
LifeCycleServiceSpecification

Version1.1 (updateddue toslightchanges in theOMGIDLbasedon theCORBA2.3specification)
NewEdition:April 2000

paid up,
ified
opyright
ving

ire use
y be
at are
r

 an
ent does

r cover
s listed
s be the
Copyright 1994 AT&T/NCR
Copyright 1994 BNR Europe Limited
Copyright 1994 Digital Equipment Corporation
Copyright 1994 Groupe Bull
Copyright 1994 Hewlett-Packard Company
Copyright 1994 HyperDesk Corporation
Copyright 1994 ICL plc
Copyright 1994 International Business Machines Corporation
Copyright 1994 Itasca Systems, Inc.
Copyright 1994 Novell, Inc.
Copyright 1994 02 Technologies
Copyright 1994 Object Design, Inc.
Copyright 1994 Objectivity, Inc.
Copyright 1994 Ontos, Inc.
Copyright 1994 Oracle Corporation
Copyright 1994 Persistence Software
Copyright 1994 Servio, Corp.
Copyright 1994 SunSoft, Inc.
Copyright 1994 Teknekron Software Systems, Inc.
Copyright 1994 Tivoli Systems, Inc.
Copyright 1994 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the c
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance o
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time

marks or
otected
rm or
nd

 in

 IDL,
, Inc.

ders to
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is pr
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any fo
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage rea
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

 iii
 iii

 iv

 iv

1-1

1-1
-2

-2

-3

-3
-4
-5
5

1-6
-7

1-7

 1-8

-1

-1
-3
-4
-5
Preface .

About the Object Management Group .
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .
1.1.1 The problem of creation 1
1.1.2 The problem of moving or copying an object 1
1.1.3 The problem of operating on a graph of

distributed objects . 1

1.2 Client’s Model of Object Life Cycle 1
1.2.1 Client’s Model of Creation 1
1.2.2 Client’s model of deleting an object 1
1.2.3 Client’s model of copying or moving an object 1-

1.3 Factory Finders .
1.3.1 Multiple Factory Finders 1

1.4 Design Principles .

1.5 Resolution of Technical Issues .

2. Life Cycle Interfaces . 2

2.1 The CosLifeCycle Module . 2
2.1.1 The LifeCycleObject Interface 2
2.1.2 The FactoryFinder Interface 2
2.1.3 The GenericFactory Interface 2
Life Cycle Service V1.1 April 2000 i

Contents

-8

-10
10
-11

-12

-12
13

-1

-1
2.1.4 Criteria . 2

2.2 Implementing Factories . 2
2.2.1 Minimal Factories . 2-
2.2.2 Administered Factories 2

2.3 Target’s Use of Factories and Factory Finders 2

2.4 Summary of Life Cycle Service . 2
2.4.1 Summary of Life Cycle Service Structure 2-

Appendix A - Compound Life Cycle Specification A-1

Appendix B - References . B

Appendix C - Filters . C

Appendix D - Administration . D-1

Appendix E - Supports for PCTE Objects E-1
ii Life Cycle Service V1.1 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Life Cycle Service V1.1 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Life Cycle Service V1.1 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Life Cycle Service V1.1 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Life Cycle Service V1.1 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Life Cycle Service V1.1 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Life Cycle Service V1.1 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of theLife Cycle Service
specification:

• AT&T/NCR

• BNR Europe Limited

• Digital Equipment Corporation

• Groupe Bull

• Hewlett-Packard Company

• HyperDesk Corporation

• ICL plc

• International Business Machines Corporation

• Itasca Systems, Inc.
Life Cycle Service V1.1 Interface Style Consistency April 2000 ix

• Novell, Inc.

• 02 Technologies

• Object Design, Inc.

• Objectivity, Inc.

• Ontos, Inc.

• Oracle Corporation

• Persistence Software

• Servio, Corp.

• SunSoft, Inc.

• Teknekron Software Systems, Inc.

• Tivoli Systems, Inc.

• Versant Object Technology Corporation
x Life Cycle Service V1.1 April 2000

ServiceDescription 1
list
part

es
ts.

and
, the
Contents

This chapter contains the following sections.

