During the execution of the service, triggered by the receipt of the message, the main

service may either be blocked (the so-called "run-to-completion” paradigm), or it may proceed executing concurrently to
other real-time service. In this latter case, intra-concurrency is to be available within a real-time unit.

An RtUnit may own one or several behaviors. For each of these behaviors is defined a message queue for saving the
messages received by the unit. The size of this message queue may be infinite or limited. In this latter case, the queue size
is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called operational mode. This
behavior take usually the form of a state-based behavior where states represents a configuration of the RtUnit and
transitions denotes reconfigurations of the unit.

MARTE::GRM:ResourceTypes::
ResourceManager

MARTE:CoreElements:: b . .. MARTE:: CoreElements:
MARTE::GRM:ResourceCore Causality::CommonBehavior:: MAR'(I':E..GRM..Re}:ourceTypes.. Causality:: CommonBehavior::
:ResourceService BehavioredClassifier ONCLIECHCYISESOUICE Behavior
ZF services Z% th " Z% behaviors %
subsets pServices ni )
¢ P ! o : -
1 isDynamic: Boolean owner
RtService isMain: Boolean 1 RtBehavior
0.1 1 memorySize: NFP_dataSize owner /operationalModes
- poolPolicy : PoolMgtPolicy >
/main WaitnaTime: NFP Durati 1 0.1
{subssts pServices} poolWaitingTime: > Duration
owner Y1 owner @ 1
« enumeration»
PoolMgtPolicy exeRes | * queue | 1
infiniteWait
timedWait MARTE::GRM::ResourceTypes Y EEEErE
create :SchedulableResource g
Exception
undef
other

Figure 13.2 - RtUnit of the RTEMoCC package

When modeling for concurrency, it is mandatory to be able to model shared information. For that purpose, it has been
introduced the concept of protected passive unit (PpUnit) as denoted in Figure 13.3. Protected passive units specify their
concurrency policy either globally for all of their provided services (concPolicy attribute), or locally through the
concPolicy attribute of an RtService. The execution kind of a protected passive unit is either immediateRemote or
deferred. In both cases, the execution is remote, i.e., it uses a schedulable resource of the real-time unit that invokes the
service provided by the protected passive unit.
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. . « enumeration »
MARTTE..CoreEIements... MARTE::GRM::ResourceTypes CallConcurrencyKind
Causality:: CommonBehavior: B
Behaviore dClassifier =SynchResource sequential
guarded
Z% Z% concurrent
) PpUnit
services
] {subsets pServices} concPolicy : CallConcurrencyKind | owner behaviors .
RtService - 1 ®| memorySize: NFP_dataSize * * RtBehavior

Figure 13.3 - PpUnit of the RTEMoCC package

The incoming message queue of a real-time unit plays the role of the broker for its schedulable resources. The possible
scheduling policies defined within MARTE are specified by the MARTE::GRM::Scheduling::SchedPolicyKind
enumeration. The size of the message queue may be either infinite or limited. In the latter case, its size is specified
through its queueSize attribute. Additionally, a message queue can also specified the maximal size of the message
(msgMaxSize attribute) that may be received.

MARTE::GRM:ResourceTypes MARTE: GRM::Resource Types
::StorageResource :ResourceBroker
InMsgQueue 1 rOcc MARTE:CoreElements:
owner S Causality: Communication
queueSchedPolicy : SchedulingPolicyKind :ReceiveOccurrence
queueSize : Integer JexeRes
msgMaxSize : NFP_DataSize 1 {subsets managedResource} | MARTE:GRM::ResourceTypes
broker " ::SchedulableResource

« enumeration »
SchedPolicyKind

scheduling Policy . EarliestDeadlineFirs t

{subset accCtrlPolicy } T FAFO_
FixedPriority

CompResPolic LeastLaxityFirst
P Y RoundRobin
i . i i TableDriven
kind : Sched PolicyKind Undef

Other

Figure 13.4 - InMsgQueue of the RTEMoCC package

As shown in Figure 13.2 and Figure 13.3, real-time units and protected passive units may provide real-time services. In
the case of the protected passive units, as they use the schedulable resource of invoking real-time units, it has to be
specified the concurrency policy of the service (concPolicy attribute). The execution of a real-time service may be
declared as atomic and it is also possible to specify how the execution is handled by the unit through the exeKind
attribute. The service execution may be deferred (i.e. save in a queue of a behaviour of the unit) or immediate. In this
case, in a real-time unit, the execution may be done in the context of the calling unit (i.e., remote execution) or in the
context of the unit receiving the message (i.e., local execution). In case of a protected passive unit, the remote case does
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not apply. Finally, a real-time service may specify a real-time feature and a concurrency policy. Both these information
may be used by the internal controllers of real-time units and protected passive units to control the execution of their
services.

GRM::ResourceCore:: CoreElements::GCM:: RealTimeFeature
Service ComponentService

utility : UtilityType

occKind: ArrivalPattern
tRef: TimedInstantObservation
reDL NFP_Duration

RtService absDI: NFP_DateTime
boundDI: NFP_BoundedDuration
concPolicy : ConcurrencyKind pRTE_| rdTime: NFP_D uration
exeKind: ExecutionKind gt 0.1 miss: NFP_Percentage
isAtomic : Boolean [1] = false h priority : NFP_Integer
synchKind: SynchronizationKind

« enumeration » « enumeration » « enumeration » «dataType»
SynchronisationKind ConcurrencyKind ExecutionKind MARTELIbJMIAR_FE_DalaTVDEZ
tilityType
synchronous reader deferred )
asynchronous writer Iremﬁte|mel'(fj1_e(tilate ==(u: UtilityType) Boolean
ocallmmediate <(u: UtilityType):Boolean
delzyedvsynChronous paraIIeI >(u: UtilityType:Boolean
rendezvous <=(u: UtilityType) Boolean
other (0 Lty T 5

2=(u- UtilityType)Boolean

Figure 13.5 - RtService of the RTEMoCC package

One other important qualitative feature to handle in this domain concerns the communication aspects. In UML,
communications are initiated by executing specific actions such as call actions. Here it is introduced the concept of real-
time action (specialization of the action concept introduced in the MARTE::CoreElements package). Real-time action can
specify real-time features such as a deadline or period (see details of the ArrivalPattern data type introduced in the
MARTE Model Library). It can also describe the size of the message generated when executing or the kind of
synchronization (synchKind attribute). Finally, a real-time action execution may be defined as atomic.

MARTE::CoreEle ments::
Causality::Common Behavior:
Action

RtAction

pRTF .
synchKind: SynchronizationKind [@—————— = RealTimeFeature

isAto mic: Boolean [1] = false 0.1
msgSize : NFP_DataSize

Figure 13.6 - RtAction of the RTEMoCC package

Figure 13.7 introduces a new concept, called RteConnector, as a generalization of the Connector concept introduced in the
MARTE::GCM package. Real-time embedded connectors are used when it is necessary to denote non-functional
properties on component connectors (e.g., throughput, maximal size of messages that may be conveyed thought the
connectors).
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« enumeration »
MA RTE_Library:: MARTE_DataTypes:

TransmMo deKind

CoreElements:GCM::
Connector

1

RteConnector

simplex
half-duplex
fullduplex

bandwidth: NFP_DataTxR ate
packefl : NFP_Duration

blockT: NFP_Duraton
transmMode: TransmModeKind

Figure 13.7 - RteConnector of the RTEMoCC package

This section formalizes a specific model of computation aligned on the notion of active object defined in UML. It is
applicable for asynchronous / event-based approaches to real-time and embedded application design.

Other approaches and models of computation exist in the real-time and embedded domain (e.g., synchronous objects).
The MARTE specification does not explicitly address these models at this time. However, the framework introduced in
Part | provides the foundations to specify alternative models of computation as an extension to the specification. Making
use of the NFP, Time and GRM packages, interested parties are able to formalize user-defined models of computation that
rely on the same semantics foundation. It provides the ability to leverage existing MARTE capabilities along with this

specific model.

13.3 UML Representation

This section describes the MARTE RTEMoCC sub-profile. This latter contains all required UML extensions to support
the concepts denoted in the previous domain model.

« profile»
RTEMoCC

Figure 13.8 - The MARTE RTEMoCC sub-profile
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13.3.1 Profile Diagrams

«enumeration »
Po olMg tPolicyKind CallConcurrencyKind
infinteWait .
timedWait « metadass » sequential
dynamic CommonBehavior:: guarded
exception BasicBehaviors :: concurrent
other BehavioredClassifier
« stereotype» «stereotype»
RtUnit PpUnit

isDynamic: Boolean [1] = true concPolicy : CallConcurrencyKind

isMain: Boolean memorySize: NFP_DataSize

poolSize: Integer

poolPolicy : PoolMgtPolicyKind
pooMWaiing Time: NFP_Duration
operationalMode Behavior
main: Operation

memorySize: NFP_Data Size

Figure 13.9 - RtUnit and PpUnit stereotype of the MARTE::RTEMoCC sub-profile

« metaclass »

CommonBehavior:: « ennumeration »
BasicBehaviors:: MARTE_Library::
Behavior GRM_BasicTypes :
i SchedPolicyKind
EarliestDeadlineFirst
LIFO
«stereotype» Fixed Priority
RtBehavior LeastLaxityFirst
RoundRobin
queueSchedPolicy: Sched PolicyKind TimeTableDriven
queueSize : Integer Undef
msgMaxSize : NFP_DataSize Other

Figure 13.10 - RtBehavior stereotype of the MARTE::RTEMoCC sub-profile
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« metaclass »
CommonBehavior::
BasicBehaviors ::Action
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«stereotype»
rtf

« metaclass »
Kernel::BehavioralF eature
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Figure 13.11 - rtf stereotype of the MARTE::RTEMoCC sub-profile
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Figure 13.12 - RtAction of the MARTE
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Figure 13.13 - RtService of the MARTE::RTEMoCC sub-profile

« enumeration »
ConcurrencyKind
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« metaclass »
InternalStructures::Connector

T

« stereotype» « enumeration »

RteConnector MARTE_Library::MARTE DataTypes::
TransmMod eKind

bandwidth: NFP_DataTxRate

packetT: NFP_Duration simplex
blockT: NFP_Duration half-duplex
transmMode: TransmModeKind full-duplex

Figure 13.14 - RteConnector of the MARTE::RTEMoCC sub-profile
13.3.2 Profile Elements Description

13.3.2.1 CallConcurrencyKind

The CallConcurrencyKind ennumeration maps the CallConcurrencyKind domain element (section F.7.1) denoted in
Annex F.

This enumeration defines the kind of concurrency policy applied to a protected passive unit.

Literals

« sequential only one schedulable resource at a time can access a feature of a PpUnit. The PpUnit do not
provide in this case access control mechanism, it is up to the client to deal with potential
cconcurrent conflicts.

«guarded  aschedulable resource at a time can access a feature of a PpUnit while concurrent ones are
suspended.

- concurrent multiple schedulable resources at a time can access a PpUnit.

13.3.2.2 ConcurrencyKind
The ConcurrencyKind ennumeration maps the ConcurrencyKind domain element (section F.7.3) denoted in Annex F.

This enumeration defines the kinds of concurrency of a behavioral feature.

Literals
« reader the behavioral feature execution has no side effects (i.e. it does not modify the state of the object,
or the values of its properties).
« Writer the behavioral feature execution may have side effects.

- parallel the behavioral feature execution may be done in parallel of any kind of service.

13.3.2.3 ExecutionKind
The ExecutionKind ennumeration maps the ExecutionKind domain element (section F.7.4) denoted in Annex F.

This enumeration defines the kind of execution of a behavioral feature.
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Literals

- deferred
event occurrence matching the service invocation is saved in the queue of bahavior attached to the object.

« remotelmmediate
the execution is performed immediately with schedulable resource of the calling object.

« locallmmediate
the execution is performed immediately with a schedulable resource of the called object.
13.3.2.4 PoolMgtPolicyKind

The PoolMgtPolicyKind ennumeration maps the PoolMgtPolicy domain element (section F.7.4) denoted in Annex F.

This enumeration has been introduced in the profile to define the concurrency pool management policy of the real-time
units.

Literals

« infiniteWaitif the pool is empty, the real-time unit waits indefinitely until a schedulable resource will be
released.

« timedWait if the pool is empty, the real-time unit waits for bound time until a schedulable resource will be
released. At the end of the waiting time, if no schedulable resource have released, an exception is
raised.

«dynamic if the pool is empty, the real-time unit creates a new schedulable resource and adds it to the pool.
- exception if the pool is empty, the real-time unit raise an exception.

« other

13.3.2.5 PpUnit
The PpUnit stereotype maps the PpUnit domain element (section F.7.7) denoted in Annex F.

Protected passive units specify their concurrency policy either globally for all of their provided services (concPolicy
attribute), or locally through the concPolicy attribute of the RtService. The execution kind of a protected passive unit is
either immediateRemote or deferred. In this latter case, the execution is also remote, i.e. it uses the schedulable resource
of the real-time unit invoking the service to the protected passive unit.

Extensions
« BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors).

Attributes

« concPolicy: CallConurrencyKind [0..1]
kind of concurrency policy applied to the behavioural feature of the PpUnit. CallConcurrencyKind
is the enumeration defined in the UMLZ2. Its literal values may be as defined in UML.: sequential,
guarded or concurrent.

- memorySize: NFP_DataSize
amount of static memory required for each instance of the protected passive unit to be placed in an
application.
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13.3.2.6 RtAction
The RtAction stereotype maps the RtAction domain element (section F.7.8, p. 495) denoted in Annex F.

Real-time invocation action can specify real-time features such as a deadline or period (see details of the ArrivalPattern
data type introduced in the MARTEL.ib). It can also describe the size of the message generated when executing or the
kind of synchronization (synchKind attribute). Finally, a real-time action execution may be atomic.

Extensions
- InvocationAction (from UML::BasicBehaviors).

« BehavioralFeature (from UML.::Kernel).

Attributes

« synchKind: SynchronizationKind
synchronization mechanism associated to the communication action.

- isSAtomic: Boolean [1] = false
if true, the action execution is atomic.

» msgSize: NFP_DataSize
size of a message generated when executing an action.

13.3.2.7 RtBehavior

The RtBehavior stereotype maps both RtBehavior (section F.7.9) and InMsgQueue (section F.7.5) domain elements
denoted in Annex F.

This stereotype matches to both the RtBehavior and the InMsgQueue domain concepts defined in Annex F.

A RtBehavior owns implicitly a queue to store the messages received by the real-time unit. If its owning unit is a real-
time unit, a schedulable resource, as soon as it gets available, can be assigned to handle a message.. The possible
scheduling policies defined within MARTE are specified by the SchedulingPolicyKind enumeration. The size of the
message queue may be either infinite or finite. In the latter case, its size is specified through its queueSize attribute.
Additionally, a message queue can also specified the maximal size of the message (msgMaxSize attribute) that may be
received.

Extensions

« Behavior (from UML::CommonBehaviors)

Attributes
« queueSchedPolicy: SchedPolicyKind [0..1] queue policy of the behaviour.

« queueSize : Integer [0..1] queue size.

» msgMaxSize : NFP_DataSize [0..1] maximal size of the messages acceptable in the queue.

Constraints

[1] If the owner of the RtBehavior is a protected passive unit both queueSchedPolicy and queueSize are not applicable.
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13.3.2.8 RteConnector
This RteConnector stereotype maps to the RteConnector domain element (section F.7.11) defined in annex F.
Real-time embedded connectors are used when one needs to denote non-functional properties on component connectors

(e.g., throughput, maximal size of messages that may be conveyed thought the connectors).

Extensions
« Connector (from UML.::InternalStructures)

Generalizations

* None

Associations

* None

Attributes

« bandwidth: NFP_DataTxRate [0..1]
bandwith of the communication link.

« packetT: NFP_Duration [0..1]
time to transmit a packet.

« blockT: NFP_Duration [0..1]
time the communication host is blocked and cannot transmit.

- transmMode: MARTE_Library::MARTE_DataTypes::TransmModeKind [0..1]
defines the transmission mode, one of the following values: {simplex,
half-duplex, full-duplex}.

Constraints
* None
13.3.2.9 rtf
The rtf stereotype maps the RealTimeFeature domain element (section F.7.10) denoted in Annex F.
The rtf stereotype is used to annotate model elements with real-time features according to the properties defined within

this stereotype. This stereotype may be also used in other contexts than RtUnit and PpUnit.

Extensions
« Action (from UML::Kernel)

« BehavioralFeature (from UML.::Kernel)
» Message (from UML.::Basiclnteractions)
« Signal (from UML::Communication)

« Behavior (from UML.::BasicBehaviors)

A UML Profile for MARTE, Beta 1 161



Attributes

« utility: UtilityType [0..1]
importance features specification. This property is typed by the UtilityType data type
defined in the MARTE_L.ibrary. This type is abstract and it is to the user to define its own
specialized utility type according to its needs.

- occKind: ArrivalPattern [0..1]
arrival pattern specification.

- tRef: TimedInstantObservation [0..1]
time reference used for relative timing properties.

« relDI: NFP_Duration [0..1]
relative deadline specification.

« absDI: NFP_DateTime [0..1]
absolute deadline specification.

« boundDI: NFP_BoundedDuration [0..1]
bounded relative deadline.

« rdTime: NFP_Duration [0..1]
minimal ready time.

 miss: NFP_Percentage [0..1]
percentage of acceptance for missing the deadline.

- priority : NFP_Integer [0..1]
priority specification.
13.3.2.10 RtService

The RtService stereotype maps the RtService domain element (section F.7.12) denoted in Annex F.

Real-time service can specify real-time features such as a deadline or period (see details of the ArrivalPattern data type
introduced in the MARTE_Library::MARTE_DataTypes). It can also define a concurrency policy as well as an execution
policy. Finally, a real-time action execution may be atomic. The RtService stereotype may be applied on one
BehavioralFeature independently of the fact that the containing classifier to be either a RtUnit or a PpUnit.

Extensions
« BehavioralFeature (from UML.::Kernel)

Attributes
« concPolicy: ConcurrencyKind [0..1] concurrency property of the service.
« exeKind: ExecutionKind [0..1] execution nature property of the service.
- isAtomic: Boolean [1] = false if true, the execution of the service is atomic.

« synchKind: SynchronizationKind [0..1]  synchronization mechanism of the service.

13.3.2.11 RtUnit

The RtUnit stereotype maps the RtUnit domain element (section F.7.13) denoted in Annex F.
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An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns at least one
schedulable resource, but can also have several ones. If its dynamic attribute is set to true, the schedulable resources are
created dynamically when required. In other case, the real-time unit has a pool of schedulable resources. When no
schedulable resources are available in the possible, the real-time unit may either wait indefinitely for a resource to be
released, or wait only a given amount of time (specified by its poolWaitingTime attribute), or increase its pool thread
dynamically to adapt to the demand, or generate an exception. An RtUnit may own behaviors that have one message
queue for saving the messages received by the unit. The size of this message queue may be infinite or finite. In this latter
case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called
operational mode. This behavior take usually the form of a state-based behavior where states represents a configuration of
the RtUnit and transitions denotes reconfigurations of the unit.

Extensions

« BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors)

Attributes

« isDynamic: Boolean [1] = true
if true, it denotes that the real-time unit creates dynamically the schedulable resource
required to execute its services. If false, the real-time unit owns a pool of schedulable
resources to execute its services.

« isMain: Boolean [0..1]
if true, the real-time unit is a main unit of the application.

» memorySize: NFP_DataSize
amount of static memaory required for each instance of the real-time unit to be placed in an
application

« poolSize: Integer [0..1]
size of the schedulable resource pool of a real-time unit.

« poolPalicy: PoolMgtPolicyKind [0..1]
kind of pool policy adopted by a real-time unit.

« poolWaitingTime: NFP_Duration [0..1]
maximal time a real-time unit waits for a schedulable resource to be released in case of pool
management policy set to timedWait.

« operationalMode: Behavior [0..1]
behavior owned by the real-time unit and denoting the operational modes of the real-time unit.

- main: Operation [0..1]
main operation of the real-time unit.

» memorySize: NFP_DataSize [0..1]
amount of static memaory required for each instance of the real-time unit to be placed in an
application.

Constraints

[1] If isDynamic is true, the real-time unit do not owns a pool of schedulable resources. Hence, poolSize, poolPolicy and
poolWatingPolicy are not applicable.

[2] A main real-time unit has to own a main operation.
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13.3.2.12 SynchronisationKind

The SynchronisationKind stereotype maps the SynchronisationKind domain element (section F.7.14) denoted in Annex F.

This enumeration defines the kinds of synchronization mechanism for real-time actions.

Literals
« synchronous the action waits the end of the client execution before continuing to execute.
« asynchronous the action does not wait the end of the client execution before continuing to execute.
« delayedSynchronous the client action continues to execute and synchronize later when the client will return
a value.
- rendez\ous the client waits for the client to start executing.

13.4 Examples

13.4.1 Notational examples

Figure 13.15 describes a class diagram of a very simple cruise control system that is used to illustrate the usage of
MARTE::RTEMoCC sub-profile. Both CruiseController and ObstacleDetector are real-time units. The former create
dynamically schedulable resources to handle the execution of its services, and the latter has a pool of 10 schedulable

resources.

CruiseControlSystem VAN
«rtunit» «rtUnit> A
isMain=ttrue [\T-( CruiseControler ObstacleDetector T=1 polSize =10
main =stat polPolicy = aede
tgSpeed Speed startDetection ()
. ) stopDetection()
«rtService » {exeKind =d efe rred} start()
«rtService » {exeKind =d efe rred} stop ()
spm « ppUnit» spm
1 {concPolicy=guarded} 1
Speedometer « dataType»
getSpeed():Speed Speed

Figure 13.15 - A very simple cruise control model

Figure 13.6 shows an example of call action with a deadline real-time feature specification. The generated message is
aperiodic. Its time reference is denoted by the instant observation to. This latter denotes the start execution time of the
action. The specified deadline is 10 ms and the acceptable rate of deadline missing is 1%.
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act start J

_____

---------- @t0 {kind=startAction}

«rif»

occKind = aperiodic ()

tgSpeed = spm->getSpeed() value = (tRef=t0, relDI=(10, ms), miss=(1, %, max))

Figure 13.16 - An example of call action with a deadline real-time feature

Figure 13.17 shows an example of call action with a priority real-time feature specification.

act start J

________

------ @t0 {kind=startAction}

«rify
tgSpeed = spm->getSpee

d()

occKind = aperiodic ()
value = (priority=4)

Figure 13.17 - An example of call action with a priority real-time feature

Figure 13.18 shows an example of real-time feature specification within a sequence diagram.

sd CruiseControIStay
:CruiseControl :Speedometer
occKind =aperiodc ()
value = (Ref10, reDI=(10, ms), miss=(1, %, max))
start() | I
.-““”v
= start Aayisition () l
@o
occkind = periodic (periad=(10, ms) jite =(2, us))
we=1 value = ({Ref=t0,relDI=(10, ms), miss=(1, %, max))
getSpeed()
Soag
."‘v~. ‘ ‘
occKind = periodic (period=(10, ms) jiter=@, us))
Speed value = (Ref=10, reDE(10, ms) miss=( 1, %, max))
0 I

Figure 13.18 - Examples of rea
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13.4.2 Avionics example

In this example, we make use of components introduced in the avionics example of the General Component Model
chapter. We refine these components by applying the real-time characteristics introduced in this chapter. We consider
Trajectory, Location, FlightPlan and Database as passive components that require to be allocated on execution resources
to be set in operation.Figure 13.19 illustrates elements of the Location package used for communicating with Trajectory.
Location is a passive component (e.g. Lw-CCM), which provides a real-time service called getLocation through its
LocationAccess interface. The operation carries a "rtService" stereotype that indicates the concurrency kind (reader), the
execution kind (deferred) and the synchronization kind (delayedSynchronous). The operation also carries a "rtf"
stereotype that indicates additional real-time features, such as the priority (P1), the occurrence kind (10 ms period, 2 ms
jitter), the relative deadline (3 ms), as well as the acceptable deadline miss ratio (1% i.e. a hard deadline). Defining these
features at a service level is used as a contract defined between ports that provide and require the service. The
characteristics are applicable whatever the service invocation context or action.

The Location package also introduces a protected passive unit, called LocationData and stereotyped "ppUnit". It is used
to transmit data from the Location to the Trajectory component. When initialized, Location instantiates a LocationData
object and keeps it periodically updated, based on the IRS and radio signal received. Trajectory concurrently accesses to
the same object as a reader, invoking the getLocation real-time service every 10 ms. LocationData implements a
sequential access policy that ensures integrity by preventing readers and writers to concurrently access to the same data.

priority=1

occKind = periodic (period=(10,ms), jitter=(2,us))
relDI=(3,ms)

tRef=t0

miss=(1, %, max)

concPolicy=reader

exeKind=deferred
syncKind=delayedSynchronous

/
/

Location

« ppUnit »

« interface » /,,
LocationData ’

LocationAccess
/

latitude: Degree « rtService, rif » LocationData: getLocation()

longitude: Degree

concPolicy=sequential %

« FlowPort »
irs: IRSInterface

LocationAccess
Location
loc:
bl

« FlowPort »
radio: Radiolnterface

Figure 13.19 - Real-time characteristics defined on elements of the Location package

Figure 13.20 illustrates the main behavior of the Trajectory component, called computeTrajectory. This activity defines a
series of four periodic actions triggered every 10 ms. At the beginning of the period, two actions are concurrently
activated: a CallServiceAction invokes the getLocation real-time service, while another CallServiceAction invokes the
getFlightPlan real-time service. Real-time features defined on getLocation apply here and there is no need to redefine
these. Real-time features can be also defined at an action level, using the "rtAction” and "rtf" stereotypes, as illustrated by
the getFlightPlan, performComputation and generateCommand service call actions.
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Both getLocation and getFlightPlan service calls are delayed synchronous. Results shall be received and control flows
need to be synchronized (with a 3 ms deadline constraint) before the trajectory computation begins with the invocation of
the internal performComputation operation (synchronous, with a 4ms deadline constraint). Resulting commands can be
generated and relayed through the nav flow port owned by Trajectory, with the invocation of the internal
generateCommand operation (synchronous, with a 1ms deadline constraint).

computeTrajector)y

getLocation

«rtAction, rtf»
performComputation "

!

‘ « rtAction, rtf»
generateCommand |,

getFlightPlan

«rtAction, rtf» ¢

priority=1

occKind = periodic (period=(10,ms), jitter=(2,us))
relDI=(3,ms)

tRef=t0

miss=(1, %, max)
syncKind=delayedSynchronous

Z
7

priority=1

occKind = periodic (period=(10,ms), jitter=(2,us))
relDI=(4,ms)

tRef=t0

miss=(1, %, max)

syncKind=synchronous

.

"

.

priority=1

tRef=t0

occKind = periodic (period=(10,ms), jitter=(2,us))
relDI=(1,ms)

miss=(1, %, max)
syncKind=synchronous

Figure 13.20 - Main behavior of the Trajectory component

Figure 13.21 illustrates another behavior owned by the Trajectory component. This activity is composed of aperiodic
actions triggered upon a reception of a ParameterUpdated signal, sent by the Database component. When the signal is
received, the deadline to handle parameter change is 1ms with a miss ratio of 20% (i.e. a soft deadline). The updateParam
service call action is assigned priority P2. As a consequence, this operation will be invoked when the computeTrajectory

activity is completed.
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handleParameterChange)

occKind = aperiodic()% . @tEvent

~

“ i

s i

« rtAction, rtf» _l
handleEvent

«rtAction, rtf»
updateParam

priority=2

occKind = aperiodic ()
tRef=tEvent
relDI=(1,ms)
miss=(20, %, max)

Figure 13.21 - A trajectory behavior that handles events from Database

Figure 13.22 illustrates a particular execution of the Trajectory behaviors within a period, based on information presented
in previous figures. It shows a possible series of interactions between components in that context. The period starts at
tO[i]. A message is sent from Trajectory to Location, representing the getLocation service call in this sequence diagram.
The message is be stereotyped as a real-time feature, indicating information such as period and deadline. Other
characteristics (e.g., synchronization kind) are implied from real-time features defined on a real-time actions or services.
A message is also sent from Trajectory to FlightPlan, representing the getFlightPlan service call.

Trajectory computation begins when both LocationData and FlightPlanData objects are returned (this internal behavior is
not shown in this diagram). The sequence of actions used to compute the trajectory and generate the navigation
commands shall end by t1[i], 8 ms after the beginning of the period. This allows 2 ms in order to handle aperiodic signals.
An aperiodic signal arriving before t1[i] implies that its resulting processing will be delayed. The updateParam service
call action has a lower priority than the other actions. In this execution scenario, the signal ParamUpdated is received
after the Trajectory component completed its computation. Therefore, the parameter update can be immediately
processed.
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Trajectory execution scenario /

t1[i] — t0[i] < (8, ms)

<<TimedConstraint>>

@t1[i]

:Database

‘Trajectory :LocationAccess :PlanAccess
T T occKind = periodic (period=(10,ms)) B
| | relDI=(3,ms)
o4 ) | tRef=t0
: / « rtf » getLocation() [
@l 7 o i

occKind = periodic (period=(10,ms))
relDI=(3,ms)
tRef=t0

I
i
I
I
I
i
FlightPlanData
I
I
I
I
I

occKind = aperiodic() k

@i+ "

« rtf » paramUpdated(paramValue)
|

Figure 13.22 - A Trajectory execution scenario within a period

Note: We assume here that all the components rely on a same global clock.
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14 Detailed Resource Modeling (DRM)

The objective of this chapter is to provide specific modeling artifacts to be able to describe both software and hardware
execution supports. It specializes generic concepts offered by the previous General Resource Modeling (GRM) chapter.
As depicted in Figure 14.1, the DRM chapter consists of both packages:

» The Software Resource Modeling (SRM) package, which intends to describe application programming interfaces of
software multi-tasking execution supports.

» The Hardware Resource Modeling (HRM) package, which intends to describe hardware execution supports, through
different views and detail levels.

CoreElements

NF Ps

~. L

3 GRM r

DRM
(Detailed Resource Modeling

SRM
(Software Resource Modeling

HRM
(Hard ware Resource Modeling

Figure 14.1 - Detailed Resource Modeling (DRM) overview

14.1 Software Resource Modeling (SRM)

14.1.1 Overview

There are mainly two approaches to design software real-time and embedded (RTE) applications: the sequential-based
design approach (also called loop-design) and the multitask-based design approach The former approach consists in
designing applications as a set of ordered sequential actions, whose order is pre calculated in order to satisfy the real-time
features. The multitask-based method aims at designing applications as a set of units executing concurrently and
interacting (i.e., communicating and synchronizing) via specific mechanisms provided by a specific execution support.
That support is in charge of real-time and embedded features (e.g., time constraints, determinism and memory footprint).
It provides a set of resources and services through its application programming interface (API). That APl may be either
standard or specific (proprietary or commercial).

The widespread approach used to design software RTE applications is the multi-tasking-based approach build upon a real-
time operating system (RTQOS) as the execution support. Hence, The Software Resource Modeling (SRM) chapter
specifies a set of modeling artifacts that can be used to describe the structure of such support. More specifically, it is
looking to depict software resources and software services describing in multi-tasking (API). Thus, it provides:

» Modeling artifacts to design in a unified way RTOS-like software execution support API through the definition of
specific UML profile: the SRM (Software Resource Model) sub-profile.
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« Examples of specific UML model libraries using the SRM profile to describe parts of standardized RTOS APIs, such as
OSEK/VDX (0S 2.2.2) and ARINC (653-1) standards.

The typical use of the SRM UML profile is the description in a unified way of software multi-tasking API in order to
integrate explicitly the execution supports in the design flow (e.g., model library description and model transformation
description). The SRM profile is not a new multi-tasking API standard. It provides modeling artifacts to describe such
API. Moreover, even if this chapter focuses on RTOS APIs, it is useful not only to describe such support but also to depict
specific multi-tasking libraries and more generally multi-tasking framework API (e.g., RTE middleware and RTE virtual
machine).

This chapter is structured around a domain model description and its UML representation. The domain model section
describes domain concepts. That domain model has been build based on a deep analysis of the main RTOS API standards
(SCEPTRE 2, POSIX Issue 6 IEEE std 1003.1, OSEK/VDX 2.2.2, ARINC 653-1), and also of some RTOS (e.g.,
VxWorks 5.5, RTAI 3.1, QNX ....). The UML representation define the UML extensions required to manipulate the
concepts as defined in the domain model and then be able to describe UML model libraries.

14.1.2 Domain View

This domain view is a specialization of the Generic Resource domain model for the purpose of software modelling.
Hence, the SRM model specializes resources and services previously defined in that previous chapter. Commonly, multi-
tasking software resources relate to:

 Concurrent execution contexts (i.e., parallel execution).
« Interactions between concurrent context both to communicate and to synchronize themselves.
« Brokering of hardware and software resources (e.g., device management and memory management).

Hence, the domain model is organized in four packages: SW_ResourceCore which provide the basic software resource
concepts, SW_Concurrency which classifies concurrent execution contexts, SW_Interaction which sorts communication
and synchronization resources and SW_Brokering which refers to hardware and software resources management. Figure
14.2 shows the overall package structure.

GRM CoreElements «modelLibrary»
MARTE::Library.:BasicNFP_Types
A A
«import » | A:\
! « im?ort » « import »
SRM ‘ |
==« IMPOrt y=mammananss  SW_ResourceCore |w@me==a=¢import :>
]
{ H
i . x i
! H «import ] « in’éort » i
41—1—‘ \ — [
| |
SW_Concumency SW_lInteraction SW_Brokering

Figure 14.2 - Structure of the SRM modeling framework
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The purpose and the content of each package are described briefly in subsequent sections. For more formal semantic

details, the reader must refer to the class description (Annex F on page 426).

14.1.2.1 The SW_ResourceCore Package

Figure 14.3 shows the structure of the SW_ResourceCore package.

As a rule, execution supports APIs fulfill real-time and embedded concepts as both a set of types and a set of operations.

For example, a kind of concurrency implementation in the POSIX standard is the concept of "thread." Hence, a type

named "pthread_t" and an operation named "pthread_create” (i.e., operation that implements the creation of a thread)
fulfill POSIX threads. Users make use of those types and operations to implement their applications on the execution
support. The SW_ResourceCore package supplies the framework to model both those types and those operations. Types
are modeled as SwResource. SwResource inherits from the generic resource concept of the GRM::ResourceCore package.
Hence, a SwResource provides by inheritance a set of ResourceServices provided by the GRM package (section 10.2).

In this domain model, there is no distinction between services provided by software resources to the application (for

example: a mailbox mechanism allows users to communicate messages) and services provided to manage those resources
(for example: the creation and the deletion of a mailbox). A SwResource concept gathers both the resource as such and
the manager of that resource. Hence, a SwResource inherits not only from the GRM::ResoureCore::Resource, but also

from the GRM::ResourceManagement::ResourceManager.

CoreElements:: Foundatior :
ModeElement

pServices
GRM::ResourceCore::Resource {subset ownedBehavior}
o GRM::ResourceCore::
mexRIS Integer [0..1] 1 1.* ResourceService
GRM:ResourceManagenment:
Resource Manager
SwResource areateServioes
0.*
deketeServices GRM:ResourceCore:
identifierElements : ModelElement [0.."] 0.* ResourceService
stateElements : ModeElement [0..*] initializeSerw'oe;s
memorySizeFootprint: ModelElement [0..1] 0~

Figure 14.3 - The SW_ResourceCore package overview

paramete

b

CoreElements::Causality::
CommonBehavior ::

Parameter

A specific software service is the SwAccessService used to access elements. In fact, software resources provide some
services to access their characteristics: get and set. Those services may be considered as SwAccessServices. In case of the
"set" one, the Boolean attribute "isModifier" may be true.
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GRM::ResourceCore:

ResourceSer\ice
. accessedEement SwAccessService
CoreElements::Foundation:: Property 1 IsModifier : Bookan

Figure 14.4 - The SwAccessService

14.1.2.2 The SW_Concurrency Package

Figure 14 5, Figure 14 6, Figure 14.7, Figure 14.8 and Figure 14.9, Figure 14.10 show the structure of the
SW_Concurrency package.

The SW_Concurrency package defines SwConcurrentResource which represents entities that compete for computing
resources in order to execute sequential part of instructions. They provide an execution context (e.g., stack, interrupts
enable/disable and registers) for an execution flow (i.e., sequence of actions). The execution context may be confined to
specific memory partition (i.e., virtual address space). Kinds of SwConcurrentResource are interrupt resources and
schedulable resources.

An entry point specifies the execution flow associated to a SwConcurrentResource. That entry point is reentrant whether
it can be invoked while it is still executing from a previous invocation.

CoreElements:Foudations
“ModeElement GRM:ResourceManagemert: SRM:SW_ResourceCore:: GRM:ResourceType::
ResourceBroker SwResouree ConcurencyResource
‘ ‘ +activateSenvices
EriryPairt entnPoints SwConaurrentResource resuTESen 0.
isReentrant : Bodean 0.x type : ArrivalPattern 0.*
rautine 1 activationCapacity : Integer +sugpendServices S GRM: ResourceCore::
i : * ResourceSenice
addr e onourentR red pericdBenents : ModelBement [0..] 0.
CoreBenents:Causalty:: - . pricrityElements : ModeBlement [0..4]
CommonBehavior 0.1 1.* | stackSizeHements : ModeElement [0.] | ... s cn vemnn i
Behavior +disableConcurrencySenvices.
| R
termrateServices  0.*
InterruptResource SwScheduableResource

Figure 14.5 - The SwConcurrentResource overview
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sharedDataResources SRM::SW_Interaction::

0.* SharedDataComResource
SwConcurrentResource
messageResources ’ -

- SRM::SW_Interaction::
type : ArrivalPattem " oy
adivationCapacity : Integer 0. SIS TR ED
periodElements: ModelElement [0..%]
priorityElements : ModelElement [0..%] . I

! . mutualExclusionResources SRM:SW_Interaction:
stackSizeElements : ModelElement [0..*] 0~ SWMUtUE ExauSonReSOUrce

T notificationResources SRM::SW_Interaction::
0.* NotificationResource

Figure 14.6 - The SwConcurrentResource interactions

Interrupt resources match to the physical processing level. In that execution context, the competition for the processing
unit is managed at the physical level by a controller and bypasses the scheduler. Many execution supports provide specific
services to manage context of interrupt service routine (ISR) execution (i.e., interrupt entry point). The Interrupt resource
deals with both hardware interrupts and exceptions (i.e. software interrupts produced by the control processing unit (CPU)
while executing instructions). Exceptions can either be "Processor-detected"” exceptions when the CPU detects an
anomalous condition while executing an instruction or "Programmed" exceptions (also called software interrupts) when
they occur at the request of the programmer. Some example of "Processor-detected"” exceptions are faults (divide error,
device not ready), traps (breakpoints, debug) and aborts (double fault)).

SwConaurrentResource
A « enumeration »
i i Interruptiind
. . InferruptResource routineConnedtServices pi<
istEntryPoints )
{redefines entryPoint} . 0.* Hardwarelnterruption
EntryPoint kind:Interruptkind - GRM:ResourceCore: Processor DetectedExoeption
0.* isMestable : Boolean i ) ResourceService ProgramnedException
) vectorElements : ModelElement [0..] routneDisconnectServices Undef
maskHBerrents : ModeEement [0..*] 0.* Cther

Figure 14.7 - The Interrupt Resource

A specific class of interruptResource is the alarm one which allows the interrupt service routines (i.e. the alarm entry
points) to be connected to a timer and invoked after a one-shot or periodically. A particular software alarm is the
watchdog. If the application doesn't succeed in resetting the watchdog, that mean that the system is not functioning
properly and the alarm occurs, forcing application to execute the watchdog entry point or to reset the processor.
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GRM::Resource Type::
TimerResource InterruptRe source

: 7

SwTimerResource )
timers Alarm

durationElements : ModelElement {redefines duration} 0.*

isWatchdog : Boolean

Figure 14.8 - The Alarm resource

SwSchedulableResources match to the logical processing context. In that context, the competition for the CPU is brokered
at the logical level by a software scheduler. Hence, SwSchedulableResources are linked to an explicit software scheduler
which determines the order and the timing (i.e., the "schedule™) in which those should be executed. Typical examples of
SwSchedulableResource are the POSIX Thread, the ARINC-653 Process and the OSEK/VDX Task.

GRM::Scheduling::
SwConaurrentResource SchedulableResource
SwSchedulableResource joinServices

0.*
scheduler scheduledResource| isStaticSchedulingFeature : Bookan ieldServices GRM::ResourceCore :
1 o, *| isPreemptable : Boolean 0__*>

ResourceService
deadlineElements : ModelEement [0..] )
deadlineTypeElements : ModelElement [0..*] - delyServices -,

timeSliceElements : ModeElement [0..*] 0.

GRM :Scheduling: :Scheduler

Figure 14.9 - The SwSchedulable resource overview

As explained above, software computing resources may be confined in specific MemoryPartitions. A MemoryPartition
represents a virtual address space which insures that each concurrent resource associated to a specific memory partition
can only access and change its own memory space.

SRM::SwResource
conaurrentResources  addressSpace forkServi
SwConcurrentResource } > ’%
1.* 0.1 L - . " ;
7:RemuroeType:: menonSoaces MenoryPartition extServices CRM::ResourceCore::ResourceService
StorageResource | 0, * 0.*

Figure 14.10 - The MemoryPartition resource

14.1.2.3 The SW_Interaction Package

Figure 14.11, Figure 14.12, Figure 14.13, Figure 14.14, Figure 14.15, Figure 14.16 and Figure 14.17 show the structure of
the SW_Interaction package.
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In concurrent execution contexts, resources need to interact both to synchronize their actions and to communicate data.
Hence, SwSynchronizationResources control execution flows whereas SwCommunicationResources manage data flows.

In any case, resources interact according to a waiting policy. For example, considering a blocked WaitingPolicy, the
acquire call part of a mutual exclusion synchronization involves that the caller is blocked in a waiting state (non available
for scheduling) until someone release the shared resource. The waiting resources are queued in a waiting queue
characterized by a policy and a capacity. Those interactions may be limited to a certain partition of the memory (i.e.

isIntraMemoryPartitionInteraction property).

SRM:

:SW_Resource Core:: SwRe sour ce

A

GRM::ResourceManagement:
Resource Broker

GRM:ResourceType::
Commu nication EndPoint

i

L

SwinteractionResour ce

islntraMemoryPartitionInteraction : Boolean
waitingQue uePolicy : QueuePolicyKind
waitingQue ueCapacity : Integer

« enumeration »
QueuePolicyKind

FIFO waitingPolicyElements :ModelElement [0..%]
LIFO

Priority A

Undef

Other

SwCommunication Re source SwSynchronizationResour ce

Figure 14.11 - The SW_InteractionResource package overview

To control execution flow, real-time execution supports provide several kinds of synchronization mechanisms: ones to
notify event and others to control shared data mutual access. The two corresponding resources are
SwMutualExclusionResource and NotificationResource.

GRM::Resource Type::
SynchronizationResource

A

SwinteractionResour ce

A

SwSyn chronization Re sour ce

[

SwMutualExclusionResour ce NoftificationResource

Figure 14.12 - The SwSynchronizationResource overview

SwMutualExclusionResource describes resources commonly used to synchronize mutual access to shared data. As
examples, Boolean semaphore (one token that anybody can release even if it does not get it), mutex (a Boolean
semaphore associated with a concept of ownership : only resource that owns the mutex can release it) and counting
semaphore (several token may be got and released) are kind of SwMutualExclusionResource.
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Figure 14.13 - The MutualExcluionResource Overview

NotificationResource supports control flow by notifying occurrences of conditions to awaiting concurrent resource. As
examples POSIX Signal, OSEK\VDX Event and ARINC-653 Event are NotificationResources. The notified occurrence
can be memorized (i.e. memorized in a buffer), bounded (i.e., each occurrence increments a counter) or memoryless (i.e.,
not memorized in a buffer, hence multiple occurrences are lost).

SwSynchronizationResource
«enumeration »
A OcaurencePolicyKind
flushServices -
« enumeration » NotificationResouroce 0 Menorized
NotificationResourceKind signalSenice ﬁunded
Barri policy : Occurence PolicyKind 0.7 lemoryless
E rn(ter occurenceCountElements : ModelElement [0..*] waitServi GRM::ResourceCore: Undef
ven maskElements : ModelEkement [0..] 0. ResourceService Other
Undef Nt :
mechanism : NotificationResourceKind dearSeniice
Other 0.

Figure 14.14 - The NotificationResource overview

Commonly, to manage data flows, users can manipulate both shared data and message.

