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Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer 
industry standards consortium that produces and maintains computer industry specifications for interoperable, 
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes 
Information Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle 
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and 
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified 
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse 
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
 A UML Profile for MARTE, Beta 1                                                                                                                                            vii       



• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of 
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

1.1 Introduction
This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and 
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE), provides support for 
specification, design, and verification/validation stages. This new profile is intended to replace the existing UML Profile 
for Schedulability, Performance and Time (formal/03-09-01).

MARTE consists in defining foundations for model-based description of real time and embedded systems. These core 
concepts are then refined for both modeling and analyzing concerns. Modeling parts provides support required from 
specification to detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based 
analysis. In this sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to 
support them. Hence, it provides facilities to annotate models with information required to perform specific analysis. 
Especially, MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework 
which intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

• Providing a common way of modeling both hardware and software aspects of a RTES in order to improve 
communication between developers. 

• Enabling interoperability between development tools used for specification, design, verification, code generation, etc.

• Fostering the construction of models that may be used to make quantitative predictions regarding real-time and 
embedded features of systems taking into account both hardware and software characteristics. 

2 Conformance

2.1 Overview
The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the 
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the 
business management perspective and will benefit from having a common place for notations, vocabulary, and semantics 
inside MARTE, it is a fact that a number of different specialized actors are involved. Consequently, the tools that are 
currently in the market, which are those expected to evolve to support this specification, have different users and specific 
target applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a 
modular approach for conformance. This is similar to the UML compliance strategy, but in this case the compliance 
points are not defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions 
depend closely on the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised 
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When 
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary, 
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.
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2.2 Extension Units and Features
 In order to properly identify the elements of MARTE that will be required in each compliance case, the following 
definitions are made: 

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language 
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful. 
Extension Units play the role of language units and/or individual meta-model packages as they are used in the definition 
of conformance in UML.

FEATURES: There might be a number of specific Features which may or may not be present in a concrete 
implementation. This variability may come from the concrete UML elements allowed to be used for the extension with 
stereotypes, their semantic variations, envisioned difficulty for implementation, expected usage, presentation options, etc. 
Though this is provided here for easier the description of tools compliance, its utilization is discourage in favor of the 
implementation of complete extensionUnits.

The extensionUnits defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Section(s)

GRM Generic Resource Modeling Section 7

NFP Non-Functional Properties Section 8

VSL Value Specification Language (editing, and verification support) Annex B

ETM Enhanced Time Modeling Section 9

CHF Clock Handling Facilities (clock constraints, and clock value specification) Annex C

SRM Software Resource Modeling Section 14.1

HRM Hardware Resource Modeling Section 14.2

ECM Extended Component Modeling Section 11

ALM Allocation Modeling Section 12

RTM Real-Time objects Modeling (RTE MoCC) Section 13

GAM Generic quantitative Analysis Modeling Section 15

PAM Performance Analysis Modeling Section 17

SAM Schedulability Analysis Modeling Section 16

RSM Repetitive Structure Modeling Annex E
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2.3 Conformance of MARTE with UML
For the many of the extension units considered the Level 2 of conformance with UML may be sufficient. Though there 
are some extension for which several language units in Level 3 of conformance with UML are necessary, in particular 
Templates.

2.4 Conformance with MARTE
Tools vendors and MARTE implementers require a set of conformance definitions that allows them to better target their 
particular users needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups 
of Extension Units that may lead to useful compliance definitions.

2.4.1 Compliance Cases

Considering the Use cases of this specification, (described in section 6,), the compliance cases defined are:

• Software Modeling

• Constructs for modeling real-time and embedded (RTE) software applications and its non functional properties 
(NFP). 

• Hardware Modeling

• Constructs for modeling the high level hardware aspects of RTE systems, including its NFP.  

• System Architecting

• It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plus the 
allocation extension units.

• Performance Analysis

• It includes the extension units necessary to address the performance evaluation of RTES

• Schedulability Analysis

• It includes the extension units necessary to address the schedulability analysis of RTES

• Infrastructure Provider

• It includes the extension units necessary to address the definition and/or usage of platform specific services (like 
OS services for example). This may be used to create RTOS services model libraries, as well as to specify the 
services required to a platform in order to support higher level RT design methodologies. 

• Methodologist

• Tools conforming to this compliance case are expected to support all the extension units required for the other 
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance 
levels: Base and Full. Each level indicates a concrete set of extension units and/or features that are consider as mandatory 
at that level. The Base level is defined as a subset of the Full level. Extension units and/or features that are included in 
the Full level, but are not in the Base level, are considered as optional at the Base level.  
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2.4.2 Extension Units in each compliance case

The Extension Units that must be supported in each Compliance Cases are assigned in the following way:

• Software Modeling

• Base: RTM, GRM, NFP, ETM

• Full: SRM, ECM, ALM, VSL, CHF

• Hardware Modeling

• Base: HRM, GRM, NFP, ETM

• Full: ECM, ALM, VSL, CHF, RSM

• System Architecting

• Base: RTM, HRM, GRM, NFP, ETM

• Full: SRM, ECM, ALM, VSL, CHF, RSM

• Performance Analysis

• Base: PAM, GAM, GRM, NFP,  ETM

• Full: VSL, CHF

• Schedulability Analysis

• Base: SAM, GAM, GRM, NFP,  ETM

• Full: VSL, CHF

• Infrastructure Providing

• Base: SRM, GRM, ETM, NFP, 

• Full: RTM, VSL, ALM, CHF

• Methodologist

• Base: : RTM, HRM, GRM, NFP, ETM, GAM

• Full: MARTE (ECM, ALM, SRM, PAM, SAM, VSL, CHF, RSM)

This is summarized in the table below.

Table 7.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM NFP VSL ETM CHF SRM HRM ECM ALM RTM GAM PAM SAM RSM

Software Base X X X X

Full X X X X

Hardware Base X X X X

Full X X X X X

System Base X X X X X

Full X X X X X X

Performance Base X X X X X

Full X X
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2.4.3 Special additional compliance case and extension units 

Tools that wish to serve AADL users should implement Section A.3 in Annex A of this specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

• UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) RFP (OMG document 
number realtime/05-02-06)

• UML 2.0 Superstructure Specification (OMG document number formal/05-07-04)

• UML 2.1 Superstructure Specification convenience document (OMG document number ptc/06-01-02)

• UML 2.0 Infrastructure Specification (OMG document number ptc/04-10-14)

• XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols used in this specification.  

CASE Level GRM NFP VSL ETM CHF SRM HRM ECM ALM RTM GAM PAM SAM RSM

Schedulability Base X X X X X

Full X X

Infrastructure Base X X X X

Full X X X X

Methodologist Base X X X X X X

Full X X X X X X X X

Table 7.2 - Extension Units that must be supported in each Compliance Case
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6 Additional Information

6.1 Scope of OMG RT/E related standards
The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of 
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is 
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL. In addition, it 
uses the MOF 2.0 Queries, Views, and Transformation framework to define any model transformation rules (e.g., rules for 
transforming a MARTE stereotype into a corresponding analysis model element).

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.

In addition, MARTE is related to the following other OMG specifications:

• The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This 
specification provides, among other things, a generic metamodel for defining different qualities of service and is used 
for specifying any such characteristics defined in the MARTE profile.

• The UML profile for Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of 
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e., 
deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML 
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML. [NB: Clearly, this is 
something that we have to agree on as well.]

• The Executable UML Foundation specification (currently in progress) defines, among other things, a model of 
causality for UML that is at the core of various scenario-based analysis methods (such as performance and 
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the 
Executable UML Foundation spec.

The following OMG specifications deal with similar subject matter but are not considered relevant to this submission:

• The UML for SoC profile.

• The EDOC UML profile.
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« profile »
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6.2 Rationale and general principles
Since the adoption of the UML standard and its new advanced release UML2, this modeling language has been used for 
development of a large number of time-critical and resource-critical systems (a significant number of these can be found 
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this 
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular 
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a 
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain. 
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML 
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for 
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was 
unnecessary to add new fundamental modeling concepts to UML – so-called “heavyweight” extensions. Rather, the work 
being done in the specification consisted in defining a standard way of using these capabilities to represent concepts and 
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this section is to describe the domain of interest for this current profile; i.e. the real-time and 
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not 
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of four main sub 
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain
Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly 
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems 
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need 
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size, 
power consumption, etc.) the design of embedded systems requires optimization.

The designed system will be embedded in a real application, either software or hardware. Therefore, the produced code 
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g. ASIC, FPGA).

Embedded systems distinguish themselves especially by following specific characteristics: heterogeneity (hardware / 
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user 
interfaces modes), criticality, real-time and consumption constraints.

Reactive domain
Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming 
from some environment; The main goal of such reactive systems is actually to control, supervise, or simply collaborate or 
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played 
down and abstracted somehow in the system description.
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The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment 
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in a timely 
manner in response to environment stimuli through actuators for example. The reactions may depend on a local or global 
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software 
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain
Applications for control/command domain are usually dedicated to manage the execution of a process or object of the 
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e. processing 
the signal coming from the sensor) and then managed (i.e. taking into account the process state) in order to build the 
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis: (1) the 
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3) 
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open 
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The 
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the 
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it 
is necessary to have user information functions (via a specific API or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis and information 
output. Three components involved in the development of control/command systems may be also identified: Sensors 
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command 
synthesis in open and closed loop; and output devices (e.g. screen, files, networks, etc.) related to information output.

6.2.1.1 Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing and mobile devices. A 
common scenario is a radio signal tuned by a receiver, filtered, and decoded. These different stages require intensive data 
computation to be performed, possibly in parallel, with the help of several computation units.

Many signal and image processing applications follow an organization in two high level stages: systematic signal 
processing and intensive data processing.

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of 
filters and regular processing applied on the input signals independently of the signal values. It results in a 
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on 
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is 
structured with front end systematic signal processing including signal digitalization, channel selection, and application of 
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal 
demodulation, etc.). 
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Intensive data-flow computation is an important class of embedded applications requiring hardware architectures 
description. It requires mainly being able to express potential parallel processing of data and parallel hardware 
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain
Real-time systems sometimes include elements which do not deliver services in a totally safe or time-constrained way 
(such as web application servers in an IP telephony system). These systems nonetheless have properties (delay 
distribution, probability of failure of a service) which need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other 
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not 
distinguishable from systems which are not primarily designated "real-time" systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected 
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any 
system.

6.2.2 Guiding principles

This section aims in defining what have been the main guiding principles used to write this specification. The main 
guiding principles are then as follows:

• The profile should support independent modeling of both software or hardware parts of RT/E systems and the 
relationships between them.

• The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may 
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity). 
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level 
construct for implementation purposes.

• As much as possible, modelers should not be hindered in the way they use UML to represent their systems just to be 
able to do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the 
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of 
the moment.

• Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep 
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model 
analysis methods has been one of the major impediments to their adoption.

• The profile must support all the current mainstream real-time technologies, design paradigms, and model analysis 
techniques. However, it should also be fully open to new developments in all of these areas.

• It must foster construction of UML models that can be used to make quantitative and partitioning predictions and 
analysis regarding hardware and software characteristics of the RT/E system. In particular, it is important to be able to 
perform such analyses early in the development cycle. For that, it has to be possible to analyze partial models. It should 
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools 
should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML 
model. 
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6.2.3 How to use this specification

This section is aiming to describe which potential actors may use this specification and how they can do it. Of course, 
neither the actors nor use cases described in this section represent an exclusive set for how this specification can be used, 
but rather reflect on some of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.

Figure 6.2 - Possible actors using the MARTE specification

• Model Designer: These are modelers that design models dedicated to be applied in the context of the development 
process of RT/E systems. Models may be used for usual specification, design or implementation stages. But models 
may be also used for analyzing in order to determine whether they will meet their performance and schedulability 
requirements.

• RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually 
make trade-offs between implementing functionality in hardware, software, or both.

• Hardware Modeler: These are modelers specifically dedicated to hardware aspects of the RT/E systems 
development.

• Hardware Architect: These are modelers concerned by designing hardware architecture.

• Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems 
development.

• Software Architect: These are modelers concerned with designing software architecture.

• Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis 
methodologies.

• Execution Platform Provider: These are developers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems and specific hardware components.
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• Methodology Provider: These are the individuals and teams who are responsible for defining model-based 
methodology for RT/E domain. This category includes UML tool providers.

• Design Methodology Provider: These are specialized methodology providers who are responsible for defining 
model-based methodology for specifying, designing or/and implementing RT/E systems.

• Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining 
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool 
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.

Figure 6.3 - Common use cases of the MARTE specification

 Details of the use case “build Model”
• Actor: Modeler

• Description: A modeler builds a model iterating it through several stages defined in an appropriate development 
process. According to a given methodology (see the “define Methodology” use case), a modeler uses appropriate UML 
extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspects in the 
model of their system.

• Deliverable: The result of this use case is a model of the user system containing all its RT/E specificities.

Details of the use case “adapt MARTE Specification”
• Actor: Methodology Provider and Execution Platform Provider

• Description: This use case consists in defining a specific MARTE sub-profile. The motivations to adapt MARTE may 
be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE 
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt 
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE 
specification is to define modeling rules in order to constraint the usage of the specification.

• Deliverable: The outcome of this use case is a definition of MARTE extension that takes the form a UML profile based 
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”
• Actor: Methodology Provider
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• Description: This use case consists in defining how to use the MARTE specification for a given purpose. For example, 
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL appendix) 
or for avionics (see AADL appendix). One may also define model-based analysis methodology such as schedulability 
or performance analysis.

• Deliverable: The outcome of this use case is a model-based methodology. This latter may include a process description, 
a set of constraint rules and a set of required techniques that applies to the methodology. If necessary, this use case may 
also include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use 
case).

Details of the use case “annotate Model for Analysis”
• Actor: Model Analyst

• Description: The model analyst uses appropriate MARTE extensions, as defined for example in a specific analysis 
methodology, in order to annotate appropriately models in order to perform a given analysis techniques.

• Deliverable: The outcome of this use case is a model annotated with MARTE extensions and ready for performing 
specific analysis.

Details of the use case “analyze Model”
• Actor: Model Analyst

• Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be 
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or 
performance analyses.

• Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”
• Actor: Execution Platform Provider

• Description: This use case consists in building model of execution platform for MARTE based developments of RT/E 
systems.

• Deliverable: The outcome of this use case is a MARTE compatible execution platform model.

Details of the use case “provide Execution Platform”
• Actor: Execution Platform Provider

• Description: This use case consists in providing execution platform conform to a given model of platform.

• Deliverable: The outcome of this use case is an execution platform.

6.3 Approach and structure

6.3.1 Profile architecture

The profile is structured around two concerns, one to model the features of real-time and embedded systems and the other 
to annotate application models so as to support analysis of system properties. These are shown by the RTEM package in 
Figure 6.4, and the cluster of four “AnalysisModeling” packages, respectively. These two major parts share common 
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concerns with describing time and the use of concurrent resources, which are contained in the shared package TCRM. 
Finally the “AnalysisModeling” features are broken into a foundational generic part in the package GQAM, and three 
packages for specific analysis domains, as shown. These first three domains are entirely concerned with time, however the 
profile structure allows for adding additional analysis domains, such as power consumption, memory use or reliability. It 
is the intention to encourage modular sub profiles like the three “AnalysisModeling” packages, for such domains.

Figure 6.4 - Architecture of the MARTE Profile

6.3.2 A foundation for model driven techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of 
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers, 
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an 
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.
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Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model

6.3.3 Approach to modeling RT/E systems

Embedded systems are becoming increasing heterogeneous. This is true of applications, which combine intensive, often 
heavily pipelined, data computation for signal processing, together with control mode switches and communication 
protocols. This is true also of execution platforms, which comprise flexible or custom-made hardware, multi-core 
processors, cache and bus hierarchies and so on. This is reflected in the design of such systems, which must try to fit best 
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications. 
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real-time 
requirements, but power- and area-consumption or cost also play a role, Adequate modeling can of course be of great help 
with this design activity by providing the support for design and analysis. The modeling support should also encompass 
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit 
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive 
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow 
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing 
aspects, based on appropriate time/cycle descriptions (see time model section below). Application modeling is further 
described in chapter 9.

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and 
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains 
also timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far 
as the appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction 
Set Simulators for instance). Execution platform modeling is further described in both chapters 10 (p. 99) and 14 (p. 175).

The allocation model describes the association matching applicative functions onto execution platform resources. It is 
sometimes mandatory to provide timing information on this allocation link itself, rather that on its constituents, for 
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost 
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is 
further described in chapter 12 on page 141.
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Note: allocation is here reminiscent of the similar notion in the SysML proposal.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications 
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations 
such as described in Annex E on page 413.

6.3.4 Approach to annotating for model analysis

Annotations use stereotypes which permit us to map model elements into the semantics of an analysis domain such as 
schedulability, and give values for properties whichh are needed in order to carry out the analysis. We may distinguish 
“input” properties which are needed to carry out the analysis, and “output” properties which are determined by the 
analysis. However the modeler may also input required values of output properties, which can be used to determine how 
well the system meets its requirements (another output property).

Analysis is not always simply “pass/fail”, and the particular goals of analysis are specific to its domain. Output properties 
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and 
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allows automatic 
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or 
into C++ for implementation purpose.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to 
define in different views or models the application (including functional and non functional characteristics), the hardware 
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the 
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis 
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed, 
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to 
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this 
coupling.

6.4 How to read this specification

6.4.1 Structure of the document

The MARTE specification consists of five blocks of chapters:

• Block one gathers the introduction chapters (from chapter 1 to 6).

• Block two is the part I of the MARTE specification and it is intended to define the MARTE foundations. It conflates 
chapters 7 to 12 respectively focused on: chapter 7, Core Elements, defines the basic elements for model-based 
approach and specially for real-time embedded domains such as a causality model; chapter 8, Non-Functional 
Properties modeling, defines a common framework for annotating models with quantitative and qualitative non-
functional information; chapter 9, Time modeling, defines the time as used within MARTE; chapter 10, Generic 
Resource Modeling, specifies how to describe at system level resource models; chapter 0, General Component Model, 
introdces a general componenet model suitable for RTES. This component model, called GCM, is build on top of the 
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composite structure of the UML, and it is compatible with well-known component models such as the one of SysML, 
CCM, AADL and EAST-ADL; finally, chapter 12, Allocation modeling, defines concepts required to describe 
allocation concerns.

• The third block is the part II of the MARTE specification. It is intended to define the MARTE concepts for model-
based design of RTES. It consist of both following chapters: chapter 13, RTE Model of Compuation and 
Communication, defines high-level concepts for designing qualitative and quantitative concerns of RTES (e.g., 
concurrency and synchronization); chapter 14, Detailed Resource Modeling, is split into two sub-sections respectively 
dedicated to detailed modeling of software (section 14.1, SRM, “Software Resource Modeling”) and hardware (section 
14.2, HRM, “Hardware Resource Modeling”) resources.

• The fourth block is focused on model-based analysis. It does not intend to define new analmysis technologies, but to 
define the information required for annotating models on whoch external analysis techniques may be applied. It 
consists of three chapters: chapter 15, Generic Quantitative Analysis Modeling, defines basis concept for specific 
analysis technics; chapter 16, Schedulability Analysis Modeling, specializes the generic framework for performaing 
schedulability analysis, whereas chapter 17, Performance Modeling, is the specialization for model-based performance 
analysis.

• The last block contains all the MARTE annexes. The main information contained within these annexes is about 
additional usefull value specification languages provided by MARTE (Annex B and Annex C): the Value Specification 
Language (VDL), the Clocked Value Specification Language (CVSL) and the Clock Constraint Specification 
Language (CCSL). Another important added value contained is a predefined MARTE model library (Annex D). This 
latter annex described predefined primitive and data types required for defining the UML profile for MARTE itself, but 
also usefull for user models. The annex part owns also a UML extension definition (Annex E, the Repetitive Structure 
Modeling MARTE subprofile) intended to support specific system modeling consisting of repetitions of structural 
elements, interconnected via a regular connection pattern. We call this kind of structures “repetitive structures”. Finally, 
the annex block of MARTE owns an annex dedicated to describe the detailed semantics of each domain concepts 
introduced within the specification (see following section which relates on how to use this Annex F).

6.4.2 Extension specification rationale and format convention

Each extensions proposed by MARTE have been conflated around one main concerns and detailed in separate chapters: 
chapter 7 to chapter 18 and Annex E. Such chapters are then organized following the same patterns. The way to define 
each sub profile contained within MARTE rely on a two stage process: a domain model specification and its underlying 
UML profile design.

The first stage consists in defining of the required concepts (also called domain elements) related to one specific concern 
(e.g., non-functional properties modelling and time modelling). The output of this stage is then called the domain model 
which formalized through the definition of a meta-model and the detailled semantics descriptions of each of its elements. 
In order to reduce the bulk of this document, we decided to gather all these detailed description within a common place, 
the Annex F.

The second stage of the process we adopted for MARTE aims at desiging a UML profile (sections called “UML 
representations”). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged values, specific 
notations and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain 
model for supporting RTES model-based engineering.

In order to minimize the impact of the MARTE proposed extensions on the model readability, firstly we try to reduce the 
size of stereotype names as much as possible, but without scarifying too much their meaning. Secondly, we decide to 
prefix the stereotypes only when required. A typical example was when we define stereotype that was inherited other 
stereotypes.
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6.4.3 Conventions and typography

In the description of this specification, the following conventions have been used:

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they 
appear in the model are always used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a section is not applicable, it is not included.

• Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement’, 
‘ElementReference’).

• Boolean meta-attribute names always start with ‘is’ (e.g., ‘isComposite’).

• Enumeration types always end with “Kind” (e.g., ‘DependencyKind’).

• In diagrams described in the rest of this docuement, the way of identifying an element external to the package being 
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for 
this sequence shall be the closest ancestor in the hierarchy which is common to both, the imported element, and the 
package being described.
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Part I - MARTE Foundations
This Part contains the following chapters:

• 7 - Core Elements (CoreElements)

• 8 - Non-functional Properties Modeling (NFPs)

• 9 - Time Modeling (Time)

• 10 - Generic Resource Modeling (GRM)

• 11 - General Component Model (GCM)

• 12 - Allocation Modeling (Alloc)
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7 Core Elements (CoreElements)

7.1 Overview
The concepts presented in this section serve as a general basis for the description of most elements in the domain view of 
the rest of this specification. They are not new extensions to UML but a comprehensive set of related concepts that is 
useful to define those others more elaborated, which are used to build the domain models of subsequent chapters of this 
specification.  They are split in two packages for convenience. The Foundations package holds the basic elements used to 
represent the dual descriptor-instance nature of any modeling entity. These concepts may serve to different purposes for 
modeling and analysis, and are the basis for structural modeling. The Causality package describes the basic elements 
necessary for behavioral modeling, and their run-time semantics. Figure 7.1 shows these packages and their relationship.

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model is to provide a very 
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded 
systems, and will be later used when required to point out the various elements of that view that are covered and 
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution 
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program 
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the 
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence 
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain 
aspects, in particular for its further use as the basis for the definition of a richer timing model, which includes the timing 
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at 
full length in section 9. Other dedicated attribute properties for time-related concepts are also introduced further along this 
specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each sub 
package are described in next sections.

MARTE::CoreElements

Foundations Causality
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Figure 7.2 - Architecture of the Causality package

7.2 Domain view

7.2.1 The Foundations package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being 
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as 
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements 
at any level of specification will represent either one or the other of these two fundamental aspects, based on their 
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of 
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an 
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a 
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other 
elements that are described in terms of role-based models (like UML::ConnectableElement in collaborations or internal 
structure diagrams, parts, ports, or roles ).

Causality

CommonBehavior

RunTimeContext

Invocation Communication
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Figure 7.3 - Instance and Classifier root diagram of the Foundations package

As it is described in Chapter 8, values of non-functional properties (NFP) may be annotated on any model element 
designated as such. In this way, further specializations of Classifiers or Instances may become kinds of 
AnnotatedElements. In particular, time-based analysis methods operate on annotated models that are usually described 
over a number of specific instances of the system. However, it is also useful to be able to associate NFP values with 
classifiers. In this case it simply means that such values apply by default to all instances created on the basis of those 
descriptors, and not that the classifier itself has that value. These default values can be further overridden in specific 
instance cases. But, this uniform annotation of instances requires special care and may not always be appropriate. In case 
of interface specifications, for example, there could be many realizations of the same interface, each with different service 
characteristics described by means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the 
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be 
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature, 
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to 
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics 
when the corresponding stereotype is applied to extend user defined modeling elements.

Figure 7.4 - Property diagram of the Foundations package

As the UML homonymous concept a property is a typed element that may be owned by a classifier. It has a multiplicity 
in terms of upper and lower bounds, an aggregation kind, and a type (as a Classifier).

ClassifierInstance
instance type

0..*0..*

name: String [0..1]

ModelElement

*

owner

0..1
ownedElement

Classifier
aggregation : AggregationKind [1]  = none

Proper ty
ownedProper ties

*

type 0..1

none
shared
composite

« enumeration »
AggregationKind

ModelElement
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7.2.2 The Causality::CommonBehavior package

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It 
is aligned to the UML semantics basis, in the sense that there is no disembodied behavior: all behavior emanates from the 
actions of structural entities. In particular since in UML a behavior is a kind of class, it is possible for a behavior to be its 
own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML2 
semantics description in Chapter 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts, 
analogous definitions have been extracted from that OMG document.

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines 
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context 
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the 
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior. 
A behaviored classifier may have behavior specifications which illustrate specific scenarios of interest associated with 
that classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that 
starts executing when instances of that classifier are created and started is called main behavior. For many real-time 
concurrent systems, this can be for example the behavior that initiates the activity of a thread, which continues until the 
thread is terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic 
behavior, and CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs, 
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors 
provide constraints among actions to determine when they execute and what inputs they have.

CommonBehavior

Behavior

Action

action

0..1

*

BehavioredClassifier

CoreElements::Foundations::
Classifier

/mainBehavior
{subset ownedBehavior}
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0..1ownedBehavior

1context
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Tr igger

1event
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type
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An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are 
often generated as a result of some action either within the system or in the environment surrounding the system. 
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the 
effect activity of a transition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out 
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any 
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in section 9, under the name of TimedProcessing (for Actions) and 
TimedEvents (for Events and Triggers).

7.2.3 The Causality::RunTimeContext package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of 
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this 
reason, in this domain model, this concept is specialized into both important concepts: CompBehaviorExecution and 
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A 
behavior execution specification describes how the states of these instances change over time. Behavior executions, as 
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is 
obtained from the host instance.

In UML2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior 
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution 
results from the interaction of one or more participant instance.

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the 
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2 
Behavior Performance concept described in the overview section of its common behavior chapter.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by 
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior 
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating 
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly 
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing 
behaviors of the participant instances. 

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in 
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to 
the combination of the behavior executions of all its constituent parts.
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Figure 7.6 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow 
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event 
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event 
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors 
supported by the specification to state-based and activity-based approaches. The latter describe behaviors by specifying a 
state machine that do not describe observable event occurrences, but that would implicitly induce event occurrences. This 
intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed 
Automata, and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the 
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the 
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be 
described by each of the different specification mechanisms, because behaviors do not have the same expressive power. 
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the 
system.

7.2.4 The Causality::Invocation package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the 
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a 
behavior, such as through an operation call.
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In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution. 
A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination 
occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by 
timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions 
to their common ancestor EventOccurrence.

Figure 7.7 - The Invocation package

7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier 
instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain 
model specifies the general semantics of communication between concurrent units. 
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Figure 7.8 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as a thread1. Threads are the root of a 
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of 
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending of the 
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified, 
the developer may create an active object for each. According to the level of specification other forms of expressing 
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those 
which are not identified as concurrent units, are then usually called passive objects. These latter objects are then 
associated to the active objects via a composition or shared relationships. The role of the active object is to run when 
appropriate and call or delegate actions to the passive objects that it owns. Passive objects execute usually using the 
concurrent resource of the caller active object. 

Instances respond to messages that are generated by others executing communication actions. When these messages 
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching 
method by which a particular behavior is associated with a given message depends on the higher-level formalism used 
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is 
executed by a sender instance resulting in an InvocationOcurrence. The invocation event may represent the sending of a 
signal or the call to an operation. As a result of the invocation event occurrence a Request is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit 
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the 
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature); 

1. It should be noted here that from the concurrency point of view, there is no distinction between threads, tasks, and processes. They all 
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch 
time and whether low-cost pointers can be used across the concurrency boundary).
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information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and 
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the 
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence 
of an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be 
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the 
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The 
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach 
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of 
the  different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers 
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the 
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation 
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a 
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may 
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are no 
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs 
used.

7.3 UML Representation
As stated before, this chapter does not define concrete extensions to UML, but it collects a number of primitive modeling 
concepts to be use in the domain models of other chapters in this specification. Nevertheless all further concepts defined 
in this specification may adopt the nature of Classifier or Instance presented here, and this is made according to: their 
definition, the purpose of the annotation, and the intended semantics. In many cases these concepts are represented in 
UML by a stereotype annotation on a concrete UML modeling element. When this is the case, the Classifier or Instance 
intrinsic nature of the UML annotated element may define the corresponding nature, semantics, or concrete variations of 
the MARTE concept that is intended to be represented with the annotation. As a consequence, explicit different semantics 
may be defined for each MARTE modeling concept whether it is annotated on an instance or on a classifier; the 
differentiation is then straightforward, since it is dependent directly on the fundamental nature of the corresponding UML 
element that is annotated.
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8 Non-functional Properties Modeling (NFPs)

8.1 Overview
This chapter describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs). 
It also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification 
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of 
modeling constructs in order to specify this kind of properties in a detailed way.

The NFP modeling framework deals with the following requirements1:

• How NFPs are to be described, and particularly what NFPs should be considered.

• How particular instances of NFPs are to be attached to UML model elements.

• How relationships between different NFPs are to be defined.

• How to express constraints on or between NFPs in order to express requirements on the system model.

• Usability of the annotations should minimize the designer efforts2.

• To provide an open modeling framework, i.e. not tailored towards specifications of a particular modeling concern or a 
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms” 
(QoS&FT) already defines a framework to express a similar concept to NFP, there are some reasons to define a different 
one in the context of this specification.

For instance, the QoS&FT profile relies on a two-step annotation process: a) derive a Quality Model for each application 
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and 
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model), 
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce 
not readeable models.

The QoS&FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the 
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog 
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value 
specifications, however, QoS&FT ignores some important attributes such as measurement sources, precision, and time 
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced 
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different 
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network 
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently 
begun to be applied to NFPs of more general services. There is still no common consensus about the concepts of NFP and 

1. A list of compliance with the MARTE RFP have been included in Annex. It also relates how this document deals with the initial MARTE 
RFP requirements.

2. One of the major constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile. 
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a 
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.
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QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals 
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception 
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provided a straightforward 
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports already some 
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized 
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP 
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance 
“RTtimeValue” expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts proposed in the UML profile for 
QoS&FT. However, some considerations to reduce the inherent usage complexity of the UML profile for QoS&FT and to 
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible, 
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in 
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported 
by TVL to annotate constant, variable, tuple and expression values. In this manner, we provide a flexible and 
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices 
of both UML profiles.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g.: resources, 
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of 
those model elements. It is convenient to group application properties into two categories: functional properties, which 
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties 
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it).

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of 
fundamental relevance and implies a number of design decisions. NFPs provide information about different 
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sections, we will use metamodels to describe the domain viewpoint. Note that, although the intent 
of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile’s users with 
the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package 
structure of the NFP framework is shown in Figure 8.1.
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Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in the Figure 8.1 are described in subsequent sections.

8.2.2 The NFP_Nature package

From an abstract viewpoint, a NFP (AbstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of 
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for 
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled 
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has 
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measure is a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be 
computed either directly by applying the desired function to the set of realizations values, or by using theoretical 
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory, measures are defined as a Quantity expressed in terms of a specific Unit. Quantities 
can be basic or derived. BasicQuantities are for example length, mass, time, current, temperature or luminous intensity. 
The units of measure for the basic quantities are organized in systems of measures, such as the universally accepted 
Système International (SI) or International System of Units. Quantities expressed in the same unit can be compared. 
DerivedQuantities (e.g., area, volume, force, frequency) may be obtained from basic quantities by explicit formulas. 
Additionally, different units of the same physical quantity may be transformed to, or expressed in terms of, existing base 
units through a given conversion factor and an offset factor.
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Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refer to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative 
NFP is denoted by a label (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction 
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value 
from a list of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may 
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular 
domains, for example the choice of a scheduler type for a processor, or the choice of a statistical distribution for the 
latency of a network. In both examples, the full specification of the property requires not only a qualitative value, but also 
some quantitative parameters, as for instance: scheduler-type = roundRobin (quantumSize) or latency-value = gamma 
(mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to 
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given 
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements 
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements 
are: step (a unit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service 
(offered by a resource or by a component of some kind) 3.

3. The Step and Scenario model elements are defined in GQAM (Chapter 15), whilst the Resource and Service model elemnts are intro-
duced in GRM (Chapter 10)
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An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the 
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models 
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated 
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions 
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the 
total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and 
throughput of a service.

Figure 8.3 - Domain model for NFP annotations

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling 
concern. In other words, a given modeling concern uses a set of NFPs which establishes the ontology of the domain. For 
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional 
annotations.

A NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model 
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system. 
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of 
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as 
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the 
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a 
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support 
a model element, as for example the throughput of a CPU (elements in this case are commonly software or hardware 
resources). Contract constraints define conditional expressions that specifies relationships between offered and required 
non-functional values. For instance, if  a given model element (e.g., a computing resource) does not support a condition 
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on one or many of its NFP values (e.g., a processing capacity), other model element might change one or many of its NFP 
values accordingly (e.g., the delay to execute a piece of code). In section 8.3.3.2, we give a detailed example of 
NFP_Contraints usage.

8.2.4 The NFP_Declaration package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

NFP elements enclose two basic attributes: statistical qualifier and direction. Both have been adopted from the UML 
profile for QoS&FT. A statisticalQualifier indicates the type of statistical measure of a given property (e.g., maximum, 
minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the type of the 
quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP values to be 
compared with the relation “higher-quality-than” in order to identify what value represents the higher quality or 
importance.

On the other hand, NFP elements have a TupleType (see Annex D for MARTE extended data types), called NFP_Type. 
Two attributes define the body of NFP types: valueAttribute and exprAttribute. ExprAttribute is used to specify 
expressions associated with NFPs. Hence, we are able to assign variables, literals, intervals, and other expressions. The 
return value of the expression must be conform to the associated value attribute of NFP type.

NFP_Type adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to NFP 
values (qualifierAttributes).

A NFP_Type with measurement unit is associated with physical measures. Units are attributes of most Quantitative NFP 
elements and it is important to use standard forms. In Section 8.3.3.1, we show some pre-declared units largely used in 
the domain (e.g., time units, data size units, transmission speed units) which can be used when specifying NFP values.

Examples of qualifiers are measurement precision and value source (see NFP Types Library in Section 8.3.3.1). Source is 
a peculiarity of non-functional properties associated with the origin of specifications and Precision is the degree of 
refinement in the instruments and methods used to obtain a result.
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Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but 
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units 
and values may be assigned when declaring NFPs and NFP types.

The ability to specify all the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP 
specifications needs to be composable. That means, it should be possible to specify NFP values at a fine-grained level and 
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such 
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification 
must ensure consistency between both levels. The process of composition and decomposition should be carried out in 
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP 
specifications can be based on existing ones.

8.3 UML Representation
This section describes the UML extensions required to support the concepts defined in the previous domain view. The set 
of extensions to support NFP modeling with UML is organized according to the application context of the domain 
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly in a UML 
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not 
appear directly in any UML model. 
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For instance, the abstract notion of a “Measure” is very useful as an abstraction in our framework, but will only be 
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype 
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only 
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This 
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is 
used extensively in MARTE to type and qualify non-functional properties.

In Section 8.3.3.2, we will describe some examples that use the whole extensions for NFP annotations with both tagged 
values and UML constraints.

8.3.1 Profile diagrams

The Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stereotyped as profile) defines 
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in 
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the 
following section.

Figure 8.5 - UML profile diagram for NFPs modeling

8.3.2 Profile elements description

8.3.2.1 Nfp

The Nfp stereotype maps the NFP domain element (Section F.2.10) denoted in Annex F. Note, however, that the attributes 
of NFP, statistical qualifier and direction, are implemented in the library of NFP Types. The goal is to allow users 
modifying these attributes at value specification level.
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Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a 
value or values. Nfp is intended to declare, qualify and assign extended data types to NFP values.

Extensions
• Property (from UML::StructuredClasses::Kernel)

Generalizations
• None

Associations
• None

Attributes
• None

Constraints
• None

8.3.2.2 NfpType

This NfpType stereotype maps the NFP_Type domain element (Section F.2.12) denoted in Annex F. Note, however, that 
the qualifierAttributes role is not implemented in the UML view. In practical terms, the tupleAttribute inherited from 
TupleType is sufficient to define qualifier attributes.

A Nfp type is a type whose instances are identified only by NFP value specifications. A Nfp Type contains specific 
attributes to support the modeling of NFP tuple types.

Extensions
• DataType (from UML::StructuredClasses::Kernel)

Generalizations
• TupleType (from VSL::DataTypes) on Annex B.3.2.5.

Associations
• None

Attributes
• valueAttrib: Property [1]  

both physical and non-physical NFP types have a value attribute, which serves as 
placeholder to specify a value of NFPs.

• unitAttrib: Property [0..1]  
measurement unit declaration that apply to all the value specifications of the NFP.  
Usually, it is an enumeration data type with a list of the valid measurement units. 
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• exprAttrib: Property [0..1]  
attributes representing an expression. MARTE uses the VSL language to define 
expressions.

Constraints
• None

8.3.2.3 NfpConstraint

This NfpConstraint stereotype maps the NFP_Constraint domain concept (Section F.2.11) denoted in Annex F.

NfpConstraint extends the UML mechanism for applying a condition or restriction to modelled elements. Specifically, 
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded 
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time 
expressions.

Extensions
• Constraint (from UML::StructuredClasses::Kernel)

Generalizations
• None

Associations
• None

Attributes
• kind: ConstraintKind [0..1]  

tagged definition qualifying NFP constraints by either required, offered, or contract nature.

Attributes
• None

Constraints
• None

8.3.2.4 Unit

This Unit stereotype maps the Unit domain element (Section F.2.18) denoted in Annex F.

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical 
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of 
length such as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less stable 
or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by a 
numerical scale.

Unit is defined as a stereotype of EnumerationLiteral. This allows modelers to assign a list of allowed units to a particular 
physical NFP type by means of a related Enumeration element. In this way, we bound the universe of legal units that 
apply to a specific kind of NFPs.
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Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the 
value in terms of the specified measurement unit.

Extensions
• EnumerationLiteral (StructuredClasses::Kernel)

Generalizations
• None

Associations
• None

Attributes
• convFactor: Real [0..1]  

This parameter allows referencing measurement units to other base units by a numerical factor.

• offsetFactor: Real [0..1]  
This parameter allows referencing measurement units to other base units by applying an offset value  
to them.

• baseUnit: Unit [0..1]  
This attribute represent the base unit by which a derived measurement unit is created 
Basic units do not require this attribute.

Constraints
• None

8.3.3 Examples

A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of 
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every 
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be 
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by 
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is 
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and 
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of 
standard measures that can be used in straightforward way.

The following sections will describe respectively an example of NFP model library and examples of usage of such library.

8.3.3.1 Example of NFP model library definition

This section provides an example of NFP types model library definitions. This example corresponds to an excerpt of a 
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes 
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.
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NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are special kind 
of classifiers, similar to classes. A data type differs from a class in that instances of a data type are identified only by their 
values. Like a class, data type may have attributes. In VSL, we define four kinds of composite data types (data types 
allowing attributes): IntervalType, CollectionType, ChoiceType and TupleType. data types with attributes of different 
types are called TupleTypes (see Annex D in p.395 for MARTE extended data types). If a tuple type has attributes with 
different types, then instances of that data type will contain attribute values matching the types of their corresponding 
attributes. Particularly in MARTE, we define a set of pre-declared NFP types which are useful for the other sub-profiles. 
However, other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the 
VSL annex (Annex B, p. 353). The list of MARTE primitive types includes Real and DateTime in addition to the pre-
declared UML primitive types. However, note that the set of UML primitive types are completely redefined within 
MARTE in order to allow specifying operators on these types (more rationales on this are provided in annex D.1).

General MARTE data types that are not NFP types are declared in the MARTE_DataTypes library (Annex D). This library 
uses stereotypes of the VSL Profile for data types (see Annex B).

General MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called 
NFP_CommonType is defined to factorize common NFP type attributes. 

In addition to value, expression and unit attributes, NFP types are declared specifying a set of qualifier attributes required 
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

• source: SourceKind [0..1]  
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values  
are estimated, calculated, required and measured.

• precision: Real [0..1]  
degree of refinement in the performance of a measurement operation, or the degree of perfection in the 
instruments and methods used to obtain a result. Precision is characterized in terms of a Real value, which  
is the standard deviation of the measurement.

• statQ: StatisticaQualifierKind [0..1]  
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum, 
mean, percentile, distribution). This qualifier is defined in the domain model as an attribute of an NFP. We 
define it here as an NFP_Type attribute to be able to specify it as a default value in a NFP, as well as 
a part of the NFP value itself.

• dir: DirectionKind [0..1]  
direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed 
value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the 
relation “higher-quality-than” in order to identify what value represents the higher quality or importance. 
This qualifier is defined in the domain model as an attribute of an NFP. We define it here as an NFP_Type 
attribute to be able to specify it as a default value in a NFP, as well as a part of the NFP value itself.
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Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units
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Additionally, although not shown in Figure 8.6, we include a set of probability distribution operations that can apply to 
the pre-declared NFP Types. Probability distribution is a fundamental concept to specify stochastic values. A probability 
distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In 
technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals. A 
probability distribution is modeled in MARTE as the name of the function and a set of parameters allowing estimating the 
function in terms of the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included 
probability distribution function values are described by the following:

• bernoulli (prob: Real)  
Bernoulli distribution has one parameter, a probability (a real value no greater than 1):

• binomial (prob: Real, trials: Integer)   
binomial distribution has two parameters: a probability and the number of trials (a positive integer):

• exp (mean: Real)  
exponential distribution has one parameter, the mean value:

• gamma (k: Integer, mean: Real)  
gamma distribution has two parameters (“k” a positive integer and the “mean”):

• normal (mean: Real, standDev: Real)  
normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

• poisson (mean: Real)  
Poisson distribution has a mean value:

• uniform (min: Real, max: Real)  
uniform distribution has two parameters designating the start and end of the sampling interval:

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all 
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types, 
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the 
primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the 
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include 
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be 
evaluated when a resource allocation at modelling level is done. Other properties may be evaluated when a given “real 
time situation” is modelled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibrary») 
define a set of measurement units which are useful for the MARTE scope. We apply to this package the «unit» stereotype 
defined in the NFP profile. As illustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a 
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for 
example: “s” denoting the time unit for “seconds”. Other derived units are defined with basis on basic units. For instance, 
“ms” denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001”. Modelers are able to define 
further units in the same way.
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8.3.3.2 Usage example of NFP model libraries

We consider three annotation mechanisms: Tagged Values, Constraints, and (Instace Specification) Slots. Tagged values 
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes 
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. This is useful if we define 
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP 
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute 
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values. 
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic_NFP_Types package (stereotyped 
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default 
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an 
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Chapter 15), which uses 
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

Figure 8.7 - General Structure for Declaring and Annotating NFPs

In the GQAM “profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in chapter 15 
and some of its property definitions. The example’s intent is to show some particulars of the extension mechanisms used 
in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the 
stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension 
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations 
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSwT (context switch 
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic_NFP_Types 
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we 
use the NFP qualifiers statQ (statistical qualifier), dir (direction) and unit (measurement unit) as default values of NFPs 
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for 
specific instances.
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Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelforAnalysis (Figure 8.9). In this model, an 
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown 
in a compartment (see notation alternatives in the UML Superstructure document, Chapter of Profiles). We can see that 
tagged values are specified as structured data types. For example, clockOvh is a tuple value that has expression and source 
item values. The expression: “normal(50,7)” is a CallOperationExpression (see the VSL annex, package Expressions, for 
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The 
utilization tagged value is specified as an expression string making reference to a variable $u1. As a methodological rule 
that we adopted in the analysis sections, variables indicate to analysis tools that these attributes must be computed and 
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden 
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

Figure 8.9 - Example of user model for analysis with NFP annotations

  (a) Extended Notation        (a) Reduced Notation

« profile»
GQAM

ut ilization: NFP_Real= (statQ= percent,  dir= decr)
clockOvh: NFP_Durat ion= (s tatQ= max, unit= us )
cntxtSwT: NFP_Durat ion= (s tatQ= max)
….

« stereotype»
GaExecHost

« metaclass »
UML:: InstanceSpecification

UserModelForAnalysis

« gaExecHost »
utilization= (value= $u1, source= calc )
c lockOvh= (expr= normal (50, 7), source= est)
cntx tSwT= (value= 8, unit= us, source= meas )
. ..

« gaExecHost »
uC:  Controller

UserModelForAnalysis

« gaExecHost »
utilizat ion= ($u1, calc)
clockOvh= (normal (50, 7), est)
cntxtSwT= (8, us,  meas)
.. .

« gaExecHost»
uC: Controller
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The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints. 
Constraints commonly define relational expressions between two terms containing parameters, specified by means of 
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical 
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be 
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage 
that annotations are confined to classifiers’ instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (contraints and slots). An important aspect 
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs 
as stereotype attributes like in the formerlly illustrated mechanism. Our aim is to show how modelers can define their 
owns NFPs and use them to specify NFP values by means of NfpContraints and Slots. Hence, in such cases, the semantics 
of the defined NFPs is user-dependent4.

4. Note that, in general, if modelers will use the different MARTE sub-profiles, they should follow the annotation mechanism of stereotype 
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in 
MARTE in order to support user model-defined (or library-defined) NFPs.
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Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared 
simmilar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this 
case, the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use 
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the 
predefined value qualifiers: statistical qualifier, direction and unit.

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure 
diagram. These instance-level model elements are stereotyped with high-level modeling contructs, «computingResource», 
«scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, Section 10.3. At this stage, we 
specify a set of NFP values by means of two NfpConstraints attached to the specific constrained elements. In both cases, 
the constrainedElement (association end from the UML Contraint metaclass to UML Element metaclass) are the specific 

procUtiliz= ($u1, calc)

« computingResource»
uC: Controller

« scheduler »
{schedPolicy= F ixedPriority}

s 1 / sysSched

« clockResource »
p1 / procClock

« nfpContraint » {kind= contract }
{ procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq== (20, MHz) }

« nfpContraint » {kind=offered }
{ contextSwitch== (8,  us,  meas) and
   schedUtiliz== (5, percent) }

VSL Conditional 
Expression

procUtiliz > (90, percent ) ? clockFreq==(60, MHz) : clockFreq==(20, MHz)

Condition If-True Expression If-False Expression

VSL PropertyCallExpression
(call to a property of  

‘Controller’ )

VSL TupleSpecif icat ion
(related to the 

‘NFP_ Frequency’ NFP type)

VSL Operat ionCallExpress ion
(VSL inf ix notation:

call to the operat ion ‘> ‘ , 
‘greater than’ )

Internal Composite Structure of a 
specific Controller instance

«nfp» procUtiliz:  NFP_Real= (percent , decr)
«nfp» schedUtiliz:  NFP_Real= (percent, decr)
«nfp» contex tSwitch: NF P_Durat ion= (max)
«nfp» clockF req: NFP_F requency= (max , us)

Controller
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model elements to which the non-functional annotations apply, and the context (association end from the UML Contraint 
metaclass to the UML Namespace metaclass) is the Controller node element, which actuates as a namespace context for 
VSL expressions.

For instance, one of the NFP_Contraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a 
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and” 
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other 
CallOperationExpressions making reference to the equalTo (“==”) operation, which has two operands. The first operand 
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUtiliz properties of Controller) and the 
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL 
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par 
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time. 
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In 
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has 
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller. 
As in the first example (Figure 8.9), the utilization slot is specified by a variable $u1. The methodological rule indicates, 
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.
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9 Time Modeling (Time)

This chapter contains both domain and UML viewpoints for time modeling.  The chapter describes a general framework 
for representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and 
embedded systems. These serve as a base for the standard modeling elements defined in subsequent chapters of the 
MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time), 
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and 
metric times are covered in this specification. 

9.1 Overview
The time domain model described in this chapter identifies the set of time-related concepts and semantics that are 
supported by this profile. The model is quite general, and a given application may need to use only a subset of its 
proposed concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling, 
design, performance analysis, schedulability analysis, implementation, etc). The concept of ordering (i.e., something 
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that 
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways, 
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral 
flows (with minor variations at each level). They are known under different names in different contexts, and these names 
are also often used with different meanings elsewhere (so there is no general consensus):

• Causal/temporal: in such models, one is only concerned about instruction precedence/dependency. These relations can 
be partial in presence of concurrency. Cooperation between concurrent entities takes place as communications (i.e., 
through events). Communications themselves can be fully asynchronous, blocking (with the emitter awaiting a returned 
reply), or hand-shake synchronization.

• Clocked/synchronous: this class of time abstraction adds a notion of simultaneity, and divides the time scale in a 
discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the “instantaneous 
reaction” abstraction. When the clock(s) is (are) linked to a regular pulse, clock ticks become the unit scale of a 
discrete-time model (but this need not be the case in any “synchronous” temporal model).This level is used in hardware 
modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in simulation 
formalisms (as in MATLAB® / SIMULINK®, or in Hardware Description Languages such as SystemC/VHDL/Verilog 
with δ-cycles representing causal zero-delay dependencies), or in software modeling when relying on synchronous 
languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain allows 
clocked entities to be linked in a looser, asynchronous network where no single-clock domain is defined. It leads to the 
notion of GALS (Globally-Asynchronous/Locally-Synchronous) domains. These are used in the field of system-level 
models, for instance for SoC (System-on-Chip) design, where several levels of modeling – either software or hardware 
– can be combined during the course of the design.

• Physical/real-time: this class of time abstraction demands the precise accurate modeling of real-time duration values, 
for scheduling issues in critical systems. Physical time models can also be applied to clocked model, for instance to 
derive the admissible speed of a reaction.

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are 
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the 
CoreElements chapter of MARTE has provided a high-level view of the run-time semantics of real time and embedded 
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systems. The Time modeling chapter enriches this view with explicit references to time-related concepts. The Invocation 
package in the CoreElements chapter is also extended with the concept of SimultaneousOccurrenceSet. The notion of 
instant has also to be revisited to deal with simultaneity. This is done in the TimeStructure1, which represents Time as a 
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by 
a time base. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the 
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not 
directly bound to physical time. Hence, the idea to associate time structure with events, behaviors, and objects, or more 
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we propose that objects, behavior executions, and event occurrences may 
explicitly refer to clocks considered as accessors to the time structure. 

9.2 Domain view
This chapter covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not 
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling chapter and their logical 
grouping.

Figure 9.1 - Overview of the time model concerns

These concerns are reflected in the structure of the time domain model which is partitioned into the following separate but 
related groups of concepts:

• Concepts for modeling a simple form of time structured as a totally ordered set of instants owned by a time base 
(TimeStructure concern as depicted in Figure 9.1).

• Concepts for modeling multiple time base models (TimeStructure concerns as depicted in Figure 9.1). 

• Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification 
concerns as depicted in Figure 9.1).

• Concepts for modeling entities bound to time (TimeUsage concerns as depicted in Figure 9.1).

1. TimeStructure is refined into both BasicTimeModels and MultipleTimeModels packages in the rest of the chapter.

Concepts

Time bases
Multip le Time Bases
Instants
Time structure  rela tions

Concepts

Clocks
Log ical clocks
Chr onometric clocks
Cur ren t time

Concepts

Timed e lements
Timed events
Timed actions
Timed constr ain ts

Optional  access  to time 
structu re

T im eValueS pecif icatio n

T im eA ccessTi m eS tructu re Ti meU sage
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Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that 
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of 
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and 
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model 
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in 
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the 
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the 
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there 
always exists at least one instant between the two. A TimeBase owns an ordered set of Instants. We consider only 
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can 
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, can not be 
fully represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable 
nature of sets is not a limitation for practical uses. 

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the 
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number, 
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not 
impose any restrictions on the precision and the scale of the representation. 

MA RT E::Ti m e

T im eRe lat edE n ti t ie s

Ba sic Ti m eM od el s

M ul ti pl eT im eM o d el s

<< imp ort >>

<< me rge>>

<< imp ort >>

T i me Acce sses
A UML Profile for MARTE, Beta 1        53



Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for 
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in 
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time 
base from owing junction instants.

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense 
time base. In this case, the former results from a discretization of the latter.

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to 
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer, 
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the 
mathematical concept of real line R.

BasicTimeModels

 nature:TimeNatureKind

TimeBase DiscreteTimeBase
{nature = discrete }

 date: Real

Instant

instants

1tb

{ ordered }
1..*

JunctionInstant

0..1 coveringTB

currentInstant
{subsets instants}

1

 discrete
 dense

<<enumeration>>
TimeNatureKind
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9.2.2 The MultipleTimeModels package

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especially in the 
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A 
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base. 

Time bases are a priori independent. They become dependent when instants from different time bases are linked by 
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the 
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants, 
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also 
junction instants, because they are potentially observable instants (see the subsection 9.2.3 about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure. 
TimeStructureRelation is an abstract class.  It is subclassed into TimeBaseRelation and TimeInstantRelation, which are 
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates 0 or more junction 
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are 
defined in concrete subclasses, as illustrated in the next 2 sections).

MultipleTimeBase

BasicTimeModels: :
TimeBase

BasicTimeModels: :
Junct ionInstant

TimeStruct ureRelation
tsRelations

0..*

MultipleTimeModels

TimeBaseRelation TimeInstantRelat ion

2..*

{union,ordered}
/relatedTBs

0..*
{union,ordered}
/relatedJIs0..*

owningMTB1

ownedTBs

nestedMTBs

0..1 parentMTB

0..*
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9.2.2.1 Concrete time instant relations

Figure 9.5 - TimeInstantRelation diagram of the time model

As shown in Figure 9.5, three concrete subclasses of the abstract TimeInstantRelation class are defined: 
CoincidenceRelation, PrecedenceRelation, and TimeIntervalMembership. 

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be 
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning. 
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and 
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an 
equivalence relation over instants. A strong requirement is that adding coincidence does not introduce cyclic 
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation 
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking 
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6 
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are 
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).
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1
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Figure 9.6 -  Example of multiple time base with coincidences

PrecedenceRelation between junction instants from different time bases is a time instant relation weaker than coincidence. 
It expresses a directional dependency: a junction instant owned by a time base may precede or follow junction instants 
owned by other time bases.

A time interval on a time base is a convex set of junction instants owned by this time base. The convexity is the property 
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean 
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is 
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time 
interval is specified by its two bound junction instants. The TimeIntervalMembership is a relation that characterizes 
junction instants (members) which are either in the given time interval or are coincident with junction instants in this time 
interval.

9.2.2.2 Concrete time base relations

As explained in the previous section, time instant relations induce relations on time bases of a multiple time base. Time 
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a 
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines a relation A is finer 
than B (or B is coarser than A) if for each junction instant in B there exists one and only one coincident junction instant 
in A. This relation can be characterized by a mapping M from the coarser time base B to the finer time base A. This 
mapping is injective and order-preserving (i.e., if b1 and b2 are two junction instants of B, and b1 is before b2, then a1 = 
M(b1) and a2 = M(b2) are such that a1 is before a2 in time base A). Notice that the specific association between 
DiscreteTimeBase and TimeBase (Figure 9.3, page 71) represents a coarser/finer relationship: the coarser time base, which 
is discrete, results from a discretization of its covering time base (i.e., its coveringTB property), which is a dense time 
base.

Figure 9.7 - Example of time relations between two time bases

A:TimeBase

B:TimeBase

C:TimeBase

:MultipleTimeBase

 a1  a2  a3 a4  a5  a6

  b1  b2  b3 b4 b5 b6 b7

c1  c2 c3 c4 c5 c6

Legend:
 instance of 

Instant

Instance of 
CoincidenceRelation

 a1  a2  a3 a4  a5  a6

  b1  b2  b3 b4 b5

A:TimeBase

B:TimeBase

 a7 a8

A is finer than B
B is coarser than A

a9 a10 a11

More precisely, A is 2-finer than B
A UML Profile for MARTE, Beta 1        57



When the finer time base is also a discrete time base, more precise relations can be specified. For instance, the k-finer 
relation is defined as follows. A is k-finer than B for k integer, k ≥ 1, if A is finer than B and for any two consecutive 
instants in B, there exist k-1 instants between the corresponding coincident instants in A. Figure 9.7 illustrates an example 
where k=2. 

Predefined time base relations are proposed in the TimeStructureRelation Library of MARTE. The semantics of these 
relations is given in OCL. 

9.2.3 The TimeAccesses package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we 
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the 
TimeAccesses package, we introduce the concepts of Clock, TimeValue and DurationValue. These concepts are introduced 
without any specific reference to physical time. Thus, they can be also applied to logical time. Clocks that refer to 
physical time will be considered as specialized clocks.

The TimeAccesses package is subdivided into four packages as shown in Figure 9.8:

• The Clocks package introduces a general concept of clock.

• The TimeValues package defines the concepts of time value and instant value.

• The DurationValues package defines the concept of duration value.

The ChronometricClocks package contains a specialization of the initial clock concept. 

Figure 9.8 - Subpackage diagram of the TimeAccesses package

The “Value Specification Langauge” annex (Annex B) provides detailed definitions of abstract and concrete syntax for 
specifying time expressions in MARTE.

9.2.3.1 The Clocks package

As indicated in Figure 9.9, Clock is an abstract class. A concrete clock is either a logical clock or a chronometric clock. 
The latter is defined in another package (ChronometricClocks package on page 78).

TimeValues

ChronometricClocks <<import>>

TimeAccesses

Clocks <<impor t>>

DurationValues

<<import>>
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A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase 
discrete time base allows access to the time structure.  A clock, whose nature is dense, may indirectly refer to a dense 
time base through the coveringTB property of its base. 

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units 
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the 
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant 
values: the clock “rolls over” when the currentTime value gets at the maximalValue. Note that in this case currentTime 
maps on many junction instants.

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock. 

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the 
logical clock ticks at each occurrence of the definingEvent. Logical time is usually counted in the number of ticks. So, tick 
is a predefined unit often used as the defaultUnit for a logical clock, and then the resolution of the clock is 1 (the default 
value). 

Figure 9.9 - Clocks diagram of the time model
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9.2.3.2 The TimeValues package

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways: either as a reference to a time instant or as a time span. The TimeValues 
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may 
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its 
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense 
or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets 
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between 
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “real” numbers for 
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple 
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of 
the time representation due to clock roll-over. 

A TimeIntervalValue is defined as a pair of instant values and denotes 0 or many time intervals (many results from 
possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max 
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two 
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values). 

When used in a time value specification, a time interval value indicates any time value in the interval. 

The TimeValue class is abstract. It generalizes InstantValue, and DurationValue, which is introduced next.
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9.2.3.3 The DurationValues package

Figure 9.11 - DurationValues diagram of the time model

The DurationValues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two 
instants. It characterizes the “extension” of a time interval. From the user’s point of view, a time interval is specified by 
a TimeIntervalValue. As explained in Section.9.2.3.2, a TimeIntervalValue may denote 0, 1 or many time intervals, due to 
possible clock roll-over. In the simple case when the clock has no defined maximalValue, the DurationValue of a 
TimeIntervalValue is defined by the difference between the max and min instant values of this time interval value. When 
the maximalValue property is defined, the DurationValue is defined as the difference modulo maximalValue between the 
max and min instant values of this time interval value.

A DurationIntervalValue is defined by a pair of duration values, which specifies an interval of values. When used in 
specification, a duration interval value indicates any duration value in the interval. 

DurationValue

DurationValues

TimeAccesses::
TimeValues::
TimeValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Durat ionIntervalValue

minD 1 1 maxD

TimeAccesses::
TimeValues::

TimeIntervalValue

intervalValue

1

A UML Profile for MARTE, Beta 1        61



9.2.3.4 The ChronometricClocks package

Figure 9.12 - ChronometricClocks diagram of the time model

In Section 9.2.1, physical time has been characterized as a continuous and unbounded progression of physical instants. 
The progression of physical time is perceived through event occurrences. Some events are considered as better candidates 
to represent the (assumed) uniform progression of physical time. For instance, one may choose the period of the radiation 
corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom (see the 
definition of the second time unit). Today, this is the best known reference. More conveniently, one considers cyclic 
events, whose occurrences are (more or less) periodic. Periodicity should be checked against the above mentioned best 
referense. Usually, periodic event generators are called clocks. We have already used this term in a broader sense: there is 
noreference to periodicity in clocks defined in Section 9.2.3. Therefore, we name ChronometricClock a clock that 
implicitly refers to physical time. 

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A 
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be 
defined for chronometric clocks. Only a few are presented below. 

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical time is 
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock 
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution 
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric 
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties. 
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives 
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent 
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When 
omitted, the reference clock is supposed to be an "almost perfect clock". Two clocks with the same rate may present an 
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time) 
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the 
drift.
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\

Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities package

Figure 9.14 - Subpackages of the TimeEntities package
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Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences 
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE proposes to 
explicitly relate events, actions, messages… to time. The TimeRelatedEntities package is subdivided into the following 
subpackages (Figure 9.14):

• the TimedElements package defines the key concept of TimedElement;

• the ClockConstraints package introduces constraints on clocks;

• the TimedObservations package provides concepts related to observation of timed entities;

• the TimedConstraint package specifies constraints on time-related observations;

• the TimedEventModels package deals with events whose occurrences are bound to time;

• the TimedProcessingModels package addresses executions bound to time.

9.2.4.1 The TimedElements package

Figure 9.15 - TimedElement diagram of the time model

A timed element, introduced in the TimedElements package (Figure 9.15), is a most general concept. TimedElement is an 
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with a model element. The 
semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

Figure 9.16 - ClockConstraints diagram of the time model
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A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a 
ClockConstraintSpecification. Clock constraint specifications are special value specifications described in Annex C 
(Clock Constraint Specification Language). An example of clock constraint is that two clocks are harmonic with one 
twice faster than the other.

9.2.4.3 The TimedObservations package

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A 
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A 
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a 
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the 
possible events are its sending, its receipt or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed 
on a given clock. The obsKind property of the TimedInstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences, 
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution, 
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the 
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e. a 
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request. 
A Message is a kind of Request. The duration can be observed between two of the three events associated with a request 
(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute. 
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same 
clock.
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9.2.4.4 The TimedConstraints package

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedInstantConstraint), or on the duration of 
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are 
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is 
"the constrained instant value belongs to a given time interval value" or "the constrained duration value belongs to a given 
duration interval value". Instant and duration predicates contain usages of timed observations. 

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

Figure 9.19 - The TimeEventModels package

The TimeEventOccurrences package
An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence 
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this 
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property), 
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover 
the case of simultaneous occurrence set, introduced below.
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This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling chapter, an execution 
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole 
because their collective effect cannot reduce to the serialization of their individual effects. The concept of 
SimultaneousOccurrenceSet is introduced to address this issue. A SimultaneousOccurrenceSet is an EventOccurrence, and 
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same 
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive 
synchronous modeling.

Figure 9.20 - TimedEventOccurrences diagram of the time model

The TimeEvents package
A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences. 
The when property specifies when the first occurrence occurs. The Boolean attribute isRelative specifies whether the time 
value is relative (the when property is a time duration value) or absolute (the when property is a time instant value). The 
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration 
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition 
attribute. The time values are specified by CVS expressions. CVS (Clocked Value Specification) is defined in Annex C. 
A CVS::ClockedValueSpecification specifies a TimeValue, a CVS::DurationValueSpecification a DurationValue, and a 
CVS::InstantValueSpecification an InstantValue.
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Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

Figure 9.22 - The TimedProcessingModels package

The TimedExecutions package
A TimedExecution is a TimedElement that is a specialization of the 
CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit 
reference to clocks.

Two instants values startInstant and finishInstant are associated with an execution and they correspond to the occurrence 
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an 
execution. Since a timed execution may refer to several clocks (on property), several time values are possible.
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In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete 
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit 
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the 
startInstant of the communication and the receipt instant being its finishInstant). In what follows, Behavior, Action, and 
Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

The TimedProcessings package
TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a 
known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing. 
For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation lasting for a given duration.
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Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML Representation
This section describes the UML extensions required to support the concepts defined in the Time Modeling domain view. 
Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others need 
no extensions at all. Most of the time-related stereotypes extend metaclasses from UML::Classes::Kernel, 
UML::CommonBehaviors and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

Figure 9.25 - Time profile dependencies diagram
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For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model 
elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and 
MultipleTimeModels packages. These concepts constitute the semantic domain of the Time model. The corresponding 
concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to 
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a 
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of 
the value as duration or instant specification.

Figure 9.27 - UML extensions for Time modeling (2)

9.3.1.3 Constraint stereotypes

Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the 
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according 
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks. As TimedElement, 
both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the specification, and the context 
of the constraint. Note that VSL is convenient to express various timed constraints.
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Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation stereotypes

TimedObservation is an abstract stereotype of TimedInstantObservation and TimedDurationObservation. It allows time 
expressions to refer to either in a common way. As a TimedElement, a TimedObservation makes reference to clocks. The 
optional obsKind attribute may specify the kind of the observed event(s).

Figure 9.29 - UML extensions for Time modeling (4)

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.

Figure 9.30 - UML extensions for Time modeling (5)
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9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and 
whose instants and durations are explicitly bound to clocks.

Figure 9.31 - UML extensions for Time modeling (6)

9.3.2 Profile elements description

9.3.2.1 Clock

The Clock stereotype maps the Clock domain element (section F.3.2) denoted in Annex F. It also relates to the 
ChronometricClock domain element (Section F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock exists in a 
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A 
Clock is also characterized by its resolution, and optionally by its offset (its initial instant value) and its maximal value. 
The values of these attributes are contained in the slots of the stereotyped InstanceSpecification.

Extensions
• None.

Generalizations
• InstanceSpecification (from UML::Classes::Kernel).

Associations
• type: ClockType[1]  

specifies the ClockType whose this Clock is an instance.

• unit: NFPs::Unit[0..1]  
defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous 
tick unit. When defined, this unit must be of the unitType specified in the ClockType.
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Attributes
• standard: TimeStandardKind[0..1]  

references the system of time adopted by the clock. This property is not defined for a logical clock.

Constraints
[1] The owner of a class stereotyped by Clock must be a Package stereotyped by TimedDomain.

base_Class.owner.oclIsTypeOf(TimedDomain)

[2] The base_InstanceSpecification of the ClockInstanceSpecification must be an InstanceSpecification of the base_Class 
of its type property.

self.base_InstanceSpecification.classifier->includes(self.type.base_Class)

[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.

self.unit->notEmpty( ) implies self.type.unitType.ownedLiteral->includes(self.unit)

[4] A logical clock does not have a defined standard.

self.type.isLogical implies self.standard->isEmpty( )

9.3.2.2 ClockConstraint

The ClockConstraint stereotype maps the ClockConstraint domain element (section F.3.3, p. 446) denoted in Annex F.

A ClockConstraint is a Constraint that imposes dependency between clocks. A ClockConstraint refers to a set of clocks 
and possibly to other model elements. The clocks in the constrained elements must belong to the on clock set of this 
ClockConstraint. The specification of the constraint is usually an opaque expression using a dedicated language: CCSL 
(Clock Constraint Specification Language) defined in Annex C.

Extensions
• None

Generalizations
• NfpConstraint (from NFPs)

• TimedElement

Associations
• None

Attributes
• None

Constraints
[1] The owner of a constraint stereotyped by ClockConstraint must be a Package stereotyped by TimedDomain.

base_Constraint.owner.oclIsTypeOf(TimedDomain)

[2] The constrained clocks are members of the on clock set of the ClockConstraint 
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self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.oclIsTypeOf(Clock))

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element (section F.3.21) denoted in Annex F. It also related 
indirectly to Clock (section F.3.2) and ChronometricClock (section F.3.1).

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete 
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

Extensions
• Class (from UML::Classes::Kernel)

Note – The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML 
specification. Using UML::Classes::Kernel::Class does not preclude usage of Class from UML::StructuredClasses.

Generalizations
• None

Associations
• None

Attributes
• nature: TimeNatureKind [1]  

specifies the nature dense or discrete of the time represented by this ClockType.

• unitType: UML::Classes::Kernel::Enumeration [0..1]  
is the type of units supported by this ClockType. 

• isLogical: Boolean [1] = false  
specifies whether this ClockType reads a logical time or not. When isLogical is false, the ClockType reads a 
chronometric time, i.e., a time bound to physical time.

• maxValAttr: Property [0..1]  
the maxValAttr property refers to a property of the base class. This property declares a read only attribute which 
determines the maximalValue of the associated Clock, value at which the clock rolls over. The maximal value is 
expressed with the clock's unit as a unity. 

• offsetAttr: Property [0..1]  
the offsetAttr property refers to a property of the base class. This property declares a read only attribute which 
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock's unit as a 
unity.

• resolAttr: Property [0..1]  
the resolAttrib property refers to a property of the base class. This property declares a read only attribute which 
determines the resolution of the associated Clock. The resolution is expressed with the clock's unit as a unity. 
When resolution is not defined, the granularity is arbitrarily small. This is the case for dense time.

• getTime: UML::Classes::Kernel::Operation [0..1]  
the getTime property refers to an operation of the base class that returns the current time. 

• setTime: UML::Classes::Kernel::Operation [0..1]  
the setTime property refers to an operation of the base class that sets the current time. 
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• indexToValue: UML::Classes::Kernel::Operation [0..1]  
the indexToValue property refers to an operation of the base class that yields the instant value associated with an 
instant specified by its index. 

Constraints
• None

9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element (section F.3.25) denoted in Annex F. It also 
related indirectly to TimedInstantConstraint (section F.3.32) and TimedDurationConstraint (section F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to 
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant 
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on 
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

Extensions
• None

Generalizations
• NfpConstraint (from NFPs)

• TimedElement

Associations
• None

Attributes
• interpretation: TimeInterpretationKind [1]  

specifies whether the constraint applies to an instant value or to a duration value.

Constraints
[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain

base_Constraint.owner.oclIsTypeOf(TimedDomain)

[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimeInterpretationKind::any 

9.3.2.5 TimedDomain

The TimedDomain stereotype maps the MultipleTimeBase domain element (section F.3.17) denoted in Annex F.

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their 
behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested 
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.
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Extensions
• Package (from UML::Classes::Kernel::Package)

Generalizations
• None

Associations
• None

Attributes
• None

Constraints
• None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element (section F.3.27) denoted 
in Annex F.

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the 
time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time 
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing 
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

Extensions
• DurationObservation (from UML::CommonBehaviors::SimpleTime::DurationObservation).

Generalizations
• TimedObservation

Associations
• None

Attributes
• obsKind: EventKind [0..2] specifies the kind of the observed events.

Constraints
• None

9.3.2.7 TimedElement (abstract)

The TimedElement stereotype maps the TimedElement domain element (section F.3.28) denoted in Annex F.

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model 
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.
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Extensions
• None

Generalizations
• None

Associations
• on: Clock [1..*] references a set of Clocks.

Attributes
• None

Constraints
• None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element (section F.3.29) denoted in Annex F. It also related 
indirectly to TimedEventOccurrence (section F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is 
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when 
value is considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies 
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property. 

Extensions
• TimeEvent (from CommonBehaviors::SimpleTime)

Generalizations
• TimedElement

Associations
• every: UML::Classes::Kernel::ValueSpecification [0..1]  

is an optional owned specification of the duration value between two successive occurrences  
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying 
the TimedValueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

Attributes
• repetition: Integer[0..1]  

is an optional repetition factor. When defined, repetition is the number of successive 
occurrences of the TimedEvent. Its absence is interpreted as an unbounded repetition.

Constraints
[4] A TimedEvent is bound to one Clock.

on->size( ) = 1 
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[5] The optional repetition property of a TimedEvent must be not defined when every is not defined.

every->isEmpty( ) implies repetition->isEmpty( )

9.3.2.9 TimedInstantObservation

The TimedInstantObservation stereotype maps the TimedInstantObservation domain element (Section F.3.33) denoted in 
Annex F.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence, and observed on a clock. The 
obsKind attribute may specify the kind of the observed event.

Extensions
• TimeObservation (from UML::CommonBehaviors::SimpleTime::TimeObservation)

Generalizations
• TimedObservation

Associations
• None

Attributes
• obsKind: EventKind [0..1] specifies the kind of the observed event.

Constraints
• None

9.3.2.10 TimedObservation (abstract)

The TimedObservation stereotype maps the TimedObservation domain element (section F.3.34, p. 460) denoted in Annex 
F.

TimedObservation is an abstract stereotype generalizing both stereotypes, TimedInstantObservation (Section 9.3.2.9) and 
TimedDurationObservation (section 9.3.2.6). It allows time expressions to refer to either in a common way. As a 
TimedElement, a TimedObservation makes reference to clocks.

Generalizations
• TimedElement

Associations
• None

Attributes
• None

Constraints
• None
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9.3.2.11 TimedProcessing

The TimedProcessing stereotype maps the TimedProcessing domain element (section F.3.36) denoted in Annex F. It also 
related indirectly to TimedEventOccurrence (section F.3.30), TimedBehavior (section F.3.24), TimedAction (section 
F.3.23), TimedMessage (section F.3.34) and TimedExecution (section F.3.31).

The TimedProcessing stereotype represents activities that have known start and finish times or a known duration, and 
whose instants and durations are explicitly bound to Clocks.

Extensions
• Action (from UML::Actions)

• Behavior (from UML::CommonBehaviors)

• Message (from UML::Interactions::BasicInteractions)

Generalizations
• TimedElement

Associations
• duration: UML::Classes::Kernel::ValueSpecification [0..1] 

is an optional owned specification of the duration of an execution for Action and Behavior, or the 
duration of a transmission for a Message. By default this duration is read on the on Clock of this 
TimedProcessing, if it is unique. By applying the TimedValueSpecification stereotype to this 
ValueSpecification, another Clock can be chosen.

• finish: UML::CommonBehaviors::Communication::Event [0..1] 
the event whose occurrence determines the end of execution of the processing, for Action or Behavior; 
the receipt for a Message.

• start: UML::CommonBehaviors::Communication::Event [0..1] 
the event whose occurrence determines the start of execution of the processing, for Action or Behavior; 
the sending for a Message.

Attributes
• None

Constraints
[1] Not all three properties are empty.

duration->notEmpty( ) or ( start->notEmpty( ) and finish->notEmpty( ) )

9.3.2.12 TimedValueSpecification

The TimedValueSpecification stereotype maps the TimeValue domain element (section F.3.44), InstantValue domain 
element (section F.3.14) and DurationValue domain element (section F.3.10) denoted in Annex F.

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a 
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of 
the value as duration or instant specification.
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Extensions
• ValueSpecification (from UML::Classes::Kernel::ValueSpecification).

Generalizations
• TimedElement

Associations
• None

Attributes
• interpretation: TimeInterpretationKind[0..1]   specifies whether the time values are instant values or duration values.

Constraints
• None

9.3.2.13 TimeInterpretationKind (from TimeTypesLibrary)

TimeInterpretationKind is an enumeration type that defines literals used to specify the way to interpret a time expression.

Literals
• duration indicates that the typed elements are time spans.

• instant indicates that the typed elements are instants.

• any indicates that the typed elements can be durations or instants.

9.3.2.14 TimeNatureKind (from TimeTypesLibrary)

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time value.

Literals
• discrete indicates that the typed elements are from a discrete set.

• dense indicates that the typed elements are from a dense set.

9.3.3 Examples

9.3.3.1 Chronometric clocks

The MARTE::TimeLibrary contains the description (IdealClock, a class stereotyped by ClockType) and an instance 
(idealClk) of an "ideal" clock. Starting with this clock, the user can define new chronometric clocks, as shown in Figure 
9.32. These chronometric clocks may present deviations with respect to the ideal clock.
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Figure 9.32 - Example of chronometric clocks

First, the user specifies a new ClockType: Chronometric, which is discrete, not logical (i.e., chronometric), and with a 
read only attribute (resolution).

Instances of clocks belong to timed domains. In this example only one time domain is considered, and it owns 3 clocks: 
idealClk, which is an instance of IdealClock, cc1 and cc2, which are two instances of Chronometric. 

cc1 and cc2 use s (second) as their unit of time, have a resolution of 0.01 s and adopt the UTC system of time. The 
deviations of these clocks with respect to the ideal one are specified by a clock constraint. Clock constraints are expressed 
using a simple declarative language, called CCSL (Clock Constraint Specification Language), described in Annex C.

The clock constraint in Figure 9.32 imposes to cc1 and cc2 to be almost periodic (stability=10-5), with a period of 10 ms, 
and with an offset between the two clocks no greater than 5 ms. Note that the 10 ms period must be consistent with the 
given resolution (0.01 s = 10 ms). The first line, in the body of the constraint, declares a clock c, local to the constraint 
and not part of the system. c is defined as an ideal discrete clock whose resolution is 0.001 s = 1 ms. The other lines are 
constraints. Figure 9.33 represents a time structure that satisfies the given clock constraint.

cu rrentTime( ): Real

resolution: R eal {read Only}

<<clockType >>
{ nature  = discrete , unitTyp e =  TimeUnitKind,
resolAttr=re solutio n, getTime =  curre ntTime  }

Chronometric

resolution = 0.01

<<clock>>
{ unit = s, stan dard = UTC }

cc1:Chro nometric

resolution = 0.01

<<clock>>
{ unit = s, stan dard = UTC }

cc2:Chro nometric

<<clo ckCon strain t>>  { kind = require d }
{ Clock c is  id ealClk dis cretizedBy 0.0 01;
   cc1  isPeriodicOn c period10;
   cc2  isPeriodicOn c period10;
   cc1  hasStability 1E-5 ;
   cc2  hasStability 1E-5 ;
   cc1 ,cc2 hav eOffse t [0..5] ms wrt idealC lk;
}

<<clock>>
{ u nit = s }

idealC lk:Idea lClock

curre ntTime( ) : Re al

<<clockType >>
{  nature = dense, un itType = TimeU nitKind ,

g etTime = cur rentTime   }
IdealC lock

Imp orte d from 
MAR TE::TimeLib rary

<<timeD omain>>
ApplicationTimeDomain
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Figure 9.33 - Instants of clocks cc1 and cc2 

9.3.3.2 Logical clocks

In this simplified example, a processor executes the same code for several controllers (Figure 9.34). The processor is a 
Voltage Scaling processor: its frequency can be dynamically controlled. For simplicity, only two frequencies are 
considered: the frequency in the full power mode, and the frequency in the low power mode, which is half the former. The 
Boolean attribute inLowPower indicates the running mode of the processor. The control must be applied periodically (the 
period attribute of the Controller) by executing some code (pidCode which is an OpaqueBehavior). The behavior of the 
controller is specified by a state machine (ctrlBeh). 

Figure 9.34 - Example of timed control

pidCode is a behavior that is executed in a fixed and known number of processor cycles. This can be modeled with a 
logical clock. To this end, the class Processor is stereotyped by ClockType. This mixture of physical time (period of 
activation) and logical time (execution duration expressed in processor cycles) is usual in control applications. Figure 
9.35 represents instances and a clock constraint. The TimedDomain is not explicitly represented. There are two instances 
of Controller, with periods of activation equal to 1 and 2 ms, respectively. Each execution of pidCode takes 100 cycles of 
the processor, which is expressed by a TimedProcessing. The dependency between the processor cycle duration and the 
physical time is specified by a ClockConstraint. The constraint specification indicates that the local Clock c is a discrete 
clock with a period of 1 us (1E-6 s). Clock pr is derived from c.  The period of pr is 20 us when running in the low power 
mode, and 10 us in the full power mode. The trigger of the transition labeled "after p" in the state machine, implicitly 
declares a TimeEvent with isRelative = true and when = p. This TimeEvent is stereotyped by TimedEvent with on = 
idealClk.

(c)
cc1
cc2

offset of 
cc1 vs . cc2

cc1.period

idealClk
10 ms 1 ms

inLowPower: Boolean
resolution: Real {readOnly}

<<clockType>>
{ nature=discrete,

resolAttr=r esolution,
isLogical }

Processor per iod: NFP_Duration

Controller

proc ctr l
0..*1

stm ctr lBeh ( p: NFP_Duration ) 

entr y/ pidCode

after p
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Figure 9.35 - Clocks and TimedProcessing

resolution = 1

<<clock>>
pr:Pr ocessor

<<clock>>
{  unit = s }

idealClk:IdealClock

<<clockConstraint>>
{  Clock c is idealClk discretizedBy1E- 6;
   pr = c filteredBy 0B( 1.0^19) if pr.inLowPower;
    pr = c filteredBy 0B(1.0^9) if not pr .inLowPower;
}

period = (value=1,unit=ms)

c1: Control ler

per iod = ( value=2,unit=ms)

c2: Controller

<<timedProcessing>>
{ on = pr,

duration = 100  }
<<opaqueBehavior>>

pidCode
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10 Generic Resource Modeling (GRM)

10.1 Overview
The objective of this package is to offer the concepts that are necessary to model a general platform for executing real-
time embedded applications. The generic resource model (GRM) includes the features which are required for dealing 
with:

• Modeling of executing platforms at different level of details. The level of granularity needed for platform modeling 
depends on the concern motivating the description of the platform, as for example the type of the platform, the type of 
the application, or the type of analysis to be carried out on the model.

• Modeling of both "hardware" (e.g., memory units or physical communication channels) and "software" (e.g., real-time 
operating systems) platform.

Both sections 14.1 and 14.2 provide a specialization of this general resource model for software and hardware related 
platforms respectively.

Figure 10.1 describes the dependencies of the GRM package with other sub-packages of MARTE.

Figure 10.1 - Dependencies of the GeneralResourceModel (GRM) package

The different facets of the GRM are grouped in individual packages, following the structure shown in Figure 10.2:

• The ResourceCore package defines the basic elements and their relationships.

• The ResourceTypes package defines fundamental types of resources as well as the basic services that they provide.

• The ResourceManagement package defines specific management resources and their associated services.

MARTE::
NFPs

GRM

MARTE::
Time

MARTE::
Co reElements

MARTE::MARTE_Library::
Basic_NFP_Types
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Figure 10.2 - Architecture of the GeneralResourceModel (GRM) package

The purpose and contents of each sub-package are described in next sections.

10.2 Domain view

10.2.1 The ResourceCore package

The basic partitioning into classifiers and instances made in the Foundations package is used here to describe the nature 
of the basic resource elements, depicted in the class diagram in Figure 10.3. The central concept of the GRM is the notion 
of a Resource. A Resource represents a physically or logically persistent entity that offers one or more ResourceServices. 
Resources and its services are the available means to perform the expected duties and/or satisfy the requirements for 
which the system under consideration is aimed.

Figure 10.3 - Instance/Classifier nature of core resource elements

GRM

R eso u rc eCo re

Re so u rceT yp es

R eso u rceM an ag eme n t Sch ed u l in g

R eso u rceU sag es

MARTE::CoreElements::
Foundations::Classifier

resMult: In teger [0..1]

Resource

ResourceService

1..*

1context

pServices
{subset ownedbehavior}

MARTE::CoreElements::
Foundations::Instance

instance type
1..*0..*ResourceInstance

ResourceServiceExecution

0..*

1context

exeServices

instance

type

1..*

0..*

instance type
1..*0..*

MARTE::CoreElements::Causality ::
CommonBehavior::BehavioredClassifier

MARTE::CoreElements::
Causality::CommonBehavior

::Behavior

*

context
1

ownedbehavior

MARTE::CoreElements::
Causality::RunTimeContext

::BehaviorExecution
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As shown in Figure 10.4, Resources and their respective instances are also kinds of AnnotatedElements, hence values of 
non-functional properties (NFPs) may be annotated on them. In particular, as a type of classifier, Resources may have 
NFPs declared on it. As it is also shown in Figure 10.4, besides the NFP specifications, a resource has an optional set of 
referenced clocks, normally only one, but more in general.

Figure 10.4 - NFP annotations and reference Clocks of a Resource

A second orthogonal aspect, which is also very important, is the necessity to differentiate between application and 
platform elements. These latter are considered either as resources or resource services. Resources are used to model the 
execution platform from a structural point of view, while the resource services supply the behavioral point of view. A 
resource may be structurally described in terms of its internal resources - this is represented by the "owner-
ownedElement" association in Resource inherited from the ModelElement meta-class. For example, a processing resource 
may be refined as a processor connected to a memory through a bus, if such level of detail is of interest for the modeler 
or for the analysis method to be applied to the model.

The reference clock of a resource may be either a chronometric (i.e. "physical") clock or a logical clock. In any case, a 
clock is used as the reference unit for time related characteristics of the services provided by the resource. For example, 
considering chronometric clocks, the "processing time" associated with functions in a computation library may be 
expressed in terms of processor cycles rather than absolute time values. The reference clock (typically the processor 
clock) would then allow translating such values into physical times.

The optional attribute resMult (resource multiplicity) is used to express the limited nature of an aggregated multi 
elementary resource. When used it indicates the maximum number of instance of the elementary units of a particular type 
of resource that are available through its corresponding services.

Resource and ResourceService, as well as their corresponding instance-based concepts, ResourceInstance and 
ResourceServiceExecution respectively, may also provide and/or require non-functional properties. A 
ResourceServiceExecution is a kind of BehaviorExecution that represents a concrete instance of the realization of a 
service, in the context of the instance of a resource.

resMult: In teger  [0..1 ]

Resource

instance type
1..*0..*

ResourceInstance

MARTE::NFPs::NFP_Annotation::
AnnotatedElement

ownedElement

owner

0..1

0..*

MARTE::NFPs::
NFP_declaration::NFP

* provided
{subset value}

*

required
{subset value}

MARTE::Time::
TimeAccesses ::Clocks::Clock

*

referenceClocks
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Figure 10.5 - Resource Reference, and ResourceAmount of the ResourceCore package

For convenience, as shown in Figure 10.5, two more abstract concepts are defined in this ResourceCore package:

• ResourceReference, to be used when modeling the dynamic creation of resources is required.

• ResourceAmount, representing a generic quantity of the "amount" provided by the resource. This may be mapped to 
any significant quantification of the resource, like memory units, utilization, power, etc.

A resource can be a “black box,” in which case only the provided services are visible, or a “white box,” in which case its 
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be 
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

• One black box resource (e.g., a real-time operating system), which abstracts the hardware hence considered as internal 
elements.

• A collaboration between a software layer and a hardware layer.

• A collaboration between basically hardware elements. In this case, software features of the execution platform may be 
represented by overheads on raw hardware performance figure.

• Any combination of these previous approaches depending on the type of development and analysis method applied by 
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform 
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature. 
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than 
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a 
given platform may provide several views, corresponding to different anticipated use cases for the platform.

As it occurs with classifiers, the execution platform may be represented as a hierarchical structure of resources.

10.2.2 The ResourceTypes Package

Figure 10.6 presents the basic resource types defined along with their specific attributes. Next a description of each of 
them is provided, including the interpretation of the resource base clock when necessary. A first characterization of 
resources can be done using the two additional attribues shown, isProtected and isActive. Each of the specialized kinds 
may be define by considering the Boolean values for them. isProtected implies the necessity to arbitrate access to the 
resource or its services, while isActive means that it has its own course of action.

ResourceReference ResourceAmount

MARTE::CoreElements::
Foundations::ModelElement
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Figure 10.6 - Types of resources in the ResourceTypes package

• A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual 
element in bits must be given. The reference clock corresponds to the pace at which data is updated in it, and hence it 
determines the time it takes to access to one individual memory element. The level of granularity in the amount of 
storage resources represented is up to the model designer. For example, if the storage resource represents a hard disk 
drive, the element could be a block or a sector, and the speed of the clock to access such element would be directly 
related to the disk rotation speed. The services provided by a storage resource are intended to move data between 
memory and a processing unit (which can be a computing resource or a communication endpoint).

• A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of 
time. It is defined as a kind of chronometric clock, and may represent a clock itself or a timer, in which case it acts 
according to the clock that it has as a reference. This concept is used to model the SPT TimingMechanism. According 
to the concrete kind of resource or timing mechanism that it represents, the referenced clock may be another 
chronometric clock or a logical clock, as defined in the time chapter. A timing resource may have concrete services for 
its management and operation. Figure 10.7 shows these services in the form of roles of associations with 
ResourceService in the model of timing resources.

resMult: Integer
isProtected : Boolean
isActive : Boolean

GRM::ResourceCore::
Resource

StorageResource

Comput ingResource

TimingResourceCommunicat ionResource

DeviceResourceConcurrencyResourceSynchResource
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Figure 10.7 - Timing resources

• A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent 
execution flows, and in particular the mutual excusive access to shared resources. This general concept is further 
specialized inside the context of the GRM in the Scheduling package.  

• A ComputingResource represents either virtual or physical processing devices capable of storing and executing 
program code. Hence its fundamental service is to compute, what in fact is to change the values of data without 
changing their location. It is active and protected.

• A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution 
concurrently with others, all of which take their processing capacity from a potentially different protected active 
resource (eventually a ComputingResource). Concurrency may be physical or logical, when it is logical, the supplying 
processing resource needs to be arbitrated with a certain policy. This root concept is further specialized in the 
Scheduling package.

• A DeviceResource typically represents an external device that may require specific services in the platform for its 
usage and/or management. Active device resources may also be used to represent external specific purpose processing 
units, whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their 
internal behaviour is not a relevant part of the model under consideration. 

• As shown in Figure 10.8, two kinds of CommunicationResources are defined. A communication media has an attribute 
for defining the size of the elements transmitted; as expected, this definition is related to the resource base clock. For 
example, if the communication media represents a bus, and the clock is the bus speed, "element size" would be the 
width of the bus, in bits. If the communication media represents a layering of protocols, "element size" would be the 

TimingResource

Duration: NFP_Duration
isPeriodic:  Boolean

TimerResourceClockResource

MARTE::Time::TimeAccesses ::
Clocks::Clock

* referenceClocks

MARTE::Time::TimeAccesses::
ChronometricClocks::
ChronometricClock

GRM::ResourceCore::Resource

referenceClock
0..1

ResourceService

set

get

reset

star t

pause
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frame size of the uppermost protocol. A communication endpoint acts as a terminal for connecting to a communication 
media, and it is characterized by the size of the packet handled by the endpoint. This size may or may not correspond to 
the media element size.

Figure 10.8 - Kinds of Communication resource in the ResourceTypelResourceTypes package

Concrete services provided by CommunicationEndPoint include the sending and receiving of data, as well as a 
notification service able to trigger an activity in the application. The fundamental service of a CommunicationMedia is to 
transport information (e.g. message of data) from one location to another location.

Figure 10.9 denotes some other basic services that may be provided by resources:

Figure 10.9 - Basic resource services of the ResourceTypeResourceTypes package

• Both Acquire and Release services correspond respectively to the allocation and de-allocation of some "amount" from 
the resource. For example, for a resource representing storage, the amount could be the memory size. As another 
example, a resource could represent a single element (maximum amount available is "1"), and acquire/release would be 
used to model mutual exclusive access.

• Activate corresponds to the application of a service on a given quantity. For example, activate a communication service 
with the amount of data to be transferred as a parameter.

• GetAmountAvailable returns the amount of the resource that is currently available.

The behavior shown by each service (acquire, release, activate, etc.) of a concrete resource that offers it, shall be 
described to the extent needed by the modeling concerns of that specific resource. 

CommunicationResource

elementSize : Integer

CommunicationMedia

packetSize : Integer

CommunicationEndPoint

isBlocking: Boolea n

Acquire Relea se GetAmountAvailable Activate

1..*

+service

1..*

+amo unt

1..*

+ amou nt

1..*
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GRM: :ResourceCore::
ResourceService

GRM::ResourceCore
::Resource Amount
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10.2.3 The ResourceManagement Package

The elements in this package serve for modeling various resource management services, such as those found in most 
operating systems. Figure 10.10 shows both types of resources that hold management services.

Figure 10.10 - Resource management

The ResourceBroker is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances 
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate 
memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it. 
The access control policy determines the criteria for determining and making effective the provision of resources, it can 
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients, 
etc. 

On the other hand, the ResourceManager is responsible for creating, maintaining and deleting resources according to a 
resource control policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more 
chunks of heap memory. Once created and initialized, the resources are typically handed over to a resource broker. In 
most practical cases, the resource manager and the resource broker are the same entity. However, since this is not always 
true the two concepts are modeled separately (they can be easily combined by designating the same entity as serving both 
purposes).

10.2.4 The Scheduling Package

Scheduling is the way of arranging behavior at run-time. At this level of description a Scheduler is defined as a kind of 
ResourceBroker that brings access to its broked ProcessingResource or resources following a certain scheduling policy. 
The concept of scheduling policy as it is presented here corresponds to the scheduling mechanism described in section 
6.1.1 of SPT, since it refers specifically to the order to choose threads for execution. A ProcessingResource generalizes 
the concepts of CommunicationMedia, ComputingResource, and active DeviceResource. It introduces an element that 
abstracts the fundamental capability of performing any behavior assigned to the active classifiers of the modeled system. 
Fractions of this capacity are brought to the SchedulableResources that require it.

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency. This means that it takes 
the processing capacity from another active protected resource, usually a ProcessingResource, and competes for it with 
others linked to the same scheduler under the basis of the concrete scheduling parameters that each SchedulableResource 
has associated. In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the  
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing 
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resource, instead they receive it from a SchedulableResource, which is in its turn effectively scheduled by another 
scheduler. These intermediate SchedulableResource, play the role of a virtual processing resource, conducting the fraction 
of capacity they receive fron their host scheduler to its dependent secondaryScheduler.

Figure 10.11 shows the relationships between all these elements, as well as the various kinds of scheduling policies and 
the corresponding scheduling parameters.

Figure 10.11 - The Scheduling package

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying 
scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.) 
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific 
schedules which order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of 
specification requires at least the identification of the common resource, its protecting mechanism, and the associated 
protocol; this is what the MutualExclusionResource defines. Figure 10.12 shows this element. Its associated protocol, 
represented by MutualExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the 
parameters required by the protocol are represented by the ProtectionParameters element.
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Figure 10.12 - The MutualExclusionResources in the Scheduling Package

10.2.5 The ResourceUsage Package

When resources are used, their usage may consume part of the "amount" provided by the resource. Taking into account 
these usages when reasoning about the system operation, is a central task in the evaluation of its feasibility. Figure 10.13 
shows the model of a ResourceUsage, it links resources with concrete demands of usage over them. The concept of 
UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. Two general forms 
of usage are defined the StaticUsage and the DynamicUsage, each used according to the specific needs of the model. A 
few concrete forms of usage are defined at this level of specification under the concept of UsageTypedAmount; those are 
aimed to represent the consumption or temporary usage of memory, the time taken from a CPU, the energy from a power 
supply and the number of bytes to be sent through a network.
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Figure 10.13 - Resource usage

10.3 UML Representation
This section describes the UML extensions provided to support the concepts defined in the presented domain view. The 
stereotypes here provided are generic and may be used at different levels of specification.

10.3.1 Profile Diagrams

The UML extensions proposed for the modeling of resources at this level of specification are provided in the 
MARTE::GRM profile and the MARTE::MARTE_Library::GRM_BasicTypes model library. They are shown in separate 
figures for convenience.

Figure 10.14 shows the stereotypes defined for the root concepts defined for the modeling of resources. Figure 10.16 
shows the relationships between stereotypes defined for scheduling. Figure 10.17 shows the UML elements that may be 
extended with the GRService stereotype. And Figure 10.19 shows for convenience the model library that collects all the 
utilitarian types defined for the GRM profile and which is formally presented in Annex D.

The MARTE::GRM package (stereotyped as profile) defines how the elements of the domain model extend metaclasses 
of the UML metamodel. All the stereotypes defined in the GRM profile are then listed and described in alphabetical order. 
The semantic descriptions of the concepts that these stereotypes represent are provided along Section 10.2 on page 99. 
And the detailed descriptions of their corresponding concepts in the domain view are presented in Annex F in page 428. 
Finally the elements in the GRM_Basic_Types model library are also described in alphabetical order.
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Figure 10.14 - UML extensions for GeneralResourceModeling
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Figure 10.15 - UML Extensions for timing mechanisms in the GRM profile

Figure 10.16 - Relationships between UML Extensions for scheduling in the GRM Profile
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Figure 10.17 - UML Extensions for Services in the GRM Profile

Figure 10.18 - UML Extensions for resource usage in the GRM Profile
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Figure 10.19 - Model library defining types used in the GRM profile (extract of Annex D)

10.3.2 Profile Elements Description

10.3.2.1 Acquire

The Acquire stereotype maps the Acquire domain element (section F.4.3) denoted in Annex F.

At this level of specification the amount to acquire is by default one and refers to the owner protected resource.
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• GRService.

Attributes
• isBlocking: Boolean [0..1]  

if true it indicates that any attempt to acquire the resource may result in a blocking situation if it is not  
available. If false it indicates that the unavailability of the protected resource will not block the caller but it will 
be returned as part of the service results instead.

Associations
• None.

Constraints
[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).
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10.3.2.2 ClockResource

The ClockResource stereotype maps the ClockResource domain element (section F.4.5) denoted in Annex F.

Extensions
• None

Generalizations
• TimingResource

Attributes
• None

Associations
• None

Constraints
• None

10.3.2.3 CommunicationEndPoint

The CommunicationEndPoint stereotype maps the CommunicationEndPoint domain element (section F.4.6) denoted in 
Annex F.

Extensions
• None

Generalizations
• Resource

Attributes
• packetSize: Integer[0..1] the size of the packet handled by the endpoint.

Associations
• None

Constraints
• None

10.3.2.4 CommunicationMedia

The CommunicationMedia stereotype maps the CommunicationMedia domain element (section F.4.7) denoted in Annex 
F.

Extensions
• Connector (from UML::CompositeStructures::InternalStructures).
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Generalizations
• ProcessingResource

Attributes
• elementSize: Integer[0..1] characterizes the size of the elements to be transmitted.

Associations
• None

Constraints
• None

10.3.2.5 ComputingResource 

The ComputingResource stereotype maps the ComputingResource domain element (section F.4.9) denoted in Annex F.

Extensions
• None

Generalizations
• ProcessingResource

Attributes
• None

Associations
• None

Constraints
[1] The attribute isActive inherited from Resource is always true.

10.3.2.6 ConcurrencyResource

The ConcurrencyResource stereotype maps the ConcurrencyResource domain element (section F.4.10) denoted in Annex 
F.

Extensions
• None

Generalizations
• Resource

Attributes
• None
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Associations
• None

Constraints
• None

10.3.2.7 DeviceResource

The DeviceResource stereotype maps the DeviceResource domain element (section F.4.11) denoted in Annex F.

When it is active it can be considered as an external processing resource whose responsabilities will not be described in 
detailed in the model under consideration.

Extensions
• None

Generalization
• Resource

Attributes
• None

Associations
• None

Constraints
• None

10.3.2.8 GRService

The GRService stereotype maps the ResourceService domain element (section F.4.26) denoted in Annex F.

It is a very general concept that helps in the definition of generic resource models able for further refinement.

Extensions
• Behavior (from UML::CommonBehaviors::BasicBehaviors)

• BehaviorExecutionSpecification (from UML::Interactions::BasicInteractions)

• BehavioralFeature (from UML::Classes::Kernel)

• Collaboration (from UML::CompositeStructures::Collaborations)

• CollaborationUse (from UML::CompositeStructures::Collaborations)

Generalizations
• None

Attributes
• owner: Resource [0..1] refers to the resource that owns the represented service.
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Associations
• None

Constraints
• None

10.3.2.9 MutualExclusionResource

The MutualExclusionResource stereotype maps the MutualExclusionResource domain element (section F.4.15) denoted in 
Annex F.

Extensions
• None

Generalizations
• Resource

Attributes
• ceiling: Integer [0..1]  

determines the concrete parameter used to characterize the protection access protocol, it is used for the 
PriorityCeiling and the StackBased protocols. For the latter only positive values are to be used. It holds the 
concept of ProtectionParameters of the domain model.

• otherProtectProtocol: String [0..1]  
is used to annotate a protocol that is not included among the values of the 
ProtectProtocolKind enumerated type.

• protectKind: ProtectProtocolKind [0..1]=PriorityInheritance 
determines the type of protection protocol used to access the resource.

Associations
• scheduler: Scheduler [0..1] refers to the scheduler that will implement the protection protocol.

Constraints
[1] The attribute isProtected inherited from Resource is always true.

[2] The scheduling policy of the scheduler must be compatible to the kind of protectKind given to the 
MutualExclusionResource.

10.3.2.10 ProcessingResource

The ProcessingResource stereotype maps the ProcessingResource domain element (section F.4.16) denoted in Annex F.

It is an active, protected, executing-type resource that is allocated to the execution of schedulable resources, and hence 
any actions that use those schedulable resources to execute. In general, they abstract the processing capabilities of a 
computing resource, a communication media or an active external device.

Extensions
• None
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Generalizations
• Resource

Attributes
• speedFactor: Real [0..1] = (value=1.0)  

is a relative factor for annotating the processing speed expressed as a ratio to the speed of the 
reference processingResource for the system under consideration. The amount of resource usages 
specified for the entities in further usage models (like execution times for schedulability) assume a 
normative value of 1.0, what means that they have been measured or estimated either in respect to 
the reference system platform or directly over the platform used if it has speedFactor equal to 1.0.

Associations
• mainScheduler: Scheduler [0..1] is the scheduler that controls the access to its processing capacity.

Constraints
• None

10.3.2.11 Release

The Release stereotype maps the Release domain element (section F.4.19) denoted in Annex F.

At this level of specification the amount release is by default one and refers to the owner protected resource.

Extensions
• None

Generalizations
• GRService

Attributes
• None

Associations
• None

Constraints
[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).

10.3.2.12 Resource

The Resource stereotype maps both Resource (section F.4.20) and ResourceInstance domain elements (section F.4.23) 
denoted in Annex F.

It is provided for further refinement and for the representation of generic resources from a holistic system wide 
perspective. The nature of the concrete element extended defines the domain concept that it represents.

Extensions
• InstanceSpecification (from UML::Classes::Kernel)
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• Classifier (from UML::Classes::Kernel)

• Property (from UML::Classes::Kernel)

• Lifeline (from UML::Interactions::BasicInteractions)

• ConnectableElement (from UML::CompositeStructures::InternalStructures)

Generalizations
• None

Attributes
• resMult: Integer [0..1] = 1  

indicates the multiplicity of a resource. For a classifier it may specify the maximum number of instances of the 
resource considered as available. By default only one instance is available.

• isProtected: Boolean [0..1]  
if true it indicates that the access to the resource is protected by some kind of brokeringResource.

• isActive: Boolean [0..1]  
if true it indicates that the resource has an initial behavior associated that allows it to possibly perform its 
services autonomously or by the triggering and animation of behaviors on others.

Associations
• None

Constraints
• None

10.3.2.13 ResourceUsage

The ResourceUsage stereotype maps both ResourceUsage (section F.4.27) and UsageTypedAmount (section F.4.40) 
domain elements denoted in Annex F.

Extensions
• NamedElement (from UML::Classes::Kernel)

Generalizations
• None

Attributes
• execTime: NFP_Duration {ordered} [*]  

time that the resource is in use due to the usage.

• msgSize: NFP_DataSize {ordered} [*]  
amount of data transmitted by the resource.

• allocatedMemory: NFP_DataSize {ordered} [*] 
amount of memory that is demanded from or returned to the resource. It may be a positive or 
negative value   
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• usedMemory: NFP_DataSize {ordered} [*] 
amount of memory that will be used from a resource but that will be immediately returned, and 
hence should be available while the usage is in course. This may be used to specify the required 
free space in the stack for example.

• powerPeak:NFP_Power {ordered} [*]  
power that should be available from the resource for its usage.

• energy:NFP_Energy {ordered} [*]  
amount of energy that will be permanently consumed from a resource due to the usage.

Associations
• usedResources: Resource [0..*] {ordered}  

list of resources that are used.

• subUsages: ResourceUsage {ordered} [0..*]  
list of resourceUsages used to complement the description of the resourceUsage and generate  
composite descriptions.

Constraints
[1] To consider the ResourceUsage fully specified, if the list usedResources is empty the list subUsages should not be 

empty and viceversa. Further refinements of ResoureUsage may define additional attributes that may bring implicit 
elements into the usedResources list.

[2] If the list usedResources has only one element, all the optional lists of attributes (execTime, msgSize, 
allocatedMemory, usedMemory, powerPeak and energy) refer to this unique Resource and at least one of them must 
be present.

[3] If the list usedResources has more than one element, all of the optional lists of attributes (execTime, msgSize, 
allocatedMemory, usedMemory, powerPeak, and energy) that are present, must have that number of elements, and 
they will be considered to match one to one.

[4] If the list subUsages is not empty, and any of the optional lists of attributes (execTime, packetSize, allocatedMemory, 
usedMemory, powerPeak, and energy) is present, then more than one annotation for the same resource and kind of 
usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will 
be considered in conflict, and hence the ResourceUsage inconsistent.

10.3.2.14 SchedulableResource

The SchedulableResource stereotype maps the SchedulableResource domain element (section F.4.29, p. 478) denoted in 
Annex F.

It is an active resource able to perform actions using the processing capacity brought from a processing resource by the 
scheduler that manages it.

Extensions
• None

Generalizations
• Resource
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Attributes
• schedParams: SchedParameters [0..*] parameters used to compete for processing capacity.

Associations
• dependentScheduler: SecondaryScheduler [0..1] 

this scheduler takes its capacity from the schedulable resource, and in its turn shares it among its 
nested served schedulable resources.

• host: Scheduler [0..1]  
is the scheduler that controls the processing capacity that will be shared among the demanding 
schedulable resources.

Constraints
[1] The policy used by the scheduler (host) must be compatible with the scheduling parameters (schedparams) of the 

schedulable resource.

10.3.2.15 Scheduler

The Scheduler stereotype maps the Scheduler domain element (section F.4.30, p. 479) denoted in Annex F.

Extensions
• None

Generalizations
• Resource

Attributes
• isPreemptible: Boolean [0..1] = true 

qualifies the capacity of the scheduler for preempting schedulable resources once the access to the 
processing capacity has been granted upon the arrival of a new situation where a different 
schedulabe resource has to execute.

• otherSchedPolicy: String  
is used to annotate a scheduling policy that is not included among the values of the 
schedPolicyKind enumerated type.

• schedPolicy: schedPolicyKind [0..1] = fixedPriority  
scheduling policy implemented by the scheduler.

• schedule: OpaqueExpression [0..1]  
is the concrete schedule to use in the case of time table driven strategies. The format for expressing 
the times for activation and suspension, the cycle time as well as the number and identification of 
schedulable resources is user dependent.

Associations
• host: ComputingResource [0..1]  

refers to the computing resource on which the scheduler runs. It may be or not the same computing 
resource whose processing capacity it will control and share among the demanding scedulable 
resources.
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• processingUnits: ProcessingResources [0..*] 
list of ProcessingResources whose processing capacity is shared by the scheduler among the 
schedulableResources it has associated. 

• protectedSharedResources: MutualExclusionResource[0..*] 
list of the MutualExclusionResources to which access must be protected using the corresponding 
protocol.

• schedulableResources: SchedulableResource [0..*] 
list of schedulable resources that demand processing capacity from the scheduler.

Constraints
[1] The scheduling policy of the scheduler must be compatible with the scheduling parameters of all the schedulable 

resources that it has associated.

[2] The scheduling policy of the scheduler must be compatible with the ProtectProtocolParameters of all the associated 
MutualExclusionResources.

10.3.2.16 SecondaryScheduler

The SecondaryScheduler stereotype maps the SecondaryScheduler domain element (section F.4.33, p. 481) denoted in 
Annex F.

A scheduler of this kind takes its capacity from the set of schedulable resources collected as virtual processing units, and 
in its turn shares it among its nested served schedulable resources.

Extensions
• None

Generalizations
• Scheduler

Attributes
• None

Associations
• virtualProcessingUnits: SchedulableResource [0..*] 

set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Constraints
[1] A SecondaryScheduler takes its capacity from the virtualProcessingUnits list of schedulable resources, so it is not 

possible to have processing resources capacity through the processingUnits list inherited from Scheduler.

10.3.2.17 StorageResource

The StorageResource stereotype maps the StorageResource domain element (section F.4.35) denoted in Annex F.

Extensions
• None
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Generalizations
• Resource

Attributes
• elementSize: Integer [0..1] is the size in bits of the basic storage unit.

Associations
• None

Constraints
• None

10.3.2.18 SynchronizationResource

The SynchronizationResource stereotype maps the SynchResource domain element (section F.4.36) denoted in Annex F.

Extensions
• None

Generalizations
• Resource

Attributes
• None

Associations
• None

Constraints
• None

10.3.2.19 TimerResource

The TimerResource stereotype maps the TimerResource domain element (section F.4.37) denoted in Annex F.

Extensions
• None

Generalizations
• TimingResource

Attributes
• duration: NFP_Duration [0..1]  

interval after which the timer will make evident the elapsed time.
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• isPeriodic: Boolean [0..1]  
if true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic  
repetitive way. If false, it will do it only one time after it is started.

10.3.2.20 TimingResource

The TimingResource stereotype maps the TimingResource domain element (section F.4.38) denoted in Annex F.

Extensions
• None

Generalizations
• Resource

• ClockType (from MARTE::Time)

Attributes
• None

Associations
• None

Constraints
• None

10.3.3 GRM model library elements description

This elements are described here for convenience, they constitute the GRM_BasicTypes model library, a part of the 
MARTE::MARTE_Library model library, which is presented in Annex D.