Note – Appendix A contains an addendum to the Life Cycle Service; the addendum
provides a specification for compound life cycle operations. Appendix B provides a
of References. This specification also includes additional appendices that are not
of the Life Cycle Service specification: they are included as background material.
Appendix C suggests a filtering language for the filter criteria. Appendix D discuss
administration of generic factories. Appendix E discusses support for PCTE objec

1.1 Overview

Life Cycle Service defines services and conventions for creating, deleting, copying
moving objects. Because CORBA-based environments support distributed objects
Life Cycle Service defines conventions that allow clients to perform life cycle
operations on objects in different locations.

This overview describes the life cycle problem for distributed object systems.

Section Title Page

“Overview” 1-1

“Client’s Model of Object Life Cycle” 1-3

“Factory Finders” 1-7

“Design Principles” 1-7

“Resolution of Technical Issues” 1-8
Life Cycle Service, V1.1 April 2000 1-1

1

ed:

ered

ted?

d:
1.1.1 The problem of creation

Figure 1-1 illustrates the problem of a client in one location creating an object in
another.

Figure 1-1 Life Cycle service defines how a client can create an object “over there.”

To create an object in a different location, the following questions must be answer

• Can the client control the location for the new object?

• On the other hand, can the location be determined according to some administ
policy?

• What entity does the client communicate with in order that a new object is crea

• How does the client find that entity?

• How much control does the client have over deciding the implementation of the
created object?

• Can the client influence the initial values of the newly created object?

• Can the client create an object in an implementation specific fashion?

1.1.2 The problem of moving or copying an object

Figure 1-2 illustrates the problem of moving or copying an object in a distributed
object system.

Figure 1-2 Life Cycle Service defines how a client can move or copy an object over there.

To support moving or copying an object, the following questions must be answere

• Can the client control the location for the copied or migrated object?

THERE

Client

HERE

THEREHERE

DocumentClient

SOMEWHERE
1-2 Life Cycle Service, V1.1 April 2000

1

ered

s.

ies
ent

r.

ent,

o

ts in
• On the other hand, can the location be determined according to some administ
policy?

• What entity does the client communicate with to copy or migrate the object?

• How does the client find that entity?

• What happens to the implementation code of a copied or migrated object?

1.1.3 The problem of operating on a graph of distributed objects

Distributed objects do notfloat in space; they are connected to one another. The
connections are calledrelationships. Relationships allow semantics to be added to
references between objects. For example, relationships allow one object tocontain
another. Life Cycle services must work in the presence of graphs of related object

Figure 1-3 The object life cycle problem for graphs of objects is to determine the boundar
of a graph of objects and operate on that graph. In the above example, a docum
contains a graphic and a logo, refers to a dictionary and is contained in a folde

Figure 1-3 illustrates the object life cycle problem for graphs of objects. In the
example, the foldercontainsa document, the documentcontainsa graphic and a logo
andreferencesa dictionary. The graphicreferencesthe logo that iscontainedin the
document. For graphs of objects, life cycle services must answer the following
questions:

• What are the boundaries of the graph? For example, if a client copies the docum
which objects are affected?

• If multiple objects are affected, how is the life cycle operation actually applied t
those objects?

• Are cycles in the graph preserved? For example, if copying the document resul
copying the graphic and the logo, is the cycle preserved in the copy?

1.2 Client’s Model of Object Life Cycle

A client is any piece of code that initiates a life cycle operation for some object. A
client has a simple view of the life cycle operations.

THEREHERE

Document

graphic

logo

Folder

Dictionary

SOMEWHERE

Client
Life Cycle V1.1 Client’s Model of Object Life Cycle April 2000 1-3

1

ing

e

ned
-5.
.

e

may
1.2.1 Client’s Model of Creation

The client’s model of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factories arenot special objects. As with any object,
factories have well-defined IDL interfaces and implementations in some programm
language.

Figure 1-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory.

There is no standard interface for a factory. Factories provide the client with
specialized operations to create and initialize new instances in a natural way for th
implementation. The following illustrates a factory for a document.

interface DocFactory {
Document create();
Document create_with_title(in string title);
Document create_for(in natural_language nl);

};

This interface is defined for clients as a part of application development.

Factories are object implementation dependent. A different implementation of the
document could define a different factory interface.

While there is no standard interface for a factory, a generic factory interface is defi
by the life cycle service in Section 2.1.3, “The GenericFactory Interface,” on page 2
A generic factory is a creation service. It provides a generic operation for creation
Instead of invoking an object specific operation on a factory with statically defined
parameters, the client invokes a standard operation whose parameters can includ
information about resource filters, state initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a result, a new object is created and typically an object
reference is returned.