SwinteractionResource S )
CommunicationMedia

A B

SwCommunicationResour ce

SharedDataComResource MessageComResource

‘ GRM::ResourceType:

Figure 14.15 - The MessageComResource overview
MessageComResource are artifacts to communicate messages (i.e., a structure of data characterized by for example either

a fixed or a dynamic size, a priority, a type of data.) among concurrent resources. Messages may be queued. Common
mechanisms are MessageQueue, Blackboard, POSIX Pipe.
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Figure 14.16 - The Messaging Communication resource

SharedDataComResource define specific resources used to share the same area of memory among concurrent resources.
They allow concurrent resources to exchange safely information by reading and writing the same area in memory.

SwCommunicationResource

i

readServices
0. - -
SharedDataComResource GRQA .Resoume(_)ore..
writeSeniice: esourceSenice
0.*

Figure 14.17 - The shared data communication resource

14.1.2.4 The SW_Brokering package
Figure 11-16 show the structure of the SW_Brokering package.

The SW_Brokering package gathers resources which broke hardware as well as software resources. For example, kind of
brokering actions are allocation, hardware device access and so on.

GRM:Ri Type:
CSOUTEE T Ype SRM::SW_ResourceCor e :SwResource

ResourceBroker
DeviceBroker MemoryBroker

Figure 14.18 - The SW_BrokerResource Package Model
A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support. By initializing that resource,

user makes devices accessible for software. Commonly, deviceBroker resources are based on file mechanisms.
DeviceBroker may be buffered (i.e., in which data is read and written in large chunks and buffered privately).
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«enumeraton> GRM: ResourceManagement: ; i
AccessPolicyKind U S o SRM::SW_ResourceCore: SwResource
Read
Wiite
ReadWiite
Undef ‘ ‘
Other
DeviceBroker closeServices
. 0.*
'aoce$Poicy : AccessPolicyKind | pntrolSenvices GRM:-ResourceCore:
isBuffered : Boolean 0 R
GRM:ResourceType:: |devices Senvi
DeviceResource O*S 0.*

\ readServices /k 0.*

writeServices| 0..

Figure 14.19 - The DeviceBroker overview

MemoryBroker gathers allocation, mapping (map real memory onto the virtual address ranges used in memory partition)
and protection of memory. For example, memory paging and memory swapping techniques impose severe and
unpredictable delays in execution time. Thus, applications can use page-locking facilities, such as Lock and UnLock
services, to declare that certain blocks of memory must not be paged or swapped.

GRM:ResourceManagement:: i .

ResourceBroker ‘ SRM::SW_ResourceCore: SwResource ‘

lockServices

MemoryBroker 0.7

unLodkServices

memori [ [ 0.*

; aaessPolicy : AccessPolicykind

. . s . . "
CRM:ResureType: memoryBlodkAdcressHlements : ModeElement [0. ] mepSenices. | GRM:ResouroeCore:
SRS ax memoryBlodkSizeBerrents : ModelHerrent [0..%] 0.. Resource Service

unmepSenices

0.*

Figure 14.20 - The MemoryBroker overview
14.1.3 UML Representation

This section contains a definition of each stereotype that is defined for the software resource modeling profile (SRM). The
first sub-section describes rationales for matching domain model concepts to UML profile concepts (i.e. sub-profile,
stereotypes, tag and constraints). Then, the purpose and the content of each sub-profile are briefly described in a second
sub-section. Finally, a third section is dedicated to a detailed description of each stereotype.

As the SRM profile is intended to provide modeling artifacts to describe APIs of multi-tasking execution support,
rationales have been made to implement domain model concepts in a UML profile:

» The MARTE::CoreElements::ModelElement metaclass is matched to the UML.::Kernel::Classes:: TypedElement
metaclass. This matched rule allows users to reference as well structural features (for example
UML.::Kernel::Classes::Property) as behavioral features (for example UML.::Kernel::Classes::Parameter). Figure 14.21
shows one example of the SwResource matching.
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«metaclass »
Classifier

SwResource j [ *
identifierElements : ModelElement [0..*]

«stereotype»
SwResource

identifier Elements : TypedElement [0..*]

(i) domain model (i) UML prcfile

Figure 14.21 - SRM Matched rule on ModelElement metaclass

» As Associations between ResourceService and SwResource are navigable in one way, the association ends relative to
the SwResource metaclass are matched to SwResource stereotype tags. Moreover, the ResourceService metaclass is
matched to the UML.::Kernel::Classes::BehavioralFeature. In UML, a behavioral feature specifies that an instance of a
classifier will respond to a designated request by invoking a behavior. Hence, services described in APIs are kind of
behavioral features (i.e. behavior signature). Figure 14.22 shows one example of the SwResource matching.

« metaclass »
Classifier

createServices )
SwResource o ResourceService *

« stereotype»
SwResource

createServices : BehavioralFeature [0..%]

(i) domain model (i) UML profile
Figure 14.22 - SRM Matched rule on Association between ResourceService and SwResource

» Associations between domain model concepts are matched both to specific stereotype tags and profile constraints.
Figure 14.23 shows one example of the SwConcurrentResource matching.

« metaclass » « metaclass »

j E Classifier Classifier

« stereotype» « stereotype»
MemoryPartition SwConcurrentResource MemoryPartition

SwConcurrentResource

addressSpace |, 0..1

addressSpace : TypeElement [0..1]

Constraint : Type of the addressSpace value must be
stereotyped as “MemoryPartition”

(i) UML profile

Figure 14.23 - SRM Matched rule on Associations
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14.1.3.1 Profile diagrams

Figure 14.24 shows the overall profile structure. The purpose and the content of each sub-profile are described in a
subsequent sections.

«Profile» «Pro file » « modelLibrary »
GRM Causality MARTE_Library::BasicNFP_Types
> A
« import »
; i 1
«profile» « |mp_or » «import »
SR M 1 i

) « pro file » .
«Ilmport» - SW_ResourceCore - « import »
% !
«import» i
1 ‘ 41—‘ : |
« profile » « profile» « profile»'
SW _Concurrency SW_Brokering SW_Interaction

Figure 14.24 - The SRM profile overview

The SW_ResourceCore sub-profile aims to describe foundations of the SRM profile. It matches to the SW_ResourceCore
package (section 14.1.2.1 on page 174).

«profile»
SW_ResourceCore

« stereotype »
yp « stereotype»

GRM::FZ;source GRM::GRService

« sterotype » « sterotype »

SwResource SwAccessService
identifierElements : TypedElement [0..*] isModifier : Boolean
stateElements : TypedElement [0..*] accessedElement : Property [1]

memorySizeFootprint : TypedElement[0..1]
createServices : BehavioralFeature [0..*]
deleteServices : BehavioralFeature [0..%]
initializeServices : BehavioralFeature [0..%]

Figure 14.25 - The SW_ResourceCore profile overview

The SW_Concurrency sub-profile matches to the SW_Concurrency package (section 14.1.2.2 on page 175). It aims to
provide modeling artifacts to describe software concurrent execution contexts.
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«profile»

SW_Concurrency
«stereotype »
SRM:SW._ResourceCore SwResource «metadass »
UML2::Qasses: Kemel::NameSpace
6& « gereotype»
«stereotype» SRM:SW_ResourceCore:: SvResource
« metadass » SwConcurrentResour ce

UML2::Classes: Kernel:: Dependency

i

«metadass »
UML2: Classes: Kernel: BehavioralFeature

=

« stereotype»
EntryPoint

isReentrant: Bookean

routine : BehavioralFeature [1]

type : ArivalPattem

adivationCapadity : Integer

entryPoints : Blement [*]

addressSpace : TypedHenent []

periodElements : TypedBement [*]
priorityBlements : TypedBerent []
stadSizeBerrents : TypedBenent [*]
adivateServices : BehavioralFeature[*]
enableConcurrencyServices : BehavioralFeature [*]
resumeServices : BehavioralFeature [*]
suspendSenvices : BehavioralFeature [*]
terminateSenices: BehavioralFeature [*]
disableConcurrencyServices : BehavioralFeature [*]
shareDataResources: TypedEement[*]
messageResouraes : TypedBement[*]
mutualExdusionResources : TypedElement]*|

« stereotype »
MenonPartition

oonaurrentResources : TypedBlement [¥]
memorySpaces: TypedElement [*]
fork : BehavioralFeature[*]

ext : BehavioralFeature [

«enumeration » notificationResources : TypedBlement[*]
Interruptkind Z>
Hardwarelnterruption ‘
ProcessorDetectedException
o e e
Undef SwSchedulbleResource
Other kind:Interruptkind
isMaskable : Boolean isStaticSchedulingFeature : Boolean
vedorHements : TypedElement [*] isPreenptable : Boolean
maskBerrents : TypedHement[*] schedulers: NamedBerrent [1]
RV routine Conned Services : BehavioralFeature [*] deadineElements : TypedBement [*]
T merR&souroe routineDisconnectSenvices : BehavioralFeature[*] deadineTypeHements: TypedBement [*]
timeSliceHlements : TypedBement []
delaySenvices : BehavoraFeature[*]
joinServices : BehavioralFeature[]
STimerResource « S‘j;‘rfynpe” yieldServices : BehanioralFeature["

isWatchdog : Boolean

durationHements: TypedElement {redefines duratior}

timers : TypedElement [*]

Figure 14.26 - The SW_Concurrency profile overview

The SW_Interaction sub-profile describes communications and synchronizations among concurrent execution contexts. It
matches to the SW_Interaction package (section 14.1.2.3 on page 177).
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«profile»
SW._Interaction

« stereotype»

SRM:SW _ResourceCore:: SwResource

readServices : BehavioralFeature [0..*]
writeServices : BehavioralFeature [0..%]

isFixedVessageSize : Bookan

mechanism : MessageResourceKind
messageSizeElements :TypedElement [*]
messageQueueCapacityElements: Typed|Element [*]
messageQueuePolicy : QueuePoliKind [0..1]
sendServices : BehavioralFeature [0.*]
receiveServices : BehavioralFeature [0..]

« stereotype » .
SwinteractionResource :« enum%né
isintraMemoryPartitionlnteraction : Boolean
waitingQueuePolicy : QueuePolicyKind FIFO
waitingQueueCapacity : Integer LIFO
UEETETED waitingPolcyEements : TypediElement [] CEREEETED Priority
GRM: CommunicationMedia GRM: SynchronizationResource Undef
7 } ? =
|
‘ « stereotype » ‘
SwCommunicationResource « stereotype »
Z% SwSynchronizationResource
| ‘ ‘
«Stereotype » M&é?;(ng&;uroe « sereatype » «stereotype »
SharedDataComResource NotificationResource SwMutualExclusionResource

ocaurence : Notificationkind

mechanism : NotificationResourceKind
ocaurenceCountElements : TypedElement [*]
maskBlements : TypedElement [*]
flushServices : BehavioralFeature[*]
signalServices : BehavioralFeature [*]

mechanism : MutualExdusionResourceKind
ooncurrentAccessProtocol : ConaurrentAccessProtocolKind
accessTokenElements : TypedElement [*]

releaseServices : BehavioralFeature [*]

aoquireServices : BehavioralFeature [*]

waitSenvices : BehavioraFeature []
dearServices : BehavioralFeature [*]

« enumeration » « enumeration » «enumeration » « enumeration» « enumeration »
ConcurrentAccessProtocoKind
MessageResouroeind NotificationKind NotificationResourceKind MutualExdusionResour ceKind
lessageQu : PP
'\Pill e Memorized Event BookanSemapore PCP
pe Bounded Barrier CountSemaphore NoPreempion
Biadkboard Memoryless Undef Mutex e
Undef Undef Gher Undef Other
Other Other Other

Figure 14.27 - The SW_Interaction profile overview

The SW_Brokering sub-profile matches to the SW_Brokering package (section 14.1.2.4). The SW_Brokering sub-profile
describes stereotypes to annotate hardware and software resource management.
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« profile»
SW_Brokering

« stereotype»
SRM::SW_ResourceCore:SwResource

3

«stereotype » « stereotype » « enumeration »
DeviceBroker Me moryBroker AccessPolicyKind
accessPolicy : AccessPolicyKind acce ssPolicy : AccessPolicyKind Read
isBuffered : Boolean memories : TypedElement [¥] Wiite
devices : TypedElement [0.."] me moryBlockAddressElements : Typed Element [¥] ReadWrite
closeServices : BehavioralFeature[*] me moryBlockSizeElements : TypedElement [¥] Undef
controlServices : BehavioralFeature[*] lockServices : BehavioralFeature [*] Other
openServices : BehavioralFeature [*] unlockService s : BehavioralF eature [*]
readServices : BehavioralFeature [*] mapServices : BehavioralFeature [¥]
writeServices : BehavioralFeature [*] unMapServices : BehavioralFeature [¥]

Figure 14.28 - The SW_Brokering profile overview

14.1.3.2 Profile elements descriptions

Alarm (from MARTE::SRM::SW_Concurrency)

This stereotype matches to the domain concept Alarm (section F.8.1) denoted in Annex F.

Alarm resource provides executing context to a user routine, which must be connected to a timer invoked after a one-shot

or periodically.

Extensions

« None

Generalizations
« InterruptResource (from SW_Concurrency)

Associations

* None
Attributes
 isWatchdog: Boolean [0..1] specifies if the alarm is a watchdog.
« timers: TypedElement [0..1] specifies the timer which raises the signal to execute the entry-point of the alarm

resource.

Constraints

[1] Types of timers values must be stereotyped either as "SwTimerResource".
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Notations
The image associated with that stereotype is:

Figure 14.29 - The alarm notation

AccessPolicyKind (from MARTE::SRM::SW_Brokering)

The AccessPolicyKind enumerates common policy to access a resource.

Description
+ Read Read access only.

» ReadWrite Read and write access are allowed.

« Write Write access only.

« Undef Undefined policy.

« Other Other user's specific policy.
ConcurrentAccessProtocolKind (from MARTE::SRM::SW_Interaction)

The ConcurrentAccessProtocolKind enumerates common protocol to access mutually a shared resource.

Description
» NoPreemption Lock the concurrency to avoid preemption when a resource is accessing a shared variable.

« PCP Priority Ceiling protocol.
- PIP Priority Inheritance Protocol.
e Undef Undefined policy.
« Other Other user's specific policy.
DeviceBroker (from MARTE::SRM::SW_Brokering)
This stereotype matches to the domain concept DeviceBroker (section F.8.4) denoted in Annex F.

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support.

Extensions
» None.

Generalizations
« SwResource (from SRM::SW_ResourceCore) on page 196
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Associations
* None

Attributes

« accessPolicy: AccessPolicyKind [0..1]
access policy of the device (read, write ...).

« closeServices: BehavioralFeature [0..*]
services which make the hardware device unavailable from software resources.

« controlServices: BehavioralFeature [0..*]
services which initialize and broke the device.

« devices: TypedElement [0..*]
hardware device brokered by the driver.

« isBuffered: Boolean[0..1]
if true, data is read and written in large chunks and buffered privately.

» openServices: BehavioralFeature [0..*]
services which establish the connection between a device and the resource. This service makes
available the device to software resources.

« readServices: BehavioralFeature [0..*]
services which read data from the device.

 writeServices: BehavioralFeature [0..*]
services which write data to the device.

Constraints
[1] Types of devices values must be stereotyped either as "DeviceResource" or as "DeviceBroker" sub-Stereotype.

Notations
The icon associated with that stereotype is:

Figure 14.30 - The deviceBroker notation

EntryPoint (from MARTE::SRM::SW_Concurrency)

This stereotype matches to the domain concept EntryPoint (section F.8.5) denoted in Annex F.

The EntryPoint supply the routine (i.e., operations) executed in the context of the Sw ComputingResource.

Extensions

» Dependency (from UML::Classes::Kernel).
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« BehavioralFeature (UML.::Classes::Kernel).

Generalizations

» None.

Associations

» None.

Attributes

- isReentrant: Boolean [0..1]
specifies if a single copy of the routine instructions in memory can be shared by multiple concurrent
resource. If true, instructions described in the routine could be called from multiple concurrent resource
contexts simultaneously without conflict.

« routine: BehavioralFeature [1]
specifies the routine which has to be executed in the context of the software computing resource.

Constraints

» None

InterruptResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept InterruptResource (section F.8.6) denoted in Annex F.

InterruptResource defines an executing context to execute user-delivered routines (i.e., entry point) further to hardware or
software asynchronous signals.

Extensions
» None

Generalizations
« SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations

» None

Attributes

« kind: InterruptKind [0..1]
specifies the kind of interrupt.

- isMaskable: Boolean [0..1]
interrupts can either be maskable or not. Only few critical signals raise non maskable interrupts.
The control processor unit (CPU) always recognizes those. Maskable interrupts can be in two
states: unmasked (i.e. recognized by the CPU) or masked (i.e. ignored by the control unit). For
example, a schedulable resource can explicitly mask maskable interrupts to avoid its pre-emption
in some code sections.
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« maskElements: TypedElement [0..*]
specifies elements which map the semantics of the interrupt mask.

« routineConnect: BehavioralFeature [0..*]
services which connect the routine to the interrupt vector.

o routineDisConnect: BehavioralFeature [0..*]
identifies services which disconnect the routine to the interrupt vector.

o 1 vectorElements: TypedElement [0..*]
specifies elements which map the semantics of the interrupt vector.

Constraints

« None

Notations

The image associated with that stereotype is:

vl

Figure 14.31 - The interrupt notation

InterruptKind (from MARTE::SRM::SW_Concurrency)
The InterruptKind enumerates different kind of interrupt.

Description

» Hardwarelnterrupt
The interrupt source is an hardware one.

» ProcessorDetectedException
Software interrupts produced by the CPU control unit while it detects an anomalous condition in
executing an instruction. Some examples of "Processor-detected™ exceptions are faults (divide
error, device not ready) and aborts (double fault).

» ProgrammedException
Software interrupts produced by an explicit request of the programmer. Some examples of
"ProgrammedException™ exceptions are traps (breakpoints, debug).

o Undef Undefined mechanism.

« Other: Others mechanisms.

MemoryBroker (from MARTE::SRM::SW_Brokering)

This stereotype matches to the domain concept MemoryBroker (section F.8.8) denoted in Annex F.

MemoryBroker resources provide primarily services to manage the memory allocation, the memory protection and the
memory access.
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Extensions
» None

Generalizations

« SwResource (from SW_ResourceCore) on page 196

Associations

» None

Attributes

« accessPolicy : AccessPolicyKind [0..1]
defines the access policy to the memory (read, write ...).

« memories: TypedElement [0..*]
specifies the hardware device type brokered by the driver.

« memoryBlockAddressElements: TypedElement [0..*]
specifies elements which maps the semantic of the memory block address.

« memoryBlockSizeElements: TypedElement [0..*]
specifies elements which maps the semantic of the memory block size.

« lockServices: BehavioralFeature [0..*]
services which lock the paging or the swapping.

« mapServices: BehavioralFeature [0..*]
services which map real memory onto the virtual address ranges used in memory partition.

« unlockServices: BehavioralFeature [0..*]
services which unlock the paging or the swapping.

« unMapServices: BehavioralFeature [0..*]
services which unmap real memory onto the virtual address ranges used in memory partition.

Constraints

[1] Types of memories values must be stereotyped either as "StorageResource” or as "StorageResource" sub-Stereotype.

Notations

The image associated with that stereotype is:

—

Figure 14.32 - The memoryBroker notation

MemoryPartition (from MARTE::SRM::SW_Concurrency)

This stereotype matches to the domain concept MemoryPartition (section F.8.9) denoted in Annex F.
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MemoryPartition represents a virtual address space and insures that each concurrent resource associated to a specific
memory partition can only access and change its own memory space.

Extensions
» NameSpace (from UML::Kernel::Classes)

Generalizations
» SwResource (from SRM::SW_ResourceCore) on page 196

Associations
« None

Attributes

« concurrentResources: TypedElement [0..*]
specifies concurrent resource executing in that address space.

- exitServices: BehavioralFeature [0..*]
release an address space.

« forkServices: BehavioralFeature [0..*]
spawn a new address space.

« memorySpaces: TypedElement [0..*]
specifies parts of the memory linked to this address space.

Constraints

[1] Types of concurrentResources values must be stereotyped either as "SwConcurrentResource™ or as
"SwConcurrentResource" sub-Stereotype.

[2] Types of memorySpaces values must be stereotyped either as "StorageResource" or as "StorageResource"
sub-Stereotype.

Notations
The image linked to that stereotype is:

Figure 14.33 - The memoryPartition notation

MessageComResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept MessageComResource (section F.8.10) denoted in Annex F.

MessageComResource defines communication resource to exchange message
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Extensions
» None

Generalizations

« SwCommunicationResource (from SRM ::SW__Interaction) on page 193

Associations

» None

Attributes

« isFixedMessageSize : Boolean
specifies whether all messages managed by the resource have the same size.

» mechanism: MessageResourceKind [0..1]
specifies the kind of mechanism use to exchange message

« messageQueueCapacityElements: TypedElement [0..1]
specifies the upper limit of message number allowed in a queue.

« messageQueuePolicy: QueuePolicyKind [0..1]
defines the algorithm to manage the outgoing message queue.

» messageSizeElements : TypedElement [0..*]
specifies the parameter used in message exchange services to define the size of the message.

« receiveServices : BehavioralFeature [0..*]
identifies services which get a message.

 sendServices : BehavioralFeature [0..*]
identifies services which set a message.

Constraints
* None

Notations
The image associated with that stereotype is:

=)

Figure 14.34 - The MessageComResource notation

MessageResourceKind (from MARTE::SRM::SW_Interaction)

The MessageResourceKind enumerates common mechanisms provide by platform to exchange data.
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Literals
» Blackboard Defines a one message buffer.

» MessageQueue Defines a multiple message buffer.

» Pipe Defines POSIX Pipe mechanism, which allows data flow among separate memory partition.
o Undef Undefined mechanism.
« Other Other mechanisms.

MutualExclusionResourceKind (from SW_Interaction)

The MutualExlusionResourceKind enumerates common mechanisms provide by platform to synchronize resource.

Literals

» BooleanSemaphore
defines a binary semaphore. It is a flag available or unavailable. There is no proprietary
purpose. Anybody can give the semaphore even if it does not take it.

- CountSemaphore
defines a counting semaphore for which every time the semaphore is given the count is
incremented; every time the semaphore is given the count is decremented.

* Mutex
defines a binary semaphore associated with a propriety concept, resource can give the
semaphore if and only if the resource takes it.

o Undef undefined mechanisms.

« Other other mechanisms.

NotificationKind (from MARTE::SRM::SW_Interaction)
The NotificationKind enumerates common policy to access a resource.

Literals
» Bounded each occurrence increments a counter.
» Memorized occurrences are memorized in a buffer.
» Memoryless occurrences are not memorized in a buffer, hence multiple occurrences are lost.
» Undef undefined.
« Other user's specific policy.

NotificationResourceKind (from MARTE::SRM::SW_Interaction)
The NotificationResourceKind enumerates common mechanisms provide by support to notify occurrence.

Literals
o Barrier  barrier mechanism.
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Event event mechanism.
Undef undefined mechanisms.

Other other mechanisms.

NotificationResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept NotificationResource (section F.8.15 page 505) denoted in Annex F.

NotificationResource supports control flow by notifying the occurrences of conditions to awaiting concurrent resources.

Extensions

None

Generalizations

SwSynchronizationResource on page 198

Associations

None

Attributes

clearServices: BehavioralFeature [0..*]
services which erase one or several occurrences.

flushServices: BehavioralFeature [0..*]
services to release any resource which wait for an occurrence.

maskElements: TypedElement [0..*]

elements which map the semantic of the mechanism to mask occurrence.

mechanism : NotificationResourceKind
identifies notification mechanism.

occurenceCountElements: TypedElement [0..*]
elements which map the semantic of the occurrence number.

occurenceKind : NotificationKind
specifies the kind of notification.

signalServices: BehavioralFeature [0..*]
services which send one or several occurrences.

waitServices: BehavioralFeature [0..*]
services to wait one or several occurrences.

Constraints

None

Notations

The image associated with that stereotype is:
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Figure 14.35 - The NotificationSynchronization notation

QueuePolicyKind (from MARTE::SRM::SW_Interaction)
The QueuePolicyKind enumerates algorithms provide by resources to order a queue.

Literals
« FIFO the first element put in the queue is the first outgoing.

- LIFO the last element put in the queue is the first outgoing.
 Priority each element is annotated with a priority.
« Undef  undefined.

« Other other algorithms.

SharedDataComResource (from MARTE::SRM::SW_Interaction)

This stereotype matches to the domain concept SharedDataComResource (section F.8.17) denoted in Annex F.

SharedDataComResource define specific resource used to share the same area of memory among concurrent resources.

Extensions

« None

Generalizations

« SwCommunicationResource (from SRM:SW_ Interaction) on page 193

Associations
« None

Attributes
« readServices: BehavioralFeature [0..*]services which read the shared data.

« writeServices: BehavioralFeature [0..*]services which write the shared data.

Constraints

« None

Notations

The image associated with that stereotype is:
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Figure 14.36 - The SharedDataComResource notation

SwAccessService (from MARTE::SRM::SW_ResourceCore)
This stereotype matches to the domain concept SwAccessService (section F.8.18) denoted in Annex F.

The services provided by a software resource to access its characteristics: the accessor and the setter.

Extensions
» None

Generalizations
« GRService (from GRM)

Associations

« None
Attributes
« accessedElement: Property [1] the property which is accessed by this service.
« isModifier; Boolean specifies if the access modify the resource feature pass by parameters of

this service.

Constraints
» None.

SwCommunicationResource (abstract) (from MARTE::SRM::SW_Interaction)
This abstract stereotype matches to the domain concept SwCommunicationResource (section F.8.19) denoted in Annex F.

SwCommunicationResource defines data exchange interaction among concurrent resources.

Extensions
» None.

Generalizations

« SwinteractionResource (from SRM ::SW_Interaction) on page 195.

« CommunicationMedia (from GRM) on page 102.

Associations
« None.
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Attributes
* None

Constraints

« None

SwConcurrentResource (abstract) (from MARTE::SRM::SW_Concurrency)

This abstract stereotype matches to the domain concept SwConcurrentResource (section F.8.20) denoted in Annex F.

This resource defines entities which may execute concurrently sequential part of instructions.

Extensions

« None

Generalizations

» SwResource (from SRM::SW_ResourceCore) on page 196

Associations

« None

Attributes

- activateServices: BehavioralFeature [0..*]
services which make available a resource to execute. As result, activated resource are ready to
compete for the computing resource. In case of interruption, it results in explicitly raised the
interrupt (i.e to set of the interrupt).

« activationCapacity: Integer [0..1]
specifies the activation number allowed in the system.

« addressSpace: TypedElement [0..1]
defines the address space in which the flow is executed.

- disableConcurrencyServices : BehavioralFeature [0..*]
services which lock the competition for a computing resource. As result, any concurrent resource
cannot pre-empt the executing resource.

« enableConcurrencyServices: BehavioralFeature [0..*]
services which unlock the competition for a computing resource. As result, any concurrent resource
can pre-empt the executing resource.

« entryPoints: Elements [0..*]
defines entry points of the resource.

« periodElements: TypedElement [0..*]
elements which maps the semantic of the resource period in case of a periodic concurrent resource.

« priorityElements: TypedElement [0..*]
elements which maps the semantic of the resource priority.
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« stackSizeElements: TypedElement [0..*]
elements which maps the semantic of the resource stack size.

- type: ArrivalPattern (from MARTE_Library::BasicNFP_Types::ArrivalPattern)
identifies the occurrence execution pattern.

« resumeServices: BehavioralFeature [0..*]
services which make available a resource to compete with either ready or pended concurrent
resource. Pended resources are blocked due to the unavailability of some other resources. In case
of interrupt, resume service is equivalent to an enable service.

« suspendServices: BehavioralFeature [0..*]
services which make unavailable a resource to execute. In case of interrupt, suspend service is
equivalent to disable service.

- terminateServices: BehavioralFeature [0..*]
services which stop definitively resource execution.

« sharedDataResources: TypedElement [0..*]
resources use to share data among computing resources. Those resource types must be stereotyped
as "SRM::SW_ Interaction::SharedDataComResource".

« messageResources: TypedElement [0..*]
resources use to communicate messages among computing resources. Those resource types must
be stereotyped as "SRM::SW__Interaction::MessageComResource".

« mutualExclusionResources: TypedElement [0..*]
resources use to synchronize mutual acesses. Those resource types must be stereotyped as
"SRM::SW_ Interaction::SwMutualExclusionResource".

« notificationResources: TypedElement [0..*]
defines resources use to synchronize computing resources. Those resource types must be
stereotyped as "SRM::SW_ Interaction::NotificationResource".

Constraints

[1] Type of the addressSpace value must be stereotyped as "MemoryPartition".

[2] entryPoints values must be stereotyped as "EntryPoint".

[3] sharedDataResources values must be stereotyped as "SRM::SW_Interaction::SharedDataComResource”.

[4] messageResources values must be stereotyped as "SRM::SW__Interaction::SwMutualExclusionResource".

[5] mutualExclusionResources values must be stereotyped as "SRM::SW_Interaction::SwMutualExclusionResource".

[6] notificationResources values must be stereotyped as "SRM::SW_ Interaction::NotificationResource".

SwinteractionResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwinteractionResource (section F.8.21) denoted in Annex F.

InteractionResource is an abstract concept which denotes generic mechanism to interact among concurrent executing
resources. Synchronization and Communication are specific kind of interaction.
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Extensions
* None

Generalizations
« SwResource (from SRM::SW_ResourceCore) on page 196

Associations

« None

Attributes

- isIntraMemoryPartitionInteraction: Boolean [0..1]
specifies if the mechanism can be accessed from different memory partition (i.e hamespace,
address space).

« waitingPolicyElements: TypedElement [0..*]
elements by which the communication waiting policy is specified: waiting, ready, waiting with a
time out, conditional waiting...

« waitingQueuePolicy: QueuePolicyKind [0..*]
defines the algorithm to manage the resource waiting queue.

 waitingQueueCapacity: Integer [0..1]
the number of resources allowed in the waiting queue.

Constraints
« None

SwMutualExclusionResource (from MARTE::SRM::SW _Interaction)
This stereotype matches to the domain concept SwMutualExclusionResource (section F.8.22) denoted in Annex F..

MutualExclusionResource describe resources commonly used for synchronize access to shared variables.

Extensions
« None

Generalizations
» SwSynchronizationResource on page 198

Associations
« None

Attributes

« accessTokenElements : TypedElement [0..*]
elements which maps the semantics of the token used to access a shared information.

- acquireServices: BehavioralFeature [0..*]
services which get an access token to a shared information.
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« concurrentAccessProtocol : ConcurrentAccessProtocolKind
specifies the protocol applied in concurrent access.

« mechanism : MutualExclusionResourceKind
specifies the kind of mechanism use to mutual exclusion synchronization.

« releaseServices: BehavioralFeature [0..*]
services which release an access token to a shared information.

Constraints
» None

Notations

The image associated with that stereotype is:

Figure 14.37 - The SwMutualExclusionResource notation
SwResource (abstract) (from MARTE::SRM::SW_ResourceCore)
This stereotype matches to the domain concept SwResource (section F.8.23) denoted in Annex F..

SwResource model software structural entities provided to the user by execution supports.

Extensions

» None

Generalizations

» Resource (from GRM on page 117)

Associations
+ None

Attributes

« createServices: BehavioralFeature [0..*]
services which allocate and declare the resource to the system.

« deleteServices: BehavioralFeature [0..*]
services which free and delete the resource from the system.

- identifierElements: TypedElement [0..*]
elements which map the semantic of a resource identifier.

« initializeServices: BehavioralFeature [0..*]
services which initialize the resource.
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memorySizeFootprintElements: TypedElement [0..1]
elements which map the memory size footprint of the resource.

stateElements: TypedElement [0..*]
elements which map the semantic of the resource state.

Constraints

None

SwSchedulableResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwSchedulableResource (section F.8.24) denoted in Annex F..

SchedulableResource are resources which executes concurrently to other concurrent resource.

Extensions

None

Generalizations

SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations

None

Attributes

deadlineElements: TypedElement [0..*]
elements which maps the semantic of the deadline feature.

deadlineTypeElements : TypedElement [0..*]
elements which map the semantic of the deadline criticality degree (e.g., soft and hard).

delayServices: BehavioralFeature [0..*]
services which delay for a lapse of time the execution. The resource is in a dormant state during
this lapse.

isPreemptable: Boolean [0..1]
specifies if the scheduler can pre-empt that kind of resource.

isStaticSchedulingFeature: Boolean [0..1]
specifies if the scheduling parameters (priority, deadline, timeslice ...) are static
(i.e., constants define off-line).

joinServices: BehavioralFeature [0..*]
services which suspend the execution of set of concurrent resource until other concurrent resources
terminates.

scheduler: TypedElement [1]
Specifies the scheduler which orchestrate the concurrent execution of this kind of resource.

timeSliceElements: TypedElement [0..*]
elements which maps the semantic of the timeSlice in case of round robin scheduling
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« yieldServices: BehavioralFeature [0..*]
services which explicitly relinquish the computing resource. They explicitly ask scheduler to reschedule.

Constraints

[1] The type of scheduler value must be stereotyped either as "Scheduler” or as "Scheduler" sub-Stereotype.

Notations

The image associated with that stereotype is:

L]

Figure 14.38 - The SwSchedulableResource notation
SwSynchronizationResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwSynchronizationResource (section F.8.25) denoted in Annex F.

This resource defines interaction mechanisms to synchronize concurrent execution flow.

Extensions
+ None

Generalizations

« SwinteractionResource (from SRM::SW _Interaction) on page 195.
« SynchronizationResource (from GRM) on page 102.

Associations

» None

Attributes
* None

Constraints
» None

SwTimerResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwTimerResource (section F.8.26) denoted in Annex F.

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with
a prefixed maximum resolution, at programmable time intervals.

Extensions

» None
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Generalizations
» TimerResource (from GRM::ResourceTypes) on page 104

Associations

« None

Attributes

 DurationElements : TypedElement [0..*] {redefines GRM::TimerResource::duration}
elements which map the semantic of the interval after which the timer will make evident the elapsed time.

Constraints

« None

Notations
The image associated with that stereotype is:

Figure 14.39 - The SwTimerResource notation
14.1.4 Examples

The following examples illustrate how the SRM sub-profile stereotypes may be used in practice. Several brief case studies
are described for each sub-profile. In a first section, modeling possibilities are exhaustively described. In a second
section, some concrete RTOS concepts are modeling. In addition, section D.5 provides two examples of RTOS API model
library, for OSEK VDX and ARINC-653, build with the SRM profile.

14.1.4.1 Modeling possibilities

The idea of this section is to describe common use of SRM sub-Profile stereotypes. It aims to give an overview of typical
modeling possibilities. The list of examples is by no means exhaustive.

Applying SwResource stereotypes on classifiers

All stereotypes of the SRM sub-profile extend the UML.::Classes::Kernel::Classifier metaclass. Thus, any UML Classifier
sub-metaclass may be extended by those stereotypes (e.g. Class, Interface, Component and AssociationClass). Figure
14.40 and Figure 14.41 illustrate UML Class and UML Component extension.
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« SwSchedulableResource » « SwSchedulableResource » 7
deadineElements =Task:Deadine g deadlineElements = Task ::Deadline « interface »
yieldService = Task: yield() «swSchedulableResource » yieldService = TaskService::yield() «swSchedulableResource » TaskService
~e Task 4 Task -----.{>
~ .
~. +yield()
“~ Deadline : Integer - Deadine : Integer
+yield()
(i) Class (i) Class and Interface

Figure 14.40 - Class extension example

« SwSch‘edulableResour_ce » « interface»
yieldService = TaskService::yield() £Jg ] TaskService
~<) « swSchedulableResource » pe===awr
Task +yield()

Figure 14.41 - Component extension example

Figure 14.42 illustrates the use of an AssociationClass (from UML::CompositesStructures::InternalStructures) to describe
interaction between concurrent computing resources. As the SwinteractionResource stereotype extends the UML
Classifier metaclass, an UML AssocationClass may be stereotyped as any SwinteractionResource sub-stereotype (for
example: NotificationResource, MessageComResource, SwMutualExclusionResource ....). In this example, the execution
support provides concurrent resource to compute instructions: "Alarm” and "Task™. They are described as UML classes
and respectively stereotyped as "Alarm™ and as "SwSchedulableRessource”. In this example, an "Alarm" resource may
interact with a "SwSchedulbaleResource" (i.e. a task) by mean of an event mechanism stereotyped
"NotificationResource™.

O

« Notification Re source »
Event
1
@7 > ! task
0.1
«Alarm » « SwSchedulableResource »
Alarm Task

Figure 14.42 - AssociationClass extension example

Applving SwResource stereotypes on properties

All stereotypes of the SRM sub-profile extend the UML::ConnectableElement meta class (from
UML::CompositeStructures::InternalStructures). Figure 14.43 illustrates the use of such extension to describe interactions
between concurrent computing resources in a memory partition.
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« memoryPartition » H H
Partition

« interruptResource » «messageComResource » « swSchedulableResource »
its : Interrupt[0..%] mbx : MaiBox [0..%] tasks : Task [1..%]

Figure 14.43 - ConnectableElement extension example

Applying the EntryPoint stereotype on dependencies

Figure 14.44 denotes a use of the entryPoint stereotype on an UML::Dependency. This example illustrates a robotic
application build upon a generic API. This design is a part of a robot controller in charge of the motion control. On the
left side, the software designer describes the logical "RobotController" model. On the right side, the SRM profile is used
to describe the MemoryPartiton and the SchedulableResource provided by a generic real-time and embedded API. Then,
a model is described as instances of the MemoryPartition and Schedulable resources. Hence, the Task instances are bound
with their entryPoint by means of UML 2.0 dependency In case of the "t2" instanceSpecifcation, the stereotype
"entryPoint" is used to specify that the "trajectoryControl" operation of a specific MotionController instanceSpecification
is the routine which has to be executed in the context of that schedulable resource.

« model» « Profile »
RobotControllerLogicalModel SRM
« modelLibrary» A
MotionController GenericAPI « aplply »
1

+maxSpeed : Integer

+owner +asks

trajectoryControk()
odometry() 0..1 1.*
« MemoryParttion » « SwSchedulableResource »
Partition Task
: MotionController ‘
\‘\‘-\ « import »
- [ |
« impo_l:t » «model»
« entryPoint » N3 RobotControllerTaskModel
isReentrant = true
« entryPoint » routine = odometry p1 : Partition
isReentrant = true rd ]
routine = trajectoryControl P T 7 S — . Task £ Task
.
« er?t‘ryBoint »
L

Figure 14.44 - EntryPoints examples
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Applyving the SwAccessService stereotype on services

"Get" and "Set" services may be formally clarify with the SwAccessService stereotype. In the example depicted in Figure
14.45, the "sem_getValue" service returns the semaphore value. Hence, it is stereotyped as "SwAccessService". The tag
"accessedElement" specifies that the feature accessed is the property named "value". Therefore, the boolean tag
"isModifier" indicates that this service does not modify the value.

Semaphore « SwAccessService »
accessedElement =value
. isModifier = false

-value : Integer

-’

« swAccessService » +sem_getValue() :Integer ="

Figure 14.45 - SwAccessService example

Tagged values examples

Stereotype properties allow users to precise semantics of elements. For example in Figure 14.40, the "Deadline" property
is tagged to clarify its semantic. It denotes explicitly in the model that among all attributes of this class, one refers to the
task deadline. That is named "Deadline". Thus, it allows tools to distinguish properties and to permit automatic model
transformations (code generation for example).

In the second part of the Figure 14.40, the "TaskService" interface owns a "yield" operation. This operation is tagged as a
"yieldServices" by the "SwSchedulableResource™ stereotype, whereas this stereotype is not applied to the interface. It
means that in the context of a "task", the service to call in order to release the computing resource is the operation "yield"
of the interface "TaskService".

Multiple tagged values for the same tag and multiple tags for the same feature are allowed. On the one hand user can
express formally multiple semantics for the same feature through multiple tags. On the other hand, user can express the
same semantic for multiple features through the same tag. Figure 14.46 describes a "taskSpawn()" service as both task
creating and task activating. In the same way, to activate a task, you can either call the "taskSpawn()" service or the
"taskActivate()" one. Figure 14.47 illustrates that user may reference UML properties as well as UML parameters to the
same tag.

« SwSchedulableResource »
createServices = Task taskSpawn()
activateServices = Task :taskSpawn(), Task: :taskActivate () « swSchedulableResource »
Task

e
~
a
~
.
o

.,

® +taskSpawn()
+askAdtivate ()

Figure 14.46 - Multiple tags and multiple tagged services
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« SwSchedulable Resource »
priorityElements = Task::Priority, Task:taskSpawn::prio

« swSchedulableResource »
Task

.,
-,
2
-
-,
',
-y
-,

Y Priority : Integer

“~

+taskSpawn(prio : Integer)
+taskActivate ()

Figure 14.47 - Multiple tagged features

14.1.4.2 Specific RTOS APl examples

The idea of this section is to describe concrete use of SRM sub-Profile stereotypes. Those stereotypes are applied to
specific RTOS concepts. Some explanations are given for each case study. In addition, large examples of specific UML
model libraries using the SRM profile are described in the section D.4. Thus, some parts of OSEK/VDX (OS 2.2.2) and
ARINC (653-1) APIs are described as examples.

SwSchedulableResource and MemoryPartition example

To illustrate the use of the "SwSchedulableResource" and "MemoryPartition" stereotypes, the Figure 14.48 is aiming to
represent the POSIX Process and Pthread concepts modeled as UML classes. POSIX process is an address space with one
or more threads executing within that address space, and the required system resources for those threads. Each process
shall be controlled by a priority. Hence, POSIX Process is conforms to both a "MemoryPartition" and a
"SwSchedulableResource"”. The PID attribute is the process identifier. Hence, this attribute is assigned to the
"identifierElements” inherited tagged value of the "SwResource" stereotype. That tagged value clarifies the semantic of
the PID attribute. It explains explicitly in the model that the attribute named "PID" refers to the process identifier. POSIX
thread (i.e, pthread) is a single flow of control within a process. Anything whose address may be determined by a thread
is accessible to all threads in the same process. Each thread shall be controlled by an associated priority. Hence, a POSIX
Thread is a conformed to a "SwSchedulableResource™ and associated with the "Process" classifier.

« MenoryPartition »

conaurrentResource = thread aremoryPartion» « SwSchedulableResource » N
« SWResOr e » « swSchedulableResource » «swScheduisbleResource » [ adressSpace = onmer
identifierBlements =PID _— Process w Pifread =-="*% « SwComputingResource »

« SwCompuiingResource » :SPIdE)ed pid _t . . " | +sched_priority : Integer priorityEements = sched_priority
priorityElements = sched_prioriy _priorty : Integer

Figure 14.48 - POSIX Process and Pthread example

InterruptResource example

Figure 14.49 illustrates the OSEK/VDX interrupt resource modeled as an UML class. OSEK interrupts are scheduled by
hardware while tasks (i.e., OSEK schedulableResource) are scheduled by the scheduler. Interrupts can interrupt tasks
(preemptable and non preemptable tasks). OSEK offers fast functions to suspend (i.e., disable) and resume (i.e., enable)
interrupts.
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« SwComputingResource »

Type= Aper.iodic «interruptResource » xi'ﬂ
resumeServices = EnableAlllinterrupts, ResumeAllnterrutps, ResumeOSiInterrupts Interrupt
suspendSenvices = DisableAllinterrupts, SuspendAllinter rupts, Suspend OSInterrupts

+EnableAllinterr upts()

« InterruptResource » +DisableAllnterrupts()

kind = hardware +ResumeAllinterrupts()
+SuspendAllinterr upts()
+SuspendOSinterrupty)
+ResumeOSInterrupts()

Figure 14.49 - OSEK/VDX Interrupt example

Alarm example

Figure 14.50 illustrates the use of the "Alarm" stereotype. The OSEK operating system provides services for processing
recurring events. Such events may be for example timers that provide an interrupt at regular intervals, or encoders at axles
that generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle, or other regular application
specific triggers. The OSEK operating system provides a two-stage concept to process such events. The recurring events
(sources) are registered by implementation specific counters. Based on counters, the OSEK operating system software
offers alarm mechanisms to the application software, such as services to activate tasks, set events or call an alarm-
callback routine (i.e., the alarm entry point) when an alarm expires. Note that the SwTimerResource is directly used to
stereotype OSEK/VDX Counter.

«aam» @zﬂ
Aam
« SwConaurrentResource» « SwTimerResource »
pendSenices : CancelAl +Adion : AlamActionkind {eadOnly} «swTimerResource » ® | durationElements = minCycle
sl es: am +AutoStart : Boolean {readOnly} Counter -
fimer.