10.3.3.1 EDFParameters

This dataType is a tupleType that defines the parameter used to characterize an EDF schedulable resource.

Attributes
• deadline: NFP_Duration [0..1]  

relative deadline used to schedule each activation of the schedulable resource in the 
context of an EDF scheduler.

10.3.3.2 FixedPriorityParameters

This dataType is a tupleType that defines the parameter used to characterize a fixed priority schedulable resource.

Attributes
• priority: Integer [0..1] priority used to schedule the schedulable resource in a fixed priority scheduler.

10.3.3.3 NoParams

This is an empty utility dataType used in choiceTypes to indicate the absence of a value.
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10.3.3.4 PeriodicServerKind

This enumeration defines the kind of periodic server.

Literals
• sporadic indicates the sporadic server scheduling algorithm.

• deferrable indicates the deferrable server scheduling algorithm.

• undef indicates the scheduling algorithm of the server is not defined.

• other the scheduling algorithm of the server is none of the described in this enumerated.

10.3.3.5 PeriodicServerParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule the kinds of periodic servers 
defined.

Generalizations
• FixedPriorityParameters

Attributes
• kind: PeriodicServerKind [0..1]  

indicates the type of periodic server.

• backgroundPriority: Integer [0..1]  
is the priority used to run the server when it is in the background.

• initialBudget: NFP_Duration [0..1]  
is the full ammount of execution time available for a cycle of the server.

• replenishPeriod: NFP_Duration [0..1]  
is the replenishment period defined for the server.

• maxPendingReplenish: Integer [0..1]  
is the maximum number of replenishments that can be stored in the queue of pending replenishments, it limits  
the number of times a schedulable resource may block itself in the time frame of a cycle period.

10.3.3.6 PoolingParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule a schedulable resource with the 
polling policy kind. It represents the scheduling mechanism by which there is a periodic task that polls for the arrival of 
its input event. Thus, execution of the actions associated to the event may be delayed until the next period.

Generalizations
• FixedPriorityParameters

Attributes
• period: NFP_Duration [0..1]  

is the polling period, the time between successive  inquiries for the arrival of an activation event.
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• overhead: NFP_Duration [0..*] 
list of duration time values that characterize the polling overhead, it is typically characterized by the minimum, 
maximum and average values.

10.3.3.7 ProtectProtocolKind

This is an enumerated type that list the kinds of protection protocols to use in the access to shared resources. It 
corresponds to the homonymous concept of of the domain view, whose class description is described in Annex F.

Literals
• FIFO  

this means basically exclusive access with no protection.

• NoPreemption  
no other concurrent activity may be executed while the resource is in use

• PriorityCeiling  
uses the immediate priority ceiling resource protocol. This is equivalent to Ada's Priority Ceiling, or the 
POSIX priority protect protocol. It requires the specification of an integer value to indicate the ceiling.

• PriorityInheritance  
it uses the basic priority inheritance protocol.

• StackBased  
it uses the Stack Resource Protocol (SRP). This is similar to the priority ceiling protocol but works 
for non-priority-based policies. It requires the specification of the preemption level.

• Undef  
the protocol is not specified.

• Other  
the protocol is not included in this enumerated type, but it is specified using a user-defined string.

10.3.3.8 SchedParameters

This is a ChoiceType that contains the different kinds of parameters that are necessary to specify the contention privileges 
of a schedulable resource in comparison to others unther the same scheduler. It maps to the SchedulingParameters concept 
of the domain view, whose class description is described in Annex F.

Attributes
• edf: EDFParameters [0..1]  

parameters used in the arliest deadline first scheduling policy.

• fp: FixedPriorityParameters [0..1]  
parameters used in the fixed priority scheduling policy.

• polling: PollingParameters [0..1]  
parameters used when a polling mechanism is used to start schedulable resources running under a fixed priority 
scheduling policy.

• server: PeriodicServerParameters [0..1] 
parameters used when the schedulable resources are scheduled in a periodic server that runs under a fixed 
priority scheduling policy. 
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10.3.3.9 SchedPolicyKind

This enumeration defines the kinds of scheduling policies defined. It maps to the homonymous concept of the domain 
view, whose class description is described in Annex F.

Literals
• EarliestDeadlineFirst  

the scheduler applies the earliest deadline first algorithm.

• FIFO  
the activations of schedulable resources are served in a first come first served basis.

• FixedPriority  
the scheduler applies the fixed priority policy.

• LeastLaxityFirst  
the scheduler applies the least laxity first algorithm to do the scheduling.

• RoundRobin  
the scheduler shares the processing resource in a round robin way.

• TimeTableDriven  
the scheduler applies a predefined fixed repetitive schedule.

• Undef  
the scheduling policy in not specified.

• Other  
the scheduling policy is none of the included in this enumerated type, but it is specified using a 
user-defined string.

10.4 Examples
The general resource model is planned to be used not only for further extension in the software and hardware platform 
models, or in the analysis models of this specification, but also as a way to described resources and platform architectures 
at a very high level, when design choices and analysis techniques to use for the verification are probably still undecided. 
The illustration in Figure 10.20 shows a simple example of the platform description for a teleoperated robot using a 
deployment diagram. This example is further revisited to illustrate the usage of schedulability analysis annotations in 
section 16.3.3.

The system platform is composed of two processors interconnected through a CAN bus, and a robot arm whose servo 
control cards are connected by means of a backpanel VME bus.
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Figure 10.20 - Simple example of usage of the GRM Profile at a high architectural level

The first processor is a teleoperation station (NT_Station); it hosts a GUI application, where the operator commands the 
robot and where information about the system status is displayed. The second processor (Controller) is an embedded 
microprocessor that implements the controller of the robot servos and its associated instrumentation. Figure 10.21 shows 
a possible software architecture for this example.

<<ComputingResource>>
{speedFactor=(1.0)}

NT_Station

<<ComputingResource>>
{speedFactor=(0.6)}

Controller
CAN_Bus

<<DeviceResource>>
{speedFactor=(1.0)}

Robot Arm

VME_Bus

<<Communication Media>>
{speedFactor=(1.0)}

<<CommunicationMedia>>
{speedFactor=(8.5)}

<< StorageResource>>
{elementSize=1024 x1024x8,

resMult=256}
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Figure 10.21 -  Example of usage of the GRM Profile to annotate initial structural architectural choices

The software of the Controller processor contains three active classes and a passive one which is used by the active 
classes to communicate. Servo_Controller is a periodic task that is triggered by a ticker timer with a period of 5 ms. The 
Reporter task periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms. The 
Command_Manager task is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter task 
handles the events that are generated by the operator using the GUI control elements. The Display Refresher task updates 
the GUI data by interpreting the status messages that it receives through the CAN bus. Display_Data is a protected object 
that provides the embodied data to the active tasks in a safe way. Both processors have a specific communication software 
library and a background task for managing the communication protocol.

According to the initial specification the system has at least three end-to-end flows of independent stimuli subject to hard 
real-time requirements. Each one interferes with the others by sharing the processing resources (Station, Controller and 
CAN_Bus) and by accessing the protected objects.

One is the basic control algorithm that executes the Control_Servos procedure with a period (and expectably a deadline) 
of 5 ms. The second is the Report procedure that transfers the sensors and servos status data across the CAN bus, to 
refresh the display with a period (and deadline) of 100 ms. Finally, the user commands that tipically have a sporadic 
triggering pattern, but whose minimum inter-arrival time between events could be bounded to 1 s.

For illustration purposes Figure 10.22 shows a closer view of the end-to-end flow that makes the periodic reports every 
tenth of a second by means of a sequence diagram. There, they have been annotated the deadline specification as well as 
the periodic timing stimuli and the lifelines instances of the resources involved.

<<ComputingResource>>
{speedFactor=(0.6)}

Controller

<<ComputingResource>>
{speedFactor=(1.0)}

NT_Station

Command_Interpreter
- T: Task
- Process_Event()-  Plan_Trajectory()

Display_Refresher
-  T: Task
-  Update_Display()
- Update_Graphics()

<<SchedulableResource>

Display_Data

+ Read (): Data
+ Write(D: Data)

<<MutualExclusionResource>>

Station_Communication

+ Send_Command(C: Command)
+ Await_Sta tus(): Sta tus

<<SchedulableResource>>

Servos_Controller

- T: Task

- Control_Servos()
-
-

 Control_Algorithms()
 Do_Control()

Reporter

- T: Task
- Report()

Command_Manager

- T: Task
- Manage()

Servos_Data

+ Get(): Data
+ Set(D: Data)

Controller_Communication

+ Send_Status(S: Status)
+ Await_Command(): Command

<<SchedulableResource>

<<SchedulableResource>

<<SchedulableResource>

<<MutualExclusionResource>>
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Figure 10.22 -  Use of the GRM Profile to annotate behavioral specification instances

<< TimerResource>>
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11 Generic Component Model (GCM)

11.1 Overview
The MARTE GeneralComponentModel presents additional concepts (w.r.t usual component paradigms) that have been 
identified as necessary to address the modeling of artifacts in the context of real-time and embedded systems component 
based approaches. Figure 7.1 shows the dependencies of this package.

Figure 11.1 - Dependencies of the GeneralComponentModel package

Additionally, the MARTE general component model defines shortcut notations that help in simplifying the modeling and 
are useful in the application of component base strategies in the real-time and embedded systems domains.

11.2 Domain View

11.2.1 The GeneralComponentModel Package

The general component model introduced in this specification proposes mainly refinements to the UML structured 
classes. This model provides a common denominator among various component models, which in principle do not target 
exclusively the real-time and embedded domain. The purpose is to provide in MARTE a model as general as possible, that 
is not tied to specific execution semantics, on which real-time characteristics can be applied later on. The MARTE general 
component model relies mainly on UML structured classes, on top of which a support SysML blocks has been added. 
Providing a support for Lightweight-CCM, AADL and EAST-ADL2 have also influenced the definition of some 
refinements of the MARTE General Component Model.

MARTE::CoreElements

GeneralComponentModel
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Figure 11.2 - The bulk of the MARTE GeneralComponentModel package

A StructuredComponent defines a self-contained entity of a system, which may encapsulate structured data and behavior. 
A MARTE structured component specializes the BehavioredClassifier classifier. It owns properties that can be used as 
AssemblyParts within an internal component description, attributes, or member ends of an association. When used as an 
assembly part, a property is indicated in the parts reference. As mentioned in the CoreElements package,  Property is 
similar to the corresponding UML definition, i.e. it has a multiplicity in terms of upper and lower bounds, an aggregation 
kind and a type (as a Classifier). InteractionPorts are a special kind of properties owned by a structured component. An 
interaction port defines an explicit interaction point through which components may be connected (linked) through an 
AssemblyConnector. One may also directly connect structured component with no port. In any case, related ports need to 
be compatible regarding their provided/required services or flow specifications and directions.

Underlying execution semantics (i.e., what happens when the component is in operation, when it receives external 
stimuli) are left undefined at this stage so that multiple component models may match the definition above.

InteractionPort

*

owner
1ownedPorts

StructuredComponent

AssemblyConnector

*

1

ownedConnectors

endPort
*

AssemblyPart
*0..1

/parts

endPart
*

MARTE::Causality::CommonBehavior::
BehavioredClassifier

MARTE::CoreElements::Foundations
:: Property
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Figure 11.3 - Flow ports of the GeneralComponentModel package

One of the main reasons to have refined the UML component model within this specification is to support both message- 
and flow- oriented communication schemas. 

FlowPorts have been introduced to enable flow-oriented communication paradigm between components.  A flow port 
enables to specify the nature of flow that it may relay. A flow port may handle incoming (in), outgoing (out) or 
bidirectional (inout) flows. If a flow port is atomic, the "type" association role, inherited from Property, is used to specify 
the nature of the flow and its "direction" attribute is used to specify the direction. If the port is not atomic, the 
"specification" association role is used to specify the nature of the flow using a FlowSpecification. The flow direction has 
to be fixed for each FlowProperty owned by the FlowSpecification then. An atomic flow port typed by a Signal, 
specifying an incoming flow direction, maps to a Reception of the signal. An atomic flow port typed by a signal, 
specifying an outgoing flow direction, declares the ability for the port to relay the signal over connectors. Flow properties 
support incoming and outgoing signals the same way.

Figure 11.4 - Message ports of the GeneralComponentModel package

isConjugated: Boolean [1] = false
/isAtomic: Boolean [1] = false
direction: DirectionKind

FlowPort

direction: DirectionKind [1]

F lowProperty
F lowSpecification

specification0..1

*ow ner
1 property

InteractionPort

Foundations::
Proper ty

in
out
inout

« enumeration »
DirectionKind

ServiceFeature
direction: DirectionKind [1]

SignalFeature

* owner
1signal *owner

1 service
SignalSpecification ServiceSpecification

provided *specification *

isConjugated: Boolean [1] = false
/isAtomic: Boolean [1] = false
direction: DirectionKind

MessagePort

InteractionPort

required*

in
out
inout

« enumeration »
DirectionKind
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Message ports support a request/reply communication paradigm. In one hand, they may provide or/and require services 
(ServiceSpecification) and in other hand they may also publish or/and consume signals defined in SignalSpecifications. 
SignalSpecifications have a set of SignalFeatures defining published (out) and consumed (in) signals, which are specified 
by the direction attribute. Particularly, atomic message ports (attribute isAtomic to true) cannot require and provide 
services. If the direction value of an atomic message ports is "in" (resp. "out"), it "consumes" (resp. "produces") one and 
only one signal. If the value is inout, the atomic message port is able to consume and publish event occurrences of the 
referenced signal. ServiceSpecifications are defined by a set of ServiceFeatures.

Figure 11.5 - Kinds of InvocationAction in the GeneralComponentModel package

In order to deal with the specific case of communication actions for components, the Action concepts introduced in the 
CoreBehaviorModel package has been specialized into the InvocationAction classifer. This action models a 
communication action between components via its exposed ports and it refined in three kinds of invocation actions: 
BroadcastSignalAction enables a component a send a signal on a port, ServiceCallAction is used to call a service 
provided by a component though one its ports, and FlowSendAction enables a component to send a data flow via ports.

11.3 UML Representation
The concepts presented in the domain view of the General Component Model are here mapped to concrete UML 
stereotypes for implementing in practice the corresponding extensions to UML. The stereotypes proposed extend those 
elements of UML that better catch the semantics, expressiveness, and notation of the concepts introduced, but there is not 
formal relationship between these UML meta-classes and the concepts used in the domain view for its semantic 
definition.

InvocationAction

BroadcastSignalAction ServiceCallAction FlowSendAction

InteractionPort
onPort

1

Causality::CommonBehavior::
Action

FlowProper ty

dataToSend *

ServiceFeatureSignalFeature

signalToProduce * serviceToCall *
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11.3.1 Profile Diagrams

Figure 11.6 - UML2 profile of the MARTE GeneralComponentModel

11.3.2 Profile Elements Description

This section describes in details each elements introduced in the profile diagram described previously. The following list 
is sorted in alphabetical order.

11.3.2.1 BFeatureKind

It is used with atomic flow (or message) ports to specify the direction of a flow element or a signal that types the port. It 
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal 
specification), or the direction of its owned properties.

Literals
• in used to model a signal reception.

• out used to model signal sending capability.

• inout used to model that a given signal may be both received and sent.

• required used to model that an operation is required.

• provided used to model that an operation is provided.

« profile »
GeneralComponentModel

« metaclass »
Portin

out
inout

« enumeration »
DirectionKind

/isAtomic: Boolean [1] = false
isConjugated: Boolean [1] = false
kind: BFeatureKind [0..1]

« stereotype»
MessagePort

« metaclass »
Interface

direction: DirectionKind [1]

« stereotype »
FlowProperty

« metaclass »
Property

direction: DirectionKind [0..1]

« stereotype »
FlowSpecification

kind : BFeatureKind [0..1]

« stereotype »
BFeatureSpecification

« metaclass »
InvocationAction

« stereotype »
SendFlowAction

/isAtomic: Boolean [1] = false
isConjugated: Boolean [1] = false
direction: DirectionKind

« stereotype»
FlowPort

in
out
inout
required
provided

« enumeration »
BFeatureKind

kind: BFeatureKind [1]

« stereotype »
FlowBFeature

« metaclass »
BehavioralFeature
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• reqpro used to model that an interface define both required and provided operations.

11.3.2.2 BFeatureSpecification

The BFeatureSpecification stereotype maps to both SignalSpecifcation and ServiceSpecifcation domain elements as 
described in Annex F.

A BFeatureSpecification provides a way to define specialized interface that allows for defining its nature in terms of 
either its ability to receive and send UML signals, or of its provided and required operations.

Extensions
• Interface.

Generalizations
• None.

Attributes
• kind: BFeatureKind [0..1]  

nature of the BFeatureSpecification. If present, all the BehavioralFeature contained in the interface will of  
the specified kind.

Associations
• None

Constraints
[1] A flow specification owns only properties, it cannot own operation or reception.

Notation
When applying the stereotype using its iconographical or shape forms, following icons are proposed:  for 
BFeatureSpecifcation with kind = in;  for BFeatureSpecifcation with kind = out;  for BFeatureSpecifcation with kind 
= inout;  for BFeatureSpecifcation with kind = required;  for BFeatureSpecifcation with kind = provided;  for 
BFeatureSpecifcation with kind = reqpro. Figure 11.7 describes an example using different graphical forms applying 
UML stereotypes.

Figure 11.7 describes an example using different graphical forms applying UML stereotypes.

     Start()

« interface »
«bFeatureSpecification»

{direction = inout}
SpeedSensorFS

     Start()

« interface »
«bFeatureSpecification»

SpeedSensorFS
     Start()

« interface »
SpeedSensorFS

(iv) shape form

targetSpeed: Integer [1]

« signal »
Start

RegStarterSigS
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Figure 11.7 -  Examples of BFeatureSpecification

11.3.2.3 DirectionKind

This enumeration maps the DirectionKind domain concept defined in Annex F.

It is used with atomic flow (or message) ports to specify the direction of a flow element or a signal that types the port. It 
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal 
specification), or the direction of its owned properties.

Literals
• in The direction of the information flow is from outside to inside of the owning entity. When related to a signal, it is 

usual to say that the signal is consumed.

• out The direction of the information flow is from inside to outside of the owning entity. When related to a signal, it is 
usual to say that the signal is produced or published.

• inout The information  flow is bidirectional.

11.3.2.4 FlowBFeature

This FlowBFeature stereotype maps both SignalFeature and ServiceFeature domain elements as described in Annex F.

A FlowBFeature specifies the nature of a BehavioralFeature owned by interfaces stereotyped as "BFeatureSpecification". 
If kind is in, out or inout, the BehavioralFeature will be a Reception while if kind is required or provided, it is expected 
to be an Operation.

Extensions
• BehavioralFeature (from UML::Kernel).

Generalizations
• None.

Attributes
• kind: BFeatureKind [1] nature of the FlowBFeature.

Associations
• None.

Constraints
[1] If kind is in, out or inout, the extended BehavioralFeature has to be a Reception.

[2] If kind is required or provided, the extended BehavioralFeature has to be an Operation.

[3] kind= proreq does not apply.

« interface »
«bFeatureSpecification»

SpeedSensorFS SpeedSensorFS

« interface »
SpeedSensorFS

kind = reqpro
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11.3.2.5 FlowPort

This stereotype maps the concept of FlowPort defined in Annex F. A FlowPort may relay incoming, outgoing or 
bidirectional flows  The nature of the flow can be specified by a property type in the case of an atomic flow port. A flow 
can be also specified in terms of flow specifications and flow properties, in the case of a non-atomic flow port.

Extenssions
• Port (from UML::Ports)

Generalizations
• None.

Attributes
• isAtomic: Boolean [1] = false 

If true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port. An atomic 
port is typed by a Classifier, Signal, a DataType or a PrimitiveType.

• isConjugated: Boolean [1] = false 
If true, the port is said to be a conjugated port. In this case, all the directions of the flow properties 
(FlowProperty) specified by a FlowSpecification that types a port are relayed in the opposite direction 
(e.g., an incoming flow property is treated as an outgoing flow property by the FlowPort). By default, 
the value is false. This attribute applies only to non-atomic ports.

• direction: DirectionKind [0..1] 
It specifies the direction of the port when the port is atomic. In other case, this property is not 
applicable.

Associations
• None

Constraints
[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.

[2] If a port is non-atomic, it cannot specify a direction.

self.isAtomic = false implies self.direction->size() = 0

[3] A conjugated port cannot be an atomic port.

self.isConjugated = true implies self.isAtomic = false

[4] The type of a non-atomic flow port has to be a flow specification (i.e. an interface stereotyped with 
"flowSpecification").

Notation
When a flow port is atomic, the following graphical notation may be used:    for incoming atomic flow ports;   for 
outgoing atomic flow ports;    for bidirectional atomic flow ports. Figure 11.8 shows an example of a Speedometer 
class owning a port called outSpeed. This port is an outgoinf atomic flow port typed as Integer. That means that instances 
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of this Speedometer class can send outSpeed Integer data to other external elements connected to this port (Note that 
Figure 11.9.i used the stereotype notation mixing both text and icon forms, whereas Figure 11.9.ii uses only the icon 
form).

Figure 11.8 - Example of atomic flow port

When a flow port is non-atomic, the following icon may be used for the stereotype (Figure 11.9): .

Figure 11.9 - Example of non-atomic flow port

11.3.2.6 FlowProperty

This stereotype maps the FlowProperty domain concept defined in Annex F. A FlowProperty defines the type and the 
direction of a single flow element carried through flow ports. It may relate to a Classifier, a Signal, a PrimitiveType or a 
DataType. A flow property isused by as part of a flow specification to characterize the type of a non-atomic flow port.

Extensions
• Property

Generalizations
• None

Attributes
• direction: DirectionKind [1] direction of the flow property.

Associations
• None

Constraints
• None

Speedometer

« flowPort »
outSpeed: Integer [1]

isAtomi c =  true
di rection =  out

Speedometer
outSpeed: Integer [1]

(i)  icon + text form (ii) icon form

Speedometer

( i) text + icon forms

« flowPort »
outSpeed: SpeedSensorFS

Speedometer

(ii)  icon form

outSpeed: SpeedSensorFS

     cSpeed: SpeedDT
     cTime: Time

« interface »
« flowSpecification » {direction = inout}

SpeedSensorFS
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Notation
When applying the stereotype using its iconographical form, following icons are proposed:  for incoming flow 
properties;  for outgoing flow properties;  for bidirectional  flow properties. Figure 11.10 describes an example using 
both textual and iconographical forms of the stereotype.

Figure 11.10 -  Example of flow properties

11.3.2.7 FlowSendAction

This stereotype maps the FlowSendAction domain concept defined in Annex F. A FlowSendAction is used to send a flow 
to other connected components. In that case, connected component ports indicate that they accept this type of flow in 
input.

Extensions
• InvocationAction (from UML2::CompositeStructure).

Generalizations
• None

Attributes
• None

Associations
• None

Constraints
• None

Notation

<flow-send-action> ::= 'send('(<flow-property>'=' 
<value-specification>)+') via '<port-name>

<value-specification> defined in VSL (Annex B, p.353).

Within activity diagrams, a FlowSendAction is notated with a convex pentagon,
where:

     cSpeed: SpeedDT
     cTime: T ime

« interface »
« flowSpecification » {direction = inout}

SpeedSensorFS

« flowProperty » { direction = out }  cSpeed: SpeedDT
« flowProperty » { direction = in } cT ime: T ime

« interface »
« flowSpecification » {direction = inout}

SpeedSensorFS

(i)  text form (ii)  icon form

< flow-send-ac tion>
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<port-name> ::= <string-litteral>

<flow-property> ::= <string-litteral>

<string-litteral> defined in VSL (Annex B, p.353).

Figure 11.11 depicts an example of a flow send action consisting in sending the integer value 4 via its port called 
outSpeed.

Figure 11.11 - Example of FlowSendAction within an activity diagram

11.3.2.8 FlowSpecification

This stereotype has been defined to specialize interfaces used to type flow port (domain concept introduced in Annex F) 
in order to enable the description of the different data a flow port may relay.

Extensions
• Interface.

Generalizations
• None.

Attributes
• direction: DirectionKind [0..1] 

specifies if the interfaces is an in, out or inout data flow interface. That means respectively that the interface 
owns only in, out or inout FlowProperty. The services of a ServiceSpecification are its owned operations.

Associations
• None

Constraints
[1] If the direction of flow specification is "in", all its owned flow property must be conformed to this direction (i.e., 

only in flow properties).

[2] If the direction of flow specification is "out", all its owned flow property must be conformed to this direction (i.e., 
only out flow properties).

Notation
When applying the stereotype using its iconographical or shape forms, following icons are proposed:  for in flow 
specifications;  for out flow specifications;  for inout flow specifications. Figure 11.12 describes an example using 
different graphical forms applying UML stereotypes.

Figure 11.12 describes an example using different graphical forms applying UML stereotypes.

send (4) via outSpeed
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Figure 11.12 - Example of flow specification

11.3.2.9 MessagePort

This stereotype maps the MessagePort domain concept defined in Annex F.

Extensions
• Port (from UML::Ports)

Generalizations
• None

Attributes
• /isAtomic: Boolean [1] = false 

if true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port.

• isConjugated: Boolean [1] = false 
if true, the port is said to be a conjugated port. In this case, all the directions of the flow properties 
(FlowProperty) specified by a FlowSpecification that types a non-atomic port are relayed in the 
opposite direction (e.g., an incoming flow property is treated as an outgoing flow property by the 
FlowPort). By default, the value is false and this attribute applies only to non-atomic ports.

• kind: BFeatureKind [0..1] 
specifies the kind of the port when the port is atomic. In other case, this property is not applicable.

Associations
• None

Constraints
[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.

[2] If a port is non-atomic, it cannot specify a kind.

self.isAtomic = false implies self.kind->size() = 0

[3] A conjugated port cannot be an atomic port.

self.isConjugated = true implies self.isAtomic = false

[4] If a message port is atomic then its type has to be a Signal.

[5] If a port is atomic, valid values for kind are only in, out or inout.

« interface »
« flowSpecification »

{direction = inout}
SpeedSensorFS SpeedSensorFS

« inter face »
« flowSpecification »

SpeedSensorFS

« interface »
SpeedSensorFS

( i)  text form (ii)  icon form (iii)  icon + text form (iv) shape form
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Notation
When a message port is atomic, the following graphical notation may used:  for one port consuming signal occurrences 
according to its type (i.e. direction value set to in);  for one port producing signal occurrences according to its type (i.e. 
direction value set to out);  for one port consuming and producing signal occurrences according to its type (i.e. 
direction value set to inout).

Figure 11.13 denotes an example of UML component owning a message port as defined in this specification. The 
CarSpeedRegulator component has an atomic message port typed by the Start Signal. That means its potential instances 
will consume Start signal occurrences.

Figure 11.13 - Example of atomic message port

When a message port is non-atomic, the following icon may be used for the stereotype (Example in Figure 11.14): .

Figure 11.14 - Example of non-atomic message port

11.4 Examples

11.4.1 Automotive Example

The example shown in Figure 11.15 denotes the interface description for the example of component model depicted 
previously. The package SpeedRegulatorInterfaces consists of three interface definitions and one signal declaration. The 
RegInterface is a UML2 interface stereotyped with "signalSpecification" and "serviceSpecification" because it specifies 
respectively that the Start signal  may be consumed (This latter has been previously declared within the package 
SignalDeclarations) and the controlEngine service is required. The ECInterface interface is stereotyped as 
serviceSpecification (in this case, the graphical representation of this interface shown at top-right side of Figure 11.15 
only displays its associated iconographic representation " "). This interface defines the controlEngine required service 
(denoted here by the icon " " placed before the operation name). Finally, the SpeedInterface interface is a 
"signalSpecification" interface that declares a produced signal, Start (in this case, we only used the textual form of the 
stereotype). The three previous interfaces are examples of applying the stereotypes defined in the general component 
model (GCM) of MARTE. We have illustrated the usage of stereotypes following the three possibilities offered by UML: 
textual and iconographic form (e.g., RegInterface), only iconographic form (e.g., ECInterface) and only textual form (e.g., 
SpeedInterface).

CarSpeedRegulator

isAtomic = true
di rection = out

« msgPort »
on: Start [1]

targetSpeed: Integer [1]

« signal »
Start CarSpeedRegulator

on: Start [1]

CarSpeedRegulator engineCmd: ECInterface [1]CarSpeedRegulator
« msgPort »

engineCmd: ECInterface [1]

(i)  text + icon forms (ii)  icon form
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Figure 11.15 - Interfaces definition for a speed regulator example

The example shown in Figure 11.16 denotes a CarSpeedRegulator composite class: its exposed ports and its internal parts. 
This class has two ports stereotyped with "msgPort": regOn and engineCmd. The former port is an atomic port and its 
direction is set to out (Note that the attribute values of the applied stereotype are shown in the comment symbol attached 
to the stereotyped port). The port is typed with the Start signal (see previous definition of this signal in the package 
SignalDeclarations in Figure 11.15). CarSpeedRegulator exposes then to its environment a port through which it can 
consume Start signal occurrences. The second port exposed by CarSpeedRegulator is called engineCmd. It is a port 
stereotyped by "msgPort". Note that the attribute values of the applied stereotype are not shown in this case, because we 
apply here the default values, i.e., isAtomic = false and isConjugated = false. The direction property of the stereotype 
does not apply in this case because the type of the port is an interface stereotyped with "serviceSpecification" (this latter, 
ECInterface, defines a required service as denoted in Figure 11.15.).

In addition, CarSpeedRegulator owns also two parts: spm and rgm. The spm part specifies an output atomic flow port 
(port stereotyped with "flowPort") which can relay outside the outSpeed data typed as Integer. The rgm part defines firstly 
an atomic input flow port (port stereotyped with "flowPort") through which the integer inSpeed data can be relayed from 
outside (i.e., from its environment). The second port owned by the rgm part (the rp port) is a message port (stereotype " 
msgPort" and associated icon " "). This port is typed byt the RegInterface which defines both a required service and a 
input signal (see the detailed definition of the interface in Figure 11.15).

SpeedRegulatorInterfaces

     Start()
     controlEngine(in torque: Real [1])

« interface »
« signalSpecification , serviceSpecification »

RegInterface

     Start()

« interface »
« signalSpecification»

SpeedInterface

   controlEngine (in torque: Real [1])

« interface »
ECInterface

SignalDeclarations

targetSpeed: Integer [1]

« signal »
Start
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Figure 11.16 - Example of UML composite classes and parts with specialized MARTE ports

Figure 11.17 - Example of UML component with specialized MARTE ports

11.4.2 Avionics Example

Figure 11.18 illustrates a Trajectory component used in a Flight Management System inspired from an avionics textbook. 
This component computes a trajectory and generates continuous navigation commands to other equipment. Trajectory 
depends on three components, defined in related packages, to perform its tasks: FlightPlan, Location, and Database.

Trajectory makes use of flight plan data, as well as the current plane location to perform computations. It explicitly calls 
the getLocation and getFlightPlan required services, to access these data when needed. These services are defined in the 
LocationAccess and FlightPlanAccess interfaces, bound to two dedicated message ports.

Trajectory also makes use of performance and fuel consummation parameters stored in its cache. It happens that a pilot 
changes these parameters, initially stored in the database, when the FMS is in operation. If so, the Database component 
notifies Trajectory that new parameters need to be taken into account. This information is pushed through an atomic flow 
port to the Trajectory component. The     icon indicates that the direction of the Trajectory flow port is "in". The flow 
port is typed by a ParameterUpdated signal that contains new parameter data.

When computations are completed, Trajectory generates navigation commands as a data flow specified by the 
NavCommand flow specification. The data flow is transmitted to external equipment through a dedicated flow port. The 

  icon indicates that the port is typed by a flow specification and therefore it is not atomic.

CarWithSpeedRegulator

CarSpeedRegulator

rgm:Regulator [1]« msgPort »
rp: RegInterface [1]

spm:Speedometer [1]

« flowPort »
outSpeed: Integer [1]

« msgPort »
regOn: Start [1]

« msgPort »
engineCmd: ECInterface [1]

SpeedR egulatorInterfaces

isAtomi c =  true
direction = in

isA tom ic = t rue
direct ion = out

isA tomic = true
direction = in

« flowPort »
inSpeed: Integer [1]

CarSpeedRegulator

« msgPor t »
regOn: Start [1]

isAtomi c = true
direc ti on = in

« msgPor t »
engineCmd: ECInter face [1]
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Figure 11.18 - Trajectory component definition

Figure 11.19 illustrates the internal structure of the simple FMS. It shows how the Trajectory component, along with 
FlightPlan, Location and Database, is used as a part of the FlightMangementSystem composite structure. One can 
distinguish boundary ports, owned by FlightManagementSystem and defined at the component boundaries. These ports 
relay incoming data inside a component (e.g., cdsCom, cdsDisplay, irs, radio) or outgoing data to other connected 
components (e.g., extNav). The other ports indicated in the composite structure relate to component parts (e.g., fp, loc, 
update, nav, owned by the :Trajectory part). These ports are used to tie parts together using connectors and define a 
component assembly. Within a component assembly, connected ports need to define compatible types and directions. 
Message ports need to be typed by a common interface (e.g., PlanAccess), a left-hand port providing this interface (e.g., 
traj) and a right-hand port requiring this interface (e.g., fp). Flow ports need to be typed by a common flow element or 
flow-specification (e.g., ParameterUpdated), with opposite directions on the left-hand and right-hand ports (e.g. ,src and 
handler).

A boundary port can be connected to a port owned by a part in order to relay a service invocation or a data flow to the 
component assembly (e.g., cdsDisplay and cds). In that case, port directions are relayed as well.

Trajectory
fp: PlanAccess

loc: LocationAccess

« FlowPort »
update: ParameterUpdated

« FlowPort »
nav: NavCommand

« flowProperty »  {direction = out} vnav: Command
« flowProperty »  {direction = out} lnav: Command

« interface »
« flowSpecification »

NavCommand

Trajectory

newParam: ParameterData

« signal »
ParameterUpdated

Database

LocationData: getLocation()

« interface »
LocationAccess

Location

FlightPlanData: getFlightPlan()

« interface »
PlanAccess

FlightPlan
132                 A UML Profile for MARTE, Beta 1



Figure 11.19 - FlightManagementSystem internal structure

Note – Both Figure 11.18 and Figure 11.19 are compatible with the SysML block definition diagrams and internal block 
diagrams.

FlightManagementSystem

:Database

:FlightPlan

:Location

:Trajectory
extNav: NavCommand

radio: RadioInterface

irs: IRSInterface

radio: RadioInterface

nav: NavCommand

handler: ParameterUpdated

traj:

src: ParameterUptated

loc:

irs: IRSInterface

cds:

fp:

db:

 

cds:

 

LocationAccess

LocationAccess

fp:PlanAccess

PlanAccess

loc:

CDSCommand

CDSCommand

cdsCom:

CDSDisplay

CDSDisplay

cdsDisplay:

DBAccess

DBAccess
A UML Profile for MARTE, Beta 1        133



134                 A UML Profile for MARTE, Beta 1



12 Allocation Modeling (Alloc)

This chapter contains both domain and UML viewpoints for allocation modeling.

12.1 Overview
Allocation of functional application elements onto the available resources (the execution platform) is main concern of 
real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to 
map various algorithmic operations onto available computing and communication resources and services.

The MARTE profile defines relevant application and execution platform models (chapter 13 and chapter 14). A MARTE 
allocation is an association between a MARTE application and a MARTE execution platform. Application elements may 
be any UML element suitable for modeling an application, with structural and behavioral aspects. An execution platform 
is represented as a set of connected resources, where each resource provides services to support the execution of the 
application. So resources are basically structural elements, while services are rather behavioral elements.

Application and execution platform models are built separately, before their pairing through the allocation process. Often 
this requires prior adjustment (inside each model) to abstract/refine its components to allow a direct match. Allocation can 
be viewed as a "horizontal" association, and abstraction/refinement layering as a "vertical" one, with the abstract version 
relying on constructs introduced in the more refined model. While different in role, allocation and refinement share a lot 
of formal aspects, and so both will be described here. This dual function was recognized in SPT, where allocation was 
called realization, while refinement was used as such.

Application and execution platform elements can be annotated with time information based on logical or physical clocks. 
Allocation and refinement should provide relations between these timing under the form of constraints between the clocks 
and their ticks. Other similar non-functional properties definable from the NFPs package (such as space requirement, cost, 
or power consumption) can also be considered.

Note: we do not use here the UML notion of deployment, but rather a SysML-inspired notion of allocation to emphasize 
the fact that Execution Platform models should themselves be abstract and not seen as concretization models.

In the simplest case application elements are untimed, without explicit logical clocks attached. Asynchronous parts can 
also be attached to fully independent virtual clocks. In this simple case the timed allocation provides a physical duration 
(and maybe other constraints) to the execution of this given application function on this given execution platform service 
or resource. In the more general case timed allocations provide constraints between the virtual logical clocks on the 
application side and the more physical technical clocks on the platform side. Clocks on the application side can be 
important as they allow the user for visualizing a possible scheduling, maybe computed by subsequent tools and 
respecting the provided scheduling constraints, rather than being provided by the user himself.

Refinement (or its inverse abstraction) should also relate the more abstract clocks to the mode refined. On the application 
side, abstraction grouping could amount to performing a number of operations in a single instruction (by parallelization, 
vectorization, or by replacing a task body by a simple call to it). Atomic instants at some level can be subdivided into 
many micro-steps at a more refined level. On the execution platform side, abstraction can help define new services built 
as collaborations between resource elements and lower-level services; these services can be generic, or ad-hoc to help 
represent simply the allocation of application functions using them. Again here the clocks can be subdivided to represent 
the division of service calls into more atomic services.
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Allocation can be specified in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association 
between a group of structural elements and a group of resources. Behavioral allocation is an association between a set of 
behavioral elements and a service provided by the execution platform. When clear from context, hybrid allocations can 
also be allowed (for instance when an implicit service is uniquely defined for a resource). At the finer level of detail, 
behavioral allocation deals with the mapping of UML actions to resources and services. 

The next subsection considers how resources can be grouped to collaborate and provide a given service, possibly with a 
given scenario. The following subsection describes the principles of the Allocation process (between two previously 
independent models). The last part deals with NFP annotations.

Grouping process (Abstraction/Refinement)
Allocations concerns groups of elements. Such grouping of resources was already included in the service definition. The 
intention is as follows: grouping, together with the associations already existing at each side (application or platform), 
should provide a way to represent a change of atomicity level (abstraction/refinement) inside each model. If a number of 
application actions (sets of instructions or subprogram) can be realized atomically as a platform service, itself being made 
of several resources collaborating according to a given scenario, then this scheme allows for linking them by an atomic 
mapping between the two models. The preliminary process of constructing the entities to be matched is conducted 
separately, inside each model. This shows a separation of concern between service definition and actual mapping of 
matching elements. 

Groups of services could themselves be viewed as compound services. Keeping the two levels is useful to discriminate 
between generic services, built on the platform in full isolation, and ad-hoc services, only introduced to cover specific 
needs of a particular application.

Allocation process 
Allocation results in both spatial distribution and temporal scheduling. Spatial distribution is the allocation of 
computations to processing elements, of data to memories, and of data/control dependencies to communication resources. 
Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or 
communication) allocated to each resource. Scheduling is represented as a relation between the respective time bases of 
application and platform elements.

In turn, the potential analysis performed due to allocation mapping may refine "back" the temporal aspects of 
applications, to reflect the results of constraints (scheduling, resource allocation and sharing) imposed by the execution 
platform. It may do so according to a possible refinement of the Time model at the application level.

Structural allocation enforces the corresponding behavioral allocation of encapsulated behaviors, so that contained 
elements "inherits" the allocation of compound structures unless otherwise stated at their level (and then the proper 
execution platform communication pattern should be feasible). For example, if a Behavior is executed in the context of a 
particular object, and this object is allocated to a particular ComputingResource C1 for execution, then any 
uml::CallBehaviorAction would by default use the "Call" service provided by C1. However, if the called Behavior 
belongs to an object to which another ComputingResource is allocated, it uses the "RemoteProcedureCall" service 
provided by C1 to reach C2 - assuming a communication path exists between C1 and C2.

The allocation model could offer different allocation alternatives for a given application element, so that there is an actual 
choice on how to map application functions and objects to various parts of the execution platform. The mapping can then 
be refined and made more precise in several ways by model transformations directed by analysis techniques.

Both spatial and temporal allocations have to be mutually and globally consistent to ensure a correct execution of the 
application by its deployment on the execution platform. This is in general the topic of analysis techniques that the 
current MARTE profile aims to offer. But the profile itself only describes the means to describe (total or partial) 
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allocations, some of which may be provided by users, some computed by advanced analysis techniques in any advanced 
design methodology associated with the profile. In usage the allocation model can be made to represent relations that are 
issued to the user from an analysis tool, not just provided by human edition.

Allocations should also comply with, or at least not contradict, the local associations and dependencies internal to both 
the application and the execution platform. For instance two actions connected by a dependency link should not be 
mapped to disconnected parts of the platform. Other well-formedness rules for maintaining structural and behavioral 
consistency are listed below.

Application actions and services both derive from TimedAction, hence have "start" and "end" time value specifications 
(related to different or to the same logical clock).

When an application action is allocated to an execution platform service, it implies a coincidence relation between all 
"start" events on the time base supporting the application action, and all "start" events on the time base supporting the 
execution platform service.

The same coincidence relation is implied for the "end" events on respective time bases. This enforces relations between 
logical clocks defined by the application, and logical clocks defined by the execution platform.

12.2 Domain View
Figure 12.1 shows a general view of allocation, while Figure 12.2 shows the refinement relations. Allocations are 
annotated with NfpConstraints as built from the NFP section of this document and refinement are more precisely 
annotated with ClockConstraints as defined in the Time Model section (chapter 9). Allocations provide links between 
independent models, while refinement/abstraction works by changing the focus on an underlying similar structure. 

Figure 12.1 - The allocation model

Allocations are used to associate individual application elements to individual execution platform elements. The role of 
the time constraints in such case is to provide correlations of some sort between the logical/virtual time bases used as 
activation conditions on the application side, and the more technical/physical time bases used as processor rates in the 
execution platform side.
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Allocation as from SysML can map structural to structural, and behavioral to behavioral or structural elements. 
Time::ClockConstraint specializes NFP_Annotations::NfpConstraint, using such constraints provides time links between 
the clients and the suppliers..

Figure 12.2 - The Refinement model

Refinement can deal with both application models and execution platform model. A single element on the more abstract 
side can be associated with a number of elements (a group) in the more refined side. In case a group of (structural) 
resources and (behavioral) services are grouped to form a more abstract behavioral element (a higher-level service), then 
a collaboration use scenarios or something similar should be introduced to indicate how the cooperation of the more basic 
entities form the more abstract service is implemented.

For instance on the application side a "task" call can be refined as its body, or arrange of operations can be parallelized 
(or vectorized) as a single instruction. On the execution platform side a service or transaction can be realized by a 
sequence of protocol steps.

12.3 UML Representation
The UML view for allocation is strongly inspired from the SysML solution. The SysML solution is satisfactory, but we 
wanted to emphasize three important points. First, the allocation is a mechanism aiming at defining a mapping from the 
logical parts (the application model elements) of the model to some more physical parts (the execution platform). Second, 
there can be several possible allocations and all of them imply a cost that affects the time budget, the power budget or the 
budget of any other non functional property. Last, there can be at least two reasons to make an allocation: to perform a 
spatial distribution of artifacts onto resources or resource services, or to schedule algorithmic parts onto available 
resources.

The allocation package includes all these three points.

Refinement

Time::
TimeRelatedEntities::

ClockConstraints::
ClockConstraint

* constraint

AllocationEnd

general

refined

1..*

Application
AllocationEnd

ExecutionPlatform
AllocationEnd

Allocations
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12.3.1 Profile Diagrams

The first step is to identify what can be allocated, the logical view-behavior or structure-, and what can serve as a target 
of an allocation, the physical view-a resource or a service-. The stereotype Allocated and its specialization (Figure 12.3), 
ApplicationAllocationEnd and ExecutionPlatformAllocationEnd are used for this matter. 

Figure 12.3 - The stereotype "allocated"

The second step is to identify what is allocated onto what and what are the reasons for such an allocation and what are the 
constraints implied by this allocation, hence the definition of the stereotype Allocate.

Figure 12.4 - The stereotype "allocate"

As in SysML, a special attention is given to activities since the notation is natural to allocate a set of actions to a 
structural element (classifier, instance or part). We define the stereotype AllocateActivityGroup (Figure 12.5), which 
name is less misleading than AllocateActivityPartition that would suggest an actual partition of activity nodes. We intend 
to represent possible allocations; we anticipate several cases where activity nodes will be shared by several allocate 
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activity groups. In this case, that means the shared activity nodes can be allocated either to one activity partition (an 
instance of the classifier, the instance itself or the instance playing the part represented by the activity partition) or to the 
other. The isUnique property explicitly prevents an activity node from being allocated to several groups. This does not 
mean the node cannot be shared by several groups, it only means that once we have made the final decision of the 
allocation, the node is actually allocated to only one group.

Figure 12.5 - The stereotype "AllocateActivityGroup"

For the purpose of specifying refinement, the abstraction mechanism offered by UML and the UML keyword refine are 
enough. Defining abstractions is useful in bottom-up approaches while making refinement is useful in top-down approach. 

Figure 12.6 - The stereotype "clockRefine"

Concerning the refinement we also think it is important to emphasize the fact that the refinement process implies some 
additional constraints that mostly concern clocks as defined in the Time Model package.

12.3.2 Profile elements description

12.3.2.1 Allocate (from Alloc)

The Allocate stereotype maps the Allocation domain element (section F.6.1) denoted in Annex F.

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements from a logical context, 
application model elements, to named elements described in a more physical context, execution platform model elements.
140                 A UML Profile for MARTE, Beta 1



The dependency Allocate can be used either to specify one possible allocation, in which case, a space exploration tool 
may determine what the best allocations are, or to specify an actual allocation in the system. The context in which the 
allocate dependency is used should be sufficient to know in which case we are. 

As a named element, a dependency can be constrained by any kind of UML::Constraint including NfpConstraint. The 
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when 
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the 
allocation is required, offered, etc.

When the nature is TimeScheduling, the allocate dependency represents a set of timed application model elements (the 
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model 
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock 
constraints.

Extensions
• Abstraction (from Dependencies).

Associations
• ?impliedConstraint: NFPs::NfpConstraint [*] 

The set of constraints implied by the allocation. Allocating an application model element on a resource 
has a cost. This cost is described using a set of non functional property constraints.

Attributes
• ?kind: AllocationKind [1]  

This differentiates the kind of allocations, whether both allocated elements on each side are structural, behavioral 
or whether this is an hybrid allocation.

• nature: AllocationNature [1]  
This identifies the purpose of the allocation, whether the allocation is equivalent to a spatial distribution, where 
several application model elements are distributed to different resources or whether timed elements are 
scheduled according to a given scheduler.

Constraints
[1] When the kind is structural, suppliers and clients must all be structural elements: classes, instance specifications or 

packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be 
behavioral elements, a UML::BehavioralFeature for example. When the kind is hybrid, suppliers must be behavioral 
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time::TimedElement and the 
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation
The "allocate" relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation. 
In other words, the directed line points "from" the elements being allocated "to" the elements that are the targets of the 
allocation 
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12.3.2.2 AllocateActivityGroup (from Alloc)

AllocateActivityGroup is used to depict an allocation relationship on an Activity. It is an extension of the metaclass 
UML::ActivityPartition.

AllocateActivityGroup is a standard UML::ActivityPartition, with modified constraints such that any actions within the 
partition must result in an "allocate" dependency between the activity used by the action, and the element that the 
partition represents.

Since we also intend to represent possible allocations, we anticipate several cases where activity nodes will be shared by 
several allocate activity groups (Figure 12.12.9). In this case, that means the shared activity nodes can be allocated either 
to one activity partition (an instance of the classifier, the instance itself or the instance playing the part represented by the 
activity partition) or to the other. The isUnique property explicitly prevents an activity node from being allocated to 
several groups. This does not mean the node cannot be shared by several groups, it only means that once we have made 
the final decision of the allocation, the node is actually allocated to only one group.

Extensions
• ActivityPartition (from IntermediateActivities).

Attributes
• isUnique: Boolean=false  

This specifies whether or not the actions contained in the partition can actually be allocated to several partitions 
(the default) or can only be allocated to only one.

Constraints
[1] All Actions appearing in an AllocateActivityGroup will be the /suppliers (from) end of a single Allocate dependency. 

The element represented by the AllocateActivityGroup will be the /client (to) end of the same Allocate dependency. 
This allows for defining non functional property constraints applying to all contained actions.

Notation
For brevity, the keyword used on an AllocateActivityGroup is "allocate", rather than the stereotype name 
("allocateActivityGroup").

12.3.2.3 Allocated (from Alloc)

The Allocated stereotype maps the AllocationEnd domain element (section F.6.2, p. 492) denoted in Annex F.

The stereotype Allocated applies to any named element that has at least one allocation relationship with another named 
element. Allocated named elements may be designated by either the /from or /to end of an "allocate" dependency.

The stereotype Allocated provides a mechanism for a particular model element to conveniently retain and display the 
element at the opposite end of any "allocate" dependency. With this stereotype you can allocate anything on anything. To 
make it clear you want to allocate something logical, from the application model, to something more physical (a resource 
or a resource service), more specific stereotypes-ApplicationAllocationEnd and ExecutionPlatformAllocationEnd-should 
be used instead.

The stereotype Allocated is kept as a concrete stereotype to keep some compatibility with the SysML stereotype that has 
the same name, but more specific stereotypes-ApplicationAllocationEnd and ExecutionPlatformAllocationEnd-should be 
used instead when possible.
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Extensions
• NamedElement (from Dependencies)

Associations
• None

12.3.2.4 AllocationNature (from Alloc)

AllocationNature is an enumeration type that defines literals used to specify the purpose of the allocation.

Literals
· spatialDistribution  

It indicates that the suppliers are distributed on the clients. Spatial distribution is the allocation of 
computations to processing elements, of data to memories, and of data/control dependencies to 
communication resources.

· timeScheduling  
It indicates that the allocation consists in a temporal/behavioural ordering of the suppliers, the order being 
given by the clients. Scheduling is the temporal/behavioral ordering of the activities (computations, data 
storage movements or communication) allocated to each resource.

12.3.2.5 AllocationKind (from Alloc)

AllocationKind is an enumeration type that defines literals used to specify the kind of named elements that are used as 
clients and suppliers. 

Literals
• structural indicates that the suppliers and the clients are all structural named elements 

• behavioral indicates that the suppliers and the clients are all behavioral named elements

• hybrid indicated that the suppliers and the clients are not of the same kind

12.3.2.6 ApplicationAllocationEnd (from Alloc)

The ApplicationAllocationEnd stereotype maps the ApplicationAllocationEnd domain element (section F.6.3) denoted in 
Annex F.

An ApplicationAllocationEnd is an Allocated named element on the logical side of the model, the application. It identifies 
an application model element that can be allocated to a resource or a resource service.

Generalizations
• Allocated (MARTE::Alloc).

Associations
• ?/allocatedTo: ExecutionPlatformAllocationEnd [*] 

The resources or resource services that are clients of an “allocate” whose client is extended by this 
stereotype. This property is the union of all clients to which this instance is the supplier. This 
association is derived from any “allocate” dependency
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Semantics
The stereotype ApplicationAllocationEnd identifies application model elements that are allocated to resources. Its 
allocatedTo attribute is derived from any “allocate” dependency and allows for tracing the resources on to which this 
element is allocated.

Notation
For brevity the keyword used on an ApplicationAllocationEnd is “app_allocated,” rather than the stereotype 
name(“applicationAllocationEnd”).

12.3.2.7 ClockRefine (from Alloc)

The ClockRefine stereotype maps the Refinement domain element (section F.6.5) denoted in Annex F.

ClockRefine is a dependency based on UML::Dependency. It is a mechanism for associating one abstract timed element 
to refined timed elements. The refinement process implies some additional constraints between the clocks of the abstract 
element and the clocks of the refined elements.

When a set of timed elements is to be allocated to execution platform elements they should first be grouped using the 
ClockRefine dependency. ClockConstraint should be associated with this dependency to specify relations between the 
clocks of the general element and the clocks of the refined ones.

Extensions
• Dependency (from Dependencies).

Associations
• constraints: Time:ClockConstraint [*] The set of constraints implied by the refinement. 

Constraints
[1] A single "clockRefine" dependency shall have only one supplier (from), but may have one or many clients (to).

context ClockRefine

inv: base_Dependency.from->size()=1 and base_Dependency.to->size()>=1

[2]  The client and the suppliers must be Time::TimedElement.

Notation
The “clockRefine” relationship is a dashed line with an open arrow head. The arrow points in the direction of the 
refinement. In other words, the directed line points “from” the element being refined “to” the elements that are the refined 
elements.

12.3.2.8 ExecutionPlatformAllocationEnd (from Alloc)

The ExecutionPlatformAllocationEnd stereotype maps the ExecutionPlatformAllocationEnd domain element (section 
F.6.4) denoted in Annex F.

An ExecutionPlatformAllocationEnd is an Allocated named element on the physical side of the model (the execution 
platform). It identifies a resource or a resource service to which application model elements can be allocated.
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The stereotype ExecutionPlatformAllocationEnd identifies resources onto which application model elements are 
allocated. Its allocatedFrom attribute is derived from any “allocate” dependency and allows for tracing the application 
model elements that are allocated.

Generalizations
• Allocated (MARTE::Alloc) on page 146.

Associations
• /allocatedFrom: ApplicationAllocationEnd [*] 

The application model elements that are suppliers of an "allocate" whose supplier is extended by 
this stereotype. The allocatedFrom elements are not necessarily derived from the same "allocate" 
dependency. A given resource can be the client of several application model elements, each of 
which is allocated using a separate “allocate” dependency. The association is derived from any 
“allocate” dependency.

Notation
For brevity the keyword used on an ExecutionPlatformAllocationEnd is “ep_allocated,” rather than the stereotype name 
(“executionPlatformAllocationEnd”).

12.4 Examples

12.4.1 Unix process

Figure 12.12.7 shows an example of allocations with three layers. The first layer describes the application point of the 
view, the second layer represents the operating system internals and the last layer shows the hardware parts. We use 
structured classifiers to represent both hardware and software resources.

The example models the design of a given operating system family, not a particular implementation. It represents a typical 
Unix operating system. A VxWorks model or an embedded Unix model would show a different partition of memory (e.g., 
no virtual memory). An Arinc653 OS model would show the explicit "partitions" as both space and time partitioning of 
hardware resources.

A refinement down to Posix threads would show further partitioning of the CPU resources without further partitioning of 
Memory.
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Figure 12.7 - Allocation of Unix processes

The diagram shows several resources such as computing resources, communication media and storage (using stereotypes 
defined in GRM), and how these resources can be grouped using a structured classifier and how they can be allocated to 
more physical resources.

The lower layer in the diagram represents the hardware elements.

The top layer is the view from the application: a (Unix, in this example) process is a group involving a time shared access 
to a computing resource, and a “spatial” partition in the virtual memory.

The intermediate layer is the implementation internals. The VirtualMemory is the high-level view as seen from the 
application process. Physically, this virtual memory relies on two types of physical storage (the actual physical memory 
and a hard disk).

This diagram is for illustration purpose. Often hard real-time application do not need to model the virtual memory and 
swap space, since a prior analysis based on a simpler model would have verified that the worst case memory requirement 
does not exceed available RAM memory.

12.4.2 System on Chip

To illustrate the use of the stereotype “clockRefine” we take the example of a system on chip (Figure 12.12.8). We first 
decide that we need to have a digital signal processor (e.g. the OAK+) to compute floating point operations and a Risc 
processor (e.g., an ARM 7) to control the whole application. The two processors are meant to communicate but we do not 
elaborate on the communication itself at this point (cf. the upper part of Figure 12.12.8). 
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Figure 12.8 - Communication refinement

We then decide to refine the communication (cf. the lower part of Figure 12.12.8). We use a double port Ram for the 
communication. The bus coming from the OAK+ is the GDP bus and the bus coming from the ARM7 conforms to the 
AMBA High-performance Bus specification. The "clockRefine" dependency specifies that these two connectors (GDP, 
AHB) and this part (ram : DPRAM) are refinements of the connector comm. Each named element involved in these 
structured classifiers are typed by a class stereotyped "clockType" (cf. the right part of Figure 12.12.8), which means 
there is no a priori assumption on relative rates of each part of this diagram. Additionally, the clock constraints associated 
with the dependency constrain these rates by stating that:

• The clock of the instance that is to be used to conform to the role ram, is the same than the macroscopic clock perceived 
for the global communication between the OAK+ and the ARM7;

• The clock of this instance is finer than the clock of the two busses (b1 : GDP and b2 : AHB). This is probably an over 
specification and the Time Model chapter (cf. Chapter 9) offers several clock relations that allows for defining 
constraints more accurate.  

Note that using a single dependency rather than three separate ones gives a stronger specification because the dependency 
identifies a common context that gathers all four constrained elements.   

12.4.3 Allocate activity group

To illustrate the use of the stereotype AllocateActivityGroup with take the example of a system described using an 
activity (Figure 12.12.9). The activity groups (P1 and P2) represent processors that are the potential clients for the actions 
of the activity. Because of the nature of the processor (digital signal processor or general purpose processor) and 
because of the physical localization of sensors (used by actions inpC, outW and outZ) some processing elements cannot 
be executed by one processor or another. For instance, the operation oper1 requires a hardware coprocessor not included 
on processor P2. However, the operation oper2 can be allocated to both processors even though the cost of the allocation 
(not represented here) could be different. An analysis tool could use this information to choose the best allocation 
regarding, for instance, to a time budget.
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Had we wanted to represent the allocation cost, we would have used the non functional property constraints defined in 
NFP chapter. For clarity, we can either draw explicitly dependencies or draw a separate table that would present the cost 
of each allocation.  

Figure 12.9 - Actions shared between two allocate activity groups
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Part II - MARTE Design Model

This Part contains the following chapters. 

• 13 - RTE Model of Computation and Communication (RTEMoCC)

• 14 - Detailed Resource Modeling (DRM)
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13 RTE Model of Computation & Communication 
(RTEMoCC)

13.1 Overview

Figure 13.1 - Dependencies of the RTEMoCC package

As illustrated by Figure 13.1, the RTEMoCC package of MARTE is depending of both GRM and CoreElements packages, 
but also on the CoreElements package. The concern of the RTEMoCC package is to provide high-level modeling concepts 
to deal with real-time and embedded features modeling. In comparison with usual application domains, RT systems (in 
short RTS) development requires possibilities of modeling on one hand quantitative features such as deadline and period 
and, in other the hand, qualitative features that are related to behavior, communication and concurrency. The next section 
will describe a domain model defining the MARTE concepts for RT/E high-level modeling constructs to support both 
aspects.

13.2 Domain View
One first important issue to deal with when modeling RTE applications is concurrency. In order to handle that feature, this 
specification proposes the concept of RtUnit as depicted in Figure 13.2. It provides high-level constructs for real-time and 
embedded application modeling based on the MARTE foundations introduced in Part I (within both CoreElements and 
GRM packages). An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns 
one or several schedulable resources (GRM::Scheduling::SchedulableResource). If its dynamic attribute is set to true, the 
schedulable resources are created dynamically when required. In other case, the real-time unit has a pool of schedulable 
resources. When no schedulable resource is available , the real-time unit may either wait indefinitely for a resource to be 
released, wait for only a given amount of time (specified by its poolWaitingTime attribute), increase its pool thread 
dynamically to adapt to the demand, or generate an exception.

Hence, a real-time unit may be seen as an autonomous execution resource, able to handle different messages at the same 
time. It can manage concurrency and real-time constraints attached to incoming messages. An RtUnit is a unit of 
concurency that encapsulates in a single entity both the object and the process paradigms, which means that concurrency 
control is encapsulated within the unit. Any real-time unit can invoke services of other real-time units, or send data flows, 
without worrying about concurrency issues. Real-time units are  some kind of tasks servers that can satisfy several 
requests from several real-time units at the same time, enabling intra-unit parallelism if necessary. An RtUnit owns also a 
concurrency and behavior controller for managing message constraints according to its current state and the concurrent 
execution constraints attached to the messages.

RTEMoCC

MARTE::CoreElements MARTE::GRM MARTE::GCM
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An application owns at least one main RtUnit. Following creation, each real-time unit that has a main (which is indicated 
by setting the isMain attribute to true) starts invoking a main real-time service, which executes until the real-time unit is 
terminated. Like any other real-time units, the main service of a main unit may perform explicit receive actions during its 
execution, in order to accept any received events. A receive action by a real-time unit leads to a direct activation of the 
appropriate service specification. During the execution of the service, triggered by the receipt of the message, the main 
service may either be blocked (the so-called "run-to-completion" paradigm), or it may proceed executing concurrently to 
other real-time service. In this latter case, intra-concurrency is to be available within a real-time unit.

An RtUnit may own one or several behaviors. For each of these behaviors is defined a message queue for saving the 
messages received by the unit. The size of this message queue may be infinite or limited. In this latter case, the queue size 
is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called operational mode. This 
behavior take usually the form of a state-based behavior where states represents a configuration of the RtUnit and 
transitions denotes reconfigurations of the unit.

Figure 13.2 - RtUnit of the RTEMoCC package

When modeling for concurrency, it is mandatory to be able to model shared information. For that purpose, it has been 
introduced the concept of protected passive unit (PpUnit) as denoted in Figure 13.3. Protected passive units specify their 
concurrency policy either globally for all of their provided services (concPolicy attribute), or locally through the 
concPolicy attribute of an RtService. The execution kind of a protected passive unit is either immediateRemote or 
deferred. In both cases, the execution is remote, i.e., it uses a schedulable resource of the real-time unit that invokes the 
service provided by the protected passive unit.
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Figure 13.3 - PpUnit of the RTEMoCC package

The incoming message queue of a real-time unit plays the role of the broker for its schedulable  resources. The possible 
scheduling policies defined within MARTE are specified by the MARTE::GRM::Scheduling::SchedPolicyKind 
enumeration. The size of the message queue may be either infinite or limited. In the latter case, its size is specified 
through its queueSize attribute. Additionally, a message queue can also specified the maximal size of the message 
(msgMaxSize attribute) that may be received.

Figure 13.4 - InMsgQueue of the RTEMoCC package

As shown in Figure 13.2 and Figure 13.3, real-time units and protected passive units may provide real-time services. In 
the case of the protected passive units, as they use the schedulable resource of invoking real-time units, it has to be 
specified the concurrency policy of the service (concPolicy attribute). The execution of a real-time service may be 
declared as atomic and it is also possible to specify how the execution is handled by the unit through the exeKind 
attribute. The service execution may be deferred (i.e. save in a queue of a behaviour of the unit) or immediate. In this 
case, in a real-time unit, the execution may be done in the context of the calling unit (i.e., remote execution) or in the 
context of the unit receiving the message (i.e., local execution). In case of a protected passive unit, the remote case does 
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not apply. Finally, a real-time service may specify a real-time feature and a concurrency policy. Both these information 
may be used by the internal controllers of real-time units and protected passive units to control the execution of their 
services.

Figure 13.5 - RtService of the RTEMoCC package

One other important qualitative feature to handle in this domain concerns the communication aspects. In UML, 
communications are initiated by executing specific actions such as call actions. Here it is  introduced the concept of real-
time action (specialization of the action concept introduced in the MARTE::CoreElements package). Real-time action can 
specify real-time features such as a deadline or period (see details of the ArrivalPattern data type introduced in the 
MARTE Model Library). It can also describe the size of the message generated when executing or the kind of 
synchronization (synchKind attribute). Finally, a real-time action execution may be defined as atomic.

Figure 13.6 - RtAction of the RTEMoCC package

Figure 13.7 introduces a new concept, called RteConnector, as a generalization of the Connector concept introduced in the 
MARTE::GCM package. Real-time embedded connectors are used when it is necessary to denote non-functional 
properties on component connectors (e.g., throughput, maximal size of messages that may be conveyed thought the 
connectors).
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Figure 13.7 - RteConnector of the RTEMoCC package

This section formalizes a specific model of computation aligned on the notion of active object defined in UML. It is 
applicable for asynchronous / event-based approaches to real-time and embedded application design.

Other approaches and models of computation exist in the real-time and embedded domain (e.g., synchronous objects). 
The MARTE specification does not explicitly address these models at this time. However, the framework introduced in 
Part I provides the foundations to specify alternative models of computation as an extension to the specification. Making 
use of the NFP, Time and GRM packages, interested parties are able to formalize user-defined models of computation that 
rely on the same semantics foundation. It provides the ability to leverage existing MARTE capabilities along with this 
specific model.

13.3 UML Representation
This section describes the MARTE RTEMoCC sub-profile. This latter contains all required UML extensions to support 
the concepts denoted in the previous domain model.

Figure 13.8 - The MARTE RTEMoCC sub-profile 
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13.3.1 Profile Diagrams

Figure 13.9 - RtUnit and PpUnit stereotype of the MARTE::RTEMoCC sub-profile

Figure 13.10 - RtBehavior stereotype of the MARTE::RTEMoCC sub-profile
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Figure 13.11 - rtf stereotype of the MARTE::RTEMoCC sub-profile

Figure 13.12 - RtAction of the MARTE::RTEMoCC sub-profile

Figure 13.13 - RtService of the MARTE::RTEMoCC sub-profile
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Figure 13.14 - RteConnector of the MARTE::RTEMoCC sub-profile

13.3.2 Profile Elements Description

13.3.2.1 CallConcurrencyKind

The CallConcurrencyKind ennumeration maps the CallConcurrencyKind domain element (section F.7.1) denoted in 
Annex F.

This enumeration defines the kind of concurrency policy applied to a protected passive unit. 

Literals
• sequential only one schedulable resource at a time can access a feature of a PpUnit. The PpUnit do not  

provide in this case access control mechanism, it is up to the client to deal with potential 
cconcurrent conflicts.

• guarded a schedulable resource at a time can access a feature of a PpUnit while concurrent ones are 
 suspended.

• concurrent multiple schedulable resources at a time can access a PpUnit.

13.3.2.2 ConcurrencyKind

The ConcurrencyKind ennumeration maps the ConcurrencyKind domain element (section F.7.3) denoted in Annex F.

This enumeration defines the kinds of concurrency of a behavioral feature.

Literals
• reader the behavioral feature execution has no side effects (i.e. it does not modify the state of the object,  

or the values of its properties).

• writer the behavioral feature execution may have side effects.

• parallel the behavioral feature execution may be done in parallel of any kind of service.

13.3.2.3 ExecutionKind

The ExecutionKind ennumeration maps the ExecutionKind domain element (section F.7.4) denoted in Annex F.

This enumeration defines the kind of execution of a behavioral feature.
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Literals
• deferred  

event occurrence matching the service invocation is saved in the queue of bahavior attached to the object.

• remoteImmediate 
the execution is performed immediately with schedulable resource of the calling object.

• localImmediate 
the execution is performed immediately with a schedulable resource of the called object.

13.3.2.4 PoolMgtPolicyKind

The PoolMgtPolicyKind ennumeration maps the PoolMgtPolicy domain element (section F.7.4) denoted in Annex F.

This enumeration has been introduced in the profile to define the concurrency pool management policy of the real-time 
units.

Literals
• infiniteWait if the pool is empty, the real-time unit waits indefinitely until a schedulable resource will be 

released.

• timedWait if the pool is empty, the real-time unit waits for bound time until a schedulable resource will be 
released. At the end of the waiting time, if no schedulable resource have released, an exception is 
raised.

• dynamic if the pool is empty, the real-time unit creates a new schedulable resource and adds it to the pool.

• exception if the pool is empty, the real-time unit raise an exception.

• other

13.3.2.5 PpUnit

The PpUnit stereotype maps the PpUnit domain element (section F.7.7) denoted in Annex F.

Protected passive units specify their concurrency policy either globally for all of their provided services (concPolicy 
attribute), or locally through the concPolicy attribute of the RtService. The execution kind of a protected passive unit is 
either immediateRemote or deferred. In this latter case, the execution is also remote, i.e. it uses the schedulable resource 
of the real-time unit invoking the service to the protected passive unit.

Extensions
• BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors).

Attributes
• concPolicy: CallConurrencyKind [0..1] 

kind of concurrency policy applied to the behavioural feature of the PpUnit. CallConcurrencyKind 
is the enumeration defined in the UML2. Its literal values may be as defined in UML: sequential, 
guarded or concurrent.

• memorySize: NFP_DataSize 
amount of static memory required for each instance of the protected passive unit to be placed in an 
application.
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13.3.2.6 RtAction

The RtAction stereotype maps the RtAction domain element (section F.7.8, p. 495) denoted in Annex F.

Real-time invocation action can specify real-time features such as a deadline or period (see details of the ArrivalPattern 
data type introduced in the MARTELib). It can also describe the size of the message generated when executing or the 
kind of synchronization (synchKind attribute). Finally, a real-time action execution may be atomic.

Extensions
• InvocationAction (from UML::BasicBehaviors).

• BehavioralFeature (from UML::Kernel).

Attributes
• synchKind: SynchronizationKind 

synchronization mechanism associated to the communication action.

• isAtomic: Boolean [1] = false 
if true, the action execution is atomic.

• msgSize: NFP_DataSize 
size of a message generated when executing an action.

13.3.2.7 RtBehavior

The RtBehavior stereotype maps both RtBehavior (section F.7.9) and InMsgQueue (section F.7.5) domain elements 
denoted in Annex F.

This stereotype matches to both the RtBehavior and the InMsgQueue domain concepts defined in Annex F.

A RtBehavior owns implicitly a queue to store the messages received by the real-time unit. If its owning unit is a real-
time unit, a schedulable resource, as soon as it gets available, can be assigned to handle a message.. The possible 
scheduling policies defined within MARTE are specified by the SchedulingPolicyKind enumeration. The size of the 
message queue may be either infinite or finite. In the latter case, its size is specified through its queueSize attribute. 
Additionally, a message queue can also specified the maximal size of the message (msgMaxSize attribute) that may be 
received.

Extensions
• Behavior (from UML::CommonBehaviors)

Attributes
• queueSchedPolicy: SchedPolicyKind [0..1] queue policy of the behaviour.

• queueSize : Integer [0..1] queue size.

• msgMaxSize : NFP_DataSize [0..1] maximal size of the messages acceptable in the queue.

Constraints
[1] If the owner of the RtBehavior is a protected passive unit both queueSchedPolicy and queueSize are not applicable.
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13.3.2.8 RteConnector

This RteConnector stereotype maps to the RteConnector domain element (section F.7.11) defined in annex F.

Real-time embedded connectors are used when one needs to denote non-functional properties on component connectors 
(e.g., throughput, maximal size of messages that may be conveyed thought the connectors).

Extensions
• Connector (from UML::InternalStructures)

Generalizations
• None

Associations
• None

Attributes
• bandwidth: NFP_DataTxRate [0..1] 

bandwith of the communication link.

• packetT: NFP_Duration [0..1] 
time to transmit a packet.

• blockT: NFP_Duration [0..1] 
time the communication host is blocked and cannot transmit.

• transmMode: MARTE_Library::MARTE_DataTypes::TransmModeKind [0..1] 
defines the transmission mode, one of the following values: {simplex,  
half-duplex, full-duplex}.

Constraints
• None

13.3.2.9 rtf

The rtf stereotype maps the RealTimeFeature domain element (section F.7.10) denoted in Annex F.

The rtf stereotype is used to annotate model elements with real-time features according to the properties defined within 
this stereotype. This stereotype may be also used in other contexts than RtUnit and PpUnit.

Extensions
• Action (from UML::Kernel)

• BehavioralFeature (from UML::Kernel)

• Message (from UML::BasicInteractions)

• Signal (from UML::Communication)

• Behavior (from UML::BasicBehaviors)
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Attributes
• utility: UtilityType [0..1] 

importance features specification. This property is typed by the UtilityType data type 
defined in the MARTE_Library. This type is abstract and it is to the user to define its own 
specialized utility type according to its needs.

• occKind: ArrivalPattern [0..1] 
arrival pattern specification.

• tRef: TimedInstantObservation [0..1] 
time reference used for relative timing properties.

• relDl: NFP_Duration [0..1] 
relative deadline specification.

• absDl: NFP_DateTime [0..1] 
absolute deadline specification.

• boundDl: NFP_BoundedDuration [0..1] 
bounded relative deadline.

• rdTime: NFP_Duration [0..1] 
minimal ready time.

• miss: NFP_Percentage [0..1] 
percentage of acceptance for missing the deadline.

• priority : NFP_Integer [0..1] 
priority specification.

13.3.2.10 RtService

The RtService stereotype maps the RtService domain element (section F.7.12) denoted in Annex F.

Real-time service can specify real-time features such as a deadline or period (see details of the ArrivalPattern data type 
introduced in the MARTE_Library::MARTE_DataTypes). It can also define a concurrency policy as well as an execution 
policy. Finally, a real-time action execution may be atomic. The RtService stereotype may be applied on one 
BehavioralFeature independently of the fact that the containing classifier to be either a RtUnit or a PpUnit.

Extensions
• BehavioralFeature (from UML::Kernel)

Attributes
• concPolicy: ConcurrencyKind [0..1] concurrency property of the service.

• exeKind: ExecutionKind [0..1] execution nature property of the service.

• isAtomic: Boolean [1] = false if true, the execution of the service is atomic.

• synchKind: SynchronizationKind [0..1] synchronization mechanism of the service.

13.3.2.11 RtUnit

The RtUnit stereotype maps the RtUnit domain element (section F.7.13) denoted in Annex F.
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An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns at least one 
schedulable resource, but can also have several ones. If its dynamic attribute is set to true, the schedulable resources are 
created dynamically when required. In other case, the real-time unit has a pool of schedulable resources. When no 
schedulable resources are available in the possible, the real-time unit may either wait indefinitely for a resource to be 
released, or wait only a given amount of time (specified by its poolWaitingTime attribute), or increase its pool thread 
dynamically to adapt to the demand, or generate an exception. An RtUnit may own behaviors that have one message 
queue for saving the messages received by the unit. The size of this message queue may be infinite or finite. In this latter 
case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called 
operational mode. This behavior take usually the form of a state-based behavior where states represents a configuration of 
the RtUnit and transitions denotes reconfigurations of the unit.

Extensions
• BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors)

Attributes
• isDynamic: Boolean [1] = true 

if true, it denotes that the real-time unit creates dynamically the schedulable resource 
required to execute its services. If false, the real-time unit owns a pool of schedulable 
resources to execute its services.

• isMain: Boolean [0..1] 
if true, the real-time unit is a main unit of the application.

• memorySize: NFP_DataSize 
amount of static memory required for each instance of the real-time unit to be placed in an 
application

• poolSize: Integer [0..1] 
size of the schedulable resource pool of a real-time unit.

• poolPolicy: PoolMgtPolicyKind [0..1] 
kind of pool policy adopted by a real-time unit.

• poolWaitingTime: NFP_Duration [0..1] 
maximal time a real-time unit waits for a schedulable resource to be released in case of pool 
management policy set to timedWait.

• operationalMode: Behavior [0..1] 
behavior owned by the real-time unit and denoting the operational modes of the real-time unit.

• main: Operation [0..1] 
main operation of the real-time unit.

• memorySize: NFP_DataSize [0..1] 
amount of static memory required for each instance of the real-time unit to be placed in an 
application.

Constraints
[1] If isDynamic is true, the real-time unit do not owns a pool of schedulable resources. Hence, poolSize, poolPolicy and 

poolWatingPolicy are not applicable.

[2] A main real-time unit has to own a main operation.
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13.3.2.12 SynchronisationKind

The SynchronisationKind stereotype maps the SynchronisationKind domain element (section F.7.14) denoted in Annex F.

This enumeration defines the kinds of synchronization mechanism for real-time actions.

Literals
• synchronous the action waits the end of the client execution before continuing to execute.

• asynchronous the action does not wait the end of the client execution before continuing to execute.

• delayedSynchronous the client action continues to execute and synchronize later when the client will return  
a value.

• rendezVous the client waits for the client to start executing.

13.4 Examples

13.4.1 Notational examples

Figure 13.15 describes a class diagram of a very simple cruise control system that is used to illustrate the usage of 
MARTE::RTEMoCC sub-profile. Both CruiseController and ObstacleDetector are real-time units. The former create 
dynamically schedulable resources to handle the execution of its services, and the latter has a pool of 10 schedulable 
resources.

Figure 13.15 - A very simple cruise control model

Figure 13.6 shows an example of call action with a deadline real-time feature specification. The generated message is 
aperiodic. Its time reference is denoted by the instant observation to. This latter denotes the start execution time of the 
action. The specified deadline is 10 ms and the acceptable rate of deadline missing is 1%.

Cruis eControlSystem

getSpeed(): S peed

« ppUnit»
{concPolicy=guarded}

S peedometer

«rtSe rvice» {exeKind =defe rred} start()
«rtSe rvice» {exeKind =defe rred} stop ()

tgSpeed: Speed

« rtUnit »
CruiseControl er

1
spm

« dataType»
Speed

sta rtDetect ion ()
stopDet ectio n ()

« rtUn it »
Obstac leDetector

1
spm

isDynami c =  false
isMain =  fal se
poolSi ze = 10
poolPol icy =  cr eate

i sMain =  true
main = star t
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Figure 13.16 - An example of call action with a deadline real-time feature

Figure 13.17 shows an example of call action with a priority real-time feature specification.

Figure 13.17 - An example of call action with a priority real-time feature

Figure 13.18 shows an example of real-time feature specification within a sequence diagram.

Figure 13.18 - Examples of real-time feature within sequence diagrams

act start

@t0 {kind=startAction}

occKind = aperiodic ()
value = (tRef=t0, relDl=(10, ms), miss=(1, %, max))

«rtf»
tgSpeed = spm->getSpeed()

act start

@t0 {kind=startAction}

occKind = aperiodic ()
value = (priority=4)

«rtf»
tgSpeed = spm->getSpeed()

sd CruiseControlStart

:CruiseControl :Speedometer

start()

@t0
startAcquisition()

occKind = aperiodic ()
value = (tRef=t0, relDl=(10, ms), miss=(1, %, max ))

occKind = periodic (period=(10, ms), ji tter =(2, us ))
value = ( tRef=t0, r elDl=(10, ms), miss=(1, %, max))

getSpeed()

Speed
occKind = periodic (period=(10, ms), ji tter=(2, us))
value = (tRef=t0, relDl=(10, ms), miss=( 1, %, max))
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13.4.2 Avionics example

In this example, we make use of components introduced in the avionics example of the General Component Model 
chapter. We refine these components by applying the real-time characteristics introduced in this chapter. We consider 
Trajectory, Location, FlightPlan and Database as  passive components that require to be allocated on execution resources 
to be set in operation.Figure 13.19 illustrates elements of the Location package used for communicating with Trajectory. 
Location is a passive component (e.g. Lw-CCM), which provides a real-time service called getLocation through its 
LocationAccess interface. The operation carries a "rtService" stereotype that indicates the concurrency kind (reader), the 
execution kind (deferred) and the synchronization kind (delayedSynchronous). The operation also carries a "rtf" 
stereotype that indicates additional real-time features, such as the priority (P1), the occurrence kind (10 ms period, 2 ms 
jitter), the relative deadline (3 ms), as well as the acceptable deadline miss ratio (1% i.e. a hard deadline). Defining these 
features at a service level is used as a contract defined between ports that provide and require the service. The 
characteristics are applicable whatever the service invocation context or action.

The Location package also introduces a protected passive unit, called LocationData and stereotyped "ppUnit". It is used 
to transmit data from the Location to the Trajectory component. When initialized, Location instantiates a LocationData 
object and keeps it periodically updated, based on the IRS and radio signal received. Trajectory concurrently accesses to 
the same object as a reader, invoking the getLocation real-time service every 10 ms. LocationData implements a 
sequential access policy that ensures integrity by preventing readers and writers to concurrently access to the same data.

Figure 13.19 - Real-time characteristics defined on elements of the Location package

Figure 13.20 illustrates the main behavior of the Trajectory component, called computeTrajectory. This activity defines a 
series of four periodic actions triggered every 10 ms. At the beginning of the period, two actions are concurrently 
activated: a CallServiceAction invokes the getLocation real-time service, while another CallServiceAction invokes the 
getFlightPlan real-time service. Real-time features defined on getLocation apply here and there is no need to redefine 
these. Real-time features can be also defined at an action level, using the "rtAction" and "rtf" stereotypes, as illustrated by 
the getFlightPlan, performComputation and generateCommand service call actions.

« rtService, rtf » LocationData: getLocation()

« interface »
LocationAccess

Location« FlowPort »
irs: IRSInterface

« FlowPort »
radio: RadioInterface

   loc:

latitude: Degree
longitude: Degree

« ppUnit »
LocationData

Location

concPolicy=sequential

priority=1
occKind = periodic (period=(10,ms), jitter=(2,us))
relDl=(3,ms)
tRef=t0
miss=(1, %, max)
concPolicy=reader
exeKind=deferred
syncKind=delayedSynchronous

LocationAccess
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Both getLocation and getFlightPlan service calls are delayed synchronous. Results shall be received and control flows 
need to be synchronized (with a 3 ms deadline constraint) before the trajectory computation begins with the invocation of 
the internal performComputation operation (synchronous, with a 4ms deadline constraint). Resulting commands can be 
generated and relayed through the nav flow port owned by Trajectory, with the invocation of the internal 
generateCommand operation  (synchronous, with a 1ms deadline constraint).

Figure 13.20 - Main behavior of the Trajectory component

Figure 13.21 illustrates another behavior owned by the Trajectory component. This activity is composed of aperiodic 
actions triggered upon a reception of a ParameterUpdated signal, sent by the Database component. When the signal is 
received, the deadline to handle parameter change is 1ms with a miss ratio of 20% (i.e. a soft deadline). The updateParam 
service call action is assigned priority P2. As a consequence, this operation will be invoked when the computeTrajectory 
activity is completed.

computeTrajectory

getLocation «rtAction, rtf»
getFlightPlan

«rtAction, rtf»
performComputation

priority=1
occKind = periodic (period=(10,ms), jitter=(2,us))
relDl=(3,ms)
tRef=t0
miss=(1, %, max)
syncKind=delayedSynchronous

priority=1
occKind = periodic (period=(10,ms), jitter=(2,us))
relDl=(4,ms)
tRef=t0
miss=(1, %, max)
syncKind=synchronous

priority=1
occKind = periodic (period=(10,ms), jitter=(2,us))
relDl=(1,ms)
tRef=t0
miss=(1, %, max)
syncKind=synchronous

@t0

« rtAction, rtf»
generateCommand
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Figure 13.21 - A trajectory behavior that handles events from Database

Figure 13.22 illustrates a particular execution of the Trajectory behaviors within a period, based on information presented 
in previous figures. It shows a possible series of interactions between components in that context. The period starts at 
t0[i]. A message is sent from Trajectory to Location, representing the getLocation service call in this sequence diagram. 
The message is be stereotyped as a real-time feature, indicating information such as period and deadline. Other 
characteristics (e.g., synchronization kind) are implied from real-time features defined on a real-time actions or services. 
A message is also sent from Trajectory to FlightPlan, representing the getFlightPlan service call.

Trajectory computation begins when both LocationData and FlightPlanData objects are returned (this internal behavior is 
not shown in this diagram). The sequence of actions used to compute the trajectory and generate the navigation 
commands shall end by t1[i], 8 ms after the beginning of the period. This allows 2 ms in order to handle aperiodic signals. 
An aperiodic signal arriving before t1[i] implies that its resulting processing will be delayed. The updateParam service 
call action has a lower priority than the other actions. In this execution scenario, the signal ParamUpdated is received 
after the Trajectory component completed its computation. Therefore, the parameter update can be immediately 
processed.

handleParameterChange

« rtAction, rtf»
handleEvent

«rtAction, rtf»
updateParam

occKind = aperiodic()

priority=2
occKind = aperiodic ()
tRef=tEvent
relDl=(1,ms)
miss=(20, %, max)

@tEvent
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Figure 13.22 - A Trajectory execution scenario within a period

Note: We assume here that all the components rely on a same global clock.

Trajectory execution scenario

:Trajectory :LocationAccess

@t0[i] « rtf » getLocation()

LocationData

:PlanAccess :Database

« rtf » getFlightPlan()

FlightPlanData

« rtf » paramUpdated(paramValue)

@t0[i+1]

@t1[i] occKind = aperiodic()

occKind = periodic (period=(10,ms))
relDl=(3,ms)
tRef=t0

occKind = periodic (period=(10,ms))
relDl=(3,ms)
tRef=t0

<<TimedConstraint>>

t1[i] – t0[i] < (8, ms)
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14 Detailed Resource Modeling (DRM)

The objective of this chapter is to provide specific modeling artifacts to be able to describe both software and hardware 
execution supports. It specializes generic concepts offered by the previous General Resource Modeling (GRM) chapter. 
As depicted in Figure 14.1, the DRM chapter consists of both packages: 

• The Software Resource Modeling (SRM) package, which intends to describe application programming interfaces of 
software multi-tasking execution supports.

• The Hardware Resource Modeling (HRM) package, which intends to describe hardware execution supports, through 
different views and detail levels.

Figure 14.1 - Detailed Resource Modeling (DRM) overview

14.1 Software Resource Modeling (SRM)

14.1.1 Overview

There are mainly two approaches to design software real-time and embedded (RTE) applications: the sequential-based 
design approach (also called loop-design) and the multitask-based design approach The former approach consists in  
designing applications as a set of ordered sequential actions, whose order is pre calculated in order to satisfy the real-time 
features. The multitask-based method aims at designing applications as a set of units executing concurrently and 
interacting (i.e., communicating and synchronizing) via specific mechanisms provided by a specific execution support. 
That support is in charge of real-time and embedded features (e.g., time constraints, determinism and memory footprint). 
It provides a set of resources and services through its application programming interface (API). That API may be either 
standard or specific (proprietary or commercial).

The widespread approach used to design software RTE applications is the multi-tasking-based approach build upon a real-
time operating system (RTOS) as the execution support. Hence, The Software Resource Modeling (SRM) chapter 
specifies a set of modeling artifacts that can be used to describe the structure of such support. More specifically, it is 
looking to depict software resources and software services describing in multi-tasking (API). Thus, it provides:

• Modeling artifacts to design in a unified way RTOS-like software execution support API through the definition of 
specific UML profile: the SRM (Software Resource Model) sub-profile.

D RM
(D eta iled R eso urce  M od e ling)

S RM
(S of tware  R eso urce  M o de ling)

H RM
(Hard ware  Resou rce  M od elin g)

N F Ps

GR M

T imeC oreElem ent s
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• Examples of specific UML model libraries using the SRM profile to describe parts of standardized RTOS APIs, such as 
OSEK/VDX (OS 2.2.2) and ARINC (653-1) standards.

The typical use of the SRM UML profile is the description in a unified way of software multi-tasking API in order to 
integrate explicitly the execution supports in the design flow (e.g., model library description and model transformation 
description). The SRM profile is not a new multi-tasking API standard. It provides modeling artifacts to describe such 
API. Moreover, even if this chapter focuses on RTOS APIs, it is useful not only to describe such support but also to depict 
specific multi-tasking libraries and more generally multi-tasking framework API (e.g., RTE middleware and RTE virtual 
machine).

This chapter is structured around a domain model description and its UML representation. The domain model section 
describes domain concepts. That domain model has been build based on a deep analysis of the main RTOS API standards 
(SCEPTRE 2, POSIX Issue 6 IEEE std 1003.1, OSEK/VDX 2.2.2, ARINC 653-1), and also of some RTOS (e.g., 
VxWorks 5.5, RTAI 3.1, QNX ….). The UML representation define the UML extensions required to manipulate the 
concepts as defined in the domain model and then be able to describe UML model libraries.

14.1.2 Domain View

This domain view is a specialization of the Generic Resource domain model for the purpose of software modelling. 
Hence, the SRM model specializes resources and services previously defined in that previous chapter. Commonly, multi-
tasking software resources relate to:

• Concurrent execution contexts (i.e., parallel execution).

• Interactions between concurrent context both to communicate and to synchronize themselves.

• Brokering of hardware and software resources (e.g., device management and memory management).

Hence, the domain model is organized in four packages: SW_ResourceCore which provide the basic software resource 
concepts, SW_Concurrency which classifies concurrent execution contexts, SW_Interaction which sorts communication 
and synchronization resources and SW_Brokering which refers to hardware and software resources management. Figure 
14.2 shows the overall package structure. 

Figure 14.2 - Structure of the SRM modeling framework

SRM

SW_Concurrency

GRM

« import »

SW_BrokeringSW_Interaction

SW_ResourceCore« import » « import »

« import »

CoreElements

« import »

« import »

« modelLibrary»
MARTE::Library::BasicNFP_Types

« import »
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The purpose and the content of each package are described briefly in subsequent sections. For more formal semantic 
details, the reader must refer to the class description (Annex F on page 426).

14.1.2.1 The SW_ResourceCore Package

Figure 14.3 shows the structure of the SW_ResourceCore package.

As a rule, execution supports APIs fulfill real-time and embedded concepts as both a set of types and a set of operations. 
For example, a kind of concurrency implementation in the POSIX standard is the concept of "thread." Hence, a type 
named "pthread_t" and an operation named "pthread_create" (i.e., operation that implements the creation of a thread) 
fulfill POSIX threads. Users make use of those types and operations to implement their applications on the execution 
support. The SW_ResourceCore package supplies the framework to model both those types and those operations. Types 
are modeled as SwResource. SwResource inherits from the generic resource concept of the GRM::ResourceCore package. 
Hence, a SwResource provides by inheritance a set of ResourceServices provided by the GRM package (section 10.2).

In this domain model, there is no distinction between services provided by software resources to the application (for 
example: a mailbox mechanism allows users to communicate messages) and services provided to manage those resources 
(for example: the creation and the deletion of a mailbox). A SwResource concept gathers both the resource as such and 
the manager of that resource. Hence, a SwResource inherits not only from the GRM::ResoureCore::Resource, but also 
from the GRM::ResourceManagement::ResourceManager.

Figure 14.3 - The SW_ResourceCore package overview

A specific software service is the SwAccessService used to access elements. In fact, software resources provide some 
services to access their characteristics: get and set. Those services may be considered as SwAccessServices. In case of the 
"set" one, the Boolean attribute "isModifier" may be true.

identifierElements : ModelElement [0..*]
stateElements : ModelElement [0..*]
memorySizeFootprint : ModelElement [0..1]

SwResource

maxRIS: Integer [0..1]

GRM::ResourceCore::Resource
GRM::ResourceCore::

ResourceService

pServices
{subset ownedBehavior}

owner
1 1..*

0..*

parameters

CoreElements::Causality::
CommonBehavior::

Parameter
GRM::ResourceManagement::

ResourceManager

GRM::ResourceCore::
ResourceService

createServices

0..*
deleteServices

0..*

CoreElements::Foundation::
ModelElement

initializeServices
0..*
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Figure 14.4 - The SwAccessService

14.1.2.2 The SW_Concurrency Package

Figure 14 5, Figure 14 6, Figure 14.7, Figure 14.8 and Figure 14.9, Figure 14.10 show the structure of the 
SW_Concurrency package.

The SW_Concurrency package defines SwConcurrentResource which represents entities that compete for computing 
resources in order to execute sequential part of instructions. They provide an execution context (e.g., stack, interrupts 
enable/disable and registers) for an execution flow (i.e., sequence of actions). The execution context may be confined to 
specific memory partition (i.e., virtual address space). Kinds of SwConcurrentResource are interrupt resources and 
schedulable resources.

An entry point specifies the execution flow associated to a SwConcurrentResource. That entry point is reentrant whether 
it can be invoked while it is still executing from a previous invocation. 

Figure 14.5 - The SwConcurrentResource overview
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Figure 14.6 - The SwConcurrentResource interactions

Interrupt resources match to the physical processing level. In that execution context, the competition for the processing 
unit is managed at the physical level by a controller and bypasses the scheduler. Many execution supports provide specific 
services to manage context of interrupt service routine (ISR) execution (i.e., interrupt entry point). The Interrupt resource 
deals with both hardware interrupts and exceptions (i.e. software interrupts produced by the control processing unit (CPU) 
while executing instructions). Exceptions can either be "Processor-detected" exceptions when the CPU detects an 
anomalous condition while executing an instruction or "Programmed" exceptions (also called software interrupts) when 
they occur at the request of the programmer. Some example of "Processor-detected" exceptions are faults (divide error, 
device not ready), traps (breakpoints, debug) and aborts (double fault)).

Figure 14.7 - The Interrupt Resource

A specific class of interruptResource is the alarm one which allows the interrupt service routines (i.e. the alarm entry 
points) to be connected to a timer and invoked after a one-shot or periodically. A particular software alarm is the 
watchdog. If the application doesn't succeed in resetting the watchdog, that mean that the system is not functioning 
properly and the alarm occurs, forcing application to execute the watchdog entry point or to reset the processor.

type : ArrivalPattern 
activationCapacity : Integer
periodElements : ModelElement [0..*]
priorityElements : ModelElement [0..*]
stackSizeElements : ModelElement [0..*]
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SRM::SW_Interaction::
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SRM::SW_Interaction::
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SRM::SW_Interaction::
NotificationResource
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messageResources
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kind:InterruptKind
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InterruptResource
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Figure 14.8 - The Alarm resource

SwSchedulableResources match to the logical processing context. In that context, the competition for the CPU is brokered 
at the logical level by a software scheduler. Hence, SwSchedulableResources are linked to an explicit software scheduler 
which determines the order and the timing (i.e., the "schedule") in which those should be executed. Typical examples of 
SwSchedulableResource are the POSIX Thread, the ARINC-653 Process and the OSEK/VDX Task. 

Figure 14.9 - The SwSchedulable resource overview

As explained above, software computing resources may be confined in specific MemoryPartitions. A MemoryPartition 
represents a virtual address space which insures that each concurrent resource associated to a specific memory partition 
can only access and change its own memory space.

Figure 14.10 - The MemoryPartition resource

14.1.2.3 The SW_Interaction Package

Figure 14.11, Figure 14.12, Figure 14.13, Figure 14.14, Figure 14.15, Figure 14.16 and Figure 14.17 show the structure of 
the SW_Interaction package.

InterruptResource

isWatchdog : Boolean

Alarm

GRM::ResourceType::
TimerResource

0..*
timers

durationElements : ModelElement { redefines duration}

SwTimerResource

scheduler scheduledResource

0..*1
GRM::Scheduling::Scheduler

isStaticSchedulingFeature : Boolean
isPreemptable : Boolean
deadlineElements : ModelElement [0..*]
deadlineTypeElements : ModelElement [0..*]
timeSliceElements : ModelElement [0..*]

SwSchedulableResource

SwConcurrentResource

joinServices
0..*

yieldServices
0..*

GRM::ResourceCore::
ResourceService

delayServices
0..*
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0..*

SwConcurrentResource
GRM::ResourceCore::ResourceService

forkServices
0..*

exitServices

0..*

SRM::SwResource

concurrentResources addressSpace

0..11..*
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In concurrent execution contexts, resources need to interact both to synchronize their actions and to communicate data. 
Hence, SwSynchronizationResources control execution flows whereas SwCommunicationResources manage data flows. 

In any case, resources interact according to a waiting policy. For example, considering a blocked WaitingPolicy, the 
acquire call part of a mutual exclusion synchronization involves that the caller is blocked in a waiting state (non available 
for scheduling) until someone release the shared resource. The waiting resources are queued in a waiting queue 
characterized by a policy and a capacity. Those interactions may be limited to a certain partition of the memory (i.e. 
isIntraMemoryPartitionInteraction property).

Figure 14.11 - The SW_InteractionResource package overview

To control execution flow, real-time execution supports provide several kinds of synchronization mechanisms: ones to 
notify event and others to control shared data mutual access. The two corresponding resources are 
SwMutualExclusionResource and NotificationResource.

Figure 14.12 - The SwSynchronizationResource overview

SwMutualExclusionResource describes resources commonly used to synchronize mutual access to shared data. As 
examples, Boolean semaphore (one token that anybody can release even if it does not get it), mutex (a Boolean 
semaphore associated with a concept of ownership : only resource that owns the mutex can release it) and counting 
semaphore (several token may be got and released) are kind of SwMutualExclusionResource.

isIntraMemoryPartitionInteraction : Boolean
waitingQueuePolicy : QueuePolicyKind
waitingQueueCapacity : Integer
waitingPolicyElements : ModelElement [0..*]

SwInteractionResource

SwCommunicationResource

SRM::SW_ResourceCore::SwResource
GRM::ResourceManagement::

ResourceBroker

SwSynchronizationResource

FIFO
LIFO
Priority
Undef
Other

« enumeration »
QueuePolicyKind

GRM::ResourceType::
CommunicationEndPoint

SwSynchronizationResource

GRM::ResourceType::
SynchronizationResourceSwInteractionResource

SwMutualExclusionResource NotificationResource
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Figure 14.13 - The MutualExcluionResource Overview

NotificationResource supports control flow by notifying occurrences of conditions to awaiting concurrent resource. As 
examples POSIX Signal, OSEK\VDX Event and ARINC-653 Event are NotificationResources. The notified occurrence 
can be memorized (i.e. memorized in a buffer), bounded (i.e., each occurrence increments a counter) or memoryless (i.e., 
not memorized in a buffer, hence multiple occurrences are lost).

Figure 14.14 - The NotificationResource overview

Commonly, to manage data flows, users can manipulate both shared data and message.

Figure 14.15 - The MessageComResource overview

MessageComResource are artifacts to communicate messages (i.e., a structure of data characterized by for example either 
a fixed or a dynamic size, a priority, a type of data.) among concurrent resources. Messages may be queued. Common 
mechanisms are MessageQueue, Blackboard, POSIX Pipe.

concurrentAccessProtocol : ConcurrentAccessProtocolKind
accessTokenElements : ModelElement [0..*]
mechanism : MutualExclusionResourceKind

SwMutualExclusionResource

SwSynchronizationResource
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GRM::ResourceCore::
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acquireServices
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policy : OccurencePolicyKind
occurenceCountElements : ModelElement [0..*]
maskElements : ModelElement [0..*]
mechanism : NotificationResourceKind

NotificationResource
flushServices

0..* Memorized
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Memoryless
Undef
Other

«enumeration »
OccurencePolicyKind

SwSynchronizationResource

GRM::ResourceCore::
ResourceService

signalServices
0..*

waitServices
0..*

clearServices
0..*

Barrier
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Undef
Other

« enumeration»
NotificationResourceKind

MessageComReso urce
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Figure 14.16 - The Messaging Communication resource

SharedDataComResource define specific resources used to share the same area of memory among concurrent resources. 
They allow concurrent resources to exchange safely information by reading and writing the same area in memory.

Figure 14.17 - The shared data communication resource

14.1.2.4 The SW_Brokering package

Figure 11-16 show the structure of the SW_Brokering package. 

The SW_Brokering package gathers resources which broke hardware as well as software resources. For example, kind of 
brokering actions are allocation, hardware device access and so on.

Figure 14.18 - The SW_BrokerResource Package Model

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support. By initializing that resource, 
user makes devices accessible for software. Commonly, deviceBroker resources are based on file mechanisms. 
DeviceBroker may be buffered (i.e., in which data is read and written in large chunks and buffered privately).
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Priority
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Other
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isFixedMessageSize : Boolean
messageSizeElements : ModelElement [0..*]
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Figure 14.19 - The DeviceBroker overview

MemoryBroker gathers allocation, mapping (map real memory onto the virtual address ranges used in memory partition) 
and protection of memory. For example, memory paging and memory swapping techniques impose severe and 
unpredictable delays in execution time. Thus, applications can use page-locking facilities, such as Lock and UnLock 
services, to declare that certain blocks of memory must not be paged or swapped. 

Figure 14.20 - The MemoryBroker overview

14.1.3 UML Representation

This section contains a definition of each stereotype that is defined for the software resource modeling profile (SRM). The 
first sub-section describes rationales for matching domain model concepts to UML profile concepts (i.e. sub-profile, 
stereotypes, tag and constraints). Then, the purpose and the content of each sub-profile are briefly described in a second 
sub-section. Finally, a third section is dedicated to a detailed description of each stereotype.

As the SRM profile is intended to provide modeling artifacts to describe APIs of multi-tasking execution support, 
rationales have been made to implement domain model concepts in a UML profile:

• The MARTE::CoreElements::ModelElement metaclass is matched to the UML::Kernel::Classes::TypedElement 
metaclass. This matched rule allows users to reference as well structural features (for example 
UML::Kernel::Classes::Property) as behavioral features (for example UML::Kernel::Classes::Parameter). Figure 14.21 
shows one example of the SwResource matching.

accessPolicy : AccessPolicyKind
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Figure 14.21 - SRM Matched rule on ModelElement metaclass

• As Associations between ResourceService and SwResource are navigable in one way, the association ends relative to 
the SwResource metaclass are matched to SwResource stereotype tags. Moreover, the ResourceService metaclass is 
matched to the UML::Kernel::Classes::BehavioralFeature. In UML, a behavioral feature specifies that an instance of a 
classifier will respond to a designated request by invoking a behavior. Hence, services described in APIs are kind of 
behavioral features (i.e. behavior signature). Figure 14.22 shows one example of the SwResource matching.

Figure 14.22 - SRM Matched rule on Association between ResourceService and SwResource

• Associations between domain model concepts are matched both to specific stereotype tags and profile constraints. 
Figure 14.23 shows one example of the SwConcurrentResource matching. 

Figure 14.23 - SRM Matched rule on Associations 
 

identifierElements : ModelElement [0..*]

SwResource
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Constraint : Type of the addressSpace value must be 
stereotyped as “MemoryPartition”
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14.1.3.1 Profile diagrams

Figure 14.24 shows the overall profile structure. The purpose and the content of each sub-profile are described in a 
subsequent sections.

Figure 14.24 - The SRM profile overview

The SW_ResourceCore sub-profile aims to describe foundations of the SRM profile. It matches to the SW_ResourceCore 
package (section 14.1.2.1 on page 174).

Figure 14.25 - The SW_ResourceCore profile overview

The SW_Concurrency sub-profile matches to the SW_Concurrency package (section 14.1.2.2 on page 175). It aims to 
provide modeling artifacts to describe software concurrent execution contexts.
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Figure 14.26 - The SW_Concurrency profile overview

The SW_Interaction sub-profile describes communications and synchronizations among concurrent execution contexts. It 
matches to the SW_Interaction package (section 14.1.2.3 on page 177).

« profile»
SW_Concurrency

type : ArrivalPattern 
activationCapacity : Integer
entryPoints : Element [*]
addressSpace : TypedElement [*]
periodElements : TypedElement [*]
priorityElements : TypedElement [*]
stackSizeElements : TypedElement [*]
activateServices : BehavioralFeature [*]
enableConcurrencyServices : BehavioralFeature [*]
resumeServices : BehavioralFeature [*]
suspendServices : BehavioralFeature [*]
terminateServices : BehavioralFeature [*]
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mutualExclusionResources : TypedElement[*]
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Figure 14.27 - The SW_Interaction profile overview

The SW_Brokering sub-profile matches to the SW_Brokering package (section 14.1.2.4). The SW_Brokering sub-profile 
describes stereotypes to annotate hardware and software resource management.
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Figure 14.28 - The SW_Brokering profile overview

14.1.3.2 Profile elements descriptions

Alarm (from MARTE::SRM::SW_Concurrency)

This stereotype matches to the domain concept Alarm (section F.8.1) denoted in Annex F.

Alarm resource provides executing context to a user routine, which must be connected to a timer invoked after a one-shot 
or periodically.

Extensions
• None

Generalizations
• InterruptResource (from SW_Concurrency)

Associations
• None

Attributes
• isWatchdog: Boolean [0..1] specifies if the alarm is a watchdog.

• timers: TypedElement [0..1] specifies the timer which raises the signal to execute the entry-point of the alarm 
resource.

Constraints
[1] Types of timers values must be stereotyped either as "SwTimerResource".

« prof ile»
SW_Brokering

accessPolicy : AccessPolicyKind
isBuffered : Boolean
devices : TypedElement [0..*]
closeServices : BehavioralFeature [*]
controlServices : BehavioralFeature [*]
openServices : BehavioralFeature [*]
readServices : BehavioralFeature [*]
wr iteServices : BehavioralFeature [*]

« stereotype »
DeviceBroker

accessPolicy : AccessPolicyKind
memories : TypedElement [*]
memoryBlockAddressElements : TypedElement [*]
memoryBlockSizeElements : TypedElement [*]
lockServices : BehavioralFeature [*]
unlockServices : BehavioralF eature [*]
mapServices : BehavioralFeature [*]
unMapServices : BehavioralFeature [*]

« stereotype »
MemoryBroker

Read
Write
ReadWrite
Undef
Other

« enumeration »
AccessPolicyKind

« stereotype»
SRM::SW_ResourceCore::SwResource
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Notations
The image associated with that stereotype is:

Figure 14.29 - The alarm notation

AccessPolicyKind (from MARTE::SRM::SW_Brokering)

The AccessPolicyKind enumerates common policy to access a resource.

Description
• Read Read access only.

• ReadWrite Read and write access are allowed.

• Write Write access only.

• Undef Undefined policy.

• Other Other user's specific policy.

ConcurrentAccessProtocolKind (from MARTE::SRM::SW_Interaction)

The ConcurrentAccessProtocolKind enumerates common protocol to access mutually a shared resource.

Description
• NoPreemption Lock the concurrency to avoid preemption when a resource is accessing a shared variable.

• PCP Priority Ceiling protocol.

• PIP Priority Inheritance Protocol.

• Undef Undefined policy.

• Other Other user's specific policy.

DeviceBroker (from MARTE::SRM::SW_Brokering)

This stereotype matches to the domain concept DeviceBroker (section F.8.4) denoted in Annex F.

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support.

Extensions
• None.

Generalizations
• SwResource (from SRM::SW_ResourceCore) on page 196
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Associations
• None

Attributes
• accessPolicy: AccessPolicyKind [0..1] 

access policy of the device (read, write …).

• closeServices: BehavioralFeature [0..*] 
services which make the hardware device unavailable from software resources.

• controlServices: BehavioralFeature [0..*] 
services which initialize and broke the device.

• devices: TypedElement [0..*] 
hardware device brokered by the driver.

• isBuffered: Boolean[0..1] 
if true, data is read and written in large chunks and buffered privately.

• openServices: BehavioralFeature [0..*] 
services which establish the connection between a device and the resource. This service makes 
available the device to software resources.

• readServices: BehavioralFeature [0..*] 
services which read data from the device.

• writeServices: BehavioralFeature [0..*] 
services which write data to the device.

Constraints
[1] Types of devices values must be stereotyped either as "DeviceResource" or as "DeviceBroker" sub-Stereotype.

Notations
The icon associated with that stereotype is:

Figure 14.30 - The deviceBroker notation

EntryPoint (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept EntryPoint (section F.8.5) denoted in Annex F.

The EntryPoint supply the routine (i.e., operations) executed in the context of the Sw ComputingResource.

Extensions
• Dependency (from UML::Classes::Kernel).
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• BehavioralFeature (UML::Classes::Kernel).

Generalizations
• None.

Associations
• None.

Attributes
• isReentrant: Boolean [0..1]  

specifies if a single copy of the routine instructions in memory can be shared by multiple concurrent 
resource. If true, instructions described in the routine could be called from multiple concurrent resource 
contexts simultaneously without conflict.

• routine: BehavioralFeature [1]  
specifies the routine which has to be executed in the context of the software computing resource.

Constraints
• None

InterruptResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept InterruptResource (section F.8.6) denoted in Annex F.

InterruptResource defines an executing context to execute user-delivered routines (i.e., entry point) further to hardware or 
software asynchronous signals.

Extensions
• None

Generalizations
• SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations
• None

Attributes
• kind: InterruptKind [0..1]  

specifies the kind of interrupt.

• isMaskable: Boolean [0..1] 
interrupts can either be maskable or not. Only few critical signals raise non maskable interrupts. 
The control processor unit (CPU) always recognizes those. Maskable interrupts can be in two 
states: unmasked (i.e. recognized by the CPU) or masked (i.e. ignored by the control unit). For 
example, a schedulable resource can explicitly mask maskable interrupts to avoid its pre-emption  
in some code sections. 
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• maskElements: TypedElement [0..*] 
specifies elements which map the semantics of the interrupt mask.

• routineConnect: BehavioralFeature [0..*] 
services which connect the routine to the interrupt vector.

• Ï routineDisConnect: BehavioralFeature [0..*] 
identifies services which disconnect the routine to the interrupt vector.

• Ï vectorElements: TypedElement [0..*] 
specifies elements which map the semantics of the interrupt vector.

Constraints
• None

Notations
The image associated with that stereotype is:

Figure 14.31 - The interrupt notation

InterruptKind (from MARTE::SRM::SW_Concurrency)
The InterruptKind enumerates different kind of interrupt.

Description
• HardwareInterrupt  

The interrupt source is an hardware one.

• ProcessorDetectedException 
Software interrupts produced by the CPU control unit while it detects an anomalous condition in 
executing an instruction. Some examples of "Processor-detected" exceptions are faults (divide 
error, device not ready) and aborts (double fault). 

• ProgrammedException 
Software interrupts produced by an explicit request of the programmer. Some examples of 
"ProgrammedException" exceptions are traps (breakpoints, debug). 

• Undef Undefined mechanism.

• Other: Others mechanisms.

MemoryBroker (from MARTE::SRM::SW_Brokering)
This stereotype matches to the domain concept MemoryBroker (section F.8.8) denoted in Annex F.

MemoryBroker resources provide primarily services to manage the memory allocation, the memory protection and the 
memory access.

X
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Extensions
• None

Generalizations
• SwResource (from SW_ResourceCore) on page 196

Associations
• None

Attributes
• accessPolicy : AccessPolicyKind [0..1]  

defines the access policy to the memory (read, write …).

• memories: TypedElement [0..*] 
specifies the hardware device type brokered by the driver.

• memoryBlockAddressElements: TypedElement [0..*] 
specifies elements which maps the semantic of the memory block address.

• memoryBlockSizeElements: TypedElement [0..*]  
specifies elements which maps the semantic of the memory block size.