There is nothing special about this interaction.

THERE

Client

HERE

DocFactory
1-4 Life Cycle Service, V1.1 April 2000

1

tes.
of
its

der,

ports.

.2,

in
A factory assembles the resources necessary for the existence of an object it crea
Therefore, the factory represents a scope of resource allocation, which is the set
resources available to the factory. A factory may support an interface that enables
clients to constrain the scope.

Clients find factory objects in the same fashion they find any object. Two common
scenarios for clients to find factories are:

• Clients use a finding mechanism, such a naming context, drag-and-drop, or a tra
to find factories.

• Clients are passed factory objects as a parameter to an operation the client sup

Various implementation strategies for factories are discussed in detail in Section 2
“Implementing Factories,” on page 2-10.

1.2.2 Client’s model of deleting an object

A client that wishes to delete an object issues aremove 1 request on an object
supporting the LifeCycleObject interface. (The LifeCycleObject interface is defined
Section 2.1, “The CosLifeCycle Module,” on page 2-1.) The object receiving the
request is called the target.

Figure 1-5 Illustrates a client deleting the document

To delete an object, a client must posses an object reference supporting the
LifeCycleObject interface and issues aremove request on the object.

1.2.3 Client’s model of copying or moving an object

A client that wishes to move or copy an object issues amove or copy request on an
object supporting theLifeCycleObject interface. The object receiving the request is
called the target.

1.The operation is named remove, rather than delete, because delete collides with the delete
operator in C++.

HERE

DocumentClient

SOMEWHERE

LifeCycleObject
Life Cycle V1.1 Client’s Model of Object Life Cycle April 2000 1-5

1

of
ers

te
on

h
ture

nd

h of
a

up of
The move and copy operations expect an object reference supporting the
FactoryFinder interface. The factory finder represents the “THERE” in Figure 1-6.
The client is indicating to move or copy the target using a factory within the scope
the factory finder. Section 1.3, “Factory Finders,” on page 1-7 describes factory find
in more detail.

The implementations of move and copy can use the factory finder to find appropria
factories “over there.” Section 2.3, “Target’s Use of Factories and Factory Finders,”
page 2-12 describes how objects can implement move and copy using the factory
finder. This is invisible to the client.

Figure 1-6 Life cycle services define how a client can move or copy an object from here to
there.

In the example of Figure 1-6, client code would simply issue acopy request on the
document and pass it an object supporting theFactoryFinder interface as an
argument.

When a client issues acopy request on a target, it is assumed that the target, the
factory finder, and the newly created object can all communicate via the ORB. Wit
externalization/internalization there is no such assumption. In the presence of a fu
externalization service, the externalized form of the object can exist outside of the
ORB for arbitrary amounts of time, be transported by means outside of the ORB a
can be internalized in a different, disconnected ORB.

Note – In general, a client is unaware of how a target and a factory finder are
implemented. The target may represent a simple object or it may represent a grap
objects. Similarly, a factory finder may represent a very concrete location, such as
specific storage device, or it may represent a more abstract location, such as a gro
machines. The client uses the same interface in all of these cases.

THEREHERE

DocumentClient

SOMEWHERE

Factory
Finder

LifeCycleObject
1-6 Life Cycle Service, V1.1 April 2000

1

ally

ew

et

is
at

ly
of a
1.3 Factory Finders

Factory finders support an operation,find_factories , which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typic
invoke this operation to find a factory to interact with. (This is described in detail in
Section 2.3, “Target’s Use of Factories and Factory Finders,” on page 2-12.) The n
copy or the migrated object will then be within the scope of the factory finder.

Some examples of locations that a factory finder might represent are:

• somewhere on a work group’s local area network

• storage device A on machine X

• Susan’s notebook computer

1.3.1 Multiple Factory Finders

The factory finder interface given in Section 2.1, “The CosLifeCycle Module,” on
page 2-1 represents the minimal functionality supported by all factory finders. Targ
implementations can depend on this operation being available. More sophisticated
factory finding facilities can be provided by extended finding services.

Currently, the only finding service being considered for standardization by the OMG
the naming service. Others are likely to be standardized in the future. It is likely th
there will always be multiple finding services, of different expressive powers, in
distributed object systems.