«Mam» +DedareAarm (AlrmiD : AamiType) 1] +mexalovedvaue : UNT2 « enumeration »
i8Watchdog = falss +GstAlarrBase(NarmiD: alarniType Info: alermBaseRefType) : statusType +minCyde : UINT32 AarrmActionkind
timers =tirmer +GatAlarm(AarmiD : dlarniType, Tick : tidRefType) : statusType +icksPerBase : UINT32

+SetRelAlam (AlarmiD: amiType, Start: tickType, Cyde : tickType): datusType ACTVATETAK

+CancelAlam (AlamiD: alarmiType) : statusType SETEVENT BACK

Figure 14.50 - OSEK/VDX Alarm example

SwMutualExclusionResource example

Figure 14.51 illustrates one use of the "SwMutualExclusionResource" stereotype to clarify the semantic of the POSIX
semaphore type, named Sem_t. POSIX semaphore may be used to guard access to any resource accessible by more than
one schedulable resource in the system. A concurrent resource that wants access to a critical resource (section) has to wait
for (i.e., to acquire) the semaphore that guards that resource. When the semaphore is locked on behalf of a concurrent
resource, it knows that it can use the resource without interference by any other cooperating concurrent resource in the
system. When the concurrent resource finishes its operation on the critical resource, leaving it in a well-defined state, it
releases the semaphore, indicating that some other concurrent resource may now obtain the resource protected by that
semaphore.
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N « SwResource »

« swMutuaExdusionResource » 7] | « SwResource » , 3
Sem t areateServices =sem_nit createServioes = sem_init
| del vices = sem_destroy dekteSenvices =fem7de_si_roy
-value : Integer initializeServices = sem_init initializeServices = sem_init
+sem_init() « SwMutualExdusionResource »

« SwMutualExclusionResource »

+sem_dose() } MutualExdusionR mechanism = CountSemaphore
= he « swMutualExdusionResource »

+sem_destroy() ;n::g:q'sgnElceonf;fsezavaoere Sem_t acocessTokenElements = value
+sem_open() aoquireServices = sem_wait, sem_timedWait, sem_tryWait acquireSenvices = sem wait, sem_timedWait, sem_tryWait
+sem_post() L - - - releaseServices = sem post
+sem_tmedWa () releaseServices = sem_post
+sem_tryWatt()
+sem_wait()

(i) icon + text form (ii) shape form

Figure 14.51 - POSIX semaphore example

MessageComResource example

Figure 14.52 shows a representation of the ARINC-653 Buffer and Event mechanism. ARINC-653 Buffer is stereotyped
MessageComResource. That mechanism is a communication object used by schedulable resources (i.e., ARINC-653
process) of a same memory partition (i.e., ARINC-653 partition) to send or receive message.

ARINC-653 Event is a communication object used to notify of a condition to schedulable resources (i.e., ARINC-653
processes) which may wait for it. Hence, it is stereotyped "NotificationResource".

« SwResource » = N
o areateServices = createEvent @ « SwResource »
« NotificationResource » «MessageComResource» |l= eateServices =createBuffer
Event « SwinteractionResource » Buffer
q isintraMemoryParttionlnteraction=true haee | € SwinteractionResource »
createEvent(...) Tewtene reateBuffer(...) islntraMemoryPartitionnteraction=true
resetBven(... « NotificationResource » recs er(-) « SwiVessage CormResource »
ﬁi\ﬁggﬂ)) occurrence = Memoryless sendBuffer(...) isFixedMessageSize = false
mechanism = Event mechanism = Buffer
dearServices =resetEvent receiveServices = receiveBuffer
signalServices = setEvent sendServices = sendBuffer
waitSenvices = waitEvent

Figure 14.52 - ARINC-653 Event and Buffer example

14.2 Hardware Resource Modeling (HRM)

14.2.1 Overview

This chapter provides mechanisms to model the hardware (HW) part of embedded systems, which is essential to fulfill the
application specification. When interfacing hardware and software design flows, it is a common practice to specify
abstracted and understandable models in order to communicate design intends and to study interdependencies affecting
design decisions. At the end, the hardware modeled resources are combined with the software (SW) ones to support the
whole application execution.

Hardware is extraordinary various, several architectures and a huge amount of hardware components exist. It is also
continuously varying with many new emerging technologies. Therefore, modeling such a domain requires a highly
expressive language. The UML mechanisms like generalization, composition, encapsulation, separation of concerns
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(structure/behavior), abstraction (different views), and refinement, are well adapted for that dilemma. The Deployments
package of UML specifies constructs like DeploymentTarget, Node, or Device, which can be used to define roughly a
hardware architecture that is to serve as the target of software artifacts. Our scope is larger, we aim to cover many aspects:

- Software design and allocation using a high level hardware description model of the targeted hardware architecture,
with some details about available resources, instruction set family, memory size. Such model is a formal alternative to
block diagrams.

 Analysis and simulation of a specialized hardware description model:

« The nature of details depends on the analysis focus and the simulated resources. For example, schedulability
analysis requires details on the processor throughput, memory organization and communication bandwidth,
whereas power analysis will focus on power consumption, heat dissipation and the layout of the hardware
components.

 The required level of detail depends on the analysis and simulation accuracy. The performance simulation needs a
fine description of the processor microarchitecture and memory timings, whereas many functional simulators
simply require entering the instruction set family.

« Hardware constructors can describe their products with a kind of model-based datasheets. They must provide a detailed
hardware design model refined with specific details.

In order to support all use cases enumerated above, we extend UML using a profile based on a detailed Hardware
Resource Model. This latter is intended to serve for description of existing and conception of new hardware platforms,
through different views and detail levels. In a few words, the Hardware Resource Model is grouping most hardware
concepts under a hierarchical taxonomy with several categories depending on their nature, functionality, technology and
form.

Separation of concerns and abstraction are the main qualites of this profile. It eases adaptation to many orthogonal
activities. The Hardware Resource Model is composed of two views, a logical view that classifies hardware resources
depending on their functional properties, and a physical view that concentrates on their physical properties. Both are
specializations of the general model. The logical and physical views are complementary. They provide two different
abstractions of hardware and they could be simply merged (example 14.2.4.3). In turn, each view is composed of many
models differentiated by other criteria.

Stereotypes introduced within this chapter are organized under a tree of successive inheritances from generic stereotypes
to specific ones, no stereotype is orphan. This is the main reason behind the ability of the hardware resource profile to
cover many detail levels. Optional tagged values and the composite structure of stereotypes are strengthening this ability
as well.

Another feature of the Hardware Resource Model is support of most hardware concepts thanks to a big range of
stereotypes and once more its layered architecture. If no specific stereotype corresponds to a particular hardware
component, a generic stereotype may match. This is also appropriate to support new hardware concepts of new nature or
new technologies.
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Figure 14.53 - Hardware Resource Model dependencies

Both Hardware Resource Model and Software Resource Model (SRM: chapter 14.1 on page 173) are specializations of
the General Resource Model (GRM: chapter 10 on page 99). Therefore, hardware/software allocation model (Alloc:
chapter 12 on page 139) benefits from the unified structure of these models.

This chapter contains all information about Hardware Resource Modeling profile. Section 2 describes the domain model,
which is separated into general, logical and physical parts. In section 3, the UML representation contains the profile
diagrams and the stereotype descriptions. The last section assembles illustrative examples.

14.2.2 Domain view
In this section, the hardware (HW) concepts are introduced category by category through several metamodel diagrams.
Each metaclass has a detailed description in the Annex F and modeling examples are given in section 14.2.4.

In order to ease the use of the Hardware Resource Model (HRM), names of stereotypes and their attributes are rigorously
chosen in accord with conventional hardware terminology. In addition, they are prefixed by the "HW_" label to save from
ambiguity. e.g., HW_Timer denotes the HW counter device and it is not a software timer.

Each metaclass attribute is chosen only if it verifies many criteria. First, it denotes a characteristic property of the
metaclass that is common to all represented hardware resources. Then, it complies with the level of abstraction of the
concept and the modeled view. Finally, it must be essential for at least one of the profile use cases enumerated in the
introduction.

Last, many OCL rules are specified to ensure the coherency of the HW platform model.

14.2.2.1 The Hardware General model

The HW_General model defines a typical structure of execution platforms. It is inferred from the GRM and it is a
common basis for both logical and physical models.
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MARTE: :Causality::CoreBehavior::
Behavior

1

MARTE::GRM::Resource MARTE :GRM::ResourceService

Z% p_HW_Services Z%

{subsets pServices}
HW _Resource > 1..*

. HW _ResourceService
r HW_Services -

description ; NFP_String 0.*

owned HW 0.* 0.1
{subsets ownedElement} | h

Figure 14.54 - HW_General model details

The concept of HW_Resource is generic; it denotes a generic HW entity. It may encapsulate other ownedHW resources.
This composition mechanism allows successive refinements with different granularities. From a structural point of view
the HW_Resource concept is similar to UML Components but semantically an HW_Resource defines an hardware
execution entity for which the services can be qualified by one or more quality-of-service characteristics.

One example of composite HW resources is FPGA, which often contains many embedded processors, some amount of
RAM and it can also be configured into many units with different functions (SMP example 14.2.4.3).

Typically, an HW_Resource provides at least one HW_ResourceService, and may require some services from other
resources. Each HW_ResourceService could be detailed by many views to describe its behaviors.

Collaborations of resources by means of their services characterize the execution platform.

Most of metaclasses introduced below, are inheriting from HW_Resource and in consequence from its structure. Thus,
they are associated with the HW_ResourceServices that they are offering. In order to lighten metamodels and improve
their flexibility, services would not be explicitly specified if they are inherited from the GRM or intuitively deduced from
the HW_Resource type (example 14.2.4.1).

14.2.2.2 The Hardware Logical model

The objective of the logical modeling is to provide a functional classification of HW entities, whether if they are
computing, storage, communication, timing or device resources. Such a classification is mainly based on services that
each resource offers and optionally influenced by the resources nature (example 14.2.4.1).

The logical taxonomy is common to many previous works. It is not categorical, and the following concepts are not
necessarily incompatible. One HW resource could have many functions within the same HW platform.
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HW_Logical
HW_Computing HW_Timing
HW_Storage HW_Device
HW_Commu nication

Figure 14.55 - HW_Logical model structure

HW_Logical package merges the HW_General and it is composed of five subpackages, each one for a particular
resource's type. There are several dependencies between these subpackages.

HW_Computing package

The HW_Computing package defines a set of active processing resources that are central to execution platforms.

HW_ComputingResources are often complex and composite; they may contain many other subresources from different
HW _Logical packages (14.2.4.3).
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MARTE: GRM::ComputingResource

HW_Logical:HW_Resource

«enumeration»
ISA_Type

T 1

HW_ComputingResource

blocksComputing
{subsets owne dHW}

0.*

RISC
CisC
VLIW
SIMD
Other
Undefined

op_Frequencies : Interval<NFP_Frequency>

I

HW_Processor

HW_ASIC

HW_PLD

caches
{subsets ownedHW} | 0..*
/architecture : NFP_DataSize

HW_L ogical:HW_Storage:
HW_Cache

HW_L ogical:HW_Storage:
HW_MMU

mips : NFP_Natural

/ipc : NFP_Real

nbCores :NFP_Natural
nbPipelines : NFP_Natural

ownedMMUs nbStages: NFP_Natural
{subsets ownedHW} | 0..* nbALUs : NFP_Natural
nbFPUs : NFP_Natural

owned| SAs

predictors
{subsets ownedHW} [0

HW_BranchPredictor

{subsets ownedHW}

HW_ISA

family : NFP_String
inst_Width : NFP_Data Size
type: ISA_Type

y

HW_Logical::HW_Resource

Figure 14.56 - HW_Computing package details

HW_ComputingResource is a generic resource. It could be specialized (HW_ASIC), such resources are known to be
efficient but not flexible. It could be configurable (HW_PLD), there are many technologies that have different capabilities
like dynamic reconfiguration (SRAM). And it could be programmable (HW_Processor), which typically implements some

technology : PLD_Technology
organization PLD_Organization
nbLUTs: NFP_Natural
nbLUT_Inputs : NFP_Natural
nbFlipFlops : NFP_Natural

«enumeration »
PLD_Technology

blocksRAM
0..*| {subsets ownedHW)

HW_Logical::HW_Storage:

SRAM HW_RAM
Antifuse
Flash
Other
Undefined « enumeration »
PLD Class
« dataT ype » SymetricalArray
PLD_Organization RowBased
SeaOfGates
nbRows: NFP_Natural HierarchicalPLD
nbColumns : NFP_Natural Other
class : PLD_Class Undefined

instruction sets, owns caches, corresponding memory management units and adopts branch prediction policies.

HW_Storage package

The metamodel of the HW_Storage package includes two diagrams, one for the HW_Memory resource and the other for

the HW_StorageManager resource.
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« enumeration »

MARTE :GRM:: Storag eResource

HW_Logical:HW_Reso urce

HW_Memory

« dataType »
Timing

Repl_Policy memorySize : NFP_DataSize notation : NFP_String
addressSize : NFP_DataSize description : NFP_String

k,,'ild timings : Timing [] value : NFP_Duration
FIFO
Random
Other
Undefined ‘ ‘
« enumeration » HW_ProcessingMemory buffer

WritePo licy {subsets ownedHW}

> 2 HW_StorageMemory
WriteBack repl_Policy :Repl_Policy 0.1
WriteT hrough write Policy : WritePolicy
Other
Undefined Z% Z%
HW_Cache HW_RAM HW_ROM HW_Drive

level : NFP_Natural

organization : MemoryOrganization

type : ROM_Type

secdorSize : NFP_DataSize

type : CacheType
structure : CacheStructure

isSynchronous : NFP_Boolean
isStatic :NFP_Boolean
isNonVolatie : NFP_Boolean

organization : MemoryOrganization

« enumeration » « dataType » «dataType » « enumeration»
CacheType CachesStructure MemoryOrganization ROM_Type

Data nbSets :NFP_Natural nbRows: NFP_Natural MaskedROM
Instruction blocSize : NFP_DataSize nbColumns : NFP_Natural EPROM
Unified associativity : NFP_Natural nbBanks : NF P_Natural OTP_EPROM
Other wordSize : NFP_DataSize EEPROM
Undefined Flash

Other

Undefined

Figure 14.57 - HW_Storage package details (HW_Memory)

HW_Memory denotes a given amount of memory. It could be a HW_ProcessingMemory or HW_StorageMemory.
HW_ProcessingMemory is an abstract metaclass that symbolizes a fast and volatile working memory, while
HW_StorageMemory is an abstract metaclass for permanent and relatively time consuming storage devices.

In real world, RAM (Random Access Memory) take many forms, SRAM for Static RAM is often used as cache, SDRAM
for Synchronous Dynamic RAM is enough fast to be used as main memory (example 14.2.4.2). But as the logical model
focuses on the functionality rather than the technology, we distinguish HW_RAM for main memories and HW_Cache for
cache memories.
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MARTE :GRM::StorageResource

MARTE :GRM::Reso urceBroker

HW_Logical::HW_Resource

I

1

HW_L ogical:HW_Communication:
HW_Arbiter

HW_StorageManager

managedMemories
{subsets brokedResource}

HW_DMA

HW_MMU

nbChannels : NF P_Natural
transferWidth : NFP_DataSize

drivenBy | 0. .*

virtualAddrSpace : NFP_DataSize
physicalAddrSpace : NF P_DataSize
memoryProtection : NFP_Boolean
/nbEntriesTLB : NFP_Natural

HW_Logical::HW_Computing:
HW_Processor

ownedTLBs

{subsets ownedHW} 0.7

HW_Cache

Figure 14.58 - HW_Storage package details (HW_StorageManager)

} HW_Memory

HW_StorageManager denotes memory brokers. HW_MMU for Management Memory Unit manages addresses and the
content of memories. It might own TLBs (Translation Lookaside Buffer) to translate virtual into physical addresses.
Whereas, HW_DMA for Direct Memory Access, combines memory management and communication control. It may be
driven by an HW_Processor, and it allows devices to transfer data without subjecting the HW_Processor.

HW_Communication package

The objective of the HW_Communication package is to group all communication participants within a functional
taxonomy. It offers a stand-alone communication view that supplies the skeleton of the HW platform architecture.
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MARTE :GRM::
CommunicationReso urce

HW_Logical:HW_Resource

MARTE :GRM::ResourceBroker

HW_Communication

Resource

HW_Arbiter

arbiters| 0..*

{subsets brokedResource}

ontroledMedias
HW_Med ia

MARTE :GRM::
Communication Media

1.7

endPoints

0..*| {subsets ownedHW}

bandwidth : NFP_DataTxRate 2.*

1

HW_Bus

adressWidth : NFP_DataSize
wordWidth : NFP_DataSize
isSynchrnous : NFP_Boolean
IsSerial : NFP_Boolean

connededTo HW_EndPo int

0.*

sides MARTE :GRM::
Communication EndPoint

HW_Bridge

Figure 14.59 - HW_Communication package details

The HW_Media is a central concept that denotes a communication resource able to transfer data with a theoretical

bandwidth. 1t may link many HW_EndPoint(s). it could be controlled by many HW_Arbiters and it may be connected to
other HW_Medias by means of HW_Bridges. An HW_EndPoint is an identified connection point of an HW_Resource

(e.g. pin, port or slot).

If HW_Media is generic and symbolizes any kind of connections, HW_Bus is a particular wired channel with specific
functional properties (example 14.2.4.3).
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HW_Timing package

MARTE::GRM::Timin gResource

HW_Logical::HW_Resource ] HW_TimingResource

1

clock | 0..1 ‘

inputClock HW Ti
HW_Clock {redefines clock} —mer

1 nbCounters: NFP_Natural

frequency - NFP_Frequency oounterWidth : NFP_Datasize

HW_Watchdog

Figure 14.60 - HW_Timing package details

The Figure 14.60 defines timing resources. The HW_Clock is a basic periodic pulse with a definite frequency. Every
HW_Resource can be clocked.

HW_Timer is a set of counters. The counter width determines the maximum measurement of time in terms of clock
periods (2counterWidth -1). HW_Watchdog is typically a count-down timer, which sends an alarm when the zero count is
reached (example 14.2.4.1).

HW_Device package

MARTE::GRM::
DeviceResource

|

HW_Device

1

HW_I/O HW_Su pport

HW_Logical:HW_Resource

Figure 14.61 - HW_Device package details
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From a functional point of view, an HW_Device is an auxiliary resource that is not as fundamental as computing, storage
and communication resources are, but it expands the functionality of the HW platform. It has two subcategories. The
HW_IO denotes resources that interact with the environment, like sensors, actuators, peripherals, displays, external port
and so on. Whereas, the HW_Support is a support resource like power suppliers (batteries), power regulators, cooling
fans, or miscellaneous electronic devices. Because of their nature, some support devices are detailed in the physical model
(example 14.2.4.3).

14.2.2.3 The Hardware Physical model

The HW_Physical model represents HW resources as physical components with details on their shape, size, position
within platform, power consumption, heat dissipation and many other physical properties.

As most of embedded systems have limited area and weight, hard environmental conditions and a predetermined
autonomy, this view helps the HW design and mapping components on the physical platform.

HW_General
b
! «merge »

!
HW_Physical

HW_Layout

T

i« merge »
1

HW_Power

Figure 14.62 - HW_Physical model structure

Same as the functional view introduced above, the HW_Physical package merges the HW_General and contains two
subpackages. The HW _layout package that focuses on the layout architecture and the HW_Power package that provides
mechanisms to annotate the model with power properties.

HW_Layout package

The HW_Layout package provides mechanisms to make UML graphical diagrams as close as possible to the real HW
platform layout. It classifies HW components depending on their forms and offers arrangement constructs using
rectilinear grids (example 14.2.4.3).
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HRM::HW_General::HW_Resource «enumeration »
ConditionType
« dataType » Temperature
Env_Condition Humidity
Atltitude
type : ConditionType Vibration
HW_Compo nent status : ComponentState Shock
0.1 - descrption : NFP_String Other
dimensions : NFP_Length [0..3] range: Interval<T->Real> | Undefined
/area : NFP_Area
position : Interval<NFP_Natural>[0..2] «enumeration » « enumeration »
grid : NFP_Natural [0..2] Comp onentState PortType
0.* nbPins : NFP_Natural [0..1]
weight : NFP_Weight Operating Male
subComponents | price : NFP_Price Storage Female
{subsets ownedHW} | 1 Conditions : Env_Condition [*] Other Other
Z} Undefined Undefined
HW_Chip HW_Channel HW_Port
technology : NFP_Length nbWires : NFP_Natural type : PortType
0..*
HW_Unit HW_Card
ownedUnits

{subsets subComponents} ./ subUnits
0. {subsets subComponents}

Figure 14.63 - HW_Layout package details

HW_component denotes a generic physical component that can be refined into a grid of subcomponents. It has
dimensions, a resulting area, a particular weight and optionally a number of pins and a position within a potential
container. Each HW_component requires some environmental conditions whether if it is in use or not.

HW_Power package

The HW_Power package comes with a detailed description of HW_Components power consumption and heat dissipation.
It enables advanced power analysis and autonomy optimization that are crucial for embedded systems. Notice that the
HW_Layout may also influence the power analysis.
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poweredServices

HW_Physical:: {redefines p_HW_Services} -
HW_ResourceService 0.*
HW_Component
@
consumption | 0..1 Z}
HW_PowerDescriptor
leakage HW_PowerSupply HW_CoolingSupply
consumption : NF P_Power 0.1
dissipation : NFP_Power suppliedPower : NFP_Power coolingPower : NFP_Power
HW_Battery

capacity : NFP_Energy

Figure 14.64 - HW_Power package details

HW_PowerDescriptor is a key metaclass that provides instantaneous power descriptions. It annotates each provided
service with its corresponding consumption and each HW_Component with a description of its leakage at non-operating
time.

HW_PowerSupply and HW_Battery are energy suppliers, whereas HW_CoolingSupply is a heat reducer.

14.2.3 UML representation

This section depicts the Hardware Resource Model profile. It first groups all hardware stereotypes under several profile
diagrams, and then it provides the detailed description of each hardware stereotype. The Hardware Resource Model
profile is based on the hardware resource domain model (on page 205). Therefore most of stereotype descriptions refer to
the corresponding domain concepts. All cases where stereotypes are different from the mapped domain concepts are
justified.

As shown in Figure 14.65, the Hardware Resource Model profile keeps the structure of the domain model. It is composed
of logical and physical profiles. Both have a local general model of hardware platforms, in order to ensure their total
independency. The logical profile is in turn composed of many other packages representing many functions of hardware,
whereas the physical profile is also composed of layout and power packages. Note that these packages are not sub-
profiles, they only improve the organization of the HwLogical and HwPhysical profiles.

In order to leave a large modeling flexibility, HwResource of both HwGeneral packages (Figure 14.66, Figure 14.73)
inherits from the Resource stereotype (from the General Resource Model, chapter 10 on page 99) that extends the
Classifier and InstanceSpecification metaclasses from the UML kernel package. This allows using the Hardware Resource
Model profile within all structural UML diagrams (Class, Component, Composite Structure...) (examples 14.2.4.2,
14.2.4.3). The same principle applies to the HwResourceService that extends the Operation metaclass and could be
associated with many UML behavior views.

All hardware resource stereotypes have the same extensions. However some of them are particularly also extending other
appropriate UML metaclasses. E.g. HwMedia from the HwCommunication package also extends Association.
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Within MARTE, stereotypes tag definitions are optional and they should be specified only if needed. In addition, because
of extending both Classifier and InstanceSpecification, they could be fixed either at model or instance level. This
variation point enlarges the semantics of tag definitions (battery within example 14.2.4.3).

The Hardware Resource Model profile includes many notations. There is an appropriate icon for each logical stereotype
and a shape for each physical one. Also, the HwLayout package from the HwPhysical profile provides arrangement
mechanisms with rectilinear grids to make UML graphical diagrams as close as possible to the real HW platform
architecture.

14.2.3.1 Profile diagrams

The Hardware Resource Model profile (HRM profile) has similar structure to the HRM domain model depicted on page
205 It is composed of logical and physical sub-profiles that contain a local general model and other different packages.

«profile» « mod elLibrary »
MARTE :GRM MARTE::Library.:BasicNFP_Types
7 X
. F4 \
«import »',‘ , « import »
] 1
4
« profile»
HRM
|
«profile» «profile »
HwLogical HwPhysical
HwGeneral HwGeneral
HwsStorage
HwComputing — HwLayout
HwMemory
HwCommunication HWP
HwStorageManager ower
HwTiming HwDevice

Figure 14.65 - Hardware Resource Model profile structure
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HwGeneral package (from the HwLogical profile)

«profile»
HwLogical
« metaclass » « metaclass » «metaclass »
Classifier InstanceSpecification Operation

\ A T

«stereotype» « stereotype»

MARTE :GRM:Resource MART E:GRM::GRService
Z% p_HW_Services Z%
0.1 {subsets pServices}
— «stereotype» > o
HwResource . « stereotyp e»

0.* r_HW_Services HwResourceService
description ; NF P_Strin, .
ownedHW P =string 0.

{subsetsownedElement} ZF
« stereotype » « stereotype » « stereotype»
HwComputingResource HwMemory HwStorageManager
« stereotype» «stereotype» « stereotype»
HwCommunicationResource HwTiming Resource HwDevice

Figure 14.66 - HwGeneral package details (HwLogical)

The HwGeneral package of the HwLogical profile maps the general model from the domain view (page 206). It benefits

from General Resource Model profile extensions (GRM: chapter 10, page 99) and it provides a functional classification
of resources.
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HwComputing package

«profile»
HwLogical

« stereotype» « stereotype »

MARTE:: GRM::ComputingResource

HwResource

i

I

« stereotype» blocksComputing
« enumeration » HwCo mputingReso urce {subsets ownedHW}
ISA_Type 0.*
RISC op_Frequencies : IntervalkNFP_F requency>
CISC
VLIW
SIMD Z%
Other
Undefined

« stereotyp e»
HwProcessor

« stereotype»
HWASIC

« stereotype»
HwPLD

caches
{subsets ownedHW} | 0..*
/architecture :NFP_DataSize

«stereotyp e»
HwCache

mips : NFP_Natural
fipc : NFP_Real
nbCores: NFP_Natural

technology : PLD_T echnology
organization PLD_Organization
nbLUTs: NFP_Natural
nbLUT_Inputs : NFP_Natural

nbPipelines : NFP_Natural

ownedMMUs —— nbStages: NFP_Natural
{subsets owned HW3} | 0-- nbALUs : NFP_Natural

nbFPUs: NF P_Natural
«stereotyp e»

nbFlipFlops : NFP_Natural

blocksRAM
HwMMU *
« enumeration » 0"| {subsets ownedHW}
ownedISAs PLD_Technology
predictors [ 0.* | {subsets ownedHW} «stereotype»
{subsets owned HW}, | 0-- SRAM HWRAM
\ ¢ Antifuse
«stereotyp e» «s awlos}_(p e» Flash
HwBranchPredictor Other )
family : NFP_String Undefined «enumeration »
inst_Width : NFP_DataSize PLD_Class
1 ISA_Type
pe 1A TyP « dataType » SymetricalArray
PLD_Organization RowBased
SeaOfGates
nbRows : NFP_Natural HierarchicalPLD
nbColumns : NF P_Natural Other
« stereotyp e» dass : PLD_Class Undefined

HwResource

Figure 14.67 - HwComputing package details

The HwComputing package from the HwLogical profile maps the corresponding HW computing domain model on page
207.
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HwMemory package

« profile»
HwLogical

« stereotype»

« stereotype»

MARTE :GRM::Storag eResource HwResource
«stereotype» « dataType »
HwMemory Timing

memorySize : NFP_DataSize
addressSize : NF P_DataSize
timings : Timing [*]

notation : NFP_String
desaiption : NFP_String
value : NFP_Duration

structure : CacheStructure

isStatic :NFP_Boolean

«stereotype» « stereotype» «stereotype» « stereotyp e»
HwCache HWRAM HWROM HwDrive
level : NFP_Natural organization : MemoryQrganization | | type : ROM_Type sedorSize : NFP_DataSize
type : CacheType isSynchronous : NFP_Boolean organization : MemoryOrganization

!

repl_Policy : Repl_Policy isNonVolatile : NFP_Boolean 0.1
writePolicy : WritePolicy repl_Policy : Repl_Policy buffer
write Policy : WritePolicy {subsets ownedHW}

« enumeration » «enumeration » « enumeration» « dataType » «dataType » «enumeration »

Repl_Policy WritePolicy CacheType CacheStructure MemoryOrganization ROM_Type
LRU WriteBack Data nbSets : NFP_Natural nbRows : NFP_Natural MaskedROM
NFU WriteThrough Instruction blocSize : NFP_DataSiz nbColumns : NFP_Natural EPROM
FIFO Cther Unified associativity : NFP_Natural | | nbBanks : NF P _Natural OTP_EPROM
Random Undefined Other wordSize : NFP_DataSze EEPROM
Other Undefined Flash
Undefined Other

Undefined

Figure 14.68 - HwMemory package details (HwStorage)

The HwMemory package lightly varies from its corresponding domain model (page 208). It removes abstract
HW_ProcessingMemory and HW_StorageMemory concepts but it maintains the composition specifying the buffer

memory for the HwDrive.
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HwStorageManager package

«profile»
HwLogical
« stereotyp e» « stereotype»
MARTE: :GRM::StorageResource HwReso urce
«stereotype» managedMemories «stereotype»
e
« stereotype» HwStorag eManag er 0.* HwMemory
HwArbiter Z}
«stereotype»
«stereotype» HWMMU
HwDMA
virtualAddrSpace : NFP_DataSize
nbChannels : NFP_Natural physicalAddrSpace : NFP_DataSize
transferWidth : NFP_DataSize memoryProtection : NFP_Boolean
/nbEntriesTLB: NFP_Natural
. . ownedTLBs .
drivenBy | 0. {subsets ownedHW},|, "
«stereotype» «stereotype»
HwProcessor HwCache

Figure 14.69 - HwStorageManager package details (HwStorage)

The HwStorageManager package from the HwLogical profile maps identically the corresponding domain model on page
209.
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HwCommunication package

«profile»
HwLogical

«stereotype»
HwReso urce

« stereotype»
HwCommunication Resource

« stereotype»
MART E:GRM::
Communication EndPoint

« stereotype»
HwATrbiter

arbiters | 0..*

controled Medias

0.*

«stereotype»

MARTE :GRM::
CommunicationMedia

« stereotype»
HwMedia

connectedTo

.| endPoints
{subsets ownedHW}

0..*

« stereotype »
HwEndPoint

sides

<]

bandwidth : NFP_DataTxRate

- «metaclass »
Assodation

1

« stereotype»
HwBus

A

«metaclass »

Port

adressWidth : NFP_DataSize
wordWidth : NFP_Data Size
isSynchrnous : NFP_Boolean
IsSerial : NFP_Boolean

« stereotype»

HwBridge

Figure 14.70 - HwCommunication package details

The HwCommunication package maps the corresponding HW_Communication domain model.

Notice that among the inherited extensions, HwEndPoint extends the UML Port metaclass (example 14.2.4.3) and

HwMedia extends the UML Association metaclass.
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HwTiming package

« profile »
HwLo gical

«stereotype»

MARTE :GRM::TimingResource

«stereotype»
HwResource

frequency: NFP_Frequency[0..1]

[ 1

«stereotype»
HwTimingResource

!

« stereotyp e»
HwClock

inputClock

« stereotype »
HwTimer

frequency : NFP_F requency

0.1

nbCounters: NFP_Natural
counterWidth : NFP_Datasize

Figure 14.71 - HwTiming

package details

Compared to its domain model, the association connecting an HW_Resource to an HW_Clock is substituted by an
optional HwResource attribute named frequency.

As shown in example 14.2.4.1, the notifying service is the only difference between the two domain concepts HW_Timer
and HW_Watchdog. Therefore, the HRM profile unifies both concepts under the HwTimer stereotype.

HwDevice package

« profile »
HwLogical

«stereotype»

GRM::DeviceResource

« stereotype»
HW_Resource

%

i

« stereotype»
HwDevice

1

« stereotype»
Hwl/O

« stereotype»
HwSupport

Figure 14.72 - HwDevice package details

The HwDevice package from the HwLogical profile maps the corresponding HW device domain model.
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HwGeneral package (from the HwPhysical profile)

«profile»
HwPhysical

« metaclass »
Classifier

« metaclass »

InstanceSpecification

A

A

MART

«stereotype»

E:GRM:Resource

1

«metaclass »
Operation

T

« stereotype»
MART E:GRM::GRService

p_HW_Services

1

{subsets pServices}

0..*

r_HW_Services

«stereotype» >
0.1 HwResource
0./
description ; NF P_String
ownedHW
{subsets owned Element}

i

«stereotype»
HwCompo nent

0.*

« stereotype»
HwResourceService

Figure 14.73 - HwGeneral package details (HwPhysical)

The HwGeneral package of the HwPhysical profile maps the general model from the domain view. It benefits from

General Resource Model profile extensions (GRM: chapter 10).

HwLayout package

«profile»
HwPhysical
«stereotyp e» .
Eommmentina || Loty
Env_Condition
gf\:inel type : ConditionType
Chip status :lComponentS_tate
Port descrption : NFP_String
«stereotyp e» Unit range : Interval<T->Real>
0.1 HwComponent Other
— @ Undefined « enumeration »
kind : ComponentKind Condition Type
dimensions : NFP_Length[0..3] .
farea: NFF’_Area_ onto-3l é;::g]:f:tosrt]; e Temperature
position : IntervalkNFP_Natural>[0..2] Humidity
grid : NFP_Natural [0..2] Operating Altitude
0. __| nbPins : NFP_Natural [0..1] Storage Vibration
subComponents weight : NFP_Weight Other Shock
{subsets ownedHw} | Price :NFP_Price . Undefined Other
r_Conditions :Env_Condition [*] Undefined

Figure 14.74 - HwLayout package details
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Layout concepts from the HW_Layout domain model, like HW_Chip and HW_Card are grouped under the
ComponentKind enumeration to lighten the profile.

HwPower package

« profile »
HwPhysical
«stereotype» poweredServices «stereotype»
HwResou rceService {redefines p_HW_Services} HwComponent
" N g
consumption : NFP_Power 0. staticConsumption : NFP_Power
dissipation : NFP_Power staticDissipation : NFP_Power
«stereotype» « stereotyp e»
HwPowerSupply HwCoolingSupply

suppliedPower : NF P_Power coolingPower : NFP_Power
capadty : NFP_Energy [0..1]

Figure 14.75 - HwPower package details

Compared to the domain model, the HwPower package puts the HW_PowerDescriptor properties directly into the
HwComponent and the HwResourceService stereotypes. It also fuses HW_Battery and HW_PowerSupply domain
concepts under the same stereotype.

14.2.3.2 Stereotype descriptions

This sub-section provides a fine description of each stereotype from the Hardware Resource Profile. If a stereotype maps
a domain concept, a reference is given to the corresponding page. The following list is sorted in the alphabetical order.

Note — the detailed description of concepts is mainly given within the Annex F.9.

CacheStructure
The CacheStructure datatype maps the CacheStructure domain element (section F.9.1).

Attributes
» nbSets: NFP_Natural specifies the number of sets.

 blockSize: NFP_DataSize specifies the width of a cache block.

- associativity: NFP_Natural specifies the associativity of the cache.

CacheType

The CacheType enumeration maps the CacheType domain element (section F.9.2).
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Literals
« Data

« Instruction

 Unified for both data and instruction
 Other

+ Undefined

ComponentKind

ComponentKind is an enumeration of the following HwComponent kinds:

Description
- Card

» Channel
« Chip

+ Port

« Unit
 Other
 Undefined

ComponentState

The ComponentState enumeration maps the ComponentState domain element (section F.9.3).

Description
» Operating
- Storage non-operating state
 Other
 Undefined

ConditionType

The ConditionType enumeration maps the ConditionType domain element (section F.9.4).

Description

» Temperature
» Humidity
« Altitude

« Vibration
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« Shock
« Other
« Undefined

Env_Condition
The Env_Condition datatype maps the Env_Condition domain element (section F.9.5, p. 512).

Attributes
« type: ConditionType specifies the condition type.

- status: ComponentState specifies the required state of the HwComponent.
« description: NFP_String specifies a short description of the environmental condition.

 range: Interval<T->Real> specifies the range of possible values.

HwArbiter
The HwArbiter stereotype maps the HW_Arbiter domain element (section F.9.6).

Generalizations
« HwCommunicationResource

Associations

« controlledMedias: HwMedia[0..*]specifies the controlled connections.

Notations

HwASIC
The HWASIC stereotype maps the HW_ASIC domain element (section F.9.7).

Generalizations
» HwComputingResource

Constraints

[2] if a clock frequency is specified, it must belong to op_Frequencies.

HwBranchPredictor
The HwBranchPredictor stereotype maps the HW_BranchPredictor domain element (section F.9.9).

232 A UML Profile for MARTE, Beta 1



Generalizations
» HwResource

HwBridge
The HwBridge stereotype maps the HW_Bridge domain element (section F.9.10).

Generalizations
« HwMedia

Associations

« sides: HwMedia[0..*] specifies HwMedias at the ends of the HwBridge.

Notations

T

HwBus

The HwBuUSs stereotype maps the HW_Bus domain element (section F.9.11).

Generalizations

* HwMedia
Attributes
« adressWidth: NFP_DataSize specifies the supported addressing size. In general, it is a number of bits.
- wordWidth: NFP_DataSize specifies the transfer word width.
« isSynchronous: NFP_Boolean specifies whether the bus is clocked or not.
« isSerial: NFP_Boolean distinguishes serial from parallel buses.

Constraints

[31 Synchronous bus must have a clock frequency.

HwCache
The HwCache stereotype maps the HW_Cache domain element (section F.9.12).

Generalizations

« HwMemory

Attributes

« level: NFP_Natural specifies the cache level. The default value is 1.
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« type: CacheType specifies the type of the cache.

- structure: CacheStructure  specifies the structure of the cache.

Constraints
[4] memorySize is derived from structure attribute.

[5] addressSize is greater than the total cache entries number derived from the structure attribute.

HwClock
The HwClock stereotype maps the HW_Clock domain element (section F.9.16).

Generalizations

« HwTimingResource

Attributes

- frequency: NFP_Frequency specifies the provided clock frequency.

HwCommunicationResource
The HwCommunicationResource stereotype maps the HW_CommunicationResource domain element (section F.9.17).

Generalizations

» HwResource

HwComponent
The HwComponent stereotype maps the HW_Component domain element from the HW_Layout package (section F.9.19).

Generalizations
+ HwResource

Associations

« subComponents: HwComponent[0..*]
specifies the owned physical entities. Subsets HwResource.ownedHW.

Attributes

« dimensions: NFP_Length[0..3]
specifies Cartesian dimensions of the HwComponent. It is an ordered attribute.

 /area: NFP_Area
specifies the area of the HwComponent. Derived from dimensions.

« position: Interval<NFP_Natural>[0..2]
specifies position within the enclosing HwComponent. It is an ordered attribute.
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« grid: NFP_Natural[0..2]
specifies a rectilinear grid associated to the HwComponent. It is an ordered attribute.

« nbPins: NFP_Natural[0..1]
specifies the number of pins. It is optional.

» weight: NFP_Weight
specifies the weight of the HwComponent.

 price: NFP_Price
specifies the HwComponent price.

 r_Conditions: Env_Condition[*]
specifies the required environmental conditions.

 kind: ComponentKind
specifies the kind of the HwComponent

« staticConsumption: NFP_Power
specifies the HwComponent static consumption.

staticDissipation: NFP_Power
specifies the HwComponent static dissipation.

Semantics

The HwComponent stereotype maps its corresponding domain concept but it has Three additional attributes, kind to
specify the kind of the HW component, staticConsumption and staticDissipation that are appropriate for power
description and substitute the composition between the HW_Component and HW_PowerDescriptor domain concepts.

Constraints

[6] area must derive from dimensions.
[71 subComponents positions must not exceed the grid.

[8] requiredConditions intervals must be included within the subcomponents corresponding intervals.

Notations

HwComponent has many shapes depending on its kind.

« Card

« Channel
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« Chip

» Port

.

Each composite class stereotyped with "HW_Component" may be considered as a rectilinear grid where its parts are
located in their corresponding positions. Hence, one propose an extension to the notation of composite class in order to
take into account this feature as depicted below and illustrated through an example in Figure 14.83. This proposed
notation is similar to the one of the Region concept of UML state machine diagram.

HwComputingResource
The HwComputingResource stereotype maps the HW_ComputingResource domain element (section F.9.20).

Generalizations
« MARTE::GRM::ComputingResource

» HwResource
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Attributes

» op_Frequencies : Interval<NFP_Frequency>specifies the range of supported frequencies.

Constraints

[9] if a clock frequency is specified, it must belong to op_Frequencies.

Notations

Figure 14.76 - HwCoolingSupply
The HwCoolingSupply stereotype maps the HW_CoolingSupply domain element (section F.9.21).

Generalizations

« HwComponent

Attributes

« coolingPower: NFP_Power specifies the cooling power.

Notations

<&

HwDevice

The HwDevice stereotype maps the HW_Device domain element (section F.9.22).

Generalizations
« MARTE::GRM::DeviceResource

» HwResource

Notations
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HwWwDMA
The HWDMA stereotype maps the HW_DMA domain element (section F.9.23).

Generalizations

» HwStorageManager

« HwArbiter

Associations

« drivenBy: HwProcessor[0..*] specifies processors that control the HWDMA.
Attributes

« nbChannels: NFP_Natural specifies the number of HWDMA channels.

« transferWidth: NFP_DataSize specifies the maximum supported transfer width.
HwDrive

The HwDrive stereotype maps the HW_Drive domain element (section F.9.24).

Generalizations

« HwMemory

Associations

« buffer; HWRAM][O..1] specifies the memory buffer of the HwDrive. Subsets HwResource::ownedHW.
Attributes

 sectorSize : NFP_DataSize specifies the sector size of the HwDrive.
Semantics

An HwDrive may own an HWRAM as a memory buffer. This composition substitutes the one from the domain model
between the HW_ProcessingMemory and HW_StorageMemory concepts.

HwEndPoint
The HwWENdPoint stereotype maps the HW_EndPoint domain element (section F.9.25).

Generalizations
« MARTE::GRM::CommunicationEndPoint

« HwCommunicationResource

Associations

« connectedTo: HwMedia[0..*] specifies the communication medias that the end point is connected to.
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Hwl!/O
The HwI/O stereotype maps the HW_1/O domain element (section F.9.26).

Generalizations
« HwDevice

Notations

HwISA
The HWISA stereotype maps the HW_ISA domain element (section F.9.27).

Generalizations

HwResource
Attributes
« family: NFP_String specifies the ISA family.
« inst_Width: NFP_DataSize specifies the instruction width
« type: ISA_Type specifies the ISA type
HwMedia

The HwMedia stereotype maps the HW_Media domain element (section F.9.28).

Generalizations
« MARTE::GRM::CommunicationMedia

« HwCommunicationResource

Associations

« arbiters: HwArbiter[0..*] specifies the HwMedia controllers.
Attributes
» bandwidth; NFP_DataTxRate specifies the transfer bandwith of the HwMedia.
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Notations

—)

HwMemory
The HwMemory stereotype maps the HW_Memory domain element (section F.9.29).

Generalizations
« MARTE::GRM::StorageResource

» HwResource

Attributes
« memorySize: NFP_DataSize specifies the storage capacity of the HwMemory.
« addressSize: NFP_DataSize specifies the address width of the HwMemory.
« timings: Timing[*] specifies timings of the HwMemory.

Constraints

[10] the value of the inherited attribute isprotected is true.

Notations

HwMMU
The HWMMU stereotype maps the HW_MMU domain element (section F.9.30).

Generalizations

« HwStorageManager

Associations

« ownedTLBs: HwCache[0..*] specifies the owned Translation Lookaside Buffers.

Attributes

- virtualAddrSpace: NFP_DataSize  specifies the managed virtual address space.
» physicalAddrSpace: NFP_DataSize specifies the managed physical address space.

« memoryProtection: NFP_Boolean  specifies if memory protection is supported.
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« /nbEntriesTLB: NFP_Natural specifies the total number of TLBs entries. Derived from the ownedTLBs
association.

Constraints

[11] nbEntriesTLB is derived from the ownedTLBs number of entries.

HwPLD
The HWPLD stereotype maps the HW_PLD domain element (section F.9.31).

Generalizations

» HwComputingResource

Associations

« blocksComputing: HwComputingResource[0..*]
specifies owned computing blocks. Subsets HwResource.ownedHW.

+ blocksRAM : HWRAM[O..*]
specifies the owned HWRAM memories.

Attributes
« technology: PLD_Technology specifies the HwPLD technology.

« organization: PLD_Organization specifies the matrix organization of the HwWPLD.

* nbLUTs specifies the number of LUTs within the HWPLD.
» nbLUT _Inputs specifies the number of inputs of one LUT.
» nbFlipFlops specifies the number of FlipFlops within the HWPLD.