• lockServices: BehavioralFeature [0..*] 
services which lock the paging or the swapping.

• mapServices: BehavioralFeature [0..*]  
services which map real memory onto the virtual address ranges used in memory partition.

• unlockServices: BehavioralFeature [0..*] 
services which unlock the paging or the swapping. 

• unMapServices: BehavioralFeature [0..*] 
services which unmap real memory onto the virtual address ranges used in memory partition.

Constraints
[1] Types of memories values must be stereotyped either as "StorageResource" or as "StorageResource" sub-Stereotype.

Notations
The image associated with that stereotype is:

Figure 14.32 - The memoryBroker notation

MemoryPartition (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept MemoryPartition (section F.8.9) denoted in Annex F.
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MemoryPartition represents a virtual address space and insures that each concurrent resource associated to a specific 
memory partition can only access and change its own memory space.

Extensions
• NameSpace (from UML::Kernel::Classes)

Generalizations
• SwResource (from SRM::SW_ResourceCore) on page 196

Associations
• None

Attributes
• concurrentResources: TypedElement [0..*] 

specifies concurrent resource executing in that address space.

• exitServices: BehavioralFeature [0..*] 
release an address space.

• forkServices: BehavioralFeature [0..*] 
spawn a new address space.

• memorySpaces: TypedElement [0..*] 
specifies parts of the memory linked to this address space.

Constraints
[1] Types of concurrentResources values must be stereotyped either as "SwConcurrentResource" or as 

"SwConcurrentResource" sub-Stereotype.

[2] Types of memorySpaces values must be stereotyped either as "StorageResource" or as "StorageResource"  
sub-Stereotype.

Notations
The image linked to that stereotype is:

Figure 14.33 - The memoryPartition notation

MessageComResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept MessageComResource (section F.8.10) denoted in Annex F.

MessageComResource defines communication resource to exchange message
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Extensions
• None

Generalizations
• SwCommunicationResource (from SRM ::SW_Interaction) on page 193

Associations
• None

Attributes
• isFixedMessageSize : Boolean 

specifies whether all messages managed by the resource have the same size.

• mechanism: MessageResourceKind [0..1] 
specifies the kind of mechanism use to exchange message 

• messageQueueCapacityElements: TypedElement [0..1] 
specifies the upper limit of message number allowed in a queue.

• messageQueuePolicy: QueuePolicyKind [0..1] 
defines the algorithm to manage the outgoing message queue.

• messageSizeElements : TypedElement [0..*]  
specifies the parameter used in message exchange services to define the size of the message.

• receiveServices : BehavioralFeature [0..*] 
identifies services which get a message.

• sendServices : BehavioralFeature [0..*] 
identifies services which set a message.

Constraints
• None

Notations 
The image associated with that stereotype is:

Figure 14.34 - The MessageComResource notation

MessageResourceKind (from MARTE::SRM::SW_Interaction)
The MessageResourceKind enumerates common mechanisms provide by platform to exchange data.
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Literals
• Blackboard Defines a one message buffer.

• MessageQueue Defines a multiple message buffer.

• Pipe Defines POSIX Pipe mechanism, which allows data flow among separate memory partition.

• Undef Undefined mechanism.

• Other Other mechanisms.

MutualExclusionResourceKind (from SW_Interaction)
The MutualExlusionResourceKind enumerates common mechanisms provide by platform to synchronize resource.

Literals
• BooleanSemaphore  

defines a binary semaphore. It is a flag available or unavailable. There is no proprietary 
purpose. Anybody can give the semaphore even if it does not take it.

• CountSemaphore  
defines a counting semaphore for which every time the semaphore is given the count is 
incremented; every time the semaphore is given the count is decremented.

• Mutex  
defines a binary semaphore associated with a propriety concept, resource can give the 
semaphore if and only if the resource takes it.

• Undef undefined mechanisms.

• Other other mechanisms.

NotificationKind (from MARTE::SRM::SW_Interaction)
The NotificationKind enumerates common policy to access a resource.

Literals
• Bounded each occurrence increments a counter.

• Memorized occurrences are memorized in a buffer.

• Memoryless occurrences are not memorized in a buffer, hence multiple occurrences are lost.

• Undef undefined.

• Other user's specific policy.

NotificationResourceKind (from MARTE::SRM::SW_Interaction)
The NotificationResourceKind enumerates common mechanisms provide by support to notify occurrence.

Literals
• Barrier barrier mechanism.
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• Event event mechanism.

• Undef undefined mechanisms.

• Other other mechanisms.

NotificationResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept NotificationResource (section F.8.15 page 505) denoted in Annex F.

NotificationResource supports control flow by notifying the occurrences of conditions to awaiting concurrent resources.

Extensions
• None

Generalizations
• SwSynchronizationResource on page 198

Associations
• None

Attributes
• clearServices: BehavioralFeature [0..*] 

services which erase one or several occurrences.

• flushServices: BehavioralFeature [0..*] 
services to release any resource which wait for an occurrence.

• maskElements: TypedElement [0..*] 
elements which map the semantic of the mechanism to mask occurrence.

• mechanism : NotificationResourceKind 
identifies notification mechanism.

• occurenceCountElements: TypedElement [0..*] 
elements which map the semantic of the occurrence number.

• occurenceKind : NotificationKind 
specifies the kind of notification.

• signalServices: BehavioralFeature [0..*] 
services which send one or several occurrences.

• waitServices: BehavioralFeature [0..*] 
services to wait one or several occurrences.

Constraints
• None

Notations
The image associated with that stereotype is:
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Figure 14.35 - The NotificationSynchronization notation

QueuePolicyKind (from MARTE::SRM::SW_Interaction)
The QueuePolicyKind enumerates algorithms provide by resources to order a queue.

Literals
• FIFO the first element put in the queue is the first outgoing.

• LIFO the last element put in the queue is the first outgoing.

• Priority each element is annotated with a priority.

• Undef undefined.

• Other other algorithms.

SharedDataComResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SharedDataComResource (section F.8.17) denoted in Annex F.

SharedDataComResource define specific resource used to share the same area of memory among concurrent resources.

Extensions
• None

Generalizations
• SwCommunicationResource (from SRM:SW_Interaction) on page 193

Associations
• None

Attributes
• readServices: BehavioralFeature [0..*]services which read the shared data.

• writeServices: BehavioralFeature [0..*]services which write the shared data.

Constraints
• None

Notations
The image associated with that stereotype is:
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Figure 14.36 - The SharedDataComResource notation

SwAccessService (from MARTE::SRM::SW_ResourceCore)
This stereotype matches to the domain concept SwAccessService (section F.8.18) denoted in Annex F.

The services provided by a software resource to access its characteristics: the accessor and the setter.

Extensions
• None

Generalizations
• GRService (from GRM)

Associations
• None

Attributes
• accessedElement: Property [1] the property which is accessed by this service.

• isModifier: Boolean specifies if the access modify the resource feature pass by parameters of  
this service.

Constraints
• None.

SwCommunicationResource (abstract) (from MARTE::SRM::SW_Interaction)
This abstract stereotype matches to the domain concept SwCommunicationResource (section F.8.19) denoted in Annex F.

SwCommunicationResource defines data exchange interaction among concurrent resources.

Extensions
• None.

Generalizations
• SwInteractionResource (from SRM ::SW_Interaction) on page 195.

• CommunicationMedia (from GRM) on page 102.

Associations
• None.
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Attributes
• None

Constraints
• None

SwConcurrentResource (abstract) (from MARTE::SRM::SW_Concurrency)
This abstract stereotype matches to the domain concept SwConcurrentResource (section F.8.20) denoted in Annex F.

This resource defines entities which may execute concurrently sequential part of instructions.

Extensions
• None

Generalizations
• SwResource (from SRM::SW_ResourceCore) on page 196

Associations
• None

Attributes
• activateServices: BehavioralFeature [0..*] 

services which make available a resource to execute. As result, activated resource are ready to 
compete for the computing resource. In case of interruption, it results in explicitly raised the 
interrupt (i.e to set of the interrupt). 

• activationCapacity: Integer [0..1] 
specifies the activation number allowed in the system.

• addressSpace: TypedElement [0..1] 
defines the address space in which the flow is executed.

• disableConcurrencyServices : BehavioralFeature [0..*] 
services which lock the competition for a computing resource. As result, any concurrent resource 
cannot pre-empt the executing resource.

• enableConcurrencyServices: BehavioralFeature [0..*] 
services which unlock the competition for a computing resource. As result, any concurrent resource 
can pre-empt the executing resource.

• entryPoints: Elements [0..*] 
defines entry points of the resource.

• periodElements: TypedElement [0..*] 
elements which maps the semantic of the resource period in case of a periodic concurrent resource.

• priorityElements: TypedElement [0..*] 
elements which maps the semantic of the resource priority. 
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• stackSizeElements: TypedElement [0..*] 
elements which maps the semantic of the resource stack size.

• type : ArrivalPattern (from MARTE_Library::BasicNFP_Types::ArrivalPattern)  
identifies the occurrence execution pattern.

• resumeServices: BehavioralFeature [0..*] 
services which make available a resource to compete with either ready or pended concurrent 
resource. Pended resources are blocked due to the unavailability of some other resources. In case  
of interrupt, resume service is equivalent to an enable service.

• suspendServices: BehavioralFeature [0..*] 
services which make unavailable a resource to execute. In case of interrupt, suspend service is 
equivalent to disable service.

• terminateServices: BehavioralFeature [0..*] 
services which stop definitively resource execution. 

• sharedDataResources: TypedElement [0..*] 
resources use to share data among computing resources. Those resource types must be stereotyped 
as "SRM::SW_Interaction::SharedDataComResource".

• messageResources: TypedElement [0..*] 
resources use to communicate messages among computing resources. Those resource types must  
be stereotyped as "SRM::SW_Interaction::MessageComResource". 

• mutualExclusionResources: TypedElement [0..*] 
resources use to synchronize mutual acesses. Those resource types must be stereotyped as 
"SRM::SW_Interaction::SwMutualExclusionResource".

• notificationResources: TypedElement [0..*] 
defines resources use to synchronize computing resources. Those resource types must be 
stereotyped as "SRM::SW_Interaction::NotificationResource".

Constraints
[1] Type of the addressSpace value must be stereotyped as "MemoryPartition".

[2] entryPoints values must be stereotyped as "EntryPoint".

[3] sharedDataResources values must be stereotyped as "SRM::SW_Interaction::SharedDataComResource".

[4] messageResources values must be stereotyped as "SRM::SW_Interaction::SwMutualExclusionResource".

[5] mutualExclusionResources values must be stereotyped as "SRM::SW_Interaction::SwMutualExclusionResource".

[6] notificationResources values must be stereotyped as "SRM::SW_Interaction::NotificationResource".

SwInteractionResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwInteractionResource (section F.8.21) denoted in Annex F.

InteractionResource is an abstract concept which denotes generic mechanism to interact among concurrent executing 
resources. Synchronization and Communication are specific kind of interaction.
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Extensions
• None

Generalizations
• SwResource (from SRM::SW_ResourceCore) on page 196

Associations
• None

Attributes
• isIntraMemoryPartitionInteraction: Boolean [0..1] 

specifies if the mechanism can be accessed from different memory partition (i.e namespace, 
address space).

• waitingPolicyElements: TypedElement [0..*]  
elements by which the communication waiting policy is specified: waiting, ready, waiting with a 
time out, conditional waiting…

• waitingQueuePolicy: QueuePolicyKind [0..*] 
defines the algorithm to manage the resource waiting queue.

• waitingQueueCapacity: Integer [0..1] 
the number of resources allowed in the waiting queue.

Constraints
• None

SwMutualExclusionResource (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwMutualExclusionResource (section F.8.22) denoted in Annex F..

MutualExclusionResource describe resources commonly used for synchronize access to shared variables.

Extensions
• None

Generalizations
• SwSynchronizationResource on page 198

Associations
• None

Attributes
• accessTokenElements : TypedElement [0..*] 

elements which maps the semantics of the token used to access a shared information.

• acquireServices: BehavioralFeature [0..*] 
services which get an access token to a shared information.
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• concurrentAccessProtocol : ConcurrentAccessProtocolKind 
specifies the protocol applied in concurrent access.

• mechanism : MutualExclusionResourceKind 
specifies the kind of mechanism use to mutual exclusion synchronization.

• releaseServices: BehavioralFeature [0..*] 
services which release an access token to a shared information.

Constraints
• None

Notations
The image associated with that stereotype is:

Figure 14.37 - The SwMutualExclusionResource notation

SwResource (abstract) (from MARTE::SRM::SW_ResourceCore)
This stereotype matches to the domain concept SwResource (section F.8.23) denoted in Annex F..

SwResource model software structural entities provided to the user by execution supports.

Extensions
• None

Generalizations
• Resource (from GRM on page 117)

Associations
• None

Attributes
• createServices: BehavioralFeature [0..*] 

services which allocate and declare the resource to the system.

• deleteServices: BehavioralFeature [0..*] 
services which free and delete the resource from the system.

• identifierElements: TypedElement [0..*] 
elements which map the semantic of a resource identifier.

• initializeServices: BehavioralFeature [0..*] 
services which initialize the resource.
200                 A UML Profile for MARTE, Beta 1



• memorySizeFootprintElements: TypedElement [0..1] 
elements which map the memory size footprint of the resource.

• stateElements: TypedElement [0..*] 
elements which map the semantic of the resource state.

Constraints
• None

SwSchedulableResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwSchedulableResource (section F.8.24) denoted in Annex F..

SchedulableResource are resources which executes concurrently to other concurrent resource.

Extensions
• None

Generalizations
• SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations
• None

Attributes
• deadlineElements: TypedElement [0..*] 

elements which maps the semantic of the deadline feature.

• deadlineTypeElements : TypedElement [0..*] 
elements which map the semantic of the deadline criticality degree (e.g., soft and hard).

• delayServices: BehavioralFeature [0..*] 
services which delay for a lapse of time the execution. The resource is in a dormant state during  
this lapse.

• isPreemptable: Boolean [0..1] 
specifies if the scheduler can pre-empt that kind of resource.

• isStaticSchedulingFeature: Boolean [0..1] 
specifies if the scheduling parameters (priority, deadline, timeslice …) are static 
(i.e., constants define off-line).

• joinServices: BehavioralFeature [0..*] 
services which suspend the execution of set of concurrent resource until other concurrent resources 
terminates.

• scheduler: TypedElement [1] 
Specifies the scheduler which orchestrate the concurrent execution of this kind of resource.

• timeSliceElements: TypedElement [0..*] 
elements which maps the semantic of the timeSlice in case of round robin scheduling
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• yieldServices: BehavioralFeature [0..*] 
services which explicitly relinquish the computing resource. They explicitly ask scheduler to reschedule.

Constraints
[1] The type of scheduler value must be stereotyped either as "Scheduler" or as "Scheduler" sub-Stereotype.

Notations
The image associated with that stereotype is:

Figure 14.38 - The SwSchedulableResource notation

SwSynchronizationResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwSynchronizationResource (section F.8.25) denoted in Annex F. 

This resource defines interaction mechanisms to synchronize concurrent execution flow.

Extensions
• None

Generalizations
• SwInteractionResource (from SRM::SW_Interaction) on page 195.

• SynchronizationResource (from GRM) on page 102.

Associations
• None

Attributes
• None

Constraints
• None

SwTimerResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwTimerResource (section F.8.26) denoted in Annex F. 

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with 
a prefixed maximum resolution, at programmable time intervals.

Extensions
• None
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Generalizations
• TimerResource (from GRM::ResourceTypes) on page 104

Associations
• None

Attributes
• DurationElements : TypedElement [0..*] {redefines GRM::TimerResource::duration} 

elements which map the semantic of the interval after which the timer will make evident the elapsed time.

Constraints
• None

Notations
The image associated with that stereotype is:

Figure 14.39 - The SwTimerResource notation

14.1.4 Examples

The following examples illustrate how the SRM sub-profile stereotypes may be used in practice. Several brief case studies 
are described for each sub-profile. In a first section, modeling possibilities are exhaustively described. In a second 
section, some concrete RTOS concepts are modeling. In addition, section D.5 provides two examples of RTOS API model 
library, for OSEK VDX and ARINC-653, build with the SRM profile.

14.1.4.1 Modeling possibilities

The idea of this section is to describe common use of SRM sub-Profile stereotypes. It aims to give an overview of typical 
modeling possibilities. The list of examples is by no means exhaustive.

Applying SwResource stereotypes on classifiers

All stereotypes of the SRM sub-profile extend the UML::Classes::Kernel::Classifier metaclass. Thus, any UML Classifier 
sub-metaclass may be extended by those stereotypes (e.g. Class, Interface, Component and AssociationClass). Figure 
14.40 and Figure 14.41 illustrate UML Class and UML Component extension. 
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Figure 14.40 - Class extension example

Figure 14.41 - Component extension example

Figure 14.42 illustrates the use of an AssociationClass (from UML::CompositesStructures::InternalStructures) to describe 
interaction between concurrent computing resources. As the SwInteractionResource stereotype extends the UML 
Classifier metaclass, an UML AssocationClass may be stereotyped as any SwInteractionResource sub-stereotype (for 
example: NotificationResource, MessageComResource, SwMutualExclusionResource ….). In this example, the execution 
support provides concurrent resource to compute instructions: "Alarm" and "Task". They are described as UML classes 
and respectively stereotyped as "Alarm" and as "SwSchedulableRessource". In this example, an "Alarm" resource may 
interact with a "SwSchedulbaleResource" (i.e. a task) by mean of an event mechanism stereotyped 
"NotificationResource".

Figure 14.42 - AssociationClass extension example

Applying SwResource stereotypes on properties

All stereotypes of the SRM sub-profile extend the UML::ConnectableElement meta class (from 
UML::CompositeStructures::InternalStructures). Figure 14.43 illustrates the use of such extension to describe interactions 
between concurrent computing resources in a memory partition.

+yield()

Deadline : Integer

«swSchedulableResource »
Task

« SwSchedulableResource »
deadlineElements = Task::Deadline
yieldService = Task::yield()

+yield()

« interface »
TaskService

«SwSchedulableResource »
deadlineElements = Task::Deadline
yieldService = TaskService::yield()

- Deadline : Integer

«swSchedulableResource »
Task

(i) Class (ii) Class and Interface

« swSchedulableResource »
Task +yield()

« inter face»
TaskService

« SwSchedulableResource »
yieldService = TaskService::yield()

task

0..1

« SwSchedulableResource »
Task

« Alarm »
Alarm

« NotificationResource »
Event
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Figure 14.43 - ConnectableElement extension example

Applying the EntryPoint stereotype on dependencies

Figure 14.44 denotes a use of the entryPoint stereotype on an UML::Dependency. This example illustrates a robotic 
application build upon a generic API. This design is a part of a robot controller in charge of the motion control. On the 
left side, the software designer describes the logical "RobotController" model. On the right side, the SRM profile is used 
to describe the MemoryPartiton and the SchedulableResource provided by a generic real-time and embedded API. Then, 
a model is described as instances of the MemoryPartition and Schedulable resources. Hence, the Task instances are bound 
with their entryPoint by means of UML 2.0 dependency In case of the "t2" instanceSpecifcation, the stereotype 
"entryPoint" is used to specify that the "trajectoryControl" operation of a specific MotionController instanceSpecification 
is the routine which has to be executed in the context of that schedulable resource.

Figure 14.44 - EntryPoints examples 

« memoryPartition »
Partition

« swSchedulableResource»
tasks : Task [1..*]

« interruptResource»
its : Interrupt [0..*]

«messageComResource »
mbx : MailBox [0..*]

X

« modelLibrary»
GenericAPI

« model»
RobotControllerTaskModel

p1 : Partition

t2 : Task

« import »

« import »

« Profile »
SRM

« apply »

« MemoryPartition »
Partition

+tasks+owner
0..1 1..*

« SwSchedulableResource »
Task

« model»
RobotControllerLogicalModel

trajectoryControl()
odometry()

+maxSpeed : Integer

MotionController

 : MotionController

« entryPoint »

« entryPoint »
isReentrant = true
routine = trajectoryControl t1 : Task« entryPoint »

« entryPoint »
isReentrant = true
routine = odometry
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Applying the SwAccessService stereotype on services

"Get" and "Set" services may be formally clarify with the SwAccessService stereotype. In the example depicted in Figure 
14.45, the "sem_getValue" service returns the semaphore value. Hence, it is stereotyped as "SwAccessService". The tag 
"accessedElement" specifies that the feature accessed is the property named "value". Therefore, the boolean tag 
"isModifier" indicates that this service does not modify the value. 

Figure 14.45 - SwAccessService example

Tagged values examples

Stereotype properties allow users to precise semantics of elements. For example in Figure 14.40, the "Deadline" property 
is tagged to clarify its semantic. It denotes explicitly in the model that among all attributes of this class, one refers to the 
task deadline. That is named "Deadline". Thus, it allows tools to distinguish properties and to permit automatic model 
transformations (code generation for example). 

In the second part of the Figure 14.40, the "TaskService" interface owns a "yield" operation. This operation is tagged as a 
"yieldServices" by the "SwSchedulableResource" stereotype, whereas this stereotype is not applied to the interface. It 
means that in the context of a "task", the service to call in order to release the computing resource is the operation "yield" 
of the interface "TaskService".

Multiple tagged values for the same tag and multiple tags for the same feature are allowed. On the one hand user can 
express formally multiple semantics for the same feature through multiple tags. On the other hand, user can express the 
same semantic for multiple features through the same tag. Figure 14.46 describes a "taskSpawn()" service as both task 
creating and task activating. In the same way, to activate a task, you can either call the "taskSpawn()" service or the 
"taskActivate()" one. Figure 14.47 illustrates that user may reference UML properties as well as UML parameters to the 
same tag.

Figure 14.46 - Multiple tags and multiple tagged services

« swAccessService » +sem_getValue() : Integer

-value : Integer

Semaphore « SwAccessService »
accessedElement = value
isModifier  = fa lse

+taskSpawn()
+taskActivate ()

« swSchedulableResource »
Task

« SwSchedulableResource »
createServices = Task::taskSpawn()
activateServices = Task::taskSpawn(),Task::taskActivate ()
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Figure 14.47 - Multiple tagged features

14.1.4.2 Specific RTOS API examples

The idea of this section is to describe concrete use of SRM sub-Profile stereotypes. Those stereotypes are applied to 
specific RTOS concepts. Some explanations are given for each case study. In addition, large examples of specific UML 
model libraries using the SRM profile are described in the section D.4. Thus, some parts of OSEK/VDX (OS 2.2.2) and 
ARINC (653-1) APIs are described as examples.

SwSchedulableResource and MemoryPartition example

To illustrate the use of the "SwSchedulableResource" and "MemoryPartition" stereotypes, the Figure 14.48 is aiming to 
represent the POSIX Process and Pthread concepts modeled as UML classes. POSIX process is an address space with one 
or more threads executing within that address space, and the required system resources for those threads. Each process 
shall be controlled by a priority. Hence, POSIX Process is conforms to both a "MemoryPartition" and a 
"SwSchedulableResource". The PID attribute is the process identifier. Hence, this attribute is assigned to the 
"identifierElements" inherited tagged value of the "SwResource" stereotype. That tagged value clarifies the semantic of 
the PID attribute. It explains explicitly in the model that the attribute named "PID" refers to the process identifier. POSIX 
thread (i.e, pthread) is a single flow of control within a process. Anything whose address may be determined by a thread 
is accessible to all threads in the same process. Each thread shall be controlled by an associated priority. Hence, a POSIX 
Thread is a conformed to a "SwSchedulableResource" and associated with the "Process" classifier. 

Figure 14.48 - POSIX Process and Pthread example

InterruptResource example

Figure 14.49 illustrates the OSEK/VDX interrupt resource modeled as an UML class. OSEK interrupts are scheduled by 
hardware while tasks (i.e., OSEK schedulableResource) are scheduled by the scheduler. Interrupts can interrupt tasks 
(preemptable and non preemptable tasks). OSEK offers fast functions to suspend (i.e., disable) and resume (i.e., enable) 
interrupts. 

+taskSpawn(prio : Integer)
+taskActivate()

Priority : Integer

« swSchedulableResource »
Task

« SwSchedulableResource »
priorityElements = Task::Priority, Task::taskSpawn::prio

+PID : pid_t
+sched_priority : Integer

«memoryPartition »
« swSchedulableResource»

Process

+sched_priority : Integer

« swSchedulableResource »
Pthread+thread+owner

0..1 1..*

« MemoryPartition»
concurrentResource = thread

« SwResource»
identifierElements = PID

« SwComputingResource»
priorityElements = sched_priority

« SwSchedulableResource »
addressSpace = owner

« SwComputingResource»
priorityElements = sched_priority
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Figure 14.49 - OSEK/VDX Interrupt example

Alarm example

Figure 14.50 illustrates the use of the "Alarm" stereotype. The OSEK operating system provides services for processing 
recurring events. Such events may be for example timers that provide an interrupt at regular intervals, or encoders at axles 
that generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle, or other regular application 
specific triggers. The OSEK operating system provides a two-stage concept to process such events. The recurring events 
(sources) are registered by implementation specific counters. Based on counters, the OSEK operating system software 
offers alarm mechanisms to the application software, such as services to activate tasks, set events or call an alarm-
callback routine (i.e., the alarm entry point) when an alarm expires. Note that the SwTimerResource is directly used to 
stereotype OSEK/VDX Counter. 

Figure 14.50 - OSEK/VDX Alarm example

SwMutualExclusionResource example

Figure 14.51 illustrates one use of the "SwMutualExclusionResource" stereotype to clarify the semantic of the POSIX 
semaphore type, named Sem_t. POSIX semaphore may be used to guard access to any resource accessible by more than 
one schedulable resource in the system. A concurrent resource that wants access to a critical resource (section) has to wait 
for (i.e., to acquire) the semaphore that guards that resource. When the semaphore is locked on behalf of a concurrent 
resource, it knows that it can use the resource without interference by any other cooperating concurrent resource in the 
system. When the concurrent resource finishes its operation on the critical resource, leaving it in a well-defined state, it 
releases the semaphore, indicating that some other concurrent resource may now obtain the resource protected by that 
semaphore. 

+EnableAllInterrupts()
+DisableAllInterrupts()
+ResumeAllInterrupts()
+SuspendAllInterrupts()
+SuspendOSInterrupts()
+ResumeOSInterrupts()

« interruptResource »
Interrupt

« SwComputingResource »
Type = Aperiodic
resumeServices = EnableAllInterrupts, ResumeAllInterrutps, ResumeOSInterrupts
suspendServices = DisableAllInterrupts, SuspendAllInterrupts, SuspendOSInterrupts

« InterruptResource»
kind = hardware

X

+DeclareAlarm (AlarmID : AlarmType)
+GetAlarmBase(AlarmID: alarmType, Info : alarmBaseRefType) : statusType
+GetAlarm(AlarmID : alarmType, Tick : tickRefType) : statusType
+SetRelAlarm (AlarmID : alarmType, Start : tickType, Cycle : tickType): statusType
+CancelAlarm (AlarmID : alarmType) : statusType

+Action : AlarmActionKind {readOnly}
+AutoStart : Boolean {readOnly}

« alarm»
Alarm

ACTIVATETASK
SETEVENT
ALARMCALLBACK

« enumeration »
AlarmActionKind

« SwConcurrentResource»
suspendServices : CancelAlarm

« Alarm»
isWatchdog = false
timers = timer

+maxAllowedValue : UINT32
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«swTimerResource»
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1
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Figure 14.51 - POSIX semaphore example

MessageComResource example

Figure 14.52 shows a representation of the ARINC-653 Buffer and Event mechanism. ARINC-653 Buffer is stereotyped 
MessageComResource. That mechanism is a communication object used by schedulable resources (i.e., ARINC-653 
process) of a same memory partition (i.e., ARINC-653 partition) to send or receive message. 

ARINC-653 Event is a communication object used to notify of a condition to schedulable resources (i.e., ARINC-653 
processes) which may wait for it. Hence, it is stereotyped "NotificationResource".

Figure 14.52 - ARINC-653 Event and Buffer example

14.2 Hardware Resource Modeling (HRM)

14.2.1 Overview

This chapter provides mechanisms to model the hardware (HW) part of embedded systems, which is essential to fulfill the 
application specification. When interfacing hardware and software design flows, it is a common practice to specify 
abstracted and understandable models in order to communicate design intends and to study interdependencies affecting 
design decisions. At the end, the hardware modeled resources are combined with the software (SW) ones to support the 
whole application execution.

Hardware is extraordinary various, several architectures and a huge amount of hardware components exist. It is also 
continuously varying with many new emerging technologies. Therefore, modeling such a domain requires a highly 
expressive language. The UML mechanisms like generalization, composition, encapsulation, separation of concerns 

+sem_init ()
+sem_close()
+sem_destroy()
+sem_open()
+sem_post()
+sem_timedWait ()
+sem_tryWait()
+sem_wait()
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« swMutualExclusionResource »
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« SwResource »
createServices = sem_init
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« SwResource»
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« SwResource»
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clearServices = resetEvent
signalServices = setEvent
waitServices = waitEvent
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(structure/behavior), abstraction (different views), and refinement, are well adapted for that dilemma. The Deployments 
package of UML specifies constructs like DeploymentTarget, Node, or Device, which can be used to define roughly a 
hardware architecture that is to serve as the target of software artifacts. Our scope is larger, we aim to cover many aspects:

• Software design and allocation using a high level hardware description model of the targeted hardware architecture, 
with some details about available resources, instruction set family, memory size. Such model is a formal alternative to 
block diagrams.

• Analysis and simulation of a specialized hardware description model:

• The nature of details depends on the analysis focus and the simulated resources. For example, schedulability 
analysis requires details on the processor throughput, memory organization and communication bandwidth, 
whereas power analysis will focus on power consumption, heat dissipation and the layout of the hardware 
components.

• The required level of detail depends on the analysis and simulation accuracy. The performance simulation needs a 
fine description of the processor microarchitecture and memory timings, whereas many functional simulators 
simply require entering the instruction set family.

• Hardware constructors can describe their products with a kind of model-based datasheets. They must provide a detailed 
hardware design model refined with specific details. 

In order to support all use cases enumerated above, we extend UML using a profile based on a detailed Hardware 
Resource Model. This latter is intended to serve for description of existing and conception of new hardware platforms, 
through different views and detail levels. In a few words, the Hardware Resource Model is grouping most hardware 
concepts under a hierarchical taxonomy with several categories depending on their nature, functionality, technology and 
form. 

Separation of concerns and abstraction are the main qualites of this profile. It eases adaptation to many orthogonal 
activities. The Hardware Resource Model is composed of two views, a logical view that classifies hardware resources 
depending on their functional properties, and a physical view that concentrates on their physical properties. Both are 
specializations of the general model. The logical and physical views are complementary. They provide two different 
abstractions of hardware and they could be simply merged (example 14.2.4.3). In turn, each view is composed of many 
models differentiated by other criteria.

Stereotypes introduced within this chapter are organized under a tree of successive inheritances from generic stereotypes 
to specific ones, no stereotype is orphan. This is the main reason behind the ability of the hardware resource profile to 
cover many detail levels. Optional tagged values and the composite structure of stereotypes are strengthening this ability 
as well.

Another feature of the Hardware Resource Model is support of most hardware concepts thanks to a big range of 
stereotypes and once more its layered architecture. If no specific stereotype corresponds to a particular hardware 
component, a generic stereotype may match. This is also appropriate to support new hardware concepts of new nature or 
new technologies.
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Figure 14.53 - Hardware Resource Model dependencies

Both Hardware Resource Model and Software Resource Model (SRM: chapter 14.1 on page 173) are specializations of 
the General Resource Model (GRM: chapter 10 on page 99). Therefore, hardware/software allocation model (Alloc: 
chapter 12 on page 139) benefits from the unified structure of these models.

This chapter contains all information about Hardware Resource Modeling profile. Section 2 describes the domain model, 
which is separated into general, logical and physical parts. In section 3, the UML representation contains the profile 
diagrams and the stereotype descriptions. The last section assembles illustrative examples.

14.2.2 Domain view

In this section, the hardware (HW) concepts are introduced category by category through several metamodel diagrams. 
Each metaclass has a detailed description in the Annex F and modeling examples are given in section 14.2.4.

In order to ease the use of the Hardware Resource Model (HRM), names of stereotypes and their attributes are rigorously 
chosen in accord with conventional hardware terminology. In addition, they are prefixed by the "HW_" label to save from 
ambiguity. e.g., HW_Timer denotes the HW counter device and it is not a software timer.

Each metaclass attribute is chosen only if it verifies many criteria. First, it denotes a characteristic property of the 
metaclass that is common to all represented hardware resources. Then, it complies with the level of abstraction of the 
concept and the modeled view. Finally, it must be essential for at least one of the profile use cases enumerated in the 
introduction.

Last, many OCL rules are specified to ensure the coherency of the HW platform model.

14.2.2.1 The Hardware General model

The HW_General model defines a typical structure of execution platforms. It is inferred from the GRM and it is a 
common basis for both logical and physical models.

NonFunctionalPropertyModel TimeModel

GeneralResourceMo del

HardwareResourceModel

HW_Lo gical HW_Physical

« Import »

SoftwareResourceModel
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HW_General
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Figure 14.54 - HW_General model details

The concept of HW_Resource is generic; it denotes a generic HW entity. It may encapsulate other ownedHW resources. 
This composition mechanism allows successive refinements with different granularities. From a structural point of view 
the HW_Resource concept is similar to UML Components but semantically an HW_Resource defines an hardware 
execution entity for which the services can be qualified by one or more quality-of-service characteristics. 

One example of composite HW resources is FPGA, which often contains many embedded processors, some amount of 
RAM and it can also be configured into many units with different functions (SMP example 14.2.4.3).

Typically, an HW_Resource provides at least one HW_ResourceService, and may require some services from other 
resources. Each HW_ResourceService could be detailed by many views to describe its behaviors.

Collaborations of resources by means of their services characterize the execution platform.

Most of metaclasses introduced below, are inheriting from HW_Resource and in consequence from its structure. Thus, 
they are associated with the HW_ResourceServices that they are offering. In order to lighten metamodels and improve 
their flexibility, services would not be explicitly specified if they are inherited from the GRM or intuitively deduced from 
the HW_Resource type (example 14.2.4.1). 

14.2.2.2 The Hardware Logical model

The objective of the logical modeling is to provide a functional classification of HW entities, whether if they are 
computing, storage, communication, timing or device resources. Such a classification is mainly based on services that 
each resource offers and optionally influenced by the resources nature (example 14.2.4.1).

The logical taxonomy is common to many previous works. It is not categorical, and the following concepts are not 
necessarily incompatible. One HW resource could have many functions within the same HW platform.
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Figure 14.55 - HW_Logical model structure

HW_Logical package merges the HW_General and it is composed of five subpackages, each one for a particular 
resource's type. There are several dependencies between these subpackages.

HW_Computing package

The HW_Computing package defines a set of active processing resources that are central to execution platforms. 
HW_ComputingResources are often complex and composite; they may contain many other subresources from different 
HW_Logical packages (14.2.4.3).
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Figure 14.56 - HW_Computing package details

HW_ComputingResource is a generic resource. It could be specialized (HW_ASIC), such resources are known to be 
efficient but not flexible. It could be configurable (HW_PLD), there are many technologies that have different capabilities 
like dynamic reconfiguration (SRAM). And it could be programmable (HW_Processor), which typically implements some 
instruction sets, owns caches, corresponding memory management units and adopts branch prediction policies.

HW_Storage package

The metamodel of the HW_Storage package includes two diagrams, one for the HW_Memory resource and the other for 
the HW_StorageManager resource.
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Figure 14.57 - HW_Storage package details (HW_Memory)

HW_Memory denotes a given amount of memory. It could be a HW_ProcessingMemory or HW_StorageMemory. 
HW_ProcessingMemory is an abstract metaclass that symbolizes a fast and volatile working memory, while 
HW_StorageMemory is an abstract metaclass for permanent and relatively time consuming storage devices.

In real world, RAM (Random Access Memory) take many forms, SRAM for Static RAM is often used as cache, SDRAM 
for Synchronous Dynamic RAM is enough fast to be used as main memory (example 14.2.4.2). But as the logical model 
focuses on the functionality rather than the technology, we distinguish HW_RAM for main memories and HW_Cache for 
cache memories.
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Figure 14.58 - HW_Storage package details (HW_StorageManager)

HW_StorageManager denotes memory brokers. HW_MMU for Management Memory Unit manages addresses and the 
content of memories. It might own TLBs (Translation Lookaside Buffer) to translate virtual into physical addresses. 
Whereas, HW_DMA for Direct Memory Access, combines memory management and communication control. It may be 
driven by an HW_Processor, and it allows devices to transfer data without subjecting the HW_Processor.

HW_Communication package

The objective of the HW_Communication package is to group all communication participants within a functional 
taxonomy. It offers a stand-alone communication view that supplies the skeleton of the HW platform architecture.
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MARTE::GRM::StorageResource MARTE::GRM::Reso urceBroker HW_Logical::HW_Resource

virtualAddrSpace : NFP_DataSize
physicalAddrSpace : NF P_DataSize
memoryProtection : NFP_Boolean
/nbEntriesTLB :  NFP_Natural

HW_MMU

HW_Cache

ownedTLBs
{subsets ownedHW} 0..*

HW_L ogical::HW_Commun ication::
HW_Arbiter

HW_Memory

managedMemories
{subsets brokedResource}

1. .*

nbChannels : NF P_Natural
transferWidth :  NFP_DataSize

HW_DMA

HW_Logical::HW_Computing::
HW_Processor

drivenBy 0. .*
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Figure 14.59 - HW_Communication package details

The HW_Media is a central concept that denotes a communication resource able to transfer data with a theoretical 
bandwidth. It may link many HW_EndPoint(s). it could be controlled by many HW_Arbiters and it may be connected to 
other HW_Medias by means of HW_Bridges. An HW_EndPoint is an identified connection point of an HW_Resource 
(e.g. pin, port or slot).

If HW_Media is generic and symbolizes any kind of connections, HW_Bus is a particular wired channel with specific 
functional properties (example 14.2.4.3).
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HW_Timing package

Figure 14.60 - HW_Timing package details

The Figure 14.60 defines timing resources. The HW_Clock is a basic periodic pulse with a definite frequency. Every 
HW_Resource can be clocked.

HW_Timer is a set of counters. The counter width determines the maximum measurement of time in terms of clock 
periods (2counterWidth -1). HW_Watchdog is typically a count-down timer, which sends an alarm when the zero count is 
reached (example 14.2.4.1).

HW_Device package

Figure 14.61 - HW_Device package details
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From a functional point of view, an HW_Device is an auxiliary resource that is not as fundamental as computing, storage 
and communication resources are, but it expands the functionality of the HW platform. It has two subcategories. The 
HW_IO denotes resources that interact with the environment, like sensors, actuators, peripherals, displays, external port 
and so on. Whereas, the HW_Support is a support resource like power suppliers (batteries), power regulators, cooling 
fans, or miscellaneous electronic devices. Because of their nature, some support devices are detailed in the physical model 
(example 14.2.4.3).

14.2.2.3 The Hardware Physical model

The HW_Physical model represents HW resources as physical components with details on their shape, size, position 
within platform, power consumption, heat dissipation and many other physical properties.

As most of embedded systems have limited area and weight, hard environmental conditions and a predetermined 
autonomy, this view helps the HW design and mapping components on the physical platform.

Figure 14.62 - HW_Physical model structure

Same as the functional view introduced above, the HW_Physical package merges the HW_General and contains two 
subpackages. The HW_layout package that focuses on the layout architecture and the HW_Power package that provides 
mechanisms to annotate the model with power properties.

HW_Layout package
The HW_Layout package provides mechanisms to make UML graphical diagrams as close as possible to the real HW 
platform layout. It classifies HW components depending on their forms and offers arrangement constructs using 
rectilinear grids (example 14.2.4.3).
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Figure 14.63 - HW_Layout package details

HW_component denotes a generic physical component that can be refined into a grid of subcomponents. It has 
dimensions, a resulting area, a particular weight and optionally a number of pins and a position within a potential 
container. Each HW_component requires some environmental conditions whether if it is in use or not. 

HW_Power package

The HW_Power package comes with a detailed description of HW_Components power consumption and heat dissipation. 
It enables advanced power analysis and autonomy optimization that are crucial for embedded systems. Notice that the 
HW_Layout may also influence the power analysis.
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Figure 14.64 - HW_Power package details

HW_PowerDescriptor is a key metaclass that provides instantaneous power descriptions. It annotates each provided 
service with its corresponding consumption and each HW_Component with a description of its leakage at non-operating 
time. 

HW_PowerSupply and HW_Battery are energy suppliers, whereas HW_CoolingSupply is a heat reducer.

14.2.3 UML representation

This section depicts the Hardware Resource Model profile. It first groups all hardware stereotypes under several profile 
diagrams, and then it provides the detailed description of each hardware stereotype. The Hardware Resource Model 
profile is based on the hardware resource domain model (on page 205). Therefore most of stereotype descriptions refer to 
the corresponding domain concepts. All cases where stereotypes are different from the mapped domain concepts are 
justified.

As shown in Figure 14.65, the Hardware Resource Model profile keeps the structure of the domain model. It is composed 
of logical and physical profiles. Both have a local general model of hardware platforms, in order to ensure their total 
independency. The logical profile is in turn composed of many other packages representing many functions of hardware, 
whereas the physical profile is also composed of layout and power packages. Note that these packages are not sub-
profiles, they only improve the organization of the HwLogical and HwPhysical profiles.

In order to leave a large modeling flexibility, HwResource of both HwGeneral packages (Figure 14.66, Figure 14.73) 
inherits from the Resource stereotype (from the General Resource Model, chapter 10 on page 99) that extends the 
Classifier and InstanceSpecification metaclasses from the UML kernel package. This allows using the Hardware Resource 
Model profile within all structural UML diagrams (Class, Component, Composite Structure…) (examples 14.2.4.2, 
14.2.4.3). The same principle applies to the HwResourceService that extends the Operation metaclass and could be 
associated with many UML behavior views.

All hardware resource stereotypes have the same extensions. However some of them are particularly also extending other 
appropriate UML metaclasses. E.g. HwMedia from the HwCommunication package also extends Association.
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Within MARTE, stereotypes tag definitions are optional and they should be specified only if needed. In addition, because 
of extending both Classifier and InstanceSpecification, they could be fixed either at model or instance level. This 
variation point enlarges the semantics of tag definitions (battery within example 14.2.4.3).

The Hardware Resource Model profile includes many notations. There is an appropriate icon for each logical stereotype 
and a shape for each physical one. Also, the HwLayout package from the HwPhysical profile provides arrangement 
mechanisms with rectilinear grids to make UML graphical diagrams as close as possible to the real HW platform 
architecture.

14.2.3.1 Profile diagrams

The Hardware Resource Model profile (HRM profile) has similar structure to the HRM domain model depicted on page 
205 It is composed of logical and physical sub-profiles that contain a local general model and other different packages.

Figure 14.65  - Hardware Resource Model profile structure
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HwGeneral package (from the HwLogical profile)

Figure 14.66 - HwGeneral package details (HwLogical)

The HwGeneral package of the HwLogical profile maps the general model from the domain view (page 206). It benefits 
from General Resource Model profile extensions (GRM: chapter 10, page 99) and it provides a functional classification 
of resources.
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HwComputing package

Figure 14.67 - HwComputing package details

The HwComputing package from the HwLogical profile maps the corresponding HW computing domain model on page 
207.
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HwMemory package

Figure 14.68 - HwMemory package details (HwStorage)

The HwMemory package lightly varies from its corresponding domain model (page 208). It removes abstract 
HW_ProcessingMemory and HW_StorageMemory concepts but it maintains the composition specifying the buffer 
memory for the HwDrive.
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HwStorageManager package

Figure 14.69 - HwStorageManager package details (HwStorage)

The HwStorageManager package from the HwLogical profile maps identically the corresponding domain model on page 
209.
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HwCommunication package

Figure 14.70 - HwCommunication package details

The HwCommunication package maps the corresponding HW_Communication domain model. 

Notice that among the inherited extensions, HwEndPoint extends the UML Port metaclass (example 14.2.4.3) and 
HwMedia extends the UML Association metaclass.
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HwTiming package

Figure 14.71 - HwTiming package details

Compared to its domain model, the association connecting an HW_Resource to an HW_Clock is substituted by an 
optional HwResource attribute named frequency.

As shown in example 14.2.4.1, the notifying service is the only difference between the two domain concepts HW_Timer 
and HW_Watchdog. Therefore, the HRM profile unifies both concepts under the HwTimer stereotype.

HwDevice package

Figure 14.72 - HwDevice package details

The HwDevice package from the HwLogical profile maps the corresponding HW device domain model.

« stereotype»
HwTimingResource

« stereotype»
MARTE::GRM::TimingResource

frequency :  NFP_Frequency

« stereotype»
HwClock

nbCounters : NFP_Natural
counterWidth : NFP_Datasize

« stereotype »
HwTimer

frequency :  NFP_Frequency [0..1]

« stereotype»
HwResource

inputClock

0..1

« profile »
HwLogical

« stereotype»
HwDevice

« stereotype»
GRM::DeviceResource

« stereotype»
HwI/O

« stereotype»
HW_Resource

« stereotype»
HwSupp ort

« profile »
HwLogical
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HwGeneral package (from the HwPhysical profile)

Figure 14.73 - HwGeneral package details (HwPhysical)

The HwGeneral package of the HwPhysical profile maps the general model from the domain view. It benefits from 
General Resource Model profile extensions (GRM: chapter 10).

HwLayout package

Figure 14.74 - HwLayout package details 

« stereotype»
MARTE::GRM::Resource

description ; NFP_String

« stereotype»
HwResource

« stereotype»
MARTE::GRM::GRService

« stereotype»
HwResourceService

p_HW_Services
{subsets pServices}

0..*

r_HW_Services

0..*

« metaclass »
Classifier

« metaclass »
InstanceSpecification

« metaclass »
Operation

« profile»
HwPhysical

0..*

0..1

ownedHW
{subsets ownedElement}

« stereotype»
HwCompo nent

kind : ComponentKind
dimensions : NF P_Length [0..3]
/area : NFP_Area
posit ion : Interval<NFP_Natural> [0..2]
grid : NFP_Natural [0..2]
nbPins : NF P_Natural [0..1]
weight :  NFP_Weight
price : NFP_Price
r_Conditions : Env_Condition [*]

« stereotype»
HwComponent

subComponents
{subsets ownedHW}

0..1

0..*

« stereotype»
HwResource

type : ConditionType
status : ComponentState
descrpt ion : NFP_String
range : Interval<T->Real>

« dataType »
Env_Condition

Temperature
Humidity
Altitude
Vibration
Shock
Other
Undefined

« enumeration »
Condition Type

Operating
Storage
Other
Undefined

« enumerat ion »
ComponentState

Card
Channel
Chip
Port
Unit
Other
Undefined

« enumerat ion »
ComponentKind

« profile»
HwPhysical
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Layout concepts from the HW_Layout domain model, like HW_Chip and HW_Card are grouped under the 
ComponentKind enumeration to lighten the profile.

HwPower package

Figure 14.75 - HwPower package details

Compared to the domain model, the HwPower package puts the HW_PowerDescriptor properties directly into the 
HwComponent and the HwResourceService stereotypes. It also fuses HW_Battery and HW_PowerSupply domain 
concepts under the same stereotype.

14.2.3.2 Stereotype descriptions

This sub-section provides a fine description of each stereotype from the Hardware Resource Profile. If a stereotype maps 
a domain concept, a reference is given to the corresponding page. The following list is sorted in the alphabetical order.

Note – the detailed description of concepts is mainly given within the Annex F.9.

CacheStructure
The CacheStructure datatype maps the CacheStructure domain element (section F.9.1).

Attributes
• nbSets: NFP_Natural specifies the number of sets.

• blockSize: NFP_DataSize specifies the width of a cache block.

• associativity: NFP_Natural specifies the associativity of the cache.

CacheType
The CacheType enumeration maps the CacheType domain element (section F.9.2).

suppliedPower : NF P_Power
capacity : NFP_Energy [0. .1]

« stereotype»
HwPowerSupply

stat icConsumption : NFP_Power
stat icDissipation : NFP_Power

« stereotype»
HwComponent

coolingPower : NFP_Power

« stereotype»
HwCoolingSupply

consumption : NFP_Power
dissipat ion : NFP_Power

« stereotype»
HwResou rceService

poweredServices
{redefines p_HW_Services }

0..*

« profile »
HwPhysical
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Literals
• Data

• Instruction

• Unified for both data and instruction

• Other

• Undefined

ComponentKind
ComponentKind is an enumeration of the following HwComponent kinds:

Description
• Card

• Channel

• Chip

• Port

• Unit

• Other

• Undefined

ComponentState
The ComponentState enumeration maps the ComponentState domain element (section F.9.3).

Description
• Operating

• Storage non-operating state

• Other

• Undefined

ConditionType
The ConditionType enumeration maps the ConditionType domain element (section F.9.4).

Description
• Temperature

• Humidity

• Altitude

• Vibration
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• Shock

• Other

• Undefined

Env_Condition
The Env_Condition datatype maps the Env_Condition domain element (section F.9.5, p. 512).

Attributes
• type: ConditionType specifies the condition type.

• status: ComponentState specifies the required state of the HwComponent.

• description: NFP_String specifies a short description of the environmental condition.

• range: Interval<T->Real> specifies the range of possible values.

HwArbiter
The HwArbiter stereotype maps the HW_Arbiter domain element (section F.9.6).

Generalizations
• HwCommunicationResource

Associations
• controlledMedias: HwMedia[0..*]specifies the controlled connections.

Notations

HwASIC
The HwASIC stereotype maps the HW_ASIC domain element (section F.9.7).

Generalizations
• HwComputingResource

Constraints
[2] if a clock frequency is specified, it must belong to op_Frequencies.

HwBranchPredictor
The HwBranchPredictor stereotype maps the HW_BranchPredictor domain element (section F.9.9).
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Generalizations
• HwResource

HwBridge
The HwBridge stereotype maps the HW_Bridge domain element (section F.9.10). 

Generalizations
• HwMedia

Associations
• sides: HwMedia[0..*] specifies HwMedias at the ends of the HwBridge. 

Notations

HwBus
The HwBus stereotype maps the HW_Bus domain element (section F.9.11). 

Generalizations
• HwMedia

Attributes
• adressWidth: NFP_DataSize specifies the supported addressing size. In general, it is a number of bits.

• wordWidth: NFP_DataSize specifies the transfer word width.

• isSynchronous: NFP_Boolean specifies whether the bus is clocked or not.

• isSerial: NFP_Boolean distinguishes serial from parallel buses. 

Constraints
[3]  Synchronous bus must have a clock frequency.

HwCache
The HwCache stereotype maps the HW_Cache domain element (section F.9.12). 

Generalizations
• HwMemory

Attributes
• level: NFP_Natural specifies the cache level. The default value is 1.
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• type: CacheType specifies the type of the cache.

• structure: CacheStructure specifies the structure of the cache.

Constraints
[4] memorySize is derived from structure attribute.

[5] addressSize is greater than the total cache entries number derived from the structure attribute.

HwClock
The HwClock stereotype maps the HW_Clock domain element (section F.9.16).

Generalizations
• HwTimingResource

Attributes
• frequency: NFP_Frequency   specifies the provided clock frequency.

HwCommunicationResource
The HwCommunicationResource stereotype maps the HW_CommunicationResource domain element (section F.9.17).

Generalizations
• HwResource

HwComponent
The HwComponent stereotype maps the HW_Component domain element from the HW_Layout package (section F.9.19).

Generalizations
• HwResource

Associations
• subComponents: HwComponent[0..*]    

specifies the owned physical entities. Subsets HwResource.ownedHW.

Attributes
• dimensions: NFP_Length[0..3]  

specifies Cartesian dimensions of the HwComponent. It is an ordered attribute.

• /area: NFP_Area  
specifies the area of the HwComponent. Derived from dimensions.

• position: Interval<NFP_Natural>[0..2] 
specifies position within the enclosing HwComponent. It is an ordered attribute. 
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• grid: NFP_Natural[0..2]  
specifies a rectilinear grid associated to the HwComponent. It is an ordered attribute.

• nbPins: NFP_Natural[0..1]  
specifies the number of pins. It is optional.

• weight: NFP_Weight  
specifies the weight of the HwComponent.

• price: NFP_Price  
specifies the HwComponent price.

• r_Conditions: Env_Condition[*]  
specifies the required environmental conditions.

• kind: ComponentKind  
specifies the kind of the HwComponent

• staticConsumption: NFP_Power  
specifies the HwComponent static consumption.

• staticDissipation: NFP_Power  
specifies the HwComponent static dissipation.

Semantics
The HwComponent stereotype maps its corresponding domain concept but it has Three additional attributes, kind to 
specify the kind of the HW component, staticConsumption and staticDissipation that are appropriate for power 
description and substitute the composition between the HW_Component and HW_PowerDescriptor domain concepts.

Constraints
[6] area must derive from dimensions.

[7] subComponents positions must not exceed the grid.

[8] requiredConditions intervals must be included within the subcomponents corresponding intervals.

Notations
HwComponent has many shapes depending on its kind.

• Card

• Channel
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• Chip

• Port

Each composite class stereotyped with "HW_Component" may be considered as a rectilinear grid where its parts are 
located in their corresponding positions. Hence, one propose an extension to the notation of composite class in order to 
take into account this feature as depicted below and illustrated through an example in Figure 14.83. This proposed 
notation is similar to the one of the Region concept of UML state machine diagram.

HwComputingResource
The HwComputingResource stereotype maps the HW_ComputingResource domain element (section F.9.20).

Generalizations
• MARTE::GRM::ComputingResource

• HwResource
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Attributes
• op_Frequencies : Interval<NFP_Frequency>specifies the range of supported frequencies.

Constraints
[9] if a clock frequency is specified, it must belong to op_Frequencies.

Notations

Figure 14.76 - HwCoolingSupply

The HwCoolingSupply stereotype maps the HW_CoolingSupply domain element (section F.9.21).

Generalizations
• HwComponent

Attributes
• coolingPower: NFP_Power specifies the cooling power.

Notations

HwDevice
The HwDevice stereotype maps the HW_Device domain element (section F.9.22). 

Generalizations
• MARTE::GRM::DeviceResource

• HwResource

Notations
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HwDMA
The HwDMA stereotype maps the HW_DMA domain element (section F.9.23).

Generalizations
• HwStorageManager

• HwArbiter

Associations
• drivenBy: HwProcessor[0..*] specifies processors that control the HwDMA.

Attributes
• nbChannels: NFP_Natural specifies the number of HwDMA channels.

• transferWidth: NFP_DataSize specifies the maximum supported transfer width.

HwDrive
The HwDrive stereotype maps the HW_Drive domain element (section F.9.24).

Generalizations
• HwMemory

Associations
• buffer: HwRAM[0..1] specifies the memory buffer of the HwDrive. Subsets HwResource::ownedHW.

Attributes
• sectorSize : NFP_DataSize specifies the sector size of the HwDrive.

Semantics
An HwDrive may own an HwRAM as a memory buffer. This composition substitutes the one from the domain model 
between the HW_ProcessingMemory and HW_StorageMemory concepts.

HwEndPoint
The HwEndPoint stereotype maps the HW_EndPoint domain element (section F.9.25).

Generalizations
• MARTE::GRM::CommunicationEndPoint

• HwCommunicationResource

Associations
• connectedTo: HwMedia[0..*] specifies the communication medias that the end point is connected to.
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HwI/O
The HwI/O stereotype maps the HW_I/O domain element (section F.9.26). 

Generalizations
• HwDevice

Notations

HwISA
The HwISA stereotype maps the HW_ISA domain element (section F.9.27).

Generalizations
· HwResource

Attributes
• family: NFP_String specifies the ISA family.

• inst_Width: NFP_DataSize specifies the instruction width

• type: ISA_Type specifies the ISA type

HwMedia
The HwMedia stereotype maps the HW_Media domain element (section F.9.28).

Generalizations
• MARTE::GRM::CommunicationMedia

• HwCommunicationResource

Associations
• arbiters: HwArbiter[0..*] specifies the HwMedia controllers.

Attributes
• bandwidth: NFP_DataTxRate specifies the transfer bandwith of the HwMedia.
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Notations

HwMemory
The HwMemory stereotype maps the HW_Memory domain element (section F.9.29). 

Generalizations
• MARTE::GRM::StorageResource

• HwResource

Attributes
• memorySize: NFP_DataSize specifies the storage capacity of the HwMemory.

• addressSize: NFP_DataSize specifies the address width of the HwMemory.

• timings: Timing[*] specifies timings of the HwMemory.

Constraints
[10]  the value of the inherited attribute isprotected is true.

Notations

HwMMU
The HwMMU stereotype maps the HW_MMU domain element (section F.9.30).

Generalizations
• HwStorageManager

Associations
• ownedTLBs: HwCache[0..*] specifies the owned Translation Lookaside Buffers.

Attributes
• virtualAddrSpace: NFP_DataSize specifies the managed virtual address space.

• physicalAddrSpace: NFP_DataSize specifies the managed physical address space.

• memoryProtection: NFP_Boolean specifies if memory protection is supported.
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• /nbEntriesTLB: NFP_Natural specifies the total number of TLBs entries. Derived from the ownedTLBs 
association.

Constraints 
[11]  nbEntriesTLB is derived from the ownedTLBs number of entries.

HwPLD 
The HwPLD stereotype maps the HW_PLD domain element (section F.9.31).

Generalizations
• HwComputingResource

Associations
• blocksComputing: HwComputingResource[0..*] 

specifies owned computing blocks. Subsets HwResource.ownedHW.

• blocksRAM : HwRAM[0..*] 
specifies the owned HwRAM memories.

Attributes
• technology: PLD_Technology specifies the HwPLD technology.

• organization: PLD_Organization specifies the matrix organization of the HwPLD.

• nbLUTs specifies the number of LUTs within the HwPLD.

• nbLUT_Inputs specifies the number of inputs of one LUT.

• nbFlipFlops specifies the number of FlipFlops within the HwPLD.

Constraints
[12]  if a clock frequency is specified, it must belong to op_Frequencies.

HwPowerSupply
The HwPowerSupply stereotype maps the HW_PowerSupply domain element (section F.9.34).

Generalizations
• HwComponent

Attributes
• suppliedPower: NFP_Power specifies the instantaneous supplied power.

• capacity: NFP_Energy[0..1] specifies the capacity of the HwPowerSupply.

Semantics
This stereotype denotes both domain elements HW_PowerSupply and HW_Battery. 
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Constraints
[13]   power consumption is greater than dissipation.

Notations

HwProcessor
The HwProcessor stereotype maps the HW_Processor domain element (section F.9.36).

Generalizations
• HwComputingResource

Associations
• predictors: HwBranchPredictor[0..*] specifies the owned branch prediction units. Subsets HwResource.ownedHW.

• caches: HwCache[0..*] specifies processor caches. Subsets HwResource.ownedHW.

• ownedMMUs: HwMMU[0..*] specifies the owned Memory Management Units. Subsets 
HwResource.ownedHW.

• ownedISAs: HwISA[1..*] specifies the owned instruction set architectures. Subsets 
HwResource.ownedHW.

Attributes
• /architecture: NFP_DataSize specifies the instruction width. Derived from ownedISAs.

• mips: NFP_Natural specifies the throughput of the processor.

• /ipc: NFP_Real specifies the number of instructions executed each clock cycle. Derived from 
mips and clock attributes. 

• nbCores: NFP_Natural specifies the number of cores within the HwProcessor.

• nbPipelines: NFP_Natural specifies the number of pipelines per core.

• nbStages: NFP_Natural specifies the number of stages per pipeline.

• nbALUs: NFP_Natural specifies the number of Arithmetic Logic Units within the HwProcessor.

• nbFPUs: NFP_Natural specifies the number of Floating Point Units within the HwProcessor.

Constraints
[14]  if a clock frequency is specified, it must belong to op_Frequencies.

[15]  architecture must derive from the inst_Width of the supportedISAs.
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[16]  ipc must derive from mips attribute and clock frequeny.

HwRAM
The HwRAM stereotype maps the HW_RAM domain element (section F.9.37).

Generalizations
• HwMemory

Attributes
• organization: MemoryOrganization specifies the organization of the HwRAM.

• isSynchronous: NFP_Boolean specifies whether  the HwAM is clocked or not.

• isStatic: NFP_Boolean specifies whether the HwRAM is static or not.

• isNonVolatile: NFP_Boolean specifies whether the HwRAM is volatile or not. Default value is false.

Constraints
[17]  memorySize is derived from organization attribute.

[18]  addressSize is greater than the number of memory words derived from organization attribute.

[19]  synchronous HwRAM must have a clock frequency.

HwResource (from HwLogical)
This HwResource stereotype maps the HW_Resource domain element from the HW_Logical package (section F.9.39).

Generalizations
• MARTE::GRM::Resource.

Associations
• ownedHW: HwResource[0..*] specifies the owned sub-HwResources. Subsets 

Resource.ownedElement.

• p_HW_Services: HwResourceService[0..*] specifies the provided services. Subsets Resource.pServices.

• r_HW_Services: HwResourceService[0..*] specifies the required services.

• endPoints: HwEndPoint[0..*] specifies the connection points of the HwReource. Subsets ownedHW.

Attributes
• description: NFP_String specifies a textual description of the HwResource.

• frequency: NFP_Frequency[0..1] specifies the clock frequency of the HwResource.

HwResource (from HwPhysical)
This HwResource stereotype maps the HW_Resource domain element from the HW_General package (section F.9.38).
A UML Profile for MARTE, Beta 1        243



Generalizations
• MARTE::GRM::Resource.

Associations
• ownedHW: HwResource[0..*] specifies the owned sub-HwResources. Subsets 

Resource.ownedElement.

• p_HW_Services: HwResourceService[0..*] specifies the provided services. Subsets Resource.pServices.

• r_HW_Services: HwResourceService[0..*] specifies the required services.

Attributes
• description: NFP_String specifies a textual description of the HwResource.

HwResourceService (from HwLogical)
The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_General package 
(section F.9.40).

Generalizations
• MARTE::GRM::ResourceService

HwResourceService (from HwPhysical)
The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_Physical package 
(section F.9.41).

Generalizations
• MARTE::GRM::ResourceService

Attributes
• consumption: NFP_Power specifies the consumption of the HwComponent when powering the HwResourceService.

• dissipation: NFP_Power specifies the dissipation of the HwComponent when powering the HwResourceService.

Semantics
Compared to its analogous domain concept, the HwResourceService stereotype from the HwPhysical package converts 
the association with the HW_PowerDescriptor to two appropriate attributes.

Constraints
[20]   power consumption is greater than dissipation.

HwROM
The HwROM stereotype maps the HW_ROM domain element (section F.9.42). 

Generalizations
• HwMemory.
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Attributes
• type: ROM_Type specifies the HwROM type.

• organization: MemoryOrganization specifies the structure of the HwROM.

Constraints
[21]  memorySize is derived from organization attribute.

[22] addressSize is greater than the number of memory words derived from organization attribute.

HwStorageManager
The HwStorageManager stereotype maps the HW_StorageManager domain element (section F.9.43). 

Generalizations
• MARTE::GRM::StorageResource

• HwResource

Associations
• managedMemories: HwMemory[0..*] specifies the managed memories.

Notations

HwSupport
The HwSupport stereotype maps the HW_Support domain element (section F.9.45).

Generalizations
• HwDevice

HwTimer
The HwTimer stereotype maps the HW_Timer domain element (section F.9.46).

Generalizations
• HwTimingResource

Associations
• inputClock: HwClock[0..1] specifies the input clock of the HwTimer.
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Attributes
• nbCounters: NFP_Natural specifies the number of counters within the HwTimer.

• counterWidth: NFP_DataSize specifies the width of one counter.

Semantics 
This stereotype unifies both domain elements HW_Timer and HW_Watchdog.

HwTimingResource
The HwTimingResource stereotype maps the HW_TimingResource domain element (section F.9.47). 

Generalizations
• MARTE::GRM::TimingResource

• HwResource

Notations

ISA_Type
The ISA_Type enumeration maps the ISA_Type domain element (section F.9.50, p. 534).

Description
• RISC (Reduced Instruction Set Computer)

• CISC (Complex Instruction Set Computer)

• VLIW (Very Long Instruction Word)

• SIMD (Single Instruction Multiple Data)

• Other

• Undefined

MemoryOrganization
The MemoryOrganization datatype maps the MemoryOrganization domain element (section F.9.51).

Attributes
• nbRows: NFP_Natural specifies the number of rows.

• nbColumns: NFP_Natural specifies the number of columns.
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• nbBanks: NFP_Natural specifies the number of banks.

PLD_Class
The PLD_Class enumeration maps the PLD_Class domain element (section F.9.52).

Description
• SymetricalArray

• RowBased

• SeaOfGates

• HierarchicalPLD

• Other

• Undefined

PLD_Organization
The PLD_Organization datatype maps the PLD_Organization domain element (section F.9.53).

Attributes
• nbRows: NFP_Natural specifies the number of rows.

• nbColumns: NFP_Natural specifies the number of columns.

• class: PLD_Class specifies the HW_PLD Class.

PLD_Technology
The PLD_Technology enumeration maps the PLD_Technology domain element (section F.9.54).

Description
• SRAM

• Antifuse

• Flash

• Other

• Undefined

Repl_Policy 
The Repl_Policy enumeration maps the Repl_Policy domain element (section F.9.56).

Description
• LRU Least Recently Used

• NFU Not Frequently Used
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• FIFO First In First Out

• Random

• Other

• Undefined

ROM_Type 
The ROM_Type enumeration maps the ROM_Type domain element (section F.9.57).

Description
• MaskedROM

• EPROM (Erasable Programmable ROM)

• OTP_EPROM (One Time Programmable EPROM)

• EEPROM (Electrically EPROM)

• Flash 

• Other

• Undefined

Timing
The Timing datatype maps the Timing domain element (section F.9.58).

Attributes
• notation: NFP_String specifies the Timing notation.

• description: NFP_String specifies a short description of the Timing.

• value: NFP_Duration specifies the duration value of the Timing.

WritePolicy
The WritePolicy enumeration maps the WritePolicy domain element (section F.9.59).

Description
• WriteBack

• WriteThrough

• Other

• Undefined 
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14.2.4 Examples

This section contains examples implementing the Hardware Resource Model profile. These examples may help users to 
model a given hardware platform or to design a new one using the set of stereotypes detailed above.

In order to leave a large modeling flexibility, the HRM profile can be applied on all structural UML diagrams: Class 
(example 14.2.4.2), Component, Composite Structure(example 14.2.4.3).

At the end, notice that the OMG standard XML Metadata Interchange (XMI) eases exchanging metadata of UML models. 
It is now supported by most UML-based modeling tools. The XMI also eases model transformation, parsing and code 
generation, consequently, many tools affords mechanisms to extract data from UML models for analysis, simulation or 
implementation purposes.

14.2.4.1 Resource services

Within the domain view, the resource services (HW_ResourceService) are not explicitly specified as they are mainly 
deduced from the nature of the resource and they should be fully listed only if such level of detail is needed. The logical 
view classifies hardware resources depending on their functional role within the execution platform and the services they 
are offering.

Figure 14.77 - Resource services example (HW_Timing)

HW_Timer

HW_Watchdog

HW_Pulse HW_Clock

HW_Alarm

HW_Count

HW_TimeSet

HW_TimeGet

HW_Resou rceService

pulseService
{subset r_HW_Services}

pulseService
{subset p_HW_Services}

countService
{subset p_HW_Services}

timeSetService
{subset p_HW_Services}

timeGetService
{subset p_HW_Services}

alarmService
{subset p_HW_Services}

HW_Scale

HW_Sto p

stopService
{subset p_HW_Services}

scaleService
{subset p_HW_Services}
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Figure 14.76 gives a detailed description of required and provided services of timing resources (Figure 14.60). An 
HW_Timer requires an HW_Pulse service offered by the HW_Clock and provides at least:

• HW_TimeGet service to get the current time.

• HW_TimeSet service to set a new time value given as parameter.

• HW_Count service to start counting.

• HW_Stop service to stop counting.

• HW_Scale service to set a counting scale, it needs a number of clocks as parameter.

An HW_Watchdog is an HW_Timer providing an additional notifying service HW_Alarm.

14.2.4.2 Stereotype application

Figure 14.77 shows a three steps example of applying the HwRAM stereotype.

(a) is part of the detailed HwStorage metamodel, it collects properties common to all memory technologies.

(b) defines the SDRAM (short for Synchronous Dynamic Random Access Memory) technology as  a model where a part 
of tagged values (e.g. isNonVolatil, isSynchronous and isStatic) are fixed. Other specific attributes are added at this level 
to refine the SDRAM class (burst transfers and refresh modes).

(c) is the final step where we instantiate a particular memory card from of the SDRAM technology model. Here is a real 
example of specific Samsung SDRAM.
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Figure 14.78 - Stereotype application example (SDRAM)

14.2.4.3 Logical/Physical modeling

The next example is an SMP (Symmetric MultiProcessing) HW platform with four processors owning caches and sharing 
the same main memory, through an FSB bus. This SMP platform also contains a 4-channels DMA (Direct Memory 
Access) and a battery (Figure 14.78).

burstLengths : NFP_Natural [1. .*]
burstTypes : BurstType [1..*]
refreshRate : RefreshRate
refreshModes : ResfreshModes [1..*]

« hwRAM »
SDRAM

{isSynchronous = true,
isStat ic = false,

isNonVolatil = false}

burstLengths = 1, 2, 4, 8, 4K
burstTypes = Sequencial, Interleave
refreshRate = 4K/64ms
refreshModes = CAS#beforeRAS#

« hwRAM »
K4S641632H : SDRAM

{frequency = 166MHz,
memorySize = 64MB,

adressSize = 22bit,
organization = (4096; 256; 4; 16bit),

timings = {(tCAS; ‘’CAS latency‘’ ; 2CLK),  
(tRAS; ‘’row active time’’; 18ns)}}

organization : MemoryOrganization
isSynchronous : NFP_Boolean
isStatic :NFP_Boolean
isNonVolatile : NFP_Boolean
repl_Policy :  Repl_Policy
writePolicy : WritePolicy

« stereotype»
HwRAM

memorySize : NFP_DataSize
addressSize : NFP_DataSize
timings : Timing [*]

« stereotype»
HwMemory notation : NFP_String

description : NF P_String
value : NF P_Duration

« dataType »
Timing

nbRows : NFP_Natural
nbColumns : NFP_Natural
nbBanks : NFP_Natural
wordSize :  NFP_DataSize

« dataType »
MemoryOrgan ization

WriteBack
WriteT hrough
Other
Undefined

« enumeration »
WritePolicy

LRU
NFU
FIF O
Random
Other
Undefined

« enumeration »
Rep l_Po licy

Sequencial
Interleave
Other
Undefined

« enumerat ion »
BurstType

RAS#Only
CAS#beforeRAS#
Hidden
Other
Undefined

« enumeration »
Refresh Mode

nbcycles :  NFP_Natural
period : NFP_Duration

« dataType »
RefreshRate

(a) Metamodel level

(b) Model level

(c ) Instance level

frequency : NF P_Frequency [0..1]

« stereotype »
HwResource
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Figure 14.79 - SMP description

Next figures depicts two refinements of the previous high level model into a logical view on Figure 14.79 and a physical 
view on Figure 14.80.

Figure 14.80 - SMP logical view

Due to its encapsulation/composition mechanisms, the UML Composite Structure diagram is well adapted to HW 
modelling even if the HRM profile can be used with all structural diagrams.

« hwResource»
SMP

1

«hwResource»
FSB

« hwResource»
DMA

«hwResource»
SDRAM

1 1

« hwResource»
Battery

1

« hwResource»
CPU

4

« hwResource»
UL2

1

« hwLogical::hwResource »
SMP

« hwProcessor »
CPU

« hwCache »
UL2

{level = 2,
type = unified}

« hwBus»
FSB

              {isSynchronous = true}

« hwRAM »
SDRAM

{isSynchronous = true,
isStatic = false}

4 1 1 1

« hwSupport»
Battery

« hwDMA »
DMA
{nbChannels = 4}

1

1

1

1
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Figure 14.81 - SMP physical view

As UML allows application of many stereotypes on the same element, these two previous views could be merged into a 
unified view as shown in Figure 14.81.

Figure 14.82 - SMP merged (logical/physical) view

Even if merging logical and physical views is possible, separation of concerns is an adequate way to have specialized and 
detailed models that are lightened from unused properties. Figure 14.82 and Figure 14.83 depict two detailed logical and 
physical refinements of the SMP example introduced above.

« hwCo mpon ent»
SM P

{kind  =  Card}

« hwCompone nt»
CPU [4 ]

{kind  = Chip}

« hwCo mpon ent»
UL2
{kind  = Un it}

« h wCompone nt»
F SB

{kin d =  Chan ne l}

« h wCompone nt»
SDRAM

{kind  = Ca rd}

« hwPowerSuppl y »
Ba tte ry

{kind  = Oth er,
ca pacity =  40 Wh}

« h wCompone nt»
DMA

{kind  = Chip}

« hwLogical::hwResource, hwComponent»
SMP

{kind = Card}

« hwProcessor, hwComponent»
CPU

{kind = Chip}

« hwCache, hwComponent»
UL2

{level = 2,
type = unified,

kind = Unit}

« hwBus, hwComponent»
FSB

               {isSynchronous = true,
kind = Channel}

« hwRAM, hwComponent»
SDRAM

{isSynchronous = true,
isStatic = false,

kind = Card}

4 1 1 1

« hwSupport, hwPowerSupply»
Battery

{kind = Other,
capacity = 40Wh}

« hwDMA, hwComponent»
DMA

{kind = Chip,
nbChannels = 4}

1

1

1

1
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Figure 14.83 - SMP detailed logical model

The HRM includes many notations (icons and shapes), the physical view provides arrangement mechanisms to make 
UML graphical diagrams as close as possible to the real hardware platform architecture. The physical view on Figure 
14.83 illustrates these profile features.

« hwLogical::hwResource»
smp : SMP

« hwProcessor»
cpu1 : CPU

{frequency = 800Mhz}

« hwCache »
l2 : UL2

{memorySize = 512kB}

« hwRAM »
sdram : SDRAM

{frequency = 266Mhz,
memorySize = 256MB}

« hwSupport»
battery : Battery

« hwDMA»
dma : DMA

{managedMemories = sdram}

« hwProcessor »
cpu2 : CPU

{f requency = 800Mhz}

« hwCache»
l2 : UL2

{memorySize = 512kB}

« hwProcessor»
cpu3 : CPU

{frequency = 800Mhz}

« hwCache»
l2 : UL2

{memorySize = 512kB}

« hwProcessor»
cpu4 : CPU

{frequency = 800Mhz}

« hwCache »
l2 : UL2

{memorySize = 512kB}

« hwBus »
fsb  : FSB

{frequency = 133Mhz,
wordWidth = 128bit }
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Figure 14.84 - SMP detailed physical model

Because of the nature of hardware resources, the logical and physical views converge on many concepts. Some logical 
stereotypes have a set of corresponding physical stereotypes like an HwLogical::HwBus which is typically a physical 
channel or HwLogical::HwProcessor(s) that are chips. Reciprocally, an HwPhysical::HwBattery is considered as an 
HwLogical::HwSupport device. More accurately, the addressSize and wordSize tag values of an HwLogical::HwMemory 
must go with the nbPins tag value of the corresponding HwPhysical::HW_Component.

Within MARTE, stereotypes tag values can be fixed either at model or instance level. This enlarges the semantics of HW 
models. For example, within Figure 14.80, the capacity of the battery at the model level was 40Wh and corresponds to the 
maximum capacity of such class of batteries, whereas the same tag value becomes 10Wh at instance level (Figure 14.83) 
and represents the current stored energy.

« hwComponent»
smp : SMP

{grid = {4,3},
area = 5000mm²,

r_condit ions = (Temperature; Operating; ‘’ ; [10°C,60°C])}

« hwComponent»
cpu1 : CPU

{position = {[1,1], [1,1]},
staticConsumption = 5W}

« hwComponent»
cpu3 : CPU

{position = {[2,2], [1,1]},
staticConsumption = 5W }

« hwComponent»
cpu4 : CPU

{position = {[2,2], [3,3]},
staticConsumption = 5W }

« hwComponent»
cpu2 : CPU

{position = {[1,1],  [3,3]},
staticConsumption = 5W}

« hwComponent»
dma : DMA

{posit ion = {[3,3], 
[3,3]}}

« hwPowerSupply»
battery : Battery

{posit ion = {[4,4], [3,3]},
capacity = 10Wh,

weight = 150g}

« hwComponent»
sdram : SDRAM

{position = {[3,4], [1,1]},
nbPins = 144}

« hwComponent»
fsb : FSB

{position = {[1,4], [2,2]}}
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Part III - MARTE Analysis Model

This Part contains the following chapters. 

• 15 - Generic Quantitative Analysis Modeling (GQAM)

• 16 - Schedulability Analysis Modeling

• 17 - Performance Analysis Modeling (PAM)
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15 Generic Quantitative Analysis Modeling (GQAM)

The generic analysis domain includes specialized domains in which the analysis is based on the software behaviour, such as 
performance and schedulability (the two next chapters), and also power, memory, reliability, availability and security. 
Although analysis domains have different terminology, concepts, and semantics, they also share some foundation concepts 
which are expressed in this chapter, in order to simplify the profile and make it easier to add new analyses. Generic modeling 
defines basic modeling concepts and NFPs, using the NFP annotation framework depicted in section 8 on page 51.

MARTE analysis is intended to support accurate and trustworthy evaluations using formal quantitative analyses based on 
sound mathematical models, which may supplement designer intuition and "feel." Model analysis can detect problems early in 
the development life cycle and reduce cost and risk.

The two following chapters use GQAM in creating sub-profiles for:

• Schedulability analysis, to predict whether a set of software tasks meets its timing constraints and to verify its temporal 
correctness, e.g., RMA-based techniques (see, e.g., "Real-Time Systems", by Jane Liu).

• Performance analysis, to determine if a system with non-deterministic behavior can provide adequate performance, 
usually defined by some statistical measures (see e.g., The Art of Computer Performance Modeling, by Raj Jain).

Figure 15-1 shows the relationship of these chapters to each other and to the rest of the profile. Analysis of power consumption 
and the use of memory are also briefly considered here as additional specializations that may be used in future analysis 
subprofiles.

Figure 15.1 - Dependencies of GenericQuantitativeAnalysisModeling (GQAM) package

GQAM

Time GRM

« import » « import »

SAM PAM

« import » « import »

« modelLibrary »
MARTE_Library

« import »

NFPs

« import »

GQAM_Workload GQAM_Resources« import »

GQAM_Observers« import »
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15.1 Overview
This chapter supports generic concepts for types of analysis based on system execution behaviour, which may be 
represented at different levels of detail. Extra annotations needed for analysis are to be attached to an actual design model, 
rather than requiring a special version of the design model to be created only for the analysis. Even if the specification 
contains fine detail, the annotations may optionally be applied to aggregates. The same arguments may be applied to 
modeling software or embedded devices.

The core of the GQAM domain is the description of how the system behaviour uses resources.

Quantitative analysis techniques determine the values of "output NFPs" (such as response times, deadline failures, 
resource utilizations and queue sizes) based on data provided as "input NFPs" (e.g., request or trigger rates, execution 
demands, deadlines, QoS targets). The goals of analysis may have varying degrees of generality:

• A point evaluation of the output NFPs gives their values, along with decisions such as pass/fail.

• Sensitivity or scalability analysis is parameterized over variations in the input NFPs. It may seek to find which cases 
are satisfactory, and which are not; or to find the sensitivity of some measures to parameters which are not well 
determined.

• Some analysis may search over input NFP values to find feasible or optimal values.

The same NFP may be an input or output, depending on the context. For example a worst-case latency may be an output 
in WCET analysis, or an input in  Schedulability Analysis. 

Although NFPs may describe all aspects of a system (including, for example, heat generation and power consumption), 
this discussion centers on time and resource-related properties.

Time-Related NFPs
The core purpose of real-time analysis is to estimate the capability of a system to provide timely responses to requests for 
(or initiations of) specified system-level operations, which we will call services, and to handle an adequate frequency of 
requests, under specified conditions. To enable this analysis, a UML model must specify the system-level operations, the 
frequency of requests, and the conditions of execution (which we may term its environment).

Timeliness of a response can be defined in several different ways, as a property of the response delay to complete it. A 
recent survey is given in  (Lui Sha, Tarek F. Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore P. Baker, Alan Burns, 
Giorgio C. Buttazzo, Marco Caccamo, John P. Lehoczky, Aloysius K. Mok, "Real Time Scheduling Theory: A Historical 
Perspective", Real-Time Systems, Volume 28, Number 2-3, November 2004, pp. 101-155). Some examples of definitions 
given in this survey are:

• Hard deadline: the response must be complete within this delay,

• Soft deadline: a stated percentage of responses must  be complete within this delay. Quality-of-service specifications 
often are stated in these terms (QoS Specification Languages for Distributed Multimedia Applications: A Survey and 
Taxonomy, Jingwen Jin Klara Nahrstedt, IEEE Multimedia, July/September 2004 (Vol. 11, No. 3) pp. 74-87, esp Fig 
4.).

• Delay cost function: a function of delay should be within a target value, or should be minimized. This is useful for 
trading off delays of multiple streams of requests that compete for resources. (e.g. P. A. Franaszek and R. D. Nelson , 
Properties of delay-cost scheduling in time-sharing systems, IBM J. of Research and Development, Volume 39, 
Number 3, 1995).  
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• Other statistical measures: the average delay, or the average of some function of some measure, must be within a target 
value, or some other measure must meet some requirement. The following real example is a generalization of soft 
deadlines: "the probability distribution function of delay must lie above a specified distribution function, so at each 
delay value the probability is higher than the specification".

The expression of such measures in service level agreements was discussed and surveyed recently in: James Skene, D. 
Davide Lamanna, Wolfgang Emmerich, "Precise Service Level Agreements", Proc 26th International Conference on 
Software Engineering (ICSE'04), pp. 179-188). They point out the value of analysis of the execution path of the software.

Other NFPs 
Although this chapter is concerned with time, it is instructive to consider others, such as memory and power usage 
(reliability and security are further examples not considered here).

Memory usage is determined by the size of objects that must be stored. As seen at the level of a system specification, 
these objects include:

• Executables when loaded.

• Data structures in memory, both static and dynamic. For dynamic data structures, the maximum size seems to be of the 
greatest interest. However a situation might arise where the program creates one buffer pool at one stage, then destroys 
it and creates another one at a later stage. A full analysis would then have to look at the memory use over the duration 
of a response, attaching sizes for a given object to particular operations. An example of a potentially dynamic data 
structure is a buffer pool.

• Messages sent between entities.

• Files.

Additional objects arise in the environment, including the operating system executable and data, file system cache and 
other memory objects, and the "heap".

Power use depends on the system configuration and deployment and on its behaviour, in that power is used to operate 
peripherals and memory, as well as to execute instructions and i/o operations. Power may be managed dynamically by a 
power control policy of the operating system, which responds to demands and battery status. 

Power is related to time to execute a behavior, because the power used by a host processor is controlled through its clock 
speed, which affects its rate of operation. 

Power management also applies to DRAM memories. (see "Memory Controller Policies for DRAM Power Management", 
Xiaobo Fan, Carla S. Ellis, Alvin R. Lebeck, Proceedings of the International Symposium on Low Power Electronics and 
Design (ISLPED), pages 129--134, August 2001).

In wireless networks the power of transmission may be controlled, affecting messaging speed. Optimal policies take into 
account competition between nodes ("Optimal Routing, Link Scheduling and Power Control in Multi-hop Wireless 
Networks", R. L. Cruz and Arvind V. Santhanam, Infocom 2003)

15.2 Domain view
Figures 15-2 to show the domain model for generic quantitative model-based analysis composed of four packages: 
GQAM, GQAM_Workload, GQAM_Observers and GQAM_Resources. 
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15.2.1 The GQAM package

The top-level GQAM package shown in Figure 15.2, is organized around the concept of AnalysisContext, which 
represents the root of the domain model. It contains two parts that address different concerns:

• WorkloadBehaviour (refined inFigure 15.3) contains a set of related end-to-end system-level operations, each with a 
defined behaviour, triggered over time as defined by a set of workload events.

• ResourcesPlatform (refined in Figure 15.5) is a logical container for the resources used by the system-level behaviour 
represented in the previous model.

AnalysisContext may have parameters of type VSL::Expressions::Variables, which define different cases being considered 
for analysis, and may affect the parameters of behaviour and resources (such as the number of repetitions of a sub-
operation, or the size of a list).

Figure 15.2 - Top package of the GQAM domain model

15.2.2 The GQAM_Workload package

The package GQAM_Workload (Figure 15.3) describes workload and behaviour concerns. WorkloadBehaviour is a 
container for one or more end-to-end system operations (behaviours) used for analysis, and one or more streams of 
request events.

15.2.2.1 Workload concepts

Different workloads may correspond to different situations, such as takeoff, in-flight and landing of an aircraft, or peak-
load and average-load of an enterprise application. Each workload is represented by a stream of triggering events, 
WorkloadEvent. Such a stream may be generated in different ways: 

• by a timed event, 

• by a stated arrival pattern which includes a wide range of classic models of event streams, 

GQAM

AnalysisContext VSL::Expressions::
Variable

GQAM_Resources::
ResourcePlatform

GQAM_Workload::
WorkloadBehavior

resourcesPlatform1..*1workloadBehavior

contextParams1
context
{redefines context }

*

VSL::Expressions::
ExpressionContext
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• from an arrival-generating mechanism represented by a Workload Generator (which may be modeled as a state-
machine). There may be multiple independent identical mechanisms generating the stream, the number is called its 
"population". 

• or from a trace (Event Trace) stored in a file. 

One of these options is used and the others are undefined. The arrivalPattern alternatives are described elsewhere, but 
they include PeriodicPattern, often used for schedulability, and Open and Closed patterns often used for performance 
analysis, and a variety of less regular patterns.

Figure 15.3 - GQAM_Workload package of the GQAM domain model 
 
 
 

GQAM_Workload

WorkloadBehavior

pattern: Arr ivalPattern

WorkloadEvent

demand1..*

Sequence
Branch
Merge
Fork
Join

« enumeration»
ConnectorKind

hostDemand: NFP_Duration
hostDemandOps: NFP_Real [*]
interOccTime: NFP_Duration [*]
throughput: NFP_Frequency [*]
respTime: NFP_Duration [*]
utilization : NFP_Real [*]
utilizationOnHost : NFP_Real [*]

BehaviorScenario

population: NFP_Integer

WorkloadGenerator

EventTrace

generator

0..1

trace
0..1

1

1..*

inputStream

effect

behavior 1..*

connectorKind: ConnectorKind

PrecedenceRelation
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*
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1
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*
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isAtomic: NFP_Boolean
blockingTime: N FP_Duration [*]
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probability: NFP_Real = 1
prior ity: N FP_Integer

Step

0..1root steps

0..1 behavior

*

GQAM_Resources::
ExecutionHost

GRM::Scheduling::
SchedulableResource

0..1

host

0..1
concurRes

RequestedService

msgSize : NFP_DataSize

CommunicationStep

GQAM_Resources::
CommunicationHost

GQAM_Resources::
CommunicationChannel

0..1{redefines host}
host 0..1

{redefines concurRes}
concurRes

resUnits: NFP_Integer

A cquireStep

resUnits: NFP_Integer

ReleaseStep

GRM::ResourceCore::
Resource

acqRes0..1relRes 0..1

Time::
TimedEventModel::

TimedEvents::
TimedEvent timeEvent

0..1

Time::TimeRelatedEntities::
TimedProcessingModels::

TimedProcessing

GRM::ResourceU sages::
ResourceUsage

period ic: Periodic Pattern
aperiodic : AperiodicPattern
sporadic: Sporadic Pattern
burst: BurstPattern
irregular : IrregularPattern
closed: ClosedPattern
open: OpenPattern

« dataType »
« choiceType »
A rrivalPattern GQAM_Observers::

TimingObserver

*timing
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15.2.2.2 Behavior Scenario concepts

The behaviour in response to a trigger event is described by a BehaviorScenario, which is composed of sub-operations 
called Steps, any one of which can be refined as another BehaviorScenario. A BehaviorScenario captures any system-
level behaviour description or any operation in UML, and attaches resource usage to it. Resources are used in three 
different ways:

• Each primitive Step has a host processor used to execute the operation of the step,

• A Step implicitly uses an operating system process which is a SchedulableResource, 

• A Step may be a specialized AcquireStep or ReleaseStep to acquire or release a Resource, particularly a logical 
Resource representing a software resource.

BehaviorScenarios and Steps may also use other kind of resources, such as power and memory. For this reason, 
BehaviorScenario inherits from ResourceUsage (described in Chapter 10), which links resources with concrete usage 
demands. A few concrete forms of usage are defined at this level of specification, such as: memory, CPU execution time, 
energy from a power supply and size of messages to be sent through a network.

GQAM models Scenarios which terminate, and assumes that they are triggered repeatedly by the WorkloadEvent stream.

The predecessor-successor relationship between Steps may be a simple sequence, or it may be:

• branch (one predecessor Step, multiple successor Steps, each with a probability of selecting that branch).

• merge (multiple predecessor Steps, one successor triggered by any predecessor).

• fork (one predecessor Step, multiple successor Steps, indicating that all successors are executed logically in parallel.

• join (multiple predecessor Steps, one successor triggered by all predecessors completing).

These are represented in the Figure by the types of connectorKind in PrecedenceRelation. 

Steps and BehaviorScenarios have quantitative attributes as shown in the Figure and described in Table 1 below.  A Step 
can be optional (with a probability less than one of being executed), or repeated (with a repetition count). It can be refined 
as another BehaviorScenario (its "behavior" association). The "isAtomic" property specifies atomicity of execution 
(default is false).

A Step has a host association, a process (a SchedulableResource), and a hostDemand for its own execution time, which 
can be represented either as a time, or a number of operations on the host processor. It also may have optional requests 
(servDemand, with mean count servCount) for services from system components. To support demands for multiple 
services, these are expressed as ordered sets of service requests and counts, with the order corresponding one to the other.

A CommunicationStep defines the conveyance of a message between system entities, and has an attribute of the message 
size.

BehaviorScenarios in similar forms are widely used for timing analysis. In schedulability analysis they are called "task 
sequences" (Jane Liu, "Real Time Systems", Wiley), and specifications of timing normally refer to certain scenarios. 
Performance models are also created from scenarios (C.U. Smith and L. Williams, "Performance Solutions", Addison-
Wesley 2000). Early analysis may be deliberately restricted to certain behaviours for certain triggers. 

A BehaviorScenario may be represented by a UML interaction, statechart or activity diagram.
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Time Intervals
Time intervals are defined by events that associated with units of behaviour, particularly Steps and BehaviorScenario, or 
with pairs of events from other sources. The inter-occurrence time interval between the two between successive initiations 
of a behavior unit (the "interOccTime" NFP in Table 1-1 below) is one such example.

It is also sometimes necessary to define an interval between two events that are associated with separate units of 
behaviour, such as the interval between corresponding events on two parallel paths, to give the amount by which one 
parallel path leads or follows another.

Services
Services are provided by resources and by subsystems. A service by a subsystem is identified as a RequestedService, a 
subtype of Step. It is associated with an operation included in some interface of a system component, and is defined for 
analysis purposes as a Step refined by the BehaviorScenario for the behaviour of that operation.

15.2.3 GQAM_Observers Package

Timing Observers (Figure 15.4) are conceptual entities that collect timing requirements and predictions related to a pair 
of user-defined observed events. In this sense, TimingObserver uses Timed Instant Observations (from the Time sub-
profile) to define the observed event in a given behavioral model. Normally the observer expresses constraints on the 
duration between the two time observations, named startObs and endObs in the figure. Timing observers are a powerful 
mechanism to annotate and compare timing constraints against timing predictions provided by analysis tools. Timing 
observers can be used as predefined and parameterized patterns (e.g., latency, jitter) or by means of more elaborate 
expressions (e.g., written in OCL or VSL) since TimingObserver inherits all the modeling capabilities from 
NfpConstraint.

LatencyObserver specifies a duration observation between startObs and endObs, with a miss ratio assertion (percentage), 
a utility function which places a value on the duration, and a jitter constraint. Jitter is the difference between maximum 
and minimum duration. 

A timing observer may be attached to the start and end observed events, or to a behavior element such as a Step. In the 
latter case the start and end events are the start and end events for execution of the behavior element.
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Figure 15.4 - The GQAM Observers package

15.2.4 The GQAM_Resource Package

The top class in the GQAM_Resource package (Figure 15.5) is ResourcesPlatform, which represents a logical container 
for all the resources used to perform the behaviours described in the previous package.

Resources in real-time systems take a variety of forms, including hardware devices, software servers and logical resources 
like locks. The viewpoint of resources in Figure 15.5 is inherited from the GRM package: an abstract Resource class, with 
features shared by all resources which include a scheduling discipline, and a multiplicity called "resMult" for "maximum 
resource instances". In use it will also have an output NFP of resource utilization (for a multiple resource this is defined 
as the mean number of busy units). A multiprocessor may be modelled as a single resource with multiple units and one 
scheduler (for a processor pool), or a collection of single resources each representing one processor, (where tasks are 
allocated to processors separately).

From an analysis viewpoint, these four types of resources shown in Figure 15.5 are important:

• ExecutionHost: a processor or other device that executes operations specified in the model. It has a host role relative to 
the processes and the Steps that execute on it.

• CommunicationsHost: hardware links between devices, with the role of host to the conveyance of a message.

• SchedulableResource: a schedulable service like a process or thread pool, which is a software resource managed by the 
OS.

• CommunicationChannel : a middleware or protocol layer that conveys messages.
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There are also other concurrency resources, such as mutual exclusion resources (from the GRM chapter), which may be 
any mechanism which can make a program wait for a condition to be satisfied. Examples include a critical section, 
semaphores and locks; a finite buffer pool (a multiple resource, with multiplicity equal to the number of units of memory 
in the pool), or a pool of admission control tokens.

All resources have a scheduling discipline, a multiplicity (number of units of the resource), and offer Services. Explicit 
resource acquisition and release is mostly required for logical Resources, but for generality it is expressed in Figure 15-3 
for any resource.

Resource usage by the software may cover an entire BehaviorScenario, or a few Steps. A Step runs on a processor which 
is its host, which is implicit in the deployment of the software component of which it is part, and it has a host demand 
which is its CPU requirement.

Figure 15.5 - GQAM_resources package of the GQAM domain model

Acquisition and release are operations which occur during the BehaviorScenario; they may be implicit in the behaviour. 
For instance, when a message goes to a process or thread, a thread/process resource must be acquired, or the scenario will 
block. Similarly, where a behavior scenario enters or leaves a critical section, the corresponding logical resource is 
acquired or released implicitly. Other logical resources, such as a locks, buffers, and admission tokens, are explicitly 
acquired or released. Notice that the resource is different from the resource manager, which may be a process that 
implements the resource scheduler and has its own host and demands. The operation of an embedded system may have 
resources whose function depends on other resources.

GQA M_Resources

ResourcesPlatform

GRM::ResourceCore::
Resource

GRM::Scheduling::
ProcessingResource

GRM::ResourceTypes::
ConcurrencyR esource

commTxOverhead: N FP_D uration
commRcvOverhead: N FP_Duration
contextSwitchT ime : NFP_Duration
clockOvh : NFP_Duration
schedPrior ityR ange: NFP_Interval
memorySize : NFP_DataSize
utilization : NFP_Real

ExecutionH ost

capacity: NFP_DataTxRate
throughput: NFP_Frequency
packetT ime: N FP_D uration
blockingTime: NFP_Duration
transmMode: TransmModeKind
utilization : NFP_Real

CommunicationH ost

GRM::Scheduling::
SchedulableR esource

packetSize : NFP_DataSize
util ization: N FP_Real

Communicat ionChannel

Simple
HalfDuplex
FullD uplex

« enumeration »
MAR TE_Library::

MAR TE_D ataTypes::
TransmModeKind

host 0..1

resources*

{redefines host}
host

0..1
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Messages between processes that are not co-located use the links between their host processors; the links can often be 
identified implicitly from the deployment.

15.2.5 Common NFP Attributes for Analysis

There are several widely-used measures used for real-time requirements, parameters which are inputs to an analysis, and 
results which are outputs from it, including:

• Repetition count for a Step or a loop (repetitions).

• Probability of a subpath (probability).

• Host demand (CPU requirement) in time units (hostDemand).

• Host demand in host operations (hostDemandOps).

• Priority on the host (priority).

• Delay (including initial scheduling delay) (respTime).

• Delay (without initial scheduling delay) (executionTime).

• Time interval between two successive occurrences (interOccTime).

• Throughput (executions per unit time) (throughput).

• Utilization of the entity, meaning the fraction of time it is busy or (if it is reentrant or has multiple copies) the mean 
number of busy copies (utilization).

• Host utilization by the entity, the fraction of time its host is busy executing it (required and evaluated). 
(utilizationOnHost).

These quantities may be applied to different kinds of entities, as described in the following table.. All are optional, and 
may be an array of values.

Table 15.1 - Common NFP Attributes for Analysis

NFP For Resource For Scenario and Step For WorkloadEvent

repetitions: NFP_Real[*] repetitions,
N/A

the number of times the Step is 
repeated, once triggered (default = 
1).

N/A

probability: NFP_Real[*] probability,
N/A

the probability that the step is 
executed, following its predecessor 
(for conditions)

N/A

hostDemand: NFP_Duration[*], 
hostDemandOps:NFP_Real[*]

composite demand across 
all services of the Resource, 
in terms of time and in 
terms of processor 
operations

For a Step, the CPU demand on the 
host of the process that executes 
the Step.
For a Scenario, the sum of all 
demands for all its Steps.

N/A

priority : NFP_Integer[*] N/A For a Step, priority on its host N/A
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For a BehaviorScenario, which is a composite entity, some NFPs apply directly (repetitions, probability, response time, 
inter-occurrence time and throughput) while others either do not apply or represent sums of the attributes of the Steps that 
make up the Scenario, weighted by their throughputs relative to that of the BehaviorScenario (execution time, 
hostDemand, utilizationOnHost). 

15.3 UML Representation

15.3.1 Profile Diagrams

The UML extensions for the GQAM sub-profile are presented in this section. The sub-profile is split in four figures 
related to corresponding domain model packages GQAM, GQAM_Workload, GQAM_Behavior, GQAM_Observers, and 
GQAM_Resources.

In general, resource-related stereotypes extend the UML metaclass Classifier. More exactly, the stereotypes GaExecHost, 
GaCommHost and GaCommChannel specialize the stereotype GRM::Resource, defined in the GRM chapter (10.3.2.12, p. 
117), which extends in turn Classifier, InstanceSpecification and Property (the last used for annotating Parts in UML 
composite structure diagrams).Therefore, resource stereotypes can be applied to all kinds of classes, instances, 
components, parts and deployment nodes.

GaScenario and Step stereotypes inherit from TimeModels::TimedProcessing (which extends Behavior, Message, Actions) 
and GRM::Resource (which extends NamedElement). So, Scenario and Step stereotypes can be applied to a wide set of 
behavior-related elements covered by the UML2 metaclass NamedElement, such as Operations, Actions, Messages that 

respTime: NFP_Duration[*] response time,
composite average response 
time across all services 
offered by the resource

total delay from the trigger event 
until completion of the Step or 
Scenario

required value for the 
Scenario

execTime : NFP_Duration[*] execution time, 
N/A (same as hostDemand)

respT minus any initial scheduling 
delays

N/A

interOccTime: NFP_Duration[*] inter-occurrence time, 
interval between successive 
requests for services

interval between initiations interval between trigger 
events

throughput : NFP_Frequency[*] frequency of requests for all 
services

frequency of initiations frequency of the trigger 
event

utilization : NFP_Real[*] fraction of time the 
resource is active (has an 
active service). For a 
multiple resource, the mean 
number of busy units.

fraction of time the 
BehaviorScenario is active 
(between its trigger event and its 
completion)

N/A

utilizationOnHost: NFP_Real[*] N/A fraction of time the host is busy 
executing the BehaviorScenario. If 
it has multiple hosts, this is a set of 
values.

N/A

blockingTime: NFP_Duration[*] blocking time,
N/A

a pure delay which is part of the 
behavior of the Step or Scenario

N/A

Table 15.1 - Common NFP Attributes for Analysis
A UML Profile for MARTE, Beta 1        269



initiate Operations or Actions, Transitions and States in state machine diagrams, Signals that trigger state machine 
transitions, Events, ExecutionOccurrenceSpecifications and InteractionFragments in interaction diagrams, InputPins in 
activity diagrams and UseCases.

Figure 15.6 - UML extensions for top level stereotypes of the GQAM profile

« prof ile»
GQAM

contextParams: NF P_Str ing [*]
workload: GaWorkloadBehavior  [1..*]
platform: G aR esourcesPlatform [1..*]

« stereotype »
GaAn alysisCo ntext

« stereotype »
MART E::VSL::Variables: :

Exp ression Con text

resources: R esource [*]

« stereotype»
G aR eso urcesPlat form

behav ior: GaScenar io [*]
demand: GaWorkloadEvent [*]

« stereo type »
GaWorklo adBeh avio r

« metaclass »
UML: :Classes: :Kern el: :

N amedElemen t

« metaclass »
UML: :Classes: :K ernel::

Classif ier
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Figure 15.7 - UML extensions for GQAM stereotypes related to behavior

« profile»
GQAM

pattern: ArrivalPattern
generator: GaWorkloadGenerator
trace: GaEventTrace
effect: GaScenario

«stereotype»
GaWorkloadEvent

« stereotype»
MARTE::GRM::
ResourceUsage

« metaclass »
UML::Classes::Kernel::

NamedElement

content: String
format: String
location: String

« stereotype»
GaEventTrace

« metaclass»
UML::CommonBehavior::
BasicBehaviors::Behavior

pop: NFP_Integer  = (1)

« stereotype»
GaWorkloadGenerator

« stereotype»
MARTE::Time::TimeRelatedEntities::

TimedProcessingModels::TimedProcessing

cause: GaWorkloadEvent
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT : NFP_Duration [*]
throughput: NFP_Frequency [*]
respT: NFP_Duration [*]
utilization: NFP_Real [*]
utilizationOnHost : NFP_Real [*]
root: GaStep
timing: GaTimingObserver [*]

« stereotype»
GaScenario

isAtomic: NFP_Boolean
blockT: NFP_Duration [*]
rep: NFP_Real = (1.0)
prob: NFP_Real = (1.0)
priority: NFP_Integer
concurRes: SchedulableResource
host: GaExecHost
servDeman: GaRequestedService [*] {ordered}
servCount: NFP_Real [*] {ordered}
behavior: GaScenario [0..1]

« stereotype»
GaStep

« metaclass »
UML::Classes::

Kernel::Operat ion

« stereotype»
GaRequestedService msgSize: NFP_DataSize

concurRes: SchedulableResource

« stereotype»
GaCommStep

acqRes: Resource
resUnits: NFP_Integer = (1)

« stereotype»
GaAcqStep

relRes: Resource
resUnits: NFP_Integer =(1)

« stereotype»
GaRelStep

periodic : PeriodicPatt ern
aperiodic : AperiodicPatt ern
sporadic:  SporadicPatt ern
burst: Burst Pat tern
irregular:  I rregularPat tern
closed: ClosedPatt ern

« dataType»
«choiceType»

MARTE_Library::
BasicNFP_Types::

ArrivalPattern

« metaclass»
UML::CommonBehavior

::SimpleTime::
TimeEvent

timedEvent 0..1
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Figure 15.8 - GQAM stereotype for observing timing occurrences between two events

Figure 15.9 - UML extensions for GQAM stereotypes related to resources 

« p ro file »
GQ AM

« stereo typ e»
MARTE: :NFPs::NfpCo nst raint

« metaclass »
UML: :Co mmo nBehavio rs::

BasicT ime::T imeOb servatio n laxity : Lax ityKind [0..1]

« stereotype »
GaT imin gOb s0..1

star tObs

0..1
endObs

latency: NFP_Duration [*]
miss : NF P_Real [*]
utili ty : Util ityType
maxJitter : NF P_D uration [*]

« stereotype »
GaLaten cyObs

hard
soft
other

« enu meratio n »
L axityKind

« profile»
GQAM

« stereotype»
MARTE::GRM::Resource

« stereotype»
MARTE::GRM::

ProcessingResource

« stereotype»
MARTE::GRM::

ConcurrencyResource

commTxOvh : NFP_Duration
commRcvOvh : NFP_Duration
cntxtSwT: NFP_Duration
clockOvh : NFP_Duration
schedPriRange: NFP_Interval
memSize: NFP_DataSize
utilization : NFP_Real [*]
throughput: NFP_Frequency [*]

« stereotype »
GaExecHost

capacity: NFP_DataTxRate [*]
packetT: NFP_Duration [*]
blockT: NFP_Duration [*]
transmMode: TransmModeKind
utilization : NFP_Real [*]
throughput: NFP_Frequency [*]

« stereotype »
GaCommHost

« stereotype»
MARTE::GRM::

SchedulableResource

packetSize: NFP_DataSize
utilization : NFP_Real [*]

« stereotype»
GaCommChannel

Simple
HalfDuplex
FullDuplex

« enumeration »
MARTE_Library::

MARTE_DataTypes::
TransmModeKind
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15.3.2 Profile Elements Description

In this section are described the stereotypes of the GQRM profile (listed in alphabetical order).

15.3.2.1 GaAcqStep

The GaAcqStep stereotype maps the AcquireStep domain element (section F.10.1, p. 537) denoted in Annex F.

A step that acquires a resource.

Extensions
• None.

Generalizations
• GaStep.

Associations
• None.

Attributes
• acqRes: Resource [0..1] the resource to be acquired within the step execution.

• resUnits : NFP_Integer [0..1]= 1 the number of units of resource acquired within the step execution.

Constraints
• None.

15.3.2.2 GaAnalysisContext

The GaAnalysisContext stereotype maps the AnalysisContext domain element (section F.10.2, p. 537) denoted in Annex 
F.

For a given analysis, the context identifies the model elements (diagrams) of interest and specifies global parameters of 
the analysis.

Extenssions
• None.

Generalizations
• ExpressionContext (from MARTE::VSL::Expressions).

Associations
• None.

Attributes
• contextParams: NFP_String [*] 

a set of annotation variables defining global properties of this analysis context.
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Constraints
• None.

15.3.2.3 GaCommChannel

The GaCommChannel stereotype maps the CommunicationChannel domain element (section F.10.4, p. 538) denoted in 
Annex F.

It is used for denoting a logical communications layer connecting SchedulableResources.

Extensions
• None.

Generalizations
• SchedulableResource (from MARTE::GRM).

Associations
• None.

Attributes
• packetSize: NFP_DataSize [0..1] the size of the data unit handled by the channel.

Constraints
• None.

15.3.2.4 GaCommHost

The GaCommHost stereotype maps the CommunicationHost domain element (section F.10.5, p. 539) denoted in Annex F.

It is used for denoting a physical communications link.

Extensions
• None.

Generalizations
• ProcessingResource (from MARTE::GRM).

Associations
• None.

Attributes
• capacity: NFP_DataTxRate [*] maximum capacity.

• throughput: NFP_Frequency [*] actual throughput.

• packetT: NFP_Duration [*] time to transmit a packet.
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• · blockT: NFP_Duration [*] time the host is blocked and cannot transmit.

• · transmMode: TransmModeKind [*] the transmission mode, one of the following values: { simplex,  
half-duplex, full-duplex}.

• · utilization: NFP_Real [*] utilization of this host.

Constraints
• None.

15.3.2.5 GaCommStep

The GaCommStep stereotype maps the CommunicationStep domain element (section F.10.6, p. 539) denoted in Annex F.

A CommStep is an operation which conveys a message from one locale to another.

Extensions
• None

Generalizations
• GaStep

Associations
• None

Attributes
• msgSize: NFP_Datasize [*] the size of the message.

Constraints
• None

15.3.2.6 GaEventTrace

The GaEventTrace stereotype maps the EventTrace domain element (section F.10.7, p. 539) denoted in Annex F.

A trace of events that can serve as source for the request event stream.

Extensions
• NamedElement (from UML::Classes::Kernel)

Generalizations
• None.

Associations
• stream: GaWorkloadEvent the event stream driven by the trace
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Attributes
• content: String [0..1] contains the serialization of the event trace according to the file format.

• format: String [0..1] this indicates the format of the event trace - which is how the string content should be 
interpreted.

• location: String [0..1] this contains a location that can be used by a tool to locate the file as an alternative to 
embedding it in the stereotype.

Constraints
• None.

15.3.2.7 GaExecHost

The GaExecHost stereotype maps the ExecutionHost domain element (section F.10.4, p. 538) denoted in Annex F.

It denotes a processor which executes Steps.

Extensions

Generalizations
• ProcessingResource (from MARTE::GRM)

Associations
• None

Attributes
• commTxOvh: NFP_Duration [*] the host demand for sending messages.

• commRcvOvh:NFP_Duration [*] the host demand for receiving messages.

• cntxtSwT: NFP_Duration [*] context switch time.

• clockOvh: NFP_Duration [*] clock overhead.

• schedPriRange: NFP_Interval [*] the range of priorities offered by this processor.

• memSize: NFP_DataSize [0..1] the memory size.

• utilization: NFP_Real [*] the processor utilization, expressed as mean busy processors (in the range from 0 
to resMult which is the number of processors).

Constraints
• None

15.3.2.8 GaLatencyObs

The GaLatencyObs stereotype maps the LatencyObserver domain element (section F.10.10, p. 540) denoted in Annex F. 
GaLatencyObs specifies a duration observation between startObs and endObs UML TimeObservations, with a miss ratio 
assertion (percentage), a utility function, which places a value on the duration, and a jitter constraint. Jitter is the 
difference between maximum and minimum duration.
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Extensions
• None

Generalizations
• GaTimingObs

Attributes
• latency: NFP_Duration [*]  

value of the latency.

• miss: NFP_Real [*]  
for soft timing constraints the miss ratio indicates the admitted or actual percentages of 
"required" latency missed.