As demonstrated in Figure 1-7, the FactoryFinder interface can be mixed-in with
interfaces for finding services, allowing multiple finding services. Many clients simp
pass factory finders on to target objects. However, objects that need the services

more powerful finding mechanism can narrow the factory finder to an appropriate,
more specific interface.

Figure 1-7 The FactoryFinderinterface can be “mixed in” with interfaces of more powerful
finding services.

The power of a factory finder is determined by the power of the finding service.

1.4 Design Principles

Several principles have driven the design of the Life Cycle Service:

FactoryFinder

NamingBasedFactoryFinder

FactoryFinder

TradingBasedFactoryFinder

NamingContext Trading
Life Cycle V1.1 Factory Finders April 2000 1-7

1

hat

a

s

and

ject

cle

ject

m

f
ct.
age
-
.

tial
opes

ess
sign

nds
1. A factory object registered at a factory finder represents an implementation at t
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embody knowledge of finding a factory, relative to
location. Object implementations usually do not embody knowledge of location.

3. The desired result for life cycle operations such as copy and move depends on
relationships between the target object and other objects. The design given in
Appendix A has built-in support for the two most basic kinds of relationships,
containmentandreference, and supports the definition of new kinds of relationship
and propagation semantics.

4. The Life Cycle Service is not dependent on any particular model of persistence
is suitable for distributed, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global ob
identifiers.

1.5 Resolution of Technical Issues

This specification addresses the following issues that were identified for the Life Cy
Service in the OMGObject Services Architecture2 :

• Creation: Many of the parameters supplied to an objectcreate operator will be
implementation-dependent, so that a standardized universal IDL signature for ob
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and persistent storage mechanism of the object to be created.

• Deletion: A remove operator is defined on any object supporting the
LifeCycleObject interface. This model for deletion supports any desired paradig
for referential integrity. Appendix A describes support for the two most common
paradigms, based on reference and containment relationships. Only one type o
deletion is supported; a different operation should be used for archiving an obje
This interface can support many paradigms for storage management (e.g., garb
collection and reference counts). Since storage management is implementation
dependent, its interface does not belong in the generalized life cycle interfaces

• Copying: Appendix A describes support for shallow and deep copy, and referen
integrity. A scheme based on reference and containment relationships defines sc
for operations such as copy. The concept of a factory finder is used for object
location. This paradigm for copying, deleting, and moving objects works regardl
of an object’s ORB, persistent storage mechanism, and implementation. This de
is extensible because objects participate in the traversal algorithm, and the
relationship service presented in the appendix supports the definition of new ki
of relationships with different behavior.

2.Object Services Architecture, Document Number 92-8-4, Object Management Group,
Framingham, MA, 1992.
1-8 Life Cycle Service, V1.1 April 2000

1

ect
ns
• Equivalence: There was no need for an object equivalence service or global obj
identifiers in the design of the Life Cycle Service to support real world applicatio
or other object services.
Life Cycle V1.1 Resolution of Technical Issues April 2000 1-9

1

1-10 Life Cycle Service, V1.1 April 2000

LifeCycle Interfaces 2
A
This chapter was updated based on slight changes to the OMG IDL due to CORB
2.3. Changes are marked with changebars.

Contents

This chapter contains the following sections.

2.1 The CosLifeCycle Module

Client code accesses the basic life cycle functionality via theCosLifeCycle module.
This module defines theFactoryFinder , LifeCycleObject , andGenericFactory
interfaces and describes the operations of these interfaces in detail.

#include <CosNaming.idl>

#pragma prefix “omg.org”

module CosLifeCycle{

typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;

Section Title Page

“The CosLifeCycle Module” 2-1

“Implementing Factories” 2-10

“Target’s Use of Factories and Factory Finders” 2-12

“Summary of Life Cycle Service” 2-12
Life Cycle Service, V1.1 April 2000 2-1

2

typedef struct NVP {
CosNaming::Istring name;

any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {
Key search_key;

};
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{ Criteria invalid_criteria; };
exception CannotMeetCriteria { Criteria unmet_criteria; };

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises(NoFactory);
};

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,

CannotMeetCriteria);
void move(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,

CannotMeetCriteria);
void remove()

raises(NotRemovable);
};

interface GenericFactory {
#ifdef NO_ESCAPED_IDENTIFIERS

boolean _supports(in Key k);
#else

boolean _supports(in Key k);
#endif

Object create_object (
in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

};
};
2-2 Life Cycle Service, V1.1 April 2000

2

s

the

e

.4,

ld
e
t

er
alid
2.1.1 The LifeCycleObject Interface

The LifeCycleObject interface defines copy, move, and remove operations. Object
participate in the life cycle service by supporting this interface.