Constraints

[12] if a clock frequency is specified, it must belong to op_Frequencies.

HwPowerSupply
The HwPowerSupply stereotype maps the HW_PowerSupply domain element (section F.9.34).

Generalizations

« HwComponent

Attributes

« suppliedPower: NFP_Power specifies the instantaneous supplied power.

- capacity: NFP_Energy[0..1] specifies the capacity of the HwPowerSupply.
Semantics

This stereotype denotes both domain elements HW_PowerSupply and HW_Battery.
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Constraints

[13] power consumption is greater than dissipation.

Notations

z

HwProcessor

The HwProcessor stereotype maps the HW_Processor domain element (section F.9.36).

Generalizations

« HwComputingResource

Associations

- predictors: HwBranchPredictor[0..*] specifies the owned branch prediction units. Subsets HwResource.ownedHW.
« caches: HwCache[0..*] specifies processor caches. Subsets HwResource.ownedHW.

« ownedMMUs: HWMMUJ[O0..*] specifies the owned Memory Management Units. Subsets
HwResource.ownedHW.

+ ownedISAs: HWISA[1..*] specifies the owned instruction set architectures. Subsets
HwResource.ownedHW.

Attributes
« /architecture: NFP_DataSize specifies the instruction width. Derived from ownedISAs.
« mips: NFP_Natural specifies the throughput of the processor.
« /ipc: NFP_Real specifies the number of instructions executed each clock cycle. Derived from
mips and clock attributes.
» nbCores: NFP_Natural specifies the number of cores within the HwProcessor.
» nbPipelines: NFP_Natural specifies the number of pipelines per core.
» nbStages: NFP_Natural specifies the number of stages per pipeline.
» nbALUs: NFP_Natural specifies the number of Arithmetic Logic Units within the HwProcessor.
» nbFPUs: NFP_Natural specifies the number of Floating Point Units within the HwProcessor.

Constraints

[14] if a clock frequency is specified, it must belong to op_Frequencies.

[15] architecture must derive from the inst_ Width of the supportedISAs.
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[16] ipc must derive from mips attribute and clock frequeny.

HWRAM
The HWRAM stereotype maps the HW_RAM domain element (section F.9.37).

Generalizations

« HwMemory

Attributes
« organization: MemoryOrganization specifies the organization of the HWRAM.

« isSynchronous: NFP_Boolean specifies whether the HWAM is clocked or not.
- isStatic: NFP_Boolean specifies whether the HWRAM is static or not.
« isNonVolatile: NFP_Boolean specifies whether the HWRAM is volatile or not. Default value is false.

Constraints

[17] memorySize is derived from organization attribute.
[18] addressSize is greater than the number of memory words derived from organization attribute.

[19] synchronous HWRAM must have a clock frequency.

HwResource (from HwLogical)
This HwResource stereotype maps the HW_Resource domain element from the HW_Logical package (section F.9.39).

Generalizations
« MARTE::GRM::Resource.

Associations

« ownedHW: HwResource[0..*] specifies the owned sub-HwResources. Subsets
Resource.ownedElement.

« p_HW_Services: HwResourceService[0..*]  specifies the provided services. Subsets Resource.pServices.

» r_HW _Services: HwResourceService[0..*]  specifies the required services.

« endPoints: HWEndPoint[0..*] specifies the connection points of the HwReource. Subsets ownedHW.
Attributes
« description: NFP_String specifies a textual description of the HwResource.

» frequency: NFP_Frequency[0..1] specifies the clock frequency of the HwResource.

HwResource (from HwPhysical)
This HwResource stereotype maps the HW_Resource domain element from the HW_General package (section F.9.38).
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Generalizations
« MARTE::GRM::Resource.

Associations

« ownedHW: HwResource[0..*] specifies the owned sub-HwResources. Subsets
Resource.ownedElement.

» p_HW_Services: HwResourceService[0..*]  specifies the provided services. Subsets Resource.pServices.

« r_HW_Services: HwResourceService[0..*]  specifies the required services.

Attributes

« description: NFP_String specifies a textual description of the HwResource.

HwResourceService (from HwLogical)

The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_General package
(section F.9.40).

Generalizations
« MARTE::GRM::ResourceService

HwResourceService (from HwPhysical)

The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_Physical package
(section F.9.41).

Generalizations
« MARTE::GRM::ResourceService

Attributes
» consumption: NFP_Power specifies the consumption of the HwComponent when powering the HwResourceService.

« dissipation: NFP_Power  specifies the dissipation of the HwComponent when powering the HwResourceService.

Semantics

Compared to its analogous domain concept, the HwResourceService stereotype from the HwPhysical package converts
the association with the HW_PowerDescriptor to two appropriate attributes.

Constraints
[20] power consumption is greater than dissipation.

HwWROM
The HWROM stereotype maps the HW_ROM domain element (section F.9.42).

Generalizations

« HwMemory.
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Attributes
» type: ROM_Type specifies the HWROM type.

- organization: MemoryQOrganization specifies the structure of the HWROM.

Constraints

[21] memorySize is derived from organization attribute.

[22] addressSize is greater than the number of memory words derived from organization attribute.

HwStorageManager

The HwStorageManager stereotype maps the HW_StorageManager domain element (section F.9.43).

Generalizations
« MARTE::GRM::StorageResource

» HwResource

Associations
- managedMemories: HwMemory[0..*] specifies the managed memories.

Notations

HwSupport
The HwSupport stereotype maps the HW_Support domain element (section F.9.45).

Generalizations
+ HwDevice

HwTimer

The HwTimer stereotype maps the HW_Timer domain element (section F.9.46).

Generalizations

» HwTimingResource

Associations
« inputClock: HwClock[0..1] specifies the input clock of the HwTimer.
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Attributes

» nbCounters: NFP_Natural specifies the number of counters within the HwTimer.
 counterWidth: NFP_DataSize specifies the width of one counter.
Semantics

This stereotype unifies both domain elements HW_Timer and HW_Watchdog.

HwTimingResource

The HwTimingResource stereotype maps the HW_TimingResource domain element (section F.9.47).

Generalizations
« MARTE::GRM::TimingResource

» HwResource

Notations

ISA_Type
The ISA_Type enumeration maps the ISA_Type domain element (section F.9.50, p. 534).

Description
- RISC (Reduced Instruction Set Computer)

- CISC (Complex Instruction Set Computer)
« VLIW  (Very Long Instruction Word)

- SIMD (Single Instruction Multiple Data)
 Other

 Undefined

MemoryOrganization

The MemoryOrganization datatype maps the MemoryOrganization domain element (section F.9.51).

Attributes
« nbRows: NFP_Natural specifies the number of rows.

« nbColumns: NFP_Natural specifies the number of columns.
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« nbBanks: NFP_Natural specifies the number of banks.

PLD_Class

The PLD_Class enumeration maps the PLD_Class domain element (section F.9.52).

Description

« SymetricalArray
» RowBased

» SeaOfGates

« HierarchicalPLD
« Other

+ Undefined

PLD_Organization
The PLD_Organization datatype maps the PLD_Organization domain element (section F.9.53).

Attributes

» nbRows: NFP_Natural specifies the number of rows.
« nbColumns: NFP_Natural specifies the number of columns.

« class: PLD_Class specifies the HW_PLD Class.

PLD_Technology
The PLD_Technology enumeration maps the PLD_Technology domain element (section F.9.54).

Description
+ SRAM

- Antifuse
 Flash
 Other

« Undefined

Repl_Policy

The Repl_Policy enumeration maps the Repl_Policy domain element (section F.9.56).

Description
» LRU Least Recently Used

« NFU Not Frequently Used
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FIFO First In First Out
Random

Other

Undefined

ROM_Type

The ROM_Type enumeration maps the ROM_Type domain element (section F.9.57).

Description

MaskedROM

EPROM (Erasable Programmable ROM)
OTP_EPROM (One Time Programmable EPROM)
EEPROM (Electrically EPROM)

Flash

Other

Undefined

Timing

The Timing datatype maps the Timing domain element (section F.9.58).

Attributes

notation: NFP_String specifies the Timing notation.
description: NFP_String  specifies a short description of the Timing.

value: NFP_Duration specifies the duration value of the Timing.

WritePolicy

The WritePolicy enumeration maps the WritePolicy domain element (section F.9.59).

Description

248

WriteBack
WriteThrough
Other
Undefined
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14.2.4 Examples

This section contains examples implementing the Hardware Resource Model profile. These examples may help users to
model a given hardware platform or to design a new one using the set of stereotypes detailed above.

In order to leave a large modeling flexibility, the HRM profile can be applied on all structural UML diagrams: Class
(example 14.2.4.2), Component, Composite Structure(example 14.2.4.3).

At the end, notice that the OMG standard XML Metadata Interchange (XMI) eases exchanging metadata of UML models.
It is now supported by most UML-based modeling tools. The XMI also eases model transformation, parsing and code
generation, consequently, many tools affords mechanisms to extract data from UML models for analysis, simulation or
implementation purposes.

14.2.4.1 Resource services

Within the domain view, the resource services (HW_ResourceService) are not explicitly specified as they are mainly
deduced from the nature of the resource and they should be fully listed only if such level of detail is needed. The logical
view classifies hardware resources depending on their functional role within the execution platform and the services they
are offering.

HW_Resou rceService

pulseService
{subset p_HW_Services}

HW_Pulse HW_Clock

pulseService
{subset r_HW_Services}

time GetService
{subsetp_HW_Services}

HW_TimeGet

timeSet Service
{subset p_HW_Services} L @

HW_TimeSet

. HW_Timer
oountService
{subset p_HW_Services}
HW_Count .
. —
stop Service
{subset p_HW_Services}
HW_Stop
scale Service
{subset p_HW_Services}
HW_Scale
alarmService
HW_Alarm fsubsetp_HW_Services} @ HW_Watchdog

Figure 14.77 - Resource services example (HW_Timing)
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Figure 14.76 gives a detailed description of required and provided services of timing resources (Figure 14.60). An
HW_Timer requires an HW_Pulse service offered by the HW_Clock and provides at least:

« HW_TimeGet service to get the current time.

« HW_TimeSet service to set a new time value given as parameter.

« HW_Count service to start counting.

« HW_Stop service to stop counting.

« HW_Scale service to set a counting scale, it needs a number of clocks as parameter.

An HW_Watchdog is an HW_Timer providing an additional notifying service HW_Alarm.

14.2.4.2 Stereotype application
Figure 14.77 shows a three steps example of applying the HWRAM stereotype.
(a) is part of the detailed HwStorage metamodel, it collects properties common to all memory technologies.

(b) defines the SDRAM (short for Synchronous Dynamic Random Access Memory) technology as a model where a part
of tagged values (e.g. isNonVolatil, isSynchronous and isStatic) are fixed. Other specific attributes are added at this level
to refine the SDRAM class (burst transfers and refresh modes).

(c) is the final step where we instantiate a particular memory card from of the SDRAM technology model. Here is a real
example of specific Samsung SDRAM.
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(@) Metamodellevel

« stereotype »
HwResource

frequency : NFP_Frequency[0..1]

1

«stereotype»
HwMemory

memorySize : NFP_DataSize
addressSize : NFP_DataSize

« dataType »

« enumeration »

Timing WritePolicy
notation : NFP_String WriteBack
description : NF P_String WriteT hrough
value : NF P_Duration Other

Undefined

timings : Timing [*]

1

« dataType »
MemoryOrganization

« stereotype»

nbRows : NFP_Natural
nbColumns : NFP_Natural
HWRAM nbBanks : NFP_Natural
wordSize : NFP_DataSize

organization : MemoryOrganization
isSynchronous : NFP_Boolean
isStatic :NFP_Boolean
isNonVolatile : NFP_Boolean
repl_Policy : Repl_Policy
writePolicy : WritePolicy

« enumeration »
Rep | Policy

(b) Mode| level

LRU
NFU
FIFO

Random
Other

Undefined

«hwRAM » @

SDRAM

{isSynchronous = true,
isStatic = false,
isNonVolati =false}

burstLengths :NFP_Natural[1..*]
burstTypes : BurstType [1..%]
refreshRate : RefreshRate
refreshModes : ResfreshModes [1..%]

«enumeration » « enumeration »
Refresh Mode BurstType
RAS#Only Sequencial
CASt#beforeRASH Interleave
Hidden Other
Other Undefined
Undefined

« dataType »
RefreshRate

nbcycles : NFP_Natural
period : NFP_Duration

Figure 14.78 - Stereotype application example (SDRAM)

14.2.4.3 Logical/Physical modeling

i ——

(c) Instance level

«hwRAM » D)
K45641632H : SDRAM

{frequency = 166MHz,

memorySize = 64 MB,

adressSize = 22bit,

organization = (4096; 256, 4; 16bit),
timings = {(tCAS; "CAS latency’; 2CLK),
(tRAS; “row active time”; 18ns)}}

burstLengths = 1, 2,4, 8, 4K
burstTypes = Sequencial, Interieave
refreshRate =4K/64ms
refreshModes = CAS#beforeRASH#H

The next example is an SMP (Symmetric MultiProcessing) HW platform with four processors owning caches and sharing

the same main memory, through an FSB bus. This SMP platform also contains a 4-channels DMA (Direct Memory

Access) and a battery (Figure 14.78).
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« hwReso urce »

- Swe -
4 1 1 1 1
« hwResource» «hwResource » « hwResource » «hwResource» « hwResource»
CPU FSB DMA SDRAM Battery

« hwResource»
uL2

Figure 14.79 - SMP description

Next figures depicts two refinements of the previous high level model into a logical view on Figure 14.79 and a physical

view on Figure 14.80.

« hwLogical:hwResource »

SMP
« hwProcessor » 1 «hwSup port»
CPU Battery
1
«hwBuU s» « hwRAM»
C FSB ) SDRAM
«hwCache » 4 Svnch _ {isSynchronous = true,
uL2 {isSyncl ronous = true} sStatic = fakse}
{level =2, 1
type =unified} <hWDMA »
DMA

{nbChannels = 4}

Figure 14.80 - SMP logical view

Due to its encapsulation/composition mechanisms, the UML Composite Structure diagram is well adapted to HW

modelling even if the HRM profile can be used with all structural diagrams.
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« hwComponent»
SMP
{kind = Card}
« hwComponent»

CPUp[4] «hwComponent» «thoDmMpAonent»
{kind = Chig} FSB Xid =Chip)
{kind = Channel} P

« hwCo mpon ent» «hwComponent» « hWPgVaVFtI;ESrl;ppW»
uL2 SDRAM kind = Other
{kind =Unit} {kind = Card} capacity = 40 Wh}

Figure 14.81 - SMP physical view

As UML allows application of many stereotypes on the same element, these two previous views could be merged into a
unified view as shown in Figure 14.81.

«hwL ogical:hwResource hwComponent»
SMP
{kind= Card
« hwSupport,hwPowerSupply»
«hwProcessor, hwComponent» 1 Battery
U . {kind = Other,
{kind = Chip} 1 capacity = 40Wh}
T
« hwBus, hwComp onent» «hwRAM, hwComponent»
C FSB . SDRAM
isSynchronous = true, 1 1 {isSynchronous = true,
«hwCache, hwComponen t» 4 1 Sy kind =uChanr:JeI} isStatic = false,
uL2 m kind = Car:
{level = 2,
type = unified, 1 « hwDMA, hwCompo nent»
kind =Unit} DMA
1 {kind = Chip,
nbChannels = 4}

Figure 14.82 - SMP merged (logical/physical) view

Even if merging logical and physical views is possible, separation of concerns is an adequate way to have specialized and

detailed models that are lightened from unused properties. Figure 14.82 and Figure 14.83 depict two detailed logical and
physical refinements of the SMP example introduced above.
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« hwLogical::hwResource»

smp : SMP

«hwProcessor»
cpul: CPU D

{frequency = 800Mhz}

« hwProcessor »
cpu?2 : CPU D

{frequency= 800Mhz}

« hwProcessor»
cpu3 : CPU D

{frequency = 800Mhz}

«hwProcessor»
cpud: CPU D

{frequency =800MhZ}

« hwCache» ()
12: UL2

{memorySize = 512kB}

« hwCache» .
\,
12:UL2

{memorySize =512kB}

« hwCache» ()
12: UL2

{memorySize = 512kB}

«hwCache» ()
.\,
12:UL2

{memorySize = 512kB}

|

-

« hwBuUs » <:>
fsb : FSB
{frequency = 133Mhz,
‘ wordWidth= 128it}
«hwSupport» D « hwDMA» « hwRAM » @
battery : Battery dma : DMA sdram : SDRAM

{managedMemories = sdram}

{frequency = 266Mhz,
memorySize =256MB}

Figure 14.83 - SMP detailed logical model

The HRM includes many notations (icons and shapes), the physical view provides arrangement mechanisms to make
UML graphical diagrams as close as possible to the real hardware platform architecture. The physical view on Figure
14.83 illustrates these profile features.
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« hwComp onent»

smp : SMP

{grid = {4,3},
area = 5000mm?2,

r_condiions = (Temperature Operating; °; [10°C,60°C])}

« hwCo mponent»

cpul - CPU

{position = {{1,1], [1,1]},

staticConsumption = 5W}

« hwComponent»

cpuld: CPU

{position = {2,2], [1,1]},
staticConsumption = 8V}

« hw(
sdra

omp onent»
h : SDRAM

{position = {3,4], [1,11},
nbPins = 144}

« hwCompone
fsb : FSB

{pogftion = {[1,4], [2.2]}}

« hwCo mponent»
cpu2 : CPU

{position = {[1,1], [3,3]},

staticConsumption = 5W}

« hwComponent»
cpu4: CPU

{position = {[2,2], [3,3]},
statiocConsumption = 9V}

« hwComp onent»
dma: DMA

{position = {3,3],

B33

«hwPowerSupply»
battery : Battery

{position ={[4,4], [3,3]},
capacity = 10WVh,

weight =150g}

Figure 14.84 - SMP detailed physical model

Because of the nature of hardware resources, the logical and physical views converge on many concepts. Some logical
stereotypes have a set of corresponding physical stereotypes like an HwLogical::HwBus which is typically a physical
channel or HwLogical::HwProcessor(s) that are chips. Reciprocally, an HwPhysical::HwBattery is considered as an
HwLogical::HwSupport device. More accurately, the addressSize and wordSize tag values of an HwLogical::HwMemory
must go with the nbPins tag value of the corresponding HwPhysical::HW_Component.

Within MARTE, stereotypes tag values can be fixed either at model or instance level. This enlarges the semantics of HW
models. For example, within Figure 14.80, the capacity of the battery at the model level was 40Wh and corresponds to the
maximum capacity of such class of batteries, whereas the same tag value becomes 10Wh at instance level (Figure 14.83)
and represents the current stored energy.
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Part lll - MARTE Analysis Model

This Part contains the following chapters.
« 15 - Generic Quantitative Analysis Modeling (GQAM)
¢ 16 - Schedulability Analysis Modeling
e 17 - Performance Analysis Modeling (PAM)
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15 Generic Quantitative Analysis Modeling (GQAM)

The generic analysis domain includes specialized domains in which the analysis is based on the software behaviour, such as

performance and schedulability (the two next chapters), and also power, memory, reliability, availability and security.

Although analysis domains have different terminology, concepts, and semantics, they also share some foundation concepts
which are expressed in this chapter, in order to simplify the profile and make it easier to add new analyses. Generic modeling

defines basic modeling concepts and NFPs, using the NFP annotation framework depicted in section 8 on page 51.

MARTE analysis is intended to support accurate and trustworthy evaluations using formal quantitative analyses based on

sound mathematical models, which may supplement designer intuition and "feel." Model analysis can detect problems early in
the development life cycle and reduce cost and risk.

The two following chapters use GQAM in creating sub-profiles for:

Schedulability analysis, to predict whether a set of software tasks meets its timing constraints and to verify its temporal

correctness, e.g., RMA-based techniques (see, e.g., "Real-Time Systems", by Jane Liu).

Performance analysis, to determine if a system with non-deterministic behavior can provide adequate performance,

usually defined by some statistical measures (see e.g., The Art of Computer Performance Modeling, by Raj Jain).

Figure 15-1 shows the relationship of these chapters to each other and to the rest of the profile. Analysis of power consumption

and the use of memory are also briefly considered here as additional specializations that may be used in future analysis

subprofiles.
. « modelLibrary »
NFPs Time
: GRL MARTE_Library
)
]
'
« import »
H « import » « import » « import »
]
(]
GQAM
GQAM_Workload m=e« import mes» GQAM_Resources
heese « MPOrt »sesssssesss GQAM_Observers
« import» « import»
i 1
SAM PAM

Figure 15.1 - Dependencies of GenericQuantitativeAnalysisModeling (GQAM) package
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15.1 Overview

This chapter supports generic concepts for types of analysis based on system execution behaviour, which may be
represented at different levels of detail. Extra annotations needed for analysis are to be attached to an actual design model,
rather than requiring a special version of the design model to be created only for the analysis. Even if the specification
contains fine detail, the annotations may optionally be applied to aggregates. The same arguments may be applied to
modeling software or embedded devices.

The core of the GQAM domain is the description of how the system behaviour uses resources.

Quantitative analysis techniques determine the values of "output NFPs" (such as response times, deadline failures,
resource utilizations and queue sizes) based on data provided as "input NFPs" (e.g., request or trigger rates, execution
demands, deadlines, QoS targets). The goals of analysis may have varying degrees of generality:

A point evaluation of the output NFPs gives their values, along with decisions such as pass/fail.

« Sensitivity or scalability analysis is parameterized over variations in the input NFPs. It may seek to find which cases
are satisfactory, and which are not; or to find the sensitivity of some measures to parameters which are not well
determined.

« Some analysis may search over input NFP values to find feasible or optimal values.

The same NFP may be an input or output, depending on the context. For example a worst-case latency may be an output
in WCET analysis, or an input in Schedulability Analysis.

Although NFPs may describe all aspects of a system (including, for example, heat generation and power consumption),
this discussion centers on time and resource-related properties.

Time-Related NFPs

The core purpose of real-time analysis is to estimate the capability of a system to provide timely responses to requests for
(or initiations of) specified system-level operations, which we will call services, and to handle an adequate frequency of
requests, under specified conditions. To enable this analysis, a UML model must specify the system-level operations, the
frequency of requests, and the conditions of execution (which we may term its environment).

Timeliness of a response can be defined in several different ways, as a property of the response delay to complete it. A
recent survey is given in (Lui Sha, Tarek F. Abdelzaher, Karl-Erik Arzén, Anton Cervin, Theodore P. Baker, Alan Burns,
Giorgio C. Buttazzo, Marco Caccamo, John P. Lehoczky, Aloysius K. Mok, "Real Time Scheduling Theory: A Historical
Perspective", Real-Time Systems, Volume 28, Number 2-3, November 2004, pp. 101-155). Some examples of definitions
given in this survey are:

« Hard deadline: the response must be complete within this delay,

 Soft deadline: a stated percentage of responses must be complete within this delay. Quality-of-service specifications
often are stated in these terms (QoS Specification Languages for Distributed Multimedia Applications: A Survey and
Taxonomy, Jingwen Jin Klara Nahrstedt, IEEE Multimedia, July/September 2004 (Vol. 11, No. 3) pp. 74-87, esp Fig
4.).

« Delay cost function: a function of delay should be within a target value, or should be minimized. This is useful for
trading off delays of multiple streams of requests that compete for resources. (e.g. P. A. Franaszek and R. D. Nelson ,
Properties of delay-cost scheduling in time-sharing systems, IBM J. of Research and Development, Volume 39,
Number 3, 1995).
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« Other statistical measures: the average delay, or the average of some function of some measure, must be within a target
value, or some other measure must meet some requirement. The following real example is a generalization of soft
deadlines: "the probability distribution function of delay must lie above a specified distribution function, so at each
delay value the probability is higher than the specification™.

The expression of such measures in service level agreements was discussed and surveyed recently in: James Skene, D.
Davide Lamanna, Wolfgang Emmerich, "Precise Service Level Agreements”, Proc 26th International Conference on
Software Engineering (ICSE'04), pp. 179-188). They point out the value of analysis of the execution path of the software.

Other NFPs

Although this chapter is concerned with time, it is instructive to consider others, such as memory and power usage
(reliability and security are further examples not considered here).

Memory usage is determined by the size of objects that must be stored. As seen at the level of a system specification,
these objects include:

« Executables when loaded.

- Data structures in memory, both static and dynamic. For dynamic data structures, the maximum size seems to be of the
greatest interest. However a situation might arise where the program creates one buffer pool at one stage, then destroys
it and creates another one at a later stage. A full analysis would then have to look at the memory use over the duration
of a response, attaching sizes for a given object to particular operations. An example of a potentially dynamic data
structure is a buffer pool.

» Messages sent between entities.
« Files.

Additional objects arise in the environment, including the operating system executable and data, file system cache and
other memory objects, and the "heap".

Power use depends on the system configuration and deployment and on its behaviour, in that power is used to operate
peripherals and memory, as well as to execute instructions and i/o operations. Power may be managed dynamically by a
power control policy of the operating system, which responds to demands and battery status.

Power is related to time to execute a behavior, because the power used by a host processor is controlled through its clock
speed, which affects its rate of operation.

Power management also applies to DRAM memories. (see "Memory Controller Policies for DRAM Power Management™,
Xiaobo Fan, Carla S. Ellis, Alvin R. Lebeck, Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), pages 129--134, August 2001).

In wireless networks the power of transmission may be controlled, affecting messaging speed. Optimal policies take into
account competition between nodes ("Optimal Routing, Link Scheduling and Power Control in Multi-hop Wireless
Networks", R. L. Cruz and Arvind V. Santhanam, Infocom 2003)

15.2 Domain view

Figures 15-2 to show the domain model for generic quantitative model-based analysis composed of four packages:
GQAM, GQAM_Workload, GQAM_Observers and GQAM_Resources.
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15.2.1 The GQAM package

The top-level GQAM package shown in Figure 15.2, is organized around the concept of AnalysisContext, which
represents the root of the domain model. It contains two parts that address different concerns:

» WorkloadBehaviour (refined inFigure 15.3) contains a set of related end-to-end system-level operations, each with a
defined behaviour, triggered over time as defined by a set of workload events.

» ResourcesPlatform (refined in Figure 15.5) is a logical container for the resources used by the system-level behaviour
represented in the previous model.

AnalysisContext may have parameters of type VSL::Expressions::Variables, which define different cases being considered
for analysis, and may affect the parameters of behaviour and resources (such as the number of repetitions of a sub-
operation, or the size of a list).

GOAM ‘

VSL::Expressions::
Expression Context

1 contextParams__ | VSL::Expressions::
context * Variable
{redefines context }

AnalysisContext

workloadBehavior | 1 1..* [resourcesPlatform
GQAM_Workload:: GQAM_Resources::
WorkloadB ehavior ResourcePlatform

Figure 15.2 - Top package of the GQAM domain model
15.2.2 The GQAM_Workload package

The package GQAM_Workload (Figure 15.3) describes workload and behaviour concerns. WorkloadBehaviour is a
container for one or more end-to-end system operations (behaviours) used for analysis, and one or more streams of
request events.

15.2.2.1 Workload concepts

Different workloads may correspond to different situations, such as takeoff, in-flight and landing of an aircraft, or peak-
load and average-load of an enterprise application. Each workload is represented by a stream of triggering events,
WorkloadEvent. Such a stream may be generated in different ways:

by atimed event,

« by a stated arrival pattern which includes a wide range of classic models of event streams,
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- from an arrival-generating mechanism represented by a Workload Generator (which may be modeled as a state-
machine). There may be multiple independent identical mechanisms generating the stream, the number is called its
"population”.

- or from a trace (Event Trace) stored in a file.

One of these options is used and the others are undefined. The arrivalPattern alternatives are described elsewhere, but
they include PeriodicPattern, often used for schedulability, and Open and Closed patterns often used for performance
analysis, and a variety of less regular patterns.

GQAM_Workload

———<@  WorkloadBehavior @ ———

0..1 T [
Time::TimeRelated Entities:
EventTrace
trace 1..* |, demand behavior 1.% Timed ProcessingModels:
TimedProcessing
L | Workload Event BehaviorScenario
WorkloadGenerator 0..1 inputStream 1 él
tt ArrivalPatt . .
R—— generator | PA e ATivairatiem 1. effect | hostDemand: NFP_Duration
population: __Integer — - hostDemandOps: NFP_Real [*] GRM: :ResourceUsages: :
interOccTime: NFP_Duration [*] ResourceUsage
) Time: throughput: NFP_Frequency [*]
TimedEventModel: 0.1 respTime: NFP_Duration [*] / \
Timed Events:: timeEvent utiization : NFP_Real [
Timed Event utiizationOnHost: NFP_Real []
«dataType» «enumeration» - *
«choiceType» ConnectorKind 01® behavior timing
ArmivalPattern Sequence GQ_AM_Observers::
periodic: Periodic Pattern Branch TimingObsenver
aperiodic: AperiodicPattern Merge
sporadic: Sporadic Pattern Fork
burst BurstPattern Join
irregular: IrregularPattern "
closed: Closed Pattern . root | 0.1 . t
open: OpenPattern connectors 1 sieps
outputRel succes T
PrecedenceRelation P o Step 0.1 GQAM_Resources::
« isAtomic: NFP_Boolean host ExecutionHost
connectorKind: ConnectorKind blockingTime: N FP_Duration [*]
1 predeg| repetiions: NFP_Real =1 0.1 GRM::Scheduling :
. probability: NFP_Real =1 SchedulableR
inputRel priority: NFP_Integer conaurRes| >chedliiablenesource
ReleaseStep AcquireStep Communication Step Requested Service
resUnits: NFP_Integer resUnits: NFP_Integer msgSize : NFP_DataSize

{redefines host} o1 {redefines concurResg

reRes| 0..1 0..1 | acgRes host - 0..1 concurRes
GRM: :ResourceCore: GQAM_Resources:: GQAM_Resources::
Resource CommunicationHo st CommunicationChannel

Figure 15.3 - GQAM_Workload package of the GQAM domain model
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15.2.2.2 Behavior Scenario concepts

The behaviour in response to a trigger event is described by a BehaviorScenario, which is composed of sub-operations
called Steps, any one of which can be refined as another BehaviorScenario. A BehaviorScenario captures any system-
level behaviour description or any operation in UML, and attaches resource usage to it. Resources are used in three
different ways:

« Each primitive Step has a host processor used to execute the operation of the step,
« A Step implicitly uses an operating system process which is a SchedulableResource,

« A Step may be a specialized AcquireStep or ReleaseStep to acquire or release a Resource, particularly a logical
Resource representing a software resource.

BehaviorScenarios and Steps may also use other kind of resources, such as power and memory. For this reason,
BehaviorScenario inherits from ResourceUsage (described in Chapter 10), which links resources with concrete usage
demands. A few concrete forms of usage are defined at this level of specification, such as: memory, CPU execution time,
energy from a power supply and size of messages to be sent through a network.

GQAM models Scenarios which terminate, and assumes that they are triggered repeatedly by the WorkloadEvent stream.
The predecessor-successor relationship between Steps may be a simple sequence, or it may be:

« branch (one predecessor Step, multiple successor Steps, each with a probability of selecting that branch).

« merge (multiple predecessor Steps, one successor triggered by any predecessor).

« fork (one predecessor Step, multiple successor Steps, indicating that all successors are executed logically in parallel.

« join (multiple predecessor Steps, one successor triggered by all predecessors completing).
These are represented in the Figure by the types of connectorKind in PrecedenceRelation.

Steps and BehaviorScenarios have quantitative attributes as shown in the Figure and described in Table 1 below. A Step
can be optional (with a probability less than one of being executed), or repeated (with a repetition count). It can be refined
as another BehaviorScenario (its "behavior" association). The "isAtomic" property specifies atomicity of execution
(default is false).

A Step has a host association, a process (a SchedulableResource), and a hostDemand for its own execution time, which
can be represented either as a time, or a number of operations on the host processor. It also may have optional requests
(servDemand, with mean count servCount) for services from system components. To support demands for multiple
services, these are expressed as ordered sets of service requests and counts, with the order corresponding one to the other.

A CommunicationStep defines the conveyance of a message between system entities, and has an attribute of the message
size.

BehaviorScenarios in similar forms are widely used for timing analysis. In schedulability analysis they are called "task
sequences” (Jane Liu, "Real Time Systems", Wiley), and specifications of timing normally refer to certain scenarios.
Performance models are also created from scenarios (C.U. Smith and L. Williams, "Performance Solutions", Addison-
Wesley 2000). Early analysis may be deliberately restricted to certain behaviours for certain triggers.

A BehaviorScenario may be represented by a UML interaction, statechart or activity diagram.
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Time Intervals

Time intervals are defined by events that associated with units of behaviour, particularly Steps and BehaviorScenario, or
with pairs of events from other sources. The inter-occurrence time interval between the two between successive initiations
of a behavior unit (the "interOccTime" NFP in Table 1-1 below) is one such example.

It is also sometimes necessary to define an interval between two events that are associated with separate units of
behaviour, such as the interval between corresponding events on two parallel paths, to give the amount by which one
parallel path leads or follows another.

Services

Services are provided by resources and by subsystems. A service by a subsystem is identified as a RequestedService, a
subtype of Step. It is associated with an operation included in some interface of a system component, and is defined for
analysis purposes as a Step refined by the BehaviorScenario for the behaviour of that operation.

15.2.3 GQAM_Observers Package

Timing Observers (Figure 15.4) are conceptual entities that collect timing requirements and predictions related to a pair
of user-defined observed events. In this sense, TimingObserver uses Timed Instant Observations (from the Time sub-
profile) to define the observed event in a given behavioral model. Normally the observer expresses constraints on the
duration between the two time observations, named startObs and endObs in the figure. Timing observers are a powerful
mechanism to annotate and compare timing constraints against timing predictions provided by analysis tools. Timing
observers can be used as predefined and parameterized patterns (e.g., latency, jitter) or by means of more elaborate
expressions (e.g., written in OCL or VSL) since TimingObserver inherits all the modeling capabilities from
NfpConstraint.

LatencyObserver specifies a duration observation between startObs and endObs, with a miss ratio assertion (percentage),
a utility function which places a value on the duration, and a jitter constraint. Jitter is the difference between maximum
and minimum duration.

A timing observer may be attached to the start and end observed events, or to a behavior element such as a Step. In the
latter case the start and end events are the start and end events for execution of the behavior element.
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GQAM Observers

« enumeration»
ConstraintKind

NFPs::
NFP_Annotation:
NFP_Constraint

kind: C onstraintKind

Timing Observer

laxity: LaxityKind

required
offered
contract
) startObs
Time::
Timed Related Entities: 0..1
TimedObservations:: endObs
TimedinstantObservation
0..1

«enumeration»
LaxityKind

hard
soft
other

LatencyObserver

latency: NFP_Duration
missRatio: NFP_Real
utility: UtilityType
maxJitter NFP_Duration

Figure 15.4 - The GQAM Observers package

15.2.4 The GQAM_Resource Package

The top class in the GQAM_Resource package (Figure 15.5) is ResourcesPlatform, which represents a logical container
for all the resources used to perform the behaviours described in the previous package.

Resources in real-time systems take a variety of forms, including hardware devices, software servers and logical resources
like locks. The viewpoint of resources in Figure 15.5 is inherited from the GRM package: an abstract Resource class, with
features shared by all resources which include a scheduling discipline, and a multiplicity called "resMult" for "maximum
resource instances". In use it will also have an output NFP of resource utilization (for a multiple resource this is defined
as the mean number of busy units). A multiprocessor may be modelled as a single resource with multiple units and one
scheduler (for a processor pool), or a collection of single resources each representing one processor, (where tasks are

allocated to processors separately).

From an analysis viewpoint, these four types of resources shown in Figure 15.5 are important:

266

ExecutionHost: a processor or other device that executes operations specified in the model. It has a host role relative to
the processes and the Steps that execute on it.

CommunicationsHost: hardware links between devices, with the role of host to the conveyance of a message.

SchedulableResource: a schedulable service like a process or thread pool, which is a software resource managed by the

os.

CommunicationChannel : a middleware or protocol layer that conveys messages.
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There are also other concurrency resources, such as mutual exclusion resources (from the GRM chapter), which may be
any mechanism which can make a program wait for a condition to be satisfied. Examples include a critical section,
semaphores and locks; a finite buffer pool (a multiple resource, with multiplicity equal to the number of units of memory
in the pool), or a pool of admission control tokens.

All resources have a scheduling discipline, a multiplicity (hnumber of units of the resource), and offer Services. Explicit
resource acquisition and release is mostly required for logical Resources, but for generality it is expressed in Figure 15-3
for any resource.

Resource usage by the software may cover an entire BehaviorScenario, or a few Steps. A Step runs on a processor which
is its host, which is implicit in the deployment of the software component of which it is part, and it has a host demand
which is its CPU requirement.

GQAM_Resources

ResourcesPlatform
* resources
«enumeration » GRM::ResourceCore:
MARTE_Library:: Resource
MARTE DataTypes:
TransmModeKind Z}
Simple ‘ ‘
Ei:lg):glg: GRM::Scheduling:: GRM::ResourceTypes:
ProcessingResource ConcurrencyResource
Zﬁ GRM::Scheduling:
SchedulableResource
ExecutionHost CommunicationHost Z%
commT xOverhead: NFP_D uration capacity: NFP_DataTxRate Communication Channel
commRcvOverhead: NFP_Duration throughput: NFP_Frequency
contextSwitchTime : N_FP_Durat|on packgtTme: NFP_D urat|o_n packetSize : NFP_DataSize
clockOvh : NFP_Duration blockingTime: NF P_Duration utilization: NEP Real
schedPriorityR ange: NFP_Interval transmMode: TransmModeKind -
memorySize : NF P_DataSize utiization: NFP_Real
utiization : NFP_Real
host ' 0.1 {redefines host} 0.1
host

Figure 15.5 - GQAM_resources package of the GQAM domain model

Acquisition and release are operations which occur during the BehaviorScenario; they may be implicit in the behaviour.
For instance, when a message goes to a process or thread, a thread/process resource must be acquired, or the scenario will
block. Similarly, where a behavior scenario enters or leaves a critical section, the corresponding logical resource is
acquired or released implicitly. Other logical resources, such as a locks, buffers, and admission tokens, are explicitly
acquired or released. Notice that the resource is different from the resource manager, which may be a process that
implements the resource scheduler and has its own host and demands. The operation of an embedded system may have
resources whose function depends on other resources.

A UML Profile for MARTE, Beta 1 267



Messages between processes that are not co-located use the links between their host processors; the links can often be
identified implicitly from the deployment.

15.2.5 Common NFP Attributes for Analysis

There are several widely-used measures used for real-time requirements, parameters which are inputs to an analysis, and
results which are outputs from it, including:

 Repetition count for a Step or a loop (repetitions).

- Probability of a subpath (probability).

» Host demand (CPU requirement) in time units (hostDemand).

« Host demand in host operations (hostDemandOps).

« Priority on the host (priority).

« Delay (including initial scheduling delay) (respTime).

« Delay (without initial scheduling delay) (executionTime).

 Time interval between two successive occurrences (interOccTime).

« Throughput (executions per unit time) (throughput).

« Utilization of the entity, meaning the fraction of time it is busy or (if it is reentrant or has multiple copies) the mean
number of busy copies (utilization).

 Host utilization by the entity, the fraction of time its host is busy executing it (required and evaluated).

(utilizationOnHost).

These quantities may be applied to different kinds of entities, as described in the following table.. All are optional, and

may be an array of values.

Table 15.1 - Common NFP Attributes for Analysis

NFP For Resource For Scenario and Step For WorkloadEvent
repetitions: NFP_Real[*] repetitions, the number of times the Step is N/A
N/A repeated, once triggered (default =
1).
probability: NFP_Real[*] probability, the probability that the step is N/A
N/A executed, following its predecessor
(for conditions)
hostDemand: NFP_Duration[*], composite demand across For a Step, the CPU demand onthe | N/A
hostDemandOps:NFP_Real[*] all services of the Resource, | host of the process that executes
in terms of time and in the Step.
terms of processor For a Scenario, the sum of all
operations demands for all its Steps.
priority : NFP_Integer[*] N/A For a Step, priority on its host N/A
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Table 15.1 - Common NFP Attributes for Analysis

respTime: NFP_Duration[*]

response time,

composite average response
time across all services
offered by the resource

total delay from the trigger event
until completion of the Step or
Scenario

required value for the
Scenario

execTime : NFP_Duration[*]

execution time,
N/A (same as hostDemand)

respT minus any initial scheduling
delays

N/A

interOccTime: NFP_Duration[*]

inter-occurrence time,
interval between successive
requests for services

interval between initiations

interval between trigger
events

throughput : NFP_Frequency[*]

frequency of requests for all
services

frequency of initiations

frequency of the trigger
event

utilization : NFP_Real[*] fraction of time the fraction of time the N/A
resource is active (has an BehaviorScenario is active
active service). For a (between its trigger event and its
multiple resource, the mean | completion)
number of busy units.
utilizationOnHost: NFP_Real[*] N/A fraction of time the host is busy N/A
executing the BehaviorScenario. If
it has multiple hosts, this is a set of
values.
blockingTime: NFP_Duration[*] blocking time, a pure delay which is part of the N/A
N/A behavior of the Step or Scenario

For a BehaviorScenario, which is a composite entity, some NFPs apply directly (repetitions, probability, response time,
inter-occurrence time and throughput) while others either do not apply or represent sums of the attributes of the Steps that
make up the Scenario, weighted by their throughputs relative to that of the BehaviorScenario (execution time,

hostDemand, utilizationOnHost).

15.3 UML Representation

15.3.1 Profile Diagrams

The UML extensions for the GQAM sub-profile are presented in this section. The sub-profile is split in four figures
related to corresponding domain model packages GQAM, GQAM_Workload, GQAM_Behavior, GQAM_Observers, and

GQAM_Resources.

In general, resource-related stereotypes extend the UML metaclass Classifier. More exactly, the stereotypes GaExecHost,
GaCommHost and GaCommChannel specialize the stereotype GRM::Resource, defined in the GRM chapter (10.3.2.12, p.
117), which extends in turn Classifier, InstanceSpecification and Property (the last used for annotating Parts in UML
composite structure diagrams).Therefore, resource stereotypes can be applied to all kinds of classes, instances,
components, parts and deployment nodes.

GaScenario and Step stereotypes inherit from TimeModels:: TimedProcessing (which extends Behavior, Message, Actions)
and GRM::Resource (which extends NamedElement). So, Scenario and Step stereotypes can be applied to a wide set of
behavior-related elements covered by the UML2 metaclass NamedElement, such as Operations, Actions, Messages that
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initiate Operations or Actions, Transitions and States in state machine diagrams, Signals that trigger state machine
transitions, Events, ExecutionOccurrenceSpecifications and InteractionFragments in interaction diagrams, InputPins in

activity diagrams and UseCases.

« profile»
GQAM

« metaclass »
UML::Classes::Kemel:
NamedElement

A

«stereotype »
MARTE::VSL:: Variables::
Expression Context

i

«stereotype»
GaWorkloadBehavior

«stereotype »
GaAnalysisCo ntext

« metaclass »
UML::Classes: Kernel::
Classifier

J

behavior: GaScenario [
demand: GaWorkloadEvent [*]

contextParams: NF P_String [*]

*

workload: GaWorkloadBehavior [1..*]

platiorm: GaR esourcesPlatorm [1..%]

« stereotype»
GaResourcesPlatform

resources: Resource [*]

Figure 15.6 - UML extensions for top level stereotypes of the GQAM profile
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«p rofile»
GQAM

«metaclass »

UML::Classes::Kernel::

«metaclass »
UML: :CommonBehavior

::SimpleTime::
Named Element TimeEvent
A \ timedEvent 0..
«stereotype»
«stereotype» GaWorkloadEvent
GaEventTrace

content: String

format: String trace: G

pattern: ArrivalPattern
generator. GaWorkloadGenerator

effect: GaScenario

aEventTrace

«metaclass »
UML::CommonBehavior :
BasicBehaviors:Behavior

«dataType»
«choiceType»
MARTE Library::
BasicNFP_Types::
Arrival Pattern

periodic : PeriodicPattem
aperiodic : AperiodicPattemn
sporadic: SporadicPattem
burst: BurstPattern
irregular: I regularPattern
closed: ClosedPattem

location: String
«metaclass » «stereotype»
UML: Classes:: MARTE::GRM::
Kernel::Operation ResourceUsage

« stereotype»
MARTE:: Time::TimeRelatedEntities:
Timed ProcessingModels: TimedProcessing

‘ i

b

« stereotype»
GaScenario

cause: GaWorkloadEvent
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT : NFP_Duration [*]
throughput: NFP_Frequency [*]
respT: NFP_Duration[*]
utilization: NFP_Real [*]
utilizationOnHost : NFP_Real [*]
root: GaStep

timing: GaTimingObserver [*]

|

« stereotype»
GaWorkloadGenerator

pop: NFP_Integer = (1)

GaStep

« stereotype»

isAtomic: NFP_Boolean
blockT: NFP_Duration []
rep: NFP_Rea =(1.0)
prob: NFP_Rea = (1.0)
priority: NFP_Integer

host: GaExecHost

servDeman: GaRequestedS
servCount: NFP_Real [] {or
behavior: GaScenario [0..1]

concurRes: SchedulableResource

ervice [*] {ordered}
dered}

1

« stereotype»
GaRequested Service

«stereotype»
GaCommStep

« stereotype»
GaAcqStep

« stereotype»
GaRelStep

msgSize : NFP_DataSize

concurRes: SchedulableResource

acqRes: Resource

relRes: Resource

resUnits: NFP_Integer = (1)

resUnits: NFP_Integer =(1)

Figure 15.7 - UML extensions for GQAM stereotypes related to behavior
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«profile »
GQAM

« stereotype»
MARTE: :NFPs::NfpCo nstraint

« metaclass »

UML::CommonBehaviors:
BasicTime:TimeObservation

1

startObs «stereotype» «enumeration»
0..1 GaTimingObs L axityKind
endObs laxity : LaxityKind [0..1] hard
0.1 soft

other

« stereotype»
GalatencyObs

latency: NFP_Duration [*]
miss: NFP_Real [*]

utility : Utility Ty pe
maxditter: NFP_D uration [¥]

Figure 15.8 - GQAM stereotype for observing timing occurrences between two events

« profile»
GQAM

«enumeration »
MARTE Library::
MARTE DataTypes:
TransmModeKind

MARTE:GRM::Resource

« stereotype»

!