• utility: UtilityType [0..1]  
value of importance for required timing constraints.

• maxJitter: NFP_Duration [*] 
maximum deviation value. It represents a maximum deviation with which a periodic internal event is 
generated. The output jitter is calculated as the difference between a worst-case latency time and the  
best-case latency time for the observed event measured from a reference event.

Constraints
• None

15.3.2.9 GaRelStep

The GaRelStep stereotype maps the ReleaseStep domain element (section F.10.13) denoted in Annex F.

It denotes a step that releases a resource.

Extensions
• None

Generalizations
• GaStep

Associations
• None

Attributes
• relRes:Resource [0..1] the resource to be released.

• resUnits : NFP_Integer [0..1] = 1 how many units to be released (default = 1).

Constraints
• None.
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15.3.2.10 GaResourcesPlatform

The GaResourcesPlatform stereotype maps the ResourcesPlatform domain element (section F.10.16) denoted in Annex F.

A logical container for the resources used in an analysis context.

Extensions
• Classifier (from UML::Classes::Kernel)

Generalizations
• None

Associations
• None

Attributes
• resources: Resource[*] set of resources contained by this container.

Constraints
• None

15.3.2.11 GaRequestedService

The GaRequestedService stereotype maps the RequestedService domain element (section F.10.15) denoted in Annex F.

A request for an operation by some system object, for instance a subsystem defined by component notation and interface 
operations. The operation details may be defined by a Scenario attached by the behavior association inherited from Step.

Extensions
• Operation (from UML::Classes::Kernel).

Generalizations
• GaStep

Associations
• None

Attributes
• None

Constraints
• None 
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15.3.2.12 GaScenario

The GaScenario stereotype maps the BehaviorScenario domain element (section F.10.3) denoted in Annex F.

A Scenario captures system-level behaviour and attaches allocations and resource usages to it. It is composed of sub-
operations called Steps, any one of which can be a composite Step, refined as another Scenario.

Extensions
• None

Generalizations
• ResourceUsage (from MARTE::GRM)

• TimedProcessing (from MARTE::Time::TimeRelatedEntities::TimedProcessingModels)

Associations
• steps: Step [1..*]  

the set of steps that make up the Scenario.

Attributes
• hostDemand: NFP_Duration [*]  

‘ the cpu demand in units of time, if all Steps are on the same host.

• hostDemandOps: NFP_Integer [*]  
the cpu demand in units of operations, if all Steps are on the same host.

• interOccT: NFP_Duration[*]  
the interval between successive initiations of the scenario.

• throughput: NFP_Frequency[*]  
the mean rate of initiation of the scenario.

• respT: NFP_Duration[*]  
the time duration from initiation to completion, for one execution of the scenario.

• utilization: NFP_Real[*]  
the occupancy of the scenario, computed as the mean number of scenario instances active at any one time.

• utilizationOnHost: NFP_Real[*]  
the occupancy of thehost processor, executing Steps of this scenario, if all Steps are on the same host.

• root: GaStep [0..1]  
the first Step of the scenario.

Constraints
[1] The hostDemand and hostDemandOps attributes derive their values from the Steps in the Scenario, but only in cases 

where all the Steps have the same Host.

15.3.2.13 GaStep

The GaStep stereotype maps the Step domain element (section F.10.17) denoted in Annex F.
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A GaStep is a part of a Scenario, defined in sequence with other actions, and may be a composite Step containing a 
Scenario

The precedence relations in the domain model are not defined as associations because they do not need to be explicitly 
defined in the UML behavior, they are given implicitly by the diagram.

Extensions
• None

Generalizations
• GaScenario.

Associations
• behavior: GaScenario [0..1] a GaScenario which refines a composite Step.

Attributes
• isAtomic: NFP_Boolean [0..1] = false 

if true, the step must not be decomposed any further.

• blockT: NFP_Duration [*] 
a delay inserted in the execution of the Step.

• rep: NFP_Real [*] = 1  
the actual or average number of repetitions of an operation or loop.

• prob: NFP_Real [*] = 1  
the probability of the step to be executed (for a conditional execution).

• priority: NFP_Integer [0..1] 
the step priority on its host processor.

• concurRes:GrmSchedulableResource [0..1] 
the process which executes the Step.

• host: GaExecHost [0..1] 
the host processor

• servDemand: GaRequestedService [*] {ordered} 
a set of operations requested by the Step, such as calls to interface operations. The order 
corresponds to the order in servCount.

• servCount: NFP_Real [*] {ordered} 
a set of values for the number of requests to the operations given in the list for 
GaRequestedService, in the same order.

Constraints
[1] the elements of the ordered lists servDemand and servCount sorrespond, element to element.

[2] a composite Step (with the behavior association defined) cannot have a host or concur association.
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15.3.2.14 GaTimingObserver

The GaTimingObs stereotype maps the TimingObserver domain element (section F.10.18) denoted in Annex F. 
GaTimingObs is a purely conceptual entity that serves to collect timing requirements and predictions that relates to user-
defined observed events. In this sense, GaTimingObs uses UML TimeObservations to define the observed event in a 
given behavioral model.

Extensions
• None

Generalizations
• NfpConstraint (from NFPs::NFP_Annotation)

Associations
• endEvent: Time::TimedRelatedEntities::TimedObservations::TimedInstantObservation [0..1] 

observed event to which the timing observer apply.

• startEvent: Time::TimedRelatedEntities::TimedObservations::TimedInstantObservation [0..1] 
reference event.

Attributes
• laxity: LaxityKind [0..1]  

indicates whether required timing constraints are hard or soft.

Constraints
• None

15.3.2.15 GaWorkloadBehaviour

The GaWorkloadBehaviour stereotype maps the WorkloadBehavior domain element (section F.10.18, p. 544) denoted in 
Annex F.

A logical container for the analyzed behavior and the workload that triggers it, in an analysis context.

Extensions
• NamedElement (from UML::Classes::Kernel).

Generalizations
• None

Associations
• None

Attributes
• behavior: GaScenario [*]

• demand: GaWorkloadEvent [*]
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Constraints
• None

15.3.2.16 GaWorkloadEvent

The GaWorkloadEvent stereotype maps the WorkloadEvent domain element (section F.10.20) denoted in Annex F.

A stream of events that initiate system-level behaviour. It may be generated in different ways: by a stated arrival process 
(such as Poisson or deterministic), by an arrival-generating mechanism modeled by a workload generator class, by a 
timed event and from a trace.

Extensions
• NamedElement (from UML::Classes::Kernel)

Generalizations
• None

Attributes
• pattern: MARTE::MARTE_Library::BasicNFP_Types::ArrivalPattern [0..1] 

if defined, this attribute defines a pattern of arrival events.

• generator:GaWorkloadGenerator [0..1] 
a workload generator that produces the events

• trace: GaEventTrace [0..1] 
indicates an event trace file 

• timeEvent: UML::CommonBehaviors::SimpleTime::TimeEvent [0..1] 
a time event in the UML specification that triggers the request events.

Associations
• None

Constraint
[1] Only one of the four attributes may be defined.

15.3.2.17 GaWorkloadGenerator

The GaWorkloadGenerator stereotype maps the WorkloadGenerator domain element (section F) denoted in Annex F.

A mechanism defined by a UML behavior definition such as a state machine, that generates events to drive the system 
behavior, for example by invoking a top-level system behavior (scenario). There may be multiple independent and 
identical instances (population > 1).

Extensions
• Behavior (from UML::CommonBehavior::BasicBehavior).
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Generalizations
• None

Associations
• None

Attributes
• pop: NFP_Integer [0..1] = 1

Constraints
• None

15.3.2.18 LaxityKind

The LaxityKind is an Enumeration that includes a list of qualifiers specifying the criticality of a given 'required" timing 
property.

Enumeration literals
• hard the required timing specifications have to be met for system behavior correctness.

• soft if the required timing specifications are not met the system behavior is still correct. Further specifications, 
such as the miss ratio, can be used to specify the limit of timing misses.

• other a user-specific laxity.
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16 Schedulability Analysis Modeling

16.1 Overview
In this chapter, we describe a component of the MARTE profile that is intended specifically for schedulability analysis. As it is 
known, when dealing with real-time systems, the influence of scheduling on the timing and performance is crucial to calculate 
guaranteed bounds on responses times and resource processing loads. The maturity of scheduling analysis techniques has led 
to a set of useful mathematical formalisms like the classic and generalized Rate Monotonic Analysis (RMA), holistic 
techniques, or extended timed automata.

Typical tools for this class of model analysis provide two important functions:

• The first one is to calculate the schedulability of the system or a particular piece of software; that is, the ability of the 
system to meet certain temporal constraints (e.g., deadlines, miss rations) defined for the entire system or for a group of 
individual concurrent execution units. Such tools typically indicate which entities are schedulable and which are not.

• Sensitivity analysis assists with determining how the system can be improved. That may mean suggestions for making 
an entity schedulable or it may mean epitomizing system usage for a more balanced system. A system designer will 
typically want to analyze the system under several configurations using different parameter values for each scenario, or 
to explore the variability of different resource allocations and deployment into alternative hardware and software 
platforms.

Schedulability analysis can be used at different stages. Early analysis of a design model aids developers to detect potentially 
unfeasible real-time architectures and prevents costly design mistakes, particularly related to timing behavior. On the other 
hand, a later analysis of an implemented system allows analyzers to discover (with more precise quantitative information of 
the system) temporal-related faults, or to evaluate the impact of possible platform migrations or modifications on the 
scheduling strategies. 

This chapter describes a set of common annotations for model-based schedulability analysis. It allows quantitative annotations 
to be attached at the level of detail desired by the designer. Indeed, even if the specification might contain extreme detail, the 
set of annotations may optionally be partially applied. On the other hand, each vendor is encouraged to supply specialized 
profiles that extend this set in order to perform model analysis that is more extensive.

It was actually stated that the SPT's sub-profiles for schedulability and performance analysis were too much independently 
defined, reducing the ability to reuse annotated models for any kind of analysis. To improve this aspect, we introduced a 
common framework, named Generic Quantitative Analysis Modeling (GQAM), supporting both kinds of timing analysis. The 
modeling framework described in this section attempts to specialize GQAM into a collection of modeling concepts for model-
based schedulability analysis purposes, as well as a set of Non-Functional Properties (NFPs) for these basic concepts. This 
framework therefore involves the use of the NFP Modeling framework presented in chapter 8.

The structure of this section follows the convention adopted throughout this document: First, a domain viewpoint is described 
that identifies the basic abstractions used in schedulability analyses. The semantics of these abstractions and their relationships 
are explained with the aid of metamodels. The second part of the chapter describes how these abstractions are expressed in the 
UML metamodel. This is done through a series of UML extensions (stereotypes, constraints, and tag definitions). 
Supplementing this description is a set of illustrative examples showing common ways of applying this part of the MARTE 
profile.

16.2 Domain View
The Schedulability Analysis Modeling (SAM in short) domain model uses similar domain concepts as those presented in the 
GQAM framework. Since these concepts are already described in a general way, we define here their semantics in the 
schedulability analysis domain and add the NFPs used for these purposes. All the NFP data types for schedulability analysis 
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are declared in a model library (the BasicNFP_Types model library is presented in Annex D).

The SAM sub-profile has many facets that are grouped in individual packages. The overall package structure is shown in 
Figure 16.1.

Figure 16.1 - Structure of the SAM domain model

The purpose and contents of each package are described in subsequent sections.

16.2.1 The SAM root package

As the GQAM chapter, the SAM's conceptual domain model is organized around the notion of Analysis Context (Figure 16.2). 
An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis scenario. 
Starting with the analysis context and its elements, a tool can follow the links of the model to extract the information that it 
needs to perform the model analysis.

Analysis contexts are also known as real-time situations in the schedulability analysis domain. In particular, a 
SaAnalysisContext is a kind of AnalysisContext with additional attributes. The isSchedulable attribute indicates whether all 
the timing constraints defined for the analysis context are respected. The optimalityCriterion attribute denotes a global 
criterion used to determine a schedule for the context analyzed (e.g., meet all hard deadlines, minimize the number of missed 
deadlines, minimize the mean tardiness, maximize flow).

Note – Most of specialized SAM-specific concepts have the prefix "Sa", which stands for "Schedulability Analysis".

In general, AnalysisContext is associated with the following two modeling concerns:

• WorkloadBehavior: represents a given load of processing flows triggered by external (e.g., environmental events) or 
internal (e.g., a timer) stimuli. The processing flows are modeled as a set of related steps that contend for use of 
processing resources and other shared resources.

• ResourcesPlatform: represents a concrete architecture and capacity of hardware and software processing resources used 
in the context under consideration.
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Figure 16.2 - The SAM root domain model: Analysis context

Since analysis models are intended to be integrated with existing design models, or at least to be defined in a separated view 
with a clear mapping to design views, we are especially interested on collecting modeling elements according to the 
abovementioned modeling concerns. Indeed, this separation of modeling concerns is essential to support the MDA approach. 
Splitting an analysis context model into these two aspects allows MDA modelers to keep platform-independent models 
(models annotated with WorkloadBehavior elements) separated from platform description models (ResourcesPlatform 
annotations). We illustrate an example supporting this approach in section 16.3.3, p.279. This feature attempts to enhance the 
modeling practices fostered by MARTE in order to ease retargetability of logical model elements onto execution platforms 
models possibly stored into reusable libraries (this is one of the key requirements of the MARTE RFP).

In the remaining subsections, we describe the main concepts related to these modeling concerns.

16.2.2 The SAM Workload package

The SAM_Workload package contains concepts related to the processing load on the system. We split this package in two 
figures (Figure 16.3 and Figure 16.4).

The end-to-end related concepts are gathered in Figure 16.3. This figure shows the constructs required to specify the end-to-
end behavior and the associated quantitative information concerning end-to-end stimuli, timing requirements and responses.

Note: In general, most of the discussed concepts are imported from GQAM and GRM. For explanation purposes, we show 
here some available attributes of interest for schedulability analysis. For a complete list of attributes of the imported concepts, 
refer to the respective chapters.

In a given analysis context, a single WorkloadBehavior situation is commonly evaluated. A WorkloadBehavior situation may 
correspond to a mode of system operation (e.g. starting mode, fault recovering, or normal operation) or a level of intensity of 
environment events. A specific WorkloadBehavior model is defined by the set of end-to-end processing flows 
(EndToEndFlow), which represent the analyzed workload.

End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing 
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-end 
response.
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Figure 16.3 - The SAM Workload domain model: EndToEndFlow (partial view)

End-to-end flows refer to a set of stimuli requesting computations. We may refer to an instance of a particular request stimulus 
as an event occurrence. Since the stimulus can occur repeatedly, we refer to recurrence of events as WorkloadEvent. Workload 
events can be originated outside the system, inside the system, or because of the passage of time. From a modeling viewpoint, 
workload events can be modeled by known patterns (see the definition of the ArrivalPattern data type in Annex D), by traces 
files, by internal timed event models, or by workload generator models (e.g., state machine models). Workload event models 
are fully defined in the GQAM chapter, page 244.

A computation that is performed as a consequence of a workload event is referred to as the behavior scenario 
(BehaviorScenario) that executes in response to its event occurrences. Depending on the implementation nature of behavior 
scenarios, they could be concretized in a single task executing in one processor or in dependent tasks into single or multiple 
processors. But ultimately, behavior scenarios serve to describe end-to-end responses of a workload model under analysis.

As a conceptual entity, end-to-end flow allows to define a set of timing requirements and timing predictions. Timing 
requirements include deadlines, maximum miss ratios and maximum jitters. Timing predictions are typically provided by 
analysis tools and include latencies, jitters, and other scheduling metrics. These aspects are modeled by the TimingObserver 
concept. Section 16.2.3 (p.268) provides details on this.
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Figure 16.4 - The SAM Workload domain model: BehaviorScenario (partial view)

Additionally, end-to-end flows are characterized by a set of NFPs. isSchedulability indicates whether the flow meets all its 
deadlines. schedulabilitySlack provides a percentage measure by which the (effective) execution time of all the atomic 
processing units participating in the end-to-end response may be increased while still keeping the end-to-end flow schedulable. 
EndToEndTime and EndToEndDeadline are respectively the predicted worst completion time and required completion latency 
of the end-to-end response measured from the arrival of the requested event. This applies if only one input end-to-end stimuli 
exist.

Figure 16.4 shows the domain concepts for defining behavior execution modeling aspects. This model is based on the one 
introduced in the GQAM framework.

Thus, the BehaviorScenario concept serves to collect detailed descriptions of the response behavior. Depending on the 
implementation nature of BehaviorScenario, they could be concretized in a single step executing in one processor or in a 
number of flow related steps into single or multiple processors. A step may represent a small segment of code execution as 
well as the sending of a message through a communication media (ExecutionStep and CommunicationStep). The ordering of 
steps follows a predecessor-successor pattern, with the possibility of multiple concurrent successors and predecessors, 
stemming from concurrent thread joins and forks respectively. The granularity of a step is often a modeling choice that 
depends on the level of detail that is being considered. Hence, a step at one level of abstraction may be decomposed further 
into a set of finer-grained steps.
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Schedulability analysis models commonly restrict steps to processing units that must not change allocation of system 
resources. Scheduling-based processing steps (SaStep and SaCommunicationStep) begin and end when decisions about the 
allocation of system resources are made, as for example when changing its priority. As a main concept on schedulability 
analysis models, step deadlines define the maximal time bounds on the completion of particular segments that must be met. 
The SaStep concept is enriched with other latency properties such as preempted time and ready time. Notice that the 
association requiredAmount inherited from ResourceUsage (see Section 10.2.5) is used to model execution times. The worst, 
average, and best execution times are modeled with different instances of the usage attribute by means of the statistical 
qualifier slot in NFP types. For instance, a pair of worst and best case execution time values is: "execTime= {(5.0, ms, 
max),(3.0, ms, min)}". The same case applies for whatever attribute typed with a NFP data type.

In this model, steps use the active resource services for execution by means of schedulable resources (e.g., threads, process in 
execution resources) and communication channels (e.g., message management units) characterized by concrete scheduling 
parameters, and synchronize through calls to shared resources (for instance, I/O devices, DMA channels, critical sections or 
network adapters).

16.2.3 The SAM Observers package

Timing Observers (Figure 16.5) are purely conceptual entities that serve to collect timing requirements and predictions that 
relates to user-defined observed events. In this sense, Timing Observer use Timed Instant Observations (chapter 9) to define 
the observed event in a given behavioral model. Timing observers are a powerful mechanism to annotate and compare timing 
constraints against timing predictions provided by analysis tools. Timing observers can be used as predefined and 
parameterized patterns (e.g., latency, jitters) or by means of more elaborated expressions since TimingObserver inherits all the 
modeling capabilities from NFP_Constraint.

Note that these modeling constructs are mainly useful for complex end-to-end flows with several observation points in order to 
provide centralized and flexible means to annotate analyzer-defined timing constraints. Most of analysis tools provide a 
repository to store this kind of global information that is more related with the exploration of constraint cases.

Timing observers are typically of two kinds in schedulability analysis: required and offered. Required timing observers 
represent timing constraints such as deadlines or required maximum jitters. Offered timing observers specify prediction results 
mostly calculated by analysis tools.

Two kinds of timing observer patterns are used in SAM. LatencyObserver specifies a duration observation with its 
corresponding miss ratio percentage assertion (percentage), a utility value of a latency value, and a maximum jitter with which 
a periodic internal event is generated. The output jitter is calculated as the difference between a worst-case latency time and 
the best-case latency time for the observed event measured from a reference event. Required latency values are known as 
deadlines in real-time systems. SchedulingObserver provides prediction about scheduling metrics such as overlaps, the 
maximum number of suspensions caused by shared resources or the blocking time caused by the used shared resources. All 
these metrics are relative to the interval defined by the reference and observed events.

Timing observers must be attached to behavior elements. When the reference and observed events are not defined, the start 
and finish events can be deduced from the behavior element annotated.
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Figure 16.5 - The SAM Observers domain model

16.2.4 The SAM Resources package

In the SAM framework, the concept of resourcesPlatform matches to the engineering model of resources introduced in the 
SPT profile. That includes not only hardware resources (CPU, devices, backplane buses, network resources), but also software 
ones (threads, tasks, buffers). Figure 16.6 shows a framework to describe the platform of resources. 

Schedulability models use an abstracted version of a more structured and detailed platform model (see chapter 14 for detailed 
resources models), which is especially useful for expressing NFPs oriented to quantitative analysis and without distinguishing 
among different abstraction levels (hardware, RTOS or middleware).

As defined in GQAM, the resources platform model consists of a set of resources with explicit NFPs. Specifically, throughput 
properties e.g., processing rate, efficiency properties e.g., utilization and overhead properties as for example blocking times 
and clock overhead times. This model distinguishes two kinds of processing resources: execution hosts (e.g., processors, 
coprocessors) and communication hosts (e.g. networks, buses). For each one, the SAM framework adds specialized NFPs. 
Particularly, schedulability metrics, interrupt overheads and utilization of scheduling processing.

Two kind of concurrent resources are used by steps to access processing hosts: schedulable resources and communication 
channels. SchedulableResource is a kind of active protected resource that is used to execute steps. In a RTOS, this is the 
mechanism that represents a unit of concurrent execution, such as a task, a process, or a thread. In a communication host, the 
related element is CommunicationChannel, which may be characterized by concrete scheduling parameters (like the packet 
size). Schedulable resources are scheduled with a chosen set of scheduling parameters associated to a given scheduling 
algorithm. The component that implements these algorithms is called the scheduler.

Schedulers can be of two types: system schedulers (typically a RTOS scheduler) that offer the whole processing capacity of its 
associated base processors to its allocated schedulable resources, and secondary schedulers that only provide the processing 
capacity offered by its hosting schedulable resource. This hierarchical structure is typically used in real-time systems when 
users are interested in applying dynamic scheduling on top of commercial RTOS supporting only static scheduling. Likewise, 
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novel algorithms exist that allow to perform real-time analysis of these hierarchical configurations of schedulers.

Figure 16.6 - The SAM Resources domain model

Execution Hosts own shared resources as for example I/O devices, DMA channels, critical sections or network adapters. 
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access policies 
are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol.

16.2.4.1 Types of Model Analysis Methods

Two major categories of scheduling policies, and therefore two types of analysis, are available. One category is static in nature 
- i.e., parametric decisions about scheduling importance are all made "up-front" and the entire collection of execution 
possibilities and contexts is known beforehand. The other category involves dynamic scheduling -i.e., scheduling decisions are 
made at runtime using information available within the dynamic context of execution. It is the intention of this specification to 
support both categories.
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Depending on the policy, parameters like scheduling priority may be statically determined by the analyst, with or without the 
aid of model analysis tools, or dynamically by portions of the system that continuously analyze context and adjust internal 
parameters like priority. Earliest Deadline First scheduling is an example of such a dynamic activity. Deadlines - the amount 
of time remaining in which the defined work of a thread must be done - changes continually when that thread is not running. 
This means that the earliest deadline is a dynamically changing value. Rate Monotonic Analysis, on the other hand, is 
determined from the complete static set of schedulable threads, their resources, and rates of invocation.

Static scheduling and related model analysis

Rate Monotonic Analysis

Rate Monotonic Analysis assigns scheduling priority to periodic schedulable resources by ordering scheduling priority 
according to the frequency of repetition of execution - i.e., the rate by which a periodic schedulable resource needs to be 
scheduled to execute. The name Rate Monotonic means that the priority ordering is a monotonic function of the rate of 
execution. This model analysis technique can be extended to include both periodic and sporadic scheduling end-to-end flows. 
Detailed discussion of these topics can be found readily in the literature.

Deadline Monotonic Analysis

Rate Monotonic Analysis is used for analysis of periodic schedulable resources where the deadline coincides with the next 
required execution to start - i.e., the period and the deadline are the same. Sometimes this is not the case. A slight variation of 
RMA is deadline monotonic analysis where the deadline for a periodic schedulable resource needs not be the same as its 
period. Detailed discussion of deadline monotonic analysis can be found readily in the literature.

Dynamic Scheduling - value or utility based scheduling
Dynamic Scheduling deals with the condition where the values used to order the scheduling of the CPU are a changing 
function over time. Therefore, dynamic scheduling uses a scheduler that makes decisions based on importance of each 
schedulable resource, but the importance is continuously re-examined within the dynamic context of execution of the system 
containing the scheduler. This class of scheduling policy is often called value based or utility based scheduling; it uses a 
supplied function (which may be but doesn't have to be a function of time, v(t)) to obtain a value for scheduling importance.

Earliest deadline first is a simple concrete example of a specific value function; it is a widely used scheduling policy 
implemented in a dynamic scheduling manner in many domains, including the telecommunications community. Although 
earliest deadline is a popular value function the notion can be generalized to any value function that makes sense for a specific 
domain.

Value based scheduling is currently receiving significant attention.

16.3 UML Representation
We now examine how the domain concepts previously presented can be represented (mapped) in the UML modeling space. To 
provide the flexibility required by the RFP for this specification, the same stereotypes may be applied to a number of different 
kinds of modeling elements.

This sub-profile allows modelers to choose the style and modeling constructs, or to impose constraints, that they feel are best 
ones fittings to their needs. From a predictive point of view, most of schedulability analysis models are intrinsically instance-
based. Nevertheless, high-level descriptor/type-based models and state-based models can also be annotated with non-
functional characteristics, and then concrete analysis models may be instantiated for specific analysis runs. For instance, 
stereotypes for schedulibility analysis modeling apply to both instance concepts as well as generic descriptor concepts. Either 
form may be used since there are no semantic differences as far as the interpretation of the results is concerned. The choice 
depends on circumstances (i.e., whichever model is more readily available) or individual preference of the modeler. The 
tagged values of descriptor elements should be viewed as defaults for derived instances, which can override the defaults.
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16.3.1 Profile Diagrams

In this Section we show the UML extensions for the SAM sub-profile. The SAM package (stereotyped as profile) defines how 
the elements of the domain model extend metaclasses of the UML metamodel.

An analysis context (real-time situation) for schedulability analysis is modeled as a stereotype "SaAnalysisContext" (Figure 
16.7). It specialize the GQAM GaAnalysisContext stereotype, and the latter in turn specialize the VSL "ExpressionContext" 
stereotype, which extends UML NamedElement. Although this could seem too general, common extended elements are UML 
Classifier, for more complex models, and whatever UML Behavior kind, for the simplest cases. This means that these model 
elements are used as collectors of schedulability analysis sub-views, i.e., workload behavior models and platform resources 
model. Note that in the simplest cases, an analysis context can be extracted from a behavior model that has explicit allocations 
(stereotypes from the Allocation profile) to resources elements.

"GaWorkloadBehavior" and "GaResourcesPlatform" are used directly from GQAM, where they extend UML NamedElement 
and Classifier respectively.

An end-to-end flow maps to UML NamedElement. Although this could seem too general, common extended elements are 
UML Behaviors such as Interaction or Activity. The reason by which it extends UML NamedElement is that it might extend 
other elements like for instance UML ActivityPartition. An "SaEnd2EndFlow" will make reference implicitly to one ore more 
GQAM "GaWorkloadEvent" and to one "GaScenario" commonly by means of a containment relationship (owned elements) or 
allocation stereotypes.

Figure 16.7 - The SAM Profile: Analysis Context and Workload Behavior elements

A "GaWorkloadEvent" extends UML NamedElement in GQAM. Nevertheless, more common extended elements are: UML 
AcceptEventAction, Event, Trigger, InitialNode, or Message. The relationship between "GaWorkloadEvent" and 
"GaScenario" is either via collocation of the stereotypes, or by a UML meta-association between the two elements stereotyped 
(e.g., Event-Trigger-Behavior, InitialNode-ControlFlow-Action, Message-ExecutionSpecification-Behavior).
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The GQAM "GaScenario", and the SAM "SaStep" and "SaCommStep" extends "TimedProcessing" of the MARTE Time 
profile. The latter extends UML Actions, Behaviors, ExecutionSpecification, and Messages. The Allocation stereotypes can be 
used to associate steps with particular resources. "GaStep" can call "RequestedServices", which is a kind of "GaStep" (see the 
GQAM chapter). This is used to make calls from a instance-based behavioral element (e.g., UML ExecutionSpecification) to 
descriptor-based behavior elements (e.g., UML BehavioralFeature).

"GaTimingObserver" specializes "NfpConstraint", and the latter extends UML Constraints (see the NFPs profile). In general, 
"GaTimingObserver" are used to constrain other behavioral elements. For instance, "SaEnd2EndFlow" has an association 
(timing) that define a meta-association between this element and UML constraints stereotyped as "GaTimingObserver", or its 
child stereotypes.

Figure 16.8 - The SAM Profile: Timing Observers

Resources stereotypes extend UML structural elements (Figure 16.9). These are indicated by stereotyping Classifier or 
InstanceSpecification (e.g., Classes, Nodes, Components) with the appropriate stereotypes ("SaCommHost", "SaExecHost", 
"SaSharedResource", "Scheduler", "SchedulableResource", "GaCommChannel"). The relationship between "SaExecHost" 
and the "SaSharedResource", "Scheduler", and "SchedulableResource" resources is established using the "Allocate" and 
"Allocated" stereotypes of the Allocation profile.
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Figure 16.9 - The SAM Profile: Resources

16.3.2 Profile elements description

In this section, we describe the SAM stereotypes. These stereotypes are listed in alphabetical order. The detailed semantic 
descriptions corresponding to these stereotypes and tagged values are provided in Annex F.11 on page 545.

16.3.2.1 SaEnd2EndFlow

The SaEnd2EndFlow stereotype maps the EndToEndFlow domain element (section F.11.1, p. 545) denoted in Annex F. 
End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing 
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-
end response.
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• schSlack: NFP_Real [0..1] 
provides a percentage measure by which the (effective) execution time of all the atomic processing 
units participating in the end-to-end response may be increased while still keeping the end-to-end 
flow schedulable.

• End2EndT: NFP_Duration [0..1] 
represents the predicted worst completion time latency of the end-to-end response measured from 
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

• End2EndD: NFP_Duration [0..1] 
represents the required worst completion time latency of the end-to-end response measured from 
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

• timing: TimingObserver [*] 
set of timing requirements or preditions that constrain local fragments or the global end-to-end 
execution flow. 

Constraints

• None.

16.3.2.2 SaAnalysisContext

The SaAnalysisContext stereotype maps the SaAnalysisContext domain element (section F.11.2, p. 546) denoted in Annex 
F.

An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis 
scenario. Starting with the analysis context and its elements, a tool can follow the links of the model to extract the 
information that it needs to perform the model analysis. Analysis contexts are also known as real-time situations in the 
schedulability analysis domain. 

Extensions

• None

Generalizations

• GaAnalysisContext (from GQAM)

Associations

• None

Attributes

• isSched: NFP_Boolean [0..1] 
It indicates whether all the timing constraints defined for the analysis context are respected.

• optCriterion: optimalityCriterionKind [0..1] 
The optimalityCriterion attribute denotes a global criterion used to determine a schedule for the 
context analyzed (e.g., meet all hard deadlines, minimize the number of missed deadlines, 
minimize the mean tardiness, maximize flow).
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Constraints

• None.

16.3.2.3 SaStep

The SaStep stereotype maps the SaStep domain element (section F.11.3, p. 547) denoted in Annex F.

A SaStep is a kind of GaStep that begin and end when decisions about the allocation of system resources are made, as for 
example when changing its priority.

Extensions

• None

Generalizations

• GaStep (from GQAM)

Associations

• None

Attributes

• deadline: NFP_Duration [0..1] 
defines the maximal time bound on the completion of this particular execution segment that must 
be met.

• spareCap: NFP_Duration [0..1] 
amount of execution time that can be added to the step without affecting schedulability.

• schSlack: NFP_Real [0..1] 
percentage by which the execution time of the step can be increased (positive values) or should be 
decreased (negative values) in order to reach the schedulability limit.

• preempT: NFP_Duration [0..1] 
length of time that the step is preempted, when runnable, to  make way for a higher priority step. 

• readyT: NFP_Duration [0..1] 
effective release time expressed as the length of time since the beginning of a period; in effect a 
delay between the time an entity is eligible for execution and the actual beginning of execution.

• delayT: NFP_Duration [0..1] 
length of time that an step that is eligible for execution waits while acquiring and releasing 
resources.

Constraints

• None

16.3.2.4 SaCommStep

The SaCommStep stereotype maps the SaCommunicationStep domain element (section F.11.4, p. 548) denoted in Annex 
F.
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A SaCommStep is a kind of step that represents a usage of a communication media.

Extensions

• None

Generalizations

• CommStep (from GQAM)

Associations

• None

Attributes

• deadline: NFP_Duration [0..1] 
defines the maximal time bound on the completion of this particular transmission that must be met.

• spareCap: NFP_Duration [0..1] 
amount of execution time that can be added to the step without affecting schedulability.

• schSlack: NFP_Real [0..1] 
percentage by which the execution time of the step can be increased (positive values) or should be 
decreased (negative values) in order to reach the schedulability limit.

Constraints

• None

16.3.2.5 SaExecHost 

The SaExecHost stereotype maps the SaExecutionHost domain element (section F.11.5, p. 548) denoted in Annex F.

A CPU or other device which executes functional steps. The SaExecHost stereotype adds schedulability metrics, interrupt 
overheads and utilization of scheduling processing.

Extensions

• None

Generalizations

• GaExecHost (from GQAM)

Associations

• None

Attributes

• ISRswitchT: NFP_Duration [0..1]  
context switch time of ISR (Interrupt Service Routines) interruptions.

• ISRprioRange: NFP_IntegerInterval [0..1]  
range of ISR priorities supporte by the platform.
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• isSched: NFP_Boolean [0..1]  
indicates whether all the timing constraints defined for the execution host are respected.

• schSlack: NFP_Real [0..1] 
percentage by which the execution time of all the steps running in this execution host can be 
increased (positive values) or should be decreased (negative values) in order to reach the 
schedulability limit.

• schedUtiliz: NFP_Real [0..1] 
total utilization of scheduling services.

• schedPolicy: SchedPolicyKind [0..1] 
scheduling policy for the execution host. This is an alternative annotation mechanism, which is 
used when modelers want to avoid modeling explicit Scheduler elements.

• isPreemptible: NFP_Boolean [0..1] 
indicates if all the schedulable resources in the execution host are preemptible. This is an 
alternative annotation mechanism, which is used when modelers want to avoid modeling explicit 
Scheduler elements.

Constraints

• None

16.3.2.6 SaCommHost

The SaCommHost stereotype maps the SaCommunicationHost domain element (section F.11.6, p. 549) denoted in Annex 
F.

In a communication host (e.g., networks, buses). the related schedulable resource element is CommunicationChannel, 
which may be characterized by concrete scheduling parameters (like the packet size).

Extensions

• None

Generalizations

• GaCommHost (from GQAM)

Associations

• None

Attributes

• isSched: NFP_Boolean [0..1] 
indicates whether the transmitted messages meets all its deadlines.

• schSlack: NFP_Real [0..1] 
provides a percentage measure by which the (effective) transmission time of all the communication 
steps participating in the host may be increased while still keeping the system schedulable.
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Contraints

• None

16.3.2.7 SaSchedObs

The SaSchedObs stereotype maps the SchedulingObserver domain element (section F.11.7, p. 549) denoted in Annex F.

SaSchedObs provides prediction about scheduling metrics such as overlaps, the maximum number of suspensions caused 
by shared resources or the blocking time caused by the used shared resources. All these metrics are relative to the interval 
defined by the reference and observed events.

Extensions

• None

Generalizations

• TimingObs (from GQAM)

Associations

• None

Attributes

• suspensions: NFP_Duration [*] 
the maximum number of suspensions caused by shared resources.

• blockT: NFP_Duration [*] 
the blocking time caused by the used shared resources.

• overlaps: NFP_Duration [*] 
in case of soft timing constraints, this indicates how many instances may overlap their execution 
because of missed deadlines.

Contraints

• None

16.3.2.8 SaSharedResource

The SaSharedResource stereotype maps the SharedResource domain element (section F.11.8, p. 550) denoted in Annex F.

Execution Hosts own shared resources as for example I/O devices, DMA channels, critical sections or network adapters. 
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access 
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol. 

Extensions

• None

Generalizations

• MutualExclusionResource (from GRM)
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Associations

• None

Attributes

• capacity: NFP_Integer [0..1] 
number of permissible concurrent users, for example using a counting semaphore.

• isPreemp: NFP_Boolean [0..1] 
if the resource can be preempted while it is being used.

• isConsum: NFP_Boolean [0..1] 
indicates that the resource is consumed by use.

• acquisiT: NFP_Duration [0..1] 
time delay suffered by an action between being granting access to a resource and the availability of 
the resource.

• releaseT: NFP_Duration [0..1] 
time delay suffered by an action between initiating release of a resource and the action becoming 
eligible for execution again.

Contraints

• None

16.3.3 Examples

We now examine how the domain concepts and the profile previously presented can be used for modeling schedulability-
aware systems.

The annotations have been made over a case study application for the real-time modeling and analysis of a simple 
distributed system for the teleoperated control of a robotized cell.

The application system (see Figure 16.10) is composed of two processors interconnected through a CAN bus. The first 
processor is a teleoperation station (Station); it hosts a GUI application, where the operator commands the robot and 
where information about the system status is displayed. The second processor (Controller) is an embedded microprocessor 
that implements the controller of the robot servos and its associated instrumentation.

The software architecture is described by means of the class diagram shown in Figure 16.10. The software of the 
Controller processor contains three active classes (called rtUnits in MARTE, see chapter 13) and a passive one which is 
used by the active classes to communicate. Servo Controller is a periodic rtUnit that is triggered by a ticker timer with a 
period of 5 ms. The Reporter rtUnit periodically acquires, and then notifies about, the status of the sensors. Its period is 
100 ms. The Command Manager rtUnit is aperiodic and is activated by the arrival of a command message from the CAN 
bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter rtUnit 
handles the events that are generated by the operator using the GUI control elements. The Display Refresher rtUnit 
updates the GUI data by interpreting the status messages that it receives through the CAN bus. Display_Data is a 
protected object (called ppUnit in MARTE, see chapter 13) that provides the embodied data to the rtUnit in a safe way. 
Both processors have a specific communication software library and a background task for managing the communication 
protocol.
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Figure 16.10 - Example of the Teleroperated Robot application: Structural View

To organize the UML models annotated for schedulability analysis, we adopt the concept of views, which represent the 
concern models composing the SAM's real-time situation concept. In this way, we provide separated diagrams for 
specifying the SAM concepts of workload behavior, and resources platform. Next, we show some examples that illustrate 
this organization.

16.3.3.1 Example of Workload Behavior model

The workload behavior situation to be analyzed contains three end-to-end flows with hard real-time requirements. They 
all use the processing resources Station, Controller and CAN_Bus and interact by accessing protected objects. 

The control servos end-to-end flow executes the Control response with a period and a deadline of 5 ms. The report 
process end-to-end flow transfers the sensors and servos status data across the CAN bus, to refresh the display with a 
period and deadline of 100 ms. Finally, the Execute Command end-to-end flow has a sporadic workload event pattern, but 
its inter-arrival time between events is bounded to 1 s.

Figure 16.11 illustrates an UML Activity diagram that represents a workload behavior model consisting of the three 
above-mentioned end-to-end flows characterized by their workload events and behavior scenarios. These three end-to-end 
flows explicitly introduce the semantic of concurrency for the modeled activity partitions. Workload events annotating 
UML AcceptEventActions introduce the semantic of event sequence arrivals for the execution of each callBehaviorAction 
(Control, Report and Command). We also annotate non-functional properties for the three kinds of extensions. An end-to-
end flow is characterized by an end-to-end deadline and the request event stream by their the arrival patterns. Behavior 
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scenarios are annotated with expressions of variables ($r1, $u1, $e1, $wcet1, $pR, etc.). In general, when attributes are 
annotated with variables, the model indicates to the analysis tools that these attributes must be computed and returned to 
the UML model.

Figure 16.11 - Example of end-to-end flows situations model

In Figure 16.12, we present one of the three scenarios that models the Report behavior scenario. Note that a "GaScenario" 
stereotype (which is annotating UML CallBehaviorActions) can also annotate the behavior itself. Behaviors can be 
Interactions, State Machines and Activities. The behavior model elements allow for representing end-to-end behaviors and 
the precedence between the processing steps involved in the scenario. In our example, we applied it to sequence diagrams 
(see Figure 16.12). Observe that the stereotypes "SaStep" and "SaCommStep" extend UML messages. In general, steps 
annotating UML messages represent the execution load of the associated UML ExecutionSpecification at the reception of 
the message. In this example, "SaSharedResource" elements are UML Lifelines of the sequence diagram. The chain of 
steps (connected by the successor-predecessor patterns) conform the model of the "GaScenario". "SaStep" elements 
include worst and best case execution times, and "SaCommStep", in turn, the size of the message transmitted or received.
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Figure 16.12 - Example of Behavior Scenario model

16.3.3.2 Example of Resources Platform model

In Figure 16.13, we represent the domain concept of resource platform since an analysis viewpoint. In this case, we use a 
structured classifier to collect a set of resource instances. The structured classifier represents the resources platform under 
analysis. The processing resources defined in Figure 16.10 (Station, CAN_Bus, Controller, RobotArm) are represented as 
parts of the resources platform. These parts are annotated with non-functional characteristics required for schedulability 
analysis. In addition, a scheduler instance (a part again) represents the OS scheduler based on fixed priority scheduling.

Additionally, a set of schedulable resources instances are modeled as parts that are allocated on processing resources. 
Schedulable resources are annotated with a priority parameter.

Note that execution and communication steps are allocated to this set of schedulable resources by means of the stereotype 
allocated applied to lifelines in Figure 16.12. This means that the execution specifications realized in the lifelines are 
processed in the context of the target schedulable resources.
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Figure 16.13 - Example of Resources Platform model

16.3.3.3 Example of Analysis Context model

In order to define the analysis context for a given pair of workload behaviour and resources platform models, we illustrate 
how to use structured classifiers (see Figure 16.13). In this example we collect analysis views by means of parts 
instantiating workload behavior (normalMode Activity in the example) and resources platform 
(TeleoperatedRobot_Platform StructuredClassifier in the example) models. In addition, this example illustrates how to 
parameterize analysis results by means of variables (see Annex VSL for the profile of variable definition). Note that 
"GaAnalysisContext" inherits from "ExpressionContext", which enable "SaAnalysisContext" elements to be used as 
contexts or namespaces of variables. Variables extend UML Property.

Note that this mechanism does not replace the basic annotation mechanism of variables declared in tags by which a 
model indicates the information to return by analysis tools. Our aim is to provide a more flexible and alternative way 
to communicate analysis intents to analysis tools by means of UML Property elements (stereotyped as variable: 
"var").

Particularly, the context under consideration defines four variables especially chosen to analyze certain parameters of 
interest. isSched_System defines the global scheduling correctness regarding all the required deadlines annotated in the 
context under analysis. The variables wcet_Report, procRate_CAN (CAN's processing rate), and period_Report actuates 
are parameters to study. In order to define the semantics of these variables in the context of the modeled system, we 
specify CallVariableExpression (see the Annex VSL) in their default values. These call variable expressions make 
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reference to variables declared in the context of the models under consideration. Thus, isSchSys is a variable defined for 
the isSched tag of the "SaAnalysisContext" stereotype. The variables wcet1 and pR are variables defined in the workload 
behavior model named NormalMode (Figure 16.11) and prCAN is a variable declared in the TeleoperatedRobot_Platform 
model (Figure 16.13). 

In order to analyze different situations we instantiate the analysis context and define the actual values for the proposed 
variables. For instance, the UML InstanceSpecification named Schedulability defines isSched_System as the information 
to return ("$v0" expression) as a calculated value (source slot of the NFP defined as "calc"), and the other variables are 
inputs to the analysis tool (source slot of the NFPs defined as "determ"). The result value returned by analysis tools is 
shown in red. In this case, the system has been determined to be schedulable.

More complex scenario analysis can be constructed for sensitivity analysis. For example, the UML InstanceSpecification 
named SensitivityAnalysis, defines isSched_System as a required value "true" (source slot defined as "req"). It actuates as 
a pivot parameter for calculating the other three variables, which in turn, are defined as results of the analysis (calc). 
Thus, the "maximum" worst case execution times of the Report response, while keeping the system schedulable is 
calculated, is 50 milliseconds. The "minimum" processing rate or speed factor (current measurements for the CAN 
message transmission speed are defined for a value of 1) is 0.2, while still keeping the system schedulable. Finally, the 
period of triggering of the Report end-to-end flow can be reduced to 10 milliseconds by still meeting all the deadlines.

Figure 16.14 - Example of parametric Analysis Context situations

Notice that most analysis tools operate on a simplified view of a system, as illustrated in this example. However, this 
profile allows annotations and interpretations to be attached at the level of detail desired by the designer. Indeed, even if 
the specification contains extreme detail, the annotations may optionally be applied to aggregates. This is an overriding 
reason to find a path to annotations that require a minimum of effort, with a minimum of additions to the design model, 
and with clear, non-fragmented specifications of NFPs. It is also essential that NFPs can be attached to a real software 
design, rather than requiring a special version of a design created only for analysis.

«var» {di r= inout } isSched_Sy stem: NFP_Boolean= isSchSys
«var» {di r= inout } wcet_Report: NFP_Duration= wc et1
«var» {di r= inout } procRate_CAN: NFP_Real= prCAN
«var» {di r= inout } period_Report: NFP_Duration= pR

«saAnalysisContext»
{ isSched= ($is SchSy s) }

TeleoperatedRobotSAM

isSc hed_Sys tem= (true, req)
wc et_Report= (50, $v1, ms, max , ca lc)
proc Rate_CAN= (0.2, $v 2, m in, c alc)
period_Report= (10, $v 3, m s, m in, calc)

«saAnalysisContext»
SensitivityAnalysis : TeleoperatedRobotSAM

isSc hed_Sys tem= (true, $v0, ca lc)
wc et_Report= (5, ms, determ)
proc Rate_CAN= (1, determ)
period_Report= (30, ms, determ )

«saAnalysisContext»
Schedulability: TeleoperatedRobotSAM

« gaWorkloadBehavior »
: NormalMode

« GaResourcesPlatform »
:  TeleoperatedRobot_Platform
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17 Performance Analysis Modeling (PAM)

17.1 Overview
In MARTE, "performance modeling" describes the analysis of temporal properties of best-effort systems and soft-real-
time embedded systems, including systems supplying information, web-based services, enterprise services, multimedia, 
telecommunications, and networked services. Performance measures (analysis outputs) are statistical, such as mean 
throughput and delay, or the probability of missing a target response time. Input parameters to the analysis may also be 
probabilistic, such as a random arrival process, random execution time for a media frame, or a probability of a cache hit. 
The common performance analysis techniques include simulations, extended queueing models, and discrete-state models 
such as Stochastic Petri Nets. Behaviour is often regarded as non-terminating for the purposes of analysis (steady state 
behaviour, for example for capacity analysis).

Performance analysis includes single-case analysis for a given set of input parameters, or multicase analysis such as:

• sensitivity analysis which explores a parameter space, to find ideal operational parameters or to identify risky workload 
situations. Sensitivity analysis may also include alternative scenarios, platforms, physical deployments, and 
configurations. 

• Scalability or capacity analysis which explore the capabilities of the design or configuration.

There is explicit support for multicase analysis in the parameters of the AnalysisContext.

The performance domain employs and extends the Generic Quantitative Analysis Modeling (GQAM) domain of Chapter 
17. It employs features such as the WorkloadEvent description of the stream of arriving events, focussing on some of the 
workload types (open and closed arrivals, workload generators and traces), and the behavior-causality model of Scenarios 
and Steps. It extends the properties of Steps to include more kinds of operation demands during a step, and the possibility 
of an asynchronous (non-synchronizing) parallel operation. Other extensions  a Step subtype PassResource which 
identifies the passing of a resource (usually a SharedResource) from one process to another.

The increment to the GQAM domain model is shown in Figure 17-1 and Figure 17.2, broken into two packages, 
PAM_Workload and PAM_Resources. Some elements are shown in both diagrams where there are associations between 
resources and behavior elements. For elements from other domains, only the attributes of interest for performance 
analysis are shown.

17.2 Domain view

17.2.1 The PAM_Workload package

Performance analysis is determined by how the system behaviour uses system resources. Important resources include 
hardware ExecutionEngines, concurrent process threads (ScheduledResources), and LogicalResources defined by the 
software. A logical resource can be any entity to which the software requires access, and for which the program may have 
to wait at some point. Thus a semaphore is in this sense a resource, as is a lock, or a buffer, or a block of memory. A pool 
of access control tokens can be modeled as a logical resource.

A process resource, or pool of process threads, is also a kind of logical resource which is modeled separately, by the 
concept of SchedulableResource imported from the General Resource domain model (GRM). Because processes may be 
identified in behaviour specifications by other entities (lifelines and swimlanes in particular), a special concept of 
RunTimeObjectInstance is introduced to represent an alias for a process resource.
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Figure 17.1 - Part of the performance domain model relevant to behavior

Resources which are not modeled within the software design may also have an impact on performance. This domain model 
identifies "external operations" by such resources by a name (a string), so they can be modeled in the performance 
environment. An example is the use of a TCP connection, which is not modeled in the software specification, but for which 
customized simulators exist. The same considerations might apply to database or storage subsystems. 

Demands by a Step for external operations are described by the pair of properties externalOpDemand and externalOpCount. 
The first is an ordered list of operation names (strings), and the second is an ordered list (in the same order) of the number of 
demands made during one execution of the Step. The number may be an exact number (an integer), an average value (real) or 
a probability distribution defined in the NFP.
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Figure 17.2 - Part of the performance domain model relevant to resources

Performance properties of different system elements fall into a small number of different measures, as discussed in 
Chapter 15. For instance the term throughput (in operations/sec) is applied to the system as a whole, for handling of 
requests, but also to a single process, or component, or processing step. Because of this uniformity, one set of property 
names is defined in Table 15-1 to be applied at will to different behaviour and resource entities. These NFPs are used here 
also. ypical performance properties include average response time, mean throughput capacity, resource utilization, and the 
probability of missing a delay target. However more sophisticated properties can be investigated, and in general 
performance analysis uses input and output properties which may be any statistical measure of five types of quantities:

• Duration (e.g.respT) (e.g. as an operation delay, or as a response time), NFP_Duration.

• also forced duration (e.g. blockT) (a duration which is part of the operation, such as a user think time), 
NFP_Duration

• Frequency (or throughput. e.g. of events or operations) NFP_Frequency.

• Probability (e.g. of occurrence of some event), NFP_Real.

• Repetitions, for a loop repetition or a repeated operation, NFP_Real. This is represented as Real rather than integer so 
that mean values can be represented.

• Message size or memory size, NFP_DataSize.

The analysis associates a BehaviorScenario with the concepts of workload, request, service and response. The workload 
defines the frequency or intensity of occurrence of requests for the service; the details of the service given to each request 
are defined by the BehaviorScenario (giving the resources and operations including their demand parameters), and the 
response is the result, including its properties of delay, frequency, and probabilities. Resources are associated with one or 
more BehaviorScenarios, constrain their properties, and have their own properties which include holding time and 
utilization (which is the probability that the resource is busy, or a mean count of the number of busy resource units). 

17.2.2 Outline of domain concepts
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17.2.2.1 Performance AnalysisContext and Workload

The AnalysisContext (from GQAM) corresponds to the scope of a study or evaluation. It combines the system represented 
by its behaviour (BehaviorScenarios and its resources (from GQAM), with one or more workloads. It has a set of 
parameters which are used in expressions which define system input parameters, and which define the range of variation 
of cases which may arise within the study. 

A performance context specifies one or more BehaviorScenarios that are used to explore various dynamic situations 
involving a specific set of resources. For instance, a performance context may describe a "busy hour", during which the 
maximum processor load is expected and therefore imposing the greatest likelihood of performance problems, such as 
missed deadlines. For a given system specification, there may be many performance contexts with overlapping resources, 
but one BehaviorScenario is specific to one performance context.

One UML specification may give rise to several performance models, due to variations in system usage, workload, 
allocation/deployment, and configuration. We will call these different models cases; they are supported by parameterizing 
the specification. Parameterized NFPs are supported by the use of:

• Variables global to the AnalysisContext, defining the variations.

• Variable names in place of numeric values of input properties for model elements.

• Functional dependencies of the input properties on the global variables, to define values.

Variables can then be used to specify:

• Workload intensity, through arrival rates or concurrency (population size).

• System scaling through multiprocessors or replication.

• Data record size (and then various demands, through functions).

Analysis cases are defined outside the UML specification by defining groups of values of variables, with one group of 
values for each case. These may be expressed in a table with a column for each case and a row for each variable.

Additional sources of variation may arise with different configurations and environments. Some of these variations are 
independent of the UML model, for example the choice of middleware or operating system. The construction of 
performance models can incorporate directives to compose the application with a stated environment, using a library of 
submodels for environments (described above). These also become case parameters.

Figure 17.3 - Analysis over cases
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The unit of description of behaviour is the BehaviorScenario, which corresponds to a behaviour diagram (interaction, 
activity or state-machine diagram). It is a sequence of actions (called Step here for its performance aspects), with 
predecessor-successor relationships which may include forks, joins and loops. Steps indicate the demands of the system 
on its resources, both for execution on the host processor of the step (called its hostDemand attribute) and for other 
resources.

Other resources can be acquired (and released) explicitly using subtypes of Step called ResourceAcquire and 
ResourceRelease, in which the resource is identified directly. Still further resources can be utilized through demands by a 
Step for Services (like calls) which may involve arbitrary resource combinations. One kind of Service, by an 
ExternalResource, shows the use of resources outside the UML model. 

The input attributes of a Step include its probability (following a branch, or in an opt or alt CombinedFraqment), a 
repetition count (for a repeated step, such as a loop CombinedFragment), and a "noSync" attribute (folowing a fork, or on 
an asynchronous message or par operand) to explicitly indicate that a parallel branch does not join. Behaviour using 
noSync may provide increased concurrency and increased performance.

A Step may be refined by another BehaviorScenario. In an Interaction Diagram the sub-BehaviorScenario may be the 
operand of a CombinedInteraction; in an Activity Diagram it may be the contents of a StructuredActivity. A 
BehaviorScenario that responds directly to requests by a Workload may be termed a "top-level" BehaviorScenario, while 
others are sub-scenarios.

In a performance model the system behaviour is often non-terminating, that is it cycles forever, repeating the top-level 
scenarios as defined by the workload intensity. 

Resource demands by a step include its host execution (CPU) demand, acquisition of a logical resource, and demands for 
services which are not defined in the same behaviour definition, but are provided by some system component, or by the 
platform or the environment, or by an external system. Within a scenario these are lumped together as 

17.2.2.3 Workload

A context may have any number of workloads, representing different sources of requests or initiations of operations. Each 
workload has a distinct mechanism for initiating requests, its own load intensity, and its own QoS requirements. In a 
performance analysis, a workload corresponds to a class of traffic, with a mechanism which may be either open or closed.

Behaviour is initiated by a request event. An open workload is a RequestEventStream in which the events arrive at a 
given rate in some predetermined pattern (such as clocked or Poisson arrivals), or by a trace.

A closed workload defines a stream generated by a fixed number of active or potential users or jobs which cycle between 
demanding to execute the BehaviorScenario, and spending an external delay period (some times called a Think Time) 
outside the system, between the end of one response and the next request. A system may have any combination of open 
and closed workloads. Further, a closed workload may combine requests for different BehaviorScenarios in some 
sequence; in general a mechanism to describe this is called a WorkloadGenerator, governed by a state machine making 
requests for operations. ClosedWorkload is a special case. 

The  same BehaviourScenario concept describes execution of a request for a service by an external resource, which was 
discussed above. The operation size parameter can be used in such requests to define the service time of the request, when 
executed. For example a file service request might define the file size; then a performance submodel for the file system 
could use this parameter to work out the demands on the various resources in the file system, for each request.

17.2.2.4 Service
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It is normal in performance analysis to speak of services, with offered and demanded quality of service. An informal 
expanded view of behaviour with ServiceDemands and OfferedServices is shown in Figure 17-3 and used in the following 
discussion.

A Service is a pivotal concept in performance. Requests queue for service by some resource, and may have a required 
quality of service. The actual service is defined in general by a BehaviorScenario, with a provided quality of service. It 
may be incorporated into the modeled behavior in three ways:

• By making a serviceDemand from a Step to a RequestedService, representing an operation offered at some interface, 
which is in turn defined by a BehaviorScenario.

• By making a behaviorDemand from a Step to directly invoke a BehaviorScenario, which defines a logical service 
offered in some way by the system.

• By making an extOpDemand from a Step to request an external service, which is defined in the performance 
environment outside the UML model.

External services vary depending on how much is defined in the UML model. For instance if the network is defined in the 
deployment then a message transmission is, but if no deployment is specified it may be an external service. 

In the performance model, behavior can be composed flexibly from units defined by scenarios, by service operations 
embedded in components, and by external operations, as shown in Figure 17.4. This provides a toolkit that suits many 
different software design structures, and situations in which different kinds of performance information is available.

For component or platform services defined in the UML document, a submodel can be made and composed with the 
model of the defined services, through service demands. As an abstraction, for systems in which there is no such 
submodel, the equivalent behavior can be described by a subscenario and composed through behavior demands. For some 
kinds of platform services the costs can be included as overhead parameters of the host devices.

Figure 17.4 - Informal view of Services and Behaviour 
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17.2.2.5 Resources

In performance modeling based on queues, resources may be modeled as servers. An active resource is self-contained 
(e.g. a CPU) and has a characteristic service time for each class of service it offers. A passive resource may be acquired 
and released during a BehaviorScenario, and has a holding time which is determined by the behaviour (e.g. by the sub-
scenario) between acquisition and release, which defines the class of service. An external resource is an active resource 
which is an abstraction for an external sub-system of any kind.

Software components, like resources, offer services which are defined by sub-scenarios. The steps of the sub-scenario 
define the use of other components and resources during a service. A component has a set of interfaces, each of which 
offers one or more of the services of the component. In software terms a single service may be defined as the response to 
one interface method, or to any one of a set of interface methods (methods may be clustered as a form of abstraction in 
the performance analysis). A software component may also be a passive resource (a process or thread) if its execution is 
restricted in some way. If there is no limit in the number of simultaneous concurrent active executions of the component, 
it optionally may be regarded as a special kind of "infinite resource", or as not a resource; the two concepts are 
equivalent.

17.2.2.6 Communications Channels

A message between two objects is conveyed by some mechanism:

1. If the objects are in the same process, it is conveyed by the language runtime. 

2. if the objects are in different PProcesses in the same node (ProcessingHost) it is conveyed by the operating system,

3. if they are of different nodes it is conveyed by a system layer we will term a CommChannel. This may be a 
middlware layer (a web services connection, a CORBA connection, a Java Remote Method Invocation, an MPI 
(Message-Passing Interface) connection in a grid, a socket or secure socket connection), or a more complex 
infrastructure such as a publish-and-subscribe system.

To give the modeler flexibility, these will be modeled in five different ways, of increasing detail and complexity (levels 
of detail):

1. Within the same node, language runtime costs and operating system costs are ignored by default; they are part of the 
scenario. If the interprocess communication cost per byte of the ProcessingHost is defined, that is used instead to cal-
culate a hostDemand.

2. Between nodes the default is to determine node hostDemands from the sending and receiving overhead on the nodes 
(attributes of the two ProcessingHosts) and insert the latency of the link (an attribute of the connecting 
CommunicationsHost).

3. Between nodes the conveyance of the message may also be modeled as an external operation, invoking a submodel of 
the communications layer. If this demand is defined it over-rides the default. It is an attractive option for modeling the 
behaviour of the internet and the complexities of the TCP protocol.

4. Between nodes a communications layer such as CORBA may be defined as a UML StructuredClass offering send and 
receive operations to the two end-point processes. This layer is denoted as a CommChannel with a conveyance 
operation demanded by the CommunicationsStep in the scenario. Its service is defined by a BehaviorScenario defined 
for the send operation and the combination of the two end-point processes. The scenario may involve directory look-
ups, authorization and redirection of requests. If a serviceDemand for this operation is defined it over-rides the 
default.

5. Between nodes a complex communications protocol can be modeled by a pure BehaviorScenario not associated with 
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a system component, but describing a collaboration of the hosts. For example in a publish-and-subscribe system a 
message is transferred by posting it to a repository, which then informs subscribers of the message. They finally 
access it themselves, at which point the message is delivered. If a serviceDemand for this operation is defined it over-
rides the default.

Each message with performance significance is defined as a kind of Step called a CommunicationStep, in sequence in the 
BehaviorScenario. Its annotations determine which level is used to model the cost and delay of communications. Figure 
17.5 shows these definitions as dependencies, for both cases.

Notice that if the channel is a CommunicationsEngine with a rate parameter, its transmission demand may define the 
latency.

(a) Detail Level 2, conveyance modeled at the hardware level

(b) Detail levels 4 and 5: using a communications layer
Figure 17.5 - Roles in modeling the transmission of a message

From the above discussion, the model for levels 4 and 5 defined by a BehaviorScenario for transmission, either associated 
with CommChannel or invoked explicitly. For level 3 there is an implicit three step scenario of (send overhead on sending 
host, latency delay, receive overhead on receiving host). The domain model to support communications modeling is 
shown in Figure 17.5.
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Figure 17.6 - Domain model for communications in performance modeling

17.2.2.7 Types of Performance Analysis Methods

A sub-profile for performance analysis should support modeling tools for building different kinds of performance models. 
Most modeling tools deal with one or more of the following common types of models:

• Queueing models define customer classes (workloads) which execute particular aspects of the software, which are 
captured in different scenarios. In the simplest queueing models it is only necessary to define the class sizes or arrival 
rates, and the total average demands placed on each device in the system, during one execution of each scenario. In 
more complex queueing models the distribution of the demand may be required, there may be passive resources as well 
as devices, and the detailed scenario sequence may be required (for instance if it has parallel branches).

Queueing models calculate average throughput, utilization and response times for classes overall, and layered or extended 
queueing models also can calculate these figures for passive resources and for parts of BehaviorScenarios (scenario steps 
or resource-operations).

1. Simulation models define multiple logical tokens which execute the software, following the detailed BehaviorSce-
nario structure and using execution time distributions for the operations of each step. There may be passive resources 
and they may have complex scheduling (for instance, LRU management of a cache). 
 
Simulation models can calculate a wide range of measures including histograms and percentiles as well as average 
values.

2. Discrete-state models such as Petri Nets define tokens which execute the software, following the detailed 
BehaviorScenario structure. As in queueing models there may be open or closed classes of tokens for different 
scenarios. Where tokens must be differentiated they are said to be colored. Petri Nets use places to define the progress 
of tokens and transitions to describe decisions, and the passage of time. Resources are described by additional places 
and tokens, and resource scheduling by transitions which execute scheduling decisions. Other forms of discrete-state 
models include Markov and Semi-Markov chains, Stochastic Process Algebras, and Stochastic Automata. 
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Performance Petri Nets and other discrete-state models typically calculate average measures but can provide more 
detailed measures such as higher moments and distributions.

17.3 UML representation

17.3.1 Profile diagrams

The profile is defined in the two diagrams that follow, and in text in the next section. Much of it re-uses extensions 
defined for Generic Quantitative Analysis Modeling (section 15.3.1, p. 250), prefixed Ga, and these extensions are shown 
again here to show that they are part of this sub-profile, though their definitions are given elsewhere. For the inherited 
stereotypes, properties (tags) which are important for performance analysis are shown here.

Figure 17.7 - Profile diagram of performance extensions for workload, behavior and time observations
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Figure 17.8 - Profile diagram of performance extensions for resources
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Extensions

• None

Generalizations

• PaStep.

• GaCommStep (from MARTE::GQAM).

Associations

• None.

Attributes

• msgSize: NFP_dataSize [*]  
the size of message to be transmitted by the step.

• concurResource: MARTE::GRM::SchedulableResource [0..1] 
the logical communications channel by which the message is conveyed.

Constraints

• None

17.3.2.6 GaEventTrace (from MARTE::GQAM)

17.3.2.7 GaExecHost (from MARTE::GQAM)

In performance modeling, an GaExecHost can be any device which executes behavior, including storage and peripheral 
devices.

17.3.2.8 PaLogicalResource

The PaLogicalResource stereotype maps the LogicalResource domain element (section F.12.13, p. 556) denoted in Annex 
F.

A PaLogicalResource is a resource that can be acquired and released explicitly by AcqStep or RelStep. It may be a single-
unit resource, as a mutex or exclusive lock, or have multiple units, as a buffer pool or an access token pool. A logical 
resource that is embodied as a software process is stereotyped SchedulableResource or PaRunTInstance instead

Extensions

• Classifier (from UML::Classes::Kernel).

Generalization

• Resource (from MARTE::GRM)

Associations

• None
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Attributes

• poolSize: NFP_Integer [0..1] = 1 
the number of units of the resource.

• utilization: NFP_Real [*]  
the occupancy of the resource, expressed as the mean number of busy units of the resource. If 
poolsize = 1, there is one instance, and the utilization is the probabilty it is busy.

• throughput: NFP_Frequency [*] 
the rate of requests to the resource.

Constraints

• None

17.3.2.9 GaRelStep (from MARTE::GQAM)

17.3.2.10 PaRequestedService

The PaRequestedService stereotype maps the RequestedService domain element (section F.12.9, p. 554) denoted in Annex 
F.

The semantics are similar to GQAM::GaRequestedService, however the inheritance from PaStep incorporates the 
additional behavior definitions for operations during the step (external operations and behavDemand for a nested 
Scenario).

Extensions

• Operation (from UML::Classes::Kernel)

Generalizations

• PaStep

• GaRequestedService (from MARTE::GQAM)

Associations

• None

Attributes

• None

Constraints

• None

17.3.2.11 GaResourcesPlatform (from MARTE::GQAM)

17.3.2.12 PaResPassStep
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ResPassStep is applied immediately after a fork to indicate that a resource held before the fork is passed to this branch, 
and not shared by all the branches of the fork. Resource units that are held before the fork and not passed, are shared by 
all branches.

Extensions

• None

Generalizations

• GaStep (from MARTE::GQAM)

Associations

• None

Attributes

• resource: Resource [0..1] the identity of the resurce of which some units are passed.

• resUnits: NFP_Integer [0..1] = 1 the number of units which are passed.

Constraints

• None

17.3.2.13 PaRunTInstance

A stereotype for a swimlane or lifeline which indicates a run-time instance of a process resource and its properties.

Provides an explicit connection between a locality or role in a behavior definition (a lifeline or swimlane) and a run time 
instantiation of a process, and optionally defines properties of the process. In some specifications there may be multiple 
deployment instantiations of the same process class, with different properties, so this stereotype should be used for the 
properties that are different.

Extensions

• NamedElement (from UML::Classes::Kernel)

Generalizations

• None

Associations

• None

Attributes

• poolSize: NFP_Integer [0..1] = 1 
the number of threads for the process.

• unbddPool: Boolean [0..1] = false 
indicates effectivelhy infinite threads if true. 
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• instance: MARTE::GRM::SchedulableResource [0..1] 
the SchedulableResource which is the actual process resource.

• host: GaExecHost [0..1]  
the host of the  process and thus of all Steps associated with this run-time instance.

• utilization:NFP_Real [*]  
the occupancy of the thread pool, in terms of the mean busy threads.

• throughput: NFP_Frequency [*] 
the rate of acceptance of messages by all threads in the process, taken together.

Constraints

• None

17.3.2.14 SchedulableResource (from MARTE::GRM)

In performance modeling, a schedulable resource is a process or thread pool. A named element such as a swimlane or 
lifeline which represents behavior of a schedulable resource is stereotyped as a PaRunTInstance (see below) with a 
pointer to the resource, and also may capture the size of the thread pool and the host of the process.

17.3.2.15 PaStep

A step is a unit of a scenario. Some inherited properties of PaStep are given to provide performance interpretations. 
PaStep without a refining scenario is a basic sequential execution step on a host processor. With a refining scenario it is a 
larger unit of behavior.

Extensions

• None

Generalizations

• GaStep (from MARTE::GQAM)

Associations (inherited):

• behavior:GaScenario [0..1] a scenario which is a refinement of this Step.

Attributes (inherited)

• blockT: NFP_Duration [*] 
a pure delay which is part of the exeuction of a step. Think times for performance models are 
represented by a blockT value.

• rep: NFP_Real [0..1] = 1 
repetitions, used to represent loops or optional execution.

• prob: NFP_Real [0..1] = 1 
probability of a branch.

• host: GaExecHost [0..1] 
host processor (usually implicit in the deployment of the process). 
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• servDemand: GaRequestedService [*] {ordered} 
a list of operations that are called during one execution of the Step.

• servCount: NFP_Real [*] {ordered} 
a list of values for how many calls are made to each operation in the servDemand list, in the same 
order.

• concurRes: SchedulableResource [0..1] 
the process or software component which executes the step, usually implicit in the location of 
execution in the behaviour definition (lifeline, swimlane).

Attributes

• noSync: Boolean [0..1] = false 
identifying a Step immediately after a fork, for which there will be no corresponding join. An 
asynchronous branch of a fork.

• extOpDemands : String [*] {ordered} 
a set of identifiers for operations by external services which are demanded by this Step, in a form 
understood by the performance environment.

• extOpCount: NFP_Real [*] {ordered} 
the number of requests made for each external operation during one execution of the Step, in the 
same order as the demands.

• behavDemands: GaScenario [*] {ordered} 
a set of scenarios defining operations which are invoked by this Step. This provides another way to 
insert a Scenario into a Step, in this case with a parameter for multiple, or probabilistic insertion.

• behavCount: NFP_Real [*] {ordered} 
the number of requests made to execute each scenario operation during one execution of the Step, 
in the same order as the demands.

Constraints

• None

17.3.2.16 GaTimingObserver (from MARTE::GQAM)

This observer stereotypes a NFP_Constraint associated to two TimingObservations. In performance analysis it is used to 
identify and compute the duration of the time interval between them.

17.3.2.17 GaWorkloadEvent (from MARTE::GQAM)

Defines a stream of events that make up a workload which drives the system. For performance analysis the events can be 
taken from a trace (for simulation) from an arrivalPattern which can be an OpenPattern or a ClosedPattern, or from a 
WorkloadGenerator which is a State Machine defining sequences of operations.

17.3.2.18 GaWorkloadBehavior (from MARTE::GQAM)

A container for a set of Scenarios and a set of WorkloadEvents.
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17.3.2.19 GaWorkloadGenerator (from MARTE::GQAM)

A State Machine defining sequences of events to drive a system. There may be a population of instances, each 
representing one user or one source of input.

17.4 Examples for Performance Analysis

17.4.1 Example 1: A Simple Web Application

The basic performance features will be illustrated by describing a web-based application. Example 1 is a simple 
sequential scenario with basic features of the profile: open arrivals, average processor demands, a repeated operation, 
multithreaded processes, and communication overheads at the nodes. Example 2 adds more complex behaviour patterns 
and corresponds roughly to a web application benchmark.

In Figure 17.8, the blockingTime attribute represents the network latency, and the capacity is the nominal  maximum 
throughput rate. The send and receive overheads on the nodes apply equally to all transmissions. The nodes are 
stereotyped as ExecHost and each is a multiserver, with 5 and 2 processors respectively indicated by resMult (multiplicity 
of avalilable resource instances). The webserver artifact represents a load module for the webserver and its deployment, 
and similarly for the database.

Figure 17.9 - Deployment of Example 1, with communications overhead annotations

 

<<GaExecHost>> 
AppHost 

{commRcvOvh = (0.15,ms/KB), 
commTxOvh = (0.1,ms/KB)} 

<<GaExecHost>>
DBhost

{commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.07,ms/KB)}

<<GaCommHost>> 
LAN 

{blockT = (10,us), 
capacity = (100,Mb/s)} 

 : DatabaseSystem : WebServer 

<<artifact>> 
<<SchedulableResource>> 

webserver 
<<artifact>>
database

<<deploy>>

<<deploy>> 

<<manifest>> <<manifest>>
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Figure 17.10 - Example of i interaction performance annotations

In Figure 17.9 a simple sequence is annotated, in which a web server makes calls to a database server. The Process 
annotation indicates the process resource with 80 threads, and links it to the webserver artifact deployed on the AppHost 
Node. Thus the host for ExecSteps on this lifeline is the AppHost Node. The scenario steps are annotated on the 
messages, as the tool would not accept stereotypes for execution occurrences.

Walking through the message annotations, the first message is stereotyped with the workload, showing it has exponential 
inter-arrival times with a mean of 17 ms, thus it is a Poisson process with mean rate 1000/17 = 58.8/sec. This is how a 
Poisson process must be annotated. It is also stereotyped as an ExecStep with a hostDemand of 4.5 ms; this applies to the 
operation triggered by the message. By default it applies to the entire operation up until the reply, but additional 
ExecSteps may be added as recursive messages, as is done here just before the reply.

Message 2 is stereotyped both with the message size (in the CommStep stereotype) and the database operation parameters 
(in the ExecStep). The ExecStep is repeated an average of 1.3 times (from the repetitions attribute), and this implies the 
same for its invocation message, so the communication overhead demands and latencies are repeated also. The CommStep 
shows a small (2 KB) message, which according to the deployment information will generate:

host demand on AppHost of 1.3*2*0.1 = 0.26 ms

latency of 1.3*10 us

host demand on DBhost of 1.3*2*0.14 = 0.364 ms

 
<<PaRunTInstance>>

web
{poolSize = (webthreads=80),
instance = webserver}

<<PaProcess>>

database
{poolSize = (dbthreads=5),
instance = database}

eb

<<PaStep>>
<<PaCommStep>>

2: 

{hostDemand = (12.4,ms),
repetitions = (1.3,-,mean),
msgSize = (2,KB)}

<<PaCommStep>> 

4: 

{msgSize = (75,KB)} 

<<PaCommStep>>

3: 

{msgSize = (50,KB)}

<<PaStep>> 
<<PaWorkiloadEvent>> 

1: 

{open(interArrT=(exp(17,ms))) 
hostDemand = 4.5,ms} 
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The ExecStep has an average of 1.3 repetitions, that is, it is performed conditionally and may be repeated, and creates a 
total of 1.3*12.4 = 16.12 ms of demand for DBhost. The reply CommSteps apply further load,

from database: 1.3*50*0.07= 4.55 ms on DBhost, 1.3*50*0.15 = 9.75 ms on AppHost

from webserver: 75*0.1 = 7.5 ms on AppHost

and the recursive message 4 indicates an additional half ms demand for AppHost.

Performance Models: Queueing Network (QN)

A queueing model of this system has two servers - AppHost with 5 servers and total demand Dap ms/request, and DBhost 
with 3 servers and total demand Ddb ms/request - where:

Dap = 4.5 +  0.26 + 9.75 + 7.5 = 22.01 ms/request

Ddb = 0.28 + 16.12 + 4.55 = 20.95 ms/request

The annotations have not specified a message size for the original request from the browser, so it is ignored. 

A QN model could be shown as follows:

Figure 17.11 - Queueing Network for Example 1

The two total demand values Dap and Ddb are sufficient to give a solution if this is assumed to be a separable QN, which 
means assuming processor-sharing scheduling at the two computers (not a very serious assumption for enterprise 
systems). The demands are assumed to include all operating system overheads, including background  workloads. If 
additional workloads are present they should either be modeled as additional classes (from other scenarios) or some 
fraction of processor utilization should be allocated to them.

The QN model ignores the performance impact of the process thread pool sizes. To represent this we require an extended 
queueing network or layered network, that models the simultaneous possession of two resources (threads and processor). 
(S. Lavenberg, "Performance Modeling Handbook, Academic Press, 1983).

Extended Queueing Network or layered Queueing Network (EQN or LQN)

The ordinary queueing model ignores the thread limits on the webserver and database, which may limit performance. An 
EQN can model this with logical resources as shown in the Figure. The oval resource pools have resource tokens that are 
dispatched to requests in a queue (the upright triangle shows the dispatcher, the inverted triangle shows the release point 
for the thread.

 
 AppHost Arrivals  

     

Departures

DBhost 
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Figure 17.12 - Extended Queueing Network diagram

The service time of the logical server is the holding time of the thread. Solution of an EQN is approximate, using various 
strategies (see eg, Jain or Menasce).

In this figure each process is a logical server with a queue and a pool of tokens representing the process threads. The 
arriving job just first obtain a process token and be processed by the webserver on AppHost, then without releasing the 
first token (since this is a blocking call) it obtains a database process token and be processed by the database on DBhost. 
It releases the second token and goes back with the reply to the webserver, cycles an average of 1.3 times to the database, 
and then releases the webserver token and departs. This resource logic is captured more compactly in the LQN, in which 
each process is a layered server, illustrated in Figure 17.12.

Figure 17.13 - Layered Queueing version of the same model

The LQN notation has servers which are processes or tasks (represented by the bold rectangles, with threading shown as 
a multiserver multiplicity) allocated to host processors, the ellipses, also with multiplicity. The classes of service are 
denoted as entries, the attached rectangles, showing the total hostDemand for each operation. Entries make requests to 
other entries, shown as arcs labeled with the mean frequency (1.3 here). The solution of the LQN is essentially the same 
as the solution of the EQN above, it is just a more elegant notation provided the usage of logical resources are nested, 
lower layers within higher.

17.4.2 Example 2: An Electronic Bookstore Home Page Interaction

This example illustrates additional annotations and their application to additional features of the UML2 Interaction 
Diagram:

Arrivals   
f  

Departures

webthreads
 

dbthreads

DBhost 

AppHost 
webserver 

process 

database 
process 

  htmlReq     webserver   
  10 ms     [webthreads]   

arrivals at  58.8/sec 

  
  

AppHost
[5] 

database 
[dbthreads] 

(1.3)
 

dbReq 
 

DBhost 
[3] 
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• Parameters global to the AnalysisContext, and their use in expressions for values.

• Alt and par CombinedFragments stereotyped as Steps, with probability for alt.

• An external operation for storage.

• A noSync stereotype applied to an asynchronous operation.

• A closed workload.

• Computation of parameters for the reply to getHomePage, using an NFP with expressions to determine the value, 
depending on the variable $images.

• A repeated action (getHomeImages) and an optional action with a probability.

• A percentile requirement on overall response time.

The example is elaborated from the Transaction Processing Council standard scalable benchmark TPC-W for electronic 
commerce, by putting two Promotions into an alt combination (Promotion1 on the first pass, then Promotion2 thereafter), 
and introducing a logging operation in parallel with getHomeImages.

The scenario shows the interactions of a user starting from getting the home page, until the page is completely displayed. 
It includes checking the site's data on the user if the user is logged in with a site ID, retrieving a subpage on a promotion, 
getting page data from the database, and getting a number of embedded images from an image server.

The deployment is based on example 1, with an added image server. It does not specify the number of replicated 
processors, so the default value of 1 is assumed.

Figure 17.14 - Deployment of a web application representing the TPC-W benchmark

The behavior is shown i

 

<<GaExecHost>>
DBhost

{comm RcvOvh = (0.14,ms/KB), 
commTxOvh = (0.07,ms/KB), 
m axRI = 3}

<<GaExecHost>>
AppHost 

{comm RcvOvh = (0.15,m s/KB),
comm TxOvh = (0.1,ms/KB),
m axRI = 5}

<<GaExecHost>>
Im ageServerHost

{comm RcvOvh = (0.1,ms/KB),
commTxOvh = (0.2,m s/KB)}

<<GaComm Host>>
LAN  

{blockT = (10,us),
capacity = (100,Mb/s)}

: DatabaseSystem: Im ageServer

<<artifact>> 
<<SchedulableResource>> 

im ageserver

 : W ebServer

<<artifact>> 
<<SchedulableResource>> 

w ebserver database

<<deploy>> <<deploy>><<deploy>> 

<<m anifest>><<m anifest>><<m anifest>>

<<artifact>> 
<<SchedulableResource>> 
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Figure 17.15 - Example 2: the home page scenario of the TPC-W standard benchmark, with some additions to 
illustrate alt and par CombinedFragments

17.4.3 Example 3: a building surveillance system

17.4.3.1 Overview
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This is a soft real-time embedded system with that a set of cameras that must be scanned at least once every second. The 
scan is free-running, with the next camera being polled as soon as the image-capture of the previous one is complete. The 
images are polled by an "acquire" thread, placed in a buffer and passed to a "storage" thread, which stores them in a 
database. Multiple buffers, asynchronous storage and multithreaded processes ensure concurrency in the handling, to 
obtain adequate performance.

The profile features which are emphasized in this example are

• case parameters attached to the PerformanceContext, giving the number of cameras ($Ncameras), the size of a camera 
image ($imageSize, in MB), and the number of storage blocks per image ($blocks), with default values.

• annotation of an activity diagram, with process resources stereotyped on ActivityPartitions (swimlanes),

• repetition of a complex operation defined by a StructuredActivity. It is stereotyped as a Step with a repetition count and 
a refinement as the interior activity,

• use of both a mean and variance in defining a host demand parameter. 

• a CommStep stereotype applied to an ActivityEdge

• a logical resource (the buffer pool) with multiple units, with explicit acquire and release steps. 

• passing a resource from one process to another (passing a buffer to be stored),

• an external Service (a file storage operation) defined by name only in an extOpDemand attribute of the Database 
operation.

Figure 17.15 and Figure 17.16 show the deployment and activity diagrams for the example. In the deployment diagram 
the "SchedulableResource" stereotypes are shown only for the Control artifact, but in fact apply to all the artifacts shown 
(not shown to avoid diagram clutter).

Figure 17.16 - Deployment diagram of the building surveillance system of example 3

 

<<GaExecHost>>
ControlNode

<<GaExecHost>>
Camera 

<<GaExecHost>>
DataBaseNode

<<Resource>>
bufferpool

{maxRI = $Nbuffers}

acquire : Acquire : CameraControl  : Store

<<artifact>>
BufMgr

 : DB

<<artifact>>
DB

<<artifact>>
Store

<<artifact>>
Control 

<<SchedulableResource>> 

<<artifact>>
Acquire

<<gaAnalysisContext>> 
{contextParams=$Nbuffers,
paramValues=15}

<<deploy>>

<<deploy>>

<<GaCommHost>>

Backend

{capacity = (1000,Mb/s)}

<<deploy>>

<<GaCommHost>>

LAN 

{capacity = (100,Mb/s)}

<<deploy>>
<<deploy>>

<<deploy>>

<<manifest>> <<manifest>> <<manifest>><<manifest>>
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Examining the deployment diagram first, the nodes are stereotyped as ExecHost. As the Camera node is only symbolic, 
and is not represented in the design, it need not be stereotyped. The ProcessingRate attribute of the DataBaseNode is 
interpreted for performance as a factor, relative to a nominal processor, on which the hostDemand figures are based.

The deployed objects are all artifacts, and it is these artifacts that are referenced by the Process stereotypes in the activity 
diagram. The reference to the artifact (rather than to the class or instance) is to resolve the deployment of active objects. 
The bufferpool artifact stands for a set of buffers at run-time, and the number of buffers $Nbuffers is a significant 
parameter for performance (remember resMult stands for "multiplicity of resource instances").

The attachment of the parameter $Nbuffers to the analysis context assists in identifying parameters that may be varied 
over cases in the analysis. The analysis context should be shared with the behaviour diagram(s).

Figure 17.17 - Activity diagram for the building surveillance system of example 3

<<PaStep>>getOneImage {repetitions = $Ncameras}

{hostDemand = (1.8,ms)}

<<PaStep>>
getBuf

getImage

passImage

{hostDemand = (0.2,ms)}

<<PaStep>>
freeBuf

{hostDemand = (2.5,ms),
noSync}

<<PaStep>>
storeImage

cleanUp

<<PaStep>>
<<GaAcquireStep>>

allocBuffer
{hostDemand = (0.5,ms),
acqRes = bufferpool,
resUnits = 1}

<<PaStep>>
<<GaReleaseStep>> 

deallocBuffer
{hostDemand = (0.5,ms),

relRes = bufferpool}

<<PaStep>>
storeDB

{hostDemand =
{(($blocks*0.9),ms,mean),
($blocks*0.2),var)},
extOpDemand = writeBlock,
extOpCount = $blocks}

<<PaRunTInstance>> 
bufMgr
{maxRI = 1,

instance = Acquire}

<<PaRunTInstance>>
DB

{maxRI = $DBThreads,
instance = DB}

<<PaRunTInstance>>
Store

{maxRI = $storeThreads,
instance = Store}

<<PaRunTInstance>>
Acquire

{instance = Acquire,
maxRI = $acquireThreads}

cycleInit

<<GaAnalysisContext>>
{contexParams={$Ncameras, $frameSize, $blocks, $acquireThreads, $storeThreads, $DBThreads},

paramValues={100,0.1,15, 1, 2, 2}}

<<PaCommStep>>
{msgSize = ($frameSize,bytes),
repetitions = ($frameSize/1500)}

<<PaResPassStep>>
{passRes = bufferpool,
resUnits = 1}

<<GaWorkloadEvent>>
{closed (population = 1,

interOccTime = {(1.0,s,percent95,req),
(CycleTime95,s,percent95,calc)}

<<PaStep>> 
{hostDemand = (0.2, ms),
extDelay = (0, s), 
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In the activity diagram there are additional global parameters associated with the analysis context. The workload is 
modeled as a single "user" (think of it as a token) which arrives to initiate a scan, and returns immediately after the scan 
is done, to start the next one. Thus the population is 1 and the external delay is zero. The performance requirement is on 
the 95th percentile of the time between successive initiations of the scan; thus 95% of scans should take less than 1 
second.

The cycleInit Action has a hostDemand. Since it is not shown in a swimlane, its process (SchedulableResource) is given 
directly on the Step stereotype by the attribute "concur" (which determines its deployment and thus its host processor).

Apart from the scan initialization, the scan is a loop which is described inside a StructuredActivity which is stereotyped 
as a Step, with a repetition count equal to the number of cameras. Four processes are identified: the component attribute 
gives the artifact for deployment, and the resMult attribute gives the number of threads. Two comments:

• Since threads are annotated on the paProcess, two run-time instantiations of the same artifact can have different 
numbers of threads.

• One artifact may manifest multiple processes.

The StructuredActivity has two ending points, and shows the use of the noSync attribute of the storeImage Step, to 
enhance concurrency. After the fork node on the left, the main loop ends and this allows the next iteration to begin. The 
explicit noSync attribute on the storeImage action shows that the main behaviour does not wait for this branch to 
complete, so the right-hand behaviour for storing the frame continues in parallel with the next scan. In fact, the 
concurrency of the storage behaviour is only limited by the number of Store threads and the number of buffers. This 
overlapped storage behaviour is illustrated by a Gantt chart, in Figure 17.17. Any number of concurrent storage 
operations can be continuing while further buffers are filled, up to the point where there are no free buffers to allocate.

Figure 17.18 - An asynchronous pattern of buffer storage operations, indicated by the noSync property (to indicate 
concurrent continuation of a refinement BehaviorScenario after the return to the outer level of  behaviour).

The bufferpool logical resource is of importance in this specification, as the system suffers easily from buffer starvation. 
Notice:

• The number of buffers is declared on the deployment artefact.

• The acquisition and release of the buffers are separate stereotypes on the buffer manager steps which allocate and 
deallocate them. The single unit of resource is shown explicitly on the allocate (it need not be defined as one is the 
default), but the deallocate uses the default.

• The explicit passing of the buffer from one process to another is shown by the ResourcePassStep stereotype attached to 
an ActivityEdge from Acquire to Store. Here the unit is shown (one is again the default). Without an explicit 

get buffer and fill with 
first image 

get buffer and fill with 
second image 

get buffer and fill with third 
image 

store first image and deallocate buffer 

store second image and deallocate buffer 

 store third image etc... 

time 

etc. 
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ResourcePassStep, the logical resource is handed on along the flow, including flows that cross from one process to 
another (as in the return from the Buffer manager). However after a fork in the flow it may be essential to indicate the 
passing explicitly.

Only one CommStep is annotated here, for the delay to transfer the data over the network. The database communications 
might also be significant. The annotations give a derived communications latency of (message size)/rate, in the absence 
of explicit delay and demand attributes in the deployment diagram.

The use of mean and variance in specifying a random hostDemand, is illustrated for the storeDB action. Notice that the 
units are not given for the variance (implicitly they are the square of the units for the mean, but they are normally not 
stated).

An external operation is defined for the storeDB action, defining the storage on disk of one block of image data, with an 
operation count of $blocks.

17.4.4 Example 4: communications example, a layer subsystem

Communications is provided by the execution platform of the system, and this may be described in UML by a layering of 
components and subsystems. The commService stereotype on a message identifies an Operation on an interface of the 
platform, as conveying the message. This section illustrates the concept with an oversimplified CORBA layer submodel.

Figure 17.19 - Sending of messages by the application, with commService attributes

Figure 17.18 shows a call-reply pair and an asynchronous message. Notice that the reply is stereotyped separately here, so 
it has its own sub-scenario. It is also possible to aggregate all the latencies and workloads into the request, which provides 
the correct total workload and delays but does not represent the behaviour precisely. Figure 17.19 shows the simplified 
CORBA system, with a stub component (integrated with the sender), a skeleton component (integrated with the receiver), 
an ORB component to execute the core functions, and a location server. The last two are separate processes in this 
assumed system; the deployment will not be shown.

 
ServerClient

<<P aCommStep>> 2: 
{servDeman d = send , servCount = 1} 

<<P aCommStep>> 1: 

{servDemand = send, servCount = 1} 

<<PaCommStep>> 

3: 

{servDemand = send, servCount = 1}
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Figure 17.20 - A simplified CORBA layer subsystem

The send port has an interface of type Sending which offers an operation send, which is stereotyped as a 
"paRequestedService", with behaviour definition given by the sequence diagram in Figure 17.20 (the behaviour attribute 
does not show in the stereotype).

The identification of the send operation of the layer, in the commStep stereotype, binds the CORBA layer component 
model that offers this service, and the behaviour model, into the original scenario. The send operation that starts the 
scenario in Figure 17.20 is the operation that begins the conveyance of the message. The binding of the receive required 
interface and the receive operation of Figure 17.20 to the receiver of the application message is implicit.

 

locationService : LocationService

skeleton : Skeleton

ORB : ORBClasses

stub : Stub

corba-layer

send receive 

Sending

<<paRequestedService>>+send(){behavior=
corba-send} 

corba-layer

LocationService SkeletonStub ORBClasses 

Receiving

+receive()
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Figure 17.21 - Behavior of the operation "send"

17.4.5 Example 5: services by component subsystems

Operations by components and subsystems may be included in a Step by giving it an attribute servDemand with a 
parameter servCount. ServDemand is typed on the operation, which itself must be stereotyped as GaRequestedService, 
and servCount is the average number of invocations. Services may be useful to include platform and environment 
operations, without modifying the behaviour definition provided by the designer.

Figure 17.21 shows a basic behaviour that invokes a findRecord operation defined on the class DataManager, three times. 
The findRecord operation is shown in Figure 17.22 and is annotated with its hostDemand and an external service 
operation.

 

<<PaProcess>>
locationService

<<PaProcess>>
ORB

skeleton receiversender stub

4: 

<<PaCommStep>>
<<PaStep>>

3: 

5: 

7: 

<<PaStep>>

1: 

{hostDemand = ((0.01*messageSize),ms)}

<<PaStep>>
<<PaCommStep>>

6: 

{hostDemand = ((0.011*messageSize),ms)}

<<PaStep>>

2: 

{hostDemand = (12,ms),
prob = 0.3}

SD corbaSend <<GaScenario>> 
 
<<GaAnalysisContext>> {contextParams=messageSize}
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Figure 17.22 - Sequence diagram for an operation findRecord invoked from a Step

Figure 17.23 - The DataManager class with annotated operation findRecord

In both Figure 17.21 and Figure 17.22, the operation findRecord is stereotyped on the DataManager class, not on a run-
time instance of DataManager. Because the stereotype extends PaStep, it can also have properties execHost and 
concurRes which identify the host processor and process, respectively. This is sufficient if there is just one deployment of 
DataManager. If there is more than one deployed instance of DataManager, there is a problem to identify which instance 
is invoked and what are the parameters such as hostDemand. A possible solution is to use a different variable name for 
the servCount in the ExecStep stereotypes that make the invocations. Then that variable name can be associated with a 
deployed instance in a table.

For example if StepA invoked findRecord on dataManager1 its servCount for the operation could be set to the variable 
$findR1, while StepB invokes the same operation on dataManager2 $findR2 times. Then a table can be set up:

Table 17.1 - Instance Parameters for calls to DataManager findRecord

Instance servCount Variable Value

dataManager1 $findR1 3

dataManager2 $findR2 1.7

 
<<PaProcess>>

webserver
{poolSize = (webthreads=80),
runTInstance = webserver}

<<PaProcess>>
App

browser

<<PaStep>>

appReq2: 

{hostDemand = (12.4,ms),
servDemand = findRecord,
servCount = 3}

4: 
3: 

<<PaStep>>

<<GaWorkloadEvent>>

htmlReq1: 

{open (IntA rrTime = exp(17,ms)),

hostDemand = 4.5,ms}

{runTInstance = App}

 

DataM anager

<< PaReques tedServ ice> >+findRecord(){hostDem and =  (7,ms),  
extOpDem and = readStore, ex tOpC ount = 1500, concurRes  = dataManager}
A UML Profile for MARTE, Beta 1        337



This associates the instances with the Step and a value. The tool would have to determine the deployment of each instance 
by name, however.

Figure 17.24 - Deployment of the dataManager instance of DataManager

Call Hierarchy

The operation findRecord may be the work of a subsystem rather than a single object, and the subsystem can be annotated 
to show the invocation heirarchy and to parameterize the calls. The next example shows a call hierarchy and also a 
number of instances of the same class, with additional parameters. The call hierarchy may be represented schematically in 
terms of the instances as Figure Figure 17.24, with a modified data manager DataManagerB.

 

<<GaExecHost>>
DataMgrhost

{commRcvOvh = (0.14 ,ms/K B),
commTxO vh = (0.07,ms/KB),
maxRI = 3}

<<G aExecHost>>
AppHost 

{commRcvOvh = (0.15,ms/KB), 
commTxOvh = (0.1,ms/KB), 
maxRI = 5}

<<G aCommHost>> 
LAN 

{blockT = (10,us),
capacity = (100,Mb/s)}

<<PaProcess>>
: DataManager

<<artifact>>
dataManager

 : Application  : WebServer

<<artifact>>
webserver

<<artifact>>
application 

<<deploy>><<deploy>> <<deploy>>

<<manifest>> <<manifest>> <<manifest>>
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Figure 17.25 - (a) Call Hierarchy for the findRecord operation of dataManager,  
(b) Class structure of the call hierarchy

First the class structure of the call hierarchy may be represented as in Figure 17.24(b). The operations of the classes are 
annotated to represent this, with variables for the operation counts, in 

Figure 17.26 - Annotations to the classes for the class invocation hierarchy of Figure 17.23(b)

We can see in the annotations that the target operations are identified, with variable $searchCount for the search operation 
and variable $ioCount for the io operation. The bindings of instances to invocations is defined in the tables. In the upper 
table it is stated that there are calls to two different instances of SearchEngine, with the given values of the count. Notice 
that since it is an average count it can be non-integral. These values are NFPs so it could be written with a statistical 
qualifier.

In the lower table the instances of SearchEngine and Storage are bound together by definitions of the $ioCount variable 
for different combinations of the calling and called operation, and the parameters $seHostDem of the search operation is 
defined for each instance of SearchEngine.

 

dataManager:DataManagerB 

se1: 
SearchEngine 

se2: 
SearchEngine 

storA:Storage storB:Storage storC:Storage 

search 

io 

DataManagerB 

SearchEngine 

Storage 

search 

io 

(a) (b)

  
 

SearchEngine

<<PaRequestedService>>+search(){hostDemand = ($seHostDem,ms), servCount = $ioCount, servDemand = io}

DataManagerB

<<PaRequestedService>>+findRecord(){servDemand = search, servCount = $searchCount}

Storage

<<PaRequestedService>>+io(){hostDemand = (25,us)}

se1 : SearchEngine se2 : SearchEngine 

storC : StoragestorA : Storage storB : Storage

Instance parameters for  calls from SearchEngine.search 

Instance of      $seHostDem    Instance of      search.$ioCount
SearchEngine                         Storage 
se1                  (21,ms)            storA              200
                                               storB               350
se2                  (15,ms)            storB               30
                                               storC               250
                                               storD               175

Instance parameters for calls from 
DataManagerB.findRecord

Instance         findRecord.$searchCount
of SearchEngine
se1                1.0
se2                 0.7
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17.4.6 Example 6: state machine annotations

We will consider some kinds of behaviour described by a state machine. The first kind will be a state machine that 
governs the generation of requests, called in the profile a "Workload Generator" state machine. The states represent states 
of the user (or the process that generates the workload) and in each state, there is a reference to a behaviour for that state. 
This behaviour represents an action taken on entering the state. The blockingTime attributes represent user-thinking time 
during that state, before the user enters the request that will take it to a new state.

Figure 17.26 shows a simplified version of the cycle of user states described for the TPC-W benchmark, and references 
one interaction diagram in each state. The behaviour for each state is a single execution and does not itself have repetitive 
workload attributes. The getHomePage interaction diagram would be the same as the one depicted in Figure 17.14 but its 
GaWorkloadEvent stereotype would reference the state machine as a WorkloadGenerator.
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Figure 17.27 - Example 6: a WorkloadGenerator state machine combining five scenarios for the electronic 
bookstore

Some of the transitions are also annotated as paExecStep in order to specify the transition probability. to the next state. 
For instance after GetProductDetails, there is specified a 90% probability of looking for new products again, and 10% for 
proceeding to the shopping cart.

A workload generator could more generally be a set of state machines communicating by signals and all generating 
behaviour concurrently.

<<PaStep>>
GetProductDetails

{blockT = (10,s),
behavDemand = getProductDetails,
behavCount = 1}

<<PaStep>>
GetHomePage

{behavDemand = getHomePage,
behavCount = 1,
blockT = (4,s)} 

<<PaStep>>
ShoppingCart

{blockT = (12,s),
behavDemand = ShoppingCart,
behavCount = 1}

<<PaStep>>
NewProducts

{behavDemand = newProduct,
behavCount = 1,
blockiT = (4,s)}

<<PaStep>>
Checkout

{blockT = (45,s),
behavCount = 1,
behavDemand = Checkout}

<<GaAnalysisContext>>{contextParams=(@Nusers)}
<<GaWorkloadGenerator>>{population=@Nusers}

<<PaStep>>

{prob = 0.7}

<<PaStep>>

{probability = 0.9}

<<PaStep>>
{probability = 0.3}

<<PaStep>>
{probability = 0.1}
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The analytic performance model will represent the generator as a Markov Chain governing the probabilities of making 
requests for different behaviours (what is sometimes called the user profile).

A second use of a state machine is to define a sequence of operations, like an interaction diagram. This must be a 
behaviour that terminates, and its start point is driven by a RequestEventStream. Each state or transition can be an 
ExecStep, and a state can be refined to a subscenario either as a composite state or by an annotation with a behavDemand 
as above. A composite state with multiple regions is an implicit parallel section, however all the details of composite 
states (e.g. history) have not been integrated into the profile. This kind of terminating behaviour can als o be defined with 
several interacting machines.

A third use of a state machine is similar to the second, but it repeats infinitely, waiting at some well-defined "home state" 
for in input events derived from a WorkloadEvent stream.
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Part IV - Annexes

This Part contains the following annexes. 

• A - Guidance Example for Use of MARTE

• B - Value Specification Language (VSL)

• C - Clock Handling Facilities

• D - Normative MARTE Model Libraries (MARTE_Library)

• E - Repetitive Structure Modeling (RSM)

• F - Domain Class Descriptions

• G - Bibliography

• H - Mapping SPT on MARTE
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Annex A:  Guidance Example for Use of MARTE

A.1 Open-source Tool Support for MARTE
In the context of different projects - System@tic::UsineLogicielle::OpenDevFactory (http://www.usine-logicielle.org/), 
RNTL::OpenEmbeDD (http://openembedd.inria.fr/home_html) and CARROLL::Protes/CORTESS(http://www.carroll-
research.org/) - the CEA LIST has developed an open-source implementation of the UML profile for MARTE (including 
a support for the VSL language). This implementation is an eclipse-based project and it is available at this address: 
www.papyrusuml.org.

A.2 AADL-like models with MARTE
We consider here the correspondence in MARTE of some of the basic AADL concepts, as found in the SAE standard 
AADL summary (SAE AS-5506/1): 

An AADL specification consists of AADL global declarations and AADL declarations. Global declarations essentially 
describe a hierarchical package structure for the system model.

AADL declarations comprise component types and implementations and port group types.

A component type specifies a functional interface in terms of "features", flow specifications and properties.  These would 
be considered as communication models in MARTE.

A component implementation describes the internal structure and behavior of that component in terms of subcomponents, 
connections and flows across them, and behavioral modes, 

A system modeled in AADL consists of "application software" components "bound" to "execution platform" components. 
In MARTE the word "software" is dropped from "application", since the execution platform can also contain software 
(middleware, RTOS,..) as well as hardware parts. AADL "binding" is called "allocation" in MARTE, following the 
SysML wording, but the concept is the same. It  can be hierarchical and compositional.

AADL application 'software' components are made of data, threads, and process components. Data are akin to Objects in 
UML, as they may contain "subprograms", similar to UML operations. AADL thread components model units of 
concurrent execution. A scheduler manages the execution of a thread. Threads can be in states such as suspended, ready 
or running. State transitions occur as a result of dispatch requests […] or if time constraints are exceeded. Dispatch 
semantics are given by standard dispatch protocols such as periodic, sporadic and aperiodic threads. Additional dispatch 
protocols may be defined. This provides various models of computation, including simultaneity of concurrent threads 
running periodically on the same clock. Different clock domains can be defined; as well as explicit delays on any logical 
clock. This again is in line with some of MARTE's requirements. Threads owe behaviorally to UML activity diagrams, 
which allow distinction between Object (Data) and Control (Event) flows.

AADL execution platform components use processors, memory, busses and devices. They are connected by "features" 
such as flows and may be structurally and behaviorally switching modes (in a control-flow fashion). This again is in line 
with MARTE. Flows can be represented by UML sequence diagrams, and modes by state diagrams.

Operating systems may be represented through properties of the execution platform or, requiring significantly more detail, 
modeled as software components. These calls for various Models of Computation, and the ability to model in the RT/E 
design part the scheduling disciplines considered in the Analysis part is also a goal in MARTE.
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An AADL system design contains a set of properties needed to support system generation and/or desired forms of 
scheduling analysis. This information will be generated from the AADL design model.

A.2.1 MARTE for AADL Summary Table

AADL concept MARTE/UML concept MARTE/UML profile Description

Software component

Process MARTE::

MemoryPartition

«memoryPartition» stereotype on UML 
Classifier

Represents a protected address 
space and contains executable 
code or data.

Thread MARTE::

Sw_SchedulableRessource

«swSchedulableRessource» stereotype on 
UML Classifier

Concurrent schedulable unit of 
sequential execution through 
source code

Thread Group UML::Classifier «swSchedulableRessource_group»  
stereotype on UML Classifier

Component abstraction for logi-
cally organizing thread, data and 
thread group component within a 
process

Data UML::DataType «dataType» stereotype on UML Classifier Represents static data and data 
types within a system

Subprogram UML::Operation «subprogram» stereotype on UML  
Operation

Represents sequentially execut-
able source text

Subprogram 
Calls

Subprogram (method) calls on sequence 
diagrams

Access to a callable method or a 
server service with a declaration 
within a subprogram implementa-
tion or a thread

AADL concept MARTE/UML concept MARTE/UML profile Description

Execution platform components

Processor MARTE::HwProcessor «hwProcessor» on UML Classifier Hardware unit responsible for 
scheduling and executing threads.

Memory MARTE::HwMemory «hwMemory» on UML Classifier Abstract representation which is a 
storage component for data and 
executable code

Bus MARTE::HwBus «hwBus» on UML Classifier Hardware unit that enable commu-
nication among other execution 
platform components
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Device MARTE::HwDevice «hwDevice» on UML Classifier Represents entities that interfaces 
with the external environment of an 
application system

AADL concept MARTE/UML concept MARTE/UML profile Description

System composition

System UML4SysML::Block «block» stereotype on UML Classifier Represents a composite software, 
execution platform or system  
components

AADL concept MARTE/UML concept MARTE/UML profile Description

Features and shared access

Port MARTE::FlowPort «flowPort»  or «msgPort» stereotyped UML 
Port

Represents a communication inter-
face for the directional exchange of 
data, event or both between  
components

PortGroup UML Classifier «port_group» stereotyped UML classifier Represents a collection of port 
group or port

Subprogram as 
Features

UML Operation «subprogram» stereotypes UML Operation Represents sequentially  
executable source text

Subprogram 
Parameters

UML Parameters UML parameters Represents the subprogram 
parameters

SubCompo-
nent Access

UML Interface access Data or Bus access via specific UML  
interfaces

Explicit data or bus access
A UML Profile for MARTE, Beta 1        347



AADL concept MARTE/UML concept MARTE/UML profile Description

Connections and flows

Port Connections UML delegation connectors UML delegation connectors between 
Ports and Parts on composite diagrams 
Connectors are stereotyped “delayed” 
for delayed connections

A connection declaration binds a port 
from a component to another 

Parameter Connections ObjectFlow on UML activity 
diagram 

ObjectFlow on UML activity diagram Used when a subprogram output 
need to be link with an entry point of 
an other subprogram

Access Connections UML Connections UML connections between UML ports 
requiring specific data access to data 
interface

Access connections designate 
access to shared data components

Flows specifications UML Object Flows, Object 
Pins

UML Object Flow between UML Object 
Pins in an Activity Diagram.

Specifies the detailed description and 
analysis of an abstract information 
path throughout a system

End-To-End Flows UML Object Flows Reference activity diagram connected 
by Object Flow representing the con-
nections in Activity Diagrams

Specifies a flow that starts within one 
subcomponent and ends within 
another.

AADL concept MARTE/UML concept MARTE/UML profile Description

Properties

Property (sets, Associa-
tions, Expressions)

UML Comment «properties» stereotyped UML Com-
ment

Properties provide information about 
component types and  
implementations, subcomponents, 
features, connections, flows, modes, 
and subprogram calls

AADL concept MARTE/UML concept MARTE/UML profile Description

Operational modes

Mode UML State machines Mode as UML StateMachines; mode 
specific port connections are described 
with UML Collaborations.

Represents a defined configuration of 
contained components, and  
connections
348                 A UML Profile for MARTE, Beta 1



A.2.2 Packages, components declaration and implementation

A.2.2.1 Packages

AADL packages will be used to organize component modeling, improving model lisibility and component reuse. AADL 
packages will be modelized by the way of UML packages as shown Figure .

A.2.2.2 Component type and implementation

In AADL, each component is caracterized by a component decalaration and some component implementation 
descriptions. Each omponent type specifies the external behavior of the component, its way of communicating and 
features that might be provided for other elements. Component implementations allow the definition of subcomponents, 
mode specific behaviors or components properties.

Component declarations and implementations could be modelized in different packages named Declaration and 
Implementation as shown Figure . A UML Realization will be used to formalize this implementation relationship ("Gps" 
component can have two different implementations named "Gps.Basic" and "Gps.Handheld"). Component declaration and 
implementation could also be extended using a UML Generalization link ("Gps.Handheld" implementation extends 
"Gps.Basic" implementation)

AADL concept MARTE/UML concept MARTE/UML profile Description

Operational system

System Binding MARTE::Allocation MARTE «allocation» stereotyped UML 
Dependency 

Binds software components to appropri-
ate execution platform components (i.e. 
hardware components)

AADL concept MARTE/UML concept MARTE/UML profile Description

Component relationship

Component 
extension

UML Generalization UML Generalization

Component 
implementation

UML Realization UML Generalization
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Figure A.1 - Component Types and Implementation modelling

A.2.3 Software Components

A.2.3.1 Process

A process represents a virtual address space that protects its internal data. This virtual address space contains the program 
formed by the source text associated with the process and its subcomponents. It can access to external data through server 
subprograms or data reference. A single process does not contain an implicit thread. In many cases, a processor will be 
bound to a process via a specific binding link.

Table A.1 - Component and Associated Features Representation

AADL Concept UML profile

Process UML classifier stereotype by the MARTE «patitionMemory» 
stereoptype

Type Provide data access, Require data access UML Realization / UML Dependency between the process and 
data Interface

Port MARTE Flow Port 

Server subprogram «server_subprogram» stereotyped UML Dependency between 
server components and the called subprogram (UML  
Operation)

Flow specification UML Flows and UML Pinss on Activity diagrams

Properties UML::Comment stereotyped with «AADL_Properties» 

Implementation Subcomponent (data, thread, thread group) UML Part of the owner component
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An AADL process will be represented by a MARTE "patition Memory" stereotyped UML classifier, containing 
subcomponents as UML parts, communicating with other components or subcomponents throught ports. In the following 
example, the "control_processing.speed_control" process contains four subcomponents.

Figure A.2 - AADL Process example

Figure A.3 - Process and contained subcomponents UMLrepresentation

A.2.3.2 Thread

A thread is a concurrent schedulable unit of a sequential execution through source code. A thread models a schedulable 
unit that transits between various scheduling states. It always executes within the virtual address space of a process, i.e. 
the binary images making up the virtual address space must be loaded before any thread can execute in that virtual 
address space.

Connections UML Connector and delegation connectors between Ports in 
composite structure diagram

Flows UML Flows and UML Pinss on Activity diagrams

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

process implementation control_processing.speed_control 

subcomponents

control_input : thread control_in.input_processing;

control_output : thread control_out.output_processing;

control_thread_group : thread group control_threads.control_thread_set;

set_point_data : data set_point_data_type;

end control_processing.speed_control

Table A.1 - Component and Associated Features Representation
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Component and associated features representation

The following example illustrates a thread containing a data subcomponent.

Figure A.4 - AADL Thread example

AADL Concept UML Profile

Thread «swSchedulableRessource» stereotyped UML class

Type Provide/require UML Dependency or UML Realization between the thread and 
the data associated Interface.