2.1.1.1 copy

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

Thecopy operation makes a copy of the object. The copy is located in the scope of
factory finder passed as the first parameter. Thecopy operation returns an object
reference to the new object. The new object is initialized from the existing object.

The first parameter,there , may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with theNoFactory
exception.

The second parameter,the_criteria , allows for a number of optional parameters to b
passed. Typically, the target simply passes this parameter to the factory used in
creating the new object. The criteria parameter is explained in detail in Section 2.1
“Criteria,” on page 2-8

If the target cannot find an appropriate factory to create a copy “over there,” the
NoFactory exception is raised. An implementation that refuses to copy itself shou
raise theNotCopyable exception. If the target does not understand the criteria, th
InvalidCriteria exception is raised. If the target understands the criteria but canno
satisfy the criteria, theCannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for the copied object,
NO_RESOURCES will be raised. Similarly, if a target does not implement the
copy operation, theNO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation is atomic.

2.1.1.2 move

void move(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);

The move operation on the target moves the object to the scope of the factory find
passed as the first parameter. The object reference for the target object remains v
after move has successfully executed.
Life Cycle Service V1.1 The CosLifeCycle Module April 2000 2-3

2

e

1.4,

ver

a

,

no

ove

2.)
The first parameter,there , may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with theNoFactory
exception.

The second parameter,the_criteria , allows for a number of optional parameters to b
passed. Typically, the target simply passes this parameter to the factory used in
migrating the new object. The criteria parameter is explained in detail in Section 2.
“Criteria,” on page 2-8.

If the target cannot find an appropriate factory to support migration of the object “o
there,” theNoFactory exception is raised. An implementation that refuses to move
itself should raise theNotMovable exception. If the target does not understand the
criteria, theInvalidCriteria exception is raised. If the target understands the criteri
but cannot satisfy the criteria, theCannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for migrating the object
NO_RESOURCES will be raised. Similarly, if a target does not implement the
move operation, theNO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation isatomic.

2.1.1.3 remove

void remove()
raises(NotRemovable);

Remove instructs the object to cease to exist. The object reference for the target is
longer valid after remove successfully completes. The client is not responsible for
cleaning up any resources the object uses. An implementation that refuses to rem
itself should raise theNotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

2.1.2 The FactoryFinder Interface

Factory finders support an operation,find_factories , which returns a sequence of
factories. Clients pass factory finders to themove andcopy operations, which
typically invoke this operation to find a factory to interact with. (This is described in
detail in Section 2.3, “Target’s Use of Factories and Factory Finders,” on page 2-1

The factory finder interface represents theminimal functionality supported by all
factory finders.

2.1.2.1 find_factories

Factories find_factories(in Key factory_key)
raises(NoFactory);
2-4 Life Cycle Service, V1.1 April 2000

2

he
the

hes,

to

e of

jects
pes
to

his
Thefind_factories operation is passed a key used to identify the desired factory. T
key is a name, as defined by the naming service. More than one factory may match
key. As such, the factory finder returns a sequence of factories. If there are no matc
the NoFactory exception is raised.

The scope of the key is the factory finder. The factory finder assigns no semantics
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

It is beyond the scope of this specification to standardize the key space. The spac
keys is established byconventionin particular environments. Thekind field1 of the key
is useful for partitioning the key space. Suggested values for theid andkind fields are
given in Table 2-1.

2.1.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to ob
at creation time is required. This needs to be done in a coordinated fashion for all ty
of objects. The Life Cycle Service provides a framework for this which is intended
be usable in a variety of administrative environments. However, the differing
environments will administer a variety of resources and it is beyond the scope of t
framework to identify all the possible types of resource.