Simple
HalfDuplex
F ulD uplex

« stereotype»
MARTE: :GRM::
ProcessingResource

« stereotype»
MARTE::GRM::
ConcurrencyResource

I

1

« stereotype»
GaExecHost

« stereotype»
MARTE: :GRM::
SchedulableResource

cntxtSwT: NFP_Duration
clockOvh : NFP_Duration

commTxOvh : NFP_Duration
commRcevOvh: NFP_Duration

« stereotype»
GaCommHost

capacity: NFP_DataTxRate[*]
packetT: NFP_Duration [*]

« stereotype»
GaCommcChannel

schedPriRange: NFP_Interval
memSize: NFP_D ataSize
utilization: NFP_Real [*]
throughput NFP_Frequency [*]

blockT: NF P_Duration [*]
transmMode: TransmModeKind
utilization : NFP_Real [*]
throughput: NFP_Frequency [

packetSize: NFP_D ataSize
utiization: NFP_Real [*]

Figure 15.9 - UML extensions for GQAM stereotypes related to resources
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15.3.2 Profile Elements Description

In this section are described the stereotypes of the GQRM profile (listed in alphabetical order).

15.3.2.1 GaAcqgStep
The GaAcqStep stereotype maps the AcquireStep domain element (section F.10.1, p. 537) denoted in Annex F.

A step that acquires a resource.

Extensions
« None.

Generalizations
« GaStep.

Associations
« None.

Attributes
« acgRes: Resource [0..1] the resource to be acquired within the step execution.

« resUnits : NFP_Integer [0..1]=1 the number of units of resource acquired within the step execution.

Constraints
« None.
15.3.2.2 GaAnalysisContext

The GaAnalysisContext stereotype maps the AnalysisContext domain element (section F.10.2, p. 537) denoted in Annex
F.

For a given analysis, the context identifies the model elements (diagrams) of interest and specifies global parameters of
the analysis.

Extenssions

« None.

Generalizations
» ExpressionContext (from MARTE::VVSL::Expressions).

Associations
« None.

Attributes

« contextParams: NFP_String [*]
a set of annotation variables defining global properties of this analysis context.
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Constraints
» None.
15.3.2.3 GaCommcChannel

The GaCommChannel stereotype maps the CommunicationChannel domain element (section F.10.4, p. 538) denoted in
Annex F.

It is used for denoting a logical communications layer connecting SchedulableResources.

Extensions
» None.

Generalizations
« SchedulableResource (from MARTE::GRM).

Associations

» None.

Attributes
 packetSize: NFP_DataSize [0..1] the size of the data unit handled by the channel.

Constraints
« None.
15.3.2.4 GaCommHost
The GaCommHost stereotype maps the CommunicationHost domain element (section F.10.5, p. 539) denoted in Annex F.

It is used for denoting a physical communications link.

Extensions
« None.

Generalizations
 ProcessingResource (from MARTE::GRM).

Associations
» None.

Attributes

« capacity: NFP_DataTxRate [*] maximum capacity.
« throughput: NFP_Frequency [*] actual throughput.

 packetT: NFP_Duration [*] time to transmit a packet.

274 A UML Profile for MARTE, Beta 1



. blockT: NFP_Duration [*] time the host is blocked and cannot transmit.

. transmMode: TransmModeKind [*] the transmission mode, one of the following values: { simplex,
half-duplex, full-duplex}.

. utilization: NFP_Real [*] utilization of this host.

Constraints
* None.

15.3.2.5 GaCommStep
The GaCommStep stereotype maps the CommunicationStep domain element (section F.10.6, p. 539) denoted in Annex F.
A CommStep is an operation which conveys a message from one locale to another.

Extensions

« None

Generalizations
« GaStep

Associations

« None

Attributes
» msgSize: NFP_Datasize [*] the size of the message.

Constraints
« None

15.3.2.6 GaEventTrace
The GaEventTrace stereotype maps the EventTrace domain element (section F.10.7, p. 539) denoted in Annex F.

A trace of events that can serve as source for the request event stream.

Extensions
« NamedElement (from UML.::Classes::Kernel)

Generalizations

« None.

Associations

« stream: GaWorkloadEvent the event stream driven by the trace

A UML Profile for MARTE, Beta 1 275



Attributes

« content: String [0..1] contains the serialization of the event trace according to the file format.

- format: String [0..1] this indicates the format of the event trace - which is how the string content should be
interpreted.

« location: String [0..1] this contains a location that can be used by a tool to locate the file as an alternative to

embedding it in the stereotype.

Constraints
« None.
15.3.2.7 GaExecHost
The GaExecHost stereotype maps the ExecutionHost domain element (section F.10.4, p. 538) denoted in Annex F.

It denotes a processor which executes Steps.

Extensions

Generalizations
 ProcessingResource (from MARTE::GRM)

Associations
» None

Attributes

« commTxOvh: NFP_Duration [*] the host demand for sending messages.

« commRcvOvh:NFP_Duration [*]  the host demand for receiving messages.

« cntxtSwT: NFP_Duration [*] context switch time.

 clockOvh: NFP_Duration [*] clock overhead.

» schedPriRange: NFP_Interval [*]  the range of priorities offered by this processor.
« memSize: NFP_DataSize [0..1] the memory size.

« utilization: NFP_Real [*] the processor utilization, expressed as mean busy processors (in the range from 0
to resMult which is the number of processors).

Constraints

» None

15.3.2.8 GalLatencyObs

The GalLatencyObs stereotype maps the LatencyObserver domain element (section F.10.10, p. 540) denoted in Annex F.
Gal atencyObs specifies a duration observation between startObs and endObs UML TimeObservations, with a miss ratio
assertion (percentage), a utility function, which places a value on the duration, and a jitter constraint. Jitter is the
difference between maximum and minimum duration.
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Extensions
* None

Generalizations
« GaTimingObs

Attributes

« latency: NFP_Duration [*]
value of the latency.

» miss: NFP_Real [*]
for soft timing constraints the miss ratio indicates the admitted or actual percentages of
"required" latency missed.

« utility: UtilityType [0..1]
value of importance for required timing constraints.

» maxdJitter: NFP_Duration [*]
maximum deviation value. It represents a maximum deviation with which a periodic internal event is
generated. The output jitter is calculated as the difference between a worst-case latency time and the
best-case latency time for the observed event measured from a reference event.

Constraints
« None
15.3.2.9 GaRelStep
The GaRelStep stereotype maps the ReleaseStep domain element (section F.10.13) denoted in Annex F.

It denotes a step that releases a resource.

Extensions
« None

Generalizations
« GaStep

Associations
« None

Attributes
« relRes:Resource [0..1] the resource to be released.

 resUnits : NFP_Integer [0..1] =1 how many units to be released (default = 1).

Constraints
« None.
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15.3.2.10 GaResourcesPlatform
The GaResourcesPlatform stereotype maps the ResourcesPlatform domain element (section F.10.16) denoted in Annex F.

A logical container for the resources used in an analysis context.

Extensions
« Classifier (from UML::Classes::Kernel)

Generalizations

» None

Associations
+ None

Attributes
« resources: Resource[*] set of resources contained by this container.

Constraints
* None
15.3.2.11 GaRequestedService
The GaRequestedService stereotype maps the RequestedService domain element (section F.10.15) denoted in Annex F.

A request for an operation by some system object, for instance a subsystem defined by component notation and interface
operations. The operation details may be defined by a Scenario attached by the behavior association inherited from Step.

Extensions
» Operation (from UML.::Classes::Kernel).

Generalizations
« GaStep

Associations

» None

Attributes

» None

Constraints
+ None
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15.3.2.12 GaScenario
The GaScenario stereotype maps the BehaviorScenario domain element (section F.10.3) denoted in Annex F.
A Scenario captures system-level behaviour and attaches allocations and resource usages to it. It is composed of sub-

operations called Steps, any one of which can be a composite Step, refined as another Scenario.

Extensions
* None

Generalizations
« ResourceUsage (from MARTE::GRM)

» TimedProcessing (from MARTE:: Time:: TimeRelatedEntities:: TimedProcessingModels)

Associations
- steps: Step [1..*]
the set of steps that make up the Scenario.

Attributes

» hostDemand: NFP_Duration [*]
‘ the cpu demand in units of time, if all Steps are on the same host.

« hostDemandOps: NFP_Integer [*]
the cpu demand in units of operations, if all Steps are on the same host.

« interOccT: NFP_Duration[*]
the interval between successive initiations of the scenario.

« throughput: NFP_Frequency[*]
the mean rate of initiation of the scenario.

« respT: NFP_Duration[*]
the time duration from initiation to completion, for one execution of the scenario.

- utilization: NFP_Real[*]

the occupancy of the scenario, computed as the mean number of scenario instances active at any one time.

« utilizationOnHost: NFP_Real[*]
the occupancy of thehost processor, executing Steps of this scenario, if all Steps are on the same host.

« root: GaStep [0..1]
the first Step of the scenario.

Constraints

[1] The hostDemand and hostDemandOps attributes derive their values from the Steps in the Scenario, but only in cases

where all the Steps have the same Host.

15.3.2.13 GaStep

The GaStep stereotype maps the Step domain element (section F.10.17) denoted in Annex F.
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A GaStep is a part of a Scenario, defined in sequence with other actions, and may be a composite Step containing a
Scenario

The precedence relations in the domain model are not defined as associations because they do not need to be explicitly
defined in the UML behavior, they are given implicitly by the diagram.

Extensions

» None

Generalizations

« GaScenario.

Associations
- behavior: GaScenario [0..1] a GaScenario which refines a composite Step.

Attributes

 isAtomic: NFP_Boolean [0..1] = false
if true, the step must not be decomposed any further.

 blockT: NFP_Duration [*]
a delay inserted in the execution of the Step.

« rep: NFP_Real [*]=1
the actual or average number of repetitions of an operation or loop.

« prob: NFP_Real [*] =1
the probability of the step to be executed (for a conditional execution).

« priority: NFP_Integer [0..1]
the step priority on its host processor.

» concurRes:GrmSchedulableResource [0..1]
the process which executes the Step.

« host: GaExecHost [0..1]
the host processor

« servDemand: GaRequestedService [*] {ordered}
a set of operations requested by the Step, such as calls to interface operations. The order
corresponds to the order in servCount.

» servCount: NFP_Real [*] {ordered}
a set of values for the number of requests to the operations given in the list for
GaRequestedService, in the same order.

Constraints
[1] the elements of the ordered lists servDemand and servCount sorrespond, element to element.

[2] a composite Step (with the behavior association defined) cannot have a host or concur association.
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15.3.2.14 GaTimingObserver

The GaTimingObs stereotype maps the TimingObserver domain element (section F.10.18) denoted in Annex F.
GaTimingObs is a purely conceptual entity that serves to collect timing requirements and predictions that relates to user-
defined observed events. In this sense, GaTimingObs uses UML TimeObservations to define the observed event in a
given behavioral model.

Extensions

« None

Generalizations
» NfpConstraint (from NFPs::NFP_Annotation)

Associations

- endEvent: Time::TimedRelatedEntities:: TimedObservations:: TimedInstantObservation [0..1]
observed event to which the timing observer apply.

« startEvent: Time::TimedRelatedEntities:: TimedObservations:: TimedinstantObservation [0..1]
reference event.

Attributes

« laxity: LaxityKind [0..1]
indicates whether required timing constraints are hard or soft.

Constraints
« None
15.3.2.15 GaWorkloadBehaviour

The GaWorkloadBehaviour stereotype maps the WorkloadBehavior domain element (section F.10.18, p. 544) denoted in
Annex F.

A logical container for the analyzed behavior and the workload that triggers it, in an analysis context.

Extensions

« NamedElement (from UML.::Classes::Kernel).

Generalizations

« None

Associations
*« None

Attributes
« behavior: GaScenario [*]

« demand: GaWorkloadEvent [*]
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Constraints
» None

15.3.2.16 GaWorkloadEvent
The GaWorkloadEvent stereotype maps the WorkloadEvent domain element (section F.10.20) denoted in Annex F.

A stream of events that initiate system-level behaviour. It may be generated in different ways: by a stated arrival process
(such as Poisson or deterministic), by an arrival-generating mechanism modeled by a workload generator class, by a
timed event and from a trace.

Extensions

« NamedElement (from UML::Classes::Kernel)

Generalizations
* None

Attributes

 pattern: MARTE::MARTE_L.ibrary::BasicNFP_Types::ArrivalPattern [0..1]
if defined, this attribute defines a pattern of arrival events.

« generator:GaWorkloadGenerator [0..1]
a workload generator that produces the events

- trace: GaEventTrace [0..1]
indicates an event trace file

« timeEvent: UML::CommonBehaviors::SimpleTime::TimeEvent [0..1]
a time event in the UML specification that triggers the request events.

Associations
» None

Constraint

[1] Only one of the four attributes may be defined.

15.3.2.17 GaWorkloadGenerator

The GaWorkloadGenerator stereotype maps the WorkloadGenerator domain element (section F) denoted in Annex F.

A mechanism defined by a UML behavior definition such as a state machine, that generates events to drive the system
behavior, for example by invoking a top-level system behavior (scenario). There may be multiple independent and
identical instances (population > 1).

Extensions

 Behavior (from UML::CommonBehavior::BasicBehavior).
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Generalizations
* None

Associations

« None

Attributes
« pop: NFP_Integer [0..1] =1

Constraints
« None
15.3.2.18 LaxityKind
The LaxityKind is an Enumeration that includes a list of qualifiers specifying the criticality of a given 'required" timing
property.
Enumeration literals
 hard the required timing specifications have to be met for system behavior correctness.

» soft if the required timing specifications are not met the system behavior is still correct. Further specifications,
such as the miss ratio, can be used to specify the limit of timing misses.

« other a user-specific laxity.
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16 Schedulability Analysis Modeling

16.1 Overview

In this chapter, we describe a component of the MARTE profile that is intended specifically for schedulability analysis. As it is
known, when dealing with real-time systems, the influence of scheduling on the timing and performance is crucial to calculate
guaranteed bounds on responses times and resource processing loads. The maturity of scheduling analysis techniques has led
to a set of useful mathematical formalisms like the classic and generalized Rate Monotonic Analysis (RMA), holistic
techniques, or extended timed automata.

Typical tools for this class of model analysis provide two important functions:

» The first one is to calculate the schedulability of the system or a particular piece of software; that is, the ability of the
system to meet certain temporal constraints (e.g., deadlines, miss rations) defined for the entire system or for a group of
individual concurrent execution units. Such tools typically indicate which entities are schedulable and which are not.

« Sensitivity analysis assists with determining how the system can be improved. That may mean suggestions for making
an entity schedulable or it may mean epitomizing system usage for a more balanced system. A system designer will
typically want to analyze the system under several configurations using different parameter values for each scenario, or
to explore the variability of different resource allocations and deployment into alternative hardware and software
platforms.

Schedulability analysis can be used at different stages. Early analysis of a design model aids developers to detect potentially
unfeasible real-time architectures and prevents costly design mistakes, particularly related to timing behavior. On the other
hand, a later analysis of an implemented system allows analyzers to discover (with more precise quantitative information of
the system) temporal-related faults, or to evaluate the impact of possible platform migrations or modifications on the
scheduling strategies.

This chapter describes a set of common annotations for model-based schedulability analysis. It allows quantitative annotations
to be attached at the level of detail desired by the designer. Indeed, even if the specification might contain extreme detail, the
set of annotations may optionally be partially applied. On the other hand, each vendor is encouraged to supply specialized
profiles that extend this set in order to perform model analysis that is more extensive.

It was actually stated that the SPT's sub-profiles for schedulability and performance analysis were too much independently
defined, reducing the ability to reuse annotated models for any kind of analysis. To improve this aspect, we introduced a
common framework, named Generic Quantitative Analysis Modeling (GQAM), supporting both kinds of timing analysis. The
modeling framework described in this section attempts to specialize GQAM into a collection of modeling concepts for model-
based schedulability analysis purposes, as well as a set of Non-Functional Properties (NFPs) for these basic concepts. This
framework therefore involves the use of the NFP Modeling framework presented in chapter 8.

The structure of this section follows the convention adopted throughout this document: First, a domain viewpoint is described
that identifies the basic abstractions used in schedulability analyses. The semantics of these abstractions and their relationships
are explained with the aid of metamodels. The second part of the chapter describes how these abstractions are expressed in the
UML metamodel. This is done through a series of UML extensions (stereotypes, constraints, and tag definitions).
Supplementing this description is a set of illustrative examples showing common ways of applying this part of the MARTE
profile.

16.2 Domain View

The Schedulability Analysis Modeling (SAM in short) domain model uses similar domain concepts as those presented in the
GQAM framework. Since these concepts are already described in a general way, we define here their semantics in the
schedulability analysis domain and add the NFPs used for these purposes. All the NFP data types for schedulability analysis
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are declared in a model library (the BasicNFP_Types model library is presented in Annex D).

The SAM sub-profile has many facets that are grouped in individual packages. The overall package structure is shown in
Figure 16.1.

MARTE: MARTE:
GRM GQAM
] H
«import » ;
« import »
’ H
MARTE::SAM ‘ H
]
SAM_Workload meei import »=mars SAM_Resources
import SAM_Observers

Figure 16.1 - Structure of the SAM domain model

The purpose and contents of each package are described in subsequent sections.
16.2.1 The SAM root package

As the GQAM chapter, the SAM's conceptual domain model is organized around the notion of Analysis Context (Figure 16.2).
An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis scenario.
Starting with the analysis context and its elements, a tool can follow the links of the model to extract the information that it
needs to perform the model analysis.

Analysis contexts are also known as real-time situations in the schedulability analysis domain. In particular, a
SaAnalysisContext is a kind of AnalysisContext with additional attributes. The isSchedulable attribute indicates whether all
the timing constraints defined for the analysis context are respected. The optimalityCriterion attribute denotes a global
criterion used to determine a schedule for the context analyzed (e.g., meet all hard deadlines, minimize the number of missed
deadlines, minimize the mean tardiness, maximize flow).

Note — Most of specialized SAM-specific concepts have the prefix "Sa", which stands for "Schedulability Analysis".

In general, AnalysisContext is associated with the following two modeling concerns:

» WorkloadBehavior: represents a given load of processing flows triggered by external (e.g., environmental events) or
internal (e.g., a timer) stimuli. The processing flows are modeled as a set of related steps that contend for use of
processing resources and other shared resources.

» ResourcesPlatform: represents a concrete architecture and capacity of hardware and software processing resources used
in the context under consideration.
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Figure 16.2 - The SAM root domain model: Analysis context

Since analysis models are intended to be integrated with existing design models, or at least to be defined in a separated view
with a clear mapping to design views, we are especially interested on collecting modeling elements according to the
abovementioned modeling concerns. Indeed, this separation of modeling concerns is essential to support the MDA approach.
Splitting an analysis context model into these two aspects allows MDA modelers to keep platform-independent models
(models annotated with WorkloadBehavior elements) separated from platform description models (ResourcesPlatform
annotations). We illustrate an example supporting this approach in section 16.3.3, p.279. This feature attempts to enhance the
modeling practices fostered by MARTE in order to ease retargetability of logical model elements onto execution platforms
models possibly stored into reusable libraries (this is one of the key requirements of the MARTE RFP).

In the remaining subsections, we describe the main concepts related to these modeling concerns.
16.2.2 The SAM Workload package

The SAM_Workload package contains concepts related to the processing load on the system. We split this package in two
figures (Figure 16.3 and Figure 16.4).

The end-to-end related concepts are gathered in Figure 16.3. This figure shows the constructs required to specify the end-to-
end behavior and the associated quantitative information concerning end-to-end stimuli, timing requirements and responses.

Note: In general, most of the discussed concepts are imported from GQAM and GRM. For explanation purposes, we show
here some available attributes of interest for schedulability analysis. For a complete list of attributes of the imported concepts,
refer to the respective chapters.

In a given analysis context, a single WorkloadBehavior situation is commonly evaluated. A WorkloadBehavior situation may
correspond to a mode of system operation (e.g. starting mode, fault recovering, or normal operation) or a level of intensity of
environment events. A specific WorkloadBehavior model is defined by the set of end-to-end processing flows
(EndToEndFlow), which represent the analyzed workload.

End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-end
response.
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GQAM_Workload::

WorkloadEvent 1. L GQAM_Workload::
BehaviorScenario

pattern: Arrival Pattern inputStream effect

Figure 16.3 - The SAM Workload domain model: EndToEndFlow (partial view)

End-to-end flows refer to a set of stimuli requesting computations. We may refer to an instance of a particular request stimulus
as an event occurrence. Since the stimulus can occur repeatedly, we refer to recurrence of events as WorkloadEvent. Workload
events can be originated outside the system, inside the system, or because of the passage of time. From a modeling viewpoint,
workload events can be modeled by known patterns (see the definition of the ArrivalPattern data type in Annex D), by traces
files, by internal timed event models, or by workload generator models (e.g., state machine models). Workload event models
are fully defined in the GQAM chapter, page 244.

A computation that is performed as a consequence of a workload event is referred to as the behavior scenario
(BehaviorScenario) that executes in response to its event occurrences. Depending on the implementation nature of behavior
scenarios, they could be concretized in a single task executing in one processor or in dependent tasks into single or multiple
processors. But ultimately, behavior scenarios serve to describe end-to-end responses of a workload model under analysis.

As a conceptual entity, end-to-end flow allows to define a set of timing requirements and timing predictions. Timing
requirements include deadlines, maximum miss ratios and maximum jitters. Timing predictions are typically provided by
analysis tools and include latencies, jitters, and other scheduling metrics. These aspects are modeled by the TimingObserver
concept. Section 16.2.3 (p.268) provides details on this.
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Figure 16.4 - The SAM Workload domain model: BehaviorScenario (partial view)

Additionally, end-to-end flows are characterized by a set of NFPs. isSchedulability indicates whether the flow meets all its
deadlines. schedulabilitySlack provides a percentage measure by which the (effective) execution time of all the atomic
processing units participating in the end-to-end response may be increased while still keeping the end-to-end flow schedulable.
EndToEndTime and EndToEndDeadline are respectively the predicted worst completion time and required completion latency
of the end-to-end response measured from the arrival of the requested event. This applies if only one input end-to-end stimuli
exist.

Figure 16.4 shows the domain concepts for defining behavior execution modeling aspects. This model is based on the one
introduced in the GQAM framework.

Thus, the BehaviorScenario concept serves to collect detailed descriptions of the response behavior. Depending on the
implementation nature of BehaviorScenario, they could be concretized in a single step executing in one processor or in a
number of flow related steps into single or multiple processors. A step may represent a small segment of code execution as
well as the sending of a message through a communication media (ExecutionStep and CommunicationStep). The ordering of
steps follows a predecessor-successor pattern, with the possibility of multiple concurrent successors and predecessors,
stemming from concurrent thread joins and forks respectively. The granularity of a step is often a modeling choice that
depends on the level of detail that is being considered. Hence, a step at one level of abstraction may be decomposed further
into a set of finer-grained steps.
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Schedulability analysis models commonly restrict steps to processing units that must not change allocation of system
resources. Scheduling-based processing steps (SaStep and SaCommunicationStep) begin and end when decisions about the
allocation of system resources are made, as for example when changing its priority. As a main concept on schedulability
analysis models, step deadlines define the maximal time bounds on the completion of particular segments that must be met.
The SaStep concept is enriched with other latency properties such as preempted time and ready time. Notice that the
association requiredAmount inherited from ResourceUsage (see Section 10.2.5) is used to model execution times. The worst,
average, and best execution times are modeled with different instances of the usage attribute by means of the statistical
qualifier slot in NFP types. For instance, a pair of worst and best case execution time values is: "execTime= {(5.0, ms,
max),(3.0, ms, min)}". The same case applies for whatever attribute typed with a NFP data type.

In this model, steps use the active resource services for execution by means of schedulable resources (e.g., threads, process in
execution resources) and communication channels (e.g., message management units) characterized by concrete scheduling
parameters, and synchronize through calls to shared resources (for instance, 1/0 devices, DMA channels, critical sections or
network adapters).

16.2.3 The SAM Observers package

Timing Observers (Figure 16.5) are purely conceptual entities that serve to collect timing requirements and predictions that
relates to user-defined observed events. In this sense, Timing Observer use Timed Instant Observations (chapter 9) to define
the observed event in a given behavioral model. Timing observers are a powerful mechanism to annotate and compare timing
constraints against timing predictions provided by analysis tools. Timing observers can be used as predefined and
parameterized patterns (e.g., latency, jitters) or by means of more elaborated expressions since TimingObserver inherits all the
modeling capabilities from NFP_Constraint.

Note that these modeling constructs are mainly useful for complex end-to-end flows with several observation points in order to
provide centralized and flexible means to annotate analyzer-defined timing constraints. Most of analysis tools provide a
repository to store this kind of global information that is more related with the exploration of constraint cases.

Timing observers are typically of two kinds in schedulability analysis: required and offered. Required timing observers
represent timing constraints such as deadlines or required maximum jitters. Offered timing observers specify prediction results
mostly calculated by analysis tools.

Two kinds of timing observer patterns are used in SAM. LatencyObserver specifies a duration observation with its
corresponding miss ratio percentage assertion (percentage), a utility value of a latency value, and a maximum jitter with which
a periodic internal event is generated. The output jitter is calculated as the difference between a worst-case latency time and
the best-case latency time for the observed event measured from a reference event. Required latency values are known as
deadlines in real-time systems. SchedulingObserver provides prediction about scheduling metrics such as overlaps, the
maximum number of suspensions caused by shared resources or the blocking time caused by the used shared resources. All
these metrics are relative to the interval defined by the reference and observed events.

Timing observers must be attached to behavior elements. When the reference and observed events are not defined, the start
and finish events can be deduced from the behavior element annotated.
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Figure 16.5 - The SAM Observers domain model
16.2.4 The SAM Resources package

In the SAM framework, the concept of resourcesPlatform matches to the engineering model of resources introduced in the
SPT profile. That includes not only hardware resources (CPU, devices, backplane buses, network resources), but also software
ones (threads, tasks, buffers). Figure 16.6 shows a framework to describe the platform of resources.

Schedulability models use an abstracted version of a more structured and detailed platform model (see chapter 14 for detailed
resources models), which is especially useful for expressing NFPs oriented to quantitative analysis and without distinguishing
among different abstraction levels (hardware, RTOS or middleware).

As defined in GQAM, the resources platform model consists of a set of resources with explicit NFPs. Specifically, throughput
properties e.g., processing rate, efficiency properties e.g., utilization and overhead properties as for example blocking times
and clock overhead times. This model distinguishes two kinds of processing resources: execution hosts (e.g., processors,
coprocessors) and communication hosts (e.g. networks, buses). For each one, the SAM framework adds specialized NFPs.
Particularly, schedulability metrics, interrupt overheads and utilization of scheduling processing.

Two kind of concurrent resources are used by steps to access processing hosts: schedulable resources and communication
channels. SchedulableResource is a kind of active protected resource that is used to execute steps. In a RTQOS, this is the
mechanism that represents a unit of concurrent execution, such as a task, a process, or a thread. In a communication host, the
related element is CommunicationChannel, which may be characterized by concrete scheduling parameters (like the packet
size). Schedulable resources are scheduled with a chosen set of scheduling parameters associated to a given scheduling
algorithm. The component that implements these algorithms is called the scheduler.

Schedulers can be of two types: system schedulers (typically a RTOS scheduler) that offer the whole processing capacity of its
associated base processors to its allocated schedulable resources, and secondary schedulers that only provide the processing
capacity offered by its hosting schedulable resource. This hierarchical structure is typically used in real-time systems when
users are interested in applying dynamic scheduling on top of commercial RTOS supporting only static scheduling. Likewise,
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novel algorithms exist that allow to perform real-time analysis of these hierarchical configurations of schedulers.

SAM_Resources
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resources
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Figure 16.6 - The SAM Resources domain model

Execution Hosts own shared resources as for example 1/0 devices, DMA channels, critical sections or network adapters.
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access policies
are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol.

16.2.4.1 Types of Model Analysis Methods

Two major categories of scheduling policies, and therefore two types of analysis, are available. One category is static in nature
- i.e., parametric decisions about scheduling importance are all made "up-front" and the entire collection of execution
possibilities and contexts is known beforehand. The other category involves dynamic scheduling -i.e., scheduling decisions are
made at runtime using information available within the dynamic context of execution. It is the intention of this specification to
support both categories.
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Depending on the policy, parameters like scheduling priority may be statically determined by the analyst, with or without the
aid of model analysis tools, or dynamically by portions of the system that continuously analyze context and adjust internal
parameters like priority. Earliest Deadline First scheduling is an example of such a dynamic activity. Deadlines - the amount
of time remaining in which the defined work of a thread must be done - changes continually when that thread is not running.
This means that the earliest deadline is a dynamically changing value. Rate Monotonic Analysis, on the other hand, is
determined from the complete static set of schedulable threads, their resources, and rates of invocation.

Static scheduling and related model analysis

Rate Monotonic Analysis

Rate Monotonic Analysis assigns scheduling priority to periodic schedulable resources by ordering scheduling priority
according to the frequency of repetition of execution - i.e., the rate by which a periodic schedulable resource needs to be
scheduled to execute. The name Rate Monotonic means that the priority ordering is a monotonic function of the rate of
execution. This model analysis technique can be extended to include both periodic and sporadic scheduling end-to-end flows.
Detailed discussion of these topics can be found readily in the literature.

Deadline Monotonic Analysis

Rate Monotonic Analysis is used for analysis of periodic schedulable resources where the deadline coincides with the next
required execution to start - i.e., the period and the deadline are the same. Sometimes this is not the case. A slight variation of
RMA is deadline monotonic analysis where the deadline for a periodic schedulable resource needs not be the same as its
period. Detailed discussion of deadline monotonic analysis can be found readily in the literature.

Dynamic Scheduling - value or utility based scheduling

Dynamic Scheduling deals with the condition where the values used to order the scheduling of the CPU are a changing
function over time. Therefore, dynamic scheduling uses a scheduler that makes decisions based on importance of each
schedulable resource, but the importance is continuously re-examined within the dynamic context of execution of the system
containing the scheduler. This class of scheduling policy is often called value based or utility based scheduling; it uses a
supplied function (which may be but doesn't have to be a function of time, v(t)) to obtain a value for scheduling importance.

Earliest deadline first is a simple concrete example of a specific value function; it is a widely used scheduling policy
implemented in a dynamic scheduling manner in many domains, including the telecommunications community. Although
earliest deadline is a popular value function the notion can be generalized to any value function that makes sense for a specific
domain.

Value based scheduling is currently receiving significant attention.

16.3 UML Representation

We now examine how the domain concepts previously presented can be represented (mapped) in the UML modeling space. To
provide the flexibility required by the RFP for this specification, the same stereotypes may be applied to a number of different
kinds of modeling elements.

This sub-profile allows modelers to choose the style and modeling constructs, or to impose constraints, that they feel are best
ones fittings to their needs. From a predictive point of view, most of schedulability analysis models are intrinsically instance-
based. Nevertheless, high-level descriptor/type-based models and state-based models can also be annotated with non-
functional characteristics, and then concrete analysis models may be instantiated for specific analysis runs. For instance,
stereotypes for schedulibility analysis modeling apply to both instance concepts as well as generic descriptor concepts. Either
form may be used since there are no semantic differences as far as the interpretation of the results is concerned. The choice
depends on circumstances (i.e., whichever model is more readily available) or individual preference of the modeler. The
tagged values of descriptor elements should be viewed as defaults for derived instances, which can override the defaults.

A UML Profile for MARTE, Beta 1 293



16.3.1 Profile Diagrams

In this Section we show the UML extensions for the SAM sub-profile. The SAM package (stereotyped as profile) defines how
the elements of the domain model extend metaclasses of the UML metamodel.

An analysis context (real-time situation) for schedulability analysis is modeled as a stereotype "SaAnalysisContext" (Figure
16.7). It specialize the GQAM GaAnalysisContext stereotype, and the latter in turn specialize the VSL "ExpressionContext"
stereotype, which extends UML NamedElement. Although this could seem too general, common extended elements are UML
Classifier, for more complex models, and whatever UML Behavior kind, for the simplest cases. This means that these model
elements are used as collectors of schedulability analysis sub-views, i.e., workload behavior models and platform resources
model. Note that in the simplest cases, an analysis context can be extracted from a behavior model that has explicit allocations
(stereotypes from the Allocation profile) to resources elements.

"GaWorkloadBehavior" and "GaResourcesPlatform™ are used directly from GQAM, where they extend UML NamedElement
and Classifier respectively.

An end-to-end flow maps to UML NamedElement. Although this could seem too general, common extended elements are
UML Behaviors such as Interaction or Activity. The reason by which it extends UML NamedElement is that it might extend
other elements like for instance UML ActivityPartition. An "SaEnd2EndFlow" will make reference implicitly to one ore more
GQAM "GaWorkloadEvent" and to one "GaScenario™ commonly by means of a containment relationship (owned elements) or
allocation stereotypes.

« prdfile »
SAM

« stereotype» «mt_e_taclass > « stereotype» « metaclass » «stereotype »
MARTE-:GOA M : UM'k"C'asl_s_es- : MART E::GQAM: : UML::Classes: MARTE::GQAM: :
GaA nalysisContext Nameedrgleeﬁ.]ent GQAM_Workioad: : K_ernel: : GQAM_Workload::

y GaCommStep BehavioralFeature GaStep

o

« stereotype»
SaAnalysisContext

isSched: NFP_Boolean
op tCriteri on: OptimalityC iiterionKind

« stereotype»
SaEnd 2EndFlow

« stereotype »
SaCo mmStep

« stereotype»
SaStep

« enumeration »
OptimallityCriterion Kind

meetHardDeadlines
minimizeMis sedD eadlines
minimizeMean Tardines s
undef

other

isSched: NFP_Boolean
schSlack NFP_Real

end 2EndT: NFP_Duration [*]
end 2EndD : NFP_Duration [*]
timing : TimingObs erver [*]

{ordered}

deadiine: NFP_Duration
spareCap: NFP_Duration
schSlack: NFP_Real

deadline: NFP_Duration
spareCap: NFP_Duration
schSlack NFP_Real
preempT: NFP_Duration
readyT: NFP_Duration
delayT: NFP_Duration

Figure 16.7 - The SAM Profile: Analysis Context and Workload Behavior elements

A "GaWorkloadEvent" extends UML NamedElement in GQAM. Nevertheless, more common extended elements are: UML
AcceptEventAction, Event, Trigger, InitialNode, or Message. The relationship between "GaWorkloadEvent" and
"GaScenario™ is either via collocation of the stereotypes, or by a UML meta-association between the two elements stereotyped
(e.g., Event-Trigger-Behavior, InitiaINode-ControlFlow-Action, Message-ExecutionSpecification-Behavior).
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The GQAM "GaScenario”, and the SAM "SaStep" and "SaCommStep” extends "TimedProcessing” of the MARTE Time
profile. The latter extends UML Actions, Behaviors, ExecutionSpecification, and Messages. The Allocation stereotypes can be
used to associate steps with particular resources. "GaStep" can call "RequestedServices™, which is a kind of "GaStep” (see the
GQAM chapter). This is used to make calls from a instance-based behavioral element (e.g., UML ExecutionSpecification) to
descriptor-based behavior elements (e.g., UML BehavioralFeature).

"GaTimingObserver" specializes "NfpConstraint", and the latter extends UML Constraints (see the NFPs profile). In general,
"GaTimingObserver" are used to constrain other behavioral elements. For instance, "SaEnd2EndFlow™ has an association
(timing) that define a meta-association between this element and UML constraints stereotyped as "GaTimingObserver"”, or its
child stereotypes.

« profile »
SAM
« stereotype »
MARTE :NF Ps::Nf pCo nstraint
A
startObs
P EE— « stereotype» « enumeration »
« metaclass » 0.1 GOQAM:: L
UML: :Common Behaviors: endObs GaTimingObs LaxityKind
BasicTime: :TimeObservation hard
0..1 laxity: LaxityKind [0..1] soft
Z} other

« stereotype »
SaSched Obs

suspentions: NFP_Integer [*]
blockT: NFP_Duration [*]
ov erlaps : NFP_Integer [*]

Figure 16.8 - The SAM Profile: Timing Observers

Resources stereotypes extend UML structural elements (Figure 16.9). These are indicated by stereotyping Classifier or
InstanceSpecification (e.g., Classes, Nodes, Components) with the appropriate stereotypes ("SaCommHost", "SaExecHost",
"SaSharedResource", "Scheduler", "SchedulableResource”, "GaCommChannel™). The relationship between "SaExecHost"
and the "SaSharedResource", "Scheduler”, and "SchedulableResource" resources is established using the "Allocate™ and

"Allocated" stereotypes of the Allocation profile.
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Figure 16.9 - The SAM Profile: Resources
16.3.2 Profile elements description

In this section, we describe the SAM stereotypes. These stereotypes are listed in alphabetical order. The detailed semantic
descriptions corresponding to these stereotypes and tagged values are provided in Annex F.11 on page 545.

16.3.2.1 SaEnd2EndFlow

The SaEnd2EndFlow stereotype maps the EndToEndFlow domain element (section F.11.1, p. 545) denoted in Annex F.
End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-
end response.

Extensions

« UML::Classes::Kernel::NamedElement

Generalizations

» None

Associations

» None

Attributes

« isSched: NFP_Boolean [0..1]
indicates whether the flow meets all its deadlines.

296 A UML Profile for MARTE, Beta 1



« schSlack: NFP_Real [0..1]
provides a percentage measure by which the (effective) execution time of all the atomic processing
units participating in the end-to-end response may be increased while still keeping the end-to-end
flow schedulable.

« End2EndT: NFP_Duration [0..1]
represents the predicted worst completion time latency of the end-to-end response measured from
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

« End2EndD: NFP_Duration [0..1]
represents the required worst completion time latency of the end-to-end response measured from
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

« timing: TimingObserver [*]
set of timing requirements or preditions that constrain local fragments or the global end-to-end
execution flow.
Constraints

« None.

16.3.2.2 SaAnalysisContext

The SaAnalysisContext stereotype maps the SaAnalysisContext domain element (section F.11.2, p. 546) denoted in Annex
F.

An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis
scenario. Starting with the analysis context and its elements, a tool can follow the links of the model to extract the
information that it needs to perform the model analysis. Analysis contexts are also known as real-time situations in the
schedulability analysis domain.

Extensions

« None

Generalizations

» GaAnalysisContext (from GQAM)

Associations

« None

Attributes

» isSched: NFP_Boolean [0..1]
It indicates whether all the timing constraints defined for the analysis context are respected.

« optCriterion: optimalityCriterionKind [0..1]
The optimalityCriterion attribute denotes a global criterion used to determine a schedule for the
context analyzed (e.g., meet all hard deadlines, minimize the number of missed deadlines,
minimize the mean tardiness, maximize flow).
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Constraints

» None.

16.3.2.3 SaStep

The SaStep stereotype maps the SaStep domain element (section F.11.3, p. 547) denoted in Annex F.

A SaStep is a kind of GaStep that begin and end when decisions about the allocation of system resources are made, as for
example when changing its priority.

Extensions

» None

Generalizations
« GaStep (from GQAM)

Associations

» None

Attributes

« deadline: NFP_Duration [0..1]
defines the maximal time bound on the completion of this particular execution segment that must
be met.

« spareCap: NFP_Duration [0..1]
amount of execution time that can be added to the step without affecting schedulability.

« schSlack: NFP_Real [0..1]
percentage by which the execution time of the step can be increased (positive values) or should be
decreased (negative values) in order to reach the schedulability limit.

» preempT: NFP_Duration [0..1]
length of time that the step is preempted, when runnable, to make way for a higher priority step.

 readyT: NFP_Duration [0..1]
effective release time expressed as the length of time since the beginning of a period; in effect a
delay between the time an entity is eligible for execution and the actual beginning of execution.

« delayT: NFP_Duration [0..1]
length of time that an step that is eligible for execution waits while acquiring and releasing
resources.

Constraints

» None

16.3.2.4 SaCommStep

The SaCommStep stereotype maps the SaCommunicationStep domain element (section F.11.4, p. 548) denoted in Annex
F.
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A SaCommStep is a kind of step that represents a usage of a communication media.

Extensions

« None

Generalizations
« CommStep (from GQAM)

Associations

« None

Attributes

« deadline: NFP_Duration [0..1]
defines the maximal time bound on the completion of this particular transmission that must be met.

« spareCap: NFP_Duration [0..1]
amount of execution time that can be added to the step without affecting schedulability.

« schSlack: NFP_Real [0..1]
percentage by which the execution time of the step can be increased (positive values) or should be
decreased (negative values) in order to reach the schedulability limit.

Constraints
« None
16.3.2.5 SaExecHost
The SaExecHost stereotype maps the SaExecutionHost domain element (section F.11.5, p. 548) denoted in Annex F.

A CPU or other device which executes functional steps. The SaExecHost stereotype adds schedulability metrics, interrupt
overheads and utilization of scheduling processing.
Extensions

« None

Generalizations
» GaExecHost (from GQAM)

Associations

« None

Attributes

 ISRswitchT: NFP_Duration [0..1]
context switch time of ISR (Interrupt Service Routines) interruptions.

« ISRprioRange: NFP_Integerinterval [0..1]
range of ISR priorities supporte by the platform.
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« isSched: NFP_Boolean [0..1]
indicates whether all the timing constraints defined for the execution host are respected.

« schSlack: NFP_Real [0..1]
percentage by which the execution time of all the steps running in this execution host can be
increased (positive values) or should be decreased (negative values) in order to reach the
schedulability limit.

« schedUtiliz: NFP_Real [0..1]
total utilization of scheduling services.

« schedPolicy: SchedPolicyKind [0..1]
scheduling policy for the execution host. This is an alternative annotation mechanism, which is
used when modelers want to avoid modeling explicit Scheduler elements.

« isPreemptible: NFP_Boolean [0..1]
indicates if all the schedulable resources in the execution host are preemptible. This is an
alternative annotation mechanism, which is used when modelers want to avoid modeling explicit
Scheduler elements.
Constraints

+ None

16.3.2.6 SaCommHost

The SaCommHost stereotype maps the SaCommunicationHost domain element (section F.11.6, p. 549) denoted in Annex
F.

In a communication host (e.g., networks, buses). the related schedulable resource element is CommunicationChannel,
which may be characterized by concrete scheduling parameters (like the packet size).

Extensions

» None

Generalizations
« GaCommHost (from GQAM)

Associations

* None

Attributes

» isSched: NFP_Boolean [0..1]
indicates whether the transmitted messages meets all its deadlines.

« schSlack: NFP_Real [0..1]
provides a percentage measure by which the (effective) transmission time of all the communication
steps participating in the host may be increased while still keeping the system schedulable.
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Contraints

« None

16.3.2.7 SaSchedObs
The SaSchedObs stereotype maps the SchedulingObserver domain element (section F.11.7, p. 549) denoted in Annex F.

SaSchedObs provides prediction about scheduling metrics such as overlaps, the maximum number of suspensions caused
by shared resources or the blocking time caused by the used shared resources. All these metrics are relative to the interval
defined by the reference and observed events.