Port MARTE Flow Port 

Port Group «port_group» stereotyped UML Classifier 

Server subprogram «server_subprogram» stereotyped UML Dependency between 
server components and the called subprogram (UML Operation)

Properties UML::Comment stereotyped with «AADL_Properties» 

Flow Specification UML Flows and UML Pinss on Activity diagrams

Implementation Subcomponents (data) UML Part of the owner component

Subprogram Call UML Message in UML Sequence diagrams

Connections UML Connector and UML delegation Connectors between Ports 
in composite structure diagram

Flows UML Flows and UML Pinss on Activity diagrams

Modes UML Collaboration and  UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

thread control_laws

end control_laws;

data static_data

end static_data;

thread implementation control_laws.control_input

subcomponents

configuration_data : data static_data;

end control_laws.control_input;
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Figure A.5 - Thread and data subcomponent UML representation

A.2.3.3 Thread Group

A thread group represents an organizational component to logically group threads (as well as their properties and features) 
contained in processes. The type of a thread group component specifies the features and required subcomponent access 
through which threads contained in a thread group interact with components outside the thread group. Thread group 
implementations represent the contained threads and their connectivity.

A thread group does not represent a virtual address space nor an execution unit. Therefore, a thread group must be 
contained within a process.

Component and associated features representation

AADL Concept UML Profile

Thread group «swSchedulableRessource_group» stereotyped UML 
class

Type Provide data access

Require data access

UML Dependency or UML Realization between the 
thread group component and the data associated 
Interface.

Port MARTE Flow Port

Port Group «port_group» stereotyped UML Classifier

Server subprogram «server_subprogram» stereotyped UML Dependency 
between server components and the called subpro-
gram (UML Operation)

Properties UML::Comment stereotyped with «AADL_Properties» 

Flow Specification UML Flows and UML Pinss on Activity diagrams

Implementation Subcomponents (data, thread, thread 
group)

UML Part of the owner component

Connections UML Connector and delegation connectors between 
Ports in composite structure diagram
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The following example illustrates a thread group containing threads and data components.

Figure A.6 - Thread Group AADL example

Flows UML Flows and UML Pinss on Activity diagrams

Modes UML Collaboration and  UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

thread group control

properties

Period => 50 ms;

end control;

thread group implementation control.roll_axis

subcomponents

control_group : thread group control_laws.roll;

control_data : data data_control.primary;

error_data : data data_error.log;

error_detection : thread monitor.impl;

end control.roll_axis;

thread monitor

end monitor;

thread implementation monitor.impl

end monitor.impl;

data data_control

end data_control;

data implementation data_control.primary

end data_control.primary;

data data_error

end data_error;

data implementation data_error.log

end data_error.log;

thread group control_laws

end control_laws;

thread group implementation control_laws.roll

end control_laws.roll;
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Figure A.7 - Thread group and subcomponents representation

A.2.3.4 Data

The data abstraction represents static data and data types within a system. Specifically, data component declaration are 
used to represent:

• Application data types.

• The substructure of data types via data subcomponents within data implementation.

• Data instances.

Component and associated features representation

Data types information may be required from other components. To provide this data access service, the UML interface 
semantics is used. Each data will realize an interface providing access to data internal information; external components 
will require access to this interface (data acces is detailed section A.2.6.3.

AADL Concept UML Profile

Data UML::DataType

Type Provide data access UML Realization between the data component and 
its interface

Subprogram UML Operation of a UML Class

Properties UML::Comment stereotyped with 
´AADL_Propertiesª 

Implementation Subcomponents (data, thread, thread 
group)

UML Part of the owner component or UML 
attributes for primitive types

Connections UML Connector and delegation connectors 
between Ports in composite structure diagram

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with 
´AADL_Propertiesª 
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The following example illustrates the "address.other" data component containing four data components. As these 
subcomponents are primitive types, they are represented as attributes of the address.other data component. Moreover, the 
"address.other" data component provides access to street, street number, city and zip code information through the 
"address_interface" it realized.

Figure A.8 - Data UML representation

A.2.3.5 Subprogram

A subprogram represents a sequentially executable source text, a callable component with or without parameters that 
operates on data or provides server functions to components that call it.

Component and associated features representation

data address

end address;

data implementation address.other

subcomponents

street : data string;

streetnumber : data int;

city : data string;

zipcode : data int;

end address.other;

data string 

end string;

data int

properties

Source Data Size => 64b;

end int;

AADL Concept UML Profile

Subprogram «subprogram» UML Operation on UML class rep-
resenting a Library
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The following example illustrates a "compute_pressure" subprogram owned by a UML class called "library". Subprogram 
owners modelling feel free to the designer.

Figure A.9 - Subprogram AADL example

Figure A.10 - Subprogram representation

Access to subprogram components will be detailed in subprogram access section A.2.6.3.

A.2.4 Execution Platform Components

Execution plateforme component UML profile is illustrated on Figure A.11.

Type Require data access UML Dependency between the subprogram and 
the data provided Interface

Port MARTE Flow Port

Port Group «port_group» stereotyped UML Classifier

Parameter UML Operation Parameters

Flow specifications UML Flows and UML Pins on Activity diagrams

Properties UML::Comment stereotyped with 
«AADL_Properties» 

Implementation Connections UML Connector and delegation connectors 
between Ports in composite structure diagram

Subprogram Call UML Message on UML Sequence diagrams

Flows UML Flows and UML Pins on Activity diagrams

Modes UML Collaboration and  UML State Machines

Properties UML::Comment stereotyped with 
«AADL_Properties» 

subprogram compute_pressure

features

raw_data : in parameter;

filtered_data : out parameter;

end compute_pressure;
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A.2.4.1 Processor

A processor is an abstraction of hardware and associated software that is responsible for scheduling and executing 
threads. Processors can execute threads that are declared in application software system, or threads that reside in 
components accessible from those processors.

Component and associated features representation

A.2.4.2 Memory

Memory abstractions represent storage components for data and executable code. Memory components include randomly 
accessible physical storage (e.g, RAM, ROM) or complex permanent storage such as disks or reflective memory.

Component and associated feature representation

AADL Concept UML Profile

Processor «hwProcessor» stereotyped UML Class

Type Server subprogram «server_subprogram» stereotyped UML Dependency 
between server components and the called subpro-
gram (UML Operation)

Port MARTE Flow Port

Port group «port_group» stereotyped UML Class

Requires bus access UML Dependency between the Processor and the bus 
provided Interface

Flow specifications UML Activity diagram

Properties UML::Comment stereotyped with «AADL_Properties» 

Implementation Subcomponents (Memory) UML Part of Processor

Subprogram Calls None

Connections None

Flows UML Activity diagram

Modes UML Collaboration and  UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

AADL Concept Mapping proposal

Memory «hwMemory» stereotyped UML Class

Type Requires bus access UML Dependency between Memory and the bus 
required interface

Flows specifications None
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A.2.4.3 Bus

A bus represents hardware and associated communication protocols that enable interactions among other execution.

Component and associated subclauses representation

A.2.4.4 Device

Device abstractions represent entities that interface with the external environment of an application system. Those devices 
often have complex behaviours. They may have internal processors, memory, and software that are executed on an 
external processor. Alternatively, they may require driver softwares that are executed on an external processor. A device's 
external driver software may be considered as a part of a processor's execution overhead, or it may be treated as an 
explicitly declared thread with its own execution properties.

Properties UML::Comment stereotyped with «AADL_Properties» 

Implementation Subcomponents (memory) UML Part of Memory

Subprogram Calls None

Connections None

Flows None

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

AADL Concept Mapping proposal

Bus UML::Class stereotyped with «hwBus».

Type Require bus access UML Dependency between the Bus and another bus 

provided interface

Properties UML::Comment stereotyped with «AADL_Properties» 

Flows None

Implementation Subcomponents None

Subprogram Calls None

Connections None

Flows None

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 
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Component and associated features representation

Figure A.11 - Execution platform components UML representation

A.2.5 System

A.2.5.1 System Composition

The system abstraction represents a composite of software, execution platform, or system components. System 
abstractions can be organized into a hierarchy that can represent complex systems of systems as well as the integrated 
software and hardware of a dedicated application system.

AADL Concept UML Profile

Device «hwDevice» stereotyped UML Class

Type Server subprogram «server_subprogram» stereotyped UML Dependency 
between server components and the called s 

ubprogram (UML Operation)

Port MARTE Flow Port

Port group «port_group» stereotyped UML Class

Require bus access UML Dependency between the device and the bus 
provided interface

Flow Specifications UML Activity diagram

Properties UML::Comment stereotyped with «AADL_Properties» 

Implementation Subcomponents None

Subprogram Calls None

Connections None

Flows UML Activity diagram

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 
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Component and associated features representation

A.2.5.2 Binding

For a complete system specification (one that can be instantiated), software components must be bound to appropriate 
execution platform components. For example, threads must be bound to processing elements and processes must be bound 
to memory. Similarly, inter processor connections must be bound to buses, and subprogram calls must be bound to their 
server subprogram. These bindings are defined through property association.

Component and associated features representation

AADL Concept Mapping proposal

System UML::Class stereotyped «block»

Type Server subprogram «server_subprogram» stereotyped UML Dependency 
between server components and the called subpro-
gram (UML Operation)

Port MARTE Flow Ports

Port group UML::Class stereotyped with «port_group»

Requires/Provides bus access UML Dependency or UML Realization system com-
ponent and bus associated Interface.

Require/Provides data access UML Dependency or UML Realization between the 
system and the Data associated Interface

Flows specifications UML Activity diagram

Properties UML::Comment stereotyped with «AADL_Properties» 

Implementation Subcomponents (data, process, pro-
cessor, memory, bus, device, system)

UML Part of System

Subprogram calls None

Connections UML Connectors between Ports of the UML Class 
and Ports of the contained UML Parts.

Flows UML Activity diagram

Modes UML Collaboration and UML State Machines

Properties UML::Comment stereotyped with «AADL_Properties» 

AADL Concept Mapping proposal
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In the following example, the "a_client_process" component is bound to the "a_client_processor" component. Both 
components are bound by an "allocation" stereotyped UML dependency. An UML Comment is associated to this UML 
Dependency, containg the binding properties.

Figure A.12 - System binding representation

A.2.6 Features and shared access

A.2.6.1 Port and Port connections

A port represents a communication interface for the directional exchange of data, events, or both (event data) between 
components. Connections are linkages representing the communication of data between components through ports of 
different threads or between threads and processor or device component.

Component and associated features representation

Binding «allocation» stereotype on UML::Dependency between 
software and execution plateform components.

Properties UML::Comment stereotyped «AADL_Properties».

Binding connection properties «AADL_Properties» stereotype applied on UML::Com-
ments on the binding feature.

system implementation a_client.impl

subcomponents

the_processor : processor a_client_processor;

the_process : process a_client_process;

properties

Actual_Processor_Binding => reference the_processor applies to the_process;

end a_client.impl;

AADL Concept Mapping proposal
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Data flow ports are represented by MARTE FlowPorts (stereotyped "FlowPort") and associated to a "flowSpecification" 
stereotyped interfaces managing dataTypes sending and receiving out/in of the components. The port isAtomic attribute 
will be set to "false". The flowSpecification interface direction attribute will specify the flow direction.

Event ports represents ports sending out or receiving signals. They are represented by MARTE MsgPorts (stereotyped 
"msgPort"). These ports are associated to an interface able to receive/send signals, interfaces stereotyped by the MARTE 
"SignalSpecification" stereotype. The port isAtomic attribute will be set to "false. The msgSpecification interface 
direction attribute will specify the flow direction.

EventData ports are represented by both (msgPorts and flowPorts) concepts. So, they will be stereotyped by both 
stereotypes: "flowPorts" and "msgPort".

Figure A.13 represents in and out data ports of the "read_thread" component. "data_in" and "data_out" are FlowPorts, 
typed by the "flowSpecification" stereotyped interface data_interface.

Port MARTE Interaction Port

Port direction (in, out, in/out) In, out, in/out port (event data,data, 
event)

MARTE Interaction Port direction attribute and 
FlowSpecification or MsgSpecification direction 
attribute.

Port type Event port MARTE MsgPort associted to a FlowSpecification 
interface

Data port MARTE FlowPort associated to a MsgSpecifica-
tion interface

Event/Data Port MARTE MsgPort associted to a FlowSpecification 
interface and MARTE FlowPort associated to a 
MsgSpecification interface

Connections Immediate Connections UML Connectors between MARTE Interaction 
ports

Delayed Connections ´delayedª stereotyoped UML Connector MARTE 
Interaction ports

Properties ´AADL_Propertiesª stereotyped UML Comment
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thread read_data

features

in_data : in data port data1;  
out_data : out data port data1;

end read_data;

thread basic_control

features

in_data : in data port data2;

out_data : out data port data2;

end basic_control;

process implementation control_speed.impl

subcomponents

read_data : thread read_data;

control : thread basic_control;

connections

delayed_C1 : data port read_data.out_data ->> control.in_data;

properties

Period => 50ms;

end control_speed.impl;
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Figure A.13 - Port representation

A.2.6.2 Port Group

The port group abstraction represents a collection of ports or other port groups. Inside the component, ports of a port 
group can be connected individually; outside the component, the port group is considered as a single connectable entity.

Component and associated features representation

From the component inside, PortGroups are represented as UML Parts connected through UML delegation connectors to 
the Component Ports represented as a UML Port. From the component inside, the port group can be connected through 
connectors to component cubcomponents.

AADL Concept UML Profile

Port Group «port_group» stereotyped UML class 

Inverse property «port_group» stereotype  attribute
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The portGroup " GPSBasic_socket" can be linked to Satellite_position subcomponents via the Wakeup and Observation 
ports, and seen as a single port via the Position port.

Figure A.14 - Port group AADL example

Figure A.15 - Port group UML representation

A.2.6.3 Subcomponent Access and data access connections

Components such as buses or data might be accessed by the system through an explicit declaration access in component 
types. Provides indicates that the component provides access to a data or bus component within it; requires indicates that 
a component requires access to a data or bus component that is external to it.

Each data or bus will implement an interface providing access to the data/bus service. This feature is represented by a 
UML Realisation between a component and its provided interface. Each component requiring an access to a bus or data 
component will use this interface (Uml Dependency) as illustrated in the following example. The required client 
component will access to the interface via an UML port.

Access connections designate access to shared data components by concurrently executing threads or by subcomponents 
executing within a thread. They also represent communication between processors, memory, and devices by accessing a 
shared bus.

process Satellite_position

features

Position : port group GPSBasic_socket ;

end Satellite_position ;

port group GPSbasic_socket

features

Wakeup : in event port ;

Observation : out data port GPSLib::position;

end GPSbasic_socket;
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Figure A.16 - Data access UML representation

process control

features

cc_set_point_data : requires data access data_sets.set_points;

error_log_data : provides data access log.error_logs;

end control;

data data_sets

end data_sets;

data implementation data_sets.set_point

end data_sets.set_point;

data logs

end logs;

data implementation logs.error_logs

end logs.error_logs;
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system implementation basic_control.auto_cc

subcomponents

cc_control : process control.cc_control;

cc_error_monitor : process monitor.error_monitor;

connections

a_01 : data access cc_control.error_log_data -> cc_error_monitor.error_data_in;

end basic_control.auto_cc;

process control

features

error_log_data : provides data access logs.error_logs 

{Provided_Access => access read_only;};

end control;

process implementation control.cc_control

subcomponents

comm._error_log : data logs.error_logs

{Provided_Access => access read_write;};

cc_algorithm : thread algorithm.cc;

connections

data access comm_error_log -> error_log_data;

data access comm_error_log -> cc_algorithm.error_log_data;

end control.cc_control;

thread algorithm

features

error_log_data : requires data access logs.error_logs

{Required_Access => access read_write;};

end algorithm;

thread implementation algorithm.cc

end algorithm.cc;

data logs

end logs;

data implementation logs.error_logs

end logs.error_logs;
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Figure A.17 - AADL graphical representation

process monitor

features

error_data_in : requires data access logs.error_logs

{Required_Access => access read_only;};

end monitor;

process implementation monitor.error_monitor

subcomponents

comm_errors : thread m_algorithm.errors;

end monitor.error_monitor;

thread m_algorithm

features

c_error_data : requires data access logs.error_logs

{Required_Access => access read_only;};

end m_algorithm;

thread implementation m_algorithm.errors

end m_algorithm.errors;
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Figure A.18 - Data acces declaration
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Figure A.19 - Data access implmentation

A.2.6.4 Subprogram Calls

Subprogram calls (local to threads) are declared through calls declarations within a thread or subprogram implementation. 
The subprogram that is called must be declared through a subprogram type declaration and possibly a subprogram 
implementation declaration.

Component and associated features caracteristics

AADL Concept UML Profile

Subprogram UML Operation within a UML Class 

Server Subprogram «server_subprogram» stereotyped UML Dependency between 
server components and the called subprogram (UML Operation)

Subprogram call sequence UML Messages on UML sequence diagrames
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Subprogram call sequences are represented as UML messages in UML sequences diagrams as shown in Figure A.21, each 
subprogram calling its own subprograms like denoted in Figure A.22. Each Subprogram OwnerClassifier instances 
(adjust.level and find.temp_valuesStaying as library container) is represented trough a lifeline, and subprogram call 
through messages between them.

In the following example, the two messages (aquire.temps() and adjust.level()) from the control.thermal_control lifeline 
represents the subprogram call sequence.

Figure A.20 - Subprogram call sequence

Figure A.21 - Linear call

thread implementation control.thermal_control

calls

{

get_temp: subprogram acquire.temp;

adjust_level: subprogram adjust.level;

};

end control.thermal_control;

subprogram implementation acquire.temp

end acquire.temp;

subprogram implementation adjust.level

calls

{

find_scale_values: subprogram find.temp_values;

};

end adjust.level;

subprogram implementation find.temp_values

end find.temp_values;
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Figure A.22 - Independant subprogram calls

A.2.6.5 Server Subprogram Calls

For subprogram calls called towards other threads, synchronous Remote Calls to a server subprogram are used. The client 
calls the subprogram, which calls the server subprogram on the remote process as illustrated on the following illustration. 
These server subprogram call is represented by the "server subprogram" stereotyped UML Dependency between the caller 
component and the called subprogram. The recording "Actual_Subprogram_Call" property, specifying the binding 
between the subprogram call to the server subprogram, is modeled as a dependency between the subprogram and server 
subprogram methods. The Binding properties appear in a UML Comment applied to the Dependency.

AADL Concept UML Profile

Server Subprogram callsns «server subprogram» UML dependency between component and called  
subprogram

system implementation client_server_sys.impl

subcomponents

client_process: process client_process.impl;

server_process: process server_process.impl;

properties

Actual_Subprogram_Call => reference server_process.server_thread.service

applies to client_process.calling_thread.call_server;

end client_server_sys_impl;

process implementation client_process.impl

subcomponents

calling_thread: thread calling.impl;

end client_process.impl
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Figure A.23 - AADL server subprogram exemple

thread implementation calling.impl

calls {

call_server : subprogram service_it;

};

end calling.impl;

process server_process

features

service: server subprogram service_it;

end server_process;

process implementation server_process.impl

subcomponents

server_thread: thread server_thread.impl;

end server_process.impl;

thread server_thread

features

service: server subprogram service_it;

end server_thread;

thread implementation server_thread.impl

end server_thread.impl;

subprogram service_it

end service_it;
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Figure A.24 - Serveur subprogram call

Figure A.25 - Subprogram call

A.2.7 Mode

A modes abstraction is an explicitly defined configuration of contained components, connections, and property value 
associations. Modes represent alternative operational states of a system or component. Mode transition models dynamic 
operational behaviour that represents switching between configurations and hanges in components internal characteristics.
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Mode and associated features representation

Figure A.26 - Mode specific connections

Mode specific connections will be designed in Collaboration (named by the mode). Each Collaboration illustrates a 
specific system configuration (Figure ).

AADL Concept UML Profile

Modes and modes transitions UML State machine diagram. Each mode is represented by an UML state, con-
nected by transition representing mode switching. Each trigered events is prefixed 
by the associated component and port name. 

Mode configuration UML Collaboration represents element connections for a specific mode. 

Modes specific sequence calls UML Sequence diagram 
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Figure A.27 - Mode transition triggered by events

process control_algorithms

features

status_data : in data port;

aircraft_data : in data port;

command : out data port;

end control_algorithms;

process implementation control_algorithms.impl

subcomponents

controller : thread controller;

ground_algorithms : thread ground_algorithms in modes (ground);

flight_algorithms : thread flight_algorithms in modes (flight);

connections

C1 : data port aircraft_data -> ground_algorithms.aircraft_data in modes (ground);

C2 : data port aircraft_data -> flight_algorithms.aircraft_data in modes (flight);

C3 : data port ground_algorithms.command_data -> command in modes (ground);

C4 : data port flight_algorithms.command_data -> command in modes (flight);

modes

ground : initial mode;

flight : mode;

ground -[controller.switch_to_flight]-> flight;

flight -[controller.switch_to_ground]-> ground;

end control_algorithms.impl;

thread controller

features

status_data : in data port;

switch_to_ground : out event port;

switch_to_flight : out event port;

end controller;
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Figure A.28 - AADL mode specific code

A.2.8 Flows

AN AADL flow is logical flow of information through through a sequence of threads, processors, devices and 
connections. An end-to-end flow represents a complete path through the system, starting at a flow source, ending at a 
flow sink, passing through components (flow paths) and between components over connections. Flow specification 
declarations are made within component type declarations, specifying externally visible flows through flow sources, flow 
sinks and flow paths. Flow implementation specification relies on component implementations, specifying how the flow 
is realized as a sequence of flows through subcomponents along connections from the flow in port to the flow 
specification out port.  An end-to-end flow represents the logical flow from the source to the destination.

Component and associated features caracteristics

thread ground_algorithms

features

aircraft_data : in data port;

command_data : out data port;

end ground_algorithms;

thread flight_algorithms

features

aircraft_data : in data port;

command_data : out data port;

end flight_algorithms;

AADL Concept UML Profile

Flow sink UML InputPin stereotype “flow sink”  in an UML Activity Diagram.

Flow source UML OutputPin stereotype “flow source” in an UML Activity Diagram.

Flow path UML Object Flow between UML Object Pins in an Activity Diagram.

End-to-end flow Reference activity diagram connected by Object Flow representing the 
connections in Activity Diagrams.
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Figure A.29 - System implementation structure

Figure  illustrates a flow source, the Object node "brake pedal" represents the owner component, the Input Pin "brake 
event" the to the flow associated port. A flow sink is shownFigure . The Comments are to illustrate the pin stereotype.

Figure A.32 - Flow path specification

A flow path is represented by an Object Flow between the two Object Pin represented flow input and output ports.

Figure A.30 - Flow Source Figure A.31 - Flow Sink
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Figure A.33 - End-to-end flow

The end-to-end flow is an association of flow source, flow paths, and flow sink interconnected by connections represented 
as Object Flows (illustrated Figure ).

Figure A.34 - AADL flow example

system implementation complete.impl

subcomponents

brake_pedal : device brake_pedal;

cruise_control : system cruise_control;

throttle_actuator : device throttle_actuator;

connections

C1 : event data port brake_pedal.brake_event -> cruise_control.brake_event;

C2 : data port cruise_control.throttle_setting –> throttle_actuator.throttle_setting;

flows

brake_flow : end to end flow brake_pedal.flow1 -> C1 -> cruise_control.brake_flow -> C2 -> 

throttle_actuator.flow1;

end complete.impl;

device brake_pedal

features

brake_event : out event data port;

flows

flow1 : flow source brake_event;

end brake_pedal;

system cruise_control

features

brake_event : in event data port;

throttle_setting : out data port float_type;

flows

brake_flow : flow path brake_event -> throttle_setting;

end cruise_control;

device throttle_actuator

features

throttle_setting : in data port float_type;

flows

flow1 : flow sink throttle_setting;

end throttle_actuator;
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A.2.9 Properties

In AADL, Properties provide information about components (type and implementations), subcomponents, features, 
connections, flows, modes and subprogram calls. Each property is caracterized by a name, a type and a value. 

All AADL element properties will be grouped together in an UML::Comment stereotyped "AADL_Properties".

Component and associated features caracteristics

A.3 EAST/ADL2.0 models with MARTE
EAST-ADL is an architecture description language, dedicated to automotive embedded electronic systems, developed in 
the context of the ITEA cooperative project EAST-EEA (http://www.easteea.net/) finished in 2004. This language is 
intended to support the development of automotive embedded software, by capturing all the related engineering 
information. The scope is the embedded system (hardware and software) and its environment.

The ATESST project (www.atesst.org) is aimed at refining the EAST-ADL language in the context of dependability 
concerns, aligning with OMG standards and the new automotive domain standardization AUTOSAR (http://
www.autosar.org/).

To cover dependable systems, requirement constructs will be enriched to satisfy the needs of different integrity levels and 
the modeling entities will be refined to support necessary analysis methods, and an engineering process for safety. 
Transversal to these concepts, with the same consideration for dependability, the variability constructs of EAST-ADL will 
be improved to support vehicle product lines, the major productivity driver in automotive industry.

The EAST ADL2 abstraction layers are used to allow reasoning of the features on several levels of abstraction. Note, 
however, that the abstraction levels are only conceptual; the modeling elements are organized according to the artifacts 
which may span more than one of these layers.

Entities on different abstraction levels are related with a Realization association, where applicable, to allow traceability. 
Traceability can also be deduced from the requirements structure.

The EAST ADL2 abstraction layers with their corresponding artifacts are:

• Vehicle layer, with the Vehicle Feature Model describing user visible features such as anti-lock braking or windscreen 
wipers.

• Analysis level with Functional Analysis Architecture capturing the behavior and algorithms of the Vehicle Feature 
Model functions. There is an n-to-m mapping between Vehicle Feature Model entities and Functional Analysis 
Architecture entities, i.e., one or several functions may realize one or several features.

• Design level with Functional Design Architecture, representing a decomposition of functionality in the Functional 
Analysis Architecture. The decomposition has the purpose of making it possible to meet constraints regarding 
allocation, efficiency, re-use, supplier concerns, etc. Again, there is an n-to-m mapping between entities on Functional 
Design Architecture and Functional Analysis Architecture. Non-transparent infrastructure functionality of the 
BasicSWArchitecture, such as mode changes and error handling are also represented on a Design Level.

AADL Concept UML profile

Property UML Note stereotype «AADL_Properties» linked to 

concerned element
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• Implementation level with the ImplementationArchitecture represented by HardwareArchitecture, 
BasicSWArchitecture and ApplicationSWArchitecture based on AUTOSAR concepts.

• Operational level, this describes the binary entities and their related tools.

• The Hardware Architecture and Environment Model span several abstraction levels. The Hardware Architecture 
contains models Electronic Control Units, ECUs, communication links, sensors and actuators and their connections. 
The Environment model contains Environment functions which are encapsulations of plant models, i.e. models of the 
behavior of the vehicle and its non-electronic systems. The environment model is only conceptual and is not an ADL 
entity.

This part is non-normative and will be completed within the finalization task force. The intend is to describe the usage of 
MARTE for building EAST-ADL2-like models as done previously for AADL-like models.
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Annex B:  Value Specification Language (VSL)

(normative)

B.1 Overview
This annex provides detailed definition of the abstract (MOF compliant metamodel) and concrete (textual grammar) 
syntax for specifying expressions in MARTE. The MARTE expression language is used to specify the values of 
constraints, properties and stereotype attributes particularly related to non-functional aspects. In fact, this expression 
language can be used by profile users in tagged values, body of constraints, and in any UML element associated with 
value specifications.

In addition, the proposed expression language might be used by any other UML-based specification interested on 
extending the base expression infrastructure provided by UML. As will be seen below, the MARTE expression language 
is an extension to the "Value specification" and "DataType" concepts provided by UML. For this reason, we call it Value 
Specification Language (VSL, in short).

VSL deals with the following requirements:

• How to specify parameters/variables, constants, and expressions in textual form.

• How relationships between different parameters/variables, or constant values are to be defined with support on 
arithmetic, logical, relational, and conditional expressions.

• How different time values and assertions are to be defined in UML.

• How to specify composite values such as collection, interval, and tuple values.

VSL expressions can be used to specify non-functional values, parameters, operations, and dependency between different 
values in a UML model. UML modelers can use VSL to specify non-functional constraints in their models.

Note: This annex is normative in the UML profile for MARTE.

B.2 Domain View

B.2.1 Overview

This section describes the abstract syntax of VSL. In this abstract syntax a number of concepts (metaclasses) from the 
UML metamodel are reused. These concepts are shown in the models with a gray fill color. Note that, however, we do not 
formally "import" them from UML, but re-define them with the same semantics in the MARTE namespace. In the UML 
representation section, we describe how all these metaclasses are actually mapped to UML.

The abstract syntax is divided into several packages. The overall package structure of VSL is shown in Figure 8.1.

• The DataTypes package describes the concepts that define the datatype extensions to UML. In addition to primitive and 
enumeration datatypes, it includes further specializations for composite datatypes and subtypes.

• The LiteralValues package includes literal constant values of different primitive types. Besides UML literals, this 
package distinguishes, among others, Real and DateTime literals  
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• The Expressions package describes the structure of expressions, including variables and reference values to UML 
model elements.

• The CompositeValues package defines four kinds of composite values: interval, collection, tuple and choice.

• The TimeExpressions package presents specialized syntax for time value specifications and expressions.

The purpose and contents of each sub packages denoted in Figure B.1 are described in subsequent sections.

Figure B.1 - Structure of the NFP framework

B.2.2 The Datatypes package

A datatype is a type whose instances are identified only by their value. Instances of a given datatype consist of a set of 
distinct values, characterized by properties and operations on those values. A value space is the set of values for a 
datatype. The value space of a given datatype can be defined either by enumeration, axiomatically from fundamental 
notions, or as a subset of values from some already defined value space.

VSL is a typed language. Each value specification, including expressions, has a type that is either explicitly declared or 
can be statically derived. Evaluation of an expression yields a value of this type.

The model of datatypes used in this specification is said to be an "abstract computational model". It is "computational" in 
the sense that it deals with the manipulation of information by computer systems and makes distinctions in the typing of 
data units which are appropriate to that kind of manipulation. It is "abstract" in the sense that it deals with the perceived 
properties of the data units themselves, rather than with the properties of their representations in computer systems.

In this specification, datatypes are categorized, for syntactic convenience, into:

• Enumeration types, whose value space is defined by enumeration.

• Primitive types, which are defined axiomatically without reference to other datatypes.

MARTE::VSL

TimeExpressionsCompositeValues

Expressions

«import »

LiteralValues

« import »

« modelLibrary »
MARTE_Library::

MARTE_PrimitiveTypes

« import »

DataTypes « import »
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• Subtypes, which are defined in terms of other datatypes.

• Composite types are aggregates of value spaces which can be seen as an organization of specific datatypes.

Figure B.2 - VSL::DataTypes package

Note that the Datatype package preserves the same structure and semantics as in UML, but it extends UML in the 
following ways:

• Like in UML, DataTypes may contain attributes to support modeling of structured data types. However, dissimilar 
kinds of structures, with different syntax and semantics, are defined in our language. CompositeType is the metaclass 
that congregates composite data types. Each kind of composite type (interval, collection, tuple, and choice) has a set of 
attributes defining particular structures of data types.

• The set of owned operations for a data type comprises those operations on the data type values, possibly yielding values 
of the owner data type, of the Boolean data type, or, in some cases, of other existing data types. In general, there is no 
unique collection of operations for a given data type. This specification provides a set of operations for each MARTE 
data type, which is sufficient for most purpose in this domain. However, this does not limit the capacity of the language 
to accept new operations in specialized or new data type libraries.

• A Subtype is a data type derived from an existing data type, designated the base data type, by restricting the value space 
to a subset of that to the base data type whilst maintaining all operations. Particularly, a Bounded Subtype defines a 
subtype of any ordered data type by placing new minimum and maximum value bounds on the value space.

• Composite types are composed of values which are made up of values of the owned attributes. CollectionType 
describes a list of elements of a particular given type. TupleType combines different types into a single aggregate type. 
IntervalType defines a collection of values, having the same type, contained between two given values. ChoiceType 
generates a data type each of whose values is a single value from any of a set of alternative data types.

VSL::DataTypes

DataType

PrimitiveTypeSubtype CompositeType

CollectionType TupleType

minValue: String
maxValue: String
isMinOpen: Boolean
isMaxOpen: Boolean

BoundedSubtype

EnumerationType

1

baseType

Property

Operat ion

ownedAttributedatatype

0..1 *

ownedOperationdatatype

0..1 *

Property

tupleAttributes
{subsets

ownedAttribute}*

collectionAttribute
{subsets

ownedAttribute}1

IntervalType

intervalAttribute
{subsets

ownedAttribute} 1

Parameter

ownedParameter

operation0..1

*

ChoiceType

choiceAttributes
{ subsets

ownedAttribute}*

defaultAttribute
{subsets

ownedAttribute}

0..1

EnumerationLiteral

ownedLiteral*
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Note that composite types involve an indirect way to define data type properties. For instance, the intervalAttribute 
association end of IntervalType is of type Property. This implies that the multiplicity, uniqueness and order of the bound 
elements is specified by a data type property (referenced by intervalAttribute), which is defined when a given composite 
type is created. Thus, for IntervalTypes, the multiplicity of the referenced property must be '[2]' in order to guarantee that 
the interval value specifications will have two value elements (the max. and the min. values of the interval).

B.2.3 The LiteralValues package

LiteralSpecification is an abstract literal expression that represents a constant. In addition to the existing literal constants 
supported by UML, this language includes DateTime, Real, and Default literals (Figure B.3). While the first two are 
actually related to requirements in the MARTE domain, the last one supports a notation for unspecified values that should 
take a pre-declared default value.

DateTime literal represents an instant in time expressed as a calendar date and/or time format.

Real literal is a constant value expressing a computational approximation to a mathematical real number, without bound 
values.

EnumerationSpecification is a value specification that identifies an EnumerationLiteral.

Figure B.3 - Literal Values package

B.2.4 The Expressions package

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are 
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node. 
The interpretation of this symbol depends on the context of the expression.
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Expressions are used to derive values from other values or expressions. An expression can be a simple literal or variable, 
or it can be a compound expression (arithmetic, logical, or time expressions) formed by combining operands and 
Operation Call Expressions.

The basic structure in the package consists of Variable Call/Declaration Expression, Property Call Expression, Operation 
Call Expression, and Conditional Expression (Figure B.4).

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable 
is in scope. A Variable Call Expression is an expression that consists of a reference to a variable. Variable creates a 
variable with a given name, data type, and nature (input, output, input/output).

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification 
of the variable elements. A Expression Context provides a container for variables. It provides a means for resolving 
conflicting global variables by allowing Variable Call Expressions of the form exprContext1::subContext2::varX. 
Concrete rules to construct the derived attribute "variable" of Variable Call Expression, are defined in the Section "UML 
Representation".

A Property Call Expression is used to refer to Properties in the UML metamodel. 

An Operation Call Expression refers to an operation defined in a UML Classifier. The expression may contain a list of 
argument expressions if the operation is defined to have parameters. In this case, the number and types of the arguments 
must match the parameters.

This metamodel does not define explicitly the context of properties and operations and the namespace that the 
corresponding call expressions must use. When specifiyng values making reference to properties and operations of their 
corresponding data types, the namespace is not taken into account. Further usages of this metamodel may define different 
namespaces for property and operation.

Conditional Expressions define "if-then-else" statements, which can be used inside an expression. The result of evaluating 
this expression will be the result of the evaluation of the ifTrueExpr if the conditionExpr is true. Otherwise, the result will 
be the result of the ifFalseExpr.

An Opaque Expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated. 
This allows extending VSL to other specialized expression languages.
A UML Profile for MARTE, Beta 1        387



Figure B.4 - VSL::Expressions package

B.2.5 The CompositeValues package

In general, a composite value can contain zero, one or more component values. Three kinds of composite value 
specifications are defined: interval, collection, and tuple (Figure B.5).

Collection Specifications represent a list of elements of a particular given type. Individual elements of collections are item 
Value Specifications. Note that there is no restriction on the item value type of a collection type. This means in particular 
that a collection type may be parameterized with other collection types allowing collections to be nested arbitrarily deep. 
Size, uniqueness and order nature of item values are defined by the defining data type.

Interval Specifications describe ordered sets of value specifications represented by two values: the minimum and the 
maximum value. Additionally, two attributes define whether these two values belong or not to the referred set 
(isLowerOpen and isUpperOpen).

Tuple Specifications denote structured values of possibly different types. It contains a name, a type, and a value for each 
item of the tuple value. There is no restriction on the kind of types that can be used to define item values of tuples. In 
particular, a Tuple Specification may contain other tuple and collection values.
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Choice Specification denotes a value of a choice data type (ChoiceType). It contains the name of one of the attribute 
members (chosenAlternative), which determines the chosen data type, and a value that conforms to the chosen data type. 
The derived attribute "chosenAlternative" can be constructed with basis on an explicitly chosen data type. When the 
chosen data type is undefined in a given choice value specification, the chosen alternative can be deduced from the 
default alternative attribute of the corresponding choice type.

Figure B.5 - VSL::CompositeValues package

B.2.6 The TimeExpression package

This package adds textual capabilities to represent time related expressions. UML has defined a Simple Time model in the 
Common Behavior package, which already provides means to represent time and durations, as well as a mechanism to 
refer to event observations with time marks. MARTE extends UML to support more expressive time expressions, 
constraints, as well as observations in different behavior diagrams. Particularly, VSL's Time Expression model improves 
UML with the following capabilities:

• One single instant or duration observation can be expressed with an occurrence index. For instance, we can express the 
"i-th" occurrence of a given event. Whilst the occurrence could be trivial in sequence diagrams (since this diagram is 
based on occurrence specifications), other diagrams such as state machines and activities may require the explicit 
identification of the occurrence. In the same way, recurrent interaction fragments represented by a single sequence 
diagram, such as periodic or loop fragments may require time assertions comparing different instance traces of the 
sequence diagram. For instance, the duration between the i-th and i+1-th occurrence of an event that triggers a periodic 
scenario.

• One single instant or duration observation can be expressed with a given condition. For example, the instant time at 
which a given event occurs (observation) when a specific class' attribute has a value greater than a given constant 
(condition).

• The jitter of a nominal periodic event or, in general, the jitter between two causal events that occur in instants separated 
by a nominal time interval. Typical examples are the jitter of a clock event or the maximum jitter introduced by packet 
networks so that a continuous playout of audio (or video) transmitted over the network can be ensured.

.
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Observation Call Expressions (ObsCallExpression) refers to a single observation (instant and duration observation). It 
includes an occurrence index expression (occurIndexExpr) that must evaluate to an integer value. Condition expression 
defines an operational (run-time) condition that completes the definition of a relative event. 

The semantics of the occurrence index depends on the observed events. While the absolute order of a given event 
occurrence regarding another different event could be useful only when both events are synchronized, it exists certain 
cases where the relative order of an occurrence may be useful to express constraints from different responses of a 
recurrent scenario. In many systems, each request for service need to be met by a separate response, but the two need not 
happen at the same time. For instance, let us point to data consistency of FIFO queues as a simple example. Also index 
"i" enables comparisons between different occurrences of the same event that may not be consecutive (e.g. burstiness).

The condition expression of observation call expression allows having a similar construct as the UML ChangeEvent, 
which define an expression condition that defines de event occurrence. However, we target to construct textual 
expressions that not require the explicit definition of a ChangeEvent element.

TimeExpression is an expression that factorizes different kinds of time related expressions, including instants, durations 
and jitters.

The Time Expression is given by "expr" which may contain usage of the observations (obsExpr) given by 
ObsCallExpression. In the case where there are no "obsExpr", the "expr" will contain a time constant. In the case where 
there is no "expr", there shall be a single "obsExpr" that indicates the instant or duration expression value.

InstantExpression is a time expression that denotes a time instant value.

DurationExpression is a time expression that evaluates to a duration value.

JitterExpression is a duration expression that denotes an unwanted variation (delta) in an event occurrence instant that 
should occur in periodic intervals.

Instant and DurationIntervalSpecifications are special kinds of interval specifications that have time expressions as upper 
and lower bounds.
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Figure B.6 - VSL::TimeExpressions package

Note that the Time Expressions package only introduces the basis to write time related expressions. For example, this 
model does not account for the relativistic effects that occur in many distributed systems, or the effects resulting from 
imperfect clocks with finite resolution, overflows, drift, skew, etc. These capabilities, among others, are defined in the 
MARTE's Time chapter. In the same way, measurement units and other time value qualifiers are defined in the NFP 
modeling chapter.

B.3 UML Representation
This section describes the UML extensions required to support the concepts defined in the previous domain view. The set 
of extensions to support VSL with UML is organized according to the extension mechanism used for each part of the 
metamodel. In particular, note that in VSL not every domain concept will result directly in a UML stereotype or tagged 
value. This is because some domain concepts are defined to be implemented as a separated metamodel.

For instance, we have chosen to only define stereotypes for concepts that are related to data types definition and variable 
declaration. The group of domain concepts related to value specifications and expressions yields a separated language, 
thus providing a new metamodel used in a complementary way to the UML one. Indeed, the latter define an extended 
grammar for textual notations.

Thus, we first describe the extensions concretized in stereotypes. Then, we define the extensions related to the 
specification of value expressions. It covers the definition of the concrete syntax of VSL for annotating model elements 
with extended value specifications.

In Annex D.1, we define a model library of primitive DataTypes and its operations, which is intensively used in MARTE, 
especially to characterize the supported operations in primitive types.
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B.3.1 Profile Diagrams

The Figure 8.5 shows the UML extensions for DataTypes definition. The VSL::DataTypes package (stereotyped as 
profile) defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are 
listed in alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided 
in B.3.2.

Figure B.7 - UML Extensions for DataTypes definition

Although variables can be created in VSL expressions, we provide the capability to alternatively declare them by means 
of extended UML Properties. When using UML properties, variable declaration matches to the concept of Parameters in 
SysML Constraint Blocks.

Figure B.8 shows the UML extensions for Variable definition. The VSL::Variables package (stereotyped as profile) 
defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in 
alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided in B.3.2.

Figure B.8 - UML Extensions for Variable declaration
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B.3.2 Profile elements description

B.3.2.1 BoundedSubtype

The BoundedSubtype stereotype maps the BoundedSubtype domain element (section F.13.1) defined on Annex F.

Bounded Subtype is a kind of subtype. A subtype is a data type derived from an existing data type, designated the base 
data type, by restricting the value space to a subset of that of the base data type whilst maintaining all operations. 
BoundedType creates a subtype of any ordered datatype by placing upper and/or lower bounds on the value space 
(minValue and MaxValue).

Extensions

• DataType (from UML::Kernel).

Generalizations

• None.

Associations

• None.

Attributes

• baseType: UML::Classes::Kernel::DataType [1] 
designates an ordered datatype.

• minValue: String [1]  
defines a string which specifies that the value space is limited to this value in his lower bound. 
When minValue is "*", it indicates that no lower bound is being specified.

• maxValue: String [1]  
defines a string which specifies that the value space is limited to this value in his upper bound. 
When maxValue is "*", it indicates that no upper bound is being specified.

• isMinOpen: Boolean [1]  
defines if minValue is excluded in the bounded value space.

• isMaxOpen: Boolean [1]  
defines if maxValue is excluded in the bounded value space.

Contraints

• None

B.3.2.2 ChoiceType

This stereotype maps the "ChoiceType" domain element defined on Annex F.

Choice Type generates a data type each of whose values is a single value from any of a set of alternative data types. 
Choice Type combines different types into a single data type. Instances of choice data types belong to only one of the 
member types. This type is similar to the C union type and the Ada/Pascal "variant-record". When all the attributes of the 
extended data type participate as alternatives of the choice type, choiceAttrib can be left undefined.
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Extensions

• DataType (from UML::Kernel)

Generalizations

• None

Associations

• None

Attributes

• choiceAttrib: UML::Classes::Kernel::Property [*] 
defines the type, size, uniqueness and order of the alternative members of the choice data type. When all the 
attributes of the extended data type participate as alternatives of the choice type, the choiceAttrib's tagged 
value can be left undefined.

• defaultAttrib: UML::Classes::Kernel::Property [0..1] 
defines the default alternative member of the choice data type.

Constraints

• None

B.3.2.3 CollectionType

This stereotype maps the domain concept "CollectionType" defined on page 557.

Collection Type describes a list of elements of a particular given type. Part of every collection type is the declaration of 
the type of its elements by means of the CollectionAttribute. I.e., a collection type is parameterized with an element type. 
Note that there is no restriction on the element type of a collection type. This means in particular that a collection type 
may be parameterized with other collection types allowing collections to be nested arbitrarily deep.

Extensions

• DataType (from UML::Kernel).

Generalizations

• None

Associations

• None

Attributes

• collectionAttrib: UML::Classes::Kernel::Property [1] 
defines the element type, size, uniqueness and order kind of this composite data type.

Constraints

• None 
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B.3.2.4 IntervalType

This stereotype maps the domain concept "IntervalType".

Interval type is a composite data type defining a set of values by means of two bound limits. The minAttribute defines a 
single value which will designate the lower bound of the Interval. The maxAttribute defines a single value which defines 
the upper bound of the Interval.

Extensions

• DataType (from UML::Kernel)

Generalizations

• None

Associations

• None

Attributes

• minAttrib: UML::Classes::Kernel::Property [1]  
defines the lower bound part of this composite data type.

• maxAttrib: UML::Classes::Kernel::Property [1]  
defines the upper bound part of this composite data type.

Constraints

• None

B.3.2.5 TupleType

This stereotype maps the domain concept "TupleType".

Tuple Type combines different types into a single composite type. The parts of a Tuple Type are described by its 
attributes, each having a name and a type. There is no restriction on the kind of types that can be used as part of a tuple. 
In particular, a Tuple Type may contain other tuple types and collection types. Each attribute of a Tuple Type represents 
a single feature of a TupleType. Each part is uniquely identified by its name. When all the attributes of the extended data 
type participate in the tuple structure, tupleAttrib can be left undefined.

Extensions

• DataType (from UML::Kernel)

Generalizations

• None

Associations

• None
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Attributes

• tupleAttrib: UML::Classes::Kernel::Property [*] 
attribute defining the type, size, uniqueness and order kind of the structured elements of this 
composite data type. When all the attributes of the extended data type participate in the tuple 
structure, the tupleAttrib's tagged value can be left undefined.

Constraints

• None

B.3.2.6 Var

This stereotype maps the domain concept "Variable".

Variables are typed elements for passing data in expressions. Variable creates a variable with a given name, data type, and 
nature (input, output, input/output).

Extensions

• Property (from UML::Kernel)

Generalizations

• None

Associations

• None

Attributes

• dir: VariableDirectionKind [0..1] 
nature of the created variable: input, output, input/output. The complete semantics of this attribute 
depends on the context on which the variable is created 

Constraints

• None

B.3.2.7 ExpressionContext

This stereotype maps the domain concept "ExpressionContext".

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification 
of the variable elements. A Expression Context provides a container for variables. It provides a means for resolving 
conflicting global variables by allowing Variable Call Expressions of the form ExprContext1::SubContext2::varX.

Extensions

• NamedElement (from UML::Kernel)

Generalizations

• None
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Associations

• None

Attributes

• None

Constraints

• None

B.3.3 Concrete syntax of value specification

This section defines VSL for specifying value specifications. We base the syntax and semantics of this textual language 
on the metamodel (abstract syntax) defined in Sections B.2.3 to B.2.6.

Value Specifications are used to specify the textual value parts of UML models. The value specification could be a simple 
literal, such as a number, or it could be a complex expression that involves variables and operations. Whatever the 
expression, the desired value is produced when the expression is evaluated.

The use of expressions and variables clearly presumes that there is a pre-processor that evaluates the values before a 
model can be analyzed. It also requires a mechanism for supplying the values of independent variables, since this 
language itself does not have an assignment operation. However, these additional mechanisms are necessary for any 
system that allows values to be expressed through variables and are not a consequence of using VSL. The nature of these 
mechanisms is described in chapters "Model Processing" and "The Model Configurer" on page X-X.

In representing the syntax of these value specifications, we use the standard BNF notational convention defined in Annex 
X.

Thus, a value in VSL can be specified as a literal value (LiteralSpecification), as a composite value (IntervalSpecification, 
CollectionSpecification, TupleSpecification), as an expression (Expression), or as a time value or expression 
(TimeValueSpecification, TimeExpression). The top-level production is defined by:

<value-specification> ::= <literal> | <enum-specification> | <interval> |  
<collection> | <tuple> | <choice> | <expression> | 
<opaque-expression> | <time-expression> | 
<obsCallExpression>

The following are typical examples of the notation for value specification:

Table B.1 - Examples of Value Specifications

NFP Value Specification Examples of expressions for NFP values

Real Number 1.2E-3        //scientific notation 

1234.56       //conventional notation

Variable In$timeout        //an input variable declaration 

timeout+(2, us)   //an expression calling a variable

Collection {1, 2, 88, 5, 2}  //sequence, bag, ordered set… 

{{1,2,3}, {3,2}}  //collection of collections
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In the following sub-sections, we describe the notation supported for the symbol of values.

B.3.3.1 Literals

Numbers are represented in decimal, binary and hexadecimal form only. Integer, unlimited natural and real numbers are 
allowed, as are positive and negative numbers. No whitespaces or commas are allowed within numbers. Real numbers 
may be expressed using the scientific notation.

<number-literal> ::= <integer-literal> | <unlimited-natural> | <real-literal>

<integer-literal> ::= ['+' | '-'] ( <decimal-string> | <hexadecimal-string> |  
<binary-string> )

<unlimited-natural> ::= <unlimited-string>

<real-literal> ::= ['+' | '-'] ( <real-string> | <scientific-real> )

<scientific-real> ::= <real-string> 'E' ['+' | '-'] <decimal-string>

<real-string> ::= <decimal-string> ['.' <decimal-string>)]

<hexadecimal-string> ::= '0x' ( ('0'..'9') | ('A'..'F') | ('a'..'f') )+

<binary-string> ::= '0b' ( '0' | '1' )+

<decimal-string> ::= ('0'..'9')+

<unlimited-string> ::= ( ('0'..'9')+ | '*' )

The following are typical examples:

12345 #positive integer

-123 #negative integer

0xFF #hexadecimal integer

0b00100111 #binary integer

1234.56 #positive real

1.2E3 #real with scientific notation

Tuple (value=2, unit=ms, clock=ck1)    //a duration tuple value 
(2, -, ms, ck1)    //a duration tuple value without names.

Interval [1..251]        //interval between integers 

[A1..A2]      //interval between variables

DateTime 06/01/02 12:00:00  //a given calendar time instant

Duration (endEvent - startEvent)    //between two observed events

Operations on values deadline < timeout + 5.0  //timing constraint

Conditional Expression V1 == ( (clients<6) ? (exp(6)) : 1 )

Table B.1 - Examples of Value Specifications
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* #infinite value

B.3.3.2 Enumeration Specification

An enumeration specification identifies a UML enumeration literal. The notation is simply the name of the enumeration 
literal.

<enum-specification> ::= <enum-id>

<enum-id> ::= <body-text>

For instance,

EDF #a reference to an enumeration literal named 'EDF'

B.3.3.3.Boolean Literal

We express Boolean values through two predefined literals: true and false.

<boolean-literal> ::= 'true' | 'false'

For example:

isPeriodic = true

B.3.3.3 String Literal

Strings are specified by bracketing a stream of printable characters between single quotes ('). Any printable character can 
be included in a string. To include the single quote character itself, the two-character combination of backslash and quote 
(\') is used, while a backslash character can be inserted into a string constant using a double backslash combination 
(\\).There are no predefined upper limits on the size of strings.

<string-literal> ::= ''' ( <body-text> | '\'' | '\\' )* '''

<body-text> ::= (terminal symbol consisting of string of characters defined in one 
character set encoding)

The following are typical examples:

'A simple string'

'A string with a quote literal (\') included within.'

'The backslash-quote combination (\\\') appearing literally in a string'

B.3.3.4 DateTime Literal

DateTime is a special value expressed described by the following extended BNF:

<datetime-literal> ::= ( <time-string> [<day-string>] ) | (<date-string> [<day-
string>] ) | ( <time-string> <date-string> [<day-string>] ) | ( <day-string> )

<time-string> ::= <hr> [':' <min> [':' <sec> [':' <centisec>] ] ]

<hr> ::= '00'..'23'

<min> ::= '00'..'59'
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<sec> ::= '00'..'59'

<centisec> ::= '00'..'99'

<date-string> ::= <year> '/' <mon> '/' <day-of-mon>

<year> ::= '0000'..'9999'

<mon> ::= '01'..'12'

<day-of-mon> ::= '01'..'31'

<day-string> ::= 'Mon' | 'Tue' | 'Wed' | 'Thr' | 'Fri' | 'Sat' | 'Sun'

The following are typical examples:

12:24:00 #a simple standard time value

12:24:00 2006/02/07 #a simple datetime value

2006/02/07 Tue #a date value

B.3.3.5 Null Literal

A Null Literal allows specifying an undefined value. We use the text "null" to specify a null literal.

<null-literal> ::= 'null'

B.3.3.6 Default Literal

A Default Literal allows specifying a default value. If a default value exists, it is assigned to the value, otherwise the 
value remains as a Null value. We use the symbol "-" to specify a default value literal.

<default-literal> ::= '-'

B.3.3.7 Intervals

Values can be specified as intervals (ranges) of values. The min value and the max value of an interval as to be conform 
to the same data type. The "interval" value returns all the values counting by one from the initial value to the end value. 
An interval value can specify if it includes or not the initial and end values. For example, [x..y] stands for left and right 
closed interval or ]x .. x[ stands for left and right open interval.

<interval> ::= ('[' | ']') <interval-bound> '..' <interval-bound> ('[' | ']')

<interval-bound> ::= <literal-interval-bound> | <tuple-interval-bound> | <choice-
interval-bound> | <expression-interval-bound>

<literal-interval-bound> ::= <number-literal> | <datetime-literal>

<tuple-interval-bound> ::= <tuple>

<choice-interval-bound> ::= <choice>

<expression-interval-bound> ::= <expression>

The following are typical examples:
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[1..2] #a simple numerical interval

[start..end[ #a variable interval which does not include the value assigned to 
the variable "end".

B.3.3.8 Collections

It is possible to combine value specifications into a collection of items between a set of parentheses with individual item 
values separated by commas. There are no predefined limits on the size of collections.

<collection> ::= '{' <value-specification> (',' < value-specification > )* '}'     
[ '[' <unlimited-natural> ']' ]

The following are typical examples:

{1, 2, 5, 88}  #a simple numerical collection

{'apple', 'orange', 'strawberry'}#a string collection

{1, 3, 45, 2, 3}    #a sequence collection

{{1,2,3}, {3,2}}  #a collection of collections 

Individual items in a collection can be accessed by indexing. It is achieved by specifying the index of the desired 
collection element to the right of the collection, with the left-most element at index value 0. For instance, the result of 
evaluating the following expression:

{'a', 'b', 'c', 'd'} [2]

is the string 'c', which is in index position 2.

B.3.3.9 Tuples

Tuple specification enables to describe values that are conformed to tuple data types. The elements of a tuple are named 
tuple items and consist of a pair of item name and its associated value separated by an equal symbol.

<tuple> ::= '(' [<item-name> '='] <value_specification> (',' [<item-name> '='] 
<value_specification> )* ')'

<item-name> ::= <body-text>

The following are typical examples:

(maxValue=10, meanValue=3, minValue=1) #a tuple value specifying three measured 
 magnitudes

(10, 30, 5)  #the same tuple value without itemNames

(10, -, 5)  #a tuple value with an Undefined value

B.3.3.10 Choice values
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Choice value specification denotes a value of a choice data type. It contains the name of one of the attribute members 
(chosen alternative), which determines the chosen data type, and a value that conforms to the chosen data type. When the 
chosen alternative name is undefined in a given choice value specification, the chosen alternative can be deduced from the 
default alternative attribute of the corresponding choice type. In order to avoid double parentheses in value specifications, 
choice parentheses are optional when the enclosed value is a tuple. 

<choice> ::= ( [<chosen-alternative-name>] '(' <value_specification> ')' ) | ( 
[<chosen-alternative-name>] <tuple>)

<chosen-alternative-name> ::= <body-text>

The following are typical examples:

periodic(period=10, jitter=0.1) #a choice value specifying a chosen alternative 
"periodic" whose data type is a tuple with two 
items "period" and "jitter".

B.3.3.11 Expressions

An expression can be a simple constant or variable, or it can be a compound expression formed by combining expressions 
through operator calls. The latter provides a relatively sophisticated capability to express values that are related to each 
other in possibly very complex ways.

<expression> ::= <variable-call-expr> | <variable-declaration> | <property-call-
expr> | <operation-call-expr> | <conditional-expr>

For instance, the following somewhat contrived example shows a complex case where the tuple value of a timeout tag 
(expression plus measurement unit) will depend exponentially on the number of clients configured in the system (clients), 
unless that number is greater than 6, in which case a single maximum value is used:

timeout = (abs((clients<6)?(0.5*exp(clients)):(0.5*exp(6))), ms)

B.3.3.12 Variables

There are two expressions of variables: call and declaration. A variable call expression is just a name that refers to a 
variable. Variable declaration creates a variable. In variable declarations, the type and init expression are optional. When 
these are required, this is defined in the production rule where the variable declaration is used. When the type is not 
defined, the type "String" is assumed. Variable declarations begin with the "$" symbol as the first character.

Variables are declared in a given Expression Context (see the UML Profile for Variables in Section B.3.1) The Expression 
Context's name attribute is used for identification of the variable elements. A Expression Context provides a container for 
variables. It provides a means for resolving conflicting global variables by allowing Variable Call Expressions of the form 
exprContext1::subContext2::varX. All variable names have a namespace which is defined by the closer UML element 
stereotyped "ExpressionContext" in which the variables are contained. If no namespace is specified, either the context of 
the expression is the same as the context of the variable declaration, or there is not exists an ExpressionContext. In the 
latter case, variables are global to the UML model in which they appear.

<variable-call-expr> ::= <variable-name>

<variable-declaration> ::= <variable-direction> '$' <variable-name> [<type-name>] 
['=' <init-expression>]

<variable-direction> ::= 'in' | 'out' | 'inout'
402                 A UML Profile for MARTE, Beta 1



<variable-name> ::= [<namespace> '.'] <body-text>

<namespace> ::= <body-text>

<type-name> ::= <body-text>

<init-expression> ::= <value-specification>

For example:

(clock_rate, us) #a tuple value specifying a variable and a unit

in$timeStamp:DateTime #a declaration of an input variable for a DateTime 
value

RMAanalysis.isSchedulable #a property call expression which uses the UML element 
called "RMAanalysis" as context for a property called 
"isSchedulable".

B.3.3.13 Property Call Expression

This rule represents property call expressions for an implicit (without namespace) or explicit (with namespace) scoped 
UML Property metaclass instance.

This metamodel does not define explicitly the context of properties and operations and the namespace that the 
corresponding call expressions must use. When specifiyng values making reference to properties and operations of their 
corresponding data types, the namespace is not taken into account. Further usages of this metamodel may define different 
namespaces for property and operation.

<property-call-expr> ::= <property-name>

<property-name> ::= [<namespace> '.'] <body-text>

<namespace> ::= <body-text>

For example:

MyPackage.MyTask.priority #a property call expression which makes reference to the 
UML property called "priority" defined in the Class 
"MyTask" which in turn is contained in a Package 
"MyPackage".

B.3.3.14 Operation Call Expressions

Operation calls are particularly used in the MARTE context to call operations of data type values. An operation call 
expression has two different forms: normal and infix notations. Some operators (e.g., '+,' '-,' '*.' '/,' '<,' '>,' '<>' '<=' '>=') 
are used as infix operators. If a type defines one of those operators with the correct signature, they will be used as infix 
operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the "+" operation on a with b as the parameter to the operation.
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The infix operators defined for a type must have exactly one parameter. For the infix operators '<,' '>,' '<=,' '>=,' '<>,' 
'and,' 'or,' and 'xor' the return type must be Boolean.

<operation-call-expr> ::= (<value-specification> '.' <operation-name> ['(' 
<argument-value> [','<argument-value>]* ')'])          | (<argument-value> 
<operation-name> <argument-value>)

<argument-value> ::= <value-specification>

<operation-name> ::= <body-text>

B.3.3.15 Conditional Expressions

This expression works like an if-then-else statement.

<conditional-expression> ::= <condition-expr> '?' <if-true-expr> ':' <if-false-
exp>

<condition-expr> ::= <variable-declaration> | <variable-call-expr> |

<property-call-expr>

<if-true-expression> ::= <value-specification>

<if-false-expression> ::= < value-specification>

The result of evaluating this expression will be the result of the evaluation of the <if-true-expr> if the <condition-expr> 
is true. Otherwise, the result will be the result of the <if-false-expr>.

The following are typical examples:

(clock_rate>5)?(5):(clock_rate) returns either the value 5 if the clock_rate value 
is greater than 5 or the value of variable denoted by clock_rate.

The conditional operator has a precedence that is below the relational operators, but above the Boolean operators.

B.3.3.16 Time Expressions

A time expression can be a simple constant or variable representing a time value or it can be a compound expression 
formed by combining observation call expressions. The latter provides a relatively sophisticated capability to specify time 
expressions that are related to specific events or event occurrences declared in UML models. Observation declarations are 
defined in the UML model space conforming to the Simple Time model of the Common Behavior package (UML 
Superstructure).

<time-expression> ::= <duration-expr> | <instant-expr> | <jitter-expr>

<instant-expr> ::= <value-specification> | <instant-obs-expr> | ( <instant-obs-
expr> '+' <duration-obs-expr> )

<duration-expr> ::= <value-specification> | <duration-obs-expr> | ( '(' <instant-
obs-expr> '-' <instant-obs-expr> ')' )

<jitter-expr> ::= ( 'jitter(' <instant-obs-expr> ')' ) | ( 'jitter(' <instant-obs-
expr> ',' <instant-obs-expr> ')' )

<instant-interval> ::= ('[' | ']') <instant-expr> '..' <instant-expr> ('[' | ']')
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<duration-interval> ::= ('[' | ']') <duration-expr> '..' <duration-expr> ('[' | 
']')

<obs-call-expression> ::= <instant-obs-expr> | <duration-obs-expr>

<instant-obs-expr> ::= <instant-obs-name> [ '[' <occur-index-expr> ']' ] [ ' when 
' <condition-expr> ']' ]

<duration-obs-expr> ::= <duration-obs-name> [ '[' <occur-index-expr> ']' ] [ ' 
when ' <condition-expr> ']' ]

<instant-obs-name> ::= <body-text>

<duration-obs-name> ::= <body-text>

<occur-index-expr> ::= <value-specification>

<condition-expr> ::= <value-specification>

Some typical examples of observation-based time expressions are:

t1 #returns the instant time of an event observation "t1" declared in a UML 
model element "time observation".

d1 #returns the duration time of an action, message or whatever behavior 
execution observation "d1" declared in a UML model element "duration 
observation".

t1[i] #returns the instant time of an event observation "t1" declared in a UML 
model element "time observation". The index "i" is a modifier that 
indicates that the instant time refers to whatever of the occurrences of 
the observed event. It is a modifier in the sense that if the observed 
event is an instance (event occurrence) the expression refers to its type 
(event).

(t2-t1) #returns the duration between two observed events which their occurrence 
instants are labeled by "t1" and "t2" and where "t1" occurs before than 
"t2"

(t1[i+1]-t1[i])#returns the duration between any two successive occurrences of an 
observed event whose occurrence instants are labeled by "t1".

t1+d1 #returns the instant time which is defined "d1" units of time after "t1", 
where "d1" is the duration of an observed action, message or other 
behavior execution and "t1" is the time at which occurs an observed 
event.

jitter(t1) #returns the occurrence deviation of an specific event, which is 
defined by a time observation "t1", regarding its nominal occurrence 
period. The jitter notation is a modifier in the sense that the 
referred event is nominally periodic and, additionally, is the 
observed event is an instance (event occurrence) the expression refers 
to its type (event).
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jitter(t1,t2) #returns the jitter of an specific event which is defined by a time 
observation "t1". The jitter notation is a modifier in the sense 
that the referred event is nominally periodic and, additionally, 
whether the observed event is an instance (event occurrence) the 
expression refers to its type (event).

B.3.4 Examples

In order to illustrate the extensions proposed by VSL, we present a short example of declaration of extended data types 
and a set of associated value specifications.

In Figure B.9, we define a representative collection of data types.

From an implementation perspective, VSL data type extensions involve an indirect mechanism to define data type 
features. For instance, the collectionAttrib tag definition of CollectionType is of type Property (UML Property metaclass). 
This implies that the size, uniqueness and order of collection elements is specified by a data type property (referenced by 
collectionAttrib), which is created when the stereotype is applied.

For instance, the Long bounded subtype defines an Integer type whose value space is restricted two the set of integers 
from -480000 to + 480000.

The IntegerInterval data type defines a data type which composite values are expressed as a pair of integers denoting the 
set of integers comprised between them.

IntegerVector and IntegerMatrix declare integer value spaces of collections and collection of collections.

Power data type defines a tuple to express an aggregated value containing a value, an expression, a measurement unit and 
a source. Note that we do not define the tupleAttrib's tagged values. Indeed, this tagged value is optional when all the data 
type properties participate in the tuple structure (see definition of the TupleType stereotype). This kind of tuple is used in 
the NFP modeling chapter to declare qualified values.

Arrival pattern type defines a choice type. Two alternative attributes are defined: periodic and sporadic. Each attribute is 
typed by a tuple type containing the parameters of the alternative choice. Note that we do not define the choiceAttrib's 
tagged values. Indeed, this tagged value is optional when all the data type attributes are alternatives of the choice type. 
This kind of type is used to define parameterized values. 

Finally, we show a template of Array data type which is used to create arrays of different item type and elements number.
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Figure B.9 - Examples of declarations using the UML stereotypes for Datatypes

In Figure B.10, we use these data types to declare a set of contrived properties and their values with the VSL textual 
syntax.

Figure B.10 - Using of the Datatypes created in the example of the previous figure

In order to illustrate the use of time expressions, Figure  depicts a sequence diagram with timing annotations and 
constraints. Note that for completeness of the example, time constraints have been extended in the MARTE's Time 
modelling chapter. We focus here in the textual language for expressions.

This sequence diagram shows a periodic gate called "start". "Constraint1" in the Interaction "DataAcquisition" determines 
the period of the gate (100 milliseconds). Additionally, a jitter constraint is attached to the gate, confining its deviation 
(regarding to the period) to a value shorter than 5 milliseconds. Note that we use the tuple notation to write the magnitude 
and the measurement unit of duration values. The MARTE's NFP chapter defines the Duration tuple type which allows to 
assign this measurement unit to a duration value.

After receiving "start", Controller sends a message "acquire" to ask "Sensor" for new data. The duration of the message 
transmission is constrained to 1 millisecond.

MARTE::DataTypesDeclaration

« boundedSubtype»
{ baseType = Integer ,
minValue = -480000 , 

maxValue = +480000 }
Long

v ectorElement : Integer [0. .*]

« collect ionType»
{  collectionAttr ib = vectorElement }

Inte ge rVector

value: Real
ex pr: VSL_Ex pression
unit :  PowerUnitKind 
source:  Sourc eKind

« tupleType »
Power

vectorElement:  T [0. .k]

« collect ionType»
{  collectionAttr ib = vectorElement }

Array

T, k: Str in gExpre ssion = *

« collectionType»
MyIntegerArray

« bind » <T- >Integer, k->100>

« collect ionType »
Array<T- >Real>

matrixElement : IntegerVector [0. .* ]

« c ollectionType»
{ collectionAttr ib =  matrixElement }

IntegerMat rix

periodic :  Periodic Pat tern
sporadic:  SporadicPat tern

« choiceTy pe »
ArrivalPa tte rn

period:  Real
jit ter:  Real

« t upleType»
PeriodicPattern

minInterarrival:  Real
maxInterarrival: Real

« t upleType»
Sporadic Patte rn

bound: Integer [2]

« dataType »
« interva lType »

{  intervalAttrib = bound }
IntegerInterval

Ex amples: :Data TypesUsage

length:  Long
priorit yRange:  IntegerInterval
position:  In tegerVector
s hape:  In tegerMatrix
c onsumption:  Power
array 1:  My IntegerArray
array 2:  Array<T->Real>
arriv al:  ArrivalPat tern

MyClass

length = 212333
priorityRange = [0. .2 ]
position= {2,3}
s hape = {{2,3},{1,5}}
c onsumption = (-,  exp=x*v1, unit= mW, sourc e= calc)
array 1 = {1, 2,  3 }
array 2 = {0.1, 0.2, 0.3}
arriv al = periodic  (period= 10,  jitter= 0.1)

m:MyClass
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After receiving the acquire message, Sensor must send a message "ack", which must be received by Controller in a 
maximum of 8 milliseconds after acquire has been sent. In the same way, a "sendData" message is transmitted to 
Controller in a maximum of 10 milliseconds. "Constraint2" confines the time instant at which the sendData message is 
received by Controller to 30 milliseconds after Sensor receives the acquire message, if and only if the data value is greater 
than 5.0.

We suppose here a global clock for all the time annotations. The MARTE's Time modelling chapter introduces further 
notions to specify global and local reference clocks.

Figure B.11 - Time Expressions and Constraints in Sequence Diagrams with VSL

Sd  D ataA cq u isi tio n

:C on tro ller :Se nsor

acq uir e()  {  d 1< =(1,  ms ) }

se ndD ata (d ata)  { [ (0, ms ). .(10,  m s )]  }

a ck ()

@ t2

{ [d1. .30*d1]  }

&d1

con str a int1= { (t0[i+1 ] - t0 [ i ])  > (10 0, ms ) }
con str a int2= { (t3 w hen data< 5.0)  <  t2+(30,  ms ) }

E x tended 
duration 

int erv als  w ith 
bound « [ ] »  
spec i fic ation

Ins tant  I nterv al  
C ons t raint

C ons t raint in an 
obs erv ation w ith c ondit ion 

ex pres s ion

D urat ion ex pres s ion 
betw een tw o s uc es s iv e 

oc c urrences

star t() { jit ter( t0)<(5,  u s) }

@ t0

{  ] t1.. t1+ (8,  m s ) ] }

J it ter  c ons traint

@ t3

@ t1
408                 A UML Profile for MARTE, Beta 1



Annex C:  Clock Handling Facilities 

C.1 Overview
This annex provides the abstract syntax for specifying clocked values and clock dependencies. Concrete syntax is also 
proposed: the Clocked Value Specification Language (CVSL) and the Clock Constraint Specification Language (CCSL). 
These languages reuse the Value Specification Language (VSL) for general expressions on Boolean, Integer, Real…

C.2 Clocked Value Specification

C.2.1 Domain view

A ClockedValuedSpecification (CVS) is the specification of a set of instances of time values making reference to Clocks. 
Since the concept of time covers the two concepts of instant and duration, the CVS domain view (Figure C.17.28) reflects 
this dichotomy. A ClockedValueSpecification may reference an instance (InstantInstanceValue or DurationInstanceValue) 
or may be an expression denoting an instance or instances when evaluated.  The CVS expressions involve only instants 
(InstantExpression), only durations (DurationExpression) or both (Span and Translation) in order to combine instants and 
durations in restricted ways. Interval specifications (InstantIntervalSpecification and DurationIntervalSpecification) are 
used to specify range of values or uncertainties.

In Figure C.17.28, InstantValueSpecification and DurationValueSpecification are duplicated to improve legibility.
A UML Profile for MARTE, Beta 1        409



Figure C.1 - CVS domain view

C.2.1.1 ClockedValueSpecification

A ClockedValueSpecification may reference an instance (InstantInstanceValue or DurationInstanceValue) or may be an 
expression denoting an instance or instances when evaluated.

Generalizations

• ValueSpecification  (from UML::Classes::Kernel)

Associations

• None

Attributes

• None

ValueSpecificat ionClockedValueSpecification

InstantValueSpecification Durat ionValueSpecification

symbol:Str ing[0..1]

InstantExpression

{ ordered } 0..*

0..1

iOperand

Instant
InstanceValue

InstantValue
Specification

isLowerOpen: Boolean[1]
isUpperOpen: Boolean[1]

InstantInterval
Specification

10..1
min

1
0..1 max

DurationValue
Specificat ion

isLowerOpen: Boolean[1]
isUpperOpen: Boolean[1]

Durat ionInterval
Specif icat ion1

0..1min

1 0..1
max

Span

1

0..1

begin end
0..1

1

isBackward: Boolean[0..1]

Translation

1

0..1

star t

1

0..1

offset

symbol:String[0..1]

DurationExpression

dOperand

0..1

0..* { order ed }

Duration
InstanceValue

factor: Real[1]

Scaling

1

0..1

dur ation

CVS
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Semantics

A ClockedValueSpecification yields zero or more time values bound to Clocks. A ClockedValueSpecification may 
reference an instance (InstantInstanceValue or DurationInstanceValue) or may be an expression denoting an instance or 
instances when evaluated. This is an abstract class.

C.2.1.2 DurationExpression

A DurationExpression is a structured tree of symbols that denotes a set of duration values when evaluated in a context.

Generalizations

• DurationValueSpecification  (from CVS)

Associations

• dOperand: DurationValueSpecification[0..*] 
specifies a sequence of operands, which are DurationValueSpecifications.

Attributes

• symbol: String[0..1]  
the symbol associated with the node in the expression tree.

Semantics

A DurationExpression represents a node in an expression tree. If there are no operands, it represents a terminal node. If 
there are operands, it represents an operator applied to those operands. In either case there is a symbol associated with the 
node. The interpretation of this symbol depends on the context of the expression. 

C.2.1.3 DurationInstanceValue

A DurationInstanceValue is value that identifies a duration on a Clock.

Generalizations

• DurationValueSpecification (from CVS)

Associations

• None

Attributes

• None

Semantics

A DurationInstanceValue is value that identifies a duration on a Clock.

C.2.1.4 DurationIntervalSpecification

A DurationIntervalSpecification specifies an ordered set of duration value specifications.
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Generalizations

• DurationValueSpecification (from CVS)

Associations

• max: DurationValueSpecification [1] specifies the upper bound of the interval.

• min: DurationValueSpecification [1] specifies the lower bound of the interval.

Attributes

• isLowerOpen: Boolean [1] = false 
specifies whether the lower bound is in the interval (isLowerOpen set to false) or not (isLowerOpen 
set to true). 

• isUpperOpen: Boolean [1] = false 
specifies whether the upper bound is in the interval (isUpperOpen set to false) or not (isUpperOpen 
set to true).

Semantics

A DurationIntervalSpecification specifies an ordered set of duration value specifications.

C.2.1.5 DurationValueSpecification

A DurationValueSpecification may reference an instance (DurationInstanceValue) or may be an expression denoting an 
instance or instances of durations when evaluated.

Generalizations

• ClockedValueSpecification (from CVS)

Associations

• None

Attributes

• None

Semantics

A DurationValueSpecification yields zero or more duration values bound to Clocks. A DurationValueSpecification may 
reference an instance (DurationInstanceValue) or may be an expression denoting an instance or instances of durations 
when evaluated. This is an abstract class.

C.2.1.6 InstantValueSpecification

An InstantValueSpecification may reference an instance (InstantInstanceValue) or may be an expression denoting an 
instance or instances of instants when evaluated.

Generalizations

• ClockedValueSpecification (from CVS).
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Associations

• None

Attributes

• None

Semantics

An InstantValueSpecification yields zero or more instant values bound to Clocks. An InstantValueSpecification may 
reference an instance (InstantInstanceValue) or may be an expression denoting an instance or instances of instants when 
evaluated. This is an abstract class.

C.2.1.7 InstantExpression

An InstantExpression is a structured tree of symbols that denotes a set of instant values when evaluated in a context.

Generalizations

• InstantValueSpecification (from CVS)

Associations

• iOperand: InstantValueSpecification [0..*] 
specifies a sequence of operands, which are InstantValueSpecifications.

Attributes

• symbol: String [0..1]  
the symbol associated with the node in the expression tree.

Semantics

An InstantExpression represents a node in an expression tree. If there are no operands, it represents a terminal node. If 
there are operands, it represents an operator applied to those operands. In either case there is a symbol associated with the 
node. The interpretation of this symbol depends on the context of the expression. 

C.2.1.8 InstantInstanceValue

An InstantInstanceValue is value that identifies an instant on a Clock.

Generalizations

• InstantValueSpecification (from CVS).

Associations

• None

Attributes

• None
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Semantics

An InstantInstanceValue is value that identifies an instant on a Clock.

C.2.1.9 InstantIntervalSpecification

An InstantIntervalSpecification specifies an ordered set of instant value specifications.

Generalizations

• InstantValueSpecification (from CVS).

Associations

• max: InstantValueSpecification [1] specifies the upper bound of the interval.

• min: InstantValueSpecification [1] specifies the lower bound of the interval.

Attributes

• isLowerOpen: Boolean [1] = false 
specifies whether the lower bound is in the interval (isLowerOpen set to false) or not  
(isLowerOpen set to true). 

• isUpperOpen: Boolean [1] = false 
specifies whether the upper bound is in the interval (isUpperOpen set to false) or not  
(isUpperOpen set to true).

Semantics

An InstantIntervalSpecification specifies an ordered set of instant value specifications.

C.2.1.10 Scaling

A Scaling is a special expression that denotes duration values obtained from a DurationValueSpecification by applying a 
multiplicative factor. 

Generalizations

• DurationValueSpecification  (from CVS)

Associations

• duration: DurationValueSpecification [1] specifies a duration on a Clock.

Attributes

• factor: Real [1] specifies the multiplicative factor to apply to duration.

Semantics

A Scaling is a special expression that denotes duration values obtained from a DurationValueSpecification by applying a 
multiplicative factor. 
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C.2.1.11 Span

A Span is a special expression that denotes duration values characterized by two instants (begin and end) on a Clock. 

Generalizations

• DurationValueSpecification (from CVS)

Associations

• begin: InstantValueSpecification [1] specifies an instant origin of a time interval on a Clock.

• end: InstantValueSpecification [1] specifies an instant end of a time interval on a Clock.

Attributes

• none

Semantics

A Span is a special expression that denotes duration values characterized by two instants (begin and end) on a Clock. 

C.2.1.12 Translation

A Translation is a special expression that denotes instant values obtained by a forward or backward translation of instants 
on a Clock. 

Generalizations

• InstantValueSpecification (from CVS)

Associations

• offset: DurationValueSpecification [1] 
specifies a duration that indicates the delay applied to the start instant on a Clock.

• start: InstantValueSpecification [1] 
specifies an instant which is delayed on a Clock.

Attributes

• isBackward: Boolean [0..1] 
indicates whether the instant translation is forward (isBackward not defined or defined and set to 
false)  or backward (isBackward set to true).

Semantics

A Translation is a special expression that denotes instant values obtained by a forward or backward translation of instants 
on a Clock. 

C.2.2 Concrete syntax

CVSL is a simple language for specifying clocked values (instant or duration) in MARTE. The language is not normative. 
For time expressions on a unique ChronometricClock, VSL::TimeExpressions (Annex B) can be used as well.
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A character set encoding is assumed, supporting at least the alpha and the numeric classes, and possibly a miscSymbol 
class. Classically, 

alpha ::= ('A' .. 'Z') | ('a' .. 'z')

numeric ::= '0' .. '9'

alphanumeric ::= alpha | numeric

And for the miscSymbol class, contains a possibly empty set of symbols useful to represent physical units. For instance,

miscSymbol ::= '°' | 'O' | …

The syntax of the language reflects the domain view defined in the CVS package.

C.2.2.1 Literals

CVSL reuses number literals of VSL

number-literal ::= integer-literal | unlimited-natural | real-literal

integer-literal ::= ('+' | '-')? ( decimal-string | hexadecimal-string | binary-
string )

unlimited-natural ::= unlimited-string

real-literal ::= ('+' | '-')? nonNegative-real-literal

nonNegative-real-literal ::= ( real-string | scientific-real )

scientific-real ::= real-string 'E' ('+' | '-')? decimal-string

real-string ::= decimal-string ('.' decimal-string)?

hexadecimal-string ::= '0x' ( ('0'..'9') | ('A'..'F') | ('a'..'f') )+

binary-string ::= '0b' ( '0' | '1' )+

decimal-string ::= ('0'..'9')+

unlimited-string ::= ( ('0'..'9')+ | '*' )

C.2.2.2 String literal

string-literal ::= ''' ( body-text | '(\')' | '(\\)')* '''

body-text ::= (terminal symbol consisting of string of characters defined in a 
character set encoding)

C.2.2.3 Identifiers

ident ::= ( alpha | '_' ) ( alphanumeric )*

In the rules, other non-terminals are can be used in place of ident to point out semantic differences (e.g., clockId , 
itemId…).

clockId ::= ident 
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itemId ::= ident 

unitId ::= miscSymbol | (miscSymbol)? ident 

C.2.2.4 Intervals

Intervals are used to specify a range of values. They are borrowed from VSL.

interval ::= ('[' | ']') value-specification '..' value-specification ('[' | ']')

C.2.2.5 Expressions

CVSL does not make full use of the VSL expressions. value_specification from VSL are restricted to Boolean expressions 
(boolExpr), integer expressions (intExpr), real expressions (realExpr) and use of variables.

C.2.2.6 Operators

CVSL considers a restricted set of operators. This set might be extended in the future if new operations are needed.

addOp ::='+' |'-' 

prefixOp::= 'min' | 'max'

C.2.2.7 Clocked Value Specification

clockedValueSpecification ::= TimedValueSpecification

| ('{' TimedValueSpecification '}' unitId  'on' clockId )

TimedValueSpecification ::= duration | instant 

duration specifications

duration ::= durTerm ( addOp durTerm )*

durTerm ::= ( 'mult' '(' realExpr ',' durFactor ')' ) | durFactor

durFactor::=durationValue | durFunc | durationInterval

In this simple version only min and max operations are available.

durFunc::=prefixOp '(' duration (',' duration )* ')' | span 

span specifies duration by two instant specifications:

span ::= 'durationBetween' '(' instant ',' instant ')'

instant specifications

instant::= instFactor addOp duration | instFactor 

instFactor::= instantValue | instantFunc | instantInterval | '(' instant ')'

An instant can be specified as the sum or the difference of an instant specification and a duration specifications. An 
instant can also be specified by a more general expression. In this simple version only min and max operations are 
available.
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instantFunc ::= prefixOp '(' instant (',' instant )* ')'

C.2.2.8 TimeInstanceValue

Two syntactic forms are available for denoting TimeInstanceValue. This first one uses the tuple notation, as VSL does. 
The second is closer to a natural language expression.

timeInstanceValue ::= '(' valOrExpr ',' unitSpec (',' clockSpec )? ')' 

| realValue unitId 'on' clockId

valOrExpr ::= ('value' '=' realValue ) | ( 'expr' '=' realExpr )

unitSpec ::= 'unit' '=' unitId

clockSpec ::= 'onClock' '=' clockId

realValue ::= nonnegative-real-literal | variable-name

The tuple form denotes either an instance of an NFP_duration (from BasicNFP_Types) or an instance of a 
TimedValueType (from TimeLibrary). The former can be used only for the idealClk, which is implicit in the notation. 
variable-name is defined in the VSL grammar.

instantInstanceValue and durationInstanceValue are both timeInstanceValue. The evaluation context determines the 
interpretation of the value.

instantInstanceValue::= timeInstanceValue

durationInstanceValue ::= timeInstanceValue

C.2.3 Examples of clocked value specifications

C.2.3.1 Single clock time values

The three specifications below denote the same time instance value, on the idealClk clock.

(value = 1.5, unit = ms)

(value = 1.5, unit = ms, onClock = 'idealClk')

1.5 ms on idealClk

The first two specifications use the tuple notation. In the first one (NFP_Duration) the clock is implicitly the idealClk 
clock. The last one avoids item identifiers, parentheses, commas and single quotes.

C.2.3.2 Simple expressions on a single clock

(value = 1, unit = ms) + (value = 150, unit = us)

This expression is implicitly on the idealClk clock. Its value is (value = 1.150, unit = ms) or (value = 1150, unit = us), 
value obtained after applying the conversion factor between ms and us (1 ms = 1000 us). Any clock other than idealClk 
must be explicitly given.

C.2.3.3 Expressions on multiple clocks

min (15 tick on prClk, 5 ms on idealClk) 
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This expression is an expression referencing two clocks. It is not always computable. A ClockConstraint binding the two 
clocks prClk and idealClk must be provided (e.g., the duration of a processor cycle).

{min (15 tick on prClk, 5 ms on idealClk)} ms on idealClk 

The same expression placed in a context as above, must return a time value on idealClk and with ms for unit (if it is 
computable).

C.3 Clock Constraint Specification

C.3.1 Domain view

A ClockConstraintSpecification (CCS) consists of a non empty set of conditional constraints. Conditional means that the 
constraint is imposed only when the associated guard evaluates to true. In the absence of guard, the constraint is 
unconditionally applied.

Clock constraints are specialized into ClockRelation, InstantRelation, and ChronoNFP. An InstantRelation imposes an 
ordering or a coincidence between two instants of different clocks. A ClockRelation is more general and imposes 
constraints on set of instants of different clocks. A ChronoNFP is a constraint that applies to chronometric clocks only, 
and specifies time related non functional properties for a chronometric clock or a group of chronometric clocks. A fourth 
clock constraint is a ClockDefinition. It defines a new clock, local to the ClockConstraintSpecification.
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Figure C.2 - CCS domain view

C.3.1.1 AbstractConstraint

AbstractConstraint is an abstract super class of ClockRelation, ChronoNFP, InstantRelation, and ClockDefinition.

Generalizations

• None

Associations

• guard: Predicate [0..1] 
an owned predicate, which is evaluated in the context of the owning ClockConstraintSpecification. 
When this property is empty or when it is defined and evaluates to true, the constraint is applied. It 
is ignored otherwise.

Attributes

• None
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Semantics

AbstractConstraint is an abstract super class of ClockRelation, ChronoNFP, InstantRelation, and ClockDefinition. The 
optional guard attribute indicates whether the constraint is applied or ignored according to the context of the 
ClockConstraintSpecification.

C.3.1.2 ChronoNFP

A ChronoNFP is a constraint that applies to chronometric clocks only, and specifies time related non functional properties 
for a chronometric clock or a group of chronometric clocks.

Generalizations

• AbstractConstraint  (from CCS)

Associations

• chronos:Time::TimeAccesses::ChronometricClocks::ChronometricClock[1..*]  
references a set of chronometric clocks whose time related non functional properties are 
constrained.

Attributes

• None

Semantics

A ChronoNFP is a constraint that applies to chronometric clocks only, and specifies time related non functional properties 
for a chronometric clock or a group of chronometric clocks.

Examples of ChronoNFP

• StabilityConstraint, which imposes a constraint on the value of the stability attribute of a ChronometricClock. 
Additional constraint: chronos->size( ) = 1.

• SkewConstraint, which imposes a constraint on the value of the skew attribute of a ChronometricClock, with respect to 
another ChronometricClock. Additional constraint: chronos->size( ) = 2.

• DriftConstraint, which imposes a constraint on the value of the drift attribute of a ChronometricClock, with respect to 
another ChronometricClock. Additional constraint: chronos->size( ) = 2.

• OffsetConstraint, which imposes a constraint on the value of the offset attribute of a ChronometricClock, with respect 
to another ChronometricClock. Additional constraint: chronos->size( ) = 2.

C.3.1.3 ClockDefinition

A ClockDefinition defines a new clock, local to the ClockConstraintSpecification.

Generalizations

• AbstractConstraint  (from CCS) 
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Associations

• defBody: ClockExpression[0..1]   
owned ClockExpression that specifies the localClock as derived from other clocks. 

• definingEvent: CoreElements::Causality::CommonBehavior::Event[0..1]  
references the event whose occurrences define the ticks of the localClock.

• localClock: Time::TimeAccesses::Clocks::Clock[1]  
references the defined clock.

Attributes

• None

Semantics

A ClockDefinition defines a new clock, local to the ClockConstraintSpecification. This clock is defined as derived from 
other clocks or from occurrences of an event.

Constraints

[2] A (local) clock can be defined either by a ClockExpression or by an Event.

definingEvent->nonEmpty( ) = defBody->isEmpty( )

C.3.1.4 ClockExpression

A ClockExpression specifies a clock derived from one or many clocks.

Generalizations

• None

Associations

• clocks: Clock [1..*]  { ordered }   
 references the clocks from which the specified clock is derived.

Attributes

• None

Semantics

A ClockExpression specifies a clock derived from one or many clocks.

Examples of ClockExpression

A ClockExpression is a function-like clock relation which returns a Clock derived from other clocks.

• ClockDiscretization, takes a dense ChronometricClock, and returns a discrete Clock. Parameters: a discretizationStep, 
and an optional discretization interval.

• ClockFiltering, derives a discrete clock from another discrete clock. Each instant of the returned clock is coincident 
with an instant of the filtered clock. Parameter: a BinaryWord which specifies the filter: the kth instant of the filtered 
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clock is coincident with an instant of the returned clock if and only if the kth bit of the BinaryWord is set to 1.

• ClockDelay, takes a clock and returns a new one. Parameter: a delay. The kth instant of the returned clock is coincident 
with the (k+delay)th instant of the given clock.

• ClockChaining, takes two clocks and returns a new one. The first argument clock must be finite. The first instants of 
the returned clock are coincident with the instants of the first clock. The following instants are coincident with the 
instants of the second clock.

Figure C.17.30 illustrates clock expressions. Junction instants are represented by small circles, and the coincidence 
relation by red edges between junction instants.

Figure C.3 - Examples of clock expressions

C.3.1.5 ClockRelation

A ClockRelation specifies a constraint among clocks. This constraint imposes relations between instants of those clocks.

Generalizations

• AbstractConstraint (from CCS)

Associations

• anonymousClocks: ClockExpression [0..*] 
references clock expressions involved in the relation. They are called anonymous clocks because 
they are not identified clocks, but clock expressions specifying an unnamed clock. The clock 
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expressions are owned by this ClockRelation.

• clocks: Clock [0..*]references clocks involved in the relation.

Attributes

• None

Semantics

A ClockRelation specifies a constraint among clocks. This constraint imposes relations (coincidence or precedence) 
between instants of those clocks. 

Constraints

[1] A ClockRelation constrains at least two clocks or anonymous clocks.

clocks->union(anonymousClocks)->size( ) >= 2 

Examples of ClockRelation

A ClockRelation is a relational dependency between instants of clocks. This is a more general concept than 
ClockExpression which is a functional dependency. A ClockRelation imposes a partial ordering between the instants of 
the clocks. In what follows, ClockReference denotes either a Clock or a ClockExpression. 

The following clock relations constrain a pair of ClockReferences.

• Periodicity imposes that there exists an integer p such that between each pair of successive instants of a 
ClockReference, there exist p instants of the other ClockReference.

• Sporadicity imposes that there exists an integer g such that between each pair of successive instants of a 
ClockReference, there exist at least g instants of the other ClockReference.

• Subclocking imposes that there exists an injective mapping from the instants of one ClockReference onto the instants 
of the other ClockReference, such that this mapping preserves the instant ordering. This relation is a weak form of the 
ClockFiltering without an imposed filter.

• Equality is a strong relation: there exists a one-to-one mapping between instants of the two ClockReferences, and this 
mapping is order preserving.

Some clock relations require a third ClockReference. Each constrained ClockReference must be subclock of this third 
ClockReference.  

• RelativeSpeed imposes that for any integer k, the kth instant of the faster ClockReference precedes the kth instant of 
the slower ClockReference.

• MaximalDrift imposes that there exists an integer m such that for each instant k of the third ClockReference, the 
absolute difference between the numbers of instants preceding instant k in the two ClockReferences is less than or 
equal to m.

Figure C.17.31 illustrates clock relations. Note that junction instants are not necessarily evenly interspaced.
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Figure C.4 - Examples of clock relations

C.3.1.6 InstantReference

An InstantReference specifies an instant of a Clock.

Generalizations

• None

Associations

• clock: Clock [1] references the Clock whose instant is referred to.

Attributes

• index: Integer [1] specifies the index of the instant.

Semantics

An InstantReference specifies an instant of a Clock.

C.3.1.7 InstantRelation

An InstantRelation imposes a precedence or a coincidence constraint between two instants of two different clocks.

Generalizations

• AbstractConstraint (from CCS) 
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Associations

• instantRefs: InstantRefence [2] {ordered} 
specifies  two owned InstanceReferences. The order is significant for the precedence relation. 

Attributes

• relation: InstantRelationKind [1] 
specifies whether the constraint between the constrained instants is a coincidence or a precedence.

Semantics

An InstantRelation imposes a precedence or a coincidence constraint between two instants of two different clocks.

Constraints

[1] The referenced instants belong to different clocks.

instanceRefs.clock->size( ) = 2 

C.3.2 CCSL concrete syntax

CCSL is a purely declarative language for expressing constraints on MARTE's Clocks. The proposed concrete syntax has 
been chosen to be close enough to the English language. It is not normative. 

A character set encoding is assumed, supporting at least the alpha and the numeric classes. Classically, 

alpha ::= ('A' .. 'Z') | ('a' .. 'z')

numeric ::= '0' .. '9'

alphanumeric ::= alpha | numeric

The syntax of the language reflects the domain view defined in the CCS package.

C.3.2.1 Literals

CCSL reuses number literals of VSL

number-literal ::= integer-literal | unlimited-natural | real-literal

integer-literal ::= ('+' | '-')? ( decimal-string | hexadecimal-string |  binary-
string )

unlimited-natural ::= unlimited-string

real-literal ::= ('+' | '-')? ( real-string | scientific-real )

scientific-real ::= real-string 'E' ('+' | '-')? decimal-string

real-string ::= decimal-string ('.' decimal-string)?

hexadecimal-string ::= '0x' ( ('0'..'9') | ('A'..'F') | ('a'..'f') )+

decimal-string ::= ('0'..'9')+

unlimited-string ::= ( ('0'..'9')+ | '*' )
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CCSL adds new literals for BitVectors and BinaryWords. A BitVector is a sequence of bits; a BinaryWord is a pair of 
BitVectors consisting of a prefix and a period. Two concrete notations are provided: a flat notation starting with the `0b´ 
prefix, and notation with repetition factors starting with the `0B´ prefix.

bit::='0' |'1'

bitv::='0b'( (bit)+ ('('(bit)+')')? )|('('(bit)+')') )

rbit::=bit ('^' ('1'..'9') ('0'..'9')* )?

gbitv::=rbit ('.' (rbit))*

gbw::='0B' ( (gbitv)+ ('(' gbitv ')')? ) | ('(' gbitv ')') )

bw ::=bitv | gbw

Examples of BinaryWords:

0b100(1100)  denotes the binary word whose prefix is 100 and whose period is 1100. In turn, this binary word denotes the 
infinite bit vector 100110011001100….1100…

0B1.0^2(1^2.0^2) denotes the same binary word (useful notation when the exponent is big).

0b(100) denotes the binary word whose prefix is empty and whose period is 100.

0b110 denotes the binary word whose prefix is 110 and whose period is empty. Thus, this binary word denotes the finite 
bit vector: 110.

Note that 0b(0) an infinite sequence of 0, not the empty BitVector.

C.3.2.2 Identifiers

ident ::= ( alpha | '_' ) ( alphanumeric )*

In the rules, other non-terminals are can be used in place of ident to point out semantic differences (e.g., clockId , 
itemId…). 

clockId ::= ident

itemId ::= ident

instantId ::= ident

C.3.2.3 Intervals

Intervals are used to specify a range of values. They are borrowed from VSL.

interval ::= ('[' | ']') value-specification '..' value-specification ('[' | ']')

C.3.2.4 Tuples

Tuples are convenient for representing structured data values. They are also from VSL.

tuple ::= '(' (itemId '=')? value_specification (',' (itemId '=')? value_specification )* ')'
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C.3.2.5 Expressions

CCSL does not make full use of the VSL expressions. value_specification from VSL are restricted to Boolean expressions 
(boolExpr), integer expressions (intExpr), real expressions (realExpr).

CCSL adds its own duration expression:

durationExpr::=realExprunitId 'on' clockId

C.3.2.6 Operators

CCSL has relational operators, Boolean operators, and the dot operator used for navigation à la OCL.

relOp ::='<' |'<=' |'=' |'>=' |'<' |'<>' |'in' 

booleanOp::='and' | 'or' | 'xor' | 'not' 

path ::=id ('.' id )*

C.3.2.7 Constraints

A clock constraint consists of a set of conditional statements.

clockConstraint ::= ( conditionalStatement';' )+

conditionalStatement ::= statement (guard)?

statement ::=clockDef | instantRel | clockRel | chronoNFP | instantDef

guard ::='if' boolExpr

clockDef::='Clock' clockId ( 'is' clockExpr )? 

clockRef::=clockId | '(' clockExpr ')'

instantDef::='Instant' instantId ( 'is' instantRef )? 

instantRef::=instantId | ( clockRef '[' intExpr ']' )

| 'instantOf' clockRef 'suchThat' boolExpr

C.3.2.8 ChronoNFP

Time-related non functional properties of ChronometricClocks have been defined in the CCS domain view. The chosen 
syntax is self-explanatory.

chronoNFP::=clockRef 

  (  ( 'hasStability' realExpr ) ('wrt' clockId )?

| ( ',' clockRef 

( ('haveSkew'|'haveDrift') realExpr )

| ('haveOffset' durationExpr )

  ) ('wrt' clockId )? ('at' instantExpr )?

)

  )
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C.3.2.9 Clock expressions

A ClockExpression specifies a clock derived from one or many clock references. 

clockExpr::=clockId 

| ( 'when'  eventExpr  )

| clockRef

  ( ( 'restrictedTo'  boolExpr  )

  | ( 'filteredBy'  bwExpr  )

  | ( 'discretizedBy' realExpr 

('from' realExpr )? ('to' realExpr )? )

  | ( 'delayedBy'  intExpr  )

  | ( 'followedBy' | 'inter' | 'minus' | 'sampledTo' )

clockRef

  )

C.3.2.10 Clock relations

The ClockRelations have been defined in the CCS domain view. 

clockRel::=clockRef 

  (( ('isPeriodicOn' clockRef ('period' realExpr )?)

| ('isSporadicOn' clockRef ('gap' realExpr )?)

| ( ( 'isFinerThan' |'isCoarserThan' ) clockRef )

| ( ( 'isFasterThan' |'isSlowerThan' ) clockRef )

| ( ',' clockRef 'haveMaxDrift' intExpr )

| ( '=' clockRef )

| ( '#' clockRef )

| ( 'alternatesWith' clockRef )

| ( 'hasSameRateThan' clockRef )

  )

C.3.2.11 Instant relations

The reference to an instant of a given Clock is made using the at operation.

instant::=clockId '.' 'at' '(' intExpr ')'

instantRel::=instantRef 

  ( 'coincidentWith'  | ('strictly')? 'precedes' )

  instantRef

Periodicity and Sporadicity are respectively denoted by isPeriodicOn and isSporadicOn. The optional real expression 
allows the user to specify the period or the minimal gap between successive instants of the first clock with respect to the 
second. 

Subclocking is denoted by isCoarserThan. The converse is also offered if b isCoarserThan a, then a isFinerThan b. b is a 
subclock of a, and a is a superclock of b. 
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RelativeSpeed is expressed by isFasterThan, with the converse relation isSlowerThan.

Equality is simply denoted by the equality symbol.

The maximalDrift relation being symmetric, the adopted syntax is a pair of clock references followed by haveMaxDrift. 
This yields an integer value which is constrained.
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Annex D:  Normative MARTE Model Libraries 
          (MARTE_Library) 

D.1 MARTE Model Library for Primitive Types
This section defines a model library of MARTE primitive types (Figure D.1) that includes predefined operations 
commonly used in the real-time and embedded system domain.

Figure D.1 - MARTE Primitive types and their operators

For each operation the signature and a description of the semantics is given in the following sub-headings. Within the 
description, the reserved word 'result' is used to refer to the value those results from evaluating the operation. Note that 
all the defined operations are static.

« modelLibrary »
MARTE_Library::MARTE_ Primit iveTypes

+(r:  Real):  Real
-(): Real
* (r: Real): Real
/(r: Real): Real
abs(r:  Real): Integer
>(r:  Real):  Boolean
<(r:  Real):  Boolean
>= (r: Real): Boolean
<= (r: Real): Boolean
== (r: Real): Boolean
<> (r: Real): Boolean

« primit ive »
Real

+(r:  Real):  Real
- (): Real
>(dt: DateTime): Boolean
<(dt: DateTime): Boolean
>=(dt:  DateTime): Boolean
<=(dt:  DateTime): Boolean
== (dt:  DateTime): Boolean
<> (dt:  DateTime): Boolean

« primit ive »
DateTime

+(i : Integer):  Integer
-(): Integer
* (i: Integer):  Integer
/(i:  Integer):  Integer
>(i : Integer):  Boolean
<(i : Integer):  Boolean
>= (i: Integer):  Boolean
<= (i: Integer):  Boolean
== (i: Integer):  Boolean
<> (i: Integer):  Boolean
mod(i: Integer):  Integer

« primitive »
Integer

concat (s : String): String
== (s: String): Boolean
<> (s: String): Boolean

« primit ive »
String

or (b: Boolean):  Boolean
xor(b: Boolean): Boolean
and(b: Boolean ):  Boolean
not():  Boolean
== (b: Boolean):  Boolean
<> (b: Boolean):  Boolean

« primit ive »
Boolean

+(un: UnlimitedNatural): UnlimitedNatural
-(): Integer
*(un: UnlimitedNatural):  UnlimitedNatural
/(un: UnlimitedNatural):  Real
>(un: UnlimitedNatural): Boolean
<(un: UnlimitedNatural): Boolean
>=(un: UnlimitedNatural):  Boolean
<=(un: UnlimitedNatural):  Boolean
==(un: UnlimitedNatural):  Boolean
<>(un: UnlimitedNatural):  Boolean
mod(un: UnlimitedNatural):  Integer

« primitive »
UnlimitedNatural
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D.1.1 Real

The standard type Real represents an approximation to the mathematical concept of real. Note that Integer is a subclass of 
Real, so for each parameter of type Real, you can use an integer as the actual parameter.

D.1.2 Integer

The standard type Integer represents the mathematical concept of integer.

D.1.3   Unlimited Natural

The standard type Unlimited Natural represents the mathematical concept of Natural including the infinite value.

+ (r : Real) : Real value of the addition of self and r.

- () : Real negative value of self.

* (r : Real) : Real value of the multiplication of self and r.

/ (r : Real) : Real value of self divided by r.

abs() : Real absolute value of self.

< (r : Real) : Boolean true if self is less than r.

> (r : Real) : Boolean true if self is greater than r.

<= (r : Real) : Boolean true if self is less than or equal to r.

>= (r : Real) : Boolean true if self is greater than or equal to r.

<> (r : Real) : Boolean true if different to r.

== (r : Real) : Boolean true if equal to r.

+ (i : Integer) : Integer value of the addition of self and i

- () : Integer negative value of self

* (i : Integer) : Integer value of the multiplication of self and i.

/ (i : Integer) : Real value of self divided by i

< (i : Integer) : Boolean true if self is less than i.

> (i : Integer) : Boolean true if self is greater than i.

<= (i : Integer) : Boolean true if self is less than or equal to i.

>= (i : Integer) : Boolean true if self is greater than or equal to i

<> (i : Integer) : Boolean true if different to i

== (i : Integer) : Boolean true if equal to i

mod (i : Integer) : Integer true modulo of self and i
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D.1.4 String

The standard type String represents strings, which can be both ASCII and Unicode.

D.1.5 Boolean

The standard type Boolean represents the common true/false values.

D.1.6 DateTime

Datetime defines an instant of time in calendar format.

+ (un : UnlimitedNatural) : UnlimitedNatural value of the addition of self and un

- () : Integer negative value of self.

* (un : UnlimitedNatural) : UnlimitedNatural value of the multiplication of self and u

/ (un : UnlimitedNatural) : Real value of self divided by un

< (un : UnlimitedNatural) : Boolean true if self is less than un

> (un : UnlimitedNatural) : Boolean true if self is greater than un.

<= (un : UnlimitedNatural) : Boolean true if self is less than or equal to un

>= (un : UnlimitedNatural) : Boolean true if self is greater than or equal to un

<> (un : UnlimitedNatural) : Boolean true if different to un.

== (un : UnlimitedNatural) : Boolean true if equal to un

mod (un : UnlimitedNatural) : Integer true modulo of self and i

concat(s : String) : String concatenation of self and s

<> (s : String) : Boolean true if different to s.

== (s : String) : Boolean true if equal to s.

or (b : Boolean) : Boolean true if either self or b is true

xor (b : Boolean) : Boolean true if either self or b is true, but not both

and (b : Boolean) : Boolean true if both self and b are true

not () : Boolean true if self is false.

<> (b: Boolean) : Boolean true if different to b

== (b: Boolean) : Boolean true if equal to b
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D.2 MARTE model library for extended datatypes
This section defines the complete set of MARTE datatypes that use the UML profiles for NFP and VSL. In figure D.1, we 
show the whole architecture of extended data types and the applied profiles.

Figure D.2 - Structure of the MARTE time model library

+ (r : Real) : Real value of the addition of self and r, after converting 
DateTime to real.

- (r : Real) : Real value of the subtraction of r to self, after converting 
DateTime to real

< (dt : DateTime) : Boolean true if self is less than dt.

> (dt : DateTime) : Boolean true if self is greater than dt.

<= (dt : DateTime) : Boolean true if self is less than or equal to dt

>= (dt : DateTime) : Boolean true if self is greater than or equal to dt.

<> (dt : DateTime) : Boolean true if different to dt.

== (dt : DateTime) : Boolean true if equal to dt

« modelLibrary »
MARTE_Library: :
BasicNFP_Types

« modelLibrary»
MARTE_Library: :

MARTE_Primit iveTypes

« modelLibrary»
MARTE_Library: :

MARTE_DataTypes

« modelLibrary »
MARTE_Library: :

MeasurementUnits

« import »

« import »

« model library »
MARTE_Library::
GRM_Basic_types

« import »

« profile»
VSL

« profile»
NFPs

apply apply

apply

apply

« import »

« import »
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The following four figures show the internals of the concerned four packages. The semantics and usage of the pre-defined 
datatypes is stated in each of the chapter that uses them.

Figure D.3 - MARTE library of measurement units

« modelLibrary »
MARTE_Library::MeasurementUnits

«unit» s
«unit» tick
«unit» ms {baseUnit= s, convFactor=0.001}
«unit» us {baseUnit=ms, convF actor=0.001}
«unit» min {baseUnit=s , convFactor=60}
«unit» hrs  {baseUnit=min, convFactor=60}
«unit» dys {baseUnit=hrs,  convFactor=24}

« enumeration »
TimeUnitKind

« unit » bits
« unit » By tes  {baseUnit=bits, convFac tor=8}
« unit » KB {baseUnit=Bytes, convFactor=1024}
« unit » MB {baseUnit=KB, convFactor=1024}
« unit » GB {baseUnit=MB, convFactor=1024}

« enumerat ion »
DataSizeUnitKind

« unit » b/s
« unit » Kb/s {baseUnit=b/s,  convFactor=1E3}
« unit » Mb/s  {baseUnit=b/s, convFactor=1E6}

« enumerat ion »
DataTxRateUnitKind

« unit » Hz
« unit » KHz {baseUnit=W, convFactor=1E3}
« unit » MHz {baseUnit=W, convFactor=1E6}
« unit » GHz {baseUnit=W, convFactor=1E9}
« unit » rpm {baseUnit=W, convFactor=0.0167}

« enumerat ion »
FrequencyUnitKind

« unit » W
« unit » mW {baseUnit=W, convFactor=1E-3}
« unit » KW {baseUnit=W, convFac tor=1E3}

« enumeration »
PowerUnitKind

« unit » J
« unit » kJ {baseUnit=J, convFactor=1E3}
« unit » Wh {baseUnit=J, convFactor= 2.778E-4}
« unit » kWh {baseUnit=Wh, convFactor=1E3}
« unit » mWh {baseUnit=Wh, convFactor=1E-3}

« enumeration »
EnergyUnitKind

« unit » mm2
« unit » um2 {baseUnit=bits, convFactor=1E-6}

« enumeration »
AreaUnitKind

« unit » m
« unit » cm {baseUnit=m, convFactor=1E-2}
« unit » mm {baseUnit=bits , convFac tor=1 E-3}

« enumerat ion »
LengthUnitKind
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Figure D.4 - MARTE library of general data-types

« modelLibrary »
MARTE_Library::MARTE_DataTypes

« primit ive »
VSL_Expression

vectorElem: Integer [0 ..*]

« dataType»
« collectionType»

{ collectionAttr ib =  vectorElement }
IntegerVector

matrixElem: IntegerVec tor [0..* ]

« dataType»
« collect ionType»

{  collectionAttrib = matrixElement }
IntegerMatrix

==(u:  UtilityType):Boolean
<(u:  Ut ilityType):Boolean
>(u:  Ut ilityType):Boolean
<=(u:  UtilityType):Boolean
<>(u:  UtilityType):Boolean
>=(u:  UtilityType):Boolean

« dataType»
UtilityType

vectorElement: T [0..k]

« dataType»
« collect ionType»
{  collectionAttr ib = vectorElement }

Array

T, k: Str ingExpression= *

bound: T [2]

« dataType»
« intervalType»

{  intervalAttrib = bound }
Interval

T: Str ingExpression

s implex
half-duplex
full-duplex

« enumerat ion »
TransmModeKind

bound: Integer [2]

« dataType»
« intervalType»

{ intervalAttr ib = bound }
IntegerInterval
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Figure D.5 - MARTE library of pre-declared NFP types

« modelLibrary »
MARTE_Library::BasicNFP_Types

unit : TimeUnitKind
clock:  String
precision : Real

« dataType»
« nfpType»

{  unitAttrib= uni t }
NFP_Duration

unit : DataSizeUnit Kind
precision:  Real

« dataType»
« nfpType»

{ uni tAttrib= unit }
NFP_DataSize

value:  Real

« dataType»
« nfpType»

{  valueAttrib= v alue }
NFP_Real

value: Boolean

«dataType»
« nfpType»

{  valueAttrib = value }
NFP_Boolean

value: St ring

« dataType»
« nfpType»

{ valueAttr ib = value }
NFP_String

value:  I nteger

« dataType»
« nfpType»

{  v alueAttrib = v alue }
NFP_Integer

value : Unlim itedNatural

« dataType»
«nfpType»

{ valueAttrib= value }
NFP_Natural

value: DateTime

« dataType»
« nfpType»

{  v alueAttrib = v alue }
NFP_DateTime

unit:  FrequencyUnitKind
precision: Real

« dataType»
« nfpType»

{  unitAttrib = unit }

NFP_Frequency

unit:  PowerUnitKind
precision: Real

« dataType»
«nfpType»

{ unitAttr ib= uni t }
NFP_Power

unit: DataTxRateUnitKind
precision: Real

« dataType»
« nfpType»

{ unitAttrib= unit }
NFP_DataTxRate

unit : EnergyUnitKind
precision:  Real

« dataType»
« nfpType»

{ uni tAttr ib = unit }

NFP_Energy

unit:  LengthUnitKind
precision : Real

«dataType»
« nfpType»

{  unitAttr ib = uni t }

NFP_Length

unit : AreaUnitKind
precision : Real

« dataType»
« nfpType»

{  unitAttrib= uni t }

NFP_Area

period : NFP_Duration
jit ter:  NFP_Duration
phase : NFP_Duration

« dataType»
« tupleType»

PeriodicPattern

distribut ion:  NFP_CommonType

« dataType»
« tupleType»

AperiodicPattern

phase :  NFP_Durat ion
interarrivals [ *]:  NFP_Duration

« dataType»
« tupleType»

IrregularPattern

minInterarrival: NFP_Duration
maxInt erarrival: NFP_Durat ion
jitter: NFP_Duration

« dataType»
« tupleType»

SporadicPattern

minI nterarrival:  NFP_Duration
maxInterarrival: NFP_Duration
minEventInterval:  NFP_Durat ion
maxEvent Interval: NFP_Duration
burstSize:  NFP_Integer

« dataType»
« tupleType»
BurstPattern

periodic : PeriodicPattern
aperiodic : AperiodicPattern
sporadic : SporadicPattern
burst: BurstPat tern
irregular :  I rregularPat tern
closed: ClosedPattern

« dataType»
« choiceType»
ArrivalPattern

population:  NFP_Integer
extDelay: NFP_Duration

« dataType»
«tupleType»

ClosedPattern

est
meas
calc
req

« enumeration»
SourceKind

expr: VSL_Expression
source:  SourceKind
statQ:  Stat ist icalQualifierKind
dir : Direct ionKind

« dataType»
« nfpType»

{ exprAttr ib = expr  }
NFP_CommonType

max
min
mean
variance
range
percent
distrib
determ
other

« enumeration»
StatisticalQualifierKind

incr
decr

« enumeration»
DirectionKind

unit:  St ring= %

«dataType»
« nfpType»

{ unitAttrib = unit }

NFP_Percentage

min: Real
max: Real
unit : TimeUnitKind
clock:  String
precision:  Real

« dataType»
« nfpType»

{  unitAttrib= unit }

NFP_BoundedDuration
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D.3 MARTE model library for time
This section provides model elements related to Time, gathered in two model libraries (Figure D.7). The 
TimeTypesLibrary library is used in the Time profile, the TimeLibrary is for users.