Extensions

« None

Generalizations
» TimingObs (from GQAM)

Associations

« None

Attributes

« suspensions: NFP_Duration [*]
the maximum number of suspensions caused by shared resources.

 blockT: NFP_Duration [*]
the blocking time caused by the used shared resources.

« overlaps: NFP_Duration [*]
in case of soft timing constraints, this indicates how many instances may overlap their execution
because of missed deadlines.

Contraints
* None
16.3.2.8 SaSharedResource
The SaSharedResource stereotype maps the SharedResource domain element (section F.11.8, p. 550) denoted in Annex F.

Execution Hosts own shared resources as for example 1/O devices, DMA channels, critical sections or network adapters.
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol.

Extensions

« None

Generalizations

» MutualExclusionResource (from GRM)
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Associations

» None

Attributes

« capacity: NFP_Integer [0..1]
number of permissible concurrent users, for example using a counting semaphore.

« isPreemp: NFP_Boolean [0..1]
if the resource can be preempted while it is being used.

 isConsum: NFP_Boolean [0..1]
indicates that the resource is consumed by use.

 acquisiT: NFP_Duration [0..1]
time delay suffered by an action between being granting access to a resource and the availability of
the resource.

» releaseT: NFP_Duration [0..1]
time delay suffered by an action between initiating release of a resource and the action becoming
eligible for execution again.

Contraints

« None
16.3.3 Examples

We now examine how the domain concepts and the profile previously presented can be used for modeling schedulability-
aware systems.

The annotations have been made over a case study application for the real-time modeling and analysis of a simple
distributed system for the teleoperated control of a robotized cell.

The application system (see Figure 16.10) is composed of two processors interconnected through a CAN bus. The first
processor is a teleoperation station (Station); it hosts a GUI application, where the operator commands the robot and
where information about the system status is displayed. The second processor (Controller) is an embedded microprocessor
that implements the controller of the robot servos and its associated instrumentation.

The software architecture is described by means of the class diagram shown in Figure 16.10. The software of the
Controller processor contains three active classes (called rtUnits in MARTE, see chapter 13) and a passive one which is
used by the active classes to communicate. Servo Controller is a periodic rtUnit that is triggered by a ticker timer with a
period of 5 ms. The Reporter rtUnit periodically acquires, and then notifies about, the status of the sensors. Its period is
100 ms. The Command Manager rtUnit is aperiodic and is activated by the arrival of a command message from the CAN
bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter rtUnit
handles the events that are generated by the operator using the GUI control elements. The Display Refresher rtUnit
updates the GUI data by interpreting the status messages that it receives through the CAN bus. Display_Data is a
protected object (called ppUnit in MARTE, see chapter 13) that provides the embodied data to the rtUnit in a safe way.
Both processors have a specific communication software library and a background task for managing the communication
protocol.
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Figure 16.10 - Example of the Teleroperated Robot application: Structural View

To organize the UML models annotated for schedulability analysis, we adopt the concept of views, which represent the
concern models composing the SAM's real-time situation concept. In this way, we provide separated diagrams for
specifying the SAM concepts of workload behavior, and resources platform. Next, we show some examples that illustrate
this organization.

16.3.3.1 Example of Workload Behavior model

The workload behavior situation to be analyzed contains three end-to-end flows with hard real-time requirements. They
all use the processing resources Station, Controller and CAN_Bus and interact by accessing protected objects.

The control servos end-to-end flow executes the Control response with a period and a deadline of 5 ms. The report
process end-to-end flow transfers the sensors and servos status data across the CAN bus, to refresh the display with a
period and deadline of 100 ms. Finally, the Execute Command end-to-end flow has a sporadic workload event pattern, but
its inter-arrival time between events is bounded to 1 s.

Figure 16.11 illustrates an UML Activity diagram that represents a workload behavior model consisting of the three
above-mentioned end-to-end flows characterized by their workload events and behavior scenarios. These three end-to-end
flows explicitly introduce the semantic of concurrency for the modeled activity partitions. Workload events annotating
UML AcceptEventActions introduce the semantic of event sequence arrivals for the execution of each callBehaviorAction
(Control, Report and Command). We also annotate non-functional properties for the three kinds of extensions. An end-to-
end flow is characterized by an end-to-end deadline and the request event stream by their the arrival patterns. Behavior
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scenarios are annotated with expressions of variables ($r1, $ul, $el, $wcetl, $pR, etc.). In general, when attributes are
annotated with variables, the model indicates to the analysis tools that these attributes must be computed and returned to

the UML model.

« gaWorkloadB ehavior» NormalMod e)

« saEnd2endF low »
ReportProcess

{end2endD

an

X

A TUE? « workloadEvent »
_g 8 . Qontrgl‘l’ngg
$eg, { periodic (period= (5, ms)) } «gaScenario»
505 { respTime= ($r1, ms),
S utilization= $u,
S ‘g % execTime= ($e1, ms) }
cQO O Control
» 2 —

% « workloadEvent »

£ ReportTrigg

g’ { periodic (period= (100, $pR, ms))} (

«gaScenario»
{respTime= ($r2, ms),
utilization=$u2,
ec Time= ($wcetl, max, ms) }
Report

« workloadEvent »
ReportTrigg
{ periodic (period=(1,s)) }

=(1.s)}

« saEnd2endFlow »
ExecuteCommand
{end2endD

)
«gaScenario»
{ respTime= ($r3, ms),
utilization=$u 3,
execTime= ($e3, ms)}
Command

Figure 16.11 - Example of end-to-end flows situations model

In Figure 16.12, we present one of the three scenarios that models the Report behavior scenario. Note that a "GaScenario"
stereotype (which is annotating UML CallBehaviorActions) can also annotate the behavior itself. Behaviors can be
Interactions, State Machines and Activities. The behavior model elements allow for representing end-to-end behaviors and
the precedence between the processing steps involved in the scenario. In our example, we applied it to sequence diagrams
(see Figure 16.12). Observe that the stereotypes "SaStep" and "SaCommStep" extend UML messages. In general, steps
annotating UML messages represent the execution load of the associated UML ExecutionSpecification at the reception of
the message. In this example, "SaSharedResource" elements are UML Lifelines of the sequence diagram. The chain of
steps (connected by the successor-predecessor patterns) conform the model of the "GaScenario". "SaStep" elements
include worst and best case execution times, and "SaCommStep”, in turn, the size of the message transmitted or received.
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Figure 16.12 - Example of Behavior Scenario model

16.3.3.2 Example of Resources Platform model

In Figure 16.13, we represent the domain concept of resource platform since an analysis viewpoint. In this case, we use a
structured classifier to collect a set of resource instances. The structured classifier represents the resources platform under
analysis. The processing resources defined in Figure 16.10 (Station, CAN_Bus, Controller, RobotArm) are represented as
parts of the resources platform. These parts are annotated with non-functional characteristics required for schedulability
analysis. In addition, a scheduler instance (a part again) represents the OS scheduler based on fixed priority scheduling.

Additionally, a set of schedulable resources instances are modeled as parts that are allocated on processing resources.
Schedulable resources are annotated with a priority parameter.

Note that execution and communication steps are allocated to this set of schedulable resources by means of the stereotype
allocated applied to lifelines in Figure 16.12. This means that the execution specifications realized in the lifelines are
processed in the context of the target schedulable resources.
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Figure 16.13 - Example of Resources Platform model

16.3.3.3 Example of Analysis Context model

In order to define the analysis context for a given pair of workload behaviour and resources platform models, we illustrate
how to use structured classifiers (see Figure 16.13). In this example we collect analysis views by means of parts
instantiating workload behavior (normalMode Activity in the example) and resources platform
(TeleoperatedRobot_Platform StructuredClassifier in the example) models. In addition, this example illustrates how to
parameterize analysis results by means of variables (see Annex VSL for the profile of variable definition). Note that
"GaAnalysisContext" inherits from "ExpressionContext", which enable "SaAnalysisContext" elements to be used as
contexts or namespaces of variables. Variables extend UML Property.
Note that this mechanism does not replace the basic annotation mechanism of variables declared in tags by which a
model indicates the information to return by analysis tools. Our aim is to provide a more flexible and alternative way
to communicate analysis intents to analysis tools by means of UML Property elements (stereotyped as variable:
"var").

Particularly, the context under consideration defines four variables especially chosen to analyze certain parameters of
interest. isSched_System defines the global scheduling correctness regarding all the required deadlines annotated in the
context under analysis. The variables wcet_Report, procRate. CAN (CAN's processing rate), and period_Report actuates
are parameters to study. In order to define the semantics of these variables in the context of the modeled system, we
specify CallVariableExpression (see the Annex VSL) in their default values. These call variable expressions make
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reference to variables declared in the context of the models under consideration. Thus, isSchSys is a variable defined for
the isSched tag of the "SaAnalysisContext" stereotype. The variables wcetl and pR are variables defined in the workload
behavior model named NormalMode (Figure 16.11) and prCAN is a variable declared in the TeleoperatedRobot_Platform
model (Figure 16.13).

In order to analyze different situations we instantiate the analysis context and define the actual values for the proposed
variables. For instance, the UML InstanceSpecification named Schedulability defines isSched_System as the information
to return ("$v0" expression) as a calculated value (source slot of the NFP defined as "calc"), and the other variables are
inputs to the analysis tool (source slot of the NFPs defined as "determ™). The result value returned by analysis tools is
shown in red. In this case, the system has been determined to be schedulable.

More complex scenario analysis can be constructed for sensitivity analysis. For example, the UML InstanceSpecification
named SensitivityAnalysis, defines isSched_System as a required value "true" (source slot defined as "req"). It actuates as
a pivot parameter for calculating the other three variables, which in turn, are defined as results of the analysis (calc).
Thus, the "maximum" worst case execution times of the Report response, while keeping the system schedulable is
calculated, is 50 milliseconds. The "minimum" processing rate or speed factor (current measurements for the CAN
message transmission speed are defined for a value of 1) is 0.2, while still keeping the system schedulable. Finally, the
period of triggering of the Report end-to-end flow can be reduced to 10 milliseconds by still meeting all the deadlines.

«saAnalysisC ontext»
{isSched= ($is SchSys)}
Teleoperated Rob ot SAM

«var» {dir=inout }isSched_Sy stem: NFP_Boolean=isSchSys
«var» {dir=inout }wcet_Report: NFP_Duration= wc et

«var» {dir=inout } procRate_CAN: NFP_Real= prCAN

«var» {dir=inout } period_Report: NFP_Duration=pR

« gaWorkloadBehavior » « GaResourcesPlatform »
:NormalMode : TeleoperatedRobotPlatform
«saAnalysis Context» «saAnalysisContext»
S fity: T R SAM S iivity A ST R SAM
isSched_System= (true, $v0, calc) isSched_System= (true, req)
wcet Report= (5, ms, determ) wcet Report= (50, $v1, ms, max, calc)
proc Rate_CAN= (1, determ) procRate_ CAN= (0.2, %2, min, calc)
period_Report= (30, ms, determ) period_Report= (10, $3, ms, min, calc)

Figure 16.14 - Example of parametric Analysis Context situations

Notice that most analysis tools operate on a simplified view of a system, as illustrated in this example. However, this
profile allows annotations and interpretations to be attached at the level of detail desired by the designer. Indeed, even if
the specification contains extreme detail, the annotations may optionally be applied to aggregates. This is an overriding
reason to find a path to annotations that require a minimum of effort, with a minimum of additions to the design model,
and with clear, non-fragmented specifications of NFPs. It is also essential that NFPs can be attached to a real software
design, rather than requiring a special version of a design created only for analysis.
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17 Performance Analysis Modeling (PAM)

17.1 Overview

In MARTE, "performance modeling" describes the analysis of temporal properties of best-effort systems and soft-real-
time embedded systems, including systems supplying information, web-based services, enterprise services, multimedia,
telecommunications, and networked services. Performance measures (analysis outputs) are statistical, such as mean
throughput and delay, or the probability of missing a target response time. Input parameters to the analysis may also be
probabilistic, such as a random arrival process, random execution time for a media frame, or a probability of a cache hit.
The common performance analysis techniques include simulations, extended queueing models, and discrete-state models
such as Stochastic Petri Nets. Behaviour is often regarded as non-terminating for the purposes of analysis (steady state
behaviour, for example for capacity analysis).

Performance analysis includes single-case analysis for a given set of input parameters, or multicase analysis such as:

« sensitivity analysis which explores a parameter space, to find ideal operational parameters or to identify risky workload
situations. Sensitivity analysis may also include alternative scenarios, platforms, physical deployments, and
configurations.

- Scalability or capacity analysis which explore the capabilities of the design or configuration.
There is explicit support for multicase analysis in the parameters of the AnalysisContext.

The performance domain employs and extends the Generic Quantitative Analysis Modeling (GQAM) domain of Chapter
17. 1t employs features such as the WorkloadEvent description of the stream of arriving events, focussing on some of the
workload types (open and closed arrivals, workload generators and traces), and the behavior-causality model of Scenarios
and Steps. It extends the properties of Steps to include more kinds of operation demands during a step, and the possibility
of an asynchronous (hon-synchronizing) parallel operation. Other extensions a Step subtype PassResource which
identifies the passing of a resource (usually a SharedResource) from one process to another.

The increment to the GQAM domain model is shown in Figure 17-1 and Figure 17.2, broken into two packages,
PAM_Workload and PAM_Resources. Some elements are shown in both diagrams where there are associations between
resources and behavior elements. For elements from other domains, only the attributes of interest for performance
analysis are shown.

17.2 Domain view

17.2.1 The PAM_Workload package

Performance analysis is determined by how the system behaviour uses system resources. Important resources include
hardware ExecutionEngines, concurrent process threads (ScheduledResources), and LogicalResources defined by the
software. A logical resource can be any entity to which the software requires access, and for which the program may have
to wait at some point. Thus a semaphore is in this sense a resource, as is a lock, or a buffer, or a block of memory. A pool
of access control tokens can be modeled as a logical resource.

A process resource, or pool of process threads, is also a kind of logical resource which is modeled separately, by the
concept of SchedulableResource imported from the General Resource domain model (GRM). Because processes may be
identified in behaviour specifications by other entities (lifelines and swimlanes in particular), a special concept of
RunTimeObjectinstance is introduced to represent an alias for a process resource.
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Figure 17.1 - Part of the performance domain model relevant to behavior

Resources which are not modeled within the software design may also have an impact on performance. This domain model
identifies "external operations™ by such resources by a name (a string), so they can be modeled in the performance
environment. An example is the use of a TCP connection, which is not modeled in the software specification, but for which
customized simulators exist. The same considerations might apply to database or storage subsystems.

Demands by a Step for external operations are described by the pair of properties externalOpDemand and externalOpCount.
The first is an ordered list of operation names (strings), and the second is an ordered list (in the same order) of the number of
demands made during one execution of the Step. The number may be an exact number (an integer), an average value (real) or
a probability distribution defined in the NFP.
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Figure 17.2 - Part of the performance domain model relevant to resources

Performance properties of different system elements fall into a small number of different measures, as discussed in
Chapter 15. For instance the term throughput (in operations/sec) is applied to the system as a whole, for handling of
requests, but also to a single process, or component, or processing step. Because of this uniformity, one set of property
names is defined in Table 15-1 to be applied at will to different behaviour and resource entities. These NFPs are used here
also. ypical performance properties include average response time, mean throughput capacity, resource utilization, and the
probability of missing a delay target. However more sophisticated properties can be investigated, and in general
performance analysis uses input and output properties which may be any statistical measure of five types of quantities:

« Duration (e.g.respT) (e.g. as an operation delay, or as a response time), NFP_Duration.

« also forced duration (e.g. blockT) (a duration which is part of the operation, such as a user think time),
NFP_Duration

» Frequency (or throughput. e.g. of events or operations) NFP_Frequency.
« Probability (e.g. of occurrence of some event), NFP_Real.

 Repetitions, for a loop repetition or a repeated operation, NFP_Real. This is represented as Real rather than integer so
that mean values can be represented.

» Message size or memory size, NFP_DataSize.

The analysis associates a BehaviorScenario with the concepts of workload, request, service and response. The workload
defines the frequency or intensity of occurrence of requests for the service; the details of the service given to each request
are defined by the BehaviorScenario (giving the resources and operations including their demand parameters), and the
response is the result, including its properties of delay, frequency, and probabilities. Resources are associated with one or
more BehaviorScenarios, constrain their properties, and have their own properties which include holding time and
utilization (which is the probability that the resource is busy, or a mean count of the number of busy resource units).

17.2.2 Outline of domain concepts
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17.2.2.1 Performance AnalysisContext and Workload

The AnalysisContext (from GQAM) corresponds to the scope of a study or evaluation. It combines the system represented
by its behaviour (BehaviorScenarios and its resources (from GQAM), with one or more workloads. It has a set of
parameters which are used in expressions which define system input parameters, and which define the range of variation
of cases which may arise within the study.

A performance context specifies one or more BehaviorScenarios that are used to explore various dynamic situations
involving a specific set of resources. For instance, a performance context may describe a "busy hour", during which the
maximum processor load is expected and therefore imposing the greatest likelihood of performance problems, such as
missed deadlines. For a given system specification, there may be many performance contexts with overlapping resources,
but one BehaviorScenario is specific to one performance context.

One UML specification may give rise to several performance models, due to variations in system usage, workload,
allocation/deployment, and configuration. We will call these different models cases; they are supported by parameterizing
the specification. Parameterized NFPs are supported by the use of:

« Variables global to the AnalysisContext, defining the variations.

 Variable names in place of numeric values of input properties for model elements.

« Functional dependencies of the input properties on the global variables, to define values.
Variables can then be used to specify:

» Workload intensity, through arrival rates or concurrency (population size).

 System scaling through multiprocessors or replication.

« Data record size (and then various demands, through functions).

Analysis cases are defined outside the UML specification by defining groups of values of variables, with one group of
values for each case. These may be expressed in a table with a column for each case and a row for each variable.

Additional sources of variation may arise with different configurations and environments. Some of these variations are
independent of the UML model, for example the choice of middleware or operating system. The construction of
performance models can incorporate directives to compose the application with a stated environment, using a library of
submodels for environments (described above). These also become case parameters.

UML Model
Configuration/
Platform

Case Parameters == Performance

Model
Input NFPs 1—
(Parameter \l/ m
Values) Performance (Performance
Model Solver Results)

Figure 17.3 - Analysis over cases

17.2.2.2 Behavior
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The unit of description of behaviour is the BehaviorScenario, which corresponds to a behaviour diagram (interaction,
activity or state-machine diagram). It is a sequence of actions (called Step here for its performance aspects), with
predecessor-successor relationships which may include forks, joins and loops. Steps indicate the demands of the system
on its resources, both for execution on the host processor of the step (called its hostDemand attribute) and for other
resources.

Other resources can be acquired (and released) explicitly using subtypes of Step called ResourceAcquire and
ResourceRelease, in which the resource is identified directly. Still further resources can be utilized through demands by a
Step for Services (like calls) which may involve arbitrary resource combinations. One kind of Service, by an
ExternalResource, shows the use of resources outside the UML model.

The input attributes of a Step include its probability (following a branch, or in an opt or alt CombinedFragment), a
repetition count (for a repeated step, such as a loop CombinedFragment), and a "noSync" attribute (folowing a fork, or on
an asynchronous message or par operand) to explicitly indicate that a parallel branch does not join. Behaviour using
noSync may provide increased concurrency and increased performance.

A Step may be refined by another BehaviorScenario. In an Interaction Diagram the sub-BehaviorScenario may be the
operand of a CombinedInteraction; in an Activity Diagram it may be the contents of a StructuredActivity. A
BehaviorScenario that responds directly to requests by a Workload may be termed a "top-level” BehaviorScenario, while
others are sub-scenarios.

In a performance model the system behaviour is often non-terminating, that is it cycles forever, repeating the top-level
scenarios as defined by the workload intensity.

Resource demands by a step include its host execution (CPU) demand, acquisition of a logical resource, and demands for
services which are not defined in the same behaviour definition, but are provided by some system component, or by the
platform or the environment, or by an external system. Within a scenario these are lumped together as

17.2.2.3 Workload

A context may have any number of workloads, representing different sources of requests or initiations of operations. Each
workload has a distinct mechanism for initiating requests, its own load intensity, and its own QoS requirements. In a
performance analysis, a workload corresponds to a class of traffic, with a mechanism which may be either open or closed.

Behaviour is initiated by a request event. An open workload is a RequestEventStream in which the events arrive at a
given rate in some predetermined pattern (such as clocked or Poisson arrivals), or by a trace.

A closed workload defines a stream generated by a fixed number of active or potential users or jobs which cycle between
demanding to execute the BehaviorScenario, and spending an external delay period (some times called a Think Time)
outside the system, between the end of one response and the next request. A system may have any combination of open
and closed workloads. Further, a closed workload may combine requests for different BehaviorScenarios in some
sequence; in general a mechanism to describe this is called a WorkloadGenerator, governed by a state machine making
requests for operations. ClosedWorkload is a special case.

The same BehaviourScenario concept describes execution of a request for a service by an external resource, which was
discussed above. The operation size parameter can be used in such requests to define the service time of the request, when
executed. For example a file service request might define the file size; then a performance submodel for the file system
could use this parameter to work out the demands on the various resources in the file system, for each request.

17.2.2.4 Service
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It is normal in performance analysis to speak of services, with offered and demanded quality of service. An informal
expanded view of behaviour with ServiceDemands and OfferedServices is shown in Figure 17-3 and used in the following
discussion.

A Service is a pivotal concept in performance. Requests queue for service by some resource, and may have a required
quality of service. The actual service is defined in general by a BehaviorScenario, with a provided quality of service. It
may be incorporated into the modeled behavior in three ways:

« By making a serviceDemand from a Step to a RequestedService, representing an operation offered at some interface,
which is in turn defined by a BehaviorScenario.

« By making a behaviorDemand from a Step to directly invoke a BehaviorScenario, which defines a logical service
offered in some way by the system.

« By making an extOpDemand from a Step to request an external service, which is defined in the performance
environment outside the UML model.

External services vary depending on how much is defined in the UML model. For instance if the network is defined in the
deployment then a message transmission is, but if no deployment is specified it may be an external service.

In the performance model, behavior can be composed flexibly from units defined by scenarios, by service operations
embedded in components, and by external operations, as shown in Figure 17.4. This provides a toolkit that suits many
different software design structures, and situations in which different kinds of performance information is available.

For component or platform services defined in the UML document, a submodel can be made and composed with the
model of the defined services, through service demands. As an abstraction, for systems in which there is no such
submodel, the equivalent behavior can be described by a subscenario and composed through behavior demands. For some
kinds of platform services the costs can be included as overhead parameters of the host devices.
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Figure 17.4 - Informal view of Services and Behaviour
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17.2.2.5 Resources

In performance modeling based on queues, resources may be modeled as servers. An active resource is self-contained
(e.g- a CPU) and has a characteristic service time for each class of service it offers. A passive resource may be acquired
and released during a BehaviorScenario, and has a holding time which is determined by the behaviour (e.g. by the sub-
scenario) between acquisition and release, which defines the class of service. An external resource is an active resource
which is an abstraction for an external sub-system of any kind.

Software components, like resources, offer services which are defined by sub-scenarios. The steps of the sub-scenario
define the use of other components and resources during a service. A component has a set of interfaces, each of which
offers one or more of the services of the component. In software terms a single service may be defined as the response to
one interface method, or to any one of a set of interface methods (methods may be clustered as a form of abstraction in
the performance analysis). A software component may also be a passive resource (a process or thread) if its execution is
restricted in some way. If there is no limit in the number of simultaneous concurrent active executions of the component,
it optionally may be regarded as a special kind of "infinite resource", or as not a resource; the two concepts are
equivalent.

17.2.2.6 Communications Channels
A message between two objects is conveyed by some mechanism:
1. If the objects are in the same process, it is conveyed by the language runtime.
2. if the objects are in different PProcesses in the same node (ProcessingHost) it is conveyed by the operating system,

3. if they are of different nodes it is conveyed by a system layer we will term a CommChannel. This may be a
middlware layer (a web services connection, a CORBA connection, a Java Remote Method Invocation, an MPI
(Message-Passing Interface) connection in a grid, a socket or secure socket connection), or a more complex
infrastructure such as a publish-and-subscribe system.

To give the modeler flexibility, these will be modeled in five different ways, of increasing detail and complexity (levels
of detail):

1. Within the same node, language runtime costs and operating system costs are ignored by default; they are part of the
scenario. If the interprocess communication cost per byte of the ProcessingHost is defined, that is used instead to cal-
culate a hostDemand.

2. Between nodes the default is to determine node hostDemands from the sending and receiving overhead on the nodes
(attributes of the two ProcessingHosts) and insert the latency of the link (an attribute of the connecting
CommunicationsHost).

3. Between nodes the conveyance of the message may also be modeled as an external operation, invoking a submodel of
the communications layer. If this demand is defined it over-rides the default. It is an attractive option for modeling the
behaviour of the internet and the complexities of the TCP protocol.

4. Between nodes a communications layer such as CORBA may be defined as a UML StructuredClass offering send and
receive operations to the two end-point processes. This layer is denoted as a CommChannel with a conveyance
operation demanded by the CommunicationsStep in the scenario. Its service is defined by a BehaviorScenario defined
for the send operation and the combination of the two end-point processes. The scenario may involve directory look-
ups, authorization and redirection of requests. If a serviceDemand for this operation is defined it over-rides the
default.

5. Between nodes a complex communications protocol can be modeled by a pure BehaviorScenario not associated with
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a system component, but describing a collaboration of the hosts. For example in a publish-and-subscribe system a
message is transferred by posting it to a repository, which then informs subscribers of the message. They finally
access it themselves, at which point the message is delivered. If a serviceDemand for this operation is defined it over-

rides the default.

Each message with performance significance is defined as a kind of Step called a CommunicationStep, in sequence in the
BehaviorScenario. Its annotations determine which level is used to model the cost and delay of communications. Figure
17.5 shows these definitions as dependencies, for both cases.

Notice that if the channel is a CommunicationsEngine with a rate parameter, its transmission demand may define the
latency.

SchedulableResource

(sender)

<._____-__--

(receiver)

SchedulableResource

| hardware-based conveyance |

ProcessingHost

-sendOH

< - -

A4

(sender)

CommunicationsHost
(link)
-latency

-recvOH

ProcessingHost
(receiver)

(a) Detail Level 2, conveyance modeled at the hardware level

SchedulableResource SchedulableResource
(sender) ——— (receiver)

|

|

|
v

structured conveyance |

- ~
- - {one or the other} ~« <

-

yiad

communications layer
CommChannel
(sender to receiver)

~

\‘A

system-wide behavior
BehaviorScenario
(sender to receiver)

(b) Detail levels 4 and 5: using acommunications layer

Figure 17.5 - Roles in modeling the transmission of a message

From the above discussion, the model for levels 4 and 5 defined by a BehaviorScenario for transmission, either associated
with CommChannel or invoked explicitly. For level 3 there is an implicit three step scenario of (send overhead on sending
host, latency delay, receive overhead on receiving host). The domain model to support communications modeling is

shown in Figure 17.5.
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PAM_Communications

GQAM_Workload::
Step

1

sendHost CommunicationSte
GQAM_Resources:: 0.1 p
ExecutionHost re cvHost msgSize parent
0..1 extOperation 1
endPoint comm Service
commBehavior
link 0..1 | conveyPath requestor | 1
GQAM_Resources:: . .
Communication Ho st + | demandedService refinement| 0..1
conveyPath |0..1 GQAM_Workload:: GQAM_Workload::
RequestedService * BehaviorScenario
1 conveyScenario | 0..1
conveyorService |1
CommChannel

Figure 17.6 - Domain model for communications in performance modeling

17.2.2.7 Types of Performance Analysis Methods

A sub-profile for performance analysis should support modeling tools for building different kinds of performance models.
Most modeling tools deal with one or more of the following common types of models:

» Queueing models define customer classes (workloads) which execute particular aspects of the software, which are
captured in different scenarios. In the simplest queueing models it is only necessary to define the class sizes or arrival
rates, and the total average demands placed on each device in the system, during one execution of each scenario. In
more complex queueing models the distribution of the demand may be required, there may be passive resources as well
as devices, and the detailed scenario sequence may be required (for instance if it has parallel branches).

Queueing models calculate average throughput, utilization and response times for classes overall, and layered or extended
queueing models also can calculate these figures for passive resources and for parts of BehaviorScenarios (scenario steps
or resource-operations).

1. Simulation models define multiple logical tokens which execute the software, following the detailed BehaviorSce-
nario structure and using execution time distributions for the operations of each step. There may be passive resources
and they may have complex scheduling (for instance, LRU management of a cache).

Simulation models can calculate a wide range of measures including histograms and percentiles as well as average
values.

2. Discrete-state models such as Petri Nets define tokens which execute the software, following the detailed
BehaviorScenario structure. As in queueing models there may be open or closed classes of tokens for different
scenarios. Where tokens must be differentiated they are said to be colored. Petri Nets use places to define the progress
of tokens and transitions to describe decisions, and the passage of time. Resources are described by additional places
and tokens, and resource scheduling by transitions which execute scheduling decisions. Other forms of discrete-state
models include Markov and Semi-Markov chains, Stochastic Process Algebras, and Stochastic Automata.
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Performance Petri Nets and other discrete-state models typically calculate average measures but can provide more

detailed measures such as higher moments and distributions.

17.3 UML representation

17.3.1 Profile diagrams

The profile is defined in the two diagrams that follow, and in text in the next section. Much of it re-uses extensions
defined for Generic Quantitative Analysis Modeling (section 15.3.1, p. 250), prefixed Ga, and these extensions are shown
again here to show that they are part of this sub-profile, though their definitions are given elsewhere. For the inherited

stereotypes, properties (tags) which are important for performance analysis are shown here.

« profil e»
PAM

« stereotype»
MARTE::GQAM::
GaEventTrace

« stereotype »
MARTE :GQAM::GaWorkload Event

«stereotype»
MARTE :GQAM::

content: String
format String
location: String

pattern: ArrivalPattern

generator: GaWorkioad Generator
trace: GaEventTrace

timedE vent: UML::CommonBehavior::Simple Time:: TimeEvent
effed: GaScenario

GaWorklo adGenerator

pop: NFP_Integer = 1

«stereotype»
MARTE :GQAM::

« stereotype»
MARTE::GQAM::
GaWorkloadBehavior

GaAnalysisContext

contextParams: NFP_String [*]

behavior: GaScenario [*]
demand: GaWorkoadEvent [*]

GaResourcesPlatform

«stereotype»
MARTE :GQAM::

resources: Resource [*]

«stereotype»
MARTE :GQAM::GaScenario

cause: GaWorkloadEvent
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT : NFP_Duration[*]
throughput: NFP_Frequency[*]

respT: NFP_Duration [*] behavior

workload platform
1.% 1.*
«stereotype»

MARTE :GQAM::GaStep

« stereotype »
MARTE::GQAM::
GaAcqStep

isAtomic: NF P_Boolean
blockT: NFP_Duration [*]
rep: NFP_Real =1

prob: NFP_Real = 1
priority: NFP_Integer

steps | concurRes: SchedulableResource

utiization : NFP_Real [*]
utiizationOnHost : NFP_Real [*]
root: GaStep

0.1

timing | «

«stereotype»
GaTimingObserver

1.* | host: GaExecHost

servCount:NFP_Real [*] {ordered}

servDeman GaRequestedService [*] {ordered

acqRes: Resource
resUnits: NFP_Integer =1

« stereotype »
MARTE: :GQAM::
GaRel Step

relRes: Resource
resUnits: NFP_Integer = 1

f

« stereotype »
PaResPass Step

«stereotype»
PaStep

resource: Resource
resUnits: NFP_Integer =1

noSync: NFP_Boolean =False

«stereotype»

« stereotype»
MART E:GQAM::
GaRequestedService

extOpDemand: String [*] {ordered}
extOpCount: NF P_Real [*] =1 {ordered}
behavDemand:GaScenario [*] {ordered}
behavCount: NFP_Real[*] {ordered}

Figure 17.7 - Profile diagram of performance extensions for workload, behavior and time observations
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«profile»
PAM

« stereotype»
MARTE :GRM::Resource

r

[ [ |
«stereotype» « stereotype» «stereotyp e»
PaLogicalResource MARTE :GRM:: MARTE::GRM::
ProcessingResource ConcurrencyResource

throughput NFP_F requency

poolSize: NFP_Integer

utilization: NF P_Real Z}

« stereotype»
MARTE:GQAM::
GaExecHost

« stereotype»
MART E:GQAM::
GaCommHost

commTxOvh: NFP_Duration
commRcvOvh: NFP_Duration
utiization: NFP_Real [*]
troughput: NFP_Frequency [*]

capacity: NFP_DataTxRate [*]
utilization : NFP_Real[*]
throughput NFP_Frequency[*]

« stereotype»
MARTE::GRM::
Sched ulableResource

« stereotype»
MARTE::GQAM::
GaCommCh annel

packetSize: NFP_DataSize
utilizaton: NFP_Real[*]
troughput: NFP_Frequency [*]

« metaclass »
UML::Classes::Kernel:
NamedElement

«stereotype»
PaRunT Instance

y poolSize: NFP_Integer

\ unbddPool: Boolean = False
instance: SchedulableResource
host: GaExecHost

utilization: NF P_Real
throughput NFP_F requency

Figure 17.8 - Profile diagram of performance extensions for resources
17.3.2 Profile elements description

Imported stereotypes from GRM and GQAM which are part of this subprofile are included in this list, however they are
not defined. Where the semantics of the imported stereotype are affected by the performance domain, the semantics are
outlilned.

17.3.2.1 GaAnalysisContext (from MARTE::GQAM)

17.3.2.2 GaAcqgStep (from MARTE::GQAM)

17.3.2.3 GaCommChannel (from MARTE::GQAM)

17.3.2.4 GaCommHost (from MARTE::GQAM)

17.3.2.5 PaCommStep

The semantics is similar to GQAM::GaCommStep, however the inheritance from PaStep incorporates the additional
behavior definitions for operations during the step (external operations and behavDemand for a nested Scenario). The
message conveyance may be executed by a combination of host middleware and network services.
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Extensions

» None

Generalizations

» PaStep.
« GaCommStep (from MARTE::GQAM).

Associations

» None.

Attributes

» msgSize: NFP_dataSize [*]
the size of message to be transmitted by the step.

« concurResource: MARTE::GRM::SchedulableResource [0..1]
the logical communications channel by which the message is conveyed.

Constraints

* None
17.3.2.6 GaEventTrace (from MARTE::GQAM)

17.3.2.7 GaExecHost (from MARTE::GQAM)

In performance modeling, an GaExecHost can be any device which executes behavior, including storage and peripheral
devices.

17.3.2.8 PaLogicalResource

The PaLogicalResource stereotype maps the LogicalResource domain element (section F.12.13, p. 556) denoted in Annex
F.

A PalogicalResource is a resource that can be acquired and released explicitly by AcqStep or RelStep. It may be a single-
unit resource, as a mutex or exclusive lock, or have multiple units, as a buffer pool or an access token pool. A logical
resource that is embodied as a software process is stereotyped SchedulableResource or PaRunTInstance instead

Extensions

« Classifier (from UML::Classes::Kernel).

Generalization

- Resource (from MARTE::GRM)

Associations

+ None
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Attributes

« poolSize: NFP_Integer [0..1] =1
the number of units of the resource.

- utilization: NFP_Real [*]
the occupancy of the resource, expressed as the mean number of busy units of the resource. If
poolsize = 1, there is one instance, and the utilization is the probabilty it is busy.

« throughput: NFP_Frequency [*]
the rate of requests to the resource.

Constraints

+ None
17.3.2.9 GaRelStep (from MARTE::GQAM)

17.3.2.10 PaRequestedService

The PaRequestedService stereotype maps the RequestedService domain element (section F.12.9, p. 554) denoted in Annex
F

The semantics are similar to GQAM::GaRequestedService, however the inheritance from PaStep incorporates the
additional behavior definitions for operations during the step (external operations and behavDemand for a nested
Scenario).

Extensions

« Operation (from UML.::Classes::Kernel)

Generalizations

« PaStep
» GaRequestedService (from MARTE::GQAM)

Associations

« None

Attributes

« None

Constraints

« None
17.3.2.11 GaResourcesPlatform (from MARTE::GQAM)

17.3.2.12 PaResPassStep
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ResPassStep is applied immediately after a fork to indicate that a resource held before the fork is passed to this branch,
and not shared by all the branches of the fork. Resource units that are held before the fork and not passed, are shared by
all branches.
Extensions

» None

Generalizations
» GaStep (from MARTE::GQAM)

Associations

+ None

Attributes

« resource: Resource [0..1] the identity of the resurce of which some units are passed.

« resUnits: NFP_Integer [0..1] =1 the number of units which are passed.

Constraints

» None

17.3.2.13 PaRunTInstance
A stereotype for a swimlane or lifeline which indicates a run-time instance of a process resource and its properties.

Provides an explicit connection between a locality or role in a behavior definition (a lifeline or swimlane) and a run time
instantiation of a process, and optionally defines properties of the process. In some specifications there may be multiple
deployment instantiations of the same process class, with different properties, so this stereotype should be used for the
properties that are different.

Extensions

» NamedElement (from UML::Classes::Kernel)

Generalizations

+ None

Associations

» None

Attributes

« poolSize: NFP_Integer [0..1] =1
the number of threads for the process.

 unbddPool: Boolean [0..1] = false
indicates effectivelhy infinite threads if true.
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« instance: MARTE::GRM::SchedulableResource [0..1]
the SchedulableResource which is the actual process resource.

« host: GaExecHost [0..1]
the host of the process and thus of all Steps associated with this run-time instance.

« utilization:NFP_Real [*]
the occupancy of the thread pool, in terms of the mean busy threads.

« throughput: NFP_Frequency [*]
the rate of acceptance of messages by all threads in the process, taken together.
Constraints

« None

17.3.2.14 SchedulableResource (from MARTE::GRM)

In performance modeling, a schedulable resource is a process or thread pool. A named element such as a swimlane or
lifeline which represents behavior of a schedulable resource is stereotyped as a PaRunTInstance (see below) with a
pointer to the resource, and also may capture the size of the thread pool and the host of the process.

17.3.2.15 PaStep

A step is a unit of a scenario. Some inherited properties of PaStep are given to provide performance interpretations.
PaStep without a refining scenario is a basic sequential execution step on a host processor. With a refining scenario it is a
larger unit of behavior.

Extensions

« None

Generalizations
» GaStep (from MARTE::GQAM)

Associations (inherited):

« behavior:GaScenario [0..1] a scenario which is a refinement of this Step.

Attributes (inherited)

+ blockT: NFP_Duration [*]
a pure delay which is part of the exeuction of a step. Think times for performance models are
represented by a blockT value.

« rep: NFP_Real [0..1]=1
repetitions, used to represent loops or optional execution.

» prob: NFP_Real [0..1] =1
probability of a branch.

« host: GaExecHost [0..1]
host processor (usually implicit in the deployment of the process).
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« servDemand: GaRequestedService [*] {ordered}
a list of operations that are called during one execution of the Step.

 servCount: NFP_Real [*] {ordered}
a list of values for how many calls are made to each operation in the servDemand list, in the same
order.

« concurRes: SchedulableResource [0..1]
the process or software component which executes the step, usually implicit in the location of
execution in the behaviour definition (lifeline, swimlane).

Attributes

» noSync: Boolean [0..1] = false
identifying a Step immediately after a fork, for which there will be no corresponding join. An
asynchronous branch of a fork.

» extOpDemands : String [*] {ordered}
a set of identifiers for operations by external services which are demanded by this Step, in a form
understood by the performance environment.

« extOpCount: NFP_Real [*] {ordered}
the number of requests made for each external operation during one execution of the Step, in the
same order as the demands.

« behavDemands: GaScenario [*] {ordered}
a set of scenarios defining operations which are invoked by this Step. This provides another way to
insert a Scenario into a Step, in this case with a parameter for multiple, or probabilistic insertion.

 behavCount: NFP_Real [*] {ordered}
the number of requests made to execute each scenario operation during one execution of the Step,
in the same order as the demands.

Constraints

+ None

17.3.2.16 GaTimingObserver (from MARTE::GQAM)

This observer stereotypes a NFP_Constraint associated to two TimingObservations. In performance analysis it is used to
identify and compute the duration of the time interval between them.

17.3.2.17 GaWorkloadEvent (from MARTE::GQAM)

Defines a stream of events that make up a workload which drives the system. For performance analysis the events can be
taken from a trace (for simulation) from an arrivalPattern which can be an OpenPattern or a ClosedPattern, or from a
WorkloadGenerator which is a State Machine defining sequences of operations.

17.3.2.18 GaWorkloadBehavior (from MARTE::GQAM)

A container for a set of Scenarios and a set of WorkloadEvents.
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17.3.2.19 GaWorkloadGenerator (from MARTE::GQAM)

A State Machine defining sequences of events to drive a system. There may be a population of instances, each
representing one user or one source of input.

17.4 Examples for Performance Analysis

17.4.1 Example 1: A Simple Web Application

The basic performance features will be illustrated by describing a web-based application. Example 1 is a simple
sequential scenario with basic features of the profile: open arrivals, average processor demands, a repeated operation,
multithreaded processes, and communication overheads at the nodes. Example 2 adds more complex behaviour patterns
and corresponds roughly to a web application benchmark.

In Figure 17.8, the blockingTime attribute represents the network latency, and the capacity is the nominal maximum
throughput rate. The send and receive overheads on the nodes apply equally to all transmissions. The nodes are
stereotyped as ExecHost and each is a multiserver, with 5 and 2 processors respectively indicated by resMult (multiplicity
of avalilable resource instances). The webserver artifact represents a load module for the webserver and its deployment,
and similarly for the database.

<<GaCommHost>>
LAN

{blockT = (10,us),
capacity = (100,Mb/s)}

<<GaExecHost>> <<GaExecHost>>
AppHost DBhost
commRcvOvh = (0.15,ms/KB), commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.1,ms/KB)} commTxOvh = (0.07,ms/KB)}
<<deploy>>
<<artifact>> <<deéloy>>
<<SchedulableResource>> -
<<art|fact>ﬁ
webserver database

<<magjfest>> <<magpjfest>>
- WebServer : DatabaseSystem

Figure 17.9 - Deployment of Example 1, with communications overhead annotations
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eb <<PaRunTInstance>> <<PaProcess>>

web database

{poolSize = (webthreads=80), {poolSize = (dbthreads=5),
instance = webserver} instance = database}

1:

<<PaStep>> 2:

<<PaWorkiloadEvent>>
{open(interArrT=(exp(17,ms)))
hostDemand = 4.5,ms}

<<PaStep>>
<<PaCommStep>>

{hostDemand = (12.4,ms),
repetitions = (1.3,-,mean),
msgSize = (2,KB)}

3:

4 <<PaCommStep>>
{msgSize = (50,KB)}

<<PaCommStep>>
{msgSize = (75,KB)}

Figure 17.10 - Example of i interaction performance annotations

In Figure 17.9 a simple sequence is annotated, in which a web server makes calls to a database server. The Process
annotation indicates the process resource with 80 threads, and links it to the webserver artifact deployed on the AppHost
Node. Thus the host for ExecSteps on this lifeline is the AppHost Node. The scenario steps are annotated on the
messages, as the tool would not accept stereotypes for execution occurrences.

Walking through the message annotations, the first message is stereotyped with the workload, showing it has exponential
inter-arrival times with a mean of 17 ms, thus it is a Poisson process with mean rate 1000/17 = 58.8/sec. This is how a
Poisson process must be annotated. It is also stereotyped as an ExecStep with a hostDemand of 4.5 ms; this applies to the
operation triggered by the message. By default it applies to the entire operation up until the reply, but additional
ExecSteps may be added as recursive messages, as is done here just before the reply.

Message 2 is stereotyped both with the message size (in the CommStep stereotype) and the database operation parameters
(in the ExecStep). The ExecStep is repeated an average of 1.3 times (from the repetitions attribute), and this implies the
same for its invocation message, so the communication overhead demands and latencies are repeated also. The CommStep
shows a small (2 KB) message, which according to the deployment information will generate:

host demand on AppHost of 1.3*2*0.1 = 0.26 ms
latency of 1.3*10 us

host demand on DBhost of 1.3*2*0.14 = 0.364 ms
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The ExecStep has an average of 1.3 repetitions, that is, it is performed conditionally and may be repeated, and creates a
total of 1.3*12.4 = 16.12 ms of demand for DBhost. The reply CommSteps apply further load,

from database: 1.3*50*0.07= 4.55 ms on DBhost, 1.3*50*0.15 = 9.75 ms on AppHost
from webserver: 75*0.1 = 7.5 ms on AppHost

and the recursive message 4 indicates an additional half ms demand for AppHost.
Performance Models: Queueing Network (QN)

A queueing model of this system has two servers - AppHost with 5 servers and total demand Dap ms/request, and DBhost
with 3 servers and total demand Ddb ms/request - where:

Dap =45+ 0.26 + 9.75 + 7.5 = 22.01 ms/request
Ddb = 0.28 + 16.12 + 4.55 = 20.95 ms/request
The annotations have not specified a message size for the original request from the browser, so it is ignored.

A QN model could be shown as follows:

Arrivals AppHost DBho%
N
—> 10>

DepartureS\L

Figure 17.11 - Queueing Network for Example 1

The two total demand values Dap and Ddb are sufficient to give a solution if this is assumed to be a separable QN, which
means assuming processor-sharing scheduling at the two computers (not a very serious assumption for enterprise
systems). The demands are assumed to include all operating system overheads, including background workloads. If
additional workloads are present they should either be modeled as additional classes (from other scenarios) or some
fraction of processor utilization should be allocated to them.

The QN model ignores the performance impact of the process thread pool sizes. To represent this we require an extended
queueing network or layered network, that models the simultaneous possession of two resources (threads and processor).
(S. Lavenberg, "Performance Modeling Handbook, Academic Press, 1983).

Extended Queueing Network or layered Queueing Network (EQN or LQN)

The ordinary queueing model ignores the thread limits on the webserver and database, which may limit performance. An
EQN can model this with logical resources as shown in the Figure. The oval resource pools have resource tokens that are
dispatched to requests in a queue (the upright triangle shows the dispatcher, the inverted triangle shows the release point
for the thread.
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webserver
. process
Arrivals AppHost

- /\ 9:@—% N\ —=>
) database DBhost

process
Departures =\ / €&——

Figure 17.12 - Extended Queueing Network diagram

The service time of the logical server is the holding time of the thread. Solution of an EQN is approximate, using various
strategies (see eg, Jain or Menasce).

In this figure each process is a logical server with a queue and a pool of tokens representing the process threads. The
arriving job just first obtain a process token and be processed by the webserver on AppHost, then without releasing the
first token (since this is a blocking call) it obtains a database process token and be processed by the database on DBhost.
It releases the second token and goes back with the reply to the webserver, cycles an average of 1.3 times to the database,
and then releases the webserver token and departs. This resource logic is captured more compactly in the LQN, in which
each process is a layered server, illustrated in Figure 17.12.

arrivals at 58.8/sec

htmIReq| webserver f

10 ms [webthreads]

1.3
v

dbReq database D)
[dbthreads]

Figure 17.13 - Layered Queueing version of the same model

The LQN notation has servers which are processes or tasks (represented by the bold rectangles, with threading shown as
a multiserver multiplicity) allocated to host processors, the ellipses, also with multiplicity. The classes of service are
denoted as entries, the attached rectangles, showing the total hostDemand for each operation. Entries make requests to
other entries, shown as arcs labeled with the mean frequency (1.3 here). The solution of the LQN is essentially the same
as the solution of the EQN above, it is just a more elegant notation provided the usage of logical resources are nested,
lower layers within higher.

17.4.2 Example 2: An Electronic Bookstore Home Page Interaction

This example illustrates additional annotations and their application to additional features of the UML2 Interaction
Diagram:
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« Parameters global to the AnalysisContext, and their use in expressions for values.

 Alt and par CombinedFragments stereotyped as Steps, with probability for alt.

« An external operation for storage.

« A noSync stereotype applied to an asynchronous operation.

« A closed workload.

» Computation of parameters for the reply to getHomePage, using an NFP with expressions to determine the value,

depending on the variable $images.

« A repeated action (getHomelmages) and an optional action with a probability.

A percentile requirement on overall response time.

The example is elaborated from the Transaction Processing Council standard scalable benchmark TPC-W for electronic
commerce, by putting two Promotions into an alt combination (Promotion1 on the first pass, then Promotion2 thereafter),

and introducing a logging operation in parallel with getHomelmages.

The scenario shows the interactions of a user starting from getting the home page, until the page is completely displayed.
It includes checking the site's data on the user if the user is logged in with a site ID, retrieving a subpage on a promotion,

getting page data from the database, and getting a number of embedded images from an image server.

The deployment is based on example 1, with an added image server. It does not specify the number of replicated

processors, so the default value of 1 is assumed.

<<GaCommHost>>
LAN

{blockT = (10,us),

capacity = (100,Mb/s)}

<<GaExecHost>>
AppHost
commRcvOvh = (0.15,ms/KB),
commTxOvh = (0.1,ms/KB),
maxRI1 = 5}

'
<<dQ?|oy>>

<<artifact>>
<<SchedulableResdurce>>
webserver
T

<<manifest>>
[Webserve;

<<GaExecHost>>
ImageServerHost

commRcvOvh = (0.1,ms/KB),

commTxOvh = (0.2,ms/KB)}

<<GaExecHost>>
DBhost
commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.07,ms/KB),
maxRI = 3}

<<dgy|oy>>

<<artifact>>
<<SchedulableResource>>
imageserver
T

<<dabjoy>>

<<artifact>>
<<SchedulableResource>>

database

T
! .
i<<manifest>>
J

: ImageServer

T
i
{

L <<manifest>>

: DatabaseSystem

Figure 17.14 - Deployment of a web application representing the TPC-W benchmark

The behavior is shown i
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<< GaPerformanceC ontext-=

{contextParama=Nu=ers, ThinkTime, Simages, SR}

browser
+=<PaRunTInstance==
{instance=browveer;

webserver
<=PaRunTInstance==
{instance=webserver}

i
<=PaRunTl

{instance=imageserver}

==PaRunT
{inztance=|

nstances=

database

nstances=
Hatabase}

1: gtHomePage

<= aWorkloadE vent=>
{dosed(population = Nusers,
extDelay|[ThinkTime)y  |.0Pt] | [<<PaStep>> ZgefCustomeData |
<<PaSteps> KhostDemand = 2,ms);
{ho=tDemand = (1,m=), 3
respT = {((]l, = percentds),req),
(ER =, pargentds), calc), <=PaStep=={repetitions|= 0.2}
k<PaC ommStepsi [T customer is logged in]
{megSizez (2.9 KB)}
| ait |
| ref |
[first promg] <<PaStep=={profability = 0.4}
Promotion
SR IT
<=P aStep=:= {profability = 0.6}
Promotion2
4: getlistO fSulljeds  «<PaSteps=
. {hostDemand = (10,ms]}] ‘
par
&: log{nteraction
I ==P aStgp==
{noSynck
7.getH umelmagE <=PaStep==
a {hestDemand = (0.5, ms),
. repetitionz = Sim ages,
ext0pDemand = "ImageFikOp”,
7 extOpCount =1}
&
<<PaCommstep=>
megsSize= 3.4 + S"Flmages);

Figure 17.15 - Example 2: the home page scenario of the TPC-W standard benchmark, with some additions to
illustrate alt and par CombinedFragments

17.4.3 Example 3: a building surveillance system

17.4.3.1 Overview
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This is a soft real-time embedded system with that a set of cameras that must be scanned at least once every second. The
scan is free-running, with the next camera being polled as soon as the image-capture of the previous one is complete. The

images are polled by an "acquire” thread, placed in a buffer and passed to a "storage" thread, which stores them in a
database. Multiple buffers, asynchronous storage and multithreaded processes ensure concurrency in the handling, to

obtain adequate performance.

The profile features which are emphasized in this example are

« case parameters attached to the PerformanceContext, giving the number of cameras ($Ncameras), the size of a camera

image ($imageSize, in MB), and the number of storage blocks per image ($blocks), with default values.

« annotation of an activity diagram, with process resources stereotyped on ActivityPartitions (swimlanes),

- repetition of a complex operation defined by a StructuredActivity. It is stereotyped as a Step with a repetition count and
a refinement as the interior activity,

« use of both a mean and variance in defining a host demand parameter.

« a CommStep stereotype applied to an ActivityEdge

- alogical resource (the buffer pool) with multiple units, with explicit acquire and release steps.

« passing a resource from one process to another (passing a buffer to be stored),

« an external Service (a file storage operation) defined by name only in an extOpDemand attribute of the Database

operation.

Figure 17.15 and Figure 17.16 show the deployment and activity diagrams for the example. In the deployment diagram
the "SchedulableResource™ stereotypes are shown only for the Control artifact, but in fact apply to all the artifacts shown
(not shown to avoid diagram clutter).

<<gaAnalysisContext>>
{contextParams=$Nbuffers,
paramValues=15}

<<GaExecHost>>
Camera

LAN

<<GaExecHost>>
ControlNode

<J<@GaCommHost
{capacity =

P>

100 Mb/s)
1 V1St

Backend

$<GaCommHost>>
{capacity = (10

<<GaExecHost>>
DataBaseNod

00,Mb/s)

<<deploy>>

<<dep| y>>

<<dep oy>> <<de p|0y>>
<<artifact>x <<artifactp> <<artifactp> <<artifactfy
BufMgr Control Acquire Store
<<SchedulableResource>>

<<deploy>>

<<mgnifest>>

<<mdgnifest>>

<<mgnifest>>

bufferpool

<<Resource>> [

{maxRI| = $Nbuffers}

Figure 17.16 - Deployment diagram of the building surveillance system of example 3
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Examining the deployment diagram first, the nodes are stereotyped as ExecHost. As the Camera node is only symbolic,
and is not represented in the design, it need not be stereotyped. The ProcessingRate attribute of the DataBaseNode is
interpreted for performance as a factor, relative to a nominal processor, on which the hostDemand figures are based.

The deployed objects are all artifacts, and it is these artifacts that are referenced by the Process stereotypes in the activity
diagram. The reference to the artifact (rather than to the class or instance) is to resolve the deployment of active objects.
The bufferpool artifact stands for a set of buffers at run-time, and the number of buffers $Nbuffers is a significant
parameter for performance (remember resMult stands for "multiplicity of resource instances").

The attachment of the parameter $Nbuffers to the analysis context assists in identifying parameters that may be varied
over cases in the analysis. The analysis context should be shared with the behaviour diagram(s).

<<GaAnalysisContext>>
{contexParams={$Ncameras, $frameSize, $blocks, $acquireThreads, $storeThreads, $DBThreads},
paramValues={100,0.1,15, 1, 2, 2}}
<<GaWorkloadEvent>>
{closed (population = 1,
interOccTime = {(1.0,s,percent95,req),

(CycleTime95,s,percent9d5,calc)

. _ cyclelnit] ®
<<PaStep>>
{hostDemand = (0.2, ms),
-~ extDelay = (0, s),

getOnelmage <<PaStep >>{repetitions = $Ncameras}

<<PaRunTlInstance>r <<PaRunTInstance>> <<PaRunTInstance>>| <<PaRunTInstance>>
Acquire bufMgr Store DB
{maxRl| = 1, {maxRI = $storeThreads, {maxRI| = $DBThreads,
{instance = Acquire, instance = Acquire} instance = Store} instance = DB}

maxRI = $acquireThieads}

<<PaStep>>
getBuf

<<PaStep>>
{hostDemand = (1.9:8s)}  <<GaAcquireStep>
allocBuffer
{hosFEDem%nc#]f (0.5|, ms) <<PaStep>>
acqRes = bufferpool,
getimage resUnits = 1} storelmagie <<PaStep>>

storeDB
CommStep>> hostD 4=
msgSize =|($frameSize,bytes), f gsLuemana =
epetitions + ($frameSize/15 ($blocks*0.2)var)}
extOpDemand = writeB
extOpCount = $blockg}

<<P

),

ock,

<<PaStep>>
freeBuf
hostDemand = (0.

passRes = bufferpool,
resUnits = 1}

<<PaStep>>
<<GaReleaseStep>>
deallocBuffer
. {hostDemand = (0.5,ms),
relRes = bufferpool} ®

Figure 17.17 - Activity diagram for the building surveillance system of example 3
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In the activity diagram there are additional global parameters associated with the analysis context. The workload is
modeled as a single "user" (think of it as a token) which arrives to initiate a scan, and returns immediately after the scan
is done, to start the next one. Thus the population is 1 and the external delay is zero. The performance requirement is on
the 95th percentile of the time between successive initiations of the scan; thus 95% of scans should take less than 1
second.

The cyclelnit Action has a hostDemand. Since it is not shown in a swimlane, its process (SchedulableResource) is given
directly on the Step stereotype by the attribute "concur” (which determines its deployment and thus its host processor).

Apart from the scan initialization, the scan is a loop which is described inside a StructuredActivity which is stereotyped
as a Step, with a repetition count equal to the number of cameras. Four processes are identified: the component attribute
gives the artifact for deployment, and the resMult attribute gives the number of threads. Two comments:

« Since threads are annotated on the paProcess, two run-time instantiations of the same artifact can have different
numbers of threads.

« One artifact may manifest multiple processes.

The StructuredActivity has two ending points, and shows the use of the noSync attribute of the storelmage Step, to
enhance concurrency. After the fork node on the left, the main loop ends and this allows the next iteration to begin. The
explicit noSync attribute on the storelmage action shows that the main behaviour does not wait for this branch to
complete, so the right-hand behaviour for storing the frame continues in parallel with the next scan. In fact, the
concurrency of the storage behaviour is only limited by the number of Store threads and the number of buffers. This
overlapped storage behaviour is illustrated by a Gantt chart, in Figure 17.17. Any number of concurrent storage
operations can be continuing while further buffers are filled, up to the point where there are no free buffers to allocate.

get buffer and fill with get buffer and fill with
first image second image 1

get buffer and fill with third |

Vimage r> etc.

store first image and deallo\ate buffer |

\store second image and deal&)cate buffer |

store third image etc... |

» time

Figure 17.18 - An asynchronous pattern of buffer storage operations, indicated by the noSync property (to indicate
concurrent continuation of a refinement BehaviorScenario after the return to the outer level of behaviour).

The bufferpool logical resource is of importance in this specification, as the system suffers easily from buffer starvation.
Notice:

» The number of buffers is declared on the deployment artefact.

» The acquisition and release of the buffers are separate stereotypes on the buffer manager steps which allocate and
deallocate them. The single unit of resource is shown explicitly on the allocate (it need not be defined as one is the
default), but the deallocate uses the default.

« The explicit passing of the buffer from one process to another is shown by the ResourcePassStep stereotype attached to
an ActivityEdge from Acquire to Store. Here the unit is shown (one is again the default). Without an explicit
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ResourcePassStep, the logical resource is handed on along the flow, including flows that cross from one process to
another (as in the return from the Buffer manager). However after a fork in the flow it may be essential to indicate the
passing explicitly.

Only one CommStep is annotated here, for the delay to transfer the data over the network. The database communications
might also be significant. The annotations give a derived communications latency of (message size)/rate, in the absence
of explicit delay and demand attributes in the deployment diagram.

The use of mean and variance in specifying a random hostDemand, is illustrated for the storeDB action. Notice that the
units are not given for the variance (implicitly they are the square of the units for the mean, but they are normally not
stated).

An external operation is defined for the storeDB action, defining the storage on disk of one block of image data, with an
operation count of $blocks.

17.4.4 Example 4: communications example, a layer subsystem

Communications is provided by the execution platform of the system, and this may be described in UML by a layering of
components and subsystems. The commService stereotype on a message identifies an Operation on an interface of the
platform, as conveying the message. This section illustrates the concept with an oversimplified CORBA layer submodel.

1: <<PaCommStep>>

-

{servDemand =send, servCount = 1}

2: <<PaCommStep>>
{servDemand = send, servCount = 1}

3:

<<PaCommStep>>
{servDemand =send, servCount = 1}

Figure 17.19 - Sending of messages by the application, with commService attributes

Figure 17.18 shows a call-reply pair and an asynchronous message. Notice that the reply is stereotyped separately here, so
it has its own sub-scenario. It is also possible to aggregate all the latencies and workloads into the request, which provides
the correct total workload and delays but does not represent the behaviour precisely. Figure 17.19 shows the simplified
CORBA system, with a stub component (integrated with the sender), a skeleton component (integrated with the receiver),
an ORB component to execute the core functions, and a location server. The last two are separate processes in this
assumed system; the deployment will not be shown.
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corba-layer Sending Receiving

<<paRequestedS ervice>>+send(){behavior] +receive()
corba=send}

Stub ORBClasses LocationService Skeleton

corba-layer

send |: stub : Stub

I skeleton : Skeleton |—-—|::| receive

| locationService : LocationServi cf

Figure 17.20 - A simplified CORBA layer subsystem

The send port has an interface of type Sending which offers an operation send, which is stereotyped as a
"paRequestedService", with behaviour definition given by the sequence diagram in Figure 17.20 (the behaviour attribute
does not show in the stereotype).

The identification of the send operation of the layer, in the commStep stereotype, binds the CORBA layer component
model that offers this service, and the behaviour model, into the original scenario. The send operation that starts the
scenario in Figure 17.20 is the operation that begins the conveyance of the message. The binding of the receive required
interface and the receive operation of Figure 17.20 to the receiver of the application message is implicit.
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SD cobaSend <<GaScenario>>

<<GaAnalysisContext>> {contextParams=messageSize}

A\

sender stub <<PaProcess3 <<PaProcess>p skeleton receiver

ORB locationServicg

D

1:

<<PaStep>>
{hostDemand = ((0.01*messageSize),ms)}
<<PaStep>> 3.
{hostDemand = (12 ms)«PaCommStep::
prob = 0.3} <<PaStep>>
4:
5:
6:<<PaStep>> _
<<PaCommStep>> 7 7: _
{hostDemand = ((01011*messageSizel}, ns)} '“

Figure 17.21 - Behavior of the operation "send"
17.4.5 Example 5: services by component subsystems

Operations by components and subsystems may be included in a Step by giving it an attribute servDemand with a
parameter servCount. ServDemand is typed on the operation, which itself must be stereotyped as GaRequestedService,
and servCount is the average number of invocations. Services may be useful to include platform and environment
operations, without modifying the behaviour definition provided by the designer.

Figure 17.21 shows a basic behaviour that invokes a findRecord operation defined on the class DataManager, three times.
The findRecord operation is shown in Figure 17.22 and is annotated with its hostDemand and an external service
operation.
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browser <<PaProcess>> <<PaProcess>>

webserver App
{poolSize = (webthreads=80), {runTinstance = App}

runTInstance = webserver}

1: htmIReq
<<PaStep>> 2: appReq
hostDemand = 4.5ms} - oot
<<PaStep>>

<<GaWorkloadEvent>>

{open (IntArTime = exp(17,ms)), {hostDemand = (12.4,ms),

servDemand = findRecord,
servCount = 3}

Figure 17.22 - Sequence diagram for an operation findRecord invoked from a Step

DataMan ager

<<PaRequestedService>>+findRecord(){hostDemand = (7,ms),
extOpDemand = readStore, extOpCount = 1500, concurRes = dataManager}

Figure 17.23 - The DataManager class with annotated operation findRecord

In both Figure 17.21 and Figure 17.22, the operation findRecord is stereotyped on the DataManager class, not on a run-
time instance of DataManager. Because the stereotype extends PaStep, it can also have properties execHost and
concurRes which identify the host processor and process, respectively. This is sufficient if there is just one deployment of
DataManager. If there is more than one deployed instance of DataManager, there is a problem to identify which instance
is invoked and what are the parameters such as hostDemand. A possible solution is to use a different variable name for
the servCount in the ExecStep stereotypes that make the invocations. Then that variable name can be associated with a
deployed instance in a table.

For example if StepA invoked findRecord on dataManagerl its servCount for the operation could be set to the variable
$findR1, while StepB invokes the same operation on dataManager2 $findR2 times. Then a table can be set up:

Table 17.1 - Instance Parameters for calls to DataManager findRecord

Instance servCount Variable Value
dataManagerl $findR1 3
dataManager2 $findR2 1.7
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This associates the instances with the Step and a value. The tool would have to determine the deployment of each instance

by name, however.

<<GaCommHost>>
LAN
{blockT = (10,us),
capacity = (100,Mb/s)}

<<GaExecHost>>
AppHost

commRcvOvh =(0.15,ms/KB),
commTxOvh = (0.1,ms/KB),

<<GaExecHost>>
DataMgrhost
commRcvOvh = (0.14,ms/KB),
commTxOvh =(0.07,ms/KB),
maxRI =3}

maxR| = 5}
<<deploy>> <<degloy>>
<<artifact>>D <<artifact>>
webserver application

<<manyfest>> s<manifest>>
: Web Server | | *Application

Figure 17.24 - Deployment of the dataManager instance of DataManager

Call Hierarchy

<<deploy>>

<<artifact>>
dataManager

<<m a@ifest»

<<PaProcess>>
: DataManager

The operation findRecord may be the work of a subsystem rather than a single object, and the subsystem can be annotated
to show the invocation heirarchy and to parameterize the calls. The next example shows a call hierarchy and also a
number of instances of the same class, with additional parameters. The call hierarchy may be represented schematically in
terms of the instances as Figure Figure 17.24, with a modified data manager DataManagerB.

338

A UML Profile for MARTE, Beta 1



|dataManager:DataManagerB | DataManagerB |

search/ search|

sel: se2: SearchEngine
SearchEngine SearchEngine
io io
storA:Storage | [ storB:Storage | storC:Storage
(a) (b)

Figure 17.25 - (a) Call Hierarchy for the findRecord operation of dataManager,
(b) Class structure of the call hierarchy

First the class structure of the call hierarchy may be represented as in Figure 17.24(b). The operations of the classes are
annotated to represent this, with variables for the operation counts, in

DataManagerB

<<PaRequestedService>>+findRecord( {servDemand = search, servCount = $searchCount

Instance parameters for calls from
DataManagerB.findRecord

SearchEngine Instance findRecord.$searchCount
of SearchEngine
<<PaRequestedSenvice>>+search(){hostDemand = ($seHostDemms), servCount = $ioCount, servDemand =io} se; ag
se .

sel : SearchEngine | |se2 : SearchEngine

AN

Instance parameters for calls from SearchEngine.search

Instance of  $seHostDem Instance of search.$ioCoun
SearchEngine Storage

Storage sel (21,ms) storA 200
<<PaRequestedSenvice>>+io khostDemand = (25,us), se2 (15,ms) ::g;g ggo
storC 250

storD 175

[ storA : Storage] [storB : Storage| [storC: Storage|

Figure 17.26 - Annotations to the classes for the class invocation hierarchy of Figure 17.23(b)

We can see in the annotations that the target operations are identified, with variable $searchCount for the search operation
and variable $ioCount for the io operation. The bindings of instances to invocations is defined in the tables. In the upper
table it is stated that there are calls to two different instances of SearchEngine, with the given values of the count. Notice
that since it is an average count it can be non-integral. These values are NFPs so it could be written with a statistical
qualifier.

In the lower table the instances of SearchEngine and Storage are bound together by definitions of the $ioCount variable
for different combinations of the calling and called operation, and the parameters $seHostDem of the search operation is
defined for each instance of SearchEngine.
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17.4.6 Example 6: state machine annotations

We will consider some kinds of behaviour described by a state machine. The first kind will be a state machine that
governs the generation of requests, called in the profile a "Workload Generator" state machine. The states represent states
of the user (or the process that generates the workload) and in each state, there is a reference to a behaviour for that state.
This behaviour represents an action taken on entering the state. The blockingTime attributes represent user-thinking time
during that state, before the user enters the request that will take it to a new state.

Figure 17.26 shows a simplified version of the cycle of user states described for the TPC-W benchmark, and references
one interaction diagram in each state. The behaviour for each state is a single execution and does not itself have repetitive
workload attributes. The getHomePage interaction diagram would be the same as the one depicted in Figure 17.14 but its
GaWorkloadEvent stereotype would reference the state machine as a WorkloadGenerator.
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<<GaAnalysisContext>>{contextParams=(@Nusers)}
<<GaWorkloadGenerator>>{population=@Nusers}

' f <<PaStep>>

GetHomePage
{behavDemand = getHomePage,
behavCount = 1,
blockT = (4,s)}

<<PaStep>>
NewProducts

{behavDemand = newProduct,
behavCount = 1,
blockiT = (4,s)}

<fPaStep>>

<<PaStep>>
{probabijlity = 0.9} {prob = 0.7}
<<PaStep>>

GetProductDetails
{blockT = (10,s),
behavDemand = getProductDetails,
behavCount = 1}

<<PaStep>>
{probahility = 0.1}

<<PaStep>>

ShoppingCart
{blockT = (12,s),
behavDemand = ShoppingCart,
behavCount = 1}

<<PaStep>>
{probahility = 0.3}

<<PaStep>>
Checkout
{blockT = (45,s),
behavCount = 1,
behavDemand = Checkout}

Figure 17.27 - Example 6: a WorkloadGenerator state machine combining five scenarios for the electronic
bookstore

Some of the transitions are also annotated as paExecStep in order to specify the transition probability. to the next state.
For instance after GetProductDetails, there is specified a 90% probability of looking for new products again, and 10% for
proceeding to the shopping cart.

A workload generator could more generally be a set of state machines communicating by signals and all generating
behaviour concurrently.
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The analytic performance model will represent the generator as a Markov Chain governing the probabilities of making
requests for different behaviours (what is sometimes called the user profile).

A second use of a state machine is to define a sequence of operations, like an interaction diagram. This must be a
behaviour that terminates, and its start point is driven by a RequestEventStream. Each state or transition can be an
ExecStep, and a state can be refined to a subscenario either as a composite state or by an annotation with a behavDemand
as above. A composite state with multiple regions is an implicit parallel section, however all the details of composite
states (e.g. history) have not been integrated into the profile. This kind of terminating behaviour can als o be defined with

several interacting machines.

A third use of a state machine is similar to the second, but it repeats infinitely, waiting at some well-defined "home state"
for in input events derived from a WorkloadEvent stream.
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Part IV - Annexes

This Part contains the following annexes.
e A - Guidance Example for Use of MARTE

« B - Value Specification Language (VSL)

C - Clock Handling Facilities
¢ D - Normative MARTE Model Libraries (MARTE_Library)

L]

E - Repetitive Structure Modeling (RSM)
¢ F - Domain Class Descriptions

e G - Bibliography

* H - Mapping SPT on MARTE
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Annex A: Guidance Example for Use of MARTE

A.1 Open-source Tool Support for MARTE

In the context of different projects - System@tic::UsineLogicielle::OpenDevFactory (http://www.usine-logicielle.org/),
RNTL::OpenEmbeDD (http://openembedd.inria.fr/home_html) and CARROLL::Protes/fCORTESS(http://www.carroll-
research.org/) - the CEA LIST has developed an open-source implementation of the UML profile for MARTE (including
a support for the VSL language). This implementation is an eclipse-based project and it is available at this address:
www.papyrusuml.org.

A.2 AADL-like models with MARTE

We consider here the correspondence in MARTE of some of the basic AADL concepts, as found in the SAE standard
AADL summary (SAE AS-5506/1):

An AADL specification consists of AADL global declarations and AADL declarations. Global declarations essentially
describe a hierarchical package structure for the system model.

AADL declarations comprise component types and implementations and port group types.

A component type specifies a functional interface in terms of "features", flow specifications and properties. These would
be considered as communication models in MARTE.

A component implementation describes the internal structure and behavior of that component in terms of subcomponents,
connections and flows across them, and behavioral modes,

A system modeled in AADL consists of "application software™ components "bound" to "execution platform™ components.
In MARTE the word "software" is dropped from "application”, since the execution platform can also contain software
(middleware, RTOS,..) as well as hardware parts. AADL "binding" is called "allocation" in MARTE, following the
SysML wording, but the concept is the same. It can be hierarchical and compositional.

AADL application 'software' components are made of data, threads, and process components. Data are akin to Objects in
UML, as they may contain "subprograms”, similar to UML operations. AADL thread components model units of
concurrent execution. A scheduler manages the execution of a thread. Threads can be in states such as suspended, ready
or running. State transitions occur as a result of dispatch requests [...] or if time constraints are exceeded. Dispatch
semantics are given by standard dispatch protocols such as periodic, sporadic and aperiodic threads. Additional dispatch
protocols may be defined. This provides various models of computation, including simultaneity of concurrent threads
running periodically on the same clock. Different clock domains can be defined; as well as explicit delays on any logical
clock. This again is in line with some of MARTE's requirements. Threads owe behaviorally to UML activity diagrams,
which allow distinction between Object (Data) and Control (Event) flows.

AADL execution platform components use processors, memory, busses and devices. They are connected by "features"
such as flows and may be structurally and behaviorally switching modes (in a control-flow fashion). This again is in line
with MARTE. Flows can be represented by UML sequence diagrams, and modes by state diagrams.

Operating systems may be represented through properties of the execution platform or, requiring significantly more detail,
modeled as software components. These calls for various Models of Computation, and the ability to model in the RT/E
design part the scheduling disciplines considered in the Analysis part is also a goal in MARTE.
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An AADL system design contains a set of properties needed to support system generation and/or desired forms of

scheduling analysis. This information will be generated from the AADL design model.

A.2.1 MARTE for AADL Summary Table

AADL concept MARTE/UML concept

MARTE/UML profile

Description

Software component

Sw_SchedulableRessource

UML Classifier

Process MARTE:: «memoryPartition» stereotype on UML Represents a protected address
MemoryPartition Classifier space and contains executable
code or data.
Thread MARTE:: «swSchedulableRessource» stereotype on Concurrent schedulable unit of

sequential execution through
source code

Thread Group UML.::Classifier

«swSchedulableRessource_group»
stereotype on UML Classifier

Component abstraction for logi-
cally organizing thread, data and
thread group component within a

Operation

process

Data UML::DataType «dataType» stereotype on UML Classifier Represents static data and data
types within a system

Subprogram UML.::Operation «subprogramy» stereotype on UML Represents sequentially execut-

able source text

Subprogram
Calls

Subprogram (method) calls on sequence
diagrams

Access to a callable method or a
server service with a declaration

within a subprogram implementa-
tion or a thread

AADL concept MARTE/UML concept

MARTE/UML profile

Description

Execution platform components

Processor MARTE::HwProcessor «hwProcessor» on UML Classifier Hardware unit responsible for
scheduling and executing threads.

Memory MARTE::HwMemory «hwMemory» on UML Classifier Abstract representation which is a
storage component for data and
executable code

Bus MARTE::HwBus «hwBus» on UML Classifier Hardware unit that enable commu-

nication among other execution
platform components
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Device

MARTE::HwDevice

«hwDevice» on UML Classifier

Represents entities that interfaces
with the external environment of an
application system

AADL concept

MARTE/UML concept

MARTE/UML profile

Description

System compositi

on

System UML4SysML::Block «block» stereotype on UML Classifier Represents a composite software,
execution platform or system
components

AADL concept MARTE/UML concept MARTE/UML profile Description

Features and sha

red access

Port MARTE::FlowPort «flowPort» or «msgPort» stereotyped UML Represents a communication inter-
Port face for the directional exchange of
data, event or both between
components
PortGroup UML Classifier «port_group» stereotyped UML classifier Represents a collection of port

group or port

Subprogram as

UML Operation

«subprogram» stereotypes UML Operation

Represents sequentially

nent Access

interfaces

Features executable source text
Subprogram UML Parameters UML parameters Represents the subprogram
Parameters parameters

SubCompo- UML Interface access Data or Bus access via specific UML Explicit data or bus access
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AADL concept

MARTE/UML concept

MARTE/UML profile

Description

Connections and flows

Port Connections

UML delegation connectors

UML delegation connectors between
Ports and Parts on composite diagrams
Connectors are stereotyped “delayed”
for delayed connections

A connection declaration binds a port
from a component to another

Parameter Connections

ObjectFlow on UML activity
diagram

ObjectFlow on UML activity diagram

Used when a subprogram output
need to be link with an entry point of
an other subprogram

Access Connections

UML Connections

UML connections between UML ports
requiring specific data access to data
interface

Access connections designate
access to shared data components

Flows specifications

UML Object Flows, Object
Pins

UML Object Flow between UML Object
Pins in an Activity Diagram.

Specifies the detailed description and
analysis of an abstract information
path throughout a system

End-To-End Flows

UML Object Flows

Reference activity diagram connected
by Object Flow representing the con-
nections in Activity Diagrams

Specifies a flow that starts within one
subcomponent and ends within
another.

AADL concept

MARTE/UML concept

MARTE/UML profile

Description

Properties

Property (sets, Associa-
tions, Expressions)

UML Comment

«properties» stereotyped UML Com-
ment

Properties provide information about
component types and
implementations, subcomponents,
features, connections, flows, modes,
and subprogram calls

AADL concept

MARTE/UML concept

MARTE/UML profile

Description

Operational modes

Mode

UML State machines

Mode as UML StateMachines; mode
specific port connections are described
with UML Collaborations.

Represents a defined configuration of
contained components, and
connections
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AADL concept MARTE/UML concept MARTE/UML profile Description

Operational system

System Binding | MARTE::Allocation MARTE «allocation» stereotyped UML Binds software components to appropri-
Dependency ate execution platform components (i.e.

hardware components)

AADL concept MARTE/UML concept MARTE/UML profile Description

Component relationship

Component UML Generalization UML Generalization
extension
Component UML Realization UML Generalization

implementation

A.2.2 Packages, components declaration and implementation

A.2.2.1 Packages

AADL packages will be used to organize component modeling, improving model lisibility and component reuse. AADL
packages will be modelized by the way of UML packages as shown Figure .

A.2.2.2 Component type and implementation

In AADL, each component is caracterized by a component decalaration and some component implementation
descriptions. Each omponent type specifies the external behavior of the component, its way of communicating and
features that might be provided for other elements. Component implementations allow the definition of subcomponents,
mode specific behaviors or components properties.

Component declarations and implementations could be modelized in different packages named Declaration and
Implementation as shown Figure . A UML Realization will be used to formalize this implementation relationship ("Gps"
component can have two different implementations named "Gps.Basic" and "Gps.Handheld"). Component declaration and
implementation could also be extended using a UML Generalization link ("Gps.Handheld" implementation extends
"Gps.Basic" implementation)
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Declaration

==memoryPartition== ==memaryPartition==
Gps

— | Gps_secure

G LS S
S

Implementation - \

Y ™
~ A

Gp=.Basic

==mmemory Partition== ==memaryPartition== ==memoryPartition==
K Gps_secureHandled | Gps.handled

Figure A.1 - Component Types and Implementation modelling

A.2.3 Software Components

A.2.3.1 Process

A process represents a virtual address space that protects its internal data. This virtual address space contains the program
formed by the source text associated with the process and its subcomponents. It can access to external data through server
subprograms or data reference. A single process does not contain an implicit thread. In many cases, a processor will be

bound to a process via a specific binding link.

Table A.1 - Component and Associated Features Representation

AADL Concept

UML profile

Process UML classifier stereotype by the MARTE «patitionMemory»
stereoptype
Type Provide data access, Require data access UML Realization / UML Dependency between the process and
data Interface
Port MARTE Flow Port
Server subprogram «server_subprogramy» stereotyped UML Dependency between
server components and the called subprogram (UML
Operation)
Flow specification UML Flows and UML Pinss on Activity diagrams
Properties UML::Comment stereotyped with «<AADL_Properties»
Implementation Subcomponent (data, thread, thread group) UML Part of the owner component
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Table A.1 - Component and Associated Features Representation

Connections UML Connector and delegation connectors between Ports in
composite structure diagram

Flows UML Flows and UML Pinss on Activity diagrams

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «kAADL_Properties»

An AADL process will be represented by a MARTE "patition Memory" stereotyped UML classifier, containing
subcomponents as UML parts, communicating with other components or subcomponents throught ports. In the following
example, the "control_processing.speed_control" process contains four subcomponents.

end control processing.speed control

process implementation control processing.speed control

subcomponents
control input : thread control in.input processing;
control output : thread control out.output processing;

control thread group : thread group control_ threads.control_ thread_set;

set_point data : data set_point_data_ type;

Figure A.2 - AADL Process example

==memaryPartition==
control_processing.speed_control

==zwichedulableRessource==
control_input : control_in.input_processing

==swichedulableRessources==
control_output : control_out.output_processing

==swichedulableRessource_groups=
control_thread_group : control_threads.control_thread_set

==dataTypes=
set_point_data : set_point_data_type

Figure A.3 - Process and contained subcomponents UMLrepresentation

A.2.3.2 Thread

A thread is a concurrent schedulable unit of a sequential execution through source code. A thread models a schedulable
unit that transits between various scheduling states. It always executes within the virtual address space of a process, i.e.
the binary images making up the virtual address space must be loaded before any thread can execute in that virtual

address space.
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Component and associated features representation

AADL Concept

UML Profile

Thread «swSchedulableRessource» stereotyped UML class
Type Provide/require UML Dependency or UML Realization between the thread and
the data associated Interface.
Port MARTE Flow Port
Port Group «port_group» stereotyped UML Classifier
Server subprogram «server_subprogram» stereotyped UML Dependency between
server components and the called subprogram (UML Operation)
Properties UML::Comment stereotyped with «<AADL_Properties»
Flow Specification UML Flows and UML Pinss on Activity diagrams
Implementation Subcomponents (data) UML Part of the owner component

Subprogram Call

UML Message in UML Sequence diagrams

Connections

UML Connector and UML delegation Connectors between Ports
in composite structure diagram

Flows UML Flows and UML Pinss on Activity diagrams
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «<AADL_Properties»

The following example illustrates a thread containing a data subcomponent.

thread control_ laws

end control_ laws;

data static_data

end static_data;

subcomponents

configuration data :

thread implementation control laws.control input

data static_data;

end control laws.control input;

Figure A.4 - AADL Thread example
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==swSchedulableRessources=
control_laws.control_input

==dataType==
configuration_data : static_data

Figure A.5 - Thread and data subcomponent UML representation

A.2.3.3 Thread Group

A thread group represents an organizational component to logically group threads (as well as their properties and features)
contained in processes. The type of a thread group component specifies the features and required subcomponent access
through which threads contained in a thread group interact with components outside the thread group. Thread group
implementations represent the contained threads and their connectivity.

A thread group does not represent a virtual address space nor an execution unit. Therefore, a thread group must be
contained within a process.

Component and associated features representation

AADL Concept UML Profile
Thread group «swSchedulableRessource_group» stereotyped UML
class
Type Provide data access UML Dependency or UML Realization between the

. thread group component and the data associated
Require data access

Interface.
Port MARTE Flow Port
Port Group «port_group» stereotyped UML Classifier
Server subprogram «server_subprogram» stereotyped UML Dependency

between server components and the called subpro-
gram (UML Operation)

Properties UML::Comment stereotyped with «AADL_Properties»

Flow Specification UML Flows and UML Pinss on Activity diagrams
Implementation Subcomponents (data, thread, thread UML Part of the owner component

group)

Connections UML Connector and delegation connectors between

Ports in composite structure diagram
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Flows

UML Flows and UML Pinss on Activity diagrams

Modes

UML Collaboration and UML State Machines

Properties

UML::Comment stereotyped with «<AADL_Properties»

The following example illustrates a thread group containing threads and data components.

thread group control
properties

Period => 50 ms;

end control;

thread group implementation control.roll axis
subcomponents

control group : thread group control laws.roll;
control data : data data_control.primary;

error data : data data error.log;

error detection : thread monitor.impl;

end control.roll axis;

thread monitor
end monitor;

thread implementation monitor.impl
end monitor.impl;

data data_control
end data control;

data implementation data control.primary
end data_control.primary;

data data_error
end data_error;

data implementation data_error.log
end data_error.log;

thread group control laws
end control laws;

thread group implementation control laws.roll
end control laws.roll;

Figure A.6 - Thread Group AADL example
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==swSchedulableRessource_groupss=
control.roll_axis

==dataType== ==gwichedulableRessource=>
control_group : control_laws.roll error_detection : monitor.impl
==dataTypess ==dataTypes=
control_data : data_control.primary error_data : data_error.log

Figure A.7 - Thread group and subcomponents representation

A.2.3.4 Data

The data abstraction represents static data and data types within a system. Specifically, data component declaration are
used to represent:

» Application data types.
« The substructure of data types via data subcomponents within data implementation.

« Data instances.

Component and associated features representation

AADL Concept UML Profile
Data UML::DataType
Type Provide data access UML Realization between the data component and
its interface
Subprogram UML Operation of a UML Class
Properties UML::Comment stereotyped with

‘AADL_Properties?

Implementation Subcomponents (data, thread, thread UML Part of the owner component or UML
group) attributes for primitive types
Connections UML Connector and delegation connectors

between Ports in composite structure diagram

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with
‘AADL_Properties?

Data types information may be required from other components. To provide this data access service, the UML interface
semantics is used. Each data will realize an interface providing access to data internal information; external components
will require access to this interface (data acces is detailed section A.2.6.3.
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The following example illustrates the “address.other” data component containing four data components. As these
subcomponents are primitive types, they are represented as attributes of the address.other data component. Moreover, the
"address.other" data component provides access to street, street number, city and zip code information through the
"address_interface" it realized.

data address
end address;

data implementation address.other
subcomponents

street : data string;
streetnumber : data int;

city : data string;

zipcode : data int;

end address.other;

data string
end string;

data int

properties

Source Data Size => 64b;
end int;

adress;ﬁﬁeﬂhce

==dataType==
adress.other

-street
-strestnumber
-ty
-Zipcode

Figure A.8 - Data UML representation

A.2.3.5 Subprogram

A subprogram represents a sequentially executable source text, a callable component with or without parameters that
operates on data or provides server functions to components that call it.

Component and associated features representation

AADL Concept UML Profile

Subprogram «subprogram» UML Operation on UML class rep-

resenting a Library
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Type Require data access UML Dependency between the subprogram and
the data provided Interface

Port MARTE Flow Port

Port Group «port_group» stereotyped UML Classifier
Parameter UML Operation Parameters

Flow specifications UML Flows and UML Pins on Activity diagrams
Properties UML::Comment stereotyped with

«AADL_Properties»

Implementation Connections UML Connector and delegation connectors
between Ports in composite structure diagram

Subprogram Call UML Message on UML Sequence diagrams
Flows UML Flows and UML Pins on Activity diagrams
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with

«AADL_Properties»

The following example illustrates a "compute_pressure™ subprogram owned by a UML class called "library". Subprogram
owners modelling feel free to the designer.

subprogram compute pressure
features

raw_data : in parameter;
filtered data : out parameter;

end compute pressure;

Figure A.9 - Subprogram AADL example

my_library

==zubprogram==-compute_pressure

Figure A.10 - Subprogram representation

Access to subprogram components will be detailed in subprogram access section A.2.6.3.
A.2.4 Execution Platform Components

Execution plateforme component UML profile is illustrated on Figure A.11.
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A.2.4.1 Processor

A processor is an abstraction of hardware and associated software that is responsible for scheduling and executing
threads. Processors can execute threads that are declared in application software system, or threads that reside in

components accessible from those processors.

Component and associated features representation

AADL Concept UML Profile
Processor «hwProcessor» stereotyped UML Class
Type Server subprogram «server_subprogram» stereotyped UML Dependency
between server components and the called subpro-
gram (UML Operation)
Port MARTE Flow Port
Port group «port_group» stereotyped UML Class
Requires bus access UML Dependency between the Processor and the bus
provided Interface
Flow specifications UML Activity diagram
Properties UML::Comment stereotyped with «<AADL_Properties»
Implementation Subcomponents (Memory) UML Part of Processor
Subprogram Calls None
Connections None
Flows UML Activity diagram
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «<AADL_Properties»

A.2.4.2 Memory

Memory abstractions represent storage components for data and executable code. Memory components include randomly
accessible physical storage (e.g, RAM, ROM) or complex permanent storage such as disks or reflective memory.

Component and associated feature representation

AADL Concept

Mapping proposal

Memory «hwMemory» stereotyped UML Class
Type Requires bus access UML Dependency between Memory and the bus
required interface
Flows specifications None
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Properties UML::Comment stereotyped with «<AADL_Properties»
Implementation Subcomponents (memory) UML Part of Memory

Subprogram Calls None

Connections None

Flows None

Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «kAADL_Properties»

A.2.4.3 Bus

A bus represents hardware and associated communication protocols that enable interactions among other execution.