Figure D.6 - Structure of the MARTE time model library

D.3.1 TimeTypesLibrary library

This package contains enumerations used in the Time profile (Figure D.8). TimeNatureKind is an enumeration type that 
defines literals used to specify the discrete or dense nature of a time value. TimeInterpretationKind is an enumeration type 
that defines literals used to specify the way to interpret a time expression: either as a duration or as an instant.

Figure D.7 - TimeTypesLibrary library

D.3.2 TimeLibrary

The TimeLibrary library (Figure D.9) provides enumerations related to time and facilities for using the ideal chronometric 
time (i.e., the time referenced in physical laws).

TimeUnitKind contains the main chronometric time units. s (second) is an SI unit. Other units are derived units. All the 
enumeration literals are stereotyped by clockUnit. 

LogicalTimeUnitKind is a special enumeration which contains one enumeration literal only. This literal is tick. 

<<modelLibrary>>
TimeTypesLibrary

<<profile>>
Time

<<modelLibrary>>
TimeLibrary

<<import>> <<apply>>

 d iscrete
 d ense

< <e numeration> >
TimeNature Kind

<<modelL ibr ary>>
TimeTypesLibr ary

d uration
in stant

<< enume ration>>
TimeInter pre tationKind
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TimeStandardKind defines literals used to specify the standard "systems of time". The meaning of the acronyms is given 
below

• GPS General Positioning System, not adjusted for leap seconds

• Local Local Time

• Sidereal Sidereal Time

• TAI International Atomic Time scale, a statistical timescale based on a large number of atomic clocks 

• TCB Barycentric Coordinate Time

• TCG Geocentric Coordinate Time

• TDB Barycentric Dynamical Time

• TT Terrestrial Time

• UT0 Universal Time 0 

• UT1 Universal Time 1

• UTC Coordinated Universal Time

Figure D.8 - Detailed model library of TimeLibrary

<<modelLibrary>>
TimeLibr ary

TAI
UT0
UT1
UTC
Local
TT
TDB
TCG
TCB
Siderea l
GPS

<<enume ration>>
TimeStandardKind

currentT ime( ):  Rea l

< <clo ckTyp e> >
{ nature =  de nse, unitTyp e =  T imeUni tKind,

getTime =  curre ntT ime  }
IdealC lock

<<clock>>
{ u nit = s }

idealC lk:Idea lClock

«unit » s
«unit » ms  {baseUni t=s,  convFact or=0.001}
«unit » us  {baseUnit =ms,  convF ac t or=0. 001}
«unit » ns  {baseUnit =us ,  convF ac t or=0.001}
«unit » min {baseUnit=s ,  convF ac t or=60}
«unit » hrs  {baseUnit=m in,  conv Fact or=60}
«unit » dys  {baseUnit=hrs , conv Fact or=24}

« enumera tion»
TimeU nitKind

<<un it>>  tick

<<enumeration> >
LogicalTimeUnitKind

value : Rea l
expr: C locked Va lueSpecifi cation
unit:  TUK
onC lock: Strin g

< <tuple Type> >
TimedValue Ty pe

TUK

< <primitiv e>>
C lockedValue Spec ification

start
f inish
send
re cei ve
consume

< <enumer ation>>
EventKind
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The IdealClock and its instance idealClk model the abstract and ideal time which is used in physical laws. It is a dense 
time. idealClk should be imported in models that refer to chronometric time. TimedValueType is a templated data type. 
The template parameter is an enumeration which contains time units.

The EventKind enumeration contains literals that may characterize events: events related to a behavior execution (start 
and finish), and events related to a request (send, receive, and consume).

D.4 MARTE model library for GRM

Figure D.9 - Details of the MARTE model library for GRM

D.5 MARTE model library for RTOSs

D.5.1 OSEK/VDX OS

D.5.1.1 Overview

OSEK/VDX is the result of an harmonised specification between both a German automotive project named OSEK 
("Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug" (English: Open Systems and the 
Corresponding Interfaces for Automotive Electronics)) and a French one named VDX (Vehicle Distributed eXecutive). It 
aim to provide to the automotive industry a standard for an open-ended architecture for distributed control units in 
vehicles 

The open architecture introduced by OSEK/VDX comprises these three main areas:

• OSEK COM : Communication (data exchange within and between control units)

• OSEK OS : Operating System (real-time execution of ECU software and base for the other OSEK/VDX modules)

• OSEK NM : Network Management (Configuration determination and monitoring)

« model library »
MARTE::MARTE_Library::

GRM_Basic Types

EarliestDeadlineFirst
FIFO
FixedPriority
LeastLaxi tyFirst
RoundRobin
TimeTableDriven
Undef
Other

« enumeration »
SchedPolicyKind

edf: EDFParameters
fp: FixedPriorityParam eters
poll ing: Pool ingParameters
server: Periodic ServerParameters

« dataType »
« choiceType »

SchedParameters

FIFO
NoPreemption
PriorityCeiling
PriorityInheri tance
Stac kBased
Undef
Other

« enumeration »
ProtectProtocolKind

deadline: NFP_Duration

« dataType »
« tupleType »

EDFParameters

priority: In teger

« dataType »
« tupleType »

FixedPrior ityParameters

kind: Periodic Serv erKind
backgroundPriority : Integer
initialBudget: NFP_Duration
replen ishPeriod: NFP_Duration
maxPendingReplenish : Integer

« dataType »
« tupleType »

PeriodicServerParameters

period: NFP_Duration
ov erhead: NFP_Duration [0..* ]

« dataType »
« tupleType »

PoolingParameters

Sporadic
Deferrable
Undef
Other

« enumeration »
PeriodicServerKind
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We mainly focus on OSEK OS 2.2.2 in this section. 

The specification of the OSEK operating system is to represent a uniform environment, which supports efficient 
utilization of resources for automotive control unit application software. The OSEK operating system is a single processor 
operating system. It describes a static RTOS where all kernel objects are created at compile time. 

D.5.1.2 Osek/VDX Model library

Library Overview

Figure D.10 - OSEK/VDX library overview

Generic Data Type package

Figure D.11 - OSEK/VDX generic dataType package

ConcurrencyCore
(OSEK/VDX_Platform.Osek/VDXLibrary.Concurrency)

ConcurrencyDataType
(OSEK/VDX_Platform.Osek/VDXLibrary.Concurrency)

Concurrency
(OSEK/VDX_Platform.Osek/VDXLibrary)

<<modelLibrary>>
Osek/VDXLibrary

(OSEK/VDX_Platform)

OsekDataType
(OSEK/VDX_Platform.Osek/VDXLibrary)

InteractionCore
(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction)

InteractionDataType
(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction)

Interaction
(OSEK/VDX_Platform.Osek/VDXLibrary) System

(OSEK/VDX_Platform.Osek/VDXLibrary)

<<import>> <<import>><<import>>

<<import>><<import>>

OsekDataType
(OSEK/VDX_Platform.Osek/VDXLibrary)

<<dataType>>
appModeType

<<primitive>>
UINT64

<<primitive>>
UINT32

<<primitive>>
FLOAT

<<primitive>>
INT64

<<dataType>>
t ickRefType

<<dataType>>
tickType

<<dataType>>
statusType

<<primitive>>
INT32
A UML Profile for MARTE, Beta 1        441



Concurrency package

Figure D.12 - OSEK/VDX ConcurrencyDataType package

ConcurrencyDataT ype
(OSEK/VDX_Platform.Osek/VDXLibrary.Concurrenc y)

<<dataType>>
taskType

<<enumeration>>
SCHEDULE

FULL
NON

<<dataType>>
taskRefType

<<dataType>>
alarmType

<<enumeration>>
AlarmActionKind

ALARMC ALLBAC K

ACTIVATETASK
SETEVENT

<< dataType>>
taskStateRefType

<<dataType>>
alarmB aseRefType
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Figure D.13 - OSEK/VDX ConcurrencyCore package

AlarmService

+SetRelAlarm( AlarmID : alarmType, Increment : tickType, Cycle : tickType ) : statusType
+GetAlarm( AlarmID : alarmType, Tick : tickRefType ) : statusType
+DeclareAlarm( AlarmID : alarmType )
+CancelAlarm( AlarmID : alarmType ) : statusType
+GetAlarmBase( AlarmID : alarmType, Info : alarmBaseRefType ) : statusType
+SetAbsAlarm( AlarmID : alarmType, Start : tickType, Cycle : tickType ) : statusType

ConcurrencyCore
(OSEK/VDX_Platform.Osek/VDXLibrary.Concurrency)

<<NotificationResource>>
Event

(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction.InteractionCore)

<<SwMutualExclusionResource>>
Ressource

(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction.InteractionCore)

<<SwMutualExclusionResource>>
Ressource

(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction.InteractionCore)

TaskService

+terminateTask() : statusType
+getTaskID( TaskID : taskRefType ) : statusType
+declareTask( TaskID : taskType )
+getTaskState( TaskID : taskType, State : taskStateRefType ) : statusType
+chainTask( TaskID : taskType ) : statusType
+activateTask( TaskID : taskType ) : statusType
+schedule() : statusType

<<SwSchedulableResource>>
Task

+activation : UINT32{readOnly}
+autostart : boolean{readOnly}
+priority : UINT32{readOnly}
+schedule : SCHEDULE{readOnly}

<<SwSchedulableResource>>
ExtendedTask

<<SwSchedulableResource>>
BasicTask

<<Alarm>>
Alarm

+Action : AlarmActionKind
+Autostart : boolean{readOnly}

Counter

+maxAllowedValue : UINT32
+minCycle : UINT32
+ticksPerBase : UINT32

<<InterruptResource>>
Interrupt

Extended tasks are distinguished from basic tasks by being allowed to use the 
operating system call WaitEvent, which may result in a waiting state. The waiting state 
allows the processor to be released and to be reassigned to a lower-priority task 
without the need to terminate the running extended task.

An ALARM may be used to asynchronously inform or activate a specific task.
<<SwComputingResource>>

suspendServices = 
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Interaction package

Figure D.14 - OSEK/VDX InteractionDataType package

Figure D.15 - OSEK/VDX InteractionCore package

I nte ra c ti onData Ty pe
(OS EK /V DX_ P la tf orm .O se k/V DXL ibra ry .In te ract ion )

<< enum eration>>
Res ource PropertyKind

S TA NDA RD

INT ER NAL
LINK ED <<dataTy pe> >

event MaskRef Type

<< dataT ype>>
even tM askType

<< dataT ype>>
event Type

<<dataTy pe> >
resou rceTyp e

InteractionCore
(OSEK/VDX_Platform.Osek/VDXLibrary.Interaction)

ResourceService

+releaseResource( ResID : resourceType ) : statusType
+declareResource( ResID : resourceType )
+getResource( ResID : resourceType ) : statusType

EventService

+SetEvent( TaskID : taskType, Mask : eventMaskType ) : statusType
+DeclareEvent( EventID : eventType )
+GetEvent( TaskID : taskType, Event : eventMaskRefType ) : statusType
+WaitEvent( Mask : eventMaskType ) : statusType
+ClearEvent( Mask : eventMaskType ) : statusType

<<SwMutualExclusionResource>>
Ressource

+resourceProperty : ResourcePropertyKind [1]

<<NotificationResource>>
Event

+mask : UINT64

<<SwMutualExclusionResource>>
RES_SCHEDULER : Ressource

The event mechanism
• is a means of synchronisation
• is only provided for extended tasks
• initiates state transitions of tasks to and from the waiting state.

<<NotificationResource>>
clearServices = 
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System Package

Figure D.16 - OSEK/VDX System package

D.5.2 ARINC-653

D.5.2.1 Overview

The Apex interface, defined in the ARINC 653 standard, provides avionics application software with the set of basic 
services to access the operating system and other system-specific resources. Its definition relies on the Integrated Modular 
Avionics (IMA) approach.

A main feature of IMA architectures is that several avionics applications (possibly with different critical levels) can be 
hosted on a single, shared computer system. A critical issue is to ensure safe allocation of shared computer resources in 
order to prevent fault propagations from one hosted application to another. This is addressed through a functional 
partitioning of the applications with respect to available time and memory resources. The allocation unit that results from 
this decomposition is the partition.

A partition is composed of processes that represent the executive units (an ARINC partition/process is akin to a Unix 
process/task). When a partition is activated, its owned processes run concurrently to perform the functions associated with 
the partition. The process scheduling policy is priority pre-emptive.

Each partition is allocated to a processor for a fixed time window within a major time frame maintained by the operating 
system. Suitable mechanisms and devices are provided for communication and synchronization between processes (e.g. 
buffer, event, semaphore) and partitions (e.g., ports and channels).

Services of the ARINC 653 Apex interface are provided in the profile.

D.5.2.2 Arinc 653 model library

System
(OSEK/VDX_Platform.Osek/VDXLibrary)

HookService

+PostTaskHook()
+PreTaskHook()
+StartupHook()
+ShutdownHook( Error : statusType )
+ErrorHook( Error : statusType )

OsControlService

+StartOS( Mode : appModeType )
+ShutdownOS( Error  : statusType )

Hook

OsControl
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Library Overview

Figure D.17 - ARINC-653 library overview

Generic Data Type package

Figure D.18 - ARINC-653 SystemDataType package

Time package

Figure D.19 - ARINC-653 Time package

ARINC Library
<<modelLibrary>>

System DataType

Concurrency InteractionTime Error

<<import>><<import>> <<import>> <<import>>

System DataType
(ARINC Library)

<<enumeration>>
QueuingDiscipline_Type

PRIORITY
FIFO

<<enumeration>>
ReturnCode_Type

NOT_AVAILABLE

INVALID_CONFIG
INVALID_PARAM

INVALID_MODE

NO_ACTION
NO_ERROR

TIME_OUT

<<dataType>>
SystemAddress_Type

<<dataType>>
SystemTime_Type

<<dataType>>
MessageArea_Type

<<dataType>>
MessageRange_Type

<<dataType>>
MessageSize_Type

<<dataType>>
Message_addr_type

<<enumeration>>
PortDirection_Type

DESTINATION
SOURCE

TimeService

+timed_wait( dela_time : SystemTime_Type, return_code_type : ReturnCode_Type )
+periodic_wait( return_code : ReturnCode_Type )
+get_time( system_time : SystemTime_Type, retunr_code : ReturnCode_Type )
+replenish( budget_time : SystemTime_Type, retunr_code : ReturnCode_Type )

Time
(ARINC Library)

Time
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Concurrency package

Figure D.20 - ARINC-653 Concurrency package overview

Figure D.21 - ARINC-653 ConcurrencyCore package

Co ncurren cyCore
(ARINC Library.Concurrency)

ConcurrencyDataType
(ARINC Library.Concurrency)

Concurrency
(ARINC Library)

System DataType
(ARINC Library)

<<import>>

<<import>>

ProcessService

+resume( return_code : ReturnCode_Type, id : ProcessId_Type )
+setPriority( return_code : ReturnCode_Type, id : ProcessId_Type, priority : Priority_Type )
+stop( return_code : ReturnCode_Type, id : ProcessId_Type )
+stopSelf()
+unlockPreemption( return_code : ReturnCode_Type, lvl : LockLevel_Type )
+suspendSelf( return_code : ReturnCode_Type, timeout : SystemTime_Type )
+getProcessId( name : ProcessName_Type, id : ProcessId_Type, return_code : ReturnCode_Type )
+createProcess( return_code : ReturnCode_Type, attr : ProcessAttribute_Type, id : ProcessId_Type )
+suspend( return_code : ReturnCode_Type, id : ProcessId_Type )
+start( return_code : ReturnCode_Type, id : ProcessId_Type )
+getProcessStatus( id : ProcessId_Type, status : ProcessStatus_Type, return_code : ReturnCode_Type )
+lockPreemption( return_code : ReturnCode_Type, lvl : LockLevel_Type )

PartitionService

+reportApplicationMessage( return_code : ReturnCode_Type, msg : MessageArea_Type, length : MessageSize_Type )
+getPartitionStatus( status : PartitionStatus_Type, return_code : ReturnCode_Type )
+setPartitionMode( mode : OperatingMode_Type ) : ReturnCode_Type
+createErrorHandler( return_code : ReturnCode_Type, entryPoint : SystemAddress_Type, size : StackSize_Type )
+getErrorStatus( status : ErrorStatusType ) : ReturnCode_Type
+getTime( return_code : ReturnCode_Type, time : SystemTime_Type )
+raiseApplicationError( return_code : ReturnCode_Type, code : ErrorCode_Type, msg : MessageArea_Type, length : MessageSize_Type )

delayServices =
     s
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Figure D.22 - ARINC-653 ConcurrencyDataType package

Interaction package

Figure D.23 - ARINC-653 Interaction package overview

ConcurrencyDataType
(ARINC Library.Concurrency)

<<dataType>>
PartitionStatus_Type

+identifier : PartitionId_Type
+period : SystemTime_Type
+duration : SystemTime_Type
+lockLevel : LockLevel_Type
+operatingMode : OperatingMode_Type

<<dataType>>
ProcessStatus_Type

+attributes : ProcessAttribute_Type
+currentPriority : Priority_Type
+deadlineTime : SystemTime_Type
+processState : ProcessState_Type

<<dataType>>
WaitingRange_Type

+name : Process
+entryPoint : SystemAddress_Type
+stackSize : StackSize_Type
+basePriority : Priority_Type
+period : SystemTime_Type
+deadline : Deadline_Type

<<dataType>>
ProcessAttribute_Type

<<dataType>>
StackSize_Type

<<dataType>>
ProcessId_Type

<<dataType>>
PartitionId_Type

<<dataType>>
Priority_Type

<<dataType>>
LockLevel_Type

<<dataType>>
ProcessName_Type

<<enumeration>>
Deadline_Type

HARD
SOFT

<<enumeration>>
OperatingMode_Type

WARM_START
COLD_START

NORMAL

IDLE

<<enumeration>>
ProcessState_Type

DORMANT

RUNNING
WAITING

READY

CommunicationCore
(ARINC Library.Interaction.Communication)

CommunicationDataType
(ARINC Library.Interaction.Communication)

Communication
(ARINC Library.Interaction)

SynchronizationDataType
(ARINC Library.Interaction.Synchronization)

SycnhronizationCore
(ARINC Library.Interaction.Synchronization)

Synchronization
(ARINC Library.Interaction)

Interaction
(ARINC Library)

<<import>>

<<import>>
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Figure D.24 - ARINC-653 CommunicationCore package (1/2)

BufferService

+getBufferStatus( return_code : ReturnCode_Type, id : BufferId_Type, status : BufferStatus_Type )
+receiveBuffer( return_code : ReturnCode_Type, id : BufferId_Type, timeout : SystemTime_Type, msg : MessageArea_Type, length : MessageSize_Type )
+createBuffer( return_code : ReturnCode_Type, name : BufferName_Type, size : BufferSize_Type, msgSize : MessageSize_Type, discipline : QueuingDiscipline_Type, id : BufferId_Type )
+sendBuffer( return_code : ReturnCode_Type, id : BufferId_Type, msg : MessageArea_Type, length : MessageSize_Type, timeout : SystemTime_Type )
+getBufferId( return_code : ReturnCode_Type, name : BufferName_Type, id : BufferId_Type )

BlackBoardService

+createBlackboard( return_code : ReturnCode_Type, name : BlackboardName_Type, msgSize : MessageSize_Type, id : BlackboardId_Type )
+getBlackboardId( return_code : ReturnCode_Type, name : BlackboardName_Type, id : BlackboardId_Type )
+clearBlackboard( return_code : ReturnCode_Type, id : BlackboardId_Type )
+readBlackboard( return_code : ReturnCode_Type, id : BlackboardId_Type, timeout : SystemTime_Type, msg : MessageArea_Type, length : MessageSize_Type )
+displayBlackboard( return_code : ReturnCode_Type, id : BlackboardId_Type, msg : MessageArea_Type, length : MessageSize_Type )
+getBlackboardStatus( return_code : ReturnCode_Type, id : BlackboardId_Type, status : BlackboardStatus_Type )

CommunicationCore
(ARINC Library.Interaction.Communication)

<<MessageComResource>>
Blackboard

-MAX_NUMBER_OF_BLACKBOARDS : Integer = 256{readOnly}

<<SwInteractionResource>>

<<MessageComResource>>
sendServices = 
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Figure D.25 - ARINC-653 CommunicationCore package (2/2)

Figure D.26 - ARINC-653 CommunicationDataType package

SamplingPortService

+createSamplingPort( return_code : ReturnCode_Type, name : SamplingPortName_Type, size : SamplingPortSize_Type, direction : PortDirection_Type, refreshPeriod : SystemTime_Type, id : SamplingPortId_Type )
+getSamplingPortStatus( return_code : ReturnCode_Type, id : SamplingPortId_Type, status : SamplingPortStatus_Type )
+getSamplingPortId( return_code : ReturnCode_Type, name : SamplingPortName_Type, id : SamplingPortId_Type )
+writeSamplingMessage( return_code : ReturnCode_Type, id : SamplingPortId_Type, msg : MessageArea_Type, length : MessageSize_Type )
+readSamplingMessage( return_code : ReturnCode_Type, id : SamplingPortId_Type, msg : MessageArea_Type, length : MessageSize_Type, validity : boolean )

+receiveQueuingMessage( return_code : ReturnCode_Type, id : QueuingPortId_Type, timeout : SystemTime_Type, maxLength : MessageSize_Type, msg : MessageArea_Type, length : MessageSize_Type )
+sendQueuingMessage( return_code : ReturnCode_Type, id : QueuingPortId_Type, msg : MessageArea_Type, length : MessageSize_Type, timeout : SystemTime_Type )
+getQueuingPortId( return_code : ReturnCode_Type, name : QueuingPortName_Type, id : QueuingPortId_Type )
+getQueuingPortStatus( return_code : ReturnCode_Type, id : QueuingPortId_Type, status : QueuingPortStatus_Type )
+createQueuingPort( return_code : ReturnCode_Type, name : QueuingPortName_Type, size : QueuingPortSize_Type, direction : PortDirection_Type, discipline : QueuingDiscipline_Type, id : QueuingPortId_Type

QueuingPortService

CommunicationCore
(ARINC Library.Interaction.Communication)

<<MessageComResource>>
QueuingPort

<<SwInteractionRes ource>>

<<SwResource>>

<<MessageComResource>>

waitingQueuePolicy = Other

createServices = 

CommunicationDataType
(ARINC Library.Interaction.Communication)

<<dataType>>
SamplingPortStatus_Type

+samplingPortSize : SamplingPortSize_Type
+portDirection : PortDirection_Type
+refreshPeriod : SystemTime_Type
+validity : boolean

<<dataType>>
QueuingPortStatus_Type

+queuingPortSize : QueuingPortSize_Type
+portDirection : PortDirection_Type
+nbMessage : MessageRange_Type
+waitingProcesses : WaitingRange_Type

<<dataType>>
BlackboardStatus_Type

+emptyIndicator : boolean
+messageSize : MessageSize_Type
+waitingProcesses : WaitingRange_Type

<<dataType>>
BufferStatus_Type

+nbMessage : MessageRange_Type
+maxMessage : MessageRange_Type
+messageSize : MessageSize_Type
+waitingProcesses : WaitingRange_Type

<<enumeration>>
EMPTY_INDICATOR_TYPE

OCCUPIED
EMPTY

<<dataType>>
SamplingPortName_Type

<<dataType>>
SamplingPortId_Type

<<dataType>>
SamplingPortSize_Type

<<dataType>>
QueuingPortName_Type

<<dataType>>
QueuingPortId_Type

<<dataType>>
QueuingPortSize_Type

<<dataType>>
BlackboardId_Type

<<dataType>>
BlackboardName_Type

<<dataType>>
BufferId_Type

<<dataType>>
BufferSize_Type

<<dataType>>
BufferName_Type
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Figure D.27 - ARINC-653 SynchronizationCore package

Figure D.28- ARINC-653 SynchronizationDataType package

SemaphoreService

+createSemaphore( return_code : ReturnCode_Type, name : SemaphoreName_Type, currValue : SempahoreValue_Type, maxValue : SempahoreValue_Type, discipline : QueuingDiscipline_Type, id : SemaphoreId_Type )
+getSemaphoreId( return_code : ReturnCode_Type, name : SemaphoreName_Type, id : SemaphoreId_Type )
+signalSemaphore( return_code : ReturnCode_Type, id : SemaphoreId_Type )
+waitSemaphore( return_code : ReturnCode_Type, id : SemaphoreId_Type, timeout : SystemTime_Type )
+getSemaphoreStatus( return_code : ReturnCode_Type, id : SemaphoreId_Type, status : SemaphoreStatus_Type )

EventService

+createEvent( return_code : ReturnCode_Type, name : EventName_Type, id : EventId_Type )
+setEvent( return_code : ReturnCode_Type, id : EventId_Type )
+getEventStatus( return_code : ReturnCode_Type, id : EventId_Type, status : EventStatus_Type )
+resetEvent( return_code : ReturnCode_Type, id : EventId_Type )
+getEventId( return_code : ReturnCode_Type, name : EventName_Type, id : EventId_Type )
+waitEvent( return_code : ReturnCode_Type, id : EventId_Type, timeout : SystemTime_Type )

SycnhronizationCore
(ARINC Library.Interaction.Synchronization)

<<SwMutualExclusionResource>>
Semaphore

<<SwInteractionResource>>
isIntraMemoryPartitionInteraction = false

<<SwMutualExclusionResource>>
mechanism = CountSemaphore
releaseServices = 

Sy nch roniza tionDa taTy pe
(ARI NC L ibra ry .In te ract ion .S ync hro niza tio n)

<<dataTy pe>>
Semaphor eStatus_T ype

+c urrentValue : SempahoreValue_Ty pe
+maximumValue : SempahoreValue_Ty pe
+waitingProces ses  : WaitingRange_Type

<<dataT ype>>
Ev entStatus_T ype

+ev entS tate : Ev entState_Ty pe
+waitingProces ses  : WaitingRange_Type

<<dataType>>
SemaphoreName_Ty pe

<<dataType>>
SempahoreValue_Ty pe

<<dataType>>
Semaphor eId_T ype

<<dataTy pe>>
Ev entN ame_Ty pe

<<dataTy pe>>
Ev entId_T ype

<<enumer ation>>
EventSta te_Type

DOW N
UP
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Error package

Figure D.29 - ARINC-653 Error package

ErrorService

+report_Application_Message( message_addr : Message_addr_type, lenght : MessageSize_Type, return_code : ReturnCode_Type )
+create_error_handler( entry_point : SystemAddress_Type, stack_size : StackSize_Type ) : ReturnCode_Type
+get_error_status( error_status : ErrorStatusType, return_code : ReturnCode_Type )
+raise_error_status( error_code : ErrorCode_Type, message_addr : Message_addr_type, lenght : Error_Message_Size_Type, return_code : ReturnCode_Type )

Error
(ARINC Library)

Error

-MAX_ERROR_MESSAGE_SIZE : Integer = 64{readOnly}

<<dataType>>
ErrorStatusType

+errorCode : ErrorCode_Type
+message : MessageArea_Type
+length : MessageSize_Type
+failedProcessId : ProcessId_Type
+failedAdress : SystemAddress_Type

<<enumeration>>
ErrorCode_Type

APPLICATION_ERROR

MEMORY_VIOLATION
STACK_OVERFLOW

HARDWARE_FAULT

ILLEGAL_REQUEST

DEADLINE_MISSED

NUMERIC_ERROR

POWER_FAIL

<<dataType>>
Error_Message_Size_Type
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Annex E:  Repetitive Structure Modeling (RSM)

E.1 Overview
Application domains such as signal processing, image processing, or mobile devices, usually require intensive data 
computations to be performed, possibly in a parallel way, and with the help of several computation units. In the field of 
embedded systems, we call this kind of systems "intensive computation embedded systems". The purpose of this section 
is to propose high level modeling constructs that enable to take into account this kind of systems. More precisely, it 
describes a compact way to express the regularity of such a system's structure or topology. The structures considered are 
composed of repetitions of structural elements, interconnected via a regular connection pattern. We call this kind of 
structures "repetitive structures".

The proposed mechanisms are oriented toward two aspects:

• The first aspect concerns the possibility to specify the shape of a repetition specified by a multiplicity, and basically 
enables to see the collection of potential link ends represented by a multiplicity as a multidimensional array. The 
purpose is twofold: ease the expression of link topologies, and improve the power of expression of the topology 
description mechanism.

• The second aspect concerns a way to add topological information on relations expressed between design-time entities 
in order to specify the topologies of links that will exist between run-time entities in the context of these relations.

These mechanisms can be used in a common way for:

• Hardware execution platform modeling: in order to express all the available parallelism of the platform precisely and in 
a compact way.

• Application modeling: in order to express the potential parallelism (task and data parallelism) of the application.

• Allocation: Regular temporal and spatial mapping of the application onto the hardware execution platform.

E.2 Domain View

E.2.1 Package overview

The RSM package extends the basic constructs of the MARTE metamodel by providing shaped multiplicities and link 
topologies. Figure E.1 presents the global structure of this RSM package.
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Figure E.1 - Repetitive Structure package

A multiplicity usually enables to determine some instantiation directives about the design time element it is attached to. 
These directives concern the number of elements that can potentially be instantiated at run time. The multiplicity concept 
is well known by UML users. In the UML specification, it is defined as an inclusive interval of non negative integers, 
beginning with a lower bound, and ending with a possibly infinite upper bound. This information is carried by the abstract 
MultiplicityElement concept (which is the common ancestor to Property, StructuralFeature, ConnectorEnd, … concepts). 
It defines the range of allowable cardinalities that a set may assume. 

Figure E.2 - Shape modeling concepts

 
MARTE::Foundat ions

MARTE::RSM

Shape LinkTopology

MARTE::VSL

« merge  »

M ARTE: :Alloc

« mer ge » M ARTE: :M ARTE_Library::
MARTE_Dat aTypes

MA RT E: :F ou nd atio n s::
Mod elElemen t

Sh ape

Mu ltipl icit yElemen t

/upper : U nlimitedNatural [0. .1]
/ lower : Integer [0..1]

shape0. .1

ValueSpecif icatio n

upperValueowningU pper

0..1 0..1

low erValueowningLower
0..1 0..1

« collectio nT ype »
{collect ionAttrib = size}
Shap eSp ecification

size : U nlimitedNatural [0. .*]
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A model element and its associated multiplicity can be seen as a mono dimensional collection of elements. We propose to 
precise this point of view, and to enable specifying a multidimensional shape for this collection: a model element can be 
seen as a multidimensional array of model elements via the shape associated to its multiplicity. The concepts used for this 
shape specification are presented in Figure E.2.

In order to take into account the modeling of link topologies, we introduce the abstract concept of LinkTopology. 
LinkTopology defines an optional set of information that can be associated to a connector. Basically two use cases are 
identified. In the first case, links are expressed between potential instances playing the same role. In the second case, links 
are expressed between potential instances playing different roles. These two use cases lead to the definition of four 
refinements of the LinkTopology concept: InterRepetition and DefaultLink for the first case and Tiler and Reshape for the 
second case. Figure E.3 presents these concepts.

Figure E.3 - Link topology modeling concepts

The design idea is to identify sub-arrays, called patterns, of points inside each array (defined by a shape specification), 
and then to relate the points (i.e. link ends) contained in these patterns. The considered patterns are multidimensional 
arrays themselves described by a shape. We call tile a pattern when it is considered as a set of points of an array. The 
considered tiles are sets of regularly spaced points and the tiles themselves are regularly spaced in the array. The 
description of the regular spacing of the points of a tile is called fitting and the description of the regular spacing of the 
tiles in the array is called paving. The complete description of the tiling of an array by tiles necessitates the description of 
the shape of the pattern, the fitting, the paving, an origin and a repetition space. The repetition space gives the number of 
tiles. It is itself characterized by a shape. The fitting describes the coordinates of the points of the tile in the array 
relatively to a reference point. The paving describes the set of reference points of the tiles relatively to the origin. So the 
origin is the point of index [0, …, 0] of the tile of index [0, …, 0] in the repetition space. The tiling process is described 
by a Tiler having the attributes: origin, a Vector of Integers, fitting, a Matrix of Integers and paving, a Matrix of Integers. 
The points of the tile of index r in the repetition space are enumerated as follows: Given the point of index i in the 
pattern, the coordinates of the corresponding point of in the array is (origin + paving x r + fitting x i) mod array_shape. 

LinkTopology

LinkTopology

DefaultLink

Reshape

patter nShape : Shape::ShapeSpecification
repetitionSpace : Shape::ShapeSpecification

srcTiler
1

targetTiler
1

MATE::CoreElements::
GeneralComponentModel::Connector Alloc: :Allocate

topology 0..1 0..1topology

Tiler

or igin : Library::MARTE_DataTypes::IntegerVector
paving : Library::MARTE_DataTypes::IntegerMatrix
fitting : Library::MARTE_DataTypes::IntegerMatr ix

InterRepetit ion

repetit ionSpaceDependence: MARTE_DataTypes::IntegerVector
isModulo : Boolean
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This formula ensures that the points of the tile are regularly spaced because they are built from the reference point of the 
tile by the linear combination of the column vectors of the fitting matrix; that the reference points of the tiles are regularly 
spaced because they are built by the linear combination of the column vectors of the paving matrix; and that all points of 
the tiles are points of the array thanks to the computation modulo the shape of the array. This is inspired by the Array-OL 
language [1,2,3].

E.2.2 Class description

DefaultLink

The DefaultLink allows specifying a default source or destination for an InterRepetition dependence.

Generalizations

• LinkTopology

Semantics

When some links are not created at run time because of the specification of the InterRepetition topology, a connector with 
a DefaultLink topology can be specified and connected to one end of the connector having the InterRepetition topology. 
It defines a link whenever the other one is not present. This allows specifying default values. 

Constraints

One connector end must be connected to the same connectable element as a connector having an InterRepetition topology. 
The connected elements must have the same shape if specified.

InterRepetition

The concerned systems are composed of the repetition of a single element, such as in a grid or cube topology. Each 
potential instance of this element is connected to other potential instances of the same element. For example, in the case 
of a cyclic grid, each instance is connected to neighbors located at north, south, east and west. The InterRepetition 
topology enables to specify the position of every neighbor of every potential instance of a model element with a 
multidimensional shape. 

Generalizations

• LinkTopology

Attributes

• repetitionSpaceDependence: IntegerVector 
the repetitionSpaceDependence attribute is a translation vector on the space of the 
multidimensional array. It identifies the position of a given neighbor.

• modulo: Boolean [0..1] = false 
the modulo attribute indicates if the translation is applied modulo the size of the multidimensional 
array defined by the shape of the repeated element or not. If the modulo attribute is equals to false, 
the translation is not applied if the target is out of the bounds of the array, and the corresponding 
links won't be created at run time. This allows to model cyclic grids as well as non cyclic ones. 
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Semantics

Each potential instance is implicitly associated to one point of the multidimensional array described by the shape 
associated to the multiplicity of the model element. The coordinates of the neighbor is the addition of the coordinates of 
the considered point and the repetitionSpaceDependence. The considered point is the source of the topology and the 
neighbor the destination.

Constraints

If the connector having an InterRepetition topology connects two ports, these two ports must belong to the same part. The 
repetition space is defined by the multiplicity of that part. If the ports have themselves a multiplicity, the links are 
established between the sets of instances defined by these multiplicities. The connected elements must have the same 
shape if specified.

LinkTopology

Each repeated element has a multidimensional shape. Each point of the multidimensional arrays (identified by the 
multidimensional shapes) corresponds to a potential link end. The mechanism proposed via the LinkTopology concept 
enables to specify in a compact way all the links existing between potential link ends contained in each of the two arrays. 
As a consequence, it enables to identify all the links that will exist at run time.

Semantics

This concept is abstract. Its semantics are detailed by its specializations.

MultiplicityElement

The MultiplicityElement defines an interval of number of potential instances. It is extended to support the definition of 
the shape of the set of the potential instances of the element considered as a multidimensional array of instances.

Attributes

• /upper: UnlimitedNatural [0..1] 
upper bound of the multiplicity.

• /lower: Integer [0..1]  
lower bound of the multiplicity.

• shape: ShapeSpecification [0..1] 
defines the number of dimensions and the size of the dimensions of the multidimensional array of 
the potential instances of the element.

Constraints

The shape of a collection has a meaning only if the number of elements of this collection is fixed (the upper bound of the 
multiplicity interval equals its lower bound). Furthermore the isOrdered attribute of the element has to be set to true in 
order to index the potential instances.

Reshape

This link topology specifies the set of runtime links connecting multidimensional arrays. It defines the tiling of the arrays 
by an identical pattern. It establishes links between tiles of the arrays.
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Generalizations

• LinkTopology

Attributes

• patternShape: ShapeSpecification [1] 
specifies the shape of the pattern used to tile all the arrays.

• repetitionSpace: ShapeSpecification [1] 
defines how many tiles there are.

• srcTiler: Tiler [1]  
specifies the tiling of the source array.

• targetTiler: Tiler [1]  
specifies the tiling of the target array.

Semantics

A Reshape topology defines a repetition space shape and the shape of the pattern (the same for all link ends). A Tiler has 
to be associated to each link end. These Tilers describe how the collection of structural features connected to this end is 
tiled by the tiles. 

ShapeSpecification

A ShapeSpecification is the list of the size of the dimensions of an array.

Attributes

• value: UnlimitedNatural[*] {ordered} defines the shape of an array.

Constraints

At most one dimension of a shape can be infinite.

Tiler

A tiler is used in the case when complex topologies are modeled between different potential entities playing different 
roles. It is based on the tiling of arrays by patterns mechanism. 

Generalizations

• LinkTopology

Attributes

• origin: IntegerVector [0..1] 
The origin is the coordinates of the reference point of the reference tile. When not specified, it 
defaults to the zero vector.

• fitting: IntegerMatrix [0..1] 
The fitting matrix defines the regular spacing of the tile points in the array from the reference 
element of the tile. When not specified, it defaults to the identity matrix. 
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• paving: IntegerMatrix [1] 
The paving matrix defines the regular spacing of the reference elements of the tiles from the origin.

Semantics

This is used for example to express the data parallel repetition of an application component. Such a repetition is 
composed of a repetition component having the repeated component as a part and Tilers connecting the ports of the 
repetition component to those of the repeated part. The number of repetitions (and the shape of the repetition space) is 
specified as the multiplicity (and the shape) of the repeated part. As this repetition space is shared by all the Tilers, such 
a construction establishes links between the tiles of the various ports of the repetition component. Indeed, the tiles of the 
same repetition index are connected to patterns of the same repeated component part.

E.3 UML Representation

E.3.1 Profile Diagrams

This package stereotyped profile defines the stereotypes and data types needed to model repetitive structures. The 
possibility to model the shape of multidimensional collection of elements is provided by the shaped stereotype and the 
specification of the topology of the links between such multidimensional collections is provided by the linkTopology 
abstract stereotype and its specializations. The distribute stereotype provides a way to specify regular allocations of 
multidimensional collections of elements to other multidimensional collections of elements, for example a repetition of 
tasks to a set of processing elements. Figure E.4 presents the Shaped stereotype use to specify the shape of a collection of 
model elements. Figure E.5 presents the data types needed to specify shapes and tiling parameters. Figure E.6 presents the 
stereotypes used to specify the various link topologies for composite structures and figure E.7 presents the link topology 
provided for repetitive allocations, called distributions.

Figure E.4 - Profile diagram for shape modeling

« metaclass »
UML::MultiplicityElement

« profile »
RSM

« stereotype »
Shaped

shape : ShapeSpecification [1]
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Figure E.5 - Model library defining the data types used by the RSM profile

Figure E.6 - Profile diagram for link topology modeling in composite structures

« dataType»
« tup leType »

TilerSpecificat ion
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« metaclass »
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Def ault Link

sr cTiler
1

targetTiler
1

« prof ile »
RSM

« stereotype »
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r epetitionSpaceDependence : IntegerVector [1]
isModulo : Boolean = false

« stereotype »
Tiler

or igin : IntegerVector
paving : IntegerMatrix
fitting : IntegerMatrix
tiler : TilerSpecification

patternShape : ShapeSpecification [1]
repetitionSpace : ShapeSpecification [1]

« stereotype »
Reshape
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Figure E.7 - Profile diagram for distribution modeling

E.3.2 Profile Elements Description

DefaultLink

This stereotype maps the DefaultLink domain element defined on page 414.

DefaultLink specifies a default value for an inter-repetition dependence. When such a dependence would refer to a non-
existent value, the default value is taken.

Extensions

• Connector (fromUML::InternalStructures).

Generalizations

• LinkTopology.

Attributes

• None

Associations

• None

Constraints

[1] One end of the connector has to be connected to the same port than the end of a connector stereotyped 
interRepetition.

Distribute

The Distribute stereotype maps the Reshape domain element defined on page 415 to allocations. It adds support of 
multidimensional distributions to allocations.

A distribute allocation distributes regularly a multidimensional array of elements on another multidimensional array of 
elements. The repartition of the elements is done exactly in the same way as in the reshape connector (see below).

«  s te re o ty pe  »
A ll oc:: A ll oc a te

«  p ro fil e  »
RS M

«  s te re o ty pe  »
Di st rib ut e

p at te rn S ha p e  :  S h ap e S pe cifica tion  [ 1 ]
re p et it io n S pa ce  :  S h ap e S pe cifica tion  [ 1 ]
fro m T ile r : T ile rS p e cif ica tio n  [1 ]
to T ile r  :  T ile rS pe cifica tion  [ 1]
A UML Profile for MARTE, Beta 1        461



Extensions

• Abstraction (from UML::Dependencies)

Generalizations

• Allocate (from MARTE::Alloc)

• LinkTopology

Attributes

• kind: AllocationKind [0..1]  
inherited from MARTE::Alloc::Allocate.

• nature: AllocationNature [0..1] 
inherited from MARTE::Alloc::Allocate.

• patternShape: ShapeSpecification [1] 
specifies the shape of the pattern used to tile both from and to arrays.

• repetitionSpace: ShapeSpecification [1] 
specifies the repetition space.

• fromTiler: TilerSpecification [1] 
specifies the tiling of the from array.

• toTiler: TilerSpecification [1] 
specifies the tiling of the to array.

Associations

• None

Constraints

• None

InterRepetition

The InterRepetition stereotype maps the InterRepetition domain element defined on page 414. It specifies an uniform 
translation in a repetition space.

If the connected ports are directed, then the direction of the translation is from the output port to the input port, else, the 
translation is considered in both directions, allowing specifying undirected or duplex links.

If the connector is directed, the coordinates of the destination are those of the source plus the repetitionSpaceDependence 
vector. This addition is considered modulo the shape of the repetition space if the modulo attribute is true, else some links 
do not exist. In that case, a defaultLink may be specified.

Extensions

• Connector (fromUML::InternalStructures)

Generalizations

• LinkTopology
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Attributes

• repetitionSpaceDependence: MARTE::MARTE_Library::MARTE_DataTypes::IntegerVector [1] 
specifies the translation vector in the repetition space.

• isModulo: Boolean [0..1]= false  
specifies if the translation is taken modulo the shape of the repetition space or not.

Associations

• None

Constraints

[1] Both ends of the connector must be connected to the same component. This component must have a shape that 
defines the repetition space.

[2] The size of the repetitionSpaceDependence has to be the same as that shape as it is a vector in the space defined by 
that shape.

[3] Both connector ends must have the same shape.

LinkTopology (abstract)

The LinkTopology abstract stereotype maps the LinkTopology domain element of page 415.

It allows specifying the topology of the potential link instances linking shaped elements. See the tiler stereotype definition 
below for a full description of the semantics of a reshape connector.

Extensions

• Connector (fromUML::InternalStructures)

• Abstraction (from UML::Dependencies)

Attributes

• None

Associations

• None

Constraints

• None

Reshape

This stereotype maps the Reshape concept of page 415 to assembly connectors. It allows specifying a set of potential 
connector instances between multidimensional arrays of potential port instances.

Extensions

• Connector (fromUML::InternalStructures)
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Generalizations

• LinkTopology

Attributes

• patternShape: ShapeSpecification [1] 
the shape of the pattern used to tile all the arrays.

• repetitionSpace: ShapeSpecification [1] 
defines how many tiles there are.

Associations

• None

Constraints

[1] The reshape stereotype can only be applied to assembly connectors.

[2] A tiler stereotype has to be applied to each connector end to specify how each multidimensional array is tiled.

Shaped

The Shaped stereotype maps the MultiplicityElement domain element defined on page 415.

It enables to provide a multidimensional view of a collection of elements. We allow profile users to specify a value only 
for the shape tag of a shaped MultiplicityElement, without specifying a value for the multiplicity property of the 
MultiplicityElement.

Extensions

• MultiplicityElement (from UML::Kernel)

Generalizations

• None

Attributes

• shape: ShapeSpecification [1] 
allows specifying the shape of a collection (i.e. the number of dimensions and the size of each 
dimension).

Associations

• None

Constraints

[1] If both a multiplicity and its associated shape are specified, then the product of the elements of the sizes of all the 
dimensions must be equal to the value of the multiplicity property.

[2] A shaped stereotype can only be applied on an element with a fixed multiplicity, not an interval. If the multiplicity of 
the element is *, then one of the dimensions of the shape has to be infinite.
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Notation

Instead of using the shaped stereotype, the user can write the shape in place of the multiplicity. Whenever a multiplicity 
is between curly brackets, it has to be understood as a shape specification.

ShapeSpecification

This data type supports the notation of a shape. It is a vector of unlimited naturals. Each element of the collection is the 
size of one dimension of a multidimensional array.

Attributes

• size: UnlimitedNatural [0..*] size of each dimension.

Constraints

[1] At most one element of the collection can be infinite.

Notation

As specified in the Value Specification Language (VSL) annex, the shape is a comma separated collection of unlimited 
naturals between curly brackets, for example: {10, 5, *}.

Tiler

The Tiler stereotype maps the Tiler domain element of page 416.

It expresses how a multidimensional array is tiled by multidimensional tiles. In the case when the tiler stereotype is 
applied to a delegation connector, it connects an external port with a port of an internal part. The shape of the array is 
given by the shape of the external port. The shape of the pattern is given by the shape of the port of the internal part. And 
the shape of the repetition space is given by the shape of this part.

When it is applied to a ConnectorEnd, it belongs to a reshape connector and connects a port of an internal part. The 
shapes of the repetition space and of the pattern are given by tags of the reshape stereotype. The shape of the array is the 
concatenation of the shape of the part and the shape of the port. Indeed, the number of potential instances of the port is 
the product of the multiplicity of the part by the multiplicity of the port. For example the shape of the array of a connector 
end connected to a port of shape {10, 4} (multiplicity: 40) of a part of shape {25} (multiplicity: 25) is {25, 10, 4} 
(multiplicity: 1000).

The points of the tile of index r in the repetition space are enumerated as follows: Given the point of index i in the 
pattern, the coordinates of the corresponding point in the array is (origin + paving x r + fitting x i) mod array_shape.

Extensions

• Connector (from UML::InternalStructures).

• ConnectorEnd (from UML::InternalStructures).

Generalizations

• LinkTopology 
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Attributes

• origin: MARTE_Library::MARTE_DataTypes::IntegerVector [0..1] 
specifies the origin of the reference tile in the array.

• fitting: MARTE_Library::MARTE_DataTypes::IntegerMatrix [0..1] 
specifies how the pattern is mapped to a tile in the array with respect to a reference element.

• paving: MARTE_Library::MARTE_DataTypes::IntegerMatrix [0..1] 
specifies how an index in the repetition space is mapped to the reference point of a tile with  
respect to the reference tile.

• tiler: Tiler [0..1]  
can be use as an alternative to the three previous attributes to specify the origin, fitting and paving 
using a Tiler object.

Associations

• None

Constraints

[1] The tiler stereotype can be applied only to delegation connectors.

[2] It can be applied to connector ends only if they belong to a connector with the reshape stereotype.

[3] The tiler attribute can be used only if the origin, fitting and paving attributes are not specified.

[4] The number of elements of the origin vector, the number of lines of the paving and fitting matrices must be equal to 
the dimension of the array.

[5] The number of columns of the paving matrix must be equal to the dimension of the repetition space and the number 
of columns of the fitting matrix must be equal to the dimension of the pattern.

[6] Notation

[7] The vectors of the paving and fitting matrices are column vectors. For example a {{1},{0},{0}} matrix has to be 
interpreted as the [1 0 0] matrix.

TilerSpecification

This data type supports the notation of a tiler (see the tiler stereotype above for more details on its semantics).

Attributes

• origin: MARTE_Library::MARTE_DataTypes::IntegerVector [0..1] 
specifies the origin of the reference tile in the array. If it is absent, the origin is the zero vector of 
dimension the dimension of the array.

• fitting: MARTE_Library::MARTE_DataTypes::IntegerMatrix [0..1] 
specifies how the pattern is mapped to a tile in the array with respect to a reference element. If it is 
not specified, the fitting matrix is the identity matrix.

• paving: MARTE_Library::MARTE_DataTypes::IntegerMatrix [1] 
specifies how an index in the repetition space is mapped to the reference point of a tile with respect 
to the reference tile.
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Associations

• None

Constraints

• See the Tiler stereotype above

Notation

The notation is as specified in the Value Specification Language (VSL) annex. For example, a tiler specifying a paving of 
a 2D array by blocks of 5 by 10 elements would be specified as {origin = {0,0}, fitting = {{1,0},{0,1}}, paving = {{5, 
0}, {0, 10}}}, or even simply by {paving = {{5, 0}, {0, 10}}}.

E.4 Examples
We propose to illustrate this chapter with the distribution of a repetitive application onto a repetitive hardware 
architecture.

Figure E.82 - D repetition of a FFT component

The application, as described by figure E.8 is the first task of a sonar application. It consists of the repetition of a fast 
Fourier transform on samples recorded by hydrophones distributed around a submarine. This repetition is two-
dimensional: a sliding window on time (128 samples every 32 time steps) and a basic repetition on the 512 hydrophones. 
It consumes a 2D array and produces a 3D array.

FftStage

{512,*}
f : FFT

{512,128,*}

« tiler »
{origin={0,0},
fitting={{0,1}},

paving={{1,0},{0,32}}

« tiler »
{origin= {0,0,0},
fitting ={{0,1,0}},

paving ={{1,0,0},{0,0,1}}}

{128}

{128}
{512,*}
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Figure E.9 - 4x4 cyclic grid of processors example

The hardware architecture, as described by figure E.9, is a SIMD unit built as a cyclic grid of 4 by 4 processors. Each 
elementary processor of the grid is connected to its north, east, south and west neighbors. 

Figure E.10 - Bloc distribution example

The allocation, as described by Figure E.10, distributes the computations by blocs of 32 FFTs on the 16 processors of the 
grid.

« HwISA » {type = SIMD}
SIMDUnit

« HwComputingResource »
p : ElementaryProcw e

s

n

« interRepetition »
{repetitionSpaceDependence ={1,0},

modulo = true}

« interRepetition »
{repetitionSpaceDependence ={0,1},

modulo=true}

{4,4}

« distribute »
{patternShape = {32},
 repetitionSpace = {4,4,*},
 fromTiler = {origin = {0,0},

 fitting = {{1,0}},
 paving={{32,0},{128,0},{0,1}}},

 toTiler = {origin = {0,0},
                fitting = {0,0},
                paving = {{1,0},{0,1},{0,0}}}}

FftStage::f : FFT SimdUnit::p : 
ElementaryProc

{512,*} {4,4}
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Annex F:  Domain Class Descriptions

F.1 Core Elements

F.1.1 Action (from Causality::CommonBehavior)

An Action is the fundamental unit of behavior specification.

Generalizations

• Behavior (from Causality::CommonBehavior)

Associations

• None

Attributes

• None

Semantics

An Action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set 
of outputs, though either or both sets may be empty. Actions are contained in compositeBehaviors, which provide their 
context. CompositeBehaviors provide constraints among actions to determine when they execute and what inputs they 
have.

F.1.2 ActionExecution (from Causality::RunTimeContext)

An ActionExecution is a kind of behaviorExecution that corresponds to an instance of an Action, and consequently 
expresses an atomic piece of behaviorExecution.

Generalizations

• BehaviorExecution (from Causality::RunTimeContext)

Associations

• action: Causality::CommonBehavior::Action [0..1] {subset type} 
type of behavior of which the CompBehaviorExecution is an instance.

Attributes

• None

Semantics

An ActionExecution is a kind of behaviorExecution that corresponds to an instance of an Action, and consequently 
expresses an atomic piece of behaviorExcecution. The context in which an actionExecution is preformed is obtained by 
means of the host association inherited from behaviorExcecution, which  relates the action to its container 
CompBehaviorExecution, and transitively to the instance of the behavioredClassifier in which it is effectively performed.
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F.1.3 AggregationKind (from Foundations)

It is an enumeration type that defines literals used to specify the kind of aggregation between a classifier and its 
properties.

Literals

• none indicates that there is no aggregation, the property is define by itself

• shared indicates that the property is defined by itself and it may be used by one or more classifiers as part 
of their respective specifications.

• composite indicates that the property is owned by one classifier as part of its definition.

F.1.4 Behavior (from Causality::CommonBehavior)

A Behavior defines how a system, or an entity defining a part of it, changes over time.

Generalizations

• ModelElement  (from Foundations).

Associations

• context: Causality::CommonBehavior::BehaviorClassifier [1] 
hods the behaviorClassifier that defines the context in which the behavior is defined.

• Parameter: Causality::CommonBehavior::Parameter [0..*] 
indicades the optional set of parameters whose values characterize the behavior..

Attributes

• None

Semantics

A Behavior defines how a system or entity changes over time. From a modeling point of view, this concept defines the 
behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context classifier. 
It is a specification of how its context classifier as well as the state of the system that is in the scope of the behavior may 
change over time. A behavior may have Parameters whose values may be used for evaluating a behavior. Two kinds of 
Behavior may be defined: CompositeBehavior and Action.

F.1.5 BehavioredClassifier (from Causality::CommonBehavior)

A behavioredClassifier is a kind of classifier that represents the context in which behaviors may be specified.

Generalizations

• Classifier (from Foundations) 
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Associations

• ownedTrigger: Causality::CommonBehavior::Trigger [0..*] 
specifies the trigger or triggers that filter events that may affect the execution of behaviors of the 

classifier.

• ownedBehavior: Causality::CommonBehavior::Behavior [0..*] 
specifies the different behaviors that may expose  and hold the behavioredClassifier.

• mainBehavior: Causality::CommonBehavior::Behavior [0..1] {subset ownedBehaviort} 
specifies the behavior that is launched after creation and initialization of any instance of the 
behavioredClassifier.

Attributes

• None.

Semantics

A behavioredClassifier represents the context in which behaviors may be specified. It exposes concrete behavior 
specifications to illustrate specific scenarios of interest associated with that classifier, such as the start-up scenario. The 
particular,behavior specification used to represent the behavior that starts executing when instances of that classifier are 
created and startedr is called main behavior. For many real-time concurrent systems, this can be for example the behavior 
that initiates the activity of a thread, which continues until the thread is terminated. 

F.1.6 BehaviorExecution (from Causality::RunTimeContext)

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of 
BehavioredClassifiers.

Generalizations

• Instance (from Foundations).

Associations

• host: Causality:: RunTimeContext::CompBehaviorExecution [1] 
is used to designate the context in which the behavior is being executed.

• cause: Causality::RunTimeContext::EventOccurrence [1] 
designates the concrete occurrence of an event that cause the behaviorExecution to take effect. 

Attributes

• None.

Semantics

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of 
BehavioredClassifiers. Hence, they are run-time instances of the behavior and action concepts.
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Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A 
behavior execution specification describes how the states of these instances change over time. Behavior executions, as 
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is 
obtained from the host instance.

In UML2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior 
specification is performed by an instance specification (its host) and is the description of the behavior of this instance. 
Emergent behavior execution specification results from the interaction of one or more participant instance specifications. 
MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the 
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2 
Behavior Performance concept described in the overview section of its common behavior chapter.

On one hand, a behavior execution specification is thus directly caused by the invocation of a behavioral feature of an 
instance specification or by its creation. In either case, it is a consequence of the execution of an action by some related 
classifier instance. A behavior has access to the structural features of its host instance specification.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating 
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly 
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing 
behaviors of the participant instances. This form of behavior is of interest since the behavior that is to be analyzed and 
observed at the system level, in order to predict its timing properties, is normally described as an abstract view of the run-
time emergent behavior due to the combination of the behavior executions of all its constituent parts. 

F.1.7 Classifier (from Foundations)

An abstract concept representing some kind of design-time specification. This concept includes all kinds of descriptors 
such as classifiers, collaborations, data types, etc.

Generalizations

• ModelElement (from Foundations).

Associations

• instance: Instance [0..*] 
indicates the set of run-time instances that are incarnated based on this classifier.

• ownedProperties: Property [0..*] 
holds the possible execution behaviors of the instance.

Attributes

• None

Semantics

In the context of the duality classifier-instance, a classifier represents a generic pattern that atcs as a design-time 
specification to which any instance made from it must conform. This concept includes all kinds of descriptors such as 
classifiers, collaborations, data types, etc. It is generally assumed that every instance element in the domain model may 
have an implicit or explicit classifier. Properties are used to described particular aspects of a Classifier.  
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F.1.8 CompBehaviorExecution (from Causality::RunTimeContext)

A CompBehaviorExecution is a kind of behaviorExecution that corresponds to an instance of a compositeBehavior, and 
consequently is expressed in terms of other  behaviorExecutions.

Generalizations

• BehaviorExecution (from Causality::RunTimeContext).

Associations

• behavior: Causality::CommonBehavior::CompositeBehavior [1] {subset type} 
type of behavior of which the CompBehaviorExecution is an instance.

• exAction: Causality::RunTimeContext::BehaviorExecution[0..1] 
set of internal behaviorExecutions that define the CompBehaviorExecution. They may be 
ActionExecutions or other CompBehaviorExecutions.

• host: CoreElements::Foundations::Instance [1] 
context in which the behavior is being executed. The associated element corresponds to an instance 
of a BehavioralClassifier to which the descriptive behavior belongs.

• invoker: CoreElements::Foundations::Instance [0..1] 
instance responsible for the invocation of the composite behavior execution.

• participant: CoreElements::Foundations::Instance [1..*] 
set of instances that are involved in the execution of the composite behavior.

Attributes

• None

Semantics

A CompBehaviorExecution is a kind of behaviorExecution that corresponds to an instance of a compositeBehavior, and 
consequently may be expressed in terms of other  behaviorExecutions.

The set of participants gives access to the instances that interact to make emerge and are involved in the execution of the 
composite behavior. This set may include the interacting structural features of its host instance specification.

F.1.9 CompositeBehavior (from Causality::CommonBehavior)

A CompositeBehavior is a kind of Behavior that may contain other Behaviors.

Generalizations

• Behavior (from Causality::CommonBehavior)

Associations

• action: Causality::CommonBehavior::Behavior [0..*] 
set of atomic or compositBehaviors used to specify the behavior.
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Attributes

• None

Semantics

A CompositeBehavior is a kind of Behavior that may contain other Behaviors, which in turn may be either composite or 
atomic.

F.1.10 Event (from Causality::CommonBehavior)

An Event is the specification of a kind of change of state that may happen in the modeled system.

Generalizations

• ModelElement (from Foundations)

Associations

• None

Attributes

• None

Semantics

An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are 
often generated as a result of some action either within the system or in the environment surrounding the system.

F.1.11 EventOccurrence (from Causality::RunTimeContext)

An EventOccurrence is an instance of an Event, representing a potential change of state in the modeled system.

Generalizations

• Instance (from Foundations)

Associations

• event: Causality::CommonBehavior::Event [1] {subset type} 
type of event of which the eventOcurrence is an instance.

• effect: Causality::RunTimeContext::BehaviorExecution [0..1] 
concrete instance of a behavior whose execution is an effect of the eventOccurrence. 

Attributes

• None
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Semantics

An EventOccurrence is an instance of an Event. They are used to represent a change of state in the modeled system. 
Event occurrences are often generated as a result of some action or combination of them, either within the system or in 
the environment surrounding the system. 

F.1.12 Instance (from Foundations)

An abstract concept representing some kind of run-time instance that is created based on one or more type specifications 
(descriptors). This concept includes all kinds of instances, including objects, data values, etc. 

Generalizations

• ModelElement (from Foundations)

Associations

• type: Classifier [0..*] 
set of types to which the instance is conformant. These are design-time descriptors that are used to 
specify all the aspects necessary to run this instance

• exBehavior: RunTimeContext::CompBehaviorExecution [0..*] 
holds the possible execution behaviors of the instance.

Attributes

• None

Semantics

In the context of the duality classifier-instance, an instance represents a concrete reification of a classifier. The classifier 
is referred to as the type of the instance. An instance may have multiple types, which can be used either to represent 
different viewpoints of the model element or a composition of partial descriptions, including multiple inheritance for 
example. An instance may expose a number of concrete behaviors at run time; these are expressed by means of a set of 
composite behavior executions.

F.1.13 InvocationOccurrence (from Causality::Communication)

An InvocationOccurrence is a run time instance that represents the start of a communication in transit between a sender 
instance and a receiver instance, through the inquiry of an actionExecution.

Generalizations

• EventOccurrence (from Causality::RunTimeContext)

Associations

• effect: Causality::Communication::Request [1..*] 
event that will be considered the descriptor of the instance represented by the 
terminationOccurrence.

• sender: Foundations::Instance [1] 
instance that starts the invocartion.
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• execution: Causality::RunTimeContext::ActionExecution [1] 
actionExecution that initiates the invocation.

Attributes

• None

Semantics

An InvocationOccurrence is a run time instance that represents the start of a communication in transit between a sender 
instance and a receiver instance, through the inquiry of an actionExecution. This actionExecution, representing the 
invocation of a behavioral feature, is executed by a sender instance resulting in the InvocationOcurrence. The invocation 
event may represent the sending of a signal or the call to an operation. As a result of the invocationOccurrence a Request 
is generated. An InvocationOccurrence may result in a number of requests being generated (as in a signal broadcast).

F.1.14 ModelElement (from Foundations)

Abstract root modeling element.

Generalizations

• None

Associations

• ownedElement: ModelElement [0..*] 
set of other modeling elements that are part of or define the modelElement in which they are 
inserted.

• owner: ModelElement [0..1] 
modeling element to which this belongs.

Attributes

• name: String [0..1] identifies the element.

Semantics

This abstract class defines a root for most of the concepts defined in this specification. It plays a role similar to the 
NamedElement concept in the UML metamodel.  The ownedElement - owner association is used to bring it containing 
capabilities, which can be used to defined composite model elements.

F.1.15 Parameter (from Causality::CommonBehavior)

It is a typed element that may be owned by a behavior.

Generalizations

• ModelElement (from Foundations)

Associations

• type: Classifier [0..1] type of the parameter by means of a classifier.
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Attributes

• None

Semantics

A parameter is a typed element that may be owned by a behavior. Values assigned to parameters are to be consistent with 
its type, and are used to characterize the different scenarios and variations of a behavior.

F.1.16 Property (from Foundations)

It is a typed element that may be owned by a classifier.

Generalizations

• ModelElement (from Foundations)

Associations

• type: Classifier [0..1] type of the property by means of a classifier.

Attributes

• aggregation: AggregationKind [1] = none kind of aggregation used to include the property in a classifier.

Semantics

As the UML homonymous concept a property is a typed element that may be owned by a classifier. It has a multiplicity 
in terms of upper and lower bounds, an aggregation kind and a type. It is used to describe particular aspects of a 
Classifier, by giving to it concrete values at instantiation time. This concept is consistent with the 
UML::Classes::Kernel::Property element of the UML2 metamodel.

F.1.17 ReceiveOccurrence (from Causality::Communication)

A ReceiveOccurrence is a run time instance that represents the reception of a communication in transit between a sender 
instance and a receiver instance.

Generalizations

• EventOccurrence (from Causality::RunTimeContext)

Associations

• cause: Causality::Communication::InvocationOccurrence [1] received request.

• receiver: Foundations::Instance [1] instance that receives the request.

Attributes

• None
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Semantics

A ReceiveOccurrence is a run time instance that represents the reception of a communication in transit between a sender 
instance and a receiver instance. Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, 
which according to the triggers expected may subsequently launch the behaviors of the receiver instance or of any of its 
internal instances. Like in the Common Behaviors Domain Model of UML, two kinds of requests are determined 
according to the kind of invocation occurrence that caused it: the sending of a signal, and the invocation of an operation. 
The former is used to trigger a reaction in the receiver in an asynchronous way without a reply. The latter applies an 
operation to an instance, which may be synchronous or asynchronous and may require a reply from the receiver to the 
sender.

F.1.18 Request (from Causality::Communication)

A Request is an instance of a communication in transit between a calling instance and a called one.

Generalizations

• Instance (from Foundations)

Associations

• effect: Causality::Communication::ReceiveOccurrence [1] 
receiveOccurrence that will handle the reception of the request.

• cause: Causality::Communication::InvocationOccurrence [1] 
invocationOccurrence that originates the request.

• sender: Foundations::Instance [1] 
instance that starts the invocartion.

• receiver: Foundations::Instance [1] 
instance that receives the request.

Attributes

• None

Semantics

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit 
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the 
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature); 
information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and 
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the 
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

Each request is targeted at exactly one receiver instance and caused by exactly one sending instance, but an occurrence of 
an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be the 
same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the 
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The 
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach 
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of 
the  different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.
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F.1.19 StartEvent (from Causality::Invocation)

A StartEvent represents the start of a Behavior.

Generalizations

• Event (from Causality::CommonBehavior)

Associations

• behavior: Causality::CommonBehavior::BehaviorExecution [1] 
behavior whose start is represented by the StartEvent.

Attributes

• None

Semantics

A StartEvent represents the start of a Behavior. The event is tied to the start of the associated behavior.

F.1.20 StartOccurrence (from Causality::Invocation)

A StartOccurrence represents the start of a BehaviorExecution.

Generalizations

• EventOccurrence (from Causality::RunTimeContext).

Associations

• startEvent: Causality::Invocation::StartEvent [1] {subset event} 
event that will be considered the descriptor of the instance represented by the startOccurrence.

• execution: Causality::RunTimeContext::BehaviorExecution [1] 
behaviorExecution whose start is represented by the startOccurrence.

Attributes

• None

Semantics

A StartOccurrence represents the start of a BehaviorExecution. The occurrence is tied to the strart of the associated 
behaviorExecution.

F.1.21 TerminationEvent (from Causality::Invocation)

A TerminationEvent represents the finalization of a Behavior.

Generalizations

• Event (from Causality::CommonBehavior)
A UML Profile for MARTE, Beta 1        479



Associations

• behavior: Causality:: CommonBehavior::BehaviorExecution [1] 
behavior whose termination is represented by the terminationEvent.

Attributes

• None

Semantics

A TerminationEvent represents the finalization of a Behavior. The event is tied to the finalization of the associated 
behavior.

A TerminationOccurrence represents the finalization of a BehaviorExecution.

Generalizations

• EventOccurrence (from Causality::RunTimeContext)

Associations

• endEvent: Causality::Invocation::TerminationEvent [1] {subset event} 
event that will be considered the descriptor of the instance represented by the 

terminationOccurrence.

• execution: Causality::RunTimeContext::BehaviorExecution [1] 
behaviorExecution whose termination is represented by the terminationOccurrence.

Attributes

• None

Semantics

A TerminationOccurrence represents the finalization of a BehaviorExecution. The occurrence is tied to the finalization of 
the associated behaviorExecution.

F.1.22 TerminationOccurrence (from Causality::Invocation)

A TerminationOccurrence represents the finalization of a BehaviorExecution.

Generalizations

• EventOccurrence (from Causality::RunTimeContext)

Associations

• endEvent: Causality::Invocation::TerminationEvent [1] {subset event} 
event that will be considered the descriptor of the instance represented by the 

terminationOccurrence.

• execution: Causality::RunTimeContext::BehaviorExecution [1] 
behaviorExecution whose termination is represented by the terminationOccurrence.
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Attributes

• None

Semantics

A TerminationOccurrence represents the finalization of a BehaviorExecution. The occurrence is tied to the finalization of 
the associated behaviorExecution.

F.1.23 Trigger (from Causality::CommonBehavior)

A Trigger specifies the event and conditions that may trigger a behavior execution.

Generalizations

• ModelElement (from Foundations)

Associations

• event: Causality::CommonBehavior::Event [1] 
event that will be considered to start the associated BehavioredClassifier.

Attributes

• None

Semantics

A Trigger specifies the event and conditions that may trigger a behavior execution. It handles as well any necessary 
constraints on the event to filter out event occurrences not of interest. Indeed, a Trigger is the concept that relates an 
Event to a Behavior that may affect  instances of the behavioral classifier. Triggers specify what can cause execution of 
behaviors (e.g., the execution of the effect activity of a transition in a state machine).

F.2 NFP

F.2.1 AbstractNFP (abstract, from NFP_Nature)

AbstractNFP defines the abstract concept of Non-Functional Property (NFP) as quantitative or qualitative information.

Semantics

A non-functional property (NFP) is also called extra-functional property or even quality of service depending of the 
application domain. It describes how a computing system behaves. 

F.2.2 AnnotatedElement (abstract, from NFP_Annotation)

An annotated model element is a model element with additional annotations implemented by standard modeling 
mechanisms (for instance, the UML profile extension mechanism). An annotated model element describes certain of its 
non-functional aspects by means of NFP annotations.
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Generalizations

· ModelElement (from CoreElements::Foundations).

Associations

• owner: AnnotatedModel [1]modeling  context of the annotated element.

• nfpValue : MARTE::VSL::ValueSpecification [*]set of value annotations associated with non-functional properties.

• nfpDeclaration: NFP [*]set of NFP declarations owned by the annotated element.

Semantics

Annotated Elements are model elements extended by standard modeling mechanisms. For example, some typical 
performance analysis-related annotated elements are: Step (a unit of execution), Scenario (a sequence of Steps), Resource 
(an entity that offers one or more services), Service (offered by a Resource or by a component of some kind). An 
annotated element describes certain of its non-functional aspects by means of NFP value annotations.

F.2.3 AnnotatedModel (abstract, from NFP_Annotation)

An annotated model is a model with additional semantic expressing concepts from a given modeling concern or domain 
viewpoint. An annotated model contains annotated model elements.

Associations

• owns: AnnotatedElement [*]annotated elements owned by the model.

• annotationConcern: ModelingConcern [1..*]modeling concerns for which the model is created.

• ownedRule: NFP_Constraint [*]set of Constraints owned by this model.

Semantics

An annotated model is a model with additional semantic required for a given modeling concern or domain. An annotated 
model may contain annotated model elements.

F.2.4 BasicQuantity (abstract, from NFP_Nature)

Basic quantities are primitive quantities. Many other quantities can be derived out of the combination of the basic 
quantities (see Derived Quantity). Example of basic quantities are length, mass, time, current, temperature and luminous 
intensity. The units of measure for the basic quantities are organized in systems of measures, such as the universally 
accepted Système International (SI) or International System of Units.

Generalizations

· Quantity (from NFP_Nature).
482                 A UML Profile for MARTE, Beta 1



Semantics

Basic quantities are primitive quantities. They may be used to obtain derived quantities. Example of basic quantities are 
length, mass, time, current, temperature and luminous intensity. The units of measure for the basic quantities are 
organized in systems of measures, such as the universally accepted Système International (SI) or International System of 
Units.

F.2.5 ConstraintKind

Kind of constraints qualifies NFP constraints by either required, offered, or contract nature.

Literals

• required

• offered

• constract

F.2.6 DerivedQuantity (abstract, from NFP_Nature)

Derived Quantities (e.g., area, volume, force, frequency) may be obtained from the basic quantities by known formulas.

Generalizations

• Quantity (from NFP_Nature) on page 51.

Associations

• None

Semantics

Derived physical quantities (which are the majority of quantities) are defined by a mathematical expression involving 
either the fundamental (basic) quantities or other derived quantities.

F.2.7 DirectionKind

The direction kind (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed value 
domain of NFPs. 

Literals

• increasing

• decreasing

F.2.8 Measure (abstract, from NFP_Nature)

A Measure is a (statistical) function (e.g, mean, max, min, mean) characterizing the set of sample realizations.
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Associations

• physicalQuantity: Quantity [1] physical magnitude of a measure.

• measurementUnit: Unit [0..1] measurement unit associated with the physical quantity used for expressing a 
measure.

• domain: SampleRealization [1..*] set of sample realizations used for obtaining a measure.

Semantics

A Measure is a (statistical) function (e.g, mean, max, min, median, variance, standard deviation, histogram, etc.) 
characterizing a set of samples realizations. Measures may be computed either directly by applying one function to the set 
of realization values, or by using theoretical functions of the probability distribution given for the respective quantitative 
NFP.

F.2.9 ModelingConcern (from NFP_Annotation)

Concerns are those interests which pertain to the system's development, its operation or any other aspects that are critical 
or otherwise important to one or more stakeholders at a given point of the development process.

Associations

• relevantNfp: NFP [*] 
due to the abstraction involved in the construction of a model, only some NFPs are relevant to a 
certain Modeling Concern. In other words, a given modeling concern uses a set of NFPs which 
establishes the ontology of the domain.

Attributes

• description : String [0..1] 
name of the concern that is expressed by a model. (This name may refer to a profile definition.) 

Semantics

Concerns are those interests which pertain to the system's development, its operation or any other aspects that are critical 
or otherwise important to one or more stakeholders at a given point of the development process.

F.2.10 NFP (from NFP_Declaration)

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a 
value or values. 

Associations

• type : NFP_Type [1] 
NFP_Type that constraints the values of the NFP.

• defaultValue : MARTE::VSL::ValueSpecification [0..1] 
NFP value specification that is evaluated to give a default value for the NFP when an instance of 
the owning Annotated Element is created. 
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Attributes

• direction: DirectionKind [0..1] 
direction attribute (i.e., increasing or decreasing) defines the type of quality order relation in the 
allowed value domain of NFPs. This allows multiple instances of NFP values to be compared wit 
the relation "higher-quality-than" in order to identify what value represents the higher quality or 
importance. 

• statisticalQualifier: StatisticalQualifierKind [0..1] 
statistical qualifier indicates the type of "statistical" measure of a given property (e.g., maximum, 
minimum, mean, percentile, distribution).

Semantics

Functional properties, which are primarily concerned with the purpose of an application (i.e., what it does); and non-
functional properties (NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to 
do it). NFPs are specified by the designer in the models and attached to different model elements.

F.2.11 NFP_Constraint (from NFP_Annotation)

NFP Constraints are conditions or restrictions to modelled elements providing the ability to define if these are of 
"required", "offered", or 'contract" nature. 

Associations

• constrainedElement: AnnotatedElement [*] 
set of Annotated Elements referenced by this NFP Constraint.

• context: AnnotatedModel [0..1] 
Namespace that is the context for evaluating this constraint.

• specification: ValueSpecification [1] 
condition that must be true when evaluated in order for the constraint to be satisfied.

Attributes

• kind: ConstraintKind [0..1] 
tagged definition qualifies NFP constraints by either required, offered, or contract nature.

Semantics

NFP Constraints are conditions or restrictions to modelled elements. Specifically, NFP constraints support textual 
expressions to specify assertions regarding performance, scheduling, and other embedded systems' features, and their 
relationship to other features by means of variables, mathematical, logical, and time expressions.

F.2.12 NFP_Type (abstract, from NFP_Declaration)

A NFP type is a type whose instances are identified only by NFP value specifications. A NFP Type contains specific 
attributes to support the modeling of NFP tuple types.

Generalizations

• TupleType (from VSL::DataTypes) on page 568.
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Associations

• allowedUnit: Unit [*] 
set of measure units valid for the NFP Types.

• defaultUnit: Unit [0..1] 
measure unit valid as a default value for all the value specifications of this NFP type. 

• valueAttribute: UML::Classes::Kernel::Property [1] 
tuple attribute representing the resulting value after evaluating the expression of the data type.

• exprAttribute: UML::Classes::Kernel::Property [0..1] 
tuple attribute representing an expression. MARTE uses the VSL language to define expressions.

• unitAttribute: UML::Classes::Kernel::Property [0..1] 
tuple attribute representing a measurement unit of a data type for physical properties.

• qualifierAttributed: UML::Classes::Kernel::Property [*]  
attributes offering completeness to the value attribute.

Semantics

A NFP Type constrains the values represented by a NFP. If a NFP type has attributes, then instances of that NFP type will 
contain attribute values matching the attributes.

F.2.13 QualitativeNFP (abstract, from NFP_Nature)

Qualitative NFP refer to inherent or distinctive characteristics that may not be measured directly. More specifically, a 
qualitative NFP takes a value from a list of allowed values, where each value identifies a possible alternative.

Generalizations

• AbstractNFP (from NFP_Nature)

Associations

• parameter: AbstractNFP [*] set of parameters of a qualitative NFP.

Semantics

A Qualitative NFP is a non-functional property that is not a quantitative NFP. Especially, a qualitative NFP is not 
physically measurable. In general, a qualitative NFP is denoted by a label representing a high-level of abstraction 
characterization that is meaningful to the analyst and the analysis tools.

F.2.14 QuantitativeNFP (abstract, from NFP_Nature)

Quantitative NFP are measurable, countable, or comparable properties. A given quantitative NFP may be characterized by 
a set of Sample Realizations and Measures.

Generalizations

• AbstractNFP (from NFP_Nature)
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Associations

• measure: Measure [0..*] 
set of measures defining a quantitative NFP.

• realizationValues: SampleRealization [0..*] 
set of sample values used to define a quantitative NFP.

Semantics

A Quantitative NFP is a non-functional property that is measurable, countable, or comparable, and can be represented by 
an amount which is a numerical value.

F.2.15 Quantity (abstract, from NFP_Nature)

A physical property characterizing some aspect of nature that can be measured.

Attributes

• allowedUnits: Unit [*] set of measure units valid for the physical quantity.

Semantics

A physical quantity is either a quantity within physics that can be measured (e.g. mass, volume), or the result of a 
measurement. Physical quantities are usually associated with a set of valid measure units.

F.2.16 SampleRealization (abstract, from NFP_Nature)

A Sample Realization represents a set of values that occur for the quantitative NFP under consideration at run-time.

Associations

• function: Measure [0..*] set of functions applied to a set of values to obtain separated measures.

Semantics

Sample Realizations represent a set of values that occur for the Quantitative NFP under consideration at run-time (for 
instance, measurements collected from a real system or a simulation experiment). A Quantitative NFP may be sampled 
once or repeated times over an extended run. In a cyclic deterministic system, in which each execution cycle has the same 
values, a single sample is sufficient to characterize completely the Quantitative NFP.

F.2.17 StatisticalQualifierKind

A statistical qualifier kind lists the type of "statistical" measure of a given property

Literals

• max

• min

• mean
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• range

• percentile

• distribution

• deterministic

F.2.18 Unit (from NFP_Nature)

A unit defines a quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated.

Associations

• baseUnit: Unit [0..1] 
base unit by which a measurement unit is derived. Basic units of the International System of 
Mesures do not define this attribute.

Attributes

• convFactor: Real [0..1] 
parameter that allows referencing measurement units to other base units by a numerical factor.

• convOffset: Real [0..1] 
parameter that allows referencing measurement units to other base units by applying an offset valu 
to them.

Semantics

A unit defines a quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated. 
A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may 
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to 
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

F.3 Time

F.3.1 F.3.1.ChronometricClock (from TimeAccesses::ChronometricClocks)

A chronometric clock is a clock bound to physical time. Some properties are specific to a clock; others are related to a 
pair of clocks.

Generalizations

• Clock (from TimeAccesses::Clocks)

Associations

• referenceClock: ChronometricClock [0..1]references a chronometric clock against which this clock can be compared.

Attributes

Characteristics inherent in a chronometric clock:
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• /rate: Real [0..1] the reciprocal of the resolution. This is derived.

• stability: Real [0..1] the derivative of the clock rate either against time or against a physical parameter.

• standard: TimeStandardKind[0..1] the time standard on which this chronometric clock relies. 

Pair-wise characteristics of chronometric clocks:

• drift: Real [0..1] the first derivative of the skew

• offset: DurationValue [0..1] the difference between two clocks at a particular instant in time. 

• skew: Real [0..1] the rate of change of the offset (i.e., its first derivative) at a particular instant in time.

Semantics

A chronometric clock is a clock bound to physical time. It can yield a "time reading". Clock characteristics reflect 
imperfections of clocks to accurately follow physical time evolutions.  

F.3.2 Clock (from TimeAccesses::Clocks)

A clock provides access to time.

Generalizations

• AnnotatedElement (from NFPs::NFP_Annotation)

Associations

• acceptedUnits: NFPs::NFP_Nature::Unit [1..*] 
set of units accepted by this clock.

• clockTick: CoreElements::Causality::CommonBehavior::Event [0..1] 
references an event owned by the clock. This event occurs whenever the clock changes its current time.

• defaultUnit: NFPs::NFP_Nature::Unit [1] 
unit attached to the currentTime value of this clock. Subsets Clock::acceptedUnits.

• timeBase: DiscreteTimeBase [1] 
the discrete time base, whose instants correspond to the clock's ticks.

Attributes

• currentTime: Real [1] 
references the current instant value.

• maximalValue: Real [0..1] 
if defined, the clock rolls over when it gets at maximalValue. 

• nature: TimeNatureKind [1] 
specifies whether time values are from a discrete or a dense set.

• resolution: Real [1] = 1.0 
the duration value expressed in defaultUnit between two consecutive ticks of this clock.
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Semantics

A clock provides access to a discrete time base, and possibly to a dense time base, but through a discrete time base. The 
instants of this time base correspond to "ticks" of the clock. A clock associates time values with instants of the time base. 
These values may be from a discrete or a dense set of values. 

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units 
is the defaultUnit, which is attached to the currentTime value.

Clock is an abstract class.

F.3.3 ClockConstraint (from TimeRelatedEntities::ClockConstraints)

A clock constraint constrains two or more clocks.

• Generalizations

• NfpConstraint (from NFPs::NFP_Annotation) 

Associations

• constrainedClocks: Clock[2..*] 
references the clocks on which the constraint applies. Subsets  
NFPs::NFP_Annotation::NfpConstraint::constrainedElement.

• specification: ClockConstraintSpecification[1] 
references the specification of the clock constraint. Redefines 
NFPs::NFP_Annotation::NfpConstraint::specification.

Attributes

• None

Semantics

A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a clock expression.

F.3.4 ClockConstraintSpecification (from TimeRelatedEntities::ClockConstraints)

A value specification that specifies constraints imposed to clocks. 

Generalizations

• None

Associations

• None

Attributes

• None
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Semantics

A value specification that specifies constraints imposed to clocks.  An example of clock constraint specification is that 
two clocks are harmonic with one twice faster than the other. A dedicated language (CCSL: Clock Constraint 
Specification Language) is proposed with MARTE (Annex C).

F.3.5 CoincidenceRelation (from MultipleTimeModels)

A coincidence relation relates junction instants which are coincident.

Generalizations

• TimeInstantRelation (from MultipleTimeModels)

Associations

• coincidentJIs: JunctionInstant [2..*] 
references a set of coincident junction instants. Subsets TimeInstantRelation::relatedJIs.

Attributes

• None

Semantics

A coincidence relation relates junction instants which are coincident. These instants are owned by distinct time bases.

Constraints

[8] All coincident junction instants in a coincidence relation are owned by distinct time bases.

coincidentJIs->forAll( i,j | i<>j implies i.tb <> j.tb )

F.3.6 Delay (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings)

Delay is a special kind of TimedAction that represents a null action lasting for a given duration.

Generalizations

• TimedAction (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings)

Associations

• None

Attributes

• None

Semantics

Delay is a special kind of TimedAction that represents a null action lasting for a given duration. 
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F.3.7 DiscreteTimeBase (from BasicTimeModels)

A DiscreteTimeBase represents an ordered discrete set of instants.

Generalizations

• TimeBase (from BasicTimeModels) 

Associations

• coveringTB: TimeBase[0..1] 
if present, it references the dense time base of which this discrete time base is a discretization.

Attributes

• None

Semantics

A discrete time base represents an ordered set of discrete instants. A discrete time base can be referred to by a clock, and 
thus allows access to the time structure.

Constraints

[1] The nature of a discrete time base is discrete

self.nature = TimeNatureKind::discrete

[2] All instants owned by a discrete time base are junction instants

self.instants->forAll( j |  j.oclIsTypeOf(JunctionInstant) )

F.3.8 DurationIntervalValue (from TimeAccesses::DurationValues)

A duration interval value is defined by a pair of duration values. 

Generalizations

• None

Associations

• maxD: DurationValue [1] 
references the duration value which stands for the maximal value of this duration interval value. 

• minD: DurationValue [1] 
references the duration value which stands for the minimal value of this duration interval value.  

Attributes

• isMinDOpen: Boolean [1] = false 
specifies whether the minimal instant value is in this duration interval value or not. When this attribute is 
true, then the minimal duration value is not in the interval. The default value is false.
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• isMaxDOpen: Boolean [1] = false 
specifies whether the maximal duration value is in the interval or not. When this attribute is true, then the 
maximal duration value is not in the interval. The default value is false.

Semantics

A duration interval value is defined by a pair of duration values. By default a duration interval value is closed (including 
the bound values). When used in a time value specification, a duration interval value designates any duration value of the 
interval (including or not the bound values according to the isMinDOpen and isMaxDOpen attribute values).

Constraints

[1] minD and maxD duration values of this duration interval value have the same onClock clock.

minD.onClock = maxD.onClock

F.3.9 DurationPredicate (from TimeRelatedEntities::TimedConstraints)

DurationPredicate is a predicate on a duration expression.  

Generalizations

• DurationExpression (from VSL::TimeExpressions) 

Associations

• observation: TimedObservation [1..*] references timed observations used in the expression.

Attributes

• None

Semantics

DurationPredicate is a predicate on a duration expression. Note that the expression may involve two 
TimedInstantObservation, say t1 and t2, a TimedDurationObservation, say d, and use "(t1-t2)+d", which effectively 
denotes a duration.

F.3.10 DurationValue (from TimeAccesses::DurationValues)

A duration value is a time value that characterizes a time span measured on its onClock clock. 

Generalizations

• TimeValue (from TimeAccesses::TimeValues) 

Associations

• intervalValue: TimeIntervalValue [1]references the time interval value for which the duration value is determined.

Attributes

• None
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Semantics

A duration value is a time value that characterizes the time span of a time interval measured on its onClock clock. In the 
simple case when the clock has no defined maximalValue, the DurationValue of a TimeIntervalValue is defined by the 
difference between the max and min instant values of this time interval value. When the maximalValue property is 
defined, the DurationValue is defined as the difference modulo maximalValue between the max and min instant values of 
this time interval value.

Constraints

[1] The intervalValue is on the same clock as the duration value

self.onClock = intervalValue.min.onClock

-- note that the same holds for intervalValue.max (constraint [1], page 462)

F.3.11 EventKind (from TimeRelatedEntities::TimedElements::TimeObservations) 

EventKind is an enumeration type that defines literals used to specify the kind of event used in a timed observation.

Literals

• start indicates that the typed elements is the start event of a behavior execution.

• finish indicates that the typed elements is the finish event of a behavior execution.

• send indicates that the typed elements is the sending event of a request.

• receive indicates that the typed elements is the receipt event of a request.

• consume indicates that the typed elements is the start event of the processing of a received request by the receiver.

F.3.12 Instant (from BasicTimeModels)

An instant represents an element of a time base (a point in time). 

Generalizations

• None

Associations

• tb: TimeBase [1] references the owning time base.

Attributes

• ·date:Real [0..1] specifies a value attached to this instant.

Semantics

An instant represents a point in time. It is owned by a time base in which it occupies a unique position with respect to the 
other instants of this time base. 
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F.3.13 InstantPredicate (from TimeRelatedEntities::TimedConstraints)

InstantPredicate is a predicate on an instant expression.

Generalizations

• InstantExpression (from VSL::TimeExpressions)

Associations

• observation: TimedObservation [1..*]references timed observations used in the expression.

Attributes

• None

Semantics

InstantPredicate is a predicate on an instant expression. Note that the expression may involve a TimedInstantObservation, 
say t, a TimedDurationObservation, say d, and use "t+d", which effectively denotes an instant.

F.3.14 InstantValue (from TimeAccesses::TimeValues) 

An instant value is a time value that denotes instants of the time base associated with its onClock clock.

Generalizations

• TimeValue (from TimeAccesses::TimeValues)

Associations

• denotedInstant: JunctionInstant [0..*] 
references junction instants denoted by this instant value. These instants are owned by the time base 
associated with the onClock clock of this instant value.

Attributes

• None

Semantics

An instant value is a time value that denotes junction instants of the time base associated with its onClock clock. When 
the onClock clock has a maximal value, due to clock roll-over, an instant value may denote many instants. 

Constraints

[1] All junction instants denoted by this instant value are owned by the timeBase time base of the onClock clock of this 
time value.

denotedInstant->forAll( j | j.tb = self.onClock.timeBase )
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F.3.15 JuctionInstant (from BasicTimeModels)

A junction instant represents a point in time. All instants owned by a discrete time base are junction instants. Some 
instants of a dense time base may be junction instants 

Generalizations

• Instant (from BasicTimeModels)

Associations

• None

Attributes

• None

Semantics

A junction instant represents a point in time. A junction instant can be referred to by a time instant relation.

F.3.16 LogicalClock (from TimeAccesses::Clocks)

A logical clock provides access to a logical time, that is, a model of time in which only the ordering of instants is 
meaningful. There is no implicit reference to the physical time.

Generalizations

• Clock (from TimeAccesses::Clocks)

Associations

• definingEvent: CoreElements::Causality::CommonBehavior::Event [0..1] 
references an event whose occurrences define the logical instants of this clock: this logical clock 
ticks at each occurrence of the definingEvent.

Attributes

• None

Semantics

A logical clock provides access to a logical time, that is, a model of time in which only the ordering of instants is 
meaningful. There is no implicit reference to the physical time. Logical clocks are often used in conjunction with a time 
structure model accessible through its timeBase property. A logical clock can also be defined by any event (its 
definingEvent). In this case, the logical clock ticks at each occurrence of this event.

F.3.17 MultipleTimeBase (from MultipleTimeModels)

A multiple time base represents a multiform time. It consists of a set of time bases.
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Generalizations

• None

Associations

• nestedMTBs: MultipleTimeBase [0..*] 
set of multiple time bases owned by this multiple time base. 

• ownedTBs: TimeBase [0..*] 
set of time bases owned by this multiple time base. 

• parentMTB: MultipleTimeBase [0..1] 
MultipleTimeBases can be nested. If the parentMTB property is defined, it references the unique owning 
MultipleTimeBase.

• tsRelations: TimeStructureRelation [0..*] 
set of possible relationships that constraint the time bases owned directly or indirectly by this time base.

Attributes

• None

Semantics

A multiple time base represents a multiform time structure. It owns one or many time bases. Multiple time bases can be 
nested. The set of instants indirectly owned by the top multiple time base is partially ordered. This partial ordering of 
instants characterizes the time structure.

Additional operations

[1] The operation allIncludedTimeBases results in the set of all the time bases that are directly or indirectly member of a 
multiple time base.

MultipleTimeBase::allIncludedTimeBases ( ): Set(TimeBase); 

allIncludedTimeBases = ownedTBs->union(ownedTBs. allIncludedTimeBases ( )) 

[2] The operation allMemberJunctionInstants results in the set of all the junction instants owned by a time bases that ar 
directly or indirectly member of a multiple time base.

MultipleTimeBase::allMemberJunctionInstants ( ): Set(JunctionInstant); 

allMemberJunctionInstants = self.allIncludedTimeBases( ).instants 

Constraints

[1] All related time bases in a time base relation are directly or indirectly contained in this multiple time base.

self.allIncludedTimesBases( )->includesAll(self.relatedTBs)

[2] All related junction instants in a time instant relation are owned by a time base directly or indirectly contained in this 
multiple time base.
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self.allMemberJunctionInstants( )->includesAll(self.relatedJIs)

F.3.18 PhysicalTime (from TimeAccesses::ChronometricClocks)

Physical time is an abstract concept in MARTE. Physical time does not directly participate in the model.

Semantics

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to 
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer, 
it can be modeled as a dense time base.

F.3.19 PrecedenceRelation (from MultipleTimeModels)

A precedence relation relates two junction instants, from distinct time bases, which are temporally ordered.

Generalizations

• TimeInstantRelation  (from MultipleTimeModels)

Associations

• after: JunctionInstant [1] 
references a junction instant which is (temporally) after the before junction instant. Subsets 
TimeInstantRelation::relatedJIs.

• before: JunctionInstant [1] 
references a junction instant which is (temporally) before the after junction instant. Subsets 
TimeInstantRelation::relatedJIs.

Attributes

• None

Semantics

A precedence relation relates two junction instants, from distinct time bases, which are temporally ordered: the before 
junction instant precedes the after junction instant.

Constraints

[3] The before and the after junction instants of a precedence relation are owned by distinct time bases.

after.tb <> before.tb

F.3.20 SimultaneousOccurrenceSet (from TimeRelatedEntities::TimedEvent 
Models::TimedEventOccurrences)

SimultaneousOccurrenceSet represents a set of occurrences considered as a whole.
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Generalizations

• EventOccurrence (from CoreElements::Causality::RunTimeContext)

Associations

• occSet: CoreElements::Causality::RunTimeContext::EventOccurrence[0..*] 
set of event occurrences considered as a whole.

Attributes

• None

Semantics

SimultaneousOccurrenceSet represents a set of occurrences considered as a whole. Since a SimultaneousOccurrenceSet is 
also an EventOccurrence, it may cause changes in the system.

F.3.21 TimeBase (from BasicTimeModels and MultipleTimeModels)

A TimeBase represents an ordered set of instants.

Generalizations

• None

Associations

• instants: Instant [0..*] {ordered} 
references the ordered set of instants owned by this time base.

• currentInstant: Instant [1] 
it references the current instant of this time base. Subsets TimeBase::instants. 
(from MultipleTimeModels)

• owningMTB: MultipleTimeBase [1] 
specifies the multiple time base that owns this time base

Attributes

• nature: TimeNatureKind [1] 
specifies whether the set of owned instants is discrete or dense. 

Semantics

A time base represents an ordered set of instants. It is the building block of the time structure. 

Constraints

No additional constraints

F.3.22 TimeBaseRelation (from MultipleTimeModels)

A time instant relation states that a set of time bases are temporally dependent in some way.
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Generalizations

• TimeStructureRelation (from MultipleTimeModels)

Associations

• /relatedTBs: TimeBase[2..*] {ordered} 
references the time bases involved in the relation. This is a derived union.

Attributes

• None

Semantics

A time instant relation states that a set of time bases are temporally dependent in some way. More precisely, some instants 
of the time bases are temporally related. The related time bases must be directly or indirectly owned by the multiple time 
base owning this time base relation. This constraint is expressed in the MultipleTimeBase description (constraint [1], page 
451). This is an abstract class. 

F.3.23 TimedAction (from TimeRelatedEntities:: TimedProcessingModels::Timed 
Processings)

TimedAction is a generic concept for modeling action that have known start and finish times or a known duration, and 
whose instants and durations are bound to clocks.

Generalizations

• TimedProcessing (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings).

• Action  (from CoreElements::Causality::CommonBehavior).

Associations

• None

Attributes

• None

Semantics

TimedAction  is a generic concept for modeling actions that have known start and finish times or a known duration, and 
whose instants and durations are bound to clocks. This is an abstract class.

F.3.24 TimedBehavior (from TimeRelatedEntities::TimedProcessingModels::Timed 
Processings)

TimedBehavior is a generic concept for modeling behavior that have known start and finish times or a known duration, 
and whose instants and durations are bound to clocks.
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Generalizations

• TimedProcessing (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings).

• Behavior (from CoreElements::Causality::CommonBehavior).

Associations

• None

Attributes

• None

Semantics

TimedBehavior  is a generic concept for modeling behaviors that have known start and finish times or a known duration, 
and whose instants and durations are bound to clocks. This is an abstract class.

F.3.25 TimedConstraint (from TimeRelatedEntities::TimedConstraints)

TimedConstraint is an abstract superclass of TimedInstantConstraint and TimedDurationConstraint. It allows to constraint 
when an event may occur or constraint the duration of some execution or even constraint the temporal distance between 
two event occurrences.

Generalizations

• NfpConstraint   (from NFPs::NFP_Annotation)

• TimedElement (from TimedElements)

Associations

• None

Attributes

• None

Semantics

TimedConstraint is an abstract superclass of TimedInstantConstraint and TimedDurationConstraint. It allows to constraint 
when an event may occur or constraint the duration of some execution or event constraint the temporal distance between 
two event occurrences. Since a timed constraint is a timed element, it refers to clocks.

F.3.26 TimedDurationConstraint (from TimeRelatedEntities::TimedConstraints)

A TimedDurationConstraint defines a constraint on the duration of some execution or the temporal distance between two 
event occurrences.

Generalizations

• TimedConstraint (from TimedConstraints)
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Associations

• specification: DurationPredicate [1]specification of the constraint. Redefines 
NFPs::NFP_Annotation::NfpConstraint::specification.

Attributes

• None

Semantics

A TimedDurationConstraint defines a constraint on the duration of some execution or the temporal distance between two 
event occurrences.

F.3.27 TimedDurationObservation (from TimeRelatedEntities::TimedObservations)

A TimedDurationObservation denotes some interval of time, observed on one clock or two clocks. 

Generalizations

• TimedObservation (from TimedObservations)

Associations

• eocc: CoreElements::Causality::RunTimeContext::EventOccurrence [0..2] 
when defined, specifies the two event occurrences between which the duration is observed. 

• exc: CoreElements::Causality::RunTimeContext:: BehaviorExecution [0..1] 
when defined, specifies an execution. The observed duration is between the occurrences of the start 
and the finish event of this execution.

• stim: CoreElements::Causality::Communication:: Request [0..1] 
when defined, specifies a request. The duration is between the sending and the receipt of this 
message. 

Attributes

• obsKind: EventKind [0..2] specifies the kind of the observed events.

Semantics

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences, 
and observed on one clock or two clocks. The latter case occurs for instance when a message is sent to a distant site, with 
a receiver clock distinct from the sender clock. The duration may be the time elapsed between the occurrences of the start 
and the finish events of an execution. The duration may also be the time elapsed between two of the three events 
associated with a message (its sending, its receipt, and the start of its processing by the receiver). More generally, the 
duration may be the time elapsed between the occurrences of two distinct events.

Constraints

[1] A TimedDurationObservation is an observation of one thing and only one among an execution, a request or a pair of 
event occurrences.
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exc->union(stim)->union(eocc)->notEmpty( )  and 

exc->notEmpty( ) implies stim->union(eocc)->isEmpty( )  and

stim->notEmpty( ) implies exc->union(eocc)->isEmpty( )  and

eocc->notEmpty( ) implies (exc->union(stim)->isEmpty( ) and 

eocc->size( ) = 2)

[2] A TimedDurationObservation of an execution refers to one clock only.

exc->notEmpty( ) implies on->size( ) = 1

[3] A TimedDurationObservation of two event occurrences refers to one or two clocks.

eocc->notEmpty( ) implies on->size( ) = 1 or on->size( ) = 2

F.3.28 TimedElement (from TimeRelatedEntities::TimedElements)

TimedElement is an abstract class, generalization of all other timed concepts. It associates a non empty set of clocks with 
a model element.

Generalizations

• ModelElement (from NFP_Annotation)

Associations

• on: TimeAccesses::Clocks::Clock [1..*] set of clocks through which the model element is related to time.

Semantics

TimedElement is an abstract class, generalization of all other timed concepts. It associates a non empty set of clocks with 
a model element. The semantics of the association with clocks depends on the kind of timed element. 

F.3.29 TimedEvent (from TimeRelatedEntities::TimedEventModels::TimedEvents)

A TimedEvent is an event whose occurrences are bound to clocks.

Generalizations

• Event (from CoreElements::Causality::CommonBehavior).

• TimedElement (from TimedElements).

Associations

• every: CVS::DurationValueSpecification [0..1] 
optional DurationValueSpecification which specifies the duration value that separates the 
successive occurrences of this timed event.

• when: CVS::ClockedValueSpecification [1]ClockedValueSpecification which specifies the instant value of the first 
occurrence of this timed event. The ClockedValueSpecification is a DurationValueSpecification if 
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 the isRelative attribute is true, otherwise it is an InstantValueSpecification.

Attributes

• isRelative: Boolean [1] 
if true the time value is relative else it is absolute.

• repetition: Integer [0..1] 
it is an optional repetition factor. When defined, repetition is the number of successive occurrences 
of the TimedEvent. Its absence is interpreted as an unbounded repetition.

Semantics

A TimedEvent is an event whose occurrences are bound to clocks. The when property specifies the instant value of the 
first occurrence of this TimedEvent. The every optional property specifies repetitive occurrences.

Constraints

[1] The isRelative attribute determines the kind of ClockedValueSpecification.

if isRelative then when.oclIsTypeOf(DurationValueSpecification) elsewhen.oclIsTypeOf(InstantValueSpecification)endif

[2] The optional repetition property of a TimedEvent must be not defined when every is not defined.

every->isEmpty( ) implies repetition->isEmpty( )

F.3.30 TimedEventOccurrence (from TimeRelatedEntities::TimedEventModels::Timed 
EventOccurrences)

This is a generic concept of an event occurrence that may be assigned an instant value on clocks.

Generalizations

• EventOccurrence (from CoreElements::Causality::RunTimeContext).

• TimedElement (from TimedElements).

Associations

• at: TimeAccesses::TimeValues::InstantValue[1..*] 
instant values of this TimedEventOccurrence on one of its on clocks.

Attributes

• None

Semantics

A TimedEventOccurrence is an EventOccurrence and a TimedElement. As a TimedElement, it refers to clocks. The at 
property specifies the InstantValue of the event occurrence of this TimedEventOccurrence on any of its on clocks. 

Constraints

[1] The Clock of an at InstantValue is also a on Clock of this TimedOccurrenceEvent.
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on->includesAll(at.onClock)

[2] All the at instant values are specified on different clocks.

at->forAll( iv, jv | iv <> jv implies iv.onClock <> jv.onClock )

F.3.31 TimedExecution (from TimeRelatedEntities::TimedProcessingModels::Timed 
Executions)

This is a generic concept of an execution that may be assigned start and finish instant values and duration values on 
clocks.

Generalizations

• ExecutionSpecification (from CoreElements::Causality::RunTimeContext).

• TimedElement (from TimedElements).

Associations

• executionDuration: TimeAccesses::DurationValues::DurationValue [1..*] 
duration value of  the execution of this TimedExecution on one of its on clocks.

• finishInstant: TimeAccesses::TimeValues::InstantValue [1..*] 
instant value of the termination of the execution of this TimedExecution on one of its on clocks.

• startInstant: TimeAccesses::TimeValues::InstantValue [1..*] 
instant values of the start of the execution of this TimedExecution on one of its on clocks.

Attributes

• None

Semantics

A TimedExecution is an BehaviorExecutionSpecification and a TimedElement. As a TimedElement, it refers to clocks. 
The startInstant (finishInstant, repectively) property specifies the InstantValue of the start (finish, respectively) event 
occurrence of the execution of this TimedExecution on one of its on clocks. The executionDuration property specifies the 
DurationValue of the execution of this TimedExecution on one of its on clocks.

Constraints

[1] The Clock of a startInstant  InstantValue is also a on Clock of this TimedExecution.

on -> includesAll(startInstant.onClock)

[2] The Clock of a finishInstant  InstantValue is also a on Clock of this TimedExecution.

on -> includesAll(finishInstant.onClock)

[3] The Clock of an executionDuration  InstantValue is also a on Clock of this TimedExecution.

on -> includesAll(executionDuration.onClock)
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F.3.32 TimedInstantConstraint (from TimeRelatedEntities::TimedConstraints)

A TimedInstantConstraint defines a constraint on when an event may occur.

Generalizations

• TimedConstraint (from TimedConstraints)

Associations

• specification: InstantPredicate [1]specification of the constraint. Redefines 
NFPs::NFP_Annotation::NfpConstraint::specification.

Attributes

• None

Semantics

A TimedInstantConstraint defines a constraint on when an event may occur.

F.3.33 TimedInstantObservation (from TimeRelatedEntities::TimedObservations)

A TimedInstantObservation denotes an instant in time, observed on a given clock.

Generalizations

• TimedObservation (from TimedObservations)

Associations

• eocc: CoreElements::Causality::RunTimeContext::EventOccurrence [1]observed event occurrence.

Attributes

• obsKind: EventKind [0..1] specifies the kind of the observed event.

Semantics

A TimedInstantObservation denotes an instant in time, associated with an event occurrence and observed on a given 
clock. The obsKind attribute may specify the kind of the observed event.

Constraints

[1] A TimedInstantObservation refers to one clock only.

on->size( ) = 1

F.3.34 TimedMessage (from TimeRelatedEntities::TimedProcessingModels::Timed 
Processings)

TimedMessage is a generic concept for modeling communications that have known start, finish or consumption times or 
a known duration, and whose instants and durations are bound to clocks.
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Generalizations

• TimedProcessing   (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings).

• Request (from CoreElements::Causality::Communication).

Associations

• None

Attributes

• None

Semantics

TimedMessage is a generic concept for modeling communications that have known start, finish or consumption times or 
a known duration, and whose instants and durations are bound to clocks. This is an abstract class.

F.3.35 TimedObservation (from TimeRelatedEntities::TimedObservations)

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. It allows time 
expressions to refer to either in a common way.

Generalizations

• TimedElement (from TimedElements)

Associations

• observationContext

• CoreElements::Causality::RunTimeContextModel::CompBehaviorExecution [0..1] 
runtime context of the observation.

Attributes

• None

Semantics

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. It allows time 
expressions to refer to either in a common way. Since a timed observation is a timed element, it refers to clocks. The 
observation is made in the context of a (sub)system behavior execution. This execution can be represented, for instance, 
by a sequence diagram. When the observationContext is not defined, the observation is valid for any behavior execution.

F.3.36 TimedProcessing (from TimeRelatedEntities::TimedProcessingModels::Timed-
Processings)

TimedProcessing is a generic concept for modeling activities that have known start and finish times or a known duration, 
and whose instants and durations are bound to clocks.
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Generalizations

• TimedElement (from TimedElements)

Associations

• duration: CVS::DurationValueSpecification [0..1] 
optional DurationValueSpecification which specifies the duration value of the execution of this 
timed processing.

• finish: CoreElements::Causality::CommonBehavior::Event [0..1] 
optional event whose occurrences denote the termination of execution of this TimedProcessing.

• start: CoreElements::Causality::CommonBehavior::Event [0..1] 
optional event whose occurrences denote the start of execution of this TimedProcessing.

Attributes

• None

Semantics

TimedProcessing is a generic concept for modeling activities that have known start and finish times or a known duration, 
and whose instants and durations are bound to clocks.

This is an abstract class.

Constraints

[1] Not all 3 properties duration, start, finish can be absent.

( duration->isEmpty( ) implies start->notEmpty( ) and finish->notEmpty( ) )and

( ( start->isEmpty( ) and finish->isEmpty( ) )  implies duration->notEmpty( )   )

F.3.37 TimeInstantRelation (from MultipleTimeModels)

A time instant relation states that junction instants of a set are temporally related in some way.

Generalizations

• TimeStructureRelation (from MultipleTimeModels)

Associations

• /relatedJIs: JunctionInstant[0..*] {ordered}junction instants involved in the relation. This is a derived union.

Attributes

• None
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Semantics

A time instant relation states that junction instants of a set are temporally related in some way. The concrete relation can 
be coincidence, precedence, or membership of a time interval. The related junction instants must be owned by time bases 
directly or indirectly included in the multiple time base owing this time instant relation. This constraint is expressed in the 
MultipleTimeBase description (constraint [2], page 451). This is an abstract class. 

F.3.38 TimeInterval (from MultipleTimeModels) 

A time interval denotes a set of junction instants belonging to a time base and characterized by its lower and upper bound.

Generalizations

• None

Associations

• lower:JunctionInstant [1] lower bound of the interval.

• upper:JunctionInstant [1] upper bound of the interval.

• base:TimeBase [1] time base on which the interval is defined.

Attributes

• isLowerOpen:Boolean [1] = false 
specifies whether the lower bound is in the interval or not. When true, the lower bound is not in the 
interval. The default value is false.

• isUpperOpen:Boolean [1] = false 
specifies whether the upper bound is in the interval or not.  When true, the upper bound is not in the 
interval. The default value is false.

Semantics

A time interval of a time base denotes the set of junction instants belonging to this time base and temporally after the 
lower junction instant and before the upper junction instants. Two Booleans indicate whether the bounds belong or not to 
the interval. Note that the bounds and the members are restricted to junction instants because they are the only observable 
instants.

Constraints

[1] The lower and the upper bounds are owned by the time base of the time interval.

(lower.tb = base) and (upper.tb = base)

F.3.39 TimeIntervalMembership (from MultipleTimeModels) 

A time interval membership relation states that junction instants of a set are within a given time interval.

Generalizations

• TimeInstantRelation (from MultipleTimeModels)
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Associations

• members:JunctionInstant [0..*] 
set of junction instants included in a time interval or coincident with a junction instant in the time 
interval. Subsets TimeInstantRelation::relatedJIs.

• timeInterval:TimeInterval [1] 
specifies the including time interval.

Attributes

• None

Semantics

A time interval membership relation states that junction instants of a set are within a given time interval. Within must be 
interpreted in a broad sense: A member junction instant can be directly in the given time interval or coincident with a 
junction instant member of the interval.

F.3.40 TimeIntervalValue  (from TimeAccesses::TimeValues)

A time interval value is a set of instants values specified by a pair of instant values, which define the bounds of the 
interval. 

Generalizations

• None

Associations

• denotedTimeInterval: TimeInterval [0..*] 
time intervals denoted by this time interval value.

• max: InstantValue [1] 
instant value which stands for the upper bound of this time interval value. 

• min: InstantValue [1] 
instant value which stands for the lower bound of this time interval value.

Attributes

• isMinOpen: Boolean [1] = false 
specifies whether the minimal instant value is in this time interval value or not. When this attribute 
is true, then the minimal instant value is not in the interval. The default value is false.

• isMaxOpen: Boolean[1] = false 
specifies whether the maximal instant value is in the interval or not. When this attribute is true, then 
the maximal instant value is not in the interval. The default value is false.

Semantics

A time interval value is a set of instants values specified by a pair of instant values. A time interval value denotes 0 or 
many time intervals in the time base associated with the onClock clock of its bounds. When the onClock clock has a 
maximal value, due to clock roll-over, a time interval value may denote many time intervals. 
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When used in a time value specification, a time interval value designates any time value of the interval (including or not 
the bound values according to the isMinOpen et isMaxOpen attribute values).

Constraints

[1] Min and max instant values of this time interval value have the same onClock clock.

min.onClock = max.onClock

F.3.41 TimeNatureKind (from BasicTimeModels) 

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time base or 
a time value.

Generalizations

• None

Literals

• discrete indicates that the typed elements are from a discrete set.

• dense indicates that the typed elements are from a dense set.

F.3.42 TimeStandardKind (from TimeAccesses::ChronometricClocks)

TimeStandardKind is an enumeration type that defines literals used to specify the standard "systems of time" adopted for 
a chronometric clock.

Generalizations

• None

Literals

• GPS General Positioning System, not adjusted for leap seconds

• Local Local Time

• Sidereal Sidereal Time

• TAI International Atomic Time scale, a statistical timescale based on a large number of atomic clocks 

• TCB Barycentric Coordinate Time

• TCG Geocentric Coordinate Time

• TDB Barycentric Dynamical Time

• TT Terrestrial Time

• UT0 Universal Time 0 

• UT1 Universal Time 1
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• UTC Coordinated Universal Time

F.3.43 TimeStructureRelation (from MultipleTimeModels)

A time structure relation states that junction instants of different time bases are temporally related in some way. The 
relation applies either to a set of junction instants or to a set of time bases.

Generalizations

• None

Associations

• None

Attributes

• None

Semantics

A time structure relation states that junction instants of different time bases are temporally related in some way. The 
relation applies either to a set of junction instants or to a set of time bases.  The latter case is a convenient way to specify 
multiple temporal relations between junction instants. This is an abstract class.

F.3.44 TimeValue  (from TimeAccesses::TimeValues)

TimeValue is an abstract class for expressing instant values and duration values.

Generalizations

• None

Associations

• onClock: Clock [1] 
clock that associating time values to instants.

• unit: NFPs::NFP_Nature::Unit [0..1] 
optional unit attached to the time value. When defined, it must be in the acceptedUnits set of the onClock 
and be used instead of its defaultUnit.

Attributes

• nature: TimeNatureKind [1] 
specifies whether the time values associated with the clock take their values in a dense or discrete domain.

Semantics

TimeValue is an abstract class for expressing instant values and duration values. Time values are related to a clock.
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F.4 GRM

F.4.1 AccesControlPolicy (from MARTE:GRM::ResourceManagement)

The AccesControlPolicy determines the rules for regulating access to the resources controlled by a broker.

Generalizations

• None

Associations

• None

Attributes

• None

Semantics

The AccesControlPolicy determines the rules for regulating access to the resources controlled by a broker.

F.4.2 AccesControlPolicy (from MARTE:GRM::ResourceManagement)

The ResourceControlPolicy determines the rules for regulating the management of resources.

Generalizations

• None

Associations

• None

Attributes

• None

Semantics

The ResourceControlPolicy determines the rules for regulating the management of resources, what includes creating, 
maintaining, and deleting resources.

F.4.3 Acquire(from MARTE:GRM::ResourceTypes)

Acquire represents the allocation of or the access to some "amount" from the resource.

Generalizations

• ResourceService (from MARTE:GRM::ResourceCore).
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Associations

• amount: MARTE:GRM::ResourceCore::ResourceAmount [1..*] 
amount of resource to which access is demanded.

Attributes

• isBlocking: Boolean [0..1] 
indicates whether the call to the service is blocking or not.

Semantics

Acquire corresponds to the allocation of some "amount" from the resource. For example, for a resource representing 
storage, the amount could be the memory size. As another example, a resource could represent a single element 
(maximum amount available is "1"), and acquire could be used to model the lock in a mutually exclusive access situation. 
If the attribute isBloking is true it indicates that the caller waits until the service is able to allocate or provide the access 
to the resource demanded. If false, the service return indicating the impossibility of providing immediate access to the 
amount of resource demanded. 

F.4.4 Activate (from MARTE:GRM::ResourceTypes)

Enable the activation of a certain amount of a resource.

Generalizations

• ResourceService (from MARTE:GRM::ResourceCore)

Associations

• amount: MARTE:GRM::ResourceCore::ResourceAmount [1..*] 
amount of resource that is to be activated.

Attributes

• None

Semantics

Activate allows for the application of an activation service on a given quantity. For example, activate a communication 
service with the amount of data to be transferred as a parameter.

F.4.5 ClockResource (from MARTE:GRM::ResourceTypes)

A ClockResource represents a hardware or software entity that is capable of following and evidencing the pace of time 
upon demand with a prefixed resolution.

Generalizations

• TimingResource (from MARTE::GRM::ResourceTypes)

Associations

• None
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Attributes

• None

Semantics

A ClockResource represents a hardware or software entity that is capable of following and evidencing the pace of time 
upon demand with a prefixed resolution. The services and the concrete mechanisms used by a ClockResource to offer 
them are to be furtherly refined as necessary according to the hardware or software nature of the clock. 

F.4.6 CommunicationEndPoint (from MARTE::GRM::ResourceTypes)

A CommunicationEndPoint represents a mechanism for connecting and delivering data to a communication media.

Generalizations

• CommunicationResource (from MARTE:GRM::ResourceTypes)

Associations

• None

Attributes

· packetSize: Integer [0..1]size in bits of the elementary messages that can be inserted in the CommunicationEndPoint.

Semantics

A CommunicationEndPoint acts as a terminal for connecting to a communication media, and it is characterized by the 
size of the packet handled by the endpoint. This size may or may not correspond to the media element size. Concrete 
services provided by a CommunicationEndPoint include the sending and receiving of data, as well as a notification 
service able to trigger an activity in the application. 

F.4.7 CommunicationMedia (from MARTE::GRM::ResourceTypes)

A CommunicationMedia represents the mean to transport information from one location to another.

Generalizations

• CommunicationResource (from MARTE:GRM::ResourceTypes)

Associations

• None

Attributes

• elementSize: Integer [0..1] size in bits of the elementary messages that can be transmitted. 
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Semantics

The fundamental service of a CommunicationMedia is to transport information (e.g. message of data) from one location 
to another. It has as an attribute the size of the elements transmitted; as expected, this definition is related to the resource 
base clock. For example, if the communication media represents a bus, and the clock is the bus speed, "element size" 
would be the width of the bus, in bits. If the communication media represents a layering of protocols, "element size" 
would be the frame size of the uppermost protocol.

F.4.8 CommunicationResource (from MARTE::GRM::ResourceTypes)

A CommunicationResource generalizes the two kinds of communication resources defined. It holds a collection of 
communication services.

Generalizations

• Resource (from MARTE:GRM::ResourceCore)

Associations

• None

Attributes

• None

Semantics

A CommunicationResource generalizes the two kinds of communication resources defined, communicationMedia and 
communicationEndpoint. It represents any resource used for communication and may be considered as a collector of 
communication services. 

F.4.9 ComputingResource (from MARTE:GRM::ResourceTypes)

A ComputingResource represents either virtual or physical processing devices capable of storing and executing program 
code. Hence its fundamental service is to compute.

Generalizations

• Resource (from MARTE:GRM::ResourceCore).

Associations

• None

Attributes

• None

Semantics

A ComputingResource represents either virtual or physical processing devices capable of storing and executing program 
code. Hence its fundamental service is to compute, which in fact means to change the values of data without changing 
their location. It is active and protected. 
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Constraints

[2] isActive is true and isProtected is true.

F.4.10 ConcurrencyResource (from MARTE:GRM::ResourceTypes)

A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution 
concurrently with others, all of which take their processing capacity from a potentially different protected active resource 
(eventually a ComputingResource). Concurrency may be physical or logical, when it is logical the supplying processing 
resource needs to be arbitrated with a certain policy.

Generalizations

• Resource (from MARTE:GRM::ResourceCore).

Associations

• None

Attributes

• None

Semantics

A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution 
concurrently with others, all of which take their processing capacity from a potentially different protected active resource 
(eventually a ComputingResource). Concurrency may be physical or logical, when it is logical the supplying processing 
resource needs to be arbitrated with a certain policy. This root concept is further specialized in the Scheduling package. 

Constraints

[3] isActive is true and isProtected is true.

F.4.11 DeviceResource (from MARTE:GRM::ResourceTypes)

A DeviceResource typically represents an external device that may be manipulated or invoked by the platform, but whose 
internal behavior is not a relevant part of the model under consideration.

Generalizations

• Resource (from MARTE:GRM::ResourceCore)

Associations

• None

Attributes

• None
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Semantics

A DeviceResource typically represents an external device that may require specific services in the platform for its usage 
and/or management. Active device resources may also be used to represent external specific purpose processing units, 
whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their internal 
behavior is not a relevant part of the model under consideration. 

F.4.12 DynamicUsage (from MARTE::GRM::ResourceUsages)

A DynamicUsage represents the sequence or causal flow of usages that may occur in response to an UsageDemand.

Generalizations

• Behavior (from MARTE::CoreElements::Causality::CommonBehavior).

Associations

• None

Attributes

• None

Semantics

A DynamicUsage represents the sequence or causal flow of usages that may occur in response to an UsageDemand. It is 
a kind of behaviour, whose actions make use of one or more resources along its execution. A few concrete forms of usage 
are defined at this level of specification; those are aimed to represent the consumption of memory, the time taken from a 
CPU, the energy from a power supply and the number of bytes to be sent through a network.

F.4.13 GetAmountAvailable (from MARTE:GRM::ResourceTypes)

GetAmountAvailable returns the amount of the resource that is currently available.

Generalizations

• ResourceService (from MARTE:GRM::ResourceCore)

Associations

• None

Attributes

• None

Semantics

• GetAmountAvailable returns the amount of the resource that is currently available.

F.4.14 MutualExclusionProtocol (from MARTE::GRM::Scheduling)

It provides or determines the set of rules necessary to arrange contending access to shared protected resources at run time.
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Generalizations

• AccesControlPolicy (from MARTE:GRM::ResourceManagement).

Associations

• None

Attributes

• protocol: MARTE:GRM::Scheduling::ProtectProtocolKind [1] 
concrete type of protection protocol used.

• otherProtectProtocol: String [0..1] 
this string is used by the modeller to specify the protection protocol used when it is none of the 
included in the ProtectProtocolKind enumerated type.

Semantics

MutualExclusionProtocols are defined in scheduling theory to avoid or minimize the priority inversion problem with the 
minimum impact on the pessimism of the analysis technique to apply. The protocols are to be implemented by the 
scheduler and consequently they must be compatible with the scheduling policy implemented by them. To be effectively 
applied some of them require each resource to be characterize with additional ProtectionParameters, which typically 
represent the scope of schedulable resources that will make use of the passive mutually exclusive resource. 

F.4.15 MutualExclusionResource (from MARTE::GRM::Scheduling)

A MutualExclusiveResource is a kind of synchronization resource that represents the contention in the access to common 
usually passive resources at run-time.

Generalizations

• SynchResource (from MARTE::GRM::ResourceTypes).

Associations

• protocol: MARTE::GRM::Scheduling::MutualExclusioProtocol [1] 
protection protocol used by the scheduler to regulate the access to the MutalExclusionResource.

• protectParams: MARTE::GRM::Scheduling::ProtectionParameters [0..*] 
concrete parameters to be passed to the scheduler.

• scheduler: MARTE::GRM::Scheduling::Scheduler [0..1] 
scheduler in charged of imposing the protocol rules.

Attributes

• protocol: MARTE:GRM::Scheduling::ProtectProtocolKind [1] 
concrete type of protection protocol used.
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Semantics

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying 
scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.) 
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific 
schedules which order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of 
specification requires at least the identification of the common resource, its protecting mechanism, and the associated 
protocol; this is what the MutualExclusionResource defines. Its associated protocol, represented by 
MutualExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the parameters 
required by the protocol are represented by the ProtectionParameters element.

F.4.16 ProcessingResource (from MARTE::GRM::Scheduling)

A ProcessingResource generalizes the concepts of CommunicationMedia, ComputingResource, and active 
DeviceResource.

Generalizations

• Resource (from MARTE::GRM::ResourceCore)

Associations

• mainScheduler: MARTE::GRM::Scheduling::Scheduler [0..1] 
scheduler that share the processing capacity brought in by the processing resource.

Attributes

• speedFactor: NFP_Real [0..1] = (value=1.0) 
this number gives a linear approximation of the relative speed of the unit as compare  
to the reference one. The reference processing resource is determined as one with speedFactor 
equal to 1.0.

Semantics

A ProcessingResource generalizes the concepts of CommunicationMedia, ComputingResource, and active 
DeviceResource. It introduces an element that abstracts the fundamental capability of performing any behavior assigned 
to the active classifiers of the modeled system. Fractions of this capacity are brought to the SchedulableResources that 
require it.

The speedFactor attribute is a linear approximation of the relative speed of the unit as compare to the reference one. The 
reference processing resource is determined by setting its speedFactor to 1.0.

F.4.17 ProtectParameters (from MARTE::GRM::Scheduling)

This class holds the parameters that are necessary for two of the more typical protocols that need them; the priority 
ceiling and the stack based protocols.

Generalizations

• None
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Associations

• None

Attributes

• priorityCeiling: Integer [0..1] 
ceiling of the resource, used in the Priority Ceiling Protocol.

• preemptionLevel: UnlimitedNatural [0..1] 
preemption level of the resource, used in the Stack Based Protocol.

Semantics

This is a utility class used to provide the required ceilings for these protocols. The stack based protocol is the EDF 
compatible version of the priority ceiling protocol, and since both used different nomenclature to hold the required 
ceiling, both fields have been included: the ceiling and the preemption level.

F.4.18 ProtectProtocolKind (from MARTE::GRM::Scheduling)

This class is an enumerated value with the shared variables protection protocols most widely known.

Literals

• FIFO

• NoPreemption

• PriorityCeiling

• PriorityInheritance

• StackBased

• Undef

• Other

F.4.19 Release (from MARTE:GRM::ResourceTypes)

Release represents the de-allocation or liberation of some "amount" from the resource.

Generalizations

• ResourceService (from MARTE:GRM::ResourceCore)

Associations

• amount: MARTE:GRM::ResourceCore::ResourceAmount [1..*]amount of resource that is released.

Attributes

• None
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Semantics

Release corresponds to the de-allocation of some "amount" from the resource. For example, for a resource representing 
storage, the amount could be the memory size. As another example, a resource could represent a single element 
(maximum amount available is "1"), and release could be used to model the unlock in a mutually exclusive access 
situation.

F.4.20 Resource (from MARTE::GRM::ResourceCore)

A resource represents a physically or logically persistent entity that offers one or more services. Resources and its 
services are the available means to perform the expected duties and/or satisfy the requirements for which the system 
under consideration is aimed.

Generalizations

• BehavoiredClasifier (from MARTE::CoreElements::Causality::CommonBehavior).

• AnnotatedElement (from MARTE::NFPs::NFP_Annotation).

Associations

• referenceClocks: TimeModel::TimeAccesses::Clocks Clock [0..*] 
clocks that serve as time base for the services that the resource may provide.

• pServices: ResourceService [0..*] 
set of services provided by the resource.

• instance: ResourceInstance [0..*] 
set of Instances provided by the resource. (Inherited from MARTE::CoreElemments::Foundations).

• provided: MARTE::NFP_Modelig::NFP_Declaration::NFP 
set of non-functional properties provided. Subsets 
MARTE::NFPs::NFP_Annotation::AnnotatedElement.nfpDeclaration.

• required: MARTE::NFP_Modelig::NFP_Declaration::NFP 
set of non-functional properties required. Subsets 
MARTE::NFPs::NFP_AnnotationAnnotatedElement.nfpDeclaration.

• manager: ResourceManager [0..1] 
link to a manager of the instances of the resource.

• broker: ResourceBroker [0..*] 
link to a broker of the instances of the resource.

Attributes

• resMult: Integer[0..1] 
resource multiplicity is used to express the limited nature of an aggregated multi elementary resource. When 
used it indicates the maximum number of instance of the elementary units of a particular type of resource 
that are available through its corresponding services.

• isProtected: Boolean [0..1] 
if true implies the necessity of arbitrating access to the resource or its services.

• isActive: Boolean [0..1] 
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if true it implies that the resource has its own course of action.

Semantics

A resource can be a "black box", in which case only the provided services are visible, or a "white box", in which case its 
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be 
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

• A black box resource (e.g. a real-time operating system), which abstracts the hardware hence considered as internal 
elements.

• A collaboration between a software layer and a hardware layer.

• A collaboration between basically hardware elements. In this case, software features of the execution platform may be 
represented by overheads on raw hardware performance figure.

• Any combination of these previous approaches depending on the type of development and analysis method applied by 
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform 
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature. 
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than 
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a 
given platform may provide several views, corresponding to different anticipated use cases for the platform.

A resource may be structurally described in terms of its internal resources - this is represented by the "owner-
ownedElement" association in Resource transitively inherited from ModelElement.

F.4.21 ResourceAmount (from MARTE::GRM::ResourceCore)

A ResourceAmount represents a generic quantity of the "amount" provided by the resource.

Generalizations

• ModelElement (from MARTE::CoreElements::Foundations).

Associations

• None

Attributes

• None

Semantics

A ResourceAmount represents a generic quantity of the "amount" provided by the resource. This may be mapped to any 
significant quantification of the resource, like memory units, utilization, power, etc.  This is an abstract class. 
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F.4.22 ResourceBroker (from MARTE:GRM::ResourceManagement)

The resourceBroker, is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances 
(or their services) to clients according to a specific access control policy.

Generalizations

• Resource (from MARTE:GRM::ResourceCore).

Associations

• brokedResource: MARTE:GRM::ResourceCore::Resource [1..*] 
resources to which the broker controls access.

• accCtrlPolicy: MARTE:GRM::ResourceManagement::AccessControlPolicy [1..*] 
policy used to regulate access to the resources controlled by the broker.

Attributes

• None

Semantics

The resourceBroker, is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances 
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate 
memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it. 
The access control policy determines the criteria for determining and making effective the provision of resources, it can 
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients, 
etc. After being created and initialized, the resources are typically handed over to a resource broker. In most practical 
cases, the resource manager and the resource broker are the same entity. However, since this is not always true the two 
concepts are modeled separately (they can be easily combined by designating the same entity as serving both purposes). 

F.4.23 ResourceInstance (from MARTE::GRM::ResourceCore)

A resource instance represents the realization of a concrete resource. It can be used to describe generic elements of a 
concrete platform or designated modeling elements at a certain level of specification meaningful to the modeler in order 
to consider its properties or services as offered to others.

Generalizations

• AnnotatedElement (from MARTE::NFPs::NFP_Annotation).

• Instance (from MARTE::CoreElements::Foundations).

Associations

• type: MARTE::GRM::ResourceCore::Resource [1..*] 
set of classifiers to whose specifications the instance is conformant.

Attributes

• exeServices: ResourceServiceExecution [0..*] 
set of represented run-time performing services of a resource that are to be considered for one of its 
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particular instances.

Semantics

A ResourceInstance is the concretization of a resource or resources, and is to be conformant with the specification of 
those resources that it instantiates. It assumes the role of an instance in the classifier-instance modeling pattern, and 
consequently adopts the corresponding semantics. In general it is used to represent the items of a resource that are 
modeled at configuration time, instantiated at deployment time, and managed at run time. 

F.4.24 ResourceManager (from MARTE:GRM::ResourceManagement)

The ResourceManager, is responsible for creating, maintaining, and deleting resources according to a resource control 
policy.

Generalizations

• Resource (from MARTE:GRM::ResourceCore).

Associations

• managedResource: MARTE:GRM::ResourceCore::Resource[1..*] 
set of resources that are managed.

• resCtrlPolicy: MARTE:GRM::ResourceManagement::ResourceControlPolicy[1..*] 
policy used to regulate the management of resources.

Attributes

• None

Semantics

The ResourceManager, is responsible for creating, maintaining, and deleting resources according to a resource control 
policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more chunks of heap 
memory. Once created and initialized, the resources are typically handed over to a resource broker. In most practical 
cases, the resource manager and the resource broker are the same entity. However, since this is not always true the two 
concepts are modeled separately (they can be easily combined by designating the same entity as serving both purposes).

F.4.25 ResourceReference (from MARTE:GRM::ResourceCore)

A ResourceReference is an abstract class that will be used to create links to concrete instances of resources in order to 
manage them.

Generalizations

• ModelElement (from MARTE::CoreElements::Foundations).

Associations

• None
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Attributes

• None

Semantics

A ResourceReference provides a way to designate instances of a resources that will be created and eliminated at run-time. 
This is an abstract class. 

F.4.26 ResourceService (from MARTE::GRM::ResourceCore)

A ResourceService represent the behaviors of interest for a certain kind of resource.

Generalizations

• Behavior (from MARTE::CoreElements::Causality::CommonBehavior).

Associations

• instance: ResourceServiceExecution [0..*] 
set of run-time instances of the service that may be performed in the context of the resource associated 
(Inherited from MARTE::CoreElemments::Foundations).

• context: from MARTE:GRM::ResourceCore::Resource [1] 
the resource in whose context the service is specified.

Attributes

· None.

Semantics

ResourceServices are the available means for a Resource to manifest, and then perform, its expected duties and/or 
responsibilities, to further satisfy the requirements for which it is in place. ResourceServices are expressed as behaviors 
associated to the resource, which also provides the structural context for them.

F.4.27 ResourceUsage (from MARTE::GRM::ResourceUsages)

A UsageDemand represents the run-time mechanism that effectively requires the usage of the resource.

Generalizations

• None

Associations

• requiredAmount: MARTE::GRM:: ResourceUsages::UsageTypedAmount [1..*] 
list of different types of amounts of resources, that are expressed by means of non-Functional properties 
used to characterize the magnitudes demanded by the usage.

• usedResources: MARTE::GRM::CoreResource::Resource [1..*] 
list of resource used.

• workload: MARTE::GRM::ResourceUsages::UsageDemand [0..*] 
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the set of events to which the usage responds.

Attributes

• None

Semantics

When resources are used, their usage may consume part of the "amount" provided by the resource. Taking into account 
these usages when reasoning about the system operation, is a central task in the evaluation of its feasibility. A 
ResourceUsage links resources with concrete demands of usage over them. The concept of UsageDemand represents the 
dynamic mechanism that effectively requires the usage of the resource. Two general forms of usage are defined the 
StaticUsage and the DinamicUsage, each used according to the specific needs of the model. A few concrete forms of 
usage are defined at this level of specification; those are aimed to represent the consumption of memory, the time taken 
from a CPU, the energy from a power supply and the number of bytes to be sent through a network.

F.4.28 SchedPolicyKind (from MARTE:GRM::Scheduling)

This class is an enumerated value with the scheduling policies most widely known.

Literals

• EarliestDeadlineFirst

• FIFO

• FixedPriority

• LeastLaxityFirst

• RoundRobin

• TableDriven

• Undef

• Other

F.4.29 SchedulableResource (from MARTE::GRM::Scheduling)

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency.

Generalizations

• ConcurrencyResource (fromMARTE::GRM::ResourceTypes).

Associations

• schedParams: MARTE::GRM::Scheduling::SchedulingParameters [1] 
concrete parameters used to compete for the access to the processing capacity brokered by  the scheduler.

• dependentScheduler: MARTE::GRM::scheduling::SecondarySceduler [0..1] 
secondary scheduler to which the schedulable resource bring its capacity.
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• host: MARTE::GRM::Scheduling::Scheduler [1] 
scheduler in which the SchedulableResource is being consider for processing.

Attributes

• None

Semantics

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency. This means that it takes 
the processing capacity from another active protected resource, usually a ProcessingResource, and competes for it with 
others linked to the same scheduler under the basis of the concrete scheduling parameters that each SchedulableResource 
has associated. In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the  
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing 
resource, instead they receive it from a schedulableResource, which is in its turn effectively scheduled by another 
scheduler. These intermediate schedulableResource, play the role of a virtual processing resource, conducting the fraction 
of capacity they receive from their host scheduler to its dependent secondaryScheduler.

F.4.30 Scheduler (from MARTE:GRM::Scheduling)

A Scheduler is defined as a kind of ResourceBroker that brings access to its broked ProcessingResource or resources 
following a certain scheduling policy.

Generalizations

• ResourceBroker (from MARTE:GRM::ResourceManagement).

Associations

• processingUnits: MARTE:GRM::Scheduling::ProcessingResource [1..*] 
set of processing resources to which the scheduler controls access. Subsets 
MARTE:GRM::ResourceManagement:: ResourceBroker .brokedResource.

• schedulableResource: MARTE:GRM::Scheduling::SchedulableResource [0..*] 
set of schedulable resources that try to get processing capacity from the ComputingResources controlled by 
the scheduler.

• policy: MARTE:GRM::Scheduling::SchedulingPolicy [1] 
policy used to regulate access to the processing capacity brought in by the ComputingResources controlled 
by the scheduler. Subsets MARTE:GRM::ResourceManagement::ResourceBroker.accCtrlPolicy.

• host: (from MARTE:GRM::ResourceTypes::ComputingResource [1] 
the computing resource on which the artifacts that realize the scheduler are deploy and from which it gets 
computing power to work.

Attributes

• schedule: OpaqueExpression [0..1] concrete schedule that is to be used by the scheduler.
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Semantics

A Scheduler is defined as a kind of ResourceBroker that brings access to its broked ProcessingResource or resources 
following a certain scheduling policy. The concept of scheduling policy as it is presented here corresponds to the 
scheduling mechanism described in section 6.1.1 of SPT, since it refers specifically to the order to choose threads for 
execution.

The attribute host represents the ComputingResource on which the artifacts that realize the scheduler are deploy and from 
which it gets computing power to work.

The concrete schedule that is to be used by the scheduler may be calculated offline and introduced as an opaque 
expression or it may be the result of a simulation after applying the scheduling policy and taking traces of the scheduler 
behavior.

F.4.31 SchedulingParameters (from MARTE::GRM::Scheduling)

Values given to a SchedulableResource to quantify its merits to receive processing capacity in comparison with others 
scheduled under the same scheduler.

Generalizations

• None

Associations

• None

Attributes

• None

Semantics

Values given to a SchedulableResource to quantify its merits to receive processing capacity in comparison with others 
scheduled under the same scheduler. A fine characterization is necessary to address the wide range of parameters that 
correspond to each of the different kinds of policies available.

F.4.32 SchedulingPolicy (from MARTE:GRM::Scheduling)

It provides or determines the set of rules necessary to arrange scheduling at run time.

Generalizations

• AccesControlPolicy (from MARTE:GRM::ResourceManagement).

Associations

• None

Attributes

• policy: MARTE:GRM::Scheduling::SchedulingPolicyKind [1] 
concrete type of policy followed.
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• otherSchedPolicy: String [0..1] 
string is used by the modeller to specify the scheduling policy followed when it is none of the included in the 
SchedPolicyKind enumerated type

Semantics

It provides or determines the set of rules necessary to arrange scheduling at run time. The concept of scheduling policy as 
it is presented here corresponds to the scheduling mechanism described in section 6.1.1 of SPT, since it refers specifically 
to the order to choose threads for execution. 

F.4.33 SecondaryScheduler (from MARTE:GRM::Scheduling)

A SecondaryScheduler is defined as a kind of Scheduler, for which the processing capacity to share among its schedulable 
resources is not obtained directly from processing units, but from other schedulable resource instead.

Generalizations

• Scheduler (from MARTE:GRM::Scheduling).

Associations

• virtualprocessingUnits: MARTE:GRM::Scheduling::SchedulableResource [1..*] 
set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Attributes

• None

Semantics

The SecondaryScheduler concept is introduced to support hierarchical scheduling schemes. It is conceived as a kind of 
Scheduler, for which the processing capacity that will be shared among its schedulable resources is not obtained directly 
from processing units, but from other schedulable resource instead, which is in its turn effectively scheduled by another 
scheduler. These intermediate schedulableResource, play the role of a virtual processing resource, conducting the fraction 
of capacity they receive from their host scheduler to its dependent secondaryScheduler.

F.4.34 StaticUsage (from MARTE::GRM::ResourceUsages)

A StaticUsage represents a usage with no temporal assumption eventually occurring in response to an UsageDemand.

Generalizations

• Behavior (from MARTE::CoreElements::Causality::CommonBehavior).

Associations

• None

Attributes

• None
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Semantics

A StaticUsage represents a usage with no temporal assumption, in such a way that it may represent the usage that occurs 
inside a simple action as well as the full usage of a set of resources from the platform due to the operation of the whole 
system. A few concrete forms of usage are defined at this level of specification; those are aimed to represent the 
consumption of memory, the time taken from a CPU, the energy from a power supply and the number of bytes to be sent 
through a network.

F.4.35 StorageResource (from MARTE:GRM::ResourceTypes)

A StorageResource represents the different forms of memory.

Generalizations

• Resource (from MARTE::GRM::ResourceCore).

Associations

• None

Attributes

• elementSize: Integer size in bits of the basic storage unit.

Semantics

A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual 
element in bits must be given. The reference clock in this kind of resources corresponds to the pace at which data is 
updated in it, and hence it determines the time it takes to access to one individual memory element. The level of 
granularity in the amount of storage resources represented is up to the model designer. For example, if the storage 
resource represents a hard disk drive, the element could be a block or a sector, and the speed of the clock to access such 
element would be directly related to the disk rotation speed. The services provided by a storage resource are intended to 
move data between memory and a processing unit, which in this case can be a computing resource or a communication 
endpoint. 

F.4.36 SynchResource (from MARTE:GRM::ResourceTypes)

A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent 
execution flows, and in particular the mutual excusive access to shared resources. 

Generalizations

• Resource (from MARTE:GRM::ResourceCore)

Associations

• None

Attributes

• None
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Semantics

A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent 
execution flows, and in particular the mutual excusive access to shared resources. This general concept is further 
specialized inside the context of the GRM in the Scheduling package.

Constraints

[1] isProtected is true.

F.4.37 TimerResource (from MARTE:GRM::ResourceTypes)

A TimerResource represents a hardware or software entity that is capable of following and evidencing the pace of time 
upon demand with a prefixed maximum resolution, at programmable time intervals.

Generalizations

• TimingResource (from MARTE::GRM::ResourceTypes)

Associations

• None

Attributes

• duration: NFP_Duration 
interval after which the timer will make evident the elapsed time.

• isPeriodic: Boolean  
if true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic 
repetitive way. If false, it will do it only one time after it is started. 

Semantics

A TimerResource represents a hardware or software entity that is capable of following and evidencing the pace of time 
upon demand with a prefixed maximum resolution, usually with the usage of its reference clock. The TimerResource will 
make evident the arrival of the programmed duration time after the instant of its last starting or resetting.

When the attribute is Periodic is set to true the timer will indicate the arrival of a new finalization of the programmed 
interval in a periodic repetitive way, if set to false it will do it only one time after it is started. As any TimingResource, 
the services and the concrete mechanisms used by a TimerResource to offer them are to be furtherly refined as necessary 
according to the hardware or software nature of the timer and its reference clock. 

F.4.38 TimingResource (from MARTE:GRM::ResourceTypes)

A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of time.

Generalizations

• Resource (from MARTE::GRM::ResourceCore).

• ChronometricClock (from MARTE::Time::TimeAccess::ChronometricClocks).
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Associations

• start: GRM::ResourceCore::ResourceService [0..1] 
service for starting the operation of the TimingResource.

• set: GRM::ResourceCore::ResourceService [0..1] 
service for assigning a time value to the TimingResource.

• get: GRM::ResourceCore::ResourceService [0..1] 
service for obtaining the time value from the TimingResource.

• reset: GRM::ResourceCore::ResourceService [0..1] 
service for re-starting the operation of the TimingResource.

• pause: GRM::ResourceCore::ResourceService [0..1] 
service for pausing the operation of the TimingResource.

Attributes

• None

Semantics

A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of time. 
It is defined as a kind of chronometric clock, and may represent a clock itself or a timer, in which case it acts according 
to the clock that it has as a reference. According to the concrete kind of resource or timing mechanism that it represents, 
the referenced clock may be another chronometric clock or a logical clock, as defined in the time chapter. A 
TimingResource has concrete services for its management and operation. 

F.4.39 UsageDemand (from MARTE::GRM::ResourceUsages)

A UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource.

Generalizations

• None

Associations

• event: MARTE::CoreElements::Causality::CommonBehavior::Event [0..1] 
event that induce the demand.

• usage: MARTE::GRM::ResourceUsages::ResourceUsage [0..*] 
list of usages demanded by the referenced event.

Attributes

• None

Semantics

The concept of UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. It 
links events (that can come from the external environment to concrete usages of the resources describe in the model under 
consideration.
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F.4.40 UsageTypedAmount (from MARTE::GRM::ResourceUsages)

A UsageTypedAmount represents the amount and concrete types of magnitudes that characterize what can be used from a 
Resource. .

Generalizations

• ResourceAmount (from MARTE:GRM::ResourceCore)

Associations

• None

Attributes

• execTime: NFP_Duration [*] processing time used.

• msgSize: NFP_DataSize [*] number of bytes send.

• allocatedMemory: NFP_DataSize [*] amount of memory allocated.

• usedMemory: NFP_DataSize [*] amount of memory that is required to be available.

• powerPeak:NFP_Power [*] power capability required as available.

• enery:NFP_Energy [*] energy consumed.

Semantics

The concept of UsageTypeAmount is used to collect in one structure all the types of usages that are defined in this 
specification. Some types are demands that imply effectively the consumption of resources like energy, execTime, 
msgSize, or allocatedMemory; allocatedMemory can in fact be negative since it may be returned to the system. Others 
like powerPeak, and usedMemory imply the necessity to have the mentioned amount as available; powerPeak is the 
maximum power that is demanded, while usedMemory is the amount of memory that is typically temporary allocated 
(like in the stack for example) to perform an action, but which is promptly returned to the system. The multiplicities allow 
for different statistical or purpose dependent annotations of the same magnitude.

F.5 GCM

F.5.1 AssemblyConnector

An AssemblyConnector represents a specific interaction between ports and/or parts in the context of the definition of a 
StructuredComponent. An assembly connector defines at least two connector ends, which refers to type-compatible ports 
or components, depending on which element is connected. An assembly connector may be typed by an association 
defined between components. In that case, it represents a specific instantiation of this association in a composite structure.

Associations

• endPort: InteractionPort [*] ports used to connect ports or parts of a StructuredComponent.

• endPart: AssemblyPart [*] connected parts of a StructuredComponent.
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Semantics

This concept matches the definition of the CompositeStructures::InternalStructures::Connector classifier defined in UML. 
An assembly connector can be used to link components through ports, in that case both endPort and endPart association 
roles are used. They can be also used to directly link components, in that case the endPort association role is not used.

F.5.2 AssemblyPart

An AssemblyPart is a property that relates to a StructuredComponent. It is used to describe that an instance of a 
StructuredComponent is used in the definition of the structure of another one.

Generalizations

• Property (from MARTE ::Causality::CommonBehavior).

Semantics

The type attribute of an AssemblyPart refers to a StructuredComponent. It means that this specific component is 
instantiated and used in an assembly to define the structure of another StructuredComponent.

F.5.3 BroadcastSignalAction

A BroadcastSignalAction is an action that sends a signal to other connected components. In that case, connected 
component ports indicate that they can consume this type of signal.

Generalization

Ï InvocationAction (from MARTE::CoreElements::GeneralComponent).

Associations

• signalToProduce: SignalFeature [1]signal to be produced and broadcasted to other components.

Semantics

This concept matches the BroadcastSignalAction classifier defined in UML.

F.5.4 DirectionKind

DirectionKind is an enumeration, which literals specify the direction of flow elements or signals.. It is used with atomic 
flow (or message) ports to specify the direction of a flow element or a signal that types the port. It can be also used with 
non-atomic flow (or message) ports to specify the direction of a flow specification (or signal specification), or the 
direction of its owned properties.

Literals

• in direction of the information flow is from outside to inside of the owning entity. When related to a signal, it is 
usual to say that the signal is consumed.

• out direction of the information flow is from inside to outside of the owning entity. When related to a signal, it is 
usual to say that the signal is produced or published.

• inout bidirectional information flow.
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F.5.5 FlowSendAction

A FlowSendAction is an action that sends a flow to other connected components. In that case, connected component ports 
indicate that they accept this type of flow in input.

Generalizations

• InvocationAction (from MARTE::CoreElements::GeneralComponent).

Associations

• dataToSend: FlowProperty [*] data to send as an array of FlowProperty.

Semantics

This action sends a data flow to other connected components, which accept this type of flow in input. An asynchronous 
and "fire and forget" communication mode is used: the caller does not wait for data transmission to be completed and 
acknowledged to continue its execution.

F.5.6 FlowPort

A FlowPort is a concrete kind of InteractionPort used for flow-oriented communications between structured components. 
A FlowPort may relay incoming, outgoing or bidirectional flows  The nature of the flow can be specified by a property 
type in the case of an atomic flow port. A flow can be also specified in terms of flow specifications and flow properties, 
in the case of a non-atomic flow port.

Generalization

• InteractionPort (from MARTE::CoreElements::GeneralComponent).

Attributes

• /isAtomic: Boolean [1] = false 
if true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port. An 
atomic port is typed by a Classifier, Signal, a DataType or a PrimitiveType.

• isConjugated: Boolean [1] = false 
if true, the port is said to be a conjugated port. In this case, all the directions of the flow properties 
(FlowProperty) specified by a FlowSpecification that types a port are relayed in the opposite direction 
(e.g., an incoming flow property is treated as an outgoing flow property by the FlowPort). By default, the 
value is false. This attribute applies only to non-atomic ports.

• direction: DirectionKind [0..1] 
direction of the port when the port is atomic. In other case, this property is not applicable.

Associations

• specification: FlowSpecification [0..1] flow specification used to type a non-atomic flow port.
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Semantics

Flow ports support flow-oriented communications between structured components. A flow port enables to specify the 
nature of flow that it may relay. A flow port may handle incoming (in), outgoing (out) or bidirectional (inout) flows. If a 
flow port is atomic, the "type" association role, inherited from Property, is used to specify the nature of the flow and its 
"direction" attribute is used to specify the direction. If the port is not atomic, the "specification" association role is used 
to specify the nature of the flow using a flow specification. The flow direction has to be fixed for each flow property 
owned by the flow specification then. An atomic flow port typed by a Signal, specifying an incoming flow direction, 
maps to a Reception of the signal. An atomic flow port typed by a Signal, specifying an outgoing flow direction, declares 
the ability for the port to relay the signal over connectors. This concept matches the FlowPort concept defined in SysML.

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e. connector with exactly two connector ends.

[2] If a port is non-atomic, it cannot specify a direction.

self.isAtomic = false implies self.direction->size() = 0

[3] A conjugated port cannot be an atomic port.

self.isConjugated = true implies self.isAtomic = false

[4] The type of a non-atomic flow port has to be a flow specification (i.e. an interface stereotyped with 
"flowSpecification").

F.5.7 FlowProperty

A FlowProperty defines the type and the direction of a single flow element carried through flow ports. It may relate to a 
Classifier, a Signal, a PrimitiveType or a DataType. A flow property isused by as part of a flow specification to 
characterize the type of a non-atomic flow port.

Generalization

Ï Property (from MARTE::CoreElements::Foundations).

Attributes

• direction: DirectionKind [1] = in 
direction of the flow property: either incoming (in), outgoing (out) or bidirectional (inout).

Semantics

A FlowProperty defines the type and the direction of a single element carried in a dataflow. It can relate either to a 
Classifier, a Signal, a PrimitveType or a DataType. Depending on its direction attribute, it may represents a flow element 
entering and/or leaving a component through a flow port. The type and direction of a flow property are used to evaluate 
whether flow ports are type-compatible. A flow property typed by a Signal, specifying an incoming flow direction, maps 
to a Reception of the signal. A flow propery typed by a Signal, specifying an outgoing flow direction, declares the ability 
for the port to relay the signal over connectors. This concept matches the FlowProperty concept defined in SysML.
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F.5.8 FlowSpecification

A FlowSpecification provides a way to define structured elements that a non-atomic flow port may relay. It defines a 
series of flow properties with their own types and flow direction.

Associations

• property: FlowProperty [*] flow properties owned by the flow specification.

Semantics

A FlowSpecification provides a way to define structured elements that a non-atomic flow port may relay. It defines a 
series of flow properties with their own types and flow direction. This concept matches the FlowSpecification concept 
defined in SysML.

Constraints

[1] A flow specification owns only properties, it cannot own operation or reception.

F.5.9 InteractionPort (abstract)

An InteractionPort specifies an interaction point on a structured component. It factorizes the common structural properties 
of ports used in the General Component Model.

Generalizations

• Property (from MARTE::CoreElements::Foundations).

Associations

• owner: Component [1]component owning the port.

Semantics

An InteractionPort is an abstract class that specifies an interaction point on a structured component. It factorizes the 
common structural properties of ports used in the General Component Model.

F.5.10 InvocationAction (abstract)

An InvocationAction defines common invocation mechanisms used in the General Component Model.

Generalizations

• Action (from MARTE::CoreElements::Causality::CommonBehavior).

Attributes

• onPort: Port[1]port on which the invocation action is triggered.

Semantics

An Invocation action is an abstract class that factorizes invocation mechanisms common to message-, and flow-based 
communication.
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F.5.11 MessagePort (abstract)

A MessagePort is a concrete kind of Port used for message-based communications between components. It relays only 
services calls and/or signals. A MessagePort is identified by the services it provides/requires, as well as the type of signal 
it produces/consumes.

Generalizations

• Port (from MARTE::CoreElements::GeneralComponent).

Attributes

• isAtomic: Boolean [1] = false indicates whether the port is atomic (i.e. it is typed by a signal).

• direction: DirectionKind [0..1] direction of the port when the later is not atomic.

• IsConjugated: Boolean [0..1]

Associations

• None

Semantics

A MessagePort supports message-based communications: it assumes a request/reply communication schema between 
components. In compliance with UML, a service is considered as provided if the message port is typed by an interface 
that defines the service. A service is considered as required if the port is typed by a class that makes use of an interface, 
in which is defined the service. Additionally, the General Component Model provides the ability to directly declare 
provided and required services on a message port, through the "provided" and "required" associations. The "direction" 
attribute indicates whether the port has provided (in), required (out) or both (inout) services.

Constraints

[1] if isAtomic is false then the property direction is not applicable.

self.isAtomic = false implies direction->size() = 0

F.5.12 ServiceCallAction

A ServiceCallAction is an action that invokes a service provided by other connected components and may receive a return 
value.

Generalizations

• InvocationAction (from MARTE::CoreElements::GeneralComponent).

Associations

• serviceToCall: ServiceFeature [1]service to invoke.

Semantics

This concept matches the CallAction classifier defined in UML.
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F.5.13 ServiceFeature

A Service is a behavior that a component provides or requires to/from other components. A service is used in message-
based communication when a component invokes a behavior through a service call and expects a reply to be provided.

Associations

• owner: ServiceSpecification [*]

Semantics

A Service represents an externally visible behavior owned by a component. A service is used in message-based 
communication as a contract between components: the owner component provides a service through one of its ports to 
other components, which require the service. Using a request/reply communication schema, a component that requires a 
service may invoke it through a service call. The client component expects then a reply to be provided by the service 
provider.

F.5.14 ServicePort

Generalisations

Associations

• specification: ServiceSpecification [*]

Semantics

F.5.15 ServiceSpecification

Associations

• service: Service Feature [*]

Semantics

F.5.16 SignalFeature

A Signal is used to characterize unidirectional, loose-coupled, communications between components. A component may 
produce or consume a signal. If so, it needs to declare incoming or outgoing signals on its ports. A signal may define 
attributes that represent the piece of information transmitted from a component to another one.

Attributes

• direction: DirectionKind [0..1]

Associations

• owner: SignalSpecification [*]
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Semantics

Signals support the concept of loose-coupled communication between components. A component that sends a signal does 
not expect a reply from a receiver. The receiver component consumes the signal, provided it knows how to handle it, and 
triggers a related behavior in an asynchronous way. Signals provide a way to notify components of events they may want 
to handle. This concept matches the Signal classifier defined in UML, as well as the CCM events.

F.5.17 SignalPort

Generalisations

Associations

• specification: SignalSpecification [*]

Semantics

F.5.18 SignalSpecification

Associations

• signal: SignalFeature [*]

Semantics

F.5.19 StandardPort

A StandardPort is a concrete kind of Port used for communications based on a request/reply paradigm. A standard port 
defines a series of provided and required interfaces, which define operations. An interface is considered as provided if the 
standard port is typed by this interface or by a class that implements this interface. An interface is considered as required 
is the the standard port is typed by an a class that makes use of the interface.

Generalisations

• InteractionPort.

Semantics

This concept matches the CompositeStructures ::InternalStructures ::Port classifier defined in UML.

F.5.20 StructuredComponent
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A StructuredComponent is a self-contained entity of a system, which encapsulates structured data and behavior. 
StructuredComponents may interact directly  or through their ports, preventing access to their internal features by other 
means. The structure of a component is defined in term of assembly parts, which type refers to external structured 
components, and connectors. Parts may be linked using connectors provided related components or ports are  type-
compatible.

Generalizations

• BehavioredClassifier (from MARTE::CoreElements::Causality::CommonBehavior).

Associations

• ownedConnectors: Connector [*] connectors owned by the component.

• ownedPorts: Port [*] {subsets ownedProperties} ports owned by the component.

• parts: Property [*] parts owned by the component.

Attributes

• None

Semantics

This concept matches the CompositeStructures::InternalStructures::StructuredClassier classifier defined in UML. As in 
UML, the "parts" association role is derived, based on a selection of properties with a "isComposite" attribute set to true.

F.6 Alloc

F.6.1 Allocation (from Allocations)

Allocation is a mechanism for associating elements from a logical context, application model elements, to named 
elements described in a more physical context, execution platform model elements.

Generalizations

• None

Associations

• impliedConstraint: NFP_Constraint [*] 
constraints implied by the allocation. 

• source: ApplicationAllocationEnd [1..*] 
application model elements being allocated.

• target: ExecutionPlatformAllocationEnd [1..*]  
execution platform model elements to which the sources are allocated.

Attributes

• None
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Semantics

An Allocation represents either a possible allocation, in which case, a space exploration tool may determine what the best 
allocations are, or an actual allocation in the system. The context in which the allocate dependency is used should be 
sufficient to know in which case we are. When it is not the case, the kind of the constraints may help in determining 
whether the allocation is required, offered, etc. 

The purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or 
when the allocation is performed.  

F.6.2 AllocationEnd (from Allocations)

AllocationEnd is an abstract class that identifies elements involved in an allocation. 

Generalizations 

• None

Associations 

• None

Attributes

• None

Semantics

AllocationEnds are elements that have at least one allocation relationship with another element. This is an abstract class, 
concrete specialized allocation ends are provided to clarify whether the end is a source for the allocation or a target.

F.6.3 ApplicationAllocationEnd (from Allocations)

ApplicationAllocationEnd identifies elements that are sources of an allocation. 

Generalizations

• AllocationEnd (from Allocations)

Associations

• /allocatedTo: ExecutionPlatformAllocationEnd[*] 
‘ union of all targets of all allocations into which the ApplicationAllocationEnd is involved as a source.

Attributes

• None

Semantics

ApplicationAllocationEnd identifies application model elements that are allocated to resources. Its allocatedTo attribute is 
derived from any Allocation dependency and allows for tracing the resources on to which this element is allocated.
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F.6.4 ExecutionPlatformAllocationEnd  (from Allocations)

ExecutionPlatformAllocationEnd identifies elements that are targets of an allocation. 

Generalizations

• AllocationEnd (from Allocations)

Associations

• /allocatedFrom: ApplicationAllocationEnd[*] 
union of all sources of all allocations into which the ExecutionPlatformAllocationEnd is involved as a 
target.

Attributes

• None

Semantics

ApplicationAllocationEnd identifies execution platform model elements that are the target of an Allocation. Its 
allocatedFrom attribute is derived from any Allocation dependency and allows for tracing the model elements that are 
allocated.

F.6.5 Refinement (from Allocations)

Refinement is a relationship where a general element is refined into more specialized ones. It is the opposite of an 
abstraction.

Generalizations

• None

Associations

• general: AllocationEnd [1] element being refined.

• refined: AllocationEnd [1..*]refined elements.

Attributes

• None

Semantics

Contrary to an allocation that deals with independent models, refinement works by changing the focus on an underlying 
similar structure. A refinement applies either to application model elements only or to execution platform model elements 
only.

Constraint

[1] If the general end is an ApplicationAllocationEnd then the refined ends must be ApplicationAllocationEnd as well.
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[2] If the general end is an ExecutionPlatformAllocationEnd then the refined ends must also be 
ExecutionPlatformAllocationEnd.

F.7 RTEMoCC

F.7.1 CallConcurencyKind

CallConcurencyKind is an enumeration, which literals specify the concurrency policy applied to a protected passive unit.

Literals

• sequential a schedulable resource at a time can access a feature of a protected passive unit.

• guarded a schedulable resource at a time can access a feature of a protected passive unit while concurrent 
ones are suspended.

• concurrent multiple schedulable resources at a time can access a protected passive unit.

F.7.2 CompResPolicy

CompResPolicy is used to specify the scheduling policy of resources managed by an incoming message queue.

Attributes

• policy: SchedulingPolicyKind [0..1]scheduling policy of resources managed by a message queue.

Semantics

CompResPolicy reifies a scheduling policy defined as a literal of the SchedulingPolicyKind enumeration in the General 
Resource Model (GRM). It is used along with the redefined association: schedulingPolicy to specify the scheduling policy 
of computing resources for an incoming message queue.

F.7.3 ConcurencyKind

ConcurencyKind is an enumeration, which literals specify the kind of concurrency policy of a behavioral feature.

Literals

• reader a behavioral feature execution has no side effects (i.e. it does not modify the state of the object or the values 
of its properties).

• writer a behavioral feature execution may have side effects.

• parallel a behavioral feature execution may be done in parallel of any kind of service.

F.7.4 ExecutionKind

ExecutionKind is an enumeration, which literals specify the kind of execution of a behavioral feature.
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Literals

• deferred the event occurrence matching the service invocation is stored in the queue of the behavior attached 
to the object.

• remoteImmediate the execution is performed immediately with a computing resource of the calling object.

• localImmediate the execution is performed immediately with a computing resource of the called object.

F.7.5 InMsgQueue

An incoming message queue plays the role of broker for schedulable resources owned by a real-time unit. It stores 
incoming messages before schedulable resources can process them. A schedulable resource can be assigned to handle a 
message when its gets available, based on a scheduling policy.

Generalizations

• ResourceBroker (from MARTE::GRM::ResourceTypes).

• StorageResource (from MARTE::GRM::ResourceTypes).

Attributes

• queueSchedPolicy: SchedulingPolicyKind scheduling policy used to manage a queue.

• queueSize: Integer size of a queue, in the case of a size-limited queue.

• msgMaxSize: Integer maximum size of a message stored in a queue.

Associations

• exeRes: SchedulableResource [*] {subsets managedResource} 
schedulable resources brokered by the queue.

• rOcc: ReceiveOccurence [*] 
occurrences of message reception.

• schedulingPolicy: CompResPolicy [1..*] {subset accCtrlPolicy} 
scheduling policies used for controlling access to schedulable resources.

Semantics

An incoming message queue stores incoming messages before they can be executed by a schedulable resource owned by 
a real-time unit. Messages are handled in the queue based on a defined scheduling policy. The size of the message queue 
may be either infinite or limited.

F.7.6 PoolMgtPolicy

PoolMgtPolicy is an enumeration, which literals specify the kind of pool management policy used for schedulable 
resources of a real-time unit.

Literals

• infiniteWait 
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If the pool is empty then the real-time unit waits indefinitely until a computing resource is released.

• timedWait  
If the pool is empty then the real-time unit waits for a bounded time until a computing resource is released. 

 An exception is raised if no computing resource is available by the end of the waiting time.

• create If the pool is empty then the real-time unit creates a new computing resource and adds it to the pool.

• exception If the pool is empty then the real-time unit raises an exception.

• Other Other pool management policy.

F.7.7 PpUnit

A protected passive unit is used to represent shared information among real-time units. It does not own any schedulable 
resource. Meanwhile, it provides protection mechanisms to support concurrent accesses by multiple real-time units.

Generalizations

• BehavioredClassifier (from MARTE::CoreElements::Causality::CommonBehavior).

• SynchResource (from MARTE::CoreElements::Causality::CommonBehavior).

Attributes

• concPolicy: CallConcurencyKind [0..1] concurrency policy applied to a protected passive unit.

Associations

• behaviors: RtBehavior [*] behaviors owned by a protected passive unit.

• services: RtService [*] {subsets pServices} services owned by a protected passive unit.

Semantics

A protected passive unit is used by real-time units to carry information, while providing protection mechanisms against 
concurrent accesses. It does not own any computing resource but defines behaviours and services. A protected passive 
unit may specify its concurrency policy globally, using its concPolicy attribute. It may also specify its concurrency policy 
locally through the concPolicy attribute of the RtService classifier. The execution kind of a protected passive unit is either 
immediateRemote or deferred. In both cases, the computing resource of the real-time unit invoking the service of the 
protected passive unit is used.

Constraints

[1] The execution kind of a protected passive unit is either immediateRemote or deferred.

F.7.8 RtAction

A real-time action is an action that may specify real-time characteristics by the means of a real-time feature. It may also 
define a synchronization kind and a message size, both related to the execution of the action.

Generalizations

• Action (from MARTE::CoreElements::Causality::CommonBehavior).
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Attributes

• syncKind: SynchronizationKind [0..1] kind of synchronization used when an action is completed. 

• isAtomic: Boolean [1] = false indicates whether a real-time action is atomic.

• msgSize: NFP_DataSize [0..1] size of a message generated when executing an action. 

Associations

• pRTF: RealTimeFeature [0..1] real-time feature related to a RtAction.

Semantics

A real-time action can specify a real-time feature such as a deadline or a period. It can also describe the size of the 
message generated when executing the action, as well as the kind of synchronisation used when the action is completed. 
Finally, a real-time action may be atomic.

F.7.9 RtBehavior

A real-time behavior is a kind of behavior owned by a real-time unit or a protected passive unit. It owns a message queue 
used to store the messages received by the behavior owner. Messages are extracted from the queue and processed based 
on a priority criterion (e.g. priority, deadline) and a given scheduling policy.

Generalization

• Behavior (from MARTE::CoreElements::Causality::CommonBehavior).

Associations

• queue: InMsgQueue [1]incoming message queue owned by a behavior.

Semantics

A real-time behavior implicitly owns a queue to store the messages received by the real-time unit. If its owning unit is a 
real-time unit, a schedulable resource, as soon as it gets available, may be assigned to handle a message. Otherwise, 
messages received by the behavior owner are stored in the message queue. A real-time behavior may be also owned by a 
protected passive unit.

F.7.10 RealTimeFeature

A real-time feature defines special characteristics that can be attached to a real-time service, a real-time action, a message 
or a signal.

Attributes

• utility: UtilityType [0..1] 
specifies an "importance" feature. The UtilityType data type is defined in the MARTE_Library. This type is 
abstract and it is to the user to define its own specialized utility type according to its needs.

• occKind: ArrivalPattern [0..1] 
arrival pattern (e.g. periodic, aperiodic).

• tRef: TimedInstantObservation [0..1] 
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time reference used by the other relative timing attributes.

• relDl: NFP_Duration [0..1] 
relative deadline (with respect to the time reference).

• absDl: NFP_DateTime [0..1] 
absolute deadline.

• boundDl: NFP_BoundedDuration [0..1] 
bounded relative deadline.

• rdTime: NFP_Duration [0..1] 
minimal ready-time.

• miss: NFP_Percentage [0..1] 
percentage of tolerance for missing the deadline.

• priority: NFP_Integer 
priority.

Semantics

A real-time feature is used to define special real-time characteristics a real-time service, a real-time action, a message or 
a signal.

F.7.11 RteConnector

A real-time connector is used when it is necessary to denote non-functional properties on component connectors.

Generalizations

• AssemblyConnector (from MARTE::CoreElements::GCM).

Attributes

• bandwidth: NFP_DataTxRate [0..1] 
bandwith of the communication link.

• packetT: NFP_Duration [0..1] 
time to transmit a packet.

• blockT: NFP_Duration [0..1] 
time the communication host is blocked and cannot transmit.

• transmMode: MARTE_Library::MARTE_DataTypes::TransmModeKind [0..1] 
defines the transmission mode, one of the following values: { simplex, half-duplex, full-duplex}.

Semantics

A real-time connector specializes the AssemblyConnector introduced in the MARTE General Component Model. Real-
time connectors are used when one needs to denote non-functional properties on component connectors. Throughput, 
transmission mode, maximum blocking time or packet transmission time are predefined properties attached to the 
connector.
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F.7.12 RtService

A real-time service can specify real-time features such as a deadline or a period. It can also describe a concurrency policy, 
an execution policy as well as a synchronization policy. Finally, a real-time service may be atomic.

Generalization

• Service (from MARTE::GRM::ResourceCore)

Attributes

• concPolicy: ConcurrencyKind [1] concurrency policy used for the real-time service.

• exeKind: ExcutionKind [1] execution policy used for the real-time service.

• isAtomic: Boolean [1] = false indicates whether the service execution is considered as atomic.

• syncKind: SynchronizationKind [1] synchronization policy used for the real-time service.

Associations

• pRTF: RealTimeFeature [0..1] real-time feature that can be attached to a real-time service.

Semantics

A real-time service can specify real-time features such as a deadline or a period (see details of the ArrivalPattern data 
type introduced in the MARTELib). It can also describe a concurrency policy, an execution policy as well as a 
synchronization policy. Finally, a real-time service may be atomic. These characteristics are applicable for all the 
invocations of the service.

F.7.13 RtUnit

A real-time unit is similar to the active object of UML but with a more detailed semantics description.

Generalizations

• BehavioredClassifier (from MARTE::CoreElements::Causality::CommonBehavior).

• ConcurrencyResource (from MARTE::CoreElements::Causality::CommonBehavior).

• ResourceManager (from MARTE::GRM::ResourceTypes).

Attributes

• isDynamic: Boolean [0..1] 
if true, it denotes that the real-time unit creates dynamically the resource required to execute its services. 
Otherwise, the real-time unit owns a pool of schedulable resources to execute its services.

• isMain: Boolean [0..1] 
indicates whether the real-time unit is the main application unit.

• MemorySize: NFP_DataSize [0..1] 
amount of static memory requires for each instance of the real-time unit to be placed in an application.

• ·poolSize: Integer [0..1] 
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size of the schedulable resource pool of a real-time unit.

• poolPolicy: PoolMgtPolicy [0..1] 
pool management policy of a RtUnit.

• poolWaitingTime: NFP_Duration [0..1] 
maximal time that a real-time unit waits for a schedulable resource to be released. This attribute is applicable 
in the case of a pool management policy set to "timedWait".

Associations

• behaviors: RtBehaviror [*] behaviors owned by a RtUnit.

• exeRes: ComputingResource [*] computing resources owned by a real-time unit.

• main: RtService [0..1] {subsets pServices} service used as the application entry point, in case of the main unit.

• operationalModes: RtBehavior [0..1] behavior used to describe unit configurations.

• services: RtServices [*] {subsets pServices} services owned by a RtUnit.

Semantics

A real-time unit is similar to the active object of UML but with a more detailed semantics description. It owns at least one 
schedulable resource but can also have several ones. If its dynamic attribute is set to true, the resources are created 
dynamically when required. In the other case, the real-time unit has a pool of scheduling resources. When no schedulable 
resource are available in the possible, the real-time unit may either wait indefinitely for a resource to be released, or wait 
only a given amount of time (specified by its poolWaitingTime attribute), or dynamically increase its pool of thread to 
adapt to the demand, or generate an exception. A real-time unit may own behaviors, for which are defined a message 
queue used to store incoming messages. The size of this message queue may be infinite or limited. In the latter case, the 
queue size is specified by its maxSize attribute. In addition, a real-time unit owns a specific behavior, called operational 
mode. This behavior takes usually the form of a state-based behavior where states represent a configuration of the real-
time unit and transition denotes reconfigurations of the unit.

Constraints

[1] A main real-time unit shall specify a main service.

self.isMain=true implies self.main->size() = 1

F.7.14 SynchronisationKind

SynchronisationKind is an enumeration, which literals specify the synchronization mechanism used for real-time actions 
and services.

Literals

• synchronous the client waits for the end of the invoked behavior before continuing its own execution.

• asynchronous the client does not wait for the end of the invoked behavior to continue its own execution.

• delayedSynchronous the client continues to execute and will synchronize later when the invoked behavior 
returns a value.

• rendezVous the behavior waits for the client to start executing.
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• Other other synchronization policy.

F.8 DRM::SRM

F.8.1 Alarm (from SRM::SW_Concurrency)

Generalizations

• InterruptResource (from SRM::SW_Concurrency).

Associations

• timers: TimerMechanism (from GRM::ResourceType) [0..1] 
timer which raises the signal to execute the entry-point of the alarm resource.

Attributes

• isWatchdog: Boolean [0..1] if true the alarm is a watchdog.

Semantics

Alarm resource provides executing context to a user routine, which must be connected to a timer invoked after a one-shot 
or periodically. A particular alarm is the watchdog. If the application doesn't succeed in resetting the watchdog, that mean 
that the system is not functioning properly and the alarm occurs, forcing application to execute the watchdog entry point 
or to reset the processor.

F.8.2 AccessPolicyKind (from SRM::SW_Brokering)

The AccessPolicyKind enumerates common policy to access a resource.

Literals

• Read read access only.

• ReadWrite read and write access allowed.

• Write write access only.

• Undef undefined policy.

• Other other user's specific policy.

F.8.3 ConcurrentAccessProtocolKind (from SRM::SW_Interaction)

The ConcurrentAccessProtocolKind enumerates common protocol to access mutually a shared resource.

Literals

• NoPreemption lock the concurrency to avoid preemption when a resource is accessing a shared variable.

• PCP priority Ceiling protocol.

• PIP priority Inheritance Protocol.
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• Undef undefined policy.

• Other other user's specific policy.

F.8.4 DeviceBroker (from SRM::SW_Brokering)

Generalizations

• ResourceBroker (from GRM::ResourceManagement).

• SwResource (from SRM::SW_ResourceCore).

Associations

• closeServices: GRM::ResourceCore::ResourceService [0..*] 
services which make the hardware device unavailable from software resources.

• controlServices: GRM::ResourceCore::ResourceService [0..*] 
services which initialize and broke the device.

• devices: GRM::ResourceType::DeviceResource [0..*] 
Hardware device brokered by the driver.

• openServices: GRM::ResourceCore::ResourceService [0..*] 
services which establish the connection between a device and the resource. This service makes available the 
device to software resources.

• readServices: GRM::ResourceCore::ResourceService [0..*] 
services which read data from the device.

• writeServices: GRM::ResourceCore::ResourceService [0..*] 
services which write data to the device.

Attributes

• accessPolicy : AccessPolicyKind [0..1] access policy to the device (read, write …).

• isBuffered: Boolean[0..1] specifies if data is read and written in large chunks and buffered 
 privately.

Semantics

A DeviceBroker (i.e. driver) interfaces peripheral devices to the software execution support. It makes devices accessible 
for software. It initializes the software interface to access the device (i.e. a driver). Commonly, deviceBroker resources 
are based on file mechanisms.

F.8.5 EntryPoint (from SRM::SW_Concurrency)

Generalizations

• Behavior (from CoreElements::Causality::CommonBehavior).

Attributes

• isReentrant: Boolean [0..1] 
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specifies if a single copy of the routine instructions in memory can be shared by multiple concurrent 
 resource. If true, instructions describe in the routine could be called from multiple concurrent resource 
 contexts simultaneously without conflict.

• routine: Behavior [1] 
routine which has to be executed in the context of the software computing resource.

Semantics

The EntryPoint supply the routine (i.e. operations) executed in the context of the SwConcurrentResource. At creations of 
concurrent resources, users are usually invited to define as parameter a sequence of action to be executed in the context 
provided by the concurrent resource. For example, the POSIX standard provides a computing resource creation service 
named "pthread_create" where users define the entry point of that resource by the parameter "start_routine".

F.8.6 InterruptResource (from SRM::SW_Concurrency)

Generalizations

• SwConcurrentResource (from SRM::SW_Concurrency.

Associations

• isr : EntryPoint [0..*]  
interrupt service requests (i.e. entryPoint).

• routineConnect: GRM::ResourceCore::ResourceService [0..*] 
services which connect the routine to the interrupt vector.

• routineDisConnect: GRM::ResourceCore::ResourceService [0..*] 
services which disconnect the routine to the interrupt vector.

Attributes

• kind: InterruptKind [0..1] 
kind of interrupt.

• isMaskable: Boolean [0..1] 
interrupts may be maskable. Only few critical signals raise non maskable interrupts. The control processor 

 unit (CPU) always recognizes those. Maskable interrupts can be in two states: unmasked (i.e. recognized by 
 the CPU) or masked (i.e. ignored by the control unit). For example, a schedulable resource can explicitly 
 mask maskable interrupts to avoid its pre-emption in some code sections.

• maskElements: CoreElements::Foundations::ModelElement [0..*]  
elements which map the semantics of the interrupt mask.

• vectorElements: CoreElements::Foundations::ModelElement [0..*]  
elements which map the semantics of the interrupt vector.

Semantics

InterruptResource define an executing context to execute user-delivered routines (i.e. entry point) further to hardware or 
software asynchronous signals. Exceptions are software asynchronous signals. Exceptions can either be "Processor-
detected" exceptions when the CPU detects an anomalous condition while executing an instruction or "Programmed" 
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exceptions (also called software interrupts) when they occur at the request of the programmer. Some example of 
"Processor-detected" exceptions are faults (divide error, device not ready), traps (breakpoints, debug) and aborts (double 
fault)). 

F.8.7 InterruptKind (from SRM::SW_Concurrency)

The InterruptKind enumerates different kind of interrupt.

Literals

• HardwareInterrupt 
the interrupt source is an hardware one.

• ProcessorDetectedException 
software interrupts produced by the CPU control unit while it detects an anomalous condition in executing 

 an instruction. Some examples of "Processor-detected" exceptions are faults (divide error, device not ready) 
 and aborts (double fault). 

• ProgrammedException 
software interrupts produced by an explicit request of the programmer. Some examples of 

 "ProgrammedException" exceptions are traps (breakpoints, debug). 

• Undef 
undefined mechanism.

• Other: 
others mechanisms.

F.8.8 MemoryBroker (from SRM::SW_Brokering)

Generalizations

• ResourceBroker (from GRM::ResourceManagement).

• SwResource (from SRM::SW_ResourceCore).

Associations

• memories: GRM::ResourceType::StorageResource [0..*] 
hardware devices brokered by the driver.

• lockServices: GRM::ResourceCore::ResourceService [0..*] 
services which lock the paging or the swapping.

• mapServices: GRM::ResourceCore::ResourceService [0..*]  
services which map real memory onto the virtual address ranges used in memory partition.

• unlockServices: GRM::ResourceCore::ResourceService [0..*] 
services which unlock the paging or the swapping. 

• unMapServices: GRM::ResourceCore::ResourceService [0..*] 
services which unmap real memory onto the virtual address ranges used in memory partition.
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Attributes

• accessPolicy : AccessPolicyKind [0..1]  
access policy to the memory (read, write …).

• memoryBlockAddressElements: CoreElements::Foundations::ModelElement [0..*] 
elements which maps the semantic of the memory block address.

• memoryBlockSizeElements: CoreElements::Foundations::ModelElement [0..*]  
elements which map the semantic of the a memory block size.

Semantics

MemoryBroker resources provide primarily services to manage the memory allocation, the memory protection and the 
memory access.

F.8.9 MemoryPartition (from SRM::SW_Concurrency)

Generalizations

• SwResource (from SRM::SW_ResourceCore).

Associations

• concurrentResources: SRM::SW_Concurrency::SwConcurrentResource [0..*] 
concurrent resources executing in that address space.

• exitServices: GRM::ResourceCore::ResourceService  [0..*] 
services which release address spaces.

• forkServices: GRM::ResourceCore::ResourceService [0..*] 
services which spawn a new address space.

• memorySpaces: GRM::ResourceType::StorageResource [0..*] 
parts of the memory linked to this address space.

Semantics

MemoryPartition represents a virtual address space. It insures that each concurrent resource associated to a specific 
memory partition can only access its own memory space.

F.8.10 MessageComResource (from SRM::SW_Interaction)

Generalizations

• SwCommunicationResource (from SRM ::SW_Interaction).

Associations

• receiveServices: GRM::ResourceCore::ResourceService  [0..*] services which get a message.

• sendServices: GRM::ResourceCore::ResourceService [0..*] services which set a message.
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Attributes

• isFixedMessageSize : Boolean [0..1] 
specifies whether all messages managed by the resource have the same size.

• mechanism: MessageResourceKind [0..1] 
specifies the kind of mechanism use to exchange message 

• messageQueueCapacityElements: CoreElements::Foundations::ModelElement [0..1] 
upper limit of message number allowed in a queue.

• messageQueuePolicy: QueuePolicyKind [0..1] 
algorithm to manage the outgoing message queue.

• messageSizeElements: CoreElements::Foundations::ModelElement  [0..*] 
parameters used in message exchange services to defines the size of the message.

Semantics

MessagingComResource defines communication resource to exchange message. Real-time platforms provide several 
communication mechanisms to exchange data in a concurrent resource context. Commonly, users can manipulate message 
queues, pipes, blackboards, buffer, etc.

F.8.11 MessageResourceKind (from SRM::SW_Interaction)

The MessageResourceKind enumerates common mechanisms provide by platform to exchange data.

Literals

• Blackboard defines a one message buffer.

• MessageQueue defines a multiple message buffer.

• Pipe defines POSIX Pipe mechanism, which allows data flow among separate memory 
partition.

• Undef undefined mechanism.

• Other other mechanisms.

F.8.12 MutualExclusionResourceKind (from SRM::SW_Interaction)

The MutualExlusionResourceKind enumerates common mechanisms provide by platform to synchronize resource.

Literals

• BooleanSemaphore 
binary semaphore. It is a flag available or unavailable. There is no proprietary purpose. Anybody can give 
the semaphore even if it does not take it.

• CountSemaphore 
counting semaphore for which every time the semaphore is given the count is incremented; every time the 
semaphore is given the count is decremented.

• Mutex 
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binary semaphore associated with a propriety concept, resource can give the semaphore if and only if the 
resource takes it.

· Undef undefined mechanisms.

· Other other mechanisms.

F.8.13 NotificationKind (from SRM::SW_Interaction)

The NotificationKind enumerates common policy to access a resource.

Literals

• Bounded each occurrence increments a counter.

• Memorized occurrences are memorized in a buffer.

• Memoryless occurrences are not memorized in a buffer, hence multiple occurrences are lost.

• Undef undefined.

• Other user's specific policy.

F.8.14 NotificationResourceKind (from SRM::SW_Interaction)

The NotificationResourceKind enumerates common mechanisms provide by support to notify occurrence.

Literals

• Barrier barrier mechanism.

• Event event mechanism.

• Undef undefined mechanisms.

• Other other mechanisms.

F.8.15 NotificationResource (from SRM::SW_Interaction)

Generalizations

• SwSynchronizationResource (from SRM::SW_Interaction).

Associations

• clearServices: GRM::ResourceCore::ResourceService [0..*] 
services which erase an or several occurrences.

• flushServices: GRM::ResourceCore::ResourceService [0..*] 
services to release any resource which wait for an occurrence.

• signalServices: GRM::ResourceCore::ResourceService [0..*] 
services which send one or several occurrences.

• waitServices: GRM::ResourceCore::ResourceService [0..*] 
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services to wait one or several occurrences.

Attributes

• maskElements: CoreElements::Foundations::ModelElement [0..*] 
elements which maps the semantic of the mechanism to mask occurrence.

• mechanism: NotificationResourceKind [0..1] 
notification mechanism.

• occurenceCountElements: CoreElements::Foundation::ModelElement [0..*] 
elements which maps the semantic of the occurrence number.

• occurenceKind : NotificationKind [0..1] 
kind of notification.

Semantics

NotificationResource supports control flow by notifying the occurrences of conditions to awaiting concurrent resources, 
such as POSIX Signal, OSEK\VDX Event, ARINC-653 Event… Occurrences can be memorized (i.e. memorized in a 
buffer), bounded (i.e. each occurrence increments a counter) or memoryless (i.e. not memorized in a buffer, hence 
multiple occurrences are lost).

F.8.16 QueuePolicyKind (from SRM::SW_Interaction)

The QueuePolicyKind enumerates algorithms provide by resources to order a queue.

Literals

• FIFO the first element put in the queue is the first outgoing.

• LIFO the last element put in the queue is the first outgoing.

• Priority each element is annotated with a priority.

• Undef undefined.

• Other other algorithms.

F.8.17 SharedDataComResource (from SRM::SW_Interaction)

Generalizations

• SwCommunicationResource (from SRM::SW_Interaction).

Associations

• readServices: BehaviroalFeature [0..*] services which read the shared data.

• writeServices: BehaviroalFeature [0..*] services which write the shared data.

Semantics

SharedDataComResource define specific resource used to share the same area of memory among concurrent resources. 
They allow concurrent resources to exchange safely information by reading and writing the same area in memory.
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F.8.18 SwAccessService (from SRM::SW_ResourceCore)

Generalizations

• ResourceService (from GRM::ResourceCore.

Associations

• accessedElement: CoreElements::Foudations::Property [1] property which is accessed by this service.

Attributes

• isModifier: Boolean specifies if the access modify the resource feature pass by parameters of this service.

Semantics

The services provided by a software resource to access its characteristics: the accessor and the setter.

F.8.19 SwCommunicationResource (abstract) (from SRM::SW_Interaction)

Generalizations

• SwInteractionResource (from SRM::SW_Interaction).

• CommunicationMedia (from GRM::ResourceType).

Semantics

SwCommunicationResource defines data exchange interaction among concurrent resources.

F.8.20 SwConcurrentResource (abstract) (from SRM::SW_Concurrency)

Generalizations

• SwResource (from SRM::SW_ResourceCore).

• ResourceBroker (from GRM::ResourceManagement).

• ConcurrencyResource (from GRM::ResourceType).

Associations

• activateServices: GRM::ResourceCore::ResourceService [0..*] 
services which make available a resource to execute. As result, activated resource is ready to compete for the 
computing resource. In case of interruption, it results in explicitly raised the interrupt (i.e. to set of the 

 interrupt). 

• addressSpace: SRM::SW_Concurrency::MemoryPartition [0..1] 
address space in which the flow is executed.

• disableConcurrencyServices: GRM::ResourceCore::ResourceService [0..*] 
services which lock the competition for a computing resource. As result, any concurrent resource cannot 

 pre-empt the executing resource.

• enableConcurrencyServices: GRM::ResourceCore::ResourceService [0..*] 
560                 A UML Profile for MARTE, Beta 1



services which unlock the competition for a computing resource. As result, any concurrent resource can  
pre-empt the executing resource.

• entryPoints: SRM::SW_Concurrency::EntryPoint [0..*] 
entry points of the resource.

• resumeServices: ResourceService (from GRM::ResourceCore) [0..*] 
services which make available a resource to compete with either ready or pended concurrent resource. 

 Pended resources are blocked due to the unavailability of some other resources. In case of interrupt, resume 
 service is equivalent to an enable service.

• suspendServices: GRM::ResourceCore::ResourceService [0..*] 
services which make unavailable a resource to execute. In case of interrupt, suspend service is equivalent to 

 disable service.

• terminateServices: GRM::ResourceCore::ResourceService [0..*] 
services which stop definitively resource execution.

• sharedDataResources: SharedDataComResource [0..*] 
resources used to share data among computing resources. 

• messageResources: MessageComResource [0..*] 
resources used to communicate messages among computing resources. 

• mutualExclusionResources: SwMutualExclusionResource [0..*] 
resources used to synchronize mutual acesses. 

• notificationResources: NotificationResource [0..*] 
resources used to synchronize computing resources. 

Attributes

• activationCapacity: Integer [0..1] 
activation number allowed in the system.

• periodElements: CoreElements::Foundations::ModelElement [0..*] 
elements which maps the semantic of the resource period in case of a periodic concurrent resource.

• priorityElements: CoreElements::Foundations::ModelElement [0..*] 
elements which maps the semantic of the resource priority.

• stackSizeElements: CoreElements::Foundations::ModelElement [0..*] 
elements which maps the semantic of the resource stack size.

• type: MARTE_Library::BasicNFP_Types::ArrivalPattern [0..1] 
occurrence execution pattern.

Semantics

This resource defines entities, which may execute concurrently sequential part of instructions. SwConcurrentResource is 
an abstract concept. It provides an executing context to a routine. Typical SwConcurrentResource are 
schedulableResources, interruptResources and alarms.
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F.8.21 SwInteractionResource (abstract) (from SRM::SW_Interaction)

Generalizations

• SwResource (from SRM::SW_ResourceCore).

• ResourceBroker (from GRM::ResourceManagement).

• CommunicationEndPoint (from GRM::ResourceType).

Attributes

• isIntraMemoryPartitionInteraction: Boolean [0..1] 
specifies if the mechanism can be accessed from different memory partition (i.e. namespace, address space).

• waitingPolicyElements: CoreElements::Foundation::ModelElement (from) [0..*]  
elements by which the communication waiting policy is specified: waiting, ready, waiting with a time out, 

 conditional waiting…

• waitingQueuePolicy: QueuePolicyKind [0..*] 
algorithm to manage the resource waiting queue.

• waitingQueueCapacity: Integer [0..1] 
number of resources allowed in the waiting queue.

Semantics

InteractionResource is an abstract concept, which denotes generic mechanism to interact among concurrent executing 
resources. Synchronization and Communication are specific kind of interaction.

F.8.22 SwMutualExclusionResource (from SRM::SW_Interaction)

Generalizations

• SwSynchronizationResource (from SRM::SW_Interaction) on page <PageNumber>.

Associations

• acquireServices: GRM::ResourceCore::ResourceService [0..*] 
services which get an access token to a shared information.

• releaseServices: GRM::ResourceCore::ResourceService [0..*] 
services which release an access token to a shared information.

Attributes

• accessTokenElements: CoreElements::Foundations::ModelElement (from) [0..*] 
elements which maps the semantics of the token used to access a shared information.

• concurrentAccessProtocol: ConcurrentAccessProtocolKind [0..1] 
protocol applied in concurrent access.

• mechanism: MutualExclusionResourceKind [0..1] 
kind of mechanism use to mutual exclusion synchronization.
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Semantics

MutualExclusionResource describe resources commonly used for synchronize access to shared variables. As examples, 
Boolean semaphore (one token that anybody can release even if it does not get it), mutex (i.e., a Boolean semaphore 
associated with a propriety concept. Only resource, which gets the mutex, can release it) and counting semaphore (several 
token may be got and released) are MutualExclusionResource. 

F.8.23 SwResource (abstract) (from SRM::SW_ResourceCore)

Generalizations

• Resource (from GRM::ResourceCore).

• ResourceManager (from GRM::ResourceManagement).

Associations

• createServices: GRM::ResourceCore::ResourceService [0..*] 
services which allocate and declare the resource to the system.

• deleteServices: GRM::ResourceCore::ResourceService [0..*] 
services which free and delete the resource from the system.

• initializeServices: GRM::ResourceCore::ResourceService [0..*] 
services which initialize the resource.

Attributes

• identifierElements: CoreElements::Foundations::ModelElement [0..*] 
elements which map the semantic of a resource identifier.

• stateElements: CoreElements::Foundations::ModelElement [0..*] 
elements which map the semantic of the resource state.

• memorySizeFootprint: CoreElements::Foundations::ModelElement [0..1] 
element which maps the memory size footprint of the resource.

Semantics

SwResource model software structural entities provided to the user by execution supports. Commonly, those entities are 
considered as execution support specific types. By inheritance, SwResource provide to the user a set of ResourceServices 
and a set of features. Services provided by SwResource gather services provided by software resource to the application 
(i.e. the work of computing for a ComputingResource for example) and services provided to manage and to broker those 
resources (i.e. the help to create the software resource for example). A SwResource concept gathers both the resource as 
such and the manager of that resource.

F.8.24 SwSchedulableResource (from SRM::SW_Concurrency)

Generalizations

• SwConcurrentResource (from SRM::SW_Concurrency).

• SchedulableResource (from GRM::Scheduling).
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Associations

• delayServices: GRM::ResourceCore::ResourceService [0..*] 
services which delay for a lapse of time the execution. The resource is in a dormant state during this lapse.

• joinServices: GRM::ResourceCore::ResourceService [0..*] 
services which suspend the execution of set of concurrent resource until other concurrent resources 

 terminates.

• scheduler: GRM::Scheduling::Scheduler [1] 
scheduler which orchestrates the concurrent execution of this kind of resource.

• yieldServices: GRM::ResourceCore::ResourceService [0..*] 
services which explicitly relinquish the computing resource. They explicitly ask scheduler to reschedule.

Attributes

• deadlineElements: CoreElements::Foundation::ModelElement [0..*] 
elements which map the semantic of a time by which a schedulable resource must have completed a certain 

 activity.

• deadlineTypeElements : CoreElements::Foundation::ModelElement [0..*] 
elements which map the semantic of the deadline criticality degree (e.g. soft and hard).

• isPreemptable: boolean [0..1] 
specifies if the scheduler can pre-empt that kind of resource.

• isStaticSchedulingFeature: boolean [0..1] 
specifies if the scheduling parameters (priority, deadline, timslice …) are static (i.e. constants define  
off-line).

• timeSliceElements: CoreElements::Foundation::ModelElement [0..*] 
elements which maps the semantic of the timeSlice in case of round robin scheduling

Semantics

SchedulableResource are resources, which executes concurrently to other concurrent resource. The competition for 
execution among the set of schedulable resource is supervised by a scheduler. In fact, a scheduler interleaves their 
execution based on a scheduling algorithm. Common SchedulableResource are POSIX Thread, ARINC-653 Process and 
OSEK/VDX Task… By default, schedulableResources share the same address space but preserve their own contexts 
(program counter, registers, signal mask, stack, etc). 

F.8.25 SwSynchronizationResource (abstract) (from SRM::SW_Interaction)

Generalizations

• SwInteractionResource (from SRM::SW_Interaction).

• SynchronizationResource (from GRM::ResourceType).
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Semantics

This resource defines interaction mechanisms to synchronize concurrent execution flow. Real-time platform provide 
several basics communication mechanisms to synchronize resources. Two usual specializations are the mutual exclusion 
synchronization and the event synchronization. In using synchronization mechanism, concurrent resources want either to 
notify or to make sure that they are in specified parts of their code at the same time or not (i.e. mutual exclusion).

F.8.26 SwTimerResource (from SRM::SW_Concurrency)

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with 
a prefixed maximum resolution, at programmable time intervals.

Generalizations

• TimerResource (from MARTE::GRM::ResourceTypes)

Associations

• None

Attributes

• durationElements: ModelElement {redefines GRM::TimerResource::duration} 
elements which map the semantic of the interval after which the timer will make evident the elapsed time. 

Semantics

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with 
a prefixed maximum resolution, usually with the usage of its reference clock. The SwTimerResource will make evident 
the arrival of the programmed duration time after the instant of its last starting or resetting.

F.9 DRM::HRM

F.9.1 CacheStructure

CacheStructure is a cache structure datatype from the HW_Storage package.

Attributes

• nbSets: NFP_Natural specifies the number of sets.

• blockSize: NFP_DataSize specifies the width of a cache block.

• associativity: NFP_Natural specifies the associativity of the cache.

Semantics

The cache is organized under sets of blocks. Associativity value is the number of blocks within one set. Consequently, the 
cache size is the product of these three attributes.

If the associativity value is 1, cache is direct mapped. Otherwise if the nbSets value is 1, the cache is fully associative.

Detailed description of the cache structure is necessary for performance simulation of HW_Processors.
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Example: TLB (Transfer Lookaside Buffer) is typically a fully associative cache.

Constraints

• None

F.9.2 CacheType

CacheType is an enumeration defining the possible cache types.

Literals

• Data

• Instruction

• Unified both data and instruction

• Other

• Undefined

F.9.3 ComponentState

ComponentState is an enumeration defining the possible states for HW_Component.

Literals

• Operating

• Storage non-operating state

• Other

• Undefined

F.9.4 ConditionType

ConditionType is an enumeration defining the various condition types.

Literals

• Temperature

• Humidity

• Altitude

• Vibration

• Shock

• Other

• Undefined
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F.9.5 Env_Condition

Env_Condition is an environmental condition datatype from the HW_Layout package.

Attributes

• type: ConditionType specifies the condition type.

• status: ComponentState specifies the required state of the HW_Component.

• description: NFP_String specifies a short description of the environmental condition.

• range: Interval<T->Real> specifies the range of possible values.

Semantics

An Env_Condition is characterized by its type (F.9.4), a given state (F.9.3), a short description and an interval of 
supported values. It is a safety condition applied to an HW_Component in a particular state (e.g. SMP card 14.2.4.3).

The values range of an Env_Condition at storage (non-operating) time is generally wide.

Example: embedded systems are often operating in hostile environments.

Constraints

• ·None

F.9.6 HW_Arbiter

HW_Arbiter is a communication broker concept from the HW_Communication package.

Generalizations

• HW_CommunicationResource.

• ResourceBroker (from MARTE::GRM).

Associations

• controlledMedias: HW_Media [1..*]specifies the controlled connections. Subsets ResourceBroker.brokedResource.

Attributes

• None

Semantics

HW_Arbiter is a communication broker resource. It controls at least one HW_Media and performs arbitration among the 
multiple masters that are connected to. It could implement any arbitration strategy as a provided HW_ResourceService.

Note that a bus master is a transient role of an HW_EndPoint during a communication transfer. That is a fundamentally 
different from the HW_Arbiter concept.

Example: an HW_Processor is often arbitrating its system bus and it may temporarily delegate this task to an associated 
HW_DMA.
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Constraints

• None

F.9.7 HW_ASIC

HW_ASIC is a computing resource from the HW_Computing package.

Generalizations

• HW_ComputingResource.

Associations 

• None

Attributes

• None

Semantics

HW_ASIC (Application Specific Integrated Circuit) is a computing resource which is customized for a particular use. It 
offers execution services corresponding to the mapped application.

HW_ASICs are known to be efficient but not flexible. However, notice that many of them are composite and contain 
processors and memory. 

Example: newly video converter ASICs can perform real time compression encoding of a video source image to an 
optimized format.

Constraints

[1] if a clock frequency is specified, it must belong to op_Frequencies.

F.9.8 HW_Battery

HW_Battery is a power supply resource from the HW_Power package.

Generalizations

• HW_PowerSupply.

Associations

• None

Attributes

• capacity: NFP_Energy quantifies the energy capacity of the HW_Battery.
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Semantics

HW_Battery is a non permanent power supply resource. It contains a limited stored energy. Therefore it may restrain the 
system autonomy.

Example: mobile phones batteries

Constraints

• None

F.9.9 HW_BranchPredictor

HW_BranchPredictor is a branch prediction resource from the HW_Computing package.

Generalizations

• ·HW_Logical::HW_Resource.

Associations

• None

Attributes

• None

Semantics

An HW_BranchPredictor is the HW_Processor part that determines whether a conditional branch is to be taken or not. 
Almost all pipelined processors need some form of branch prediction. It may be refined with a prediction behavior model.

Branch prediction description is crucial for processor performance simulation.

Example: Intel Pentium processors apply bimodal prediction.

Constraints

• None

F.9.10 HW_Bridge

HW_Bridge is a particular HW_Media from the HW_Communication package.

Generalizations

• HW_Media.

Associations

• sides: HW_Media [2..*]specifies HW_Medias at the ends of the HW_Bridge. 

Attributes

• None
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Semantics

The HW_Bridge typically handles communications between two or more HW_Medias. It may realize complex protocol 
translations. 

Like any HW_Media, HW_Bridge has a maximum bandwidth.

Example: PCI-to-ISA Bridge behaves as a PCI target on a PCI bus and as an ISA master on an ISA bus.

Constraints

• None

F.9.11 HW_Bus

HW_Bus is a particular HW_Media from the HW_Communication package.

Generalizations

• HW_Media

Associations

• None

Attributes

• adressWidth: NFP_DataSize specifies the supported addressing size. In general, it is a number of bits.

• wordWidth: NFP_DataSize specifies the transfer word width.

• isSynchronous: NFP_Boolean specifies whether the bus is clocked or not.

• isSerial: NFP_Boolean distinguishes serial from parallel buses.

Semantics

HW_Bus denotes a material HW_Media.

It is characterized by its address and word widths, these are functional values, usually different from the wires number of 
its corresponding HW_Channel seeing that buses may be multiplexed or serial.

Example: ISA (Industry Standard Architecture) is a parallel bus (20-bit address and 8-bit data) operating at 4.77 MHz.

Constraints

[1]  Synchronous bus must have a clock frequency.

F.9.12 HW_Cache

HW_Cache is a processing memory from the HW_Storage package.

Generalizations

• HW_ProcesingMemory.
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Associations

• None

Attributes

• level: NFP_Natural [0..1] = 1 specifies the cache level. The default value is 1.

• type: CacheType specifies the type of the cache.

• structure: CacheStructure specifies the structure of the cache.

Semantics

A HW_Cache is an HW_ProcessingMemory where frequently used data can be stored for rapid access. HW_Caches may 
vary depending on their level, type (F.9.2) and structure (F.9.1).

Example: PowerPC G4 processor owns 32KB L1 instruction and data caches and 512KB L2 on-chip cache.

Constraints

[1] memorySize is derived from structure attribute.

[2] addressSize is greater than the total cache entries number derived from the structure attribute.

F.9.13 HW_Card

HW_Card is a physical entity from the HW_Layout package.

Generalizations

• HW_Component.

Associations

• None

Attributes

• None

Semantics

HW_Card symbolizes a printed circuit board. It is typically a composite HW_Component that comprises other sub 
components like chips and electrical devices…

Example: A motherboard is an HW_Card.

Constraints

• None

F.9.14 HW_Channel

HW_Channel is a physical entity from the HW_Layout package.
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Generalizations

• HW_Component.

Associations

• ·None

Attributes

• nbWires: NFP_Naturalspecifies the number of wires within the channel.

Semantics

HW_channel is a physical set of connectors that may transfer data and power between HW_Components.

Example: USB cable is a 4 wires channel.

Constraints

• None

F.9.15 HW_Chip

HW_Chip is a physical entity from the HW_Layout package.

Generalizations

• HW_Component.

Associations 

• ownedUnits: HW_Unit [0..*] specifies the sub units of the chip. Subsets HW_Component.subComponents.

Attributes

• technology: NFP_Length specifies the chip manufacturing process.

Semantics

HW_Chip is a physical entity that denotes an integrated circuit. It may be analog or digital and it could contain numerous 
sub units.

Example: processors, digital memories and ASICs.

Constraints

• None

F.9.16 HW_Clock

HW_Clock is a timing resource from the HW_Timing package.
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Generalizations

• HW_TimingResource

Associations

• None

Attributes

• frequency: NFP_Frequency specifies the provided clock frequency.

Semantics

HW_Clock is a fundamental concept. It provides a periodical signal triggering.

Example: a quartz crystal that vibrates at a given frequency.

Constraints

• None

F.9.17 HW_CommunicationResource

HW_CommunicationResource is a high level concept from the HW_Communication package.

Generalizations

• CommunicationResource (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• None

Attributes

• None

Semantics

HW_CommunicationResource is a high level concept which groups all communication actors. It could be a 
communication media, an arbiter or an end point.

Example: PCI bus (HW_Bus), DMA (HW_Arbiter), a port or an antenna (HW_EndPoint).

Constraints

• None

F.9.18 HW_Component (from HW_Layout)

HW_Component is the main physical entity of the HW_layout package.
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Generalizations

• HW_Resource (from HRM::HW_General).

Associations

• subComponents: HW_Component [0..*] the owned physical entities. Subsets HW_Resource.ownedHW.

Attributes

• dimensions: NFP_Length [0..3] 
Cartesian dimensions of the HW_Component. It is an ordered attribute.

• /area: NFP_Area 
specifies the area of the HW_Component. Derived from dimensions.

• position: Interval<NFP_Natural> [0..2] 
position within the enclosing HW_Component. It is an ordered attribute.

• grid: NFP_Natural [0..2] 
a rectilinear grid associated to the HW_Component. It is an ordered attribute.

• nbPins: NFP_Natural [0..1] 
the number of pins. It is optional.

• weight: NFP_Weight [0..1] 
the weight of the HW_Component.

• price: NFP_Price [0..1] 
HW_Component price.

• r_Conditions: Env_Condition [*] 
required environmental conditions.

Semantics

HW_Component is the main metaclass of the HW physical model. It is an abstraction of any HW real entity based on its 
physical properties. It could be basic or composed of many other subcomponents.

The dimensions attribute represents in order, the length, the width and the height of the HW_Component. It should 
correspond to the smallest cuboid that encloses the HW_Component. This attribute is optional.

The area attribute is the product of the length and the width of the HW_Component dimensions if specified, elsewhere the 
default value is 0.

Each composite HW_Component may be considered as a rectilinear grid where subcomponents are located in their 
corresponding positions. A position is a collection of contiguous rectangles within the grid.

Each HW_Component could also be annotated by its weight, its price and many required environmental conditions 
(F.9.5). 

These characteristics detailed above are crucial for layout, cost and power analysis.

Example: chips (HW_Chip), batteries (HW_Battery)…
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Constraints

[1] area must derive from dimensions.

[2] subcomponents positions must not exceed the grid.

[3] requiredConditions intervals must be included within the subcomponents corresponding intervals.

F.9.19 HW_Component (from HW_Power)

HW_Component is the main physical entity of the HW_Power package.

Generalizations

• None

Associations

• poweredServices: HW_Physical::HW_ResourceService[0..*] 
services of the  HW_Component corresponding resource. Redefines HW_Resource.p_HW_Services.

• leakage: HW_PowerDescriptor[0..1] 
specifies the component power consumption when it is non-operating.

Attributes

• None

Semantics

HW_Component redefines the same named concept from the merged HW_Layout package. It denotes any HW physical 
resource. It may consume power when running provided services and leaks once idle.

Constraints

• None

F.9.20 HW_ComputingResource

HW_ComputingResource is a high level concept from the HW_Computing package.

Generalizations

• ComputingResource (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• None

Attributes

• op_Frequencies : Interval<NFP_Frequency> specifies the range of supported frequencies.
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Semantics

HW_ComputingResource is a high level concept that denotes an active execution resource. 

Such resources are often clocked and may support a range of operating frequencies.

Example: CPUs (HW_Processor), FPGAs (HW_PLD) are programmable computing resources.

Constraints

[1] if a clock frequency is specified, it must belong to op_Frequencies.

F.9.21 HW_CoolingSupply

HW_CoolingSupply is a cooler component from the HW_Power package.

Generalizations

• HW_Component

Associations

• None

Attributes

• coolingPower: NFP_Power specifies the cooling power.

Semantics

HW_CoolingSupply is a support HW_Component that dissipates heat in order to keep other components within their safe 
operating temperatures.

Example: fans, heat sinks…

Constraints

• None

F.9.22 HW_Device

HW_Device is a high level concept from the HW_Device package.

Generalizations

• DeviceResource (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• None
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Attributes

• None

Semantics

HW_Device is a high level metaclass. It denotes any resource attached to the platform in order to expand its functionality.

Example: sensors, displays (HW_I/O), power regulators (HW_Support)…

Constraints

• None

F.9.23 HW_DMA

HW_DMA (Direct Memory Access) is a memory manager from the HW_Storage package.

Generalizations

• HW_StorageManager.

• HW_Logical::HW_Communication::HW_Arbiter.

Associations

• drivenBy: HW_Logical::HW_Computing::HW_Processor [0..*]processors that control the HW_DMA.

Attributes

• nbChannels: NFP_Naturalthe number of HW_DMA channels.

• transferWidth: NFP_DataSizemaximum supported transfer width.

Semantics

HW_DMA is mainly a memory manager. It allows access to the controlled HW_Memory for reading and/or writing 
independently of the HW_Processor by taking the control of the communication media. 

The attribute nbChannels corresponds to the number of simultaneous transfers that the HW_DMA can handle.

Example: DMA controller is typically part of the motherboard chipset.

Constraints

• None

F.9.24 HW_Drive

HW_Drive is a mass storage memory from the HW_Storage package.

Generalizations

• HW_StorageMemory
A UML Profile for MARTE, Beta 1        577



Associations

• None

Attributes

• sectorSize : NFP_DataSize specifies the sector size of the HW_Drive.

Semantics

HW_Drive is a permanent storage memory. In some HW_Drives, the storage medium is permanently seated inside. In 
others, the medium can be replaced.

From a functional point of view, sectorSize attribute corresponds to the smallest physical amount of memory that can be 
allocated.

Example: 0.85-inch hard disk drives with over 4 GB storage space.

Constraints

• None

F.9.25 HW_EndPoint

HW_EndPoint is a communication interface from the HW_Communication package. 

Generalizations

• CommunicationEndPoint (from MARTE::GRM).

• HW_CommunicationResource.

Associations

• connectedTo: HW_Media[0..*] specifies the communication medias that the end point is connected to.

Attributes

• None

Semantics

HW_EndPoint is a generic concept that symbolizes the HW_Resource end points. It is a part of an HW_Resource which 
serves as an interface to communicate with other HW_Resources through HW_Medias.

Example: ports, pins, slots…

Constraints

• None

F.9.26 HW_I/O

HW_I/O is an input/output device from the HW_Device package.
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Generalizations

• HW_Device

Associations

No additional associations.

Attributes

No additional attributes.

Semantics

HW_I/O (Input/Output) is a generic concept. It represents any device that is interacting with its environment. 

It may be only an input device like a camera, an output one like a speaker or both like a touch screen.

Example: for embedded systems, HW_I/O is well adapted to symbolize sensors and actuators.

Constraints

• None

F.9.27 HW_ISA

HW_ISA is a part of HW_Processor microarchitecture from the HW_Computing package.

Generalizations

• HW_Logical::HW_Resource.

Associations

No associations.

Attributes

• family: NFP_String specifies the ISA family.

• inst_Width: NFP_DataSize specifies the instruction width.

• type: ISA_Type specifies the ISA type.

Semantics

ISA (Instruction Set Architecture) is a metaclass which models the HW_Processor implemented instruction set 
architectures. It has a family (x86, ARM, MIPS…), an instruction width and a given type (F.9.50).

The HW_Processor microarchitecture is tightly dependent of the supported ISAs. Therefore HW_ISA metaclass may be 
refined to a detailed model for HW_Processor simulation or ISS (Instuction Set Simulator) generation.

Example: Intel 386 is a 32-bit CISC architecture from the x86 family.
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Constraints

• None

F.9.28 HW_Media

HW_Media is a communication resource from the HW_Communication package. 

Generalizations

• CommunicationMedia (from MARTE::GRM).

• HW_CommunicationResource.

Associations

• arbiters: HW_Arbiter [0..*] specifies the HW_Media controllers.

Attributes

• bandwidth: NFP_DataTxRate specifies the transfer bandwith of the HW_Media.

Semantics

HW_Media is a generic concept. It represents any resource able to transfer data. 

It has a theoretical bandwidth, it may be connected to many HW_EndPoints and it may be controlled by many 
HW_Arbiters.

Example: wire, bus, wireless connection…

Constraints 

• None

F.9.29 HW_Memory

HW_Memory is a high level metaclass from the HW_Storage package.

Generalizations

• StorageResource (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• None

Attributes

• memorySize: NFP_DataSize specifies the storage capacity of the HW_Memory.

• addressSize: NFP_DataSize specifies the address width of the HW_Memory.
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• timings: Timing[*] specifies timings of the HW_Memory.

Semantics

HW_memory is the generic metaclass that denotes any form of data storage during some interval of time. It is a protected 
HW_Resource that may offer read/write HW_ResourceServices.

The timings attribute (F.9.58) is a simple way to annotate detailed timing durations of some HW_Memory services or 
behaviors. Such details are necessary for performance analysis or simulation.

Example: SDRAMs, hard drives, their buffers…

Constraints

[1] The value of the inherited attribute isprotected is true.

F.9.30 HW_MMU

HW_MMU is a memory manager from the HW_Storage package.

Generalizations

• HW_StorageManager

Associations

• ownedTLBs: HW_Cache[0..*] specifies the owned Translation Lookaside Buffers.

Attributes

• virtualAddrSpace: NFP_DataSize 
specifies the managed virtual address space.

• physicalAddrSpace: NFP_DataSize 
specifies the managed physical address space.

• memoryProtection: NFP_Boolean 
specifies if memory protection is supported.

• /nbEntriesTLB: NFP_Natural 
specifies the total number of TLBs entries. Derived from the ownedTLBs association.

Semantics

HW_MMU (Memory Management Unit) is an HW_StorageManager It manages and speeds processor accesses to 
memory by translating virtual addresses to physical ones via associative caches called Translation Lookaside Buffers 
(TLB).

In general, TLB entry stores the virtual address of a memory page with its corresponding physical address. It also 
includes information about the page use that is necessary for memory protection if supported.

Example: all today processors have integrated HW_MMUs. 
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Constraints 

[1] nbEntriesTLB is derived from the ownedTLBs number of entries.

F.9.31 HW_PLD

HW_PLD is a programmable computing resource from the HW_Computing package.

Generalizations

• HW_ComputingResource

Associations

• blocksComputing: HW_ComputingResource[0..*] 
specifies owned computing blocks. Subsets HW_Resource.ownedHW.

• blocksRAM : HW_Logical::HW_Storage::HW_RAM[0..*] 
specifies the owned HW_RAM memories.

Attributes

• technology: PLD_Technology specifies the HW_PLD technology.

• organization: PLD_Organization specifies the matrix organization of the HW_PLD.

• nbLUTs specifies the number of LUTs within the HW_PLD.

• nbLUT_Inputs specifies the number of inputs of one LUT.

• nbFlipFlops specifies the number of FlipFlops within the HW_PLD.

Semantics

HW_PLD (Programmable Logic Device) is a computing resource in which functions are hardwired. It has a special 
organization (F.9.53) and it may own several IPs, hardwired or not, such as processors, memories, analogic devices and 
so on. 

The functions are represented by bit streams that are injected into the PLD through interfaces.

The HW_PLD can be dynamically reconfigured, depending on the underlying technology (F.9.54).

Example: an FPGA may contain many processors, arithmetic blocks and some amount of RAM. 

Constraints

[1] If a clock frequency is specified, it must belong to op_Frequencies.

F.9.32 HW_Port

HW_Port is a physical entity from the HW_Layout package.

Generalizations

• HW_Component
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Associations

• None.

Attributes

• type: PortType specifies the type of the HW_Port whether it is male or female.

Semantics

HW_Port is a particular HW_Component  where external equipments are plugged. 

Conventionally, HW_Port may be male or female.

Example: USB serial port, DIMM memory slot…

Constraints

• None

F.9.33 HW_PowerDescriptor

HW_PowerDescriptor is the main feature of the HW_Power package.

Generalizations

• None

Associations

• None

Attributes

• consumption: NFP_Power specifies the power consumed.

• dissipation: NFP_Power specifies the power dissipated.

Semantics

HW_PowerDescriptor is a power description feature. It may be attached to an HW_Component and its 
HW_ResourceServices.

This feature is composed of two instantaneous measures: the power consumption and the heat dissipation. Such properties 
are crucial for HW power analysis.

Example: an Intel Pentium processor clocked at 200MHz consumes about 3W when idle but more than 15W under max 
load.

Constraints

[1]  Power consumption is greater than dissipation.
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F.9.34 HW_PowerSupply

HW_PowerSupply is a power supplier from the HW_Power package.

Generalizations

• HW_Component

Associations

• None

Attributes

• suppliedPower: NFP_Power specifies the instantaneous supplied power.

Semantics

HW_PowerSupply is a particular HW_Component that supplies power for the HW platform.

Example: batteries.

Constraints

• None

F.9.35 HW_ProcessingMemory

HW_ProcessingMemory is an abstract concept from the HW_Storage package.

Generalizations

• HW_Memory.

Associations

• None.

Attributes

• repl_Policy: Repl_Policy specifies the replacement policy

• writePolicy: WritePolicy specifies the write policy.

Semantics

HW_ProcessingMemory is an abstract concept that symbolizes fast and volatile working memories. Consequently it has a 
replacement policy (F.9.56) and a write policy (F.9.59).

Example: caches, RAMs, buffers…

Constraints

• None
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F.9.36 HW_Processor

HW_Processor is a computing resource from the HW_Computing package.

Generalizations

• HW_ComputingResource.

Associations

• predictors: HW_BranchPredictor [0..*] 
specifies the owned branch prediction units. Subsets HW_Resource.ownedHW.

• caches: HW_Logical::HW_Storage::HW_Cache [0..*] 
specifies processor caches. Subsets HW_Resource.ownedHW.

• ownedMMUs: HW_Logical::HW_Storage::HW_MMU [0..*] 
specifies the owned Memory Management Units. Subsets HW_Resource.ownedHW.

• ownedISAs: HW_ISA [1..*] 
specifies the owned instruction set architectures. Subsets HW_Resource.ownedHW.

Attributes

• /architecture: NFP_DataSize 
specifies the instruction width. Derived from ownedISAs.

• mips: NFP_Natural 
specifies the throughput of the processor.

• /ipc: NFP_Real 
specifies the number of instructions executed each clock cycle. Derived from mips and clock attributes. 

• nbCores: NFP_Natural 
specifies the number of cores within the HW_Processor.

• nbPipelines: NFP_Natural 
specifies the number of pipelines per core.

• nbStages: NFP_Natural 
specifies the number of stages per pipeline.

• nbALUs: NFP_Natural 
specifies the number of Arithmetic Logic Units within the HW_Processor.

• nbFPUs: NFP_Natural 
specifies the number of Floating Point Units within the HW_Processor.

Semantics

HW_Processor is a generic computing resource that symbolizes a processor. HW_Processor contains at least one 
instruction set architecture (F.9.27), caches (F.9.12) organized under categories and levels, memory management units 
([1]) to handle its addressing and branch predictors (F.9.9) to speed pipelined computing. 

mips (million instructions per second) and ipc (instructions per clock) attributes characterize the throughput of the 
HW_Processor, while other attributes concern the microarchitecture.
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Example: ARM-7 embedded processor, TI-C6000 VLIW DSP… DSPs are specialized repetitive processors, designed 
specifically for Digital Signal Processing.

Constraints

[1] If a clock frequency is specified, it must belong to op_Frequencies.

[2] Architecture must derive from the inst_Width of the supportedISAs.

[3] ipc must derive from mips attribute and clock frequeny.

F.9.37 HW_RAM

HW_RAM is a processing memory from the HW_Storage package. 

Generalizations

• HW_ProcessingMemory

Associations

• None.