Component and associated subclauses representation

AADL Concept Mapping proposal
Bus UML::Class stereotyped with «hwBus».
Type Require bus access UML Dependency between the Bus and another bus
provided interface
Properties UML::Comment stereotyped with «kAADL_Properties»
Flows None
Implementation Subcomponents None
Subprogram Calls None
Connections None
Flows None
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «<AADL_Properties»

A.2.4.4 Device

Device abstractions represent entities that interface with the external environment of an application system. Those devices
often have complex behaviours. They may have internal processors, memory, and software that are executed on an
external processor. Alternatively, they may require driver softwares that are executed on an external processor. A device's
external driver software may be considered as a part of a processor's execution overhead, or it may be treated as an
explicitly declared thread with its own execution properties.
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Component and associated features representation

AADL Concept UML Profile
Device «hwDevice» stereotyped UML Class
Type Server subprogram «server_subprogram» stereotyped UML Dependency
between server components and the called s
ubprogram (UML Operation)
Port MARTE Flow Port
Port group «port_group» stereotyped UML Class
Require bus access UML Dependency between the device and the bus
provided interface
Flow Specifications UML Activity diagram
Properties UML::Comment stereotyped with «<AADL_Properties»
Implementation Subcomponents None
Subprogram Calls None
Connections None
Flows UML Activity diagram
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «<AADL_Properties»
==hwwBus=>= ==hvyhemary==
a_bus a_memeory
==hwProcessar== ==hwDevice==
a_processor a_device

Figure A.11 - Execution platform components UML representation
A.2.5 System

A.2.5.1 System Composition

The system abstraction represents a composite of software, execution platform, or system components. System
abstractions can be organized into a hierarchy that can represent complex systems of systems as well as the integrated

software and hardware of a dedicated application system.
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Component and associated features representation

AADL Concept Mapping proposal
System UML::Class stereotyped «block»
Type Server subprogram «server_subprogram» stereotyped UML Dependency

between server components and the called subpro-
gram (UML Operation)

Port MARTE Flow Ports
Port group UML::Class stereotyped with «port_group»
Requires/Provides bus access UML Dependency or UML Realization system com-

ponent and bus associated Interface.

Require/Provides data access UML Dependency or UML Realization between the
system and the Data associated Interface

Flows specifications UML Activity diagram
Properties UML::Comment stereotyped with «<AADL_Properties»
Implementation Subcomponents (data, process, pro- UML Part of System

cessor, memory, bus, device, system)

Subprogram calls None

Connections UML Connectors between Ports of the UML Class
and Ports of the contained UML Parts.

Flows UML Activity diagram
Modes UML Collaboration and UML State Machines
Properties UML::Comment stereotyped with «<AADL_Properties»

A.2.5.2 Binding

For a complete system specification (one that can be instantiated), software components must be bound to appropriate
execution platform components. For example, threads must be bound to processing elements and processes must be bound
to memory. Similarly, inter processor connections must be bound to buses, and subprogram calls must be bound to their
server subprogram. These bindings are defined through property association.

Component and associated features representation

AADL Concept Mapping proposal
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Binding

«allocation» stereotype on UML::Dependency between
software and execution plateform components.

Properties

UML::Comment stereotyped «AADL_Properties».

Binding connection properties

«AADL_Properties» stereotype applied on UML::Com-
ments on the binding feature.

In the following example, the "a_client_process" component is bound to the "a_client_processor" component. Both
components are bound by an "allocation" stereotyped UML dependency. An UML Comment is associated to this UML
Dependency, containg the binding properties.

subcomponents

properties

end a client.impl;

system implementation a client.impl

the processor : processor a_client_processor;
the _process : process a_client_ process;

Actual Processor Binding => reference the processor applies to the process;

==hwProcessars=
a_client.impl

==memoryPartition::= ==hwwProcessor=:=
1a_client_process | — — [ — = :a_client_processor

=:<allocfati0n>>
I

==properties==
Actual_proceszor_hinding

Figure A.12 - System binding rep

resentation

A.2.6 Features and shared access

A.2.6.1 Port and Port connections

A port represents a communication interface for the directional exchange of data, events, or both (event data) between
components. Connections are linkages representing the communication of data between components through ports of
different threads or between threads and processor or device component.

Component and associated features representation

AADL Concept

Mapping proposal
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Port MARTE Interaction Port

Port direction (in, out, in/out) In, out, in/out port (event data,data, MARTE Interaction Port direction attribute and
event) FlowSpecification or MsgSpecification direction
attribute.
Port type Event port MARTE MsgPort associted to a FlowSpecification
interface
Data port MARTE FlowPort associated to a MsgSpecifica-

tion interface

Event/Data Port MARTE MsgPort associted to a FlowSpecification
interface and MARTE FlowPort associated to a
MsgSpecification interface

Connections Immediate Connections UML Connectors between MARTE Interaction
ports
Delayed Connections ‘delayed? stereotyoped UML Connector MARTE

Interaction ports

Properties "AADL_Properties? stereotyped UML Comment

Data flow ports are represented by MARTE FlowPorts (stereotyped "FlowPort") and associated to a "flowSpecification"
stereotyped interfaces managing dataTypes sending and receiving out/in of the components. The port isAtomic attribute
will be set to "false". The flowSpecification interface direction attribute will specify the flow direction.

Event ports represents ports sending out or receiving signals. They are represented by MARTE MsgPorts (stereotyped
"msgPort™). These ports are associated to an interface able to receive/send signals, interfaces stereotyped by the MARTE
"SignalSpecification” stereotype. The port isAtomic attribute will be set to "false. The msgSpecification interface
direction attribute will specify the flow direction.

EventData ports are represented by both (msgPorts and flowPorts) concepts. So, they will be stereotyped by both
stereotypes: "flowPorts" and "msgPort".

Figure A.13 represents in and out data ports of the "read_thread" component. "data_in" and "data_out" are FlowPorts,
typed by the "flowSpecification" stereotyped interface data_interface.
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thread read data

features

in data : in data port datal;
ougidata : out data port datal;
end read data;

thread basic_control

features

in data : in data port data2;
out_data : out data port data2;
end basic_control;

process implementation control speed.impl

subcomponents

read _data : thread read data;

control : thread basic_control;

connections

delayed Cl : data port read data.out_data ->> control.in data;
properties

Period => 50ms;

end control speed.impl;
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==Comment==

iz&tomic: falze
direction: in

==comment==
iz&tomiv: falze
direction: out

-~
-~
! -
==gwichedulableRessources= -~
==flowSpecification== () e R N read_data
data interface out_data : data_interface2
==flowProperty==my_data : datal Rl icetion-»

data_interface2

==flovwProperty==data? : datal

==awichedulableRessources==
basic_control out_data : data_interface2

in_csta ; data_interface .

e
.
e
!
==comment=>= ==comment==
iz&tomic: falze iz&tomiv: falzse
direction: in direction: out
==memoryPartition==

control_speed.impl

e e ARG BRE S0l Gers in_data ==gwichedulableRessources=
i control : basic_control
read_data : read_data delaved_C1
1 ==rielayed== E
data in out_data out_data

Figure A.13 - Port representation

A.2.6.2 Port Group

The port group abstraction represents a collection of ports or other port groups. Inside the component, ports of a port
group can be connected individually; outside the component, the port group is considered as a single connectable entity.

Component and associated features representation

AADL Concept UML Profile

Port Group «port_group» stereotyped UML class

Inverse property

«port_group» stereotype attribute

From the component inside, PortGroups are represented as UML Parts connected through UML delegation connectors to

the Component Ports represented as a UML Port. From the component inside, the port group can be connected through
connectors to component cubcomponents.
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The portGroup " GPSBasic_socket” can be linked to Satellite_position subcomponents via the Wakeup and Observation
ports, and seen as a single port via the Position port.

process Satellite position

features
Position : port group GPSBasic_socket ;

end Satellite position ;

port group GPSbasic_socket
features
Wakeup : in event port ;

Observation : out data port GPSLib::position;

end GPSbasic_socket;

Figure A.14 - Port group AADL example

==memaryParttion== ==Por_group==
Satellite_position GPSbasicsocket

wakeup [ |

Position

Ohservation [:l

==Part_group==
: GPSbasicsocket

ik eup

Chzervation

Figure A.15 - Port group UML representation

A.2.6.3 Subcomponent Access and data access connections

Components such as buses or data might be accessed by the system through an explicit declaration access in component
types. Provides indicates that the component provides access to a data or bus component within it; requires indicates that
a component requires access to a data or bus component that is external to it.

Each data or bus will implement an interface providing access to the data/bus service. This feature is represented by a
UML Realisation between a component and its provided interface. Each component requiring an access to a bus or data
component will use this interface (Uml Dependency) as illustrated in the following example. The required client
component will access to the interface via an UML port.

Access connections designate access to shared data components by concurrently executing threads or by subcomponents
executing within a thread. They also represent communication between processors, memory, and devices by accessing a
shared bus.
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process control

features
cc_set point data : requires data access data sets.set_ points;
error_log_data : provides data access log.error_ logs;

end control;

data data_sets

end data_ sets;

data implementation data sets.set point

end data_sets.set point;

data logs

end logs;

data implementation logs.error logs

end logs.error logs;

error_logs_interface )

;;I' =
7 b
/ b
# A
s b
I Ay
==dlataType=> oo_set_point_data
logs.error_logs
==memoryPartition=:=
control
==dataTypes= error_log_data /
data_sets.set_points s
g
= s
\ /
. s
b L

set J:mints_interface{:;.

Figure A.16 - Data access UML representation
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system implementation basic_control.auto_cc

subcomponents

cc_control : process control.cc_control;

cc_error _monitor : process monitor.error monitor;

connections

a_01 : data access cc_control.error log data -> cc_error monitor.error data_in;

end basic control.auto cc;

process control

features

error log data : provides data access logs.error logs
{Provided Access => access read only;};

end control;

process implementation control.cc control

subcomponents

comm._error_log : data logs.error_ logs

{Provided Access => access read write;};

cc_algorithm : thread algorithm.cc;

connections

data access comm error log -> error_ log_data;

data access comm _error log -> cc_algorithm.error log data;

end control.cc_control;

thread algorithm

features

error log data : requires data access logs.error logs
{Required Access => access read write;};

end algorithm;

thread implementation algorithm.cc

end algorithm.cc;

data logs
end logs;

data implementation logs.error logs

end logs.error_logs;
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process monitor

features

error_data_in : requires data access logs.error_logs
{Required Access => access read only;};

end monitor;

process implementation monitor.error monitor
subcomponents
comm_errors : thread m_algorithm.errors;

end monitor.error monitor;

thread m_algorithm

features

c_error_data : requires data access logs.error_logs
{Required Access => access read only;};

end m_algorithm;

thread implementation m_algorithm.errors

end m_algorithm.errors;

comm_grmar_log
(logs.error_logs — read_write)

“—‘ml'nﬂ - .-
£

J’ ot _abgorthm F

e ==

©E_Brror_moniton
'
coman_serors
¥ ri
[ —

Figure A.17 - AADL graphical representation

provides data access to
comm_errar_log

— (logs.ermor_logs)

requires data access to
comm_wrrer_leg
(legs. error_logs — read_only)
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Provided _Access == n

==reguires ==

access read_only
==memaryPatttions== |
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Figure A.18 - Data acces declaration
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=<hlock==
basic_control.auto_cc

==memoryPartition=:=
cc_control : control.ce_control
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=
==mnemaryPartition==

cC_error_monitor : monitor.error_monitor
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c¢_algorithn @ algorithm.cc
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error_log_dats
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comm_errors : m_algorithm.errors

1

1)
error_data_in

:| error_log_data

Provided_Access ==
read_wwrite

Figure A.19 - Data access implmentation

A.2.6.4 Subprogram Calls

Subprogram calls (local to threads) are declared through calls declarations within a thread or subprogram implementation.

The subprogram that is called must be declared through a subprogram type declaration and possibly a subprogram

implementation declaration.

Component and associated features caracteristics

AADL Concept

Subprogram

UML Operation within a UML Class

Server Subprogram

«server_subprogram» stereotyped UML Dependency between
server components and the called subprogram (UML Operation)

Subprogram call sequence

UML Messages on UML sequence diagrames

A UML Profile for MARTE, Beta 1

371



Subprogram call sequences are represented as UML messages in UML sequences diagrams as shown in Figure A.21, each
subprogram calling its own subprograms like denoted in Figure A.22. Each Subprogram OwnerClassifier instances
(adjust.level and find.temp_valuesStaying as library container) is represented trough a lifeline, and subprogram call

through messages between them.

In the following example, the two messages (aquire.temps() and adjust.level()) from the control.thermal_control lifeline

represents the subprogram call sequence.

thread implementation control.thermal control
calls

{

get_temp: subprogram acquire.temp;
adjust_level: subprogram adjust.level;

}i

end control.thermal_ control;

subprogram implementation acquire.temp

end acquire.temp;

subprogram implementation adjust.level

calls

{

find_scale_values: subprogram find.temp_values;
}i

end adjust.level;

subprogram implementation find.temp values

end find.temp values;

Figure A.20 - Subprogram call sequence

==Sw_SchedulableReszources==

: control.thermal_control
' |

|
1: acguire templ) )

2 adjust level()

: adjust.level

.

Figure A.21 - Linear call

372

A UML Profile for MARTE, Beta 1



: adjust.level : findtemp_values

| |
| 1: find temp_values() |

Figure A.22 - Independant subprogram calls

A.2.6.5 Server Subprogram Calls

For subprogram calls called towards other threads, synchronous Remote Calls to a server subprogram are used. The client
calls the subprogram, which calls the server subprogram on the remote process as illustrated on the following illustration.
These server subprogram call is represented by the “server subprogram™ stereotyped UML Dependency between the caller

component and the called subprogram. The recording "Actual_Subprogram_Call" property, specifying the binding

between the subprogram call to the server subprogram, is modeled as a dependency between the subprogram and server

subprogram methods. The Binding properties appear in a UML Comment applied to the Dependency.

AADL Concept UML Profile

subprogram

Server Subprogram callsns «server subprogram» UML dependency between component and called

system implementation client_server sys.impl

subcomponents

client process: process client process.impl;

server_process: process server process.impl;

properties

Actual Subprogram Call => reference server process.server thread.service
applies to client process.calling thread.call server;

end client server sys impl;

process implementation client process.impl
subcomponents
calling thread: thread calling.impl;

end client process.impl

A UML Profile for MARTE, Beta 1

373



thread implementation calling.impl
calls

call server : subprogram service it;
}i

end calling.impl;

process server process
features
service: server subprogram service it;

end Server_process;

process implementation server process.impl
subcomponents
server thread: thread server thread.impl;

end server process.impl;

thread server thread
features
service: server subprogram service it;

end server_thread;

thread implementation server thread.impl

end server thread.impl;

subprogram service it

end service it;

Figure A.23 - AADL server subprogram exemple
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==hlock==
Elipnis<atuei =sy=dmpl ==hemaryPartition:==
client_process.impl

=zmemoryParttion==
client_process : client_process.impl

T ==gwichedulableRessources=
| A : calling_impl

| _ | Actual_subprogram_call —‘

==memaryPartition=»
SEerver_process : serveur_process.impl

==memaryPartition==

library
serveur_process.impl

==subprograms==+service_t(m — — — — -
=3 ==zerveur_subprogram==" —

T iy =23w_SchedulableRessources=
- — : server_thread.impl

<=zerveur_subprograms=

Figure A.24 - Serveur subprogram call

| 1: service o)

: calling.impl
|
|

Figure A.25 - Subprogram call
A.2.7 Mode
A modes abstraction is an explicitly defined configuration of contained components, connections, and property value

associations. Modes represent alternative operational states of a system or component. Mode transition models dynamic
operational behaviour that represents switching between configurations and hanges in components internal characteristics.
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Mode and associated features representation

AADL Concept UML Profile

Modes and modes transitions UML State machine diagram. Each mode is represented by an UML state, con-
nected by transition representing mode switching. Each trigered events is prefixed
by the associated component and port name.

Mode configuration UML Collaboration represents element connections for a specific mode.

Modes specific sequence calls UML Sequence diagram
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Figure A.26 - Mode specific connections

Mode specific connections will be designed in Collaboration (named by the mode). Each Collaboration illustrates a
specific system configuration (Figure ).
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controller switch_to_flight 5 change_to_flight_mode

[ )

.—:’r ground | flight

1 J

cortroller zwitch_to_ground f change_to_ground_mode

Figure A.27 - Mode transition triggered by events

process contro
features
status_data :
aircraft data
command : out

end control al

subcomponents
controller : t
ground algorit
flight algorit
connections

Cl : data port
C2 : data port
C3 : data port

C4 : data port

modes

ground : initi
flight : mode;
ground - [contr
flight - [contr
end control_al

thread control

features

status_data

switch to flig

end controller

1l algorithms

in data port;

: in data port;
data port;
gorithms;

process implementation control algorithms.impl

hread controller;
hms : thread ground algorithms in modes (ground);

hms : thread flight algorithms in modes (£flight);

aircraft data -> ground algorithms.aircraft data in modes (ground) ;

aircraft data -> flight algorithms.aircraft_data in modes (flight);

ground_algorithms.command data -> command in modes

flight algorithms.command data -> command in modes

al mode;

oller.switch to flight]-> flight;

oller.switch to ground] -> ground;

gorithms.impl;

ler

in data port;

switch to ground : out event port;

ht : out event port;

7

(ground) ;

(flight) ;
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thread ground algorithms
features

aircraft data : in data port;
command_data : out data port;

end ground_algorithms;

thread flight algorithms
features

aircraft_data : in data port;
command_data : out data port;

end flight algorithms;

Figure A.28 - AADL mode specific code
A.2.8 Flows

AN AADL flow is logical flow of information through through a sequence of threads, processors, devices and
connections. An end-to-end flow represents a complete path through the system, starting at a flow source, ending at a
flow sink, passing through components (flow paths) and between components over connections. Flow specification
declarations are made within component type declarations, specifying externally visible flows through flow sources, flow
sinks and flow paths. Flow implementation specification relies on component implementations, specifying how the flow
is realized as a sequence of flows through subcomponents along connections from the flow in port to the flow
specification out port. An end-to-end flow represents the logical flow from the source to the destination.

Component and associated features caracteristics

AADL Concept UML Profile
Flow sink UML InputPin stereotype “flow sink” in an UML Activity Diagram.
Flow source UML OutputPin stereotype “flow source” in an UML Activity Diagram.
Flow path UML Object Flow between UML Object Pins in an Activity Diagram.
End-to-end flow Reference activity diagram connected by Object Flow representing the
connections in Activity Diagrams.
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complete.impl

==trDevices=
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==flowePort==
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izftomic=true

brake_event
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==flowePort==
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direction=int;
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direction=out;

Figure A.29 - System implementation structure

brake_ewvent
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==Flovwr Source==
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Figure A.30 - Flow Source

throttle _setting

Elthruttle_actua‘tor |

Y
A

=<=Flow sink==
sterectyped Pin

Figure A.31 - Flow Sink

Figure illustrates a flow source, the Object node "brake pedal™ represents the owner component, the Input Pin "brake
event" the to the flow associated port. A flow sink is shownFigure . The Comments are to illustrate the pin stereotype.

IZ“ cruise_control

’Erlesun

brake_evernt

Figure A.32 - Flow path specification

A flow path is represented by an Object Flow between the two Object Pin represented flow input and output ports.
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<<ﬂovv source>>
: flow1

<<f|oWJaath:»:=
: brake ﬂcmf

i

Figure A.33 - End-to-end flow

<<f|ow _sink==
— B

The end-to-end flow is an association of flow source, flow paths, and flow sink interconnected by connections represented

as Object Flows (illustrated Figure ).

system implementation complete.impl
subcomponents
brake pedal device brake pedal;
cruise control system cruise control;

throttle actuator device throttle_actuator;

throttle_actuator.flowl;

end complete.impl;

device brake pedal
features

brake_event out event data port;
flows
flowl flow source brake_ event;

end brake pedal;

system cruise control
features
brake_event in event data port;
throttle setting out data port float type;
flows
brake_flow flow path brake event -> throttle_ setting;

end cruise control;

device throttle_actuator
features
throttle_setting in data port float_type;
flows

flowl flow sink throttle setting;

end throttle_actuator;

connections

C1l event data port brake pedal.brake event -> cruise control.brake event;

c2 data port cruise control.throttle setting -> throttle actuator.throttle setting;
flows

brake flow end to end flow brake pedal.flowl -> Cl -> cruise control.brake flow -> C2 ->

Figure A.34 - AADL flow example
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A.2.9 Properties

In AADL, Properties provide information about components (type and implementations), subcomponents, features,
connections, flows, modes and subprogram calls. Each property is caracterized by a name, a type and a value.

All AADL element properties will be grouped together in an UML::Comment stereotyped "AADL_Properties"”.

Component and associated features caracteristics

AADL Concept UML profile

Property UML Note stereotype «AADL_Properties» linked to

concerned element

A.3 EAST/ADL2.0 models with MARTE

EAST-ADL is an architecture description language, dedicated to automotive embedded electronic systems, developed in
the context of the ITEA cooperative project EAST-EEA (http://www.easteea.net/) finished in 2004. This language is
intended to support the development of automotive embedded software, by capturing all the related engineering
information. The scope is the embedded system (hardware and software) and its environment.

The ATESST project (www.atesst.org) is aimed at refining the EAST-ADL language in the context of dependability
concerns, aligning with OMG standards and the new automotive domain standardization AUTOSAR (http://
www.autosar.org/).

To cover dependable systems, requirement constructs will be enriched to satisfy the needs of different integrity levels and
the modeling entities will be refined to support necessary analysis methods, and an engineering process for safety.
Transversal to these concepts, with the same consideration for dependability, the variability constructs of EAST-ADL will
be improved to support vehicle product lines, the major productivity driver in automotive industry.

The EAST ADL?2 abstraction layers are used to allow reasoning of the features on several levels of abstraction. Note,
however, that the abstraction levels are only conceptual; the modeling elements are organized according to the artifacts
which may span more than one of these layers.

Entities on different abstraction levels are related with a Realization association, where applicable, to allow traceability.
Traceability can also be deduced from the requirements structure.

The EAST ADL?2 abstraction layers with their corresponding artifacts are:

« \ehicle layer, with the Vehicle Feature Model describing user visible features such as anti-lock braking or windscreen
wipers.

 Analysis level with Functional Analysis Architecture capturing the behavior and algorithms of the Vehicle Feature
Model functions. There is an n-to-m mapping between Vehicle Feature Model entities and Functional Analysis
Acrchitecture entities, i.e., one or several functions may realize one or several features.

« Design level with Functional Design Architecture, representing a decomposition of functionality in the Functional
Analysis Architecture. The decomposition has the purpose of making it possible to meet constraints regarding
allocation, efficiency, re-use, supplier concerns, etc. Again, there is an n-to-m mapping between entities on Functional
Design Architecture and Functional Analysis Architecture. Non-transparent infrastructure functionality of the
BasicSWArchitecture, such as mode changes and error handling are also represented on a Design Level.
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« Implementation level with the ImplementationArchitecture represented by HardwareArchitecture,
BasicSWArchitecture and ApplicationSWArchitecture based on AUTOSAR concepts.

 Operational level, this describes the binary entities and their related tools.

« The Hardware Architecture and Environment Model span several abstraction levels. The Hardware Architecture
contains models Electronic Control Units, ECUs, communication links, sensors and actuators and their connections.
The Environment model contains Environment functions which are encapsulations of plant models, i.e. models of the
behavior of the vehicle and its non-electronic systems. The environment model is only conceptual and is not an ADL

entity.

This part is non-normative and will be completed within the finalization task force. The intend is to describe the usage of
MARTE for building EAST-ADL2-like models as done previously for AADL-like models.
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Annex B: Value Specification Language (VSL)

(normative)

B.1 Overview

This annex provides detailed definition of the abstract (MOF compliant metamodel) and concrete (textual grammar)
syntax for specifying expressions in MARTE. The MARTE expression language is used to specify the values of
constraints, properties and stereotype attributes particularly related to non-functional aspects. In fact, this expression
language can be used by profile users in tagged values, body of constraints, and in any UML element associated with
value specifications.

In addition, the proposed expression language might be used by any other UML-based specification interested on
extending the base expression infrastructure provided by UML. As will be seen below, the MARTE expression language
is an extension to the "Value specification" and "DataType" concepts provided by UML. For this reason, we call it Value
Specification Language (VSL, in short).

VSL deals with the following requirements:
» How to specify parameters/variables, constants, and expressions in textual form.

- How relationships between different parameters/variables, or constant values are to be defined with support on
arithmetic, logical, relational, and conditional expressions.

» How different time values and assertions are to be defined in UML.
» How to specify composite values such as collection, interval, and tuple values.

VSL expressions can be used to specify non-functional values, parameters, operations, and dependency between different
values in a UML model. UML modelers can use VSL to specify non-functional constraints in their models.

Note: This annex is normative in the UML profile for MARTE.
B.2 Domain View

B.2.1 Overview

This section describes the abstract syntax of VSL. In this abstract syntax a number of concepts (metaclasses) from the
UML metamodel are reused. These concepts are shown in the models with a gray fill color. Note that, however, we do not
formally "import" them from UML, but re-define them with the same semantics in the MARTE namespace. In the UML
representation section, we describe how all these metaclasses are actually mapped to UML.

The abstract syntax is divided into several packages. The overall package structure of VSL is shown in Figure 8.1.

- The DataTypes package describes the concepts that define the datatype extensions to UML. In addition to primitive and
enumeration datatypes, it includes further specializations for composite datatypes and subtypes.

» The LiteralValues package includes literal constant values of different primitive types. Besides UML literals, this
package distinguishes, among others, Real and DateTime literals
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« The Expressions package describes the structure of expressions, including variables and reference values to UML
model elements.

» The CompositeValues package defines four kinds of composite values: interval, collection, tuple and choice.
« The TimeExpressions package presents specialized syntax for time value specifications and expressions.

The purpose and contents of each sub packages denoted in Figure B.1 are described in subsequent sections.

«modelLibrary »
MARTE. Library::
MARTE_PrimitiveTypes
"

v
«import »
]

MARTE:VSL

DataTypes swma « iMport »

)
LiteralValues geseeesny Expressions
:
« import »
:
I : I
CompositeValues TimeExpressions
smwe (iMPOrt yrwew

Figure B.1 - Structure of the NFP framework
B.2.2 The Datatypes package

A datatype is a type whose instances are identified only by their value. Instances of a given datatype consist of a set of
distinct values, characterized by properties and operations on those values. A value space is the set of values for a
datatype. The value space of a given datatype can be defined either by enumeration, axiomatically from fundamental
notions, or as a subset of values from some already defined value space.

VSL is a typed language. Each value specification, including expressions, has a type that is either explicitly declared or
can be statically derived. Evaluation of an expression yields a value of this type.

The model of datatypes used in this specification is said to be an "abstract computational model". It is "computational” in
the sense that it deals with the manipulation of information by computer systems and makes distinctions in the typing of
data units which are appropriate to that kind of manipulation. It is "abstract” in the sense that it deals with the perceived
properties of the data units themselves, rather than with the properties of their representations in computer systems.

In this specification, datatypes are categorized, for syntactic convenience, into:
« Enumeration types, whose value space is defined by enumeration.

« Primitive types, which are defined axiomatically without reference to other datatypes.
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« Subtypes, which are defined in terms of other datatypes.

« Composite types are aggregates of value spaces which can be seen as an organization of specific datatypes.

VSL::DataTypes ‘
tatype ownedAttribute
% Property
1 0.1 *
DataType
baseType datatype ownedOperation K
> Operation
0.1 *
0.1 operation
‘ ‘ ‘ ownedParameter | *
Subtype EnumerationType | | PrimitiveType | | CompositeType
* I ownedLiteral ‘ ‘ ‘ ‘
EnumerationLiteral IntervalType CollectionType TupleType ChoiceType @—
BoundedSubtype intervalAttrioute collectionAttribute tupleAttributes choiceAttributes
{subs gts 1 {subsets . {subsets . {subsets
minValue: String ownedAttribute} "/ ownedAttrbute} ~ \/ ownedAttribute} "\/ownedAttribute}
maxValue: String ‘ 0.1
isMinOpen: Boolean PRy defaultAttribute
isMaxOpen: Boolean {s ubsets
ownedAttribute}

Figure B.2 - VSL::DataTypes package

Note that the Datatype package preserves the same structure and semantics as in UML, but it extends UML in the
following ways:

« Like in UML, DataTypes may contain attributes to support modeling of structured data types. However, dissimilar
kinds of structures, with different syntax and semantics, are defined in our language. CompositeType is the metaclass
that congregates composite data types. Each kind of composite type (interval, collection, tuple, and choice) has a set of
attributes defining particular structures of data types.

» The set of owned operations for a data type comprises those operations on the data type values, possibly yielding values
of the owner data type, of the Boolean data type, or, in some cases, of other existing data types. In general, there is no
unique collection of operations for a given data type. This specification provides a set of operations for each MARTE
data type, which is sufficient for most purpose in this domain. However, this does not limit the capacity of the language
to accept new operations in specialized or new data type libraries.

» A Subtype is a data type derived from an existing data type, designated the base data type, by restricting the value space
to a subset of that to the base data type whilst maintaining all operations. Particularly, a Bounded Subtype defines a
subtype of any ordered data type by placing new minimum and maximum value bounds on the value space.

« Composite types are composed of values which are made up of values of the owned attributes. CollectionType
describes a list of elements of a particular given type. TupleType combines different types into a single aggregate type.
Interval Type defines a collection of values, having the same type, contained between two given values. ChoiceType
generates a data type each of whose values is a single value from any of a set of alternative data types.
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Note that composite types involve an indirect way to define data type properties. For instance, the interval Attribute
association end of IntervalType is of type Property. This implies that the multiplicity, uniqueness and order of the bound
elements is specified by a data type property (referenced by intervalAttribute), which is defined when a given composite
type is created. Thus, for IntervalTypes, the multiplicity of the referenced property must be '[2]' in order to guarantee that
the interval value specifications will have two value elements (the max. and the min. values of the interval).

B.2.3 The LiteralValues package

LiteralSpecification is an abstract literal expression that represents a constant. In addition to the existing literal constants
supported by UML, this language includes DateTime, Real, and Default literals (Figure B.3). While the first two are
actually related to requirements in the MARTE domain, the last one supports a notation for unspecified values that should
take a pre-declared default value.

DateTime literal represents an instant in time expressed as a calendar date and/or time format.

Real literal is a constant value expressing a computational approximation to a mathematical real nhumber, without bound
values.

EnumerationSpecification is a value specification that identifies an EnumerationLiteral.

VSL: LiteralValues ‘

‘ ValueSpecification ‘
EnumerationLiteral A

1 enumLiteral ‘ ‘

EnumerationSpecification LiteralSpecification

| | g | |

LiteralString LiteralBoolean| | LiteralDateTime ‘ LiteralNull ‘ ‘ LiteraIDefauIt‘

value: String D..1] value: Boolean value: DateTime

Literallnteger || LiteralUnlimitedNatural LiteralReal

value: Integer value: UnlimitedNatural value: Real

Figure B.3 - Literal Values package
B.2.4 The Expressions package

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.
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Expressions are used to derive values from other values or expressions. An expression can be a simple literal or variable,
or it can be a compound expression (arithmetic, logical, or time expressions) formed by combining operands and
Operation Call Expressions.

The basic structure in the package consists of Variable Call/Declaration Expression, Property Call Expression, Operation
Call Expression, and Conditional Expression (Figure B.4).

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable
is in scope. A Variable Call Expression is an expression that consists of a reference to a variable. Variable creates a
variable with a given name, data type, and nature (input, output, input/output).

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification
of the variable elements. A Expression Context provides a container for variables. It provides a means for resolving
conflicting global variables by allowing Variable Call Expressions of the form exprContextl::subContext2::varX.
Concrete rules to construct the derived attribute "variable" of Variable Call Expression, are defined in the Section "UML
Representation™.

A Property Call Expression is used to refer to Properties in the UML metamodel.

An Operation Call Expression refers to an operation defined in a UML Classifier. The expression may contain a list of
argument expressions if the operation is defined to have parameters. In this case, the number and types of the arguments
must match the parameters.

This metamodel does not define explicitly the context of properties and operations and the namespace that the
corresponding call expressions must use. When specifiyng values making reference to properties and operations of their
corresponding data types, the namespace is not taken into account. Further usages of this metamodel may define different
namespaces for property and operation.

Conditional Expressions define "if-then-else" statements, which can be used inside an expression. The result of evaluating
this expression will be the result of the evaluation of the ifTrueExpr if the conditionExpr is true. Otherwise, the result will
be the result of the ifFalseExpr.

An Opaque Expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated.
This allows extending VSL to other specialized expression languages.
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VSL::Expressions ‘
argument
initEx pression {ordered }
ValueSpecification
0.1 *
* )\ {ordered} " 1 1 1
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ExpressionContext || pataType Property Operation
name: String [1]
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Figure B.4 - VSL::Expressions package
B.2.5 The CompositeValues package

In general, a composite value can contain zero, one or more component values. Three kinds of composite value
specifications are defined: interval, collection, and tuple (Figure B.5).

Collection Specifications represent a list of elements of a particular given type. Individual elements of collections are item
Value Specifications. Note that there is no restriction on the item value type of a collection type. This means in particular
that a collection type may be parameterized with other collection types allowing collections to be nested arbitrarily deep.
Size, uniqueness and order nature of item values are defined by the defining data type.

Interval Specifications describe ordered sets of value specifications represented by two values: the minimum and the
maximum value. Additionally, two attributes define whether these two values belong or not to the referred set
(isLowerOpen and isUpperOpen).

Tuple Specifications denote structured values of possibly different types. It contains a name, a type, and a value for each
item of the tuple value. There is no restriction on the kind of types that can be used to define item values of tuples. In
particular, a Tuple Specification may contain other tuple and collection values.
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Choice Specification denotes a value of a choice data type (ChoiceType). It contains the name of one of the attribute
members (chosenAlternative), which determines the chosen data type, and a value that conforms to the chosen data type.
The derived attribute "chosenAlternative” can be constructed with basis on an explicitly chosen data type. When the
chosen data type is undefined in a given choice value specification, the chosen alternative can be deduced from the
default alternative attribute of the corresponding choice type.

VSL::CompositeValues

itemValue 1 ValueSpecification 1
value
max 1 *
min 1 .
temValue

| | Z> |

IntervalSpecification ChoiceSpecification

TupleSpecification CollectionSpecification

isLowerOpen: Boolean /chos enAltemative: String
isUpperOpen: Boolean i
* tupleltem
P choiceAttribute | 01
TupleltemValue 1
- Property
ItupleltemName:String tupleAttribute

Figure B.5 - VSL::CompositeValues package
B.2.6 The TimeExpression package

This package adds textual capabilities to represent time related expressions. UML has defined a Simple Time model in the
Common Behavior package, which already provides means to represent time and durations, as well as a mechanism to
refer to event observations with time marks. MARTE extends UML to support more expressive time expressions,
constraints, as well as observations in different behavior diagrams. Particularly, VSL's Time Expression model improves
UML with the following capabilities:

« One single instant or duration observation can be expressed with an occurrence index. For instance, we can express the
"i-th" occurrence of a given event. Whilst the occurrence could be trivial in sequence diagrams (since this diagram is
based on occurrence specifications), other diagrams such as state machines and activities may require the explicit
identification of the occurrence. In the same way, recurrent interaction fragments represented by a single sequence
diagram, such as periodic or loop fragments may require time assertions comparing different instance traces of the
sequence diagram. For instance, the duration between the i-th and i+1-th occurrence of an event that triggers a periodic
scenario.

« One single instant or duration observation can be expressed with a given condition. For example, the instant time at
which a given event occurs (observation) when a specific class' attribute has a value greater than a given constant
(condition).

 The jitter of a nominal periodic event or, in general, the jitter between two causal events that occur in instants separated
by a nominal time interval. Typical examples are the jitter of a clock event or the maximum jitter introduced by packet
networks so that a continuous playout of audio (or video) transmitted over the network can be ensured.
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Observation Call Expressions (ObsCallExpression) refers to a single observation (instant and duration observation). It
includes an occurrence index expression (occurlndexExpr) that must evaluate to an integer value. Condition expression
defines an operational (run-time) condition that completes the definition of a relative event.

The semantics of the occurrence index depends on the observed events. While the absolute order of a given event
occurrence regarding another different event could be useful only when both events are synchronized, it exists certain
cases where the relative order of an occurrence may be useful to express constraints from different responses of a
recurrent scenario. In many systems, each request for service need to be met by a separate response, but the two need not
happen at the same time. For instance, let us point to data consistency of FIFO queues as a simple example. Also index
"i" enables comparisons between different occurrences of the same event that may not be consecutive (e.g. burstiness).

The condition expression of observation call expression allows having a similar construct as the UML ChangeEvent,
which define an expression condition that defines de event occurrence. However, we target to construct textual
expressions that not require the explicit definition of a ChangeEvent element.

TimeExpression is an expression that factorizes different kinds of time related expressions, including instants, durations
and jitters.

The Time Expression is given by "expr" which may contain usage of the observations (obsExpr) given by
ObsCallExpression. In the case where there are no "obsExpr", the "expr" will contain a time constant. In the case where
there is no "expr", there shall be a single "obsExpr" that indicates the instant or duration expression value.

InstantExpression is a time expression that denotes a time instant value.
DurationExpression is a time expression that evaluates to a duration value.

JitterExpression is a duration expression that denotes an unwanted variation (delta) in an event occurrence instant that
should occur in periodic intervals.

Instant and DurationIntervalSpecifications are special kinds of interval specifications that have time expressions as upper
and lower bounds.
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VSL::TimeExpressions
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Figure B.6 - VSL::TimeExpressions package

Note that the Time Expressions package only introduces the basis to write time related expressions. For example, this
model does not account for the relativistic effects that occur in many distributed systems, or the effects resulting from
imperfect clocks with finite resolution, overflows, drift, skew, etc. These capabilities, among others, are defined in the
MARTE's Time chapter. In the same way, measurement units and other time value qualifiers are defined in the NFP
modeling chapter.

B.3 UML Representation

This section describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support VSL with UML is organized according to the extension mechanism used for each part of the
metamodel. In particular, note that in VSL not every domain concept will result directly in a UML stereotype or tagged
value. This is because some domain concepts are defined to be implemented as a separated metamodel.

For instance, we have chosen to only define stereotypes for concepts that are related to data types definition and variable
declaration. The group of domain concepts related to value specifications and expressions yields a separated language,
thus providing a new metamodel used in a complementary way to the UML one. Indeed, the latter define an extended
grammar for textual notations.

Thus, we first describe the extensions concretized in stereotypes. Then, we define the extensions related to the
specification of value expressions. It covers the definition of the concrete syntax of VSL for annotating model elements
with extended value specifications.

In Annex D.1, we define a model library of primitive DataTypes and its operations, which is intensively used in MARTE,
especially to characterize the supported operations in primitive types.
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B.3.1 Profile Diagrams

The Figure 8.5 shows the UML extensions for DataTypes definition. The VSL::DataTypes package (stereotyped as
profile) defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are
listed in alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided
in B.3.2.

« profile»
VSL::DataTypes

« metaclass »
UML::DataType

I t ¢

« stereotype» « stereotype» « stereotype» «stereotype» «stereotype»
BoundedSubtype IntervalType CollectionType TupleType ChoiceType
baseType: DataType [1] intervalAttrib: Property [1] colectionAttrib: Property [1] tupleAttrib: Property [*] choiceAttrib: Property [*]
minValue : String [1] defaultAttrib: Property [0..1]

max Value: String [1]
isMinOpen: Boolean [1] =False
isMaxOpen: Boolean [1] = False

Figure B.7 - UML Extensions for DataTypes definition

Although variables can be created in VSL expressions, we provide the capability to alternatively declare them by means
of extended UML Properties. When using UML properties, variable declaration matches to the concept of Parameters in
SysML Constraint Blocks.

Figure B.8 shows the UML extensions for Variable definition. The VSL::Variables package (stereotyped as profile)
defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided in B.3.2.

«profile»
VSL: Variables

«metaclass » « metaclass »
UML::Property UML::NamedElement
A J
v f(ir}ulr;era?on:;_ . «Ster\e/grtype» « stereotype»
ariablebirectioniin ExpressionContext
in dir: VariableDirectionKind [0..1] =inout

out
inout

Figure B.8 - UML Extensions for Variable declaration
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B.3.2 Profile elements description

B.3.2.1 BoundedSubtype
The BoundedSubtype stereotype maps the BoundedSubtype domain element (section F.13.1) defined on Annex F.

Bounded Subtype is a kind of subtype. A subtype is a data type derived from an existing data type, designated the base
data type, by restricting the value space to a subset of that of the base data type whilst maintaining all operations.
BoundedType creates a subtype of any ordered datatype by placing upper and/or lower bounds on the value space
(minValue and MaxValue).

Extensions
» DataType (from UML::Kernel).

Generalizations

« None.

Associations

« None.

Attributes

 baseType: UML::Classes::Kernel::DataType [1]
designates an ordered datatype.

» minValue: String [1]
defines a string which specifies that the value space is limited to this value in his lower bound.
When minValue is "*", it indicates that no lower bound is being specified.

« maxValue: String [1]
defines a string which specifies that the value space is limited to this value in his upper bound.
When maxValue is "*", it indicates that no upper bound is being specified.

+ isMinOpen: Boolean [1]
defines if minValue is excluded in the bounded value space.

» isMaxOpen: Boolean [1]
defines if maxValue is excluded in the bounded value space.

Contraints

« None

B.3.2.2 ChoiceType
This stereotype maps the "ChoiceType" domain element defined on Annex F.

Choice Type generates a data type each of whose values is a single value from any of a set of alternative data types.
Choice Type combines different types into a single data type. Instances of choice data types belong to only one of the
member types. This type is similar to the C union type and the Ada/Pascal "variant-record". When all the attributes of the
extended data type participate as alternatives of the choice type, choiceAttrib can be left undefined.
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Extensions
« DataType (from UML.::Kernel)

Generalizations

» None

Associations

» None

Attributes

« choiceAttrib: UML::Classes::Kernel::Property [*]
defines the type, size, uniqueness and order of the alternative members of the choice data type. When all the
attributes of the extended data type participate as alternatives of the choice type, the choiceAttrib's tagged
value can be left undefined.

« defaultAttrib: UML.::Classes::Kernel::Property [0..1]
defines the default alternative member of the choice data type.
Constraints

» None

B.3.2.3 CollectionType
This stereotype maps the domain concept "CollectionType" defined on page 557.

Collection Type describes a list of elements of a particular given type. Part of every collection type is the declaration of
the type of its elements by means of the CollectionAttribute. I.e., a collection type is parameterized with an element type.
Note that there is no restriction on the element type of a collection type. This means in particular that a collection type
may be parameterized with other collection types allowing collections to be nested arbitrarily deep.

Extensions

- DataType (from UML::Kernel).

Generalizations

+ None

Associations

* None

Attributes

« collectionAttrib: UML.::Classes::Kernel::Property [1]
defines the element type, size, uniqueness and order kind of this composite data type.

Constraints

» None
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B.3.2.4 IntervalType

This stereotype maps the domain concept "Interval Type".

Interval type is a composite data type defining a set of values by means of two bound limits. The minAttribute defines a
single value which will designate the lower bound of the Interval. The maxAttribute defines a single value which defines

the upper bound of the Interval.

Extensions
- DataType (from UML::Kernel)

Generalizations

* None

Associations

« None

Attributes
« minAttrib: UML.::Classes::Kernel::Property [1]

defines the lower bound part of this composite data type.

» maxAttrib: UML::Classes::Kernel::Property [1]

defines the upper bound part of this composite data type.

Constraints

« None

B.3.2.5 TupleType

This stereotype maps the domain concept "TupleType".

Tuple Type combines different types into a single composite type. The parts of a Tuple Type are described by its

attributes, each having a name and a type. There is no restriction on the kind of types that can be used as part of a tuple.
In particular, a Tuple Type may contain other tuple types and collection types. Each attribute of a Tuple Type represents
a single feature of a TupleType. Each part is uniquely identified by its name. When all the attributes of the extended data

type participate in the tuple structure, tupleAttrib can be left undefined.

Extensions
- DataType (from UML::Kernel)

Generalizations

« None

Associations

« None
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Attributes

« tupleAttrib: UML::Classes::Kernel::Property [*]
attribute defining the type, size, uniqueness and order kind of the structured elements of this
composite data type. When all the attributes of the extended data type participate in the tuple
structure, the tupleAttrib's tagged value can be left undefined.
Constraints

» None
B.3.2.6 Var

This stereotype maps the domain concept "Variable".

Variables are typed elements for passing data in expressions. Variable creates a variable with a given name, data type, and
nature (input, output, input/output).
Extensions

 Property (from UML.::Kernel)

Generalizations

» None

Associations

» None

Attributes

« dir: VariableDirectionKind [0..1]
nature of the created variable: input, output, input/output. The complete semantics of this attribute
depends on the context on which the variable is created

Constraints

« None
B.3.2.7 ExpressionContext

This stereotype maps the domain concept "ExpressionContext".

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification
of the variable elements. A Expression Context provides a container for variables. It provides a means for resolving
conflicting global variables by allowing Variable Call Expressions of the form ExprContextl::SubContext2::varX.

Extensions

« NamedElement (from UML::Kernel)

Generalizations

* None
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Associations

« None

Attributes

« None

Constraints

« None
B.3.3 Concrete syntax of value specification

This section defines VVSL for specifying value specifications. We base the syntax and semantics of this textual language
on the metamodel (abstract syntax) defined in Sections B.2.3 to B.2.6.

Value Specifications are used to specify the textual value parts of UML models. The valu