Attributes

• organization: MemoryOrganization 
specifies the organization of the HW_RAM.

• isSynchronous: NFP_Boolean 
specifies whether  the HW_RAM is clocked or not.

• isStatic: NFP_Boolean 
specifies whether the HW_RAM is static or not.

• isNonVolatile: NFP_Boolean 
specifies whether the HW_RAM is volatile or not. Default value is false.

Semantics

HW_RAM (Random Access Memory) is a processing memory that provides fast read/write services. Unlike HW_Drives, 
it allows data accesses in any order with the same timing. 

Each HW_RAM have a special memory organization (F.9.51), which implies its size and its behavior. Such properties 
coupled with memory timings are necessary for performance simulation.

HW_RAM may be static or dynamic. Dynamic ones needs periodical refreshing (example 14.2.4.2).

Typically HW_RAMs are volatile memories, as they lose their stored data once powered off. Hence, non volatile 
memories have permanent power supply or an associated HW_ROM.

Example: SDRAM (Synchronous Dynamic RAM) main memory card.

Constraints

[1] memorySize is derived from organization attribute.
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[2] addressSize is greater than the number of memory words derived from organization attribute.

[3] synchronous HW_RAM must have a clock frequency.

F.9.38 HW_Resource (from HW_General)

HW_Resource is the main concept of the Hardware Resource Model.

Generalizations

• Resource (from MARTE::GRM)

Associations

• ownedHW: HW_Resource [0..*] 
specifies the owned sub-HW_Resources. Subsets Resource.ownedElement.

• p_HW_Services: HW_ResourceService [1..*] 
specifies the provided services. Subsets Resource.pServices.

• r_HW_Services: HW_ResourceService [0..*] 
specifies the required services.

Attributes

• description: NFP_String [0..1] 
specifies a textual description of the HW_Resource.

Semantics

HW_Resource is the most abstract concept of the Hardware Resource Model. It denotes an HW entity that provides one 
or many services (HW_ResourceService), and may require some services from other resources. 

HW_Resource could be basic or composed of ownedHW sub-resources.

Each HW_Resource can be refined to a logical resource or/and a physical component.

As most of other HW concepts are inheriting from HW_Resource, they benefit from the same structure.

Example: Every HW entity is an HW_Resource

Constraints

• None

F.9.39 HW_Resource (from HW_Logical)

HW_Resource is the main concept of the Hardware Logical Model.

Generalizations

• None
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Associations

• endPoints: HW_Communication::HW_EndPoint [0..*] 
specifies the connection points of the HW_Reource. Subsets ownedHW.

• clock: HW_Timing::HW_Clock [0..1] 
specifies an optional frequency clock.

Attributes

• None

Semantics

HW_Resource is the most abstract concept of the Hardware Logical Model. It redefines the HW_Resource from the 
HW_General to denote a logical entity. 

It may have a clock and endpoints.

As most of other HW logical concepts are inheriting from HW_Resource, they benefit from the same structure.

Constraints

• None

F.9.40 HW_ResourceService (from HW_General)

HW_ResourceService is the main behavior concept of the Hardware Resource Model. 

Generalizations

• ResourceService (from MARTE::GRM).

Associations 

• None

Attributes

• None

Semantics

HW_ResourceService denotes a service that one HW_ Resource provides and others require. It is mainly used within the 
logical model where HW_Resources are classified depending on their functionalities. Collaborations of resources by 
means of their services characterize the execution platform.

An HW_ResourceService could be detailed by behavior views.

Example: read/write services of an HW_Memory.

Constraints

• None
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F.9.41 HW_ResourceService (from HW_Physical)

HW_ResourceService is the main behavior concept from the HW Physical Model. 

Generalizations

• None

Associations 

• consumption: HW_PowerDescriptor [0..1] 
specifies the power description of the HW_ResourceService execution.

Attributes

• None

Semantics

HW_ResourceService redefines the same named concept of the HW_General and it denotes a powered HW_Component 
service. It is associated with a power description which corresponds to the instantaneous consumption of the 
HW_Component when it is running this service.

Constraints

• None

F.9.42 HW_ROM

HW_ROM is a storage memory from the HW_Storage package.

Generalizations

• HW_StorageMemory

Associations

No additional associations.

Attributes

• type: ROM_Type specifies the HW_ROM type.

• organization: MemoryOrganization specifies the structure of the HW_ROM.

Semantics

HW_ROM for Read-Only Memory is a class of permanent storage memories that provides essentially read services. It can 
also be rewritable depending of the HW_ROM type (F.9.57).

Each HW_ROM have a special memory organization (F.9.51).

Example: a program ROM of a microcontroller, a mobile phone memory, a BIOS memory…
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Constraints

[1] memorySize is derived from organization attribute.

[2] addressSize is greater than the number of memory words derived from organization attribute.

F.9.43 HW_StorageManager

HW_StorageManager is a storage broker concept from the HW_Storage package.

Generalizations

• StorageResource (from MARTE::GRM).

• ResourceBroker (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• managedMemories: HW_Memory[1..*] 
specifies the managed memories. Subsets ResourceBroker.brokedResource.

Attributes

• None.

Semantics

HW_StorageManager denotes an abstract memory broker which manages the access or/and the content of some controlled 
memories.

Example: HW_Processor, HW_MMU, HW_DMA…

Constraints

• None

F.9.44 HW_StorageMemory

HW_StorageMemory is an abstract concept from the HW_Storage package.

Generalizations

• HW_Memory

Associations

• buffer: HW_ProcessingMemory [0..1] 
specifies an optional buffer of the HW_StorageMemory.

Attributes

• None
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Semantics

HW_StorageMemory in opposition to HW_ProcessingMemory symbolizes permanent and relatively time-consuming 
storage resources. It may be speed up by associating a cache buffer for frequently accessed data. 

Example: Flash memory, HW_Drive…

Constraints

• None

F.9.45 HW_Support

HW_Support is a support device from the HW_Device package.

Generalizations

• HW_Device

Associations

• None

Attributes

• None

Semantics

HW_Support is an abstract concept that denotes a non functional resource from a logical point of view. However support 
resources are necessary to insure the platform execution.

HW_Power package components are typically support resources.

Example: regulators, batteries, heat sinks…

Constraints

• None

F.9.46 HW_Timer

HW_Timer is a timed counter from the HW_Timing package.

Generalizations

• HW_TimingResource

Associations

• inputClock: HW_Clock [1] 
specifies the input clock of the HW_Timer. Redefines HW_Resource.clock.
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Attributes

• nbCounters: NFP_Natural specifies the number of counters within the HW_Timer.

• counterWidth: NFP_DataSize specifies the width of one counter.

Semantics

HW_Timer is a set of independent counters clocked periodically with an inputClock.

Each counter may be loaded with an initial value, and then accessed for current ones (example 14.2.4.1). The counter 
width determines its maximum measurement of cycles. Some HW_Timers allows merge of counters.

Example: most of microcontrollers embed timers.

Constraints 

• None

F.9.47 HW_TimingResource

HW_TimingResource is a high-level concept from the HW_Timing package.

Generalizations

• TimingResource (from MARTE::GRM).

• HW_Logical::HW_Resource.

Associations

• None

Attributes

• None

Semantics

HW_TimingResource is an abstract concept that denotes a timing resource.

Example: watchdogs, timers, clocks.

Constraints

• None

F.9.48 HW_Unit

HW_Unit is a physical entity from the HW_Layout package.

Generalizations

• HW_Component
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Associations

• subUnits: HW_Unit [0..*] specifies the HW_Unit subunits. Subsets HW_Component.subComponents.

Attributes

• None

Semantics

HW_Unit is an identified area of an integrated circuit. It is a part of an HW_Chip or an enclosing HW_Unit.

Example: the ALU and the FPU are subunits of the EU (Execution Unit) which is in turn a unit of the processor chip.

Constraints

[1] HW_Unit must belong to an HW_Chip or an enclosing HW_Unit.

F.9.49 HW_Watchdog

HW_Watchdog is a particular timer from the HW_Timing package.

Generalizations

• HW_Timer

Associations

• None

Attributes

• None

Semantics

HW_Watchdog is a particular HW_Timer that triggers the system when it ends counting if it is not reset before (example 
14.2.4.1).

The reset period is an equation of the counter width and the clock frequency. 

Example: most of microcontrollers embed watchdogs.

Constraints

• None

F.9.50 ISA_Type

ISA_Type is an enumeration.

Literals

• RISC Reduced Instruction Set Computer.
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• CISC Complex Instruction Set Computer.

• VLIW Very Long Instruction Word.

• SIMD Single Instruction Multiple Data.

• Other

• Undefined

F.9.51 MemoryOrganization

MemoryOrganizaion is a memory organization datatype from the HW_Storage package.

Generalizations

• None

Associations

• None

Attributes

• nbRows: NFP_Natural specifies the number of rows.

• nbColumns: NFP_Natural specifies the number of columns.

• nbBanks: NFP_Natural specifies the number of banks.

• wordSize: NFP_DataSize specifies the word width.

Semantics

The memory (HW_RAM and HW_ROM) is organized under banks of rows and columns of words. Consequently, the 
memory size is the product of all these attributes.

Such detailed description of the memory organization is necessary for performance analysis and HW_Memory simulation.

Example: 64Mo SDRAM could be organized under 4096x256x4x16bit.

Constraints

• None

F.9.52 PLD_Class

PLD_Class is an enumeration.

Literals

• SymetricalArray

• RowBased

• SeaOfGates
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• HierarchicalPLD

• Other

• Undefined

F.9.53 PLD_Organization

PLD_Organizaion is the HW_PLD organization datatype from the HW_Computing package.

Generalizations

• None

Associations

• None

Attributes

• nbRows: NFP_Natural specifies the number of rows.

• nbColumns: NFP_Natural specifies the number of columns.

• class: PLD_Class specifies the HW_PLD Class.

Semantics

An HW_PLD (F.9.31) is organized as a class (F.9.31) with rows and columns.

Constraints

• None

F.9.54 PLD_Technology

PLD_Technology is an enumeration.

Literals

• SRAM

• Antifuse

• Flash

• Other

• Undefined

F.9.55 PortType 

PortType is an enumeration.
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Literals

• Male

• Female

• Other

• Undefined

F.9.56 Repl_Policy 

Repl_Policy is an enumeration of the following replacement policies:

• LRU Least Recently Used.

• NFU Not Frequently Used.

• FIFO First In First Out.

• Random

• Other

• Undefined

F.9.57 ROM_Type

ROM_Type is an enumeration.

Literals

• MaskedROMinerasable ROM

• EPROM Erasable Programmable ROM (only erasable by exposition to strong ultraviolet light).

• OTP_EPROM One Time Programmable EPROM (inerasable once programmed).

• EEPROM Electrically EPROM (electrically erasable).

• Flash 

• Other

• Undefined

F.9.58 Timing

Timing is a memory timing datatype from the HW_Storage package.

Attributes

• notation: NFP_String specifies the Timing notation.

• description: NFP_String specifies a short description of the Timing.
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• value: NFP_Duration specifies the duration value of the Timing.

Semantics

Timing is a generic datatype that annotates a timing measurement. Memory timings are necessary for performance 
analysis and accurate simulation.

Example: tCAS of an HW_RAM is the CAS (Column Address Strobe) latency. It is often measured in clock cycles.

Constraints

• None

F.9.59 WritePolicy 

WritePolicy is an enumeration.

Literals

• WriteBack cache write is not immediately reflected to the backing memory.

• WriteThrough writes are immediately mirrored.

• Other

• Undefined

F.10 GQAM

F.10.1 AcquireStep

Generalizations

• Step.

Associations

• acquiredResource: Resource[0..1] resource to be acquired within the step.

Attributes

• resUnits: NFP_Integer [0..1] = 1 units of the resource that are acquired.

Constraints

[1] An AcquireStep may be inserted between execution steps. If an execution step is also an AcquireStep, the resource is 
acquired at the beginning of the execution step.

F.10.2 AnalysisContext

For each kind of analysis, there is one analysis context in a UML model. This class identifies elements (diagrams) that are 
of interest for the given analysis. Global parameters of the Context.
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Generalizations

• ExpressionContext (from VSL::Expressions).

Associations

• resourcesPlatform: ResourcesPlatform [1..*] 
logical containers for the resources used in the behaviour to be analyzed.

• workloadBehaviour: WorkloadBehavior [1] 
logical container for the workload model and for the system-level behaviour triggered by it.

Attributes

• contextParams: NFP [*]

Semantics

The contextParams are a set of annotation variables defining global properties of this analysis context. Properties of the 
workload, behaviour, and resources may be defined as functions of these variables.

F.10.3 BehaviorScenario

A BehaviorScenario defines the behaviour in response to a request event, including the sequence of steps and their use of 
resources.

Generalizations

• None

Associations

• root: Step [0..1] 
root Step to begin the BehaviorScenario.

• Actions: Step [0..1] 
set of Steps making up the BehaviorScenario.

• inputStream: RequestEventStream [1..*] 
RequestEventStream that initiates it.

• usedResources: Resource [0..*] {ordered} 
set of resources used by the scenario

Attributes

• hostDemand: NFP_Duration [0..1]  
CPU demand in time units.

• hostDemandOps: NFP_Real [0..1]  
CPU demand in operations.

• priority: NFP_Integer [0..1] 
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• respTime: NFP_Duration [0..1]  
end-to-end delay of a part of an operation.

• interOccTime: NFP_Duration [0..1] interval between successive initiations of an operation.

• throughput: NFP_Rate [0..1]  
frequency of initiations of an operation.

• utilization: NFP_Real [0..1] 
fraction of time an operation is busy (throughput times delay). For a resource, the fraction of time 
each unit is busy, times the number of units.

• utilizationOnHost: NFP_Real [0..1]  
fraction of time the host is busy executing this operation.

Constraints

[1] The same BehaviorScenario may be associated with one or more RequestEventStreams within the same 
AnalysisContext.

[2] hostDemand, hostDemandOps, executionTime, utilization and utilizationOnHost are only defined if all the Steps in 
the scenario have the same Host.

F.10.4 CommunicationChannel (from GQAM::GQAM_Resources)

A logical communications layer connecting SchedulableResources.

Generalizations

• ConcurrentResource

Associations

• concurrentRes: SchedulableResource [0..1] 
the SchedulableResources that communicate by this communications layer.

Attributes

• msgSize: NFP_DataSize [0..1] the size of the message.

F.10.5 CommunicationHost (from GQAM::GQAM_Resources)

A physical communications link.

Generalizations

• ProcessingResource.

Associations

• steps: CommunicationSteps [0..1] CommunicationStep which use this host.
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Attributes

• capacity: NFP_DataTxRate 
maximum capacity.

• throughput: NFP_Frequency 
actual throughput.

• packetTime: NFP_Duration 
time to transmit a packet.

• blockingTime: NFP_Duration 
time the host is blocked and cannot transmit.

• transmMode: TransmModeKind 
transmission mode, one of the following values: {simplex, half-duplex, full-duplex}.

• utilization: NFP_Real 
utilization of this host.

F.10.6 CommunicationStep

A CommunicationStep is an operation of sending a message over a CommunicationsResource that connects the host of its 
predecessor Step, to the host of its successor Step.

Generalizations

• Step

Attributes

• msgSize: NFP_DataSize [0..1] size of the message.

F.10.7 EventTrace

A trace of events that can be the source for the request event stream.

Generalizations

• None

Associations

• stream: RequestEventStream [1] indicates the event stream driven by the trace.

Attributes

• None

F.10.8 ExecutionHost 

A CPU or other device which executes functional steps.
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Generalizations

• ProcessingResource

Associations

• steps: ExecutionStep [*] 
execution steps that use this host.

• concurrentRes: SchedulableResource [0..1] 
schedulable resources (e.g., processes, threads) deployed on this host.

Attributes

• commTxOverhead: NFP_Duration [0..1] host demand for sending messages.

• commRcvOverhead:NFP_Duration [0..1] host demand for receiving messages.

• contextSwitchTime: NFP_Duration [0..1] context switch time.

• clockOverhead: NFP_Duration [0..1]

• schedPriorityRange: NFP_Interval [0..1]

• memorySize: NFP_Integer [0..1]

• utilization: NFP_Real [0..1]

F.10.9 ExecutionStep

An ExecutionStep is a primitive functional operation, modeling a sequential computation on a ProcessingHost. 

Generalizations

• Step

Associations: 

• concurrentRes: SchedulableResource [0..1] concurrent resource (process, task) in which this Step is executed.

• host: ExecutionHost [0..1] host processor.

Attributes

• None

Constraints

[1] An ExecutionStep cannot be refined to a BehaviorScenario.

[2] The host of an ExecutionStep is the host of its SchedulableResource (process or thread).
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F.10.10 LatencyObserver

LatencyObserver specifies a duration observation between startObs and endObs TimedInstantObservations, with a miss 
ratio assertion (percentage), a utility function, which places a value on the duration, and a jitter constraint. Jitter is the 
difference between maximum and minimum duration. 

Generalizations

• TimingObserver

Associations

• None

Attributes

• latency: NFP_Duration [0..1] 
value of the latency.

• missRatio: NFP_Real [0..1] 
for soft timing constraints the miss ratio indicates the admitted or actual percentages of "required" latency 
missed.

• utility: UtilityType [0..1] 
provides a value of importance for required timing constraints.

• maxJitter: NFP_Duration [*] 
maximum deviation value. It represents a maximum deviation with which a periodic internal event is 
generated. The output jitter is calculated as the difference between a worst-case latency time and the  
best-case latency time for the observed event measured from a reference event.

Semantics

LatencyObserver specifies a duration observation between startObs and endObs TimedInstantObservations, with a miss 
ratio assertion (percentage), a utility function, which places a value on the duration, and a jitter constraint. Jitter is the 
difference between maximum and minimum duration.

F.10.11 LaxityKind

The LaxityKind is an Enumeration that includes a list of qualifiers specifying the criticality of a given required timing 
property.

Literals

• hard the required timing specifications have to be met for system behavior correctness.

• soft if the required timing specifications are not met the system behavior is still correct. Further specifications, 
such as the miss ratio, can be used to specify the limit of timing misses.

• other a user-specific laxity. 
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F.10.12 PrecedenceRelation

Generalizations

• None

Associations

• predec: Step [*] set of predecessor Steps of the relation

• succes: Step [*] set of successor Steps of the relation

Attributes

• connectorType: ConnectorKind [0..1] type of the precedence relation.

Semantics

The relationship between successive Steps. The precedence relations play the role of the connectors.

F.10.13 ReleaseStep

Generalizations

• Step

Associations

• releasedResource: Resource [0..1] resource released within the step.

Attributes

• resUnits: NFP_Integer [0..1] = 1 unit of the resource that are released.

Constraints

[1] A ReleaseStep may be inserted between functional steps. If a functional step is also a ReleaseStep, the resource i 
released at the end of the functional step.

[2] From Table 15-1. the only meaningful Step attributes are interOccTime and throughput.

F.10.14 RequestEventStream

A stream of events that initiate system-level behaviour.  It may be generated in different ways: by a clock, by a stated 
arrival process (such as Poisson or deterministic), as the output of another subsystem, from an arrival-generating 
mechanism modeled by a workload generator class, and from a trace.

Associations

• effect: BehaviorScenario [0..1] 
behaviour triggered by the event.

• generator:WorkloadGenerator [0..1] 
optional mechanism (usually defined by a state machine) that generates the request events.
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• trace: EventTrace [0..1] 
indicates an event trace file.

• timedEvent: TimedEvent [0..1] 
indicates a timed event that generates the event stream.

Attributes

• type: EventStreamKind [0..1] 
one of the following enumeration values: {Generator, Pattern, Trace, Timed} which indicates how the 
request events are obtained.

• pattern: ArrivalPattern [0..1] 
if the type value is Pattern, then this attribute of type ArrivalPattern (which is a dataType imported from the 
model library of Basic::NFPTypes) describes it.

Constraints

[1] The type attribute determines which source of events defines the stream, and the optional association or attribute for 
that type must be defined.

F.10.15 RequestedService

Generalizations

• Step

Associations

• None

Attributes

• None

Constaints

• None

F.10.16 ResourcesPlatform

A logical container for the resources used in an analysis context.

Generalizations

• None

Associations

• resources: Resource [*] set of resources contained by this container.

Attributes

• None
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Constaints

• None

F.10.17 Step

A Step is a part of a BehaviorScenario, defined in sequence with other actions, and may be a complex Step containing a 
BehaviorScenario.  A loop is defined as a Step with a repetition count; the loop body is a nested BehaviorScenario.

Generalizations

• BehaviorScenario

Associations 

• outputRel: PrecedenceRelation [*] successor relation.

• inputRel: Step[*]:PrecedenceRelation [*] predecessor relation.

Attributes

• isAtomic: NFP_Boolean [0..1] if true, the step cannot be decomposed any further.

• blockingTime: NFP_Duration [0..1] delay inserted into the execution of the Step.

• repetitions: NFP_Real [0..1] actual or average number of repetitions of an operation or loop.

• probability: NFP_Real [0..1] probability of the step to be executed (useful for conditional execution).

• priority: NFP_Interval [0..1] step priority.

Attributes

• None

Constraints

[1] There can be more than one end Step in a BehaviorScenario.

[2] hostDemand, hostDemandOps, executionTime, utilization and utilizationOnHost are only defined if all the Steps in 
the scenario have the same Host.

F.10.18 TimingObserver

TimingObservers are conceptual entities that collect timing requirements and predictions related to a pair of user-defined 
observed events. In this sense, TimingObserver uses TimedInstantObservations (from the Time sub-profile) to define the 
observed event in a given behavioral model. Normally the observer expresses constraints on the duration between the two 
time observations, named startObs and endObs.

Generalizations

• NFP_Constraint (from NFPs::NFP_Annotation)
A UML Profile for MARTE, Beta 1        605



Associations

• endEvent: Time::TimedRelatedEntities::TimedObservations::TimedInstantObservation [0..1] 
observed event to which the timing observer apply.

• startEvent: Time::TimedRelatedEntities::TimedObservations::TimedInstantObservation [0..1] 
reference event.

Attributes

• laxity: LaxityKind[0..1] 
indicates whether required timing constraints are hard or soft.

Semantics

TimingObservers are conceptual entities that collect timing requirements and predictions related to a pair of user-defined 
observed events. In this sense, TimingObserver uses TimedInstantObservations (from the Time sub-profile) to define the 
observed event in a given behavioral model. Normally the observer expresses constraints on the duration between the two 
time observations, named startObs and endObs. Timing observers are a powerful mechanism to annotate and compare 
timing constraints against timing predictions provided by analysis tools.

F.10.19 WorkloadBehaviour

Represents a logical container for the analyzed behavior and the workload that triggers it.

Generalizations

• None

Associations

• demand: RequestEventStream [*] indicates the request event streams that are part of this container.

• behavior: BehaviourScenario [*] indicates the set of system behaviors used for analysis.

Attributes

• None

Constraints

• None

F.10.20 WorkloadEvent

Generalizations

• None

Associations

• pattern: ArrivalPattern [*]
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Attributes

• None

Constraints

• None

F.10.21 WorkloadGenerator

A mechanism that optionally may serve to create an event stream to trigger a behavior. It may be defined internally by a 
state machine.

Generalizations

• None

Associations

• behaviour: RequestEventStream [*]

Attributes

• None

Constraints

[1] One generator may trigger several RequestEventStreams, and one Behavior may be triggered by several generators.

F.11 SAM

F.11.1 EndToEndFlow

End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing 
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-
end response.

Generalizations

• None

Associations

• endToEndStimuli: RequestEventStream [1..*] 
set of request event stream that trigger the processing flow.

• endToEndResponse: BehaviorScenario [1]   
end-to-end execution scenario as response to a related set of request event stream.

• Timing: TimingObserver [*] 
set of timing requirements or predictions that constrain local fragments or the global end-to-end  
execution flow. 
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Attributes

• isSchedulable: NFP_Boolean [0..1] 
indicates whether the flow meets all its deadlines.

• schedulabilitySlack: NFP_Real [0..1] 
provides a percentage measure by which the (effective) execution time of all the atomic processing units 
participating in the end-to-end response may be increased while still keeping the end-to-end flow 
schedulable.

• endToEndTime: NFP_Duration [0..1] 
represents the predicted worst completion time latency of the end-to-end response measured from the arrival 
of the requested event. This applies if only one input end-to-end stimuli exist.

• endToEndDeadline: NFP_Duration [0..1] 
represents the required worst completion time latency of the end-to-end response measured from the arrival 
of the requested event. This applies if only one input end-to-end stimuli exist.

Semantics

End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing 
resources. As a conceptual entity, end-to-end flow allows to define a set of timing requirements and timing predictions. 
Timing requirements include deadlines, maximum miss ratios and maximum jitters. Timing predictions are typically 
provided by analysis tools and include latencies, jitters, and other scheduling metrics.

Constraints

• None

F.11.2 SaAnalysisContext

An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis 
scenario. Starting with the analysis context and its elements, a tool can follow the links of the model to extract the 
information that it needs to perform the model analysis. Analysis contexts are also known as real-time situations in the 
schedulability analysis domain (SaAnalysisContext). 

Generalizations

• AnalysisContext (from GQAM)

Associations

• None

Attributes

• isSchedulable: NFP_Boolean
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Semantics

In general, SaAnalysisContext is associated with the following two modeling concerns. WorkloadBehavior represents a 
given load of processing flows triggered by external (e.g., environmental events) or internal (e.g., a timer) stimuli. The 
processing flows are modeled as a set of related steps that contend for use of processing resources and other shared 
resources. ResourcesPlatform represents a concrete architecture and capacity of hardware and software processing 
resources used in the context under consideration.

Constraints

• None

F.11.3 SaStep

A SaStep is a kind of Step that begin and end when decisions about the allocation of system resources are made, as for 
example when changing its priority.

Generalizations

• Step (from GQAM)

Associations

• sharedResource: SharedResource [*] 
set of shared resources that will be locked during the execution of this step.

Attributes

• deadline: NFP_Duration [0..1] 
maximal time bound on the completion of this particular execution segment that must be met.

• spareCapacity: NFP_Duration [0..1] 
amount of execution time that can be added to the step without affecting schedulability.

• schedulabilitySlack: NFP_Real [0..1] 
percentage by which the execution time of the step can be increased (positive values) or should be decreased 
(negative values) in order to reach the schedulability limit.

• preemptedTime: NFP_Duration [0..1] 
length of time that the step is preempted, when runnable, to  make way for a higher priority step. 

• readyTime: NFP_Duration [0..1] 
effective release time expressed as the length of time since the beginning of a period; in effect a delay 
between the time an entity is eligible for execution and the actual beginning of execution.

• delayTime: NFP_Duration [0..1] 
length of time that an step that is eligible for execution waits while acquiring and releasing resources.
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Semantics

The ordering of steps follows a predecessor-successor pattern, with the possibility of multiple concurrent successors and 
predecessors, stemming from concurrent thread joins and forks respectively. The granularity of a step is often a modeling 
choice that depends on the level of detail that is being considered. A SaStep at one level of abstraction may be 
decomposed further into a set of finer-grained steps. In this model, steps use the active resource services for execution by 
means of schedulable resources (e.g., threads, process in execution resources).

Constraints

• None

F.11.4 SaCommunicationStep

A SaCommunicationStep is a kind of step that represents a usage of a communication channel.

Generalizations:

• CommunicationStep (from GQAM)

Attributes:

• deadline: NFP_Duration [0..1] 
maximal time bound on the completion of this particular transmission that must be met.

• spareCapacity: NFP_Duration [0..1] 
amount of execution time that can be added to the step without affecting schedulability.

• schedulabilitySlack: NFP_Real [0..1] 
percentage by which the execution time of the step can be increased (positive values) or should be decreased 
(negative values) in order to reach the schedulability limit.

Semantics

A SaCommunicationStep is a kind of step that represents a usage of a communication channel.

Constraints

• None

F.11.5 SaExecutionHost 

A CPU or other device which executes functional steps. SaExecutionHost adds schedulability metrics, interrupt overheads 
and utilization of scheduling processing.

Generalizations

• ProcessingResource

Associations

• timingRes: GRM::ResourceTypes::TimingResources [*]  
execution steps that use this host
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• schedRes: GRM::Scheduling::SchedulableResource  [0..1] 
schedulable resources (e.g., processes, threads) deployed on this host.

• sharedResources: SharedResource [0..1]  
shared resources owning to this execution host.

Attributes

• ISRswitchTime: NFP_Duration [0..1] 
context switch time of ISR (Interrupt Service Routines) interruptions.

• ISRpriorityRange: NFP_IntegerInterval [0..1] 
range of ISR priorities supporte by the platform.

• isSchedulable: NFP_Boolean [0..1] 
indicates whether all the timing constraints defined for the execution host are respected.

• schedulabilitySlack: NFP_Real [0..1] 
percentage by which the execution time of all the steps running in this execution host can be increased 
(positive values) or should be decreased (negative values) in order to reach the schedulability limit.

• schedUtilization: NFP_Real [0..1] 
total utilization of scheduling services.

• schedPolicy: SchedPolicyKind [0..1] 
scheduling policy for the execution host. This is an alternative annotation mechanism, which is used when 
modelers want to avoid modeling explicit Scheduler elements.

• isPreemptible: NFP_Boolean [0..1] 
indicates if all the schedulable resources in the execution host are preemptible. This is an alternative 
annotation mechanism, which is used when modelers want to avoid modeling explicit Scheduler elements.

Semantics

A CPU or other device which executes functional steps. SaExecutionHost adds schedulability metrics, interrupt overheads 
and utilization of scheduling processing.

F.11.6 SaCommunicationHost

In a communication host (e.g., network and bus), the related schedulable resource element is CommunicationChannel, 
which may be characterized by concrete scheduling parameters (like the packet size).

Generalizations

• CommunicationHost.

Associations

• commChannels: CommunicationChannels [0..1] 
the channels that belong to this host.

Attributes

• isSchedulable: NFP_Boolean [0..1] 
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indicates whether the transmitted messages meets all its deadlines.

• schedulabilitySlack: NFP_Real [0..1] 
provides a percentage measure by which the (effective) transmission time of all the communication steps 
participating in the host may be increased while still keeping the system schedulable.

Semantics

In a communication host (e.g., network, bus), the related schedulable resource element is CommunicationChannel, which 
may be characterized by concrete scheduling parameters (like the packet size).

F.11.7 SchedulingObserver

SchedulingObserver provides prediction about scheduling metrics such as overlaps, the maximum number of suspensions 
caused by shared resources or the blocking time caused by the used shared resources. All these metrics are relative to the 
interval defined by the reference and observed events.

Generalizations

• TimingObserver

Associations

• None.

Attributes

• suspensions: NFP_Duration [*] 
maximum number of suspensions caused by shared resources.

• blockingTime: NFP_Duration [*] 
blocking time caused by the used shared resources.

• overlaps: NFP_Duration [*] 
in case of soft timing constraints, this indicates how many instances may overlap their execution because  
of missed deadlines.

Semantics

SchedulingObserver provides prediction about scheduling metrics such as overlaps, the maximum number of suspensions 
caused by shared resources or the blocking time caused by the used shared resources. All these metrics are relative to the 
interval defined by the reference and observed events.

F.11.8 SharedResource

Execution Hosts own shared resources as for example I/O devices, DMA channels, critical sections or network adapters. 
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access 
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol. 

Generalizations

• NFP_Constraint (from NFPs::NFP_Annotation).
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Associations

• None

Attributes

• capacity: NFP_Integer [0..1] 
number of permissible concurrent users, for example using a counting semaphore.

• isPreemptible: NFP_Boolean [0..1] 
indicates if the resource can be preempted while it is being used.

• isConsumable: NFP_Boolean [0..1] 
indicates that the resource is consumed by use.

• acquisitionTime: NFP_Duration [0..1] 
time delay suffered by an action between being granting access to a resource and the availability of  
the resource.

• releaseTime: NFP_Duration [0..1] 
time delay suffered by an action between initiating release of a resource and the action becoming eligible  
for execution again.

Semantics

Execution Hosts own shared resources as for example I/O devices, DMA channels, critical sections or network adapters. 
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access 
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol. 

F.12 PAM

F.12.1 Perf_Workload_Behavior

A collection of workload and behavior for this AnalysisContext.

Associations

• load:RequestEventStream [1..*] sources of load.

• behavior:BehaviorScenario [1..*] behaviors used in the responses.

F.12.2 Perf_ResourcesPlatform

The collection of resources for this AnalysisContext

Associations

• resource: Resource [0..1] set of resources.

F.12.3 PRequestEventStream 

The sequence of initiation events for a behavior.
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Generalizations

• RequestEventStream (from GQAM).

Associations

• effect: PBehaviorScenario [*] 
behavior triggered by the event stream, specialized for performance analysis.

• generator: PWorkloadGenerator [0..*] 
optional mechanism (usually defined by a state machine) that generates the request events, specialized for 
performance analysis.

Attributes

• workloadKind: PWorkloadKind [1] 

• closedPopulation: NFP_Integer [0..1]

• closedExtDelay: NFP_Duration [0..1]

• openIntArrT: NFP_Duration [0..1]

• generator: WorkloadGenerator [0..1]

• traceName: String[0..1]

Constraints

[1] the workloadType attribute governs which other attributes are used to define the workload.

F.12.4 PWorkloadGenerator

A source of system initiation events

Generalization:

• WorkloadGenerator (from GQAM)

Associations

• behaviour: RequestEventStream [*]

Attributes

• population: NFP_Integer [0..1] 
number of workload sources, each of which can generate one request at any one time, default = 1.

F.12.5 PStep

A step in a scenario.

Generalizations

• Step (from GQAM).
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Associations

• outputRel: PStep [*] set of successor PSteps.

• inputRel: PStep [*] set of predecessor PSteps.

• ownedStep: PStep [*] set of steps in a BehaviorScenario that refines the step.

Attributes

• noSync: Boolean [0..1] = false 
flag to indicate that a PStep following a fork in the PBehaviorScenario begins a sub-path which does not  
join with the other parallel paths.

Semantics

PStep establishes the sequence of the BehaviorScenario. It may be refined to a BehaviorScenario with a separate step for 
each service. A refined PStep is purely a holder for its refinement sub-BehaviorScenario, and does not have a host or 
demands of its own. The BehaviorScenario for a refined PStep is defined implicitly as the operand of a 
CombinedFragment or StructuredActivity.

The probability attribute is required for a PStep immediately following a branch (OR-fork) in the BehaviorScenario 
(default value is equal probabilities for all paths). On other PSteps it indicates an optional execution (default = 1).

The noSync attribute is meaningful only on a PStep immediately following a fork in the flow of the scenario (par 
CombinedFragment, asynchronous message, or Fork ActivityNode). It indicates that the subpath following this PStep 
does not join with the parallel subpaths, but continues until it terminates on  its own. It may continue after the join of the 
other paths. In particular, on an asynchronous message within an operand of a CombinedFragment, it shows that the 
operand terminates without waiting for the subpath from the asynchronous message. The default value is false.

Constraints

[1] there can be more than one end PStep in a BehaviorScenario 

[2] hostDemand, hostDemandOps, executionTime, utilization and utilizationOnHost are only defined if all the Steps in 
the scenario have the same Host.

F.12.6 PExecutionStep

Generalizations

• PStep (from GQAM).

Associations

• process: PProcess[0..1] process in which this Step is executed.

• host: ProcessingHost[0..1] host processor.

• service: RequestedService [*] set of services requested by this Step.

Attributes

• serviceDemand: ServiceDemand [*] 
set of demand for a PRequestedService during the PStep
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• behaviorDemand: PBehaviorDemand [*] 
set of demand for a behavior described by a scenario, during the PStep.

• extOpDemand: PExtOpDemand [*] 
set of demand for an operation defined by an external submodel, during the PStep.

Semantics

A PExecutionStep represents an Operation or an Action. It consists of sequential host execution, possibly interspersed 
with requests (assumed blocking) to services. At this level of granularity the order of these is unspecified (any order may 
be assumed). To specify the order, the Step can be refined.

Demands for resources are made in an undetermined order during the PStep. Each demand datatype names its resource, 
and a quantity of demands:

• hostDemand is implicitly for the ExecutionHost, in units of time,

• serviceDemand and behaviorDemand is for an indicated operation defined by a RequestedService or by a 
BehaviorScenario, with a quantity in units of operations.

• extOpDemand is for a named operation for which the modeling environment has a known submodel, with a quantity in 
units of operations.

Constraints

• A PExecutionStep cannot be refined to a BehaviorScenario.

• The host of a PExecutionStep is the host of its process (PProcess).

F.12.7 PResourcePassStep.

Generalizations

• Pstep

Associations

• resource: Resource [1] resource which is passed.

Additional Attributes

• resource: Resource [1] class of resource which is passed.

• resUnits: NFP_Integer [0..1] unit of resource passed, default value 1.

Semantics

Explicit resource passing is required in certain circumstances only. Implicitly, logical resources held by a 
PBehaviorScenario are passed into sub-scenarios, and to all of the alternative paths at a branch or alternative combination. 
At a fork, par combination or asynchronous message however the default is that all forked paths hold all the logical 
resources, and this may need to be over-ridden by PassResource to define which parallel path has which resource. At a 
subsequent join, the semantics of resource passing are that the union of resources are held by the subsequent behaviour.
616                 A UML Profile for MARTE, Beta 1



Notice that on alternative branches care must be taken in defining the acquiring and releasing resources, to come to the 
merging of paths with the same set of resources on all branches. Inconsistent resource holdings at a merge are a non-
recoverable error in the performance definitions.

Constraints

[1] The units passed cannot exceed those held at that point; if they do, the value is truncated at those held.

F.12.8 PCommunicationStep

Generalizations

• PStep

Associations

• sendHost: ExecutionHost [0..1]

• recvHost: ExecutionHost [0..1]

• process: CommChannel [0..1] logical channel which carries the message. 

• host: CommunicationHost [0..1] physical channel which carries the message.

Attributes

• commService: RequestedService [0..1]

• commBehavior: PBehaviorScenario [0..1] 
PBehaviorScenario defining the global system behavior to transmit the message.

• commExtOperation: String [0..1] 
name of an external operation to convey the message.

Semantics

A PCommunicationStep defines a subscenario to convey the message between objects on different nodes, in one of four 
ways:

• if commService, commBehavior, and extOperation are all null, then the host overhead parameters are used to define a 
three-Step subscenario (overhead to send, latency across the net, overhead to receive).

• if commService is non-null, it identifies a layer operation that has behavior to define the conveyance.

• if commBehavior is non-null, it identifies a subscenario which defines the conveyance.

• if extOperation is non-null, it identifies an external submodel to be used to determine the delay for conveyance. An 
example could be a network simulation.

Constraints

[1] Only one of commService, commBehavior, and extOperation may be non -null. 
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F.12.9 PRequestedService,

A "service", that is an Action of some kind, supplied by an Operation supplied by an Object or Component through its 
interface. If the Object or Component has a behavior definition for the Operation, the BehaviorScenario for this definition 
is included in the calling scenario; if not, then a BehaviorScenario can be referenced explicitly. A third shorthand way to 
define the "service" (as a kind of stub for a full definition) is through its inherited attributes as a PExecutionStep.

Generalizations

• PExecutionStep

Associations

• behaviorDef: BehaviorScenario [0..1]optionally defines the operation.

• process: PProcess [0..1] process which executes the component which supplies the service.

• host : ExecutionHost [0..1] host of the PProcess.

Semantics

The host and process associations are determined through the configuration information in the UML model, such as the 
process context of the Object or Component, and its deployment.

Constraints

[1] If the behaviorDef association is present, the BehaviorScenario acts as a refinement to a PStep. Only a subset of the 
inherited attributes are relevant. The relevant subset is the performance measures {delay, executionTime, interval, 
throughput, utilization, utilizationOnHost, startTime, endTime}.

[2] If the behaviorDef association is absent, the PRequestedService is defined as a stub for the service definition. All the 
attributes inherited from PExecutionStep may be defined; this includes the demand attributes hostDemand, 
serviceDemand, behaviorDemand and extOpDemand.

F.12.10 PBehaviorDemand

A data structure describing a demand for executing a behavior, the type of a behaviorDemand attribute.

Attributes

• requestedBehavior: BehaviorScenario [1] behavior that is demanded.

• opCount: NFP_Real [1] number of operations that are demanded.

F.12.11 PExtOpDemand 

A data structure for a demand for an operation which is defined only for the performance modeling environment, and is 
identified by name. It is the type of an extOpDemand attribute.

Attributes

• extOperation: String [1] 
name of the external operation, meaningful to the performance modeling environment.
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• opCount: NFP_Real [1] 
number of operations demands.

F.12.12 PProcess

A designation for a deployed process, a kind of SchedulableResource with performance attributes.

Generalizations

• SchedulableResource (from MARTE::GRM)

Inherited Attributes useful for Performance

• resMult: NFP_Integer [0..1] size of the thread pool of the process

Attributes

• task: String [1] string identifier for the deployed process resource.

• component: ConnectableElement [0..1]

• artifact: Artifact[0..1] deployed artifact for the process which executes this behavior.

Semantics

For performance modeling this represents a process, possibly multithreaded. The capacity gives the level of 
multithreading, assumed to be static. The component attribute identifies the deployment of the process through the artifact 
that implements it physically, and thus identifies its host processor.

F.12.13 LogicalResource

Generalizations

• Resource (from MARTE::GRM)

Semantics

A logical resource is any resource which provides the environment for execution, but does not actually execute 
instructions. Examples include semaphores, mutexes, buffers and locks.

F.13 VSL

F.13.1 BoundedSubtype (from DataTypes)

Generalizations

• Subtype (from DataTypes) on page 567

Attributes

• minValue: String [0..1] 
defines a string which specifies that the value space is limited to this value in his lower bound.
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• maxValue: String [0..1] 
defines a string which specifies that the value space is limited to this value in his upper bound. 

• isMinOpen: Boolean [0..1] 
defines if minValue is excluded in the bounded value space.

• isMaxOpen: Boolean [0..1] 
defines if maxValue is excluded in the bounded value space.

Semantics

BoundedSubtype is a kind of Subtype. BoundedType creates a subtype of any ordered datatype by placing upper and/or 
lower bounds on the value space (minValue and MaxValue).

F.13.2 ChoiceSpecification (from CompositeValues)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• choiceAttribute: VSL::DataTypes::Property [1]  
chosen data type' attribute.

Attributes

• /chosenAlternative: String [0..1] 
derived String with the name of the chosen data type's attribute.

• value: VSL::ValueSpecification [1] 
value specification whose type must conform to the chosen data type's attribute.

Semantics

Choice Specification denotes a value of a choice data type (ChoiceType). It contains the name of one of the attribute 
members (chosenAlternative), which determines the chosen data type, and a value that conforms to the chosen data type. 
The derived attribute "chosenAlternative" can be constructed with basis on an explicitly chosen data type. When the 
chosen data type is undefined in a given choice value specification, the chosen alternative can be deduced from the 
default alternative attribute of the corresponding choice type.

Generalizations

• CompositeType (from DataTypes) on page 558

Associations

• choiceAttributes: VSL::DataTypes::Property [*] 
attribute defines the type, size, uniqueness and order of the alternative members of the choice data type.

• defaultAttribute: VSL::DataTypes::Property [0..1] 
attribute defines the default alternative member of the choice data type.
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Semantics

Choice Type generates a data type each of whose values is a single value from any of a set of alternative data types. 
Choice Type combines different types into a single data type. Instances of choice data types belong to only one of the 
member types. This type is similar to the C union type and the Ada/Pascal "variant-record".

F.13.3 CollectionSpecification (from CompositeValues)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• itemValue : VSL::ValueSpecification [*] set of values of a collection.

Semantics

Collection Specifications represent a list of elements of a particular given type. Individual elements of collections are item 
Value Specifications. Note that there is no restriction on the item value type of a collection type. This means in particular 
that a collection type may be parameterized with other collection types allowing collections to be nested arbitrarily deep. 
Size, uniqueness and order nature of item values are specified by the defining data type.

Constraints

[1] All the item values of a collection are of the same data type

F.13.4 CollectionType (from DataTypes)

Generalizations

• CompositeType (from DataTypes) on page 558

Associations

• collectionAttribute: VSL::DataTypes::Property [1] 
attribute that defines the element type, size, uniqueness and order kind of this composite data type.

Semantics

Collection Type describes a list of elements of a particular given type. Part of every collection type is the declaration of 
the type of its elements by means of the CollectionAttribute. I.e., a collection type is parameterized with an element type. 
Note that there is no restriction on the element type of a collection type. This means in particular that a collection type 
may be parameterized with other collection types allowing collections to be nested arbitrarily deep.

F.13.5 CompositeType (from DataTypes)

Generalizations

• DataType (from DataTypes) on page 558
A UML Profile for MARTE, Beta 1        621



Semantics

Composite types are composed of values, which are made up of values of the owned attributes.

F.13.6 ConditionalExpression (from Expressions)

Generalizations

• Expression (from Expressions) on page 560

Associations

• conditionExpr: VSL::ValueSpecification [1] Boolean expression to be evaluated.

• ifTrueExpr: VSL::ValueSpecification [1] result expression if conditionExpr is evaluated to True.

• ifFalseExpr: VSL::ValueSpecification [1] result expression if conditionExpr is evaluated to false.

Semantics

Conditional Expressions define "if-then-else" statements, which can be used inside an expression. The result of evaluating 
this expression will be the result of the evaluation of the ifTrueExpr if the conditionExpr is true. Otherwise, the result will 
be the result of the ifFalseExpr.

F.13.7 DataType (from DataTypes)

DateType matches with the UML concept of DataType. We show below only the associations, attributes and constraints 
that are relevant for the VSL specification.

Generalizations

• Classifier (from Foundations) on page X.

Associations

• ownedAttribute: VSL::DataTypes::Property [*]  
Attributes owned by the DataType. This is an ordered collection. 

• ownedOperation: VSL::DataTypes::Operation [*] 
Operations owned by the DataType. This is an ordered collection. 

Semantics

A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a data type are 
identified only by their value. All copies of an instance of a data type and any instances of that data type with the same 
value are considered to be the same instance. Instances of a data type that have attributes (i.e., is a structured data type) 
are considered to be the same if the structure is the same and the values of the corresponding attributes are the same. If a 
data type has attributes, then instances of that data type will contain attribute values matching the attributes.

F.13.8 DurationExpression (from TimeExpressions)
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Generalizations

• TimeExpression (from TimeExpressions) on page 567

Semantics

DurationExpression is a time expression that denotes a duration value.

F.13.9 DurationIntervalSpecification (from TimeExpressions)

Generalizations

• IntervalSpecification (from CompositeValues) on page 561

Associations

• min : VSL::TimeExpressions::DurationExpression [1] lower duration expression of the Interval.

• max : VSL::TimeExpressions::DurationExpression [1] upper duration expression of the Interval.

Attributes

No additional attributes.

Semantics

Duration Interval Specifications are special kinds of interval specifications that have duration expressions as upper and 
lower bounds.

F.13.10 EnumerationSpecification (from LiteralValues)

EnumerationSpecification defines the value instance of an enumeration literal.

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• numLiteral: VSL::DataTypes::EnumerationLiteral [1]refered enumeration literal.

Semantics

EnumerationSpecification defines the value instance of an enumeration literal.

F.13.11 EnumerationType (from DataTypes)

EnumerationType matches with the UML concept of Enumeration. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.

Associations

• ownedLiteral: EnumerationLiteral [*] set of enumeration literals.
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Semantics

The run-tistances of an Enumeration data type are data values. Each such value corresponds to exactly one Enumeration 
Literal.

F.13.12 EnumerationLiteral (from DataTypes)

An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

Semantics

An EnumerationLiteral defines an element of the run-time extension of an enumeration data type. An EnumerationLiteral 
has a name that can be used to identify it within its enumeration datatype. The enumeration literal name is scoped within 
and must be unique within its enumeration. The run-time values corresponding to enumeration literals can be compared 
for equality.

F.13.13 Expression (from Expressions)

Expression matches with the UML concept of Expression. We show below only the associations, attributes and constraints 
that are relevant for the VSL specification.

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• operand: VSL::ValueSpecification [*] sequence of operands.

Attributes

• symbol: String [0..1] symbol associated with the node in the expression tree.

Semantics

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are 
operands, it represents an operator applied to those operands. In either case, there is a symbol associated with the node. 
The interpretation of this symbol depends on the context of the expression.

F.13.14 ExpressionContext (from Expressions)

Associations

• subContext: ExpressionContext [*] 
set of sub-contexts that are used to construct a namespace.

Attributes

• name: String [1] name of the context.
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Semantics

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification 
of the variable elements. An Expression Context provides a container for variables. It provides a means for resolving 
conflicting global variables by allowing Variable Call Expressions of the form ExprContext1::SubContext2::varX.

F.13.15 InstantExpression (from TimeExpressions)

Generalizations

• TimeExpression (from TimeExpressions) on page 567

Semantics

InstantExpression is a time expression that denotes a time instant value.

F.13.16 InstantIntervalSpecification (from TimeExpressions)

Generalizations

• IntervalSpecification (from CompositeValues) on page 561

Associations

• min : InstantExpression [1] lower instant expression of the Interval.

• max : InstantExpression [1] upper instant expression of the Interval.

Attributes

• None

Semantics

Instant Interval Specifications are special kinds of interval specifications that have instant expressions as upper and lower 
bounds.

F.13.17 IntervalSpecification (from CompositeValues)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• min : VSL::ValueSpecification [1]lower value of an Interval.

• max : VSL::ValueSpecification [1]upper value of an Interval.

Attributes

• isLowerOpen: Boolean [0..1] defines if the Interval includes the lower value.

• isUpperOpen: Boolean [0..1] defines if the Interval includes the upper value.
A UML Profile for MARTE, Beta 1        625



Semantics

An Interval defines the range between two value specifications. The semantics of an Interval is always related to 
Constraints in which it takes part.

F.13.18 IntervalType (from DataTypes)

Generalizations

• CompositeType (from DataTypes) on page 558

Associations

• intervalAttribute: VSL::DataTypes::Property [1] 
attribute defining the bounds part of this composite data type. We use only one property in order to guarantee 
that the types of both max. and min. bounds are the same.

Semantics

Interval type is a composite data type defining a set of values by means of two bound limits. The minAttribute defines a 
single value which will designate the lower bound of the Interval. The maxAttribute defines a single value which defines 
the upper bound of the Interval.

F.13.19 Jitter (from TimeExpressions)

Generalizations

• DurationExpression (from TimeExpressions) on page 559

Semantics

JitterExpression is a duration expression that denotes an unwanted variation (delta) in an event occurrence instant that 
should occur in periodic intervals.

F.13.20 LiteralSpecification (abstract, from LiteralValues)

LiteralSpecification matches with the UML concept of LiteralSpecification. We show below only the associations, 
attributes and constraints that are relevant for the VSL specification.

Generalizations

• ValueSpecification (from VSL) on page 568

Semantics

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

F.13.21 LiteralBoolean (from LiteralValues)

LiteralBoolean matches with the UML concept of LiteralBoolean. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.
626                 A UML Profile for MARTE, Beta 1



Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Attributes

• value : Boolean [0..1] specified Boolean value.

Semantics

A LiteralBoolean specifies a constant Boolean value.

F.13.22 LiteralDateTime (from LiteralValues)

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Attributes

• value : DateTime [0..1] specified DateTime value.

Semantics

DateTime is a special value used to specify an instant by means of a date and a time in calendar format.

F.13.23 LiteralDefault (from LiteralValues)

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Semantics

A Default Literal allows specifying a default value. If a default value exists, it is assigned to the value, otherwise the 
value remains as a Null value.

F.13.24 LiteralInteger (from LiteralValues)

LiteralInteger matches with the UML concept of LiteralInteger. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Attributes

• value : Integer [0..1] specified Integer value.

Semantics

A LiteralInteger specifies a constant Integer value.
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F.13.25 LiteralNull (from LiteralValues)

LiteralNull matches with the UML concept of LiteralNull. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

F.13.26 LiteralReal (from LiteralValues)

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Attributes

• value : Real [0..1] specified Real value.

Semantics

A value to represent the mathematical concept of a real number. A Real value may be used to specify approximate values 
that hold continuous quantities, without committing a specific representation such as a floating point data type with 
restrictions on precision and scale.

F.13.27 LiteralString (from LiteralValues)

LiteralString matches with the UML concept of LiteralString. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.

Generalizations

• LiteralSpecification (from LiteralValues) on page 562

Attributes

• value: String [0..1]   specified String value.

Semantics

A LiteralString specifies a constant String value.

F.13.28 LiteralUnlimitedNatural (from LiteralValues)

LiteralUnlimitedNatural matches with the UML concept of LiteralUnlimitedNatural. We show below only the 
associations, attributes and constraints that are relevant for the VSL specification.
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Generalizations

• LiteralSpecification (from LiteralValues) on page 562.

Attributes

• value : UnlimitedNatural [0..1]  specified Unlimited Natural value.

Semantics

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

F.13.29 ObservationCallExpression (from Expressions)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• observation: VSL::DataTypes::Observation [1] 
called Observation.

• conditionExpr: VSL::ValueSpecification [0..1] 
condition expression defines an operational (run-time) condition that completes the definition of an 
observed event.

• occurIndexExpr: VSL::ValueSpecification [0..1] 
occurrence index expression that must evaluate to an integer value. The semantic of the occurrence index 
depends on the observed events. While the absolute order of a given event occurrence regarding other 
different event could be useful only when both events are synchronized, it exists certain cases where the 
relative order of an occurrence may be useful to express constraints from different responses of a recurrent 
scenario. 

Semantics

Observation Call Expression refers to a single observation (instant and duration observation). It includes an occurrence 
index expression (occurIndexExpr) that must evaluate to an integer value. Condition expression defines an operational 
(run-time) condition that completes the definition of a relative event. 

F.13.30 OpaqueExpression (from Expressions)

OpaqueExpression matches with the UML concept of OpaqueExpression. We show below only the associations, attributes 
and constraints that are relevant for the VSL specification.

Attributes

• body: String [0..*] 
text of the expression, possibly in multiple languages.

• language: String [0..*] 
set of languages in which the expression is stated. The interpretation of the expression body depends on the 
languages. If the languages are unspecified, they might be implicit from the expression body or the context. 

 Languages are matched to body strings by order.
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Semantics

The expression body may consist of a sequence of text strings - each in a different language - representing alternative 
representations of the same content. When multiple language strings are provided, the language of each separate string is 
determined by its corresponding entry in the "language" attribute (by sequence order). The interpretation of the text 
strings is language specific. Languages are matched to body strings by order. If the languages are unspecified, they might 
be implicit from the expression bodies or the context.

It is assumed that a linguistic analyzer for the specified languages will evaluate the bodies. The times at which the bodies 
will be evaluated are not specified.

F.13.31 Operation (from DataTypes)

Operation matches with the UML concept of Operation. We show below only the associations, attributes and constraints 
that are relevant for the VSL specification.

Associations

• datatype: DataType [0..1] 
DataType that owns this Property.

• ownedParameter: Parameter[*] {ordered} 
specifies the parameters owned by this Operation.

Semantics

An operation is invoked on an instance of the data type for which the operation is a feature. The list of owned parameters 
describes the order, type, and direction of arguments that can be given when the Operation is invoked or which are 
returned when the Operation terminates.

F.13.32 OperationCallExpression (from Expressions)

Generalizations

• Expression (from Expressions) on page 560

Associations

• definingOperation: VSL::DataTypes::Operation [0..1] 
called Operation.

• argument: VSL::ValueSpecification [*] {ordered} 
arguments of the Operation Call.

Attributes

• /operation: String [0..1] 
string with the name (not qualified name if data types are concerned in the call) of the called Operation. This 
is a derived value obtained from the defining Operation.
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Semantics

An Operation Call Expression refers to an operation defined in a UML Classifier. The expression may contain a list of 
argument expressions if the operation is defined to have parameters. In this case, the number and types of the arguments 
must match the parameters.

F.13.33 Parameter (from DataTypes)

Parameter matches with the UML concept of Parameter. We show below only the associations, attributes and constraints 
that are relevant for the VSL specification.

Associations

• operation: VSL::DataTypes::Operation[0..1] operation owning this parameter. 

Semantics

A parameter specifies how arguments are passed into or out of an invocation of an operation. The type and multiplicity of 
a parameter restrict what values can be passed, how many, and whether the values are ordered.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same 
operation. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

F.13.34 PrimitiveType (from DataTypes)

PrimitiveType matches with the UML concept of PrimitiveType. We show below only the associations, attributes and 
constraints that are relevant for the VSL specification.

Generalizations

• DataType (from DataTypes) on page 558

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical 
elements defined outside of UML (for example, the various integers). Instances of primitive types do not have identity. If 
two instances have the same representation, then they are indistinguishable.

Additionally, in VSL, a primitive data type may have operations defined through Operation features. The algebra of 
primitive data types is defined axiomatically outside of UML.

F.13.35 Property (from DataTypes)

Property matches with the UML concept of Property. We show below only the associations, attributes and constraints that 
are relevant for the VSL specification.

Associations

• datatype : VSL::DataTypes::DataType [0..1] the DataType that owns this Property.
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Semantics

When a property is owned by a data type via ownedAttribute, then it represents an attribute of the data type. When 
instantiated a property represents a value or collection of values associated with an instance of one (or in the case of a 
ternary or higher-order association, more than one) type. The value or collection of values instantiated for a property in 
an instance of its context conforms to the property's type.

F.13.36 PropertyCallExpression (from Expressions)

Generalizations

• Expression (from Expressions) on page 560

Associations

• definingProperty: VSL::DataTypes::Property [0..1] called Property.

Attributes

• /property: String [0..1] 
string with the name (qualified name) of the called Property. This is a derived value obtained from the 
defining Property.

Semantics

A Property Call Expression is used to refer to Properties in the UML metamodel.

F.13.37 Subtype (from DataTypes)

Generalizations

• DataType (from DataTypes) on page 558

Associations

• baseType : VSL::DataTypes::DataType [1] designates an ordered DataType. 

Semantics

A Subtype is a data type derived from an existing data type, designated the base data type, by restricting the value space 
to a subset of that to the base data type whilst maintaining all operations.

F.13.38 TimeExpression (from TimeExpressions)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• expr: VSL::ValueSpecification [0..1] 
complete time expression containing the usage of the observations given by "obsExpr", other expressions, or 
whatever value specification.
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• obsExpr: ObsCallExpression [*] 
set of observation call expression that are used in "expr".

Semantics

TimeExpression is an expression that factorizes different kinds of time related expressions, including instants, durations 
and jitters. The Time Expression is given by "expr" which may contain usage of the observations (obsExpr) given by 
ObsCallExpression. In the case where there are no "obsExpr", the "expr" will contain a time constant. In the case where 
there is no "expr", there shall be a single "obsExpr" that indicates the instant or duration expression value.

F.13.39 TupleItemValue (from CompositeValues)

Associations

• itemValue: VSL::ValueSpecification [1] value of the item.

• tupleAttribute: Property [1] tuple data type's attribute.

Attributes

• /tupleItemName: String {0..1] derived String with the name of the tuple data type's attribute.

Semantics

TupleItemValue assigns a value specification to instances of the called attributes of a TupleType.

F.13.40 TupleSpecification (from CompositeValues)

Generalizations

• ValueSpecification (from VSL) on page 568

Associations

• tupleItem : TupleItemValue [*] set of parts of a tuple specification.

Semantics

Tuple Specifications denotes structured values of possibly different types. It contains a name, a type, and a value for each 
item of the tuple value. There is no restriction on the kind of types that can be used to define item values of tuples. In 
particular, a Tuple Specification may contain other tuple and collection values.

F.13.41 TupleType (from DataTypes)

Generalizations

• CompositeType (from DataTypes) on page 558

Associations

• tupleAttributes: VSL::DataTypes::Property [*] 
attribute defining the type, size, uniqueness and order kind of the structured elements of this composite  
data type.
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Semantics

Tuple Type combines different types into a single composite type. The parts of a Tuple Type are described by its 
attributes, each having a name and a type. There is no restriction on the kind of types that can be used as part of a tuple. 
In particular, a Tuple Type may contain other tuple types and collection types. Each attribute of a TupleType represents a 
single feature of a TupleType. Each part is uniquely identified by its name.

F.13.42 ValueSpecification (abstract, from VSL)

ValueSpecification matches with the UML concept of ValueSpecification. We show below only the associations, attributes 
and constraints that are relevant for the VSL specification. 

Semantics

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or 
it may be an expression denoting an instance or instances when evaluated. It is required that the type and number of 
values is suitable for the context where the value specification is used.

F.13.43 Variable (from Expressions)

Generalizations

• Expression (from Expressions) on page 560

Associations

• datatype: VSL::DataTypes::DataType [0..1] 
type of the Variable.

• initExpression: VSL::ValueSpecification [0..1]  
initial value specification assigned to the variable when created.

• context: ExpressionContext [0..1] 
context of the variable declaration. Expressions making reference to this variable use ExpressionContext's 
name as namespace.

Attributes

• name: String [0..1] 
name of the variable.

• direction: VariableDirectionKind [0..1] 
nature of the created variable: input, output, input/output. The complete semantics of this attribute depends 
on the context on which the variable is created.

• /datatypeName: String  [0..1] 
string with the name of its DataType. This is a derived value obtained from the associated DataType.

Semantics

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable 
is in scope. Variable creates a variable with a given name, data type, and nature (input, output, input/output).
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F.13.44 F.13.44.VariableCallExpression (from Expressions)

Generalizations

• Expression (from Expressions) on page 560

Associations

• definingVariable: Variable [1]called Variable

Attributes

• /variable: String [0..1] 
string with the name (containing the ExpressionContext's namespace) of the called Variable. This is a 
derived value obtained from the defining Variable.

Semantics

Variables are typed elements for passing data in expressions. A variable can be used in expressions where the variable is 
in scope. A VariableCallExpression is an expression that consists of a reference to a variable.
A UML Profile for MARTE, Beta 1        635



636                 A UML Profile for MARTE, Beta 1



Annex G:  Bibliography

Agrawal, A., Bakshi, A., Davis, J., Eames, B., Ledeczi, A., Mohanty, S.,,Mathur, V., Neema, S., Nordstrom, G., Prasanna, 
V., and Raghavendra, C., MILAN: A Model Based Integrated Simulation Framework for Design of Embedded Systems, 
Workshop on Languages, Compilers, and Tools for Embedded Systems, Snowbird, Utah, June 2001.

Airlines electronic engineering committee. Avionics Application Software Standard Interface, ARINC Specification 653-
1, Aeronautical radio, INC., Annapolis, Maryland, USA. October 2003.

Aldea, M., Bernat, G., Broster, I., Burns, A., Dobrin, R., Drake, J.M., Fohler, G., Gai, P., González Harbour, M., Guidi, G., 
Gutiérrez, J.J., Lennvall, T., Lipari, G., Martínez, J.M., Medina, J.L., Palencia, J.C., and Trimarchi, M., FSF: A Real-Time 
Scheduling Architecture Framework, Proc. of the 12th Real-Time Systems Technology and Applications Symposium 
(RTAS'06), pp. 113-124, IEEE Press, April 2006.

Andrade Almeida João Paulo, Model-Driven Design of Distributed Applications. Ph.D. Thesis in Computer Science, 
CTIT Ph.D.-Thesis Series, No. 06-85, Telematica Instituut Fundamental Research Series, No. 018 (TI/FRS/018), 
Enschede, The Netherlands, ISBN 90-75176-422, 2006. 

André, C., Mallet, F., and De Simone, R., Modeling Time(s) in UML, Research Report I3S Laboratory, ISRN I3S/RR-
2007-16-FR, May 2007.

André, C., Mallet, F., and Peraldi-Frati, M-A., A multiform time approach to real-time modeling: Application to an 
automotive system, IEEE Second International Symposium on Industrial Embedded Systems (SIES'2007), Lisbon, 
Portugal, 4-6 July 2007. 

Atkinson Colin, and Kühne Thomas, A Generalized Notion of Platforms for Model-Driven Development Chapter 
contribution in "Model-Driven Software Development, Volume II of Research and Practice in Software Engineering", p. 
119-136, S. Beydeda and V. Gruhn editors, Springer Verlag, 2005.

AUTomotive Open System ARchitecture (AUTOSAR), http://www.autosar.org

Avionics Architecture Description Language Standards Document (AADL), http://www.aadl.info

Awad, M., Kuusela, and J., Ziegler, J., Object-Oriented Technology for Real-Time Systems, Prentice-Hall Inc., 1996.

Bernardi, S., Petriu, D., Comparing two UML Profiles for Non-functional Requirement Annota-tions: the SPT and QoS 
Profiles, UML'2004, Lisbon, Portugal, October 2004.

Boulet Pierre, Array-OL revisited, multidimensional signal processing specification. Research Report RR-6113, INRIA, 
February 2007.

Burns, A., and A. Wellings, Real-Time Systems and Programming Languages (2nd ed.), Addison-Wesley, 1997.

Chen Rong, Sgroi Marco, Lavagno Luciano, Martin Grant, Sangiovanni-Vincentelli Alberto, and Rabaey Jan, UML and 
platform-based design, in "UML for real: design of embedded real-time systems", Edited by B. Selic, L. Lavagno, G. 
Martin,  ISBN 1-4020-7501-4, pp 107-126, Kluwer Academic Publishers, Norwell, MA, USA, 2003.

Chen, R., Sgroi, M., Martin, G., Lavagno, L., Sangiovanni-Vincentelli, A. L., Rabaey, J., Embedded System Design Using 
UML and Platforms, in "System Specification and Design Languages", Eugenio Villar and Jean Mermet, eds., CHDL 
Series, Kluwer Academic Publishers,  2003.
A UML Profile for MARTE, Beta 1        637



Colbert, E., Overview of the UML Profile for the SAE AADL, (presentation) http://la.sei.cmu.edu/aadlinfosite/
AADLPublications&Presentations.html, SAE World Aviation Congress Nov 2004.

Cooling, N., and Moore, A., "Real-Time Perspective - Foundation," Artisan Software White Paper, 1998.

Cortelessa, V. and Mirandola, R., Deriving a Queueing Network based Performance Model from UML Diagrams, Proc. 
2nd International Workshop on Soft-ware and Performance (WOSP 2000), ACM, 2000.

Cortelessa, V. and Mirandola, R., UML Based Performance Modeling of Distrib-uted Systems,  Proc. <<UML-2000>> 
Conference, Springer Verlag, 2000

Cuccuru Arnaud, Dekeyser Jean-Luc, Marquet Philippe, and Boulet Pierre. Towards UML 2 extensions for compact 
modeling of regular complex topologies - A partial answer to the MARTE RFP. In MoDELS/UML 2005, ACM/IEEE 8th 
International Conference on Model Driven Engineering Languages and Systems, pages 445-459, Montego Bay, Jamaica, 
October 2005. Lecture Notes in Computer Science vol. 3713.

Cuccuru Arnaud. Unified Modeling of Repetitive Aspects in Software/Hardware Co-Design of High Performance System-
on-Chip. PhD Thesis, Laboratoire d'Informatique Fondamentale de Lille, Université de Lille 1, France, November 2005. 
(In French).

Cuenot, Ph., Chen, D., Gérard, S., Lönn, H.,. Reiser, M.-O., Servat, D., Tavakoli Kolagari, R., Törngren, M., Weber, M., 
Towards Improving Dependability of Automotive Systems by Using the EAST-ADL Architecture Description Language, 
in Architecting Dependable Systems IV, Rogerio de Lemos, Cristina Gacek, Alexander Romanovsky Eds, LNCS Series, 
Springer, (to be published in 2007).

De Miguel, M. et al., UML Extensions for the Specification and Evaluation of Latency Constraints in Architectural 
Models, Proc. 2nd International Workshop on Software and Performance (WOSP 2000), ACM, 2000.

Delatour Jérôme, Thomas Frédéric, Savaton Guillaume, and Faucou Sébastien, Modèle de plate-forme pour l'embarqué : 
première expérimentation sur les noyaux temps réel, Premières journées sur l'Ingénierie Dirigée par les modèles (IDM 
2005), France, June 2005.

Demeure Alain and Del Gallo Yannick. An Array Approach for Signal Processing Design. In Sophia-Antipolis conference 
on Micro-Electronics (SAME 98), France, October 1998.

Douglass, B., Doing Hard Time, Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns, Addison 
Wesley, 1999.

Douglass, B., Real-Time UML, Developing Efficient Objects for Embedded Sys-tems - Second Edition, Addison Wesley, 
2000.

Espinoza H., D. Petriu, C. Mraidha, S. Gérard, An Extended Value Specification Syntax for More Expressive UML 
Models, submitted to MoDELS 2007, Sep. 2007.

Espinoza Huáscar, Dubois Hubert, Gérard Sébastien, Medina Julio, Petriu Dorina C. and Woodside Murray. Annotating 
UML Models with Non-functional Properties for Quantitative Analysis. In Lecture Notes in Computer Science No.3844, 
pp.79-90, Springer-Verlag, ISBN:3-540-31780-5. January 2006.

Espinoza, H., H. Dubois, S. Gerard and J. Medina, A General Structure for the Analysis Framework of the UML MARTE 
Profile, International Workshop MARTES, MoDELS/UML 2005, Oct. 2005, Montego Bay, Jamaica.

Espinoza, H., J. Medina, H. Dubois, S. Gerard and F. Terrier, Towards a UML-based Modeling Standard for 
Schedulability Analysis of Real-time Systems, International Workshop MARTES, MoDELS/UML 2006. Oct. 2006. 
Genova, Italie.
638                 A UML Profile for MARTE, Beta 1



Faugère, M., Bourdeau, T., De Simone, R. and Gérard, S., MARTE: Also an UML Profile for modeling AADL 
applications, published at the AADL/UML workshop of the "The twelfth IEEE International Conference on Engineering 
of Complex Computer Systems, July 14 , 2007, Auckland, New Zealand". 

Flake, S., Mueller, W., A UML Profile for Real-Time Constraints with the OCL In J. M. Jezequel, H. Hussmann, S. Cook 
(Eds.) UML'2002, Dresden, Germany LNCS (2460), pp. 179 - 195, Springer Verlag 2002.

Gérard, S., and H. Espinoza, Rationale of the UML Profile for MARTE (Book Chapter). From MDD Concepts to 
Experiments and Illustrations, ISBN: 1905209592, pp. 43-52, Sep. 2006.

Gomaa, H., Designing Concurrent, Real-Time and Distributed Applications with UML, Addison Wesley, 2000.

González Harbour M., Gutiérrez J.J., Palencia J.C., and Drake J.M., MAST: Modeling and Analysis Suite for Real Time 
Applications. Proc. of 13th Euromicro Conference on Real-Time Systems, Delft, The Netherlands, IEEE Computer 
Society Press, pp. 125-134, June 2001.

Graf Susanne, Ober Ileana, and Ober Iulian, A real-time profile for UML, International Journal on Software Tools for 
Technology Transfer (STTT), Publisher Springer Berlin / Heidelberg, ISSN 1433-2779, Volume 8, Number 2 , April 2006.

Hoeben, F., Using UML Models for Performance Calculation, Proc. 2nd Inter-national Workshop on Software and 
Performance (WOSP 2000), ACM, 2000

ISO/IEC/ANSI, Ada 95 Reference Manual: Annex D: Real-Time systems ISO/IEC/ANSI 8652:1995.

Jain Raj, The Art of Computer Performance Modeling, 

Kabous, L. and Neber, W., Modeling Hard Real Time Systems with UML: The OOHARTS Approach, Proc. 2nd 
International Conference on the Unified Mod-eling Language ("UML"' 99), Springer (LNCS vol. 1723), 1999 (pp.339-
355)

Käkhkipuro, P., UML Based Performance Modeling Framework for Object-Ori-ented Distributed Systems, Proc. 2nd 
International Conference on the Unified Modeling Language ("UML"' 99), Springer (LNCS vol. 1723), 1999 (pp.356-
371).

King, P. and Pooley, R., Using UML to Derive Stochastic Petri Net Models, Proc. 15th UK Performance Engineering 
Workshop, U. of Bristol, July 1999.

Klein, M., Ralya, T., Pollak, B., Obenza, R., and Gonzalez Harbour, M., A Practitioner's Handbook for Real-Time 
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems, Kluwer Academic Publishers, 1993.

Kopetz, H., Real-Time Systems: Design Principles for Distributed Embedded Applications, Kluwer Academic Publishers, 
1997.

Kukkala, P., Riihimâki, J., Hämäläinen, M., and Kronlöf, K., UML 2.0 Profile for Embedded System, Proc. of Design, 
Automation, and Test in Europe Conference (DATE 2005), pp. 710-715, March 2005.

Lanusse, A., Gerard, S., and Terrier, F., Real-Time Modeling with UML: The ACCORD Approach, Proc. 1st International 
Conference on the Unified Model-ing Language ("UML"' 98), Springer (LNCS vol. 1618), 1998 (pp.319-335).

Liu, J. W. S., Real-Time Systems, Prentice-Hall, Inc., 2000.

López, P., Medina, J.L., and Drake, J.M., Real-Time Modelling of Distributed Component-based Applications, Proc. of 
the 2006 32nd Euromicro Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06), 
pp. 92-99, IEEE Computer Society Press, August 2006.
A UML Profile for MARTE, Beta 1        639



Medina Julio, González Harbour Michael, and Drake José María, MAST Real-Time View: A Graphic UML Tool for 
Modeling Object-Oriented Real-Time Systems. Proc. 22nd IEEE Real-Time Systems Symposium, pp. 245-256, IEEE 
Computer Society Press, December 2001.

Medina Julio, González Harbour Michael, and Drake José María, The "UML Profile for Schedulability, Performance and 
Time" in the schedulability analysis and modeling of real-time distributed systems, Proc. of SIVOES-SPT Workshop on 
the usage of the UML profile for Scheduling, Performance and Time, hold in conjunction with the 10th IEEE Real-Time 
and Embedded Technology and Applications Symposium, RTAS 2004, Toronto - Canada, May 2004. 

Medina Julio, Gutiérrez José Javier, Drake José María, and González Harbour Michael, Modeling and Schedulability 
Analysis of Hard Real-Time Distributed Systems based on Ada Components, Lecture Notes in Computer Science 
No.2361, pp.282-296,Springer, ISBN 3-540-43784-3, June 2002.

Medina Julio, López Patricia, and Drake José María, Towards a UML Profile for Real-Time Modelling of Component-
Based Distributed Embedded Systems, Proc. of FDL'06 - Forum on Specification & Design Languages, ISSN: 1636-9874, 
pp. 381-388, Darmstadt - Germany, September 2006.

Medina Julio, Methodology and UML tools for modelling and analysis of object oriented real-time systems, Phd Thesis 
(Spanish), Universidad de Cantabria, URN TDR-0209106-103344, ISBN 84-689-6946-X, Santander- Spain, September 
2005.

Object Management Group, Real-Time CORBA (version 1.1), OMG document formal/02-08-02, August 2002.

Object Management Group, Real-Time CORBA (version 1.1), OMG document number formal/02-08-02 (August 2002).

Object Management Group, Real-Time CORBA 2.0: Dynamic Scheduling Specification, OMG document number ptc/01-
08-34, September 2001

Object Management Group, Real-Time CORBA 2.0: Dynamic Scheduling Specification, OMG document number ptc/01-
08-34 (September 2001).

Object Management Group, The Common Object Request Broker: Architecture and Specification, OMG document 
number formal/00-10-01 (October 2000)

Object Management Group, UML 2.0 OCL 2nd revised submission, OMG document ad/2003-01-07, 2003.

Object Management Group, UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE), 
RFP. 2005. OMG document: realtime/05-02-06.

Object Management Group, UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and 
Mechanisms. 2004. OMG document ptc/04-09-01.

Object Management Group, UML Profile for Schedulability, Performance, and Time, Version 1.1. 2005. OMG document: 
formal/05-01-02.

Object Management Group, UML Profile for System on a Chip (SoC), Version 1.0.1. OMG Document, 06-08-01. 2006

OSEK/VDX Group. OSEK/VDX OS specification, Version 2.2.3, 2005. http://portal.osek-vdx.org/files/pdf/specs/
os223.pdf.

Palencia, J.C., and González Harbour, M., Exploiting Precedence Relations in the Schedulability Analysis of Distributed 
Real-Time Systems, Proc. of the 20th IEEE Real-Time Systems Symposium, 1999.
640                 A UML Profile for MARTE, Beta 1



Palencia, J.C., and González Harbour, M., Offset-Based Response Time Analysis of Distributed Systems Scheduled under 
EDF, Proc. of the 15th Euromicro Conference on Real-Time Systems, ECRTS. ISBN: 0-7695-1936-9, pp. 3-12. Porto, 
Portugal. July 2003.

Palencia, J.C., and González Harbour, M., Response Time Analysis for Tasks Scheduled under EDF within Fixed 
Priorities, Proc. of the 24th IEEE Real-Time Systems Symposium, Cancún, México, December 2003.

Palencia, J.C., and González Harbour, M., Response Time Analysis of EDF Distributed Real-Time Systems, Journal of 
Embedded Computing (JEC), IOS Press, Vol. 1, Issue 2, November, 2005.

Palencia, J.C., and González Harbour, M., Schedulability Analysis for Tasks with Static and Dynamic Offsets, Proc. of the 
19th IEEE Real-Time Systems Symposium, Madrid Spain. December 1998.

Petriu, D., and Sun, Y., Consistent Behaviour Representation in Activity and Sequence Diagrams, Proc. <<UML-2000>> 
Conference, Springer Verlag, 2000.

Petriu, D.C., and Murray, W., Some Requirements for Quantitative Annotations of Software De-signs, in MoDELS 2005, 
Workshop MARTES.

Riccobene, E., Scandurra, P.,Rosti, A., and Bocchio, S., A UML 2.0 profile for SystemC: toward high-level SoC design, 
EMSOFT '05: Proceedings of the 5th ACM international conference on Embedded software, pages 138-141, Jersey City, 
NJ, USA, 2005.

Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Reference Manual, Addison Wesley, 1999.

Sangiovanni-Vincentelli Alberto, and Martin Grant, Platform-Based Design and Software Design Methodology for 
Embedded Systems, IEEE Design and Test of Computers, volume 18 , number 6, 2001, pp. 23-33, IEEE Computer 
Society, CA, USA, 2001.

Selic, B., A Generic Framework for Modeling Resources with UML, IEEE Computer vol. 33 no.6, pp.64-69, June 2000.

Selic, B., A Systematic Approach to Domain-Specific Language Design Using UML, Proc. of the 10th IEEE International 
Symposium on Object and Component-Oriented Real-Time Distributed Computing, 2007, ISORC'07, pp. 2-9 ISBN: 0-
7695-2765-5, May 2007.

Selic, B., Model-Driven Development: Its Essence and Opportunities, ISORC 2006: pp 313-319, Apr 2006.

Selic, B., Modeling Quality of service with UML: How Quantity changes Quality, in UML for Real: Design of Embedded 
Real-Time Systems, Edited by B. Selic, L. Lavagno, G. Martin, pp. 189-270, Kluwer Academic Publishers, May 2003.

Selic, B., On Software Platforms, Their Modeling with UML2, and Platform-Independent Design Eighth IEEE 
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), May 2005.

Selic, B., On the Semantic Foundations of Standard UML 2.0, in Bernardo, M., and Corradini, F. (eds.), Formal Methods 
for the Design of Real-Time Systems, Lecture Notes in Computer Science vol. 3185, Springer-Verlag, 2004.

Sha, L., Abdelzaher, T., Arzen, K., E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., Mok, 
A., K., Real Time Scheduling Theory: A Historical Perspective, Real-Time Systems Journal, Vol. 28, No, 2-3, pp. 101-
155, ISSN:0922-6443, November-December 2004.

SimpleScalar Tool Set, http://www.simplescalar.com

Taha, S., Radermacher, A., Gerard, S., and Dekeyzer, J.-L., An Open Framework for Detailed Hardware Modeling, Proc. 
of IEEE Second International Symposium on Industrial Embedded Systems - SIES'2007, Lisbon, Portugal. July 2007.
A UML Profile for MARTE, Beta 1        641



Thomas Frédéric, Gérard Sébastien, and Delatour Jérôme, Towards an UML 2.0 profile for real-time execution platform 
modeling, 18th Euromicro Conference on Real-Time Systems (ECRTS 06) Work in progress session, July 2006.

Thomas, F., Espinoza, H., Taha, S., Gérard, S., MARTE : le futur standard OMG pour le développement dirigé par les 
modèles des systèmes embarqués temps réel, journal Génie Logiciel, n° 80, March 2007.

Tindell, K., Adding Time-Offsets to Schedulability Analysis, Technical Report YCS 221, De-partment of Computer 
Science, University of York, January 1994.

Woodisde, C., Resource Architectures from Software Design, Chapter 3 in Software Resource Architecture and 
Performance Oriented Patterns.
642                 A UML Profile for MARTE, Beta 1



Annex H:  Mapping SPT on MARTE

In order to minimize the impact on users of the SPT profile specification, a precise mapping between the SPT profile and 
the MARTE metamodels and its defined extensions is provided. Wherever changes have adversely impacted backward 
compatibility a short rational has been given. The next table presents the concepts in SPT in the left side and the 
corresponding elements in MARTE in the right side. The three front-end profile definitions for compliance in SPT has 
been included, SAprofile, PAprofile, and RSAprofile. 

SPT stereotype MARTE element(s) that may be used to model it in equivalent contexts

SAaction SaExecStep, SaCommStep, Step

SAengine SaExecHost, SaCommHost, ProcessingResource, ComputingResource 

SAowns Allocate. This may be also expressed by aggregation between resources 

SAprecedes PrecedenceRelation. These dependencies are now to be made explicit in the 
End2EndFlow by means of the appropriate control nodes. 

SAresource SharedResource, MutualExclusiveResource

SAresponse BehaviorScenario, SaExecStep

SAschedRes SchedulableResource

SAscheduler Scheduler

SAsituation SaAnalysisContext

SAtrigger RequestEventStream

SAusedHost ExecutionStep.concurrentRes association to SchedulableResource 

SAuses SaExecStep.usedResources association to SharedResource

PAclosedLoad PWorkloadGenerator+RequestEventStream

PAcontext AnalysisContext

PAhost ExecutionHost, ProcessingResource, ComputingResource

PAopenLoad PWorkloadGenerator+RequestEventStream

PAresource MutualExclusiveResource, Resource

PAstep PExecutionStep, PStep

PAperfValue VSL +source qualifier in NFP_types + the syntax in TupleType

PAextOpValue VSL + PRequestedService

RSAchannel SaCommunicationHost
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RSAclient This has not a direct mapping, but it can be represented with an RtUnit or a 
structured class having the SchedulableResource, the behaviors of the client, 
the CommunicationChannel to the server, and the ResourceBroker.

RSAconnection This has not a direct mapping, but it can be represented with a Share-
dResource and a CommunicationChannel.

RSAmutex MutualExclusiveResource, PpUnit

RSAorb This does not have a direct mapping, but it can be represented using a Sec-
ondaryScheduler, RtUnit, and MutualExclusiveResources. 

RSAserver This does not have a direct mapping, but it can be represented using an RtU-
nit or a structured class having the SchedulableResource, the behaviors of the 
client, and eventually the SecondaryScheduler.
644                 A UML Profile for MARTE, Beta 1


	Preface
	1 Scope
	1.1 Introduction

	2 Conformance
	2.1 Overview
	2.2 Extension Units and Features
	2.3 Conformance of MARTE with UML
	2.4 Conformance with MARTE
	2.4.1 Compliance Cases
	2.4.2 Extension Units in each compliance case
	2.4.3 Special additional compliance case and extension units


	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Scope of OMG RT/E related standards
	6.2 Rationale and general principles
	6.2.1 Real-time and embedded domain
	6.2.2 Guiding principles
	6.2.3 How to use this specification

	6.3 Approach and structure
	6.3.1 Profile architecture
	6.3.2 A foundation for model driven techniques
	6.3.3 Approach to modeling RT/E systems
	6.3.4 Approach to annotating for model analysis
	6.3.5 MDA and MARTE

	6.4 How to read this specification
	6.4.1 Structure of the document
	6.4.2 Extension specification rationale and format convention
	6.4.3 Conventions and typography

	6.5 Acknowledgements

	Part I - MARTE Foundations
	7 Core Elements (CoreElements)
	7.1 Overview
	7.2 Domain view
	7.2.1 The Foundations package
	7.2.2 The Causality::CommonBehavior package
	7.2.3 The Causality::RunTimeContext package
	7.2.4 The Causality::Invocation package
	7.2.5 The Causality::Communication Package

	7.3 UML Representation

	8 Non-functional Properties Modeling (NFPs)
	8.1 Overview
	8.2 Domain View
	8.2.1 Overview
	8.2.2 The NFP_Nature package
	8.2.3 The NFP_Annotation Package
	8.2.4 The NFP_Declaration package

	8.3 UML Representation
	8.3.1 Profile diagrams
	8.3.2 Profile elements description
	8.3.3 Examples


	9 Time Modeling (Time)
	9.1 Overview
	9.2 Domain view
	9.2.1 The BasicTimeModels package
	9.2.2 The MultipleTimeModels package
	9.2.3 The TimeAccesses package
	9.2.4 The TimeRelatedEntities package

	9.3 UML Representation
	9.3.1 Profile Diagrams
	9.3.2 Profile elements description
	9.3.3 Examples


	10 Generic Resource Modeling (GRM)
	10.1 Overview
	10.2 Domain view
	10.2.1 The ResourceCore package
	10.2.2 The ResourceTypes Package
	10.2.3 The ResourceManagement Package
	10.2.4 The Scheduling Package
	10.2.5 The ResourceUsage Package

	10.3 UML Representation
	10.3.1 Profile Diagrams
	10.3.2 Profile Elements Description
	10.3.3 GRM model library elements description

	10.4 Examples

	11 Generic Component Model (GCM)
	11.1 Overview
	11.2 Domain View
	11.2.1 The GeneralComponentModel Package

	11.3 UML Representation
	11.3.1 Profile Diagrams
	11.3.2 Profile Elements Description

	11.4 Examples
	11.4.1 Automotive Example
	11.4.2 Avionics Example


	12 Allocation Modeling (Alloc)
	12.1 Overview
	12.2 Domain View
	12.3 UML Representation
	12.3.1 Profile Diagrams
	12.3.2 Profile elements description

	12.4 Examples
	12.4.1 Unix process
	12.4.2 System on Chip
	12.4.3 Allocate activity group


	Part II - MARTE Design Model
	13 RTE Model of Computation & Communication (RTEMoCC)
	13.1 Overview
	13.2 Domain View
	13.3 UML Representation
	13.3.1 Profile Diagrams
	13.3.2 Profile Elements Description

	13.4 Examples
	13.4.1 Notational examples
	13.4.2 Avionics example


	14 Detailed Resource Modeling (DRM)
	14.1 Software Resource Modeling (SRM)
	14.1.1 Overview
	14.1.2 Domain View
	14.1.3 UML Representation
	14.1.4 Examples

	14.2 Hardware Resource Modeling (HRM)
	14.2.1 Overview
	14.2.2 Domain view
	14.2.3 UML representation
	14.2.4 Examples


	Part III - MARTE Analysis Model
	15 Generic Quantitative Analysis Modeling (GQAM)
	15.1 Overview
	15.2 Domain view
	15.2.1 The GQAM package
	15.2.2 The GQAM_Workload package
	15.2.3 GQAM_Observers Package
	15.2.4 The GQAM_Resource Package
	15.2.5 Common NFP Attributes for Analysis

	15.3 UML Representation
	15.3.1 Profile Diagrams
	15.3.2 Profile Elements Description


	16 Schedulability Analysis Modeling
	16.1 Overview
	16.2 Domain View
	16.2.1 The SAM root package
	16.2.2 The SAM Workload package
	16.2.3 The SAM Observers package
	16.2.4 The SAM Resources package

	16.3 UML Representation
	16.3.1 Profile Diagrams
	16.3.2 Profile elements description
	16.3.3 Examples


	17 Performance Analysis Modeling (PAM)
	17.1 Overview
	17.2 Domain view
	17.2.1 The PAM_Workload package
	17.2.2 Outline of domain concepts

	17.3 UML representation
	17.3.1 Profile diagrams
	17.3.2 Profile elements description

	17.4 Examples for Performance Analysis
	17.4.1 Example 1: A Simple Web Application
	17.4.2 Example 2: An Electronic Bookstore Home Page Interaction
	17.4.3 Example 3: a building surveillance system
	17.4.4 Example 4: communications example, a layer subsystem
	17.4.5 Example 5: services by component subsystems
	17.4.6 Example 6: state machine annotations


	Part IV - Annexes
	Annex A: Guidance Example for Use of MARTE
	A.1 Open-source Tool Support for MARTE
	A.2 AADL-like models with MARTE
	A.2.1 MARTE for AADL Summary Table
	A.2.2 Packages, components declaration and implementation
	A.2.3 Software Components
	A.2.4 Execution Platform Components
	A.2.5 System
	A.2.6 Features and shared access
	A.2.7 Mode
	A.2.8 Flows
	A.2.9 Properties
	A.3 EAST/ADL2.0 models with MARTE


	Annex B: Value Specification Language (VSL)
	B.1 Overview
	B.2 Domain View
	B.2.1 Overview
	B.2.2 The Datatypes package
	B.2.3 The LiteralValues package
	B.2.4 The Expressions package
	B.2.5 The CompositeValues package
	B.2.6 The TimeExpression package

	B.3 UML Representation
	B.3.1 Profile Diagrams
	B.3.2 Profile elements description
	B.3.3 Concrete syntax of value specification
	B.3.4 Examples


	Annex C: Clock Handling Facilities
	C.1 Overview
	C.2 Clocked Value Specification
	C.2.1 Domain view
	C.2.2 Concrete syntax
	C.2.3 Examples of clocked value specifications

	C.3 Clock Constraint Specification
	C.3.1 Domain view
	C.3.2 CCSL concrete syntax


	Annex D: Normative MARTE Model Libraries (MARTE_Library)
	D.1 MARTE Model Library for Primitive Types
	D.1.1 Real
	D.1.2 Integer
	D.1.3 Unlimited Natural
	D.1.4 String
	D.1.5 Boolean
	D.1.6 DateTime

	D.2 MARTE model library for extended datatypes
	D.3 MARTE model library for time
	D.3.1 TimeTypesLibrary library
	D.3.2 TimeLibrary

	D.4 MARTE model library for GRM
	D.5 MARTE model library for RTOSs
	D.5.1 OSEK/VDX OS
	D.5.2 ARINC-653


	Annex E: Repetitive Structure Modeling (RSM)
	E.1 Overview
	E.2 Domain View
	E.2.1 Package overview
	E.2.2 Class description

	E.3 UML Representation
	E.3.1 Profile Diagrams
	E.3.2 Profile Elements Description

	E.4 Examples

	Annex F: Domain Class Descriptions
	F.1 Core Elements
	F.1.1 Action (from Causality::CommonBehavior)
	F.1.2 ActionExecution (from Causality::RunTimeContext)
	F.1.3 AggregationKind (from Foundations)
	F.1.4 Behavior (from Causality::CommonBehavior)
	F.1.5 BehavioredClassifier (from Causality::CommonBehavior)
	F.1.6 BehaviorExecution (from Causality::RunTimeContext)
	F.1.7 Classifier (from Foundations)
	F.1.8 CompBehaviorExecution (from Causality::RunTimeContext)
	F.1.9 CompositeBehavior (from Causality::CommonBehavior)
	F.1.10 Event (from Causality::CommonBehavior)
	F.1.11 EventOccurrence (from Causality::RunTimeContext)
	F.1.12 Instance (from Foundations)
	F.1.13 InvocationOccurrence (from Causality::Communication)
	F.1.14 ModelElement (from Foundations)
	F.1.15 Parameter (from Causality::CommonBehavior)
	F.1.16 Property (from Foundations)
	F.1.17 ReceiveOccurrence (from Causality::Communication)
	F.1.18 Request (from Causality::Communication)
	F.1.19 StartEvent (from Causality::Invocation)
	F.1.20 StartOccurrence (from Causality::Invocation)
	F.1.21 TerminationEvent (from Causality::Invocation)
	F.1.22 TerminationOccurrence (from Causality::Invocation)
	F.1.23 Trigger (from Causality::CommonBehavior)

	F.2 NFP
	F.2.1 AbstractNFP (abstract, from NFP_Nature)
	F.2.2 AnnotatedElement (abstract, from NFP_Annotation)
	F.2.3 AnnotatedModel (abstract, from NFP_Annotation)
	F.2.4 BasicQuantity (abstract, from NFP_Nature)
	F.2.5 ConstraintKind
	F.2.6 DerivedQuantity (abstract, from NFP_Nature)
	F.2.7 DirectionKind
	F.2.8 Measure (abstract, from NFP_Nature)
	F.2.9 ModelingConcern (from NFP_Annotation)
	F.2.10 NFP (from NFP_Declaration)
	F.2.11 NFP_Constraint (from NFP_Annotation)
	F.2.12 NFP_Type (abstract, from NFP_Declaration)
	F.2.13 QualitativeNFP (abstract, from NFP_Nature)
	F.2.14 QuantitativeNFP (abstract, from NFP_Nature)
	F.2.15 Quantity (abstract, from NFP_Nature)
	F.2.16 SampleRealization (abstract, from NFP_Nature)
	F.2.17 StatisticalQualifierKind
	F.2.18 Unit (from NFP_Nature)

	F.3 Time
	F.3.1 F.3.1. ChronometricClock (from TimeAccesses::ChronometricClocks)
	F.3.2 Clock (from TimeAccesses::Clocks)
	F.3.3 ClockConstraint (from TimeRelatedEntities::ClockConstraints)
	F.3.4 ClockConstraintSpecification (from TimeRelatedEntities::ClockConstraints)
	F.3.5 CoincidenceRelation (from MultipleTimeModels)
	F.3.6 Delay (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings)
	F.3.7 DiscreteTimeBase (from BasicTimeModels)
	F.3.8 DurationIntervalValue (from TimeAccesses::DurationValues)
	F.3.9 DurationPredicate (from TimeRelatedEntities::TimedConstraints)
	F.3.10 DurationValue (from TimeAccesses::DurationValues)
	F.3.11 EventKind (from TimeRelatedEntities::TimedElements::TimeObservations)
	F.3.12 Instant (from BasicTimeModels)
	F.3.13 InstantPredicate (from TimeRelatedEntities::TimedConstraints)
	F.3.14 InstantValue (from TimeAccesses::TimeValues)
	F.3.15 JuctionInstant (from BasicTimeModels)
	F.3.16 LogicalClock (from TimeAccesses::Clocks)
	F.3.17 MultipleTimeBase (from MultipleTimeModels)
	F.3.18 PhysicalTime (from TimeAccesses::ChronometricClocks)
	F.3.19 PrecedenceRelation (from MultipleTimeModels)
	F.3.20 SimultaneousOccurrenceSet (from TimeRelatedEntities::TimedEvent Models::TimedEventOccurrences)
	F.3.21 TimeBase (from BasicTimeModels and MultipleTimeModels)
	F.3.22 TimeBaseRelation (from MultipleTimeModels)
	F.3.23 TimedAction (from TimeRelatedEntities:: TimedProcessingModels::Timed Processings)
	F.3.24 TimedBehavior (from TimeRelatedEntities::TimedProcessingModels::Timed Processings)
	F.3.25 TimedConstraint (from TimeRelatedEntities::TimedConstraints)
	F.3.26 TimedDurationConstraint (from TimeRelatedEntities::TimedConstraints)
	F.3.27 TimedDurationObservation (from TimeRelatedEntities::TimedObservations)
	F.3.28 TimedElement (from TimeRelatedEntities::TimedElements)
	F.3.29 TimedEvent (from TimeRelatedEntities::TimedEventModels::TimedEvents)
	F.3.30 TimedEventOccurrence (from TimeRelatedEntities::TimedEventModels::Timed EventOccurrences)
	F.3.31 TimedExecution (from TimeRelatedEntities::TimedProcessingModels::Timed Executions)
	F.3.32 TimedInstantConstraint (from TimeRelatedEntities::TimedConstraints)
	F.3.33 TimedInstantObservation (from TimeRelatedEntities::TimedObservations)
	F.3.34 TimedMessage (from TimeRelatedEntities::TimedProcessingModels::Timed Processings)
	F.3.35 TimedObservation (from TimeRelatedEntities::TimedObservations)
	F.3.36 TimedProcessing (from TimeRelatedEntities::TimedProcessingModels::TimedProcessings)
	F.3.37 TimeInstantRelation (from MultipleTimeModels)
	F.3.38 TimeInterval (from MultipleTimeModels)
	F.3.39 TimeIntervalMembership (from MultipleTimeModels)
	F.3.40 TimeIntervalValue (from TimeAccesses::TimeValues)
	F.3.41 TimeNatureKind (from BasicTimeModels)
	F.3.42 TimeStandardKind (from TimeAccesses::ChronometricClocks)
	F.3.43 TimeStructureRelation (from MultipleTimeModels)
	F.3.44 TimeValue (from TimeAccesses::TimeValues)

	F.4 GRM
	F.4.1 AccesControlPolicy (from MARTE:GRM::ResourceManagement)
	F.4.2 AccesControlPolicy (from MARTE:GRM::ResourceManagement)
	F.4.3 Acquire(from MARTE:GRM::ResourceTypes)
	F.4.4 Activate (from MARTE:GRM::ResourceTypes)
	F.4.5 ClockResource (from MARTE:GRM::ResourceTypes)
	F.4.6 CommunicationEndPoint (from MARTE::GRM::ResourceTypes)
	F.4.7 CommunicationMedia (from MARTE::GRM::ResourceTypes)
	F.4.8 CommunicationResource (from MARTE::GRM::ResourceTypes)
	F.4.9 ComputingResource (from MARTE:GRM::ResourceTypes)
	F.4.10 ConcurrencyResource (from MARTE:GRM::ResourceTypes)
	F.4.11 DeviceResource (from MARTE:GRM::ResourceTypes)
	F.4.12 DynamicUsage (from MARTE::GRM::ResourceUsages)
	F.4.13 GetAmountAvailable (from MARTE:GRM::ResourceTypes)
	F.4.14 MutualExclusionProtocol (from MARTE::GRM::Scheduling)
	F.4.15 MutualExclusionResource (from MARTE::GRM::Scheduling)
	F.4.16 ProcessingResource (from MARTE::GRM::Scheduling)
	F.4.17 ProtectParameters (from MARTE::GRM::Scheduling)
	F.4.18 ProtectProtocolKind (from MARTE::GRM::Scheduling)
	F.4.19 Release (from MARTE:GRM::ResourceTypes)
	F.4.20 Resource (from MARTE::GRM::ResourceCore)
	F.4.21 ResourceAmount (from MARTE::GRM::ResourceCore)
	F.4.22 ResourceBroker (from MARTE:GRM::ResourceManagement)
	F.4.23 ResourceInstance (from MARTE::GRM::ResourceCore)
	F.4.24 ResourceManager (from MARTE:GRM::ResourceManagement)
	F.4.25 ResourceReference (from MARTE:GRM::ResourceCore)
	F.4.26 ResourceService (from MARTE::GRM::ResourceCore)
	F.4.27 ResourceUsage (from MARTE::GRM::ResourceUsages)
	F.4.28 SchedPolicyKind (from MARTE:GRM::Scheduling)
	F.4.29 SchedulableResource (from MARTE::GRM::Scheduling)
	F.4.30 Scheduler (from MARTE:GRM::Scheduling)
	F.4.31 SchedulingParameters (from MARTE::GRM::Scheduling)
	F.4.32 SchedulingPolicy (from MARTE:GRM::Scheduling)
	F.4.33 SecondaryScheduler (from MARTE:GRM::Scheduling)
	F.4.34 StaticUsage (from MARTE::GRM::ResourceUsages)
	F.4.35 StorageResource (from MARTE:GRM::ResourceTypes)
	F.4.36 SynchResource (from MARTE:GRM::ResourceTypes)
	F.4.37 TimerResource (from MARTE:GRM::ResourceTypes)
	F.4.38 TimingResource (from MARTE:GRM::ResourceTypes)
	F.4.39 UsageDemand (from MARTE::GRM::ResourceUsages)
	F.4.40 UsageTypedAmount (from MARTE::GRM::ResourceUsages)

	F.5 GCM
	F.5.1 AssemblyConnector
	F.5.2 AssemblyPart
	F.5.3 BroadcastSignalAction
	F.5.4 DirectionKind
	F.5.5 FlowSendAction
	F.5.6 FlowPort
	F.5.7 FlowProperty
	F.5.8 FlowSpecification
	F.5.9 InteractionPort (abstract)
	F.5.10 InvocationAction (abstract)
	F.5.11 MessagePort (abstract)
	F.5.12 ServiceCallAction
	F.5.13 ServiceFeature
	F.5.14 ServicePort
	F.5.15 ServiceSpecification
	F.5.16 SignalFeature
	F.5.17 SignalPort
	F.5.18 SignalSpecification
	F.5.19 StandardPort
	F.5.20 StructuredComponent

	F.6 Alloc
	F.6.1 Allocation (from Allocations)
	F.6.2 AllocationEnd (from Allocations)
	F.6.3 ApplicationAllocationEnd (from Allocations)
	F.6.4 ExecutionPlatformAllocationEnd (from Allocations)
	F.6.5 Refinement (from Allocations)

	F.7 RTEMoCC
	F.7.1 CallConcurencyKind
	F.7.2 CompResPolicy
	F.7.3 ConcurencyKind
	F.7.4 ExecutionKind
	F.7.5 InMsgQueue
	F.7.6 PoolMgtPolicy
	F.7.7 PpUnit
	F.7.8 RtAction
	F.7.9 RtBehavior
	F.7.10 RealTimeFeature
	F.7.11 RteConnector
	F.7.12 RtService
	F.7.13 RtUnit
	F.7.14 SynchronisationKind

	F.8 DRM::SRM
	F.8.1 Alarm (from SRM::SW_Concurrency)
	F.8.2 AccessPolicyKind (from SRM::SW_Brokering)
	F.8.3 ConcurrentAccessProtocolKind (from SRM::SW_Interaction)
	F.8.4 DeviceBroker (from SRM::SW_Brokering)
	F.8.5 EntryPoint (from SRM::SW_Concurrency)
	F.8.6 InterruptResource (from SRM::SW_Concurrency)
	F.8.7 InterruptKind (from SRM::SW_Concurrency)
	F.8.8 MemoryBroker (from SRM::SW_Brokering)
	F.8.9 MemoryPartition (from SRM::SW_Concurrency)
	F.8.10 MessageComResource (from SRM::SW_Interaction)
	F.8.11 MessageResourceKind (from SRM::SW_Interaction)
	F.8.12 MutualExclusionResourceKind (from SRM::SW_Interaction)
	F.8.13 NotificationKind (from SRM::SW_Interaction)
	F.8.14 NotificationResourceKind (from SRM::SW_Interaction)
	F.8.15 NotificationResource (from SRM::SW_Interaction)
	F.8.16 QueuePolicyKind (from SRM::SW_Interaction)
	F.8.17 SharedDataComResource (from SRM::SW_Interaction)
	F.8.18 SwAccessService (from SRM::SW_ResourceCore)
	F.8.19 SwCommunicationResource (abstract) (from SRM::SW_Interaction)
	F.8.20 SwConcurrentResource (abstract) (from SRM::SW_Concurrency)
	F.8.21 SwInteractionResource (abstract) (from SRM::SW_Interaction)
	F.8.22 SwMutualExclusionResource (from SRM::SW_Interaction)
	F.8.23 SwResource (abstract) (from SRM::SW_ResourceCore)
	F.8.24 SwSchedulableResource (from SRM::SW_Concurrency)
	F.8.25 SwSynchronizationResource (abstract) (from SRM::SW_Interaction)
	F.8.26 SwTimerResource (from SRM::SW_Concurrency)

	F.9 DRM::HRM
	F.9.1 CacheStructure
	F.9.2 CacheType
	F.9.3 ComponentState
	F.9.4 ConditionType
	F.9.5 Env_Condition
	F.9.6 HW_Arbiter
	F.9.7 HW_ASIC
	F.9.8 HW_Battery
	F.9.9 HW_BranchPredictor
	F.9.10 HW_Bridge
	F.9.11 HW_Bus
	F.9.12 HW_Cache
	F.9.13 HW_Card
	F.9.14 HW_Channel
	F.9.15 HW_Chip
	F.9.16 HW_Clock
	F.9.17 HW_CommunicationResource
	F.9.18 HW_Component (from HW_Layout)
	F.9.19 HW_Component (from HW_Power)
	F.9.20 HW_ComputingResource
	F.9.21 HW_CoolingSupply
	F.9.22 HW_Device
	F.9.23 HW_DMA
	F.9.24 HW_Drive
	F.9.25 HW_EndPoint
	F.9.26 HW_I/O
	F.9.27 HW_ISA
	F.9.28 HW_Media
	F.9.29 HW_Memory
	F.9.30 HW_MMU
	F.9.31 HW_PLD
	F.9.32 HW_Port
	F.9.33 HW_PowerDescriptor
	F.9.34 HW_PowerSupply
	F.9.35 HW_ProcessingMemory
	F.9.36 HW_Processor
	F.9.37 HW_RAM
	F.9.38 HW_Resource (from HW_General)
	F.9.39 HW_Resource (from HW_Logical)
	F.9.40 HW_ResourceService (from HW_General)
	F.9.41 HW_ResourceService (from HW_Physical)
	F.9.42 HW_ROM
	F.9.43 HW_StorageManager
	F.9.44 HW_StorageMemory
	F.9.45 HW_Support
	F.9.46 HW_Timer
	F.9.47 HW_TimingResource
	F.9.48 HW_Unit
	F.9.49 HW_Watchdog
	F.9.50 ISA_Type
	F.9.51 MemoryOrganization
	F.9.52 PLD_Class
	F.9.53 PLD_Organization
	F.9.54 PLD_Technology
	F.9.55 PortType
	F.9.56 Repl_Policy
	F.9.57 ROM_Type
	F.9.58 Timing
	F.9.59 WritePolicy

	F.10 GQAM
	F.10.1 AcquireStep
	F.10.2 AnalysisContext
	F.10.3 BehaviorScenario
	F.10.4 CommunicationChannel (from GQAM::GQAM_Resources)
	F.10.5 CommunicationHost (from GQAM::GQAM_Resources)
	F.10.6 CommunicationStep
	F.10.7 EventTrace
	F.10.8 ExecutionHost
	F.10.9 ExecutionStep
	F.10.10 LatencyObserver
	F.10.11 LaxityKind
	F.10.12 PrecedenceRelation
	F.10.13 ReleaseStep
	F.10.14 RequestEventStream
	F.10.15 RequestedService
	F.10.16 ResourcesPlatform
	F.10.17 Step
	F.10.18 TimingObserver
	F.10.19 WorkloadBehaviour
	F.10.20 WorkloadEvent
	F.10.21 WorkloadGenerator

	F.11 SAM
	F.11.1 EndToEndFlow
	F.11.2 SaAnalysisContext
	F.11.3 SaStep
	F.11.4 SaCommunicationStep
	F.11.5 SaExecutionHost
	F.11.6 SaCommunicationHost
	F.11.7 SchedulingObserver
	F.11.8 SharedResource

	F.12 PAM
	F.12.1 Perf_Workload_Behavior
	F.12.2 Perf_ResourcesPlatform
	F.12.3 PRequestEventStream
	F.12.4 PWorkloadGenerator
	F.12.5 PStep
	F.12.6 PExecutionStep
	F.12.7 PResourcePassStep.
	F.12.8 PCommunicationStep
	F.12.9 PRequestedService,
	F.12.10 PBehaviorDemand
	F.12.11 PExtOpDemand
	F.12.12 PProcess
	F.12.13 LogicalResource

	F.13 VSL
	F.13.1 BoundedSubtype (from DataTypes)
	F.13.2 ChoiceSpecification (from CompositeValues)
	F.13.3 CollectionSpecification (from CompositeValues)
	F.13.4 CollectionType (from DataTypes)
	F.13.5 CompositeType (from DataTypes)
	F.13.6 ConditionalExpression (from Expressions)
	F.13.7 DataType (from DataTypes)
	F.13.8 DurationExpression (from TimeExpressions)
	F.13.9 DurationIntervalSpecification (from TimeExpressions)
	F.13.10 EnumerationSpecification (from LiteralValues)
	F.13.11 EnumerationType (from DataTypes)
	F.13.12 EnumerationLiteral (from DataTypes)
	F.13.13 Expression (from Expressions)
	F.13.14 ExpressionContext (from Expressions)
	F.13.15 InstantExpression (from TimeExpressions)
	F.13.16 InstantIntervalSpecification (from TimeExpressions)
	F.13.17 IntervalSpecification (from CompositeValues)
	F.13.18 IntervalType (from DataTypes)
	F.13.19 Jitter (from TimeExpressions)
	F.13.20 LiteralSpecification (abstract, from LiteralValues)
	F.13.21 LiteralBoolean (from LiteralValues)
	F.13.22 LiteralDateTime (from LiteralValues)
	F.13.23 LiteralDefault (from LiteralValues)
	F.13.24 LiteralInteger (from LiteralValues)
	F.13.25 LiteralNull (from LiteralValues)
	F.13.26 LiteralReal (from LiteralValues)
	F.13.27 LiteralString (from LiteralValues)
	F.13.28 LiteralUnlimitedNatural (from LiteralValues)
	F.13.29 ObservationCallExpression (from Expressions)
	F.13.30 OpaqueExpression (from Expressions)
	F.13.31 Operation (from DataTypes)
	F.13.32 OperationCallExpression (from Expressions)
	F.13.33 Parameter (from DataTypes)
	F.13.34 PrimitiveType (from DataTypes)
	F.13.35 Property (from DataTypes)
	F.13.36 PropertyCallExpression (from Expressions)
	F.13.37 Subtype (from DataTypes)
	F.13.38 TimeExpression (from TimeExpressions)
	F.13.39 TupleItemValue (from CompositeValues)
	F.13.40 TupleSpecification (from CompositeValues)
	F.13.41 TupleType (from DataTypes)
	F.13.42 ValueSpecification (abstract, from VSL)
	F.13.43 Variable (from Expressions)
	F.13.44 F.13.44. VariableCallExpression (from Expressions)


	Annex G: Bibliography
	Annex H: Mapping SPT on MARTE