1. See the naming service specification.

Table 2-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object
interface

“object interface” Find factories that create objects
supporting the named interface.

name of
equivalent
implementations

“implementation
equivalence class”

Find factories that create objects with
implementations in a named
equivalence class of implementations.1

1. An example of an implementation equivalence class is a set of object implementations that
have compatible externalized forms.

name of object
implementation

“object
implementation”

Find factories that create objects of a
particular implementation.

name of factory
interface

“factory interface” Find factories supporting the named
factory interface.
Life Cycle Service V1.1 The CosLifeCycle Module April 2000 2-5

2

be
t of

n
ed in

of
c

a

While there is no standard interface for a factory, aGenericFactory interface is
defined. The GenericFactory interface defines a generic creation operation,
create_object . By defining a generic interface for creation, a creation service can
implemented. This is particularly useful in environments where administering a se
resources is important.

Such a generic factory can implement resource policies and represent multiple
locations. In administered environments, object specific factories, such as the
document factory described in Section 1.2, “Client’s Model of Object Life Cycle,” o
page 1-3, may delegate the creation process to the generic factory. This is describ
detail in Section 2.2.2, “Administered Factories,” on page 2-11.

The job of the generic factory is to match the creation criteria specified by clients
the GenericFactory interface with offers made on behalf of implementation specifi
factories.

The Life Cycle service provides a generic creation capability. Ultimately,
implementation specific creation code is invoked by the creation service. The
implementation specific code also supports theGenericFactory interface.

Figure 2-1 illustrates the structure of a creation service

The client of the GenericFactory interface invokes thecreate_object operation and
can express criteria for creation.

Ultimately, this request will be passed to an implementation specific factory which
supports theGenericFactory interface. To get there, the request may travel through
number of generic factories. However, all of this is transparent to the client.

GenericFactory

GenericFactory

creation service

implementation
specific code

resources

GenericFactory

implementation
specific code

resources
2-6 Life Cycle Service, V1.1 April 2000

2

be

ics to

e of

e

2.1.3.1 create_object

boolean _supports(in Key k);
in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

Thecreate_object operation is passed a key used to identify the desired object to
created. The key is a name, as defined by the Naming Service.

The scope of the key is the generic factory. The generic factory assigns no semant
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope of this specification to standardize the key space. The spac
keys is established byconventionin particular environments. The kind field2 of the key
is useful for partitioning the key space. Suggested values for theid andkind fields are
given in Table 2-2.

The second parameter,the_criteria , allows for a number of optional parameters to b
passed. Criteria are explained in detail in Section 2.1.4, “Criteria,” on page 2-8

If the generic factory cannot create an object specified by the key, thenNoFactory is
raised.

If the target does not understand the criteria, theInvalidCriteria exception is raised.
If the target understands the criteria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

2. See the naming service specification.

Table 2-2 Suggested conventions for generic factory keys.

id field kind field meaning

name of object
interface

“object interface” Create an object that supports the
named interface.

name of
equivalent
implementations

“implementation
equivalence class”

Create an object whose implementation
is in a named equivalence class of
implementations.1

1. An example of an implementation equivalence class is a set of object implementations that
have compatible externalized forms

name of object
implementation

“object
implementation”

Create objects of a particular
implementation.
Life Cycle Service V1.1 The CosLifeCycle Module April 2000 2-7

2

n

h to

e and
and

m on

ble.
2.1.3.2 supports

boolean _supports(in Key k);

Thesupports operation returnstrue if the generic factory can create an object, give
the key; otherwise,false is returned.

2.1.4 Criteria

The create_object operation of the GenericFactory interface expects a parameter
specifying the creation criteria. Themove andcopy operations of the
LifeCycleObject interface also expects this parameter; typically they pass it throug
a factory. This section documents this parameter.

The criteria parameter is expressed as an IDL sequence of name-value pairs. In
particular, it is described by the following data structure given in theCosLifeCycle
module:

typedef struct NVP {
CosNaming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

The parameter is given as a sequence of name-value pairs in order to be extensibl
support “pass-through;” that is, new name-value pairs can be defined in the future
objects can be written that do not interpret the name-value pairs, but just pass the
to other objects.

Note – It is beyond the scope of this specification to standardize particular criteria.
Supporting criteria is optional. Furthermore, supporting different criteria is accepta
The criteria given here are suggestions.
2-8 Life Cycle Service, V1.1 April 2000

2

tions

y
ific

ful

s.

age is

ct is
Table 2-3 suggests criteria to be supported by the generic factory. Detailed descrip
follow.

“initialization”

The “initialization” criterion is a sequence of name-value pairs which is intended to
contain application specific initialization values. Typically, the generic factory will pa
no attention to the initialization criterion and simply passes it on to application spec
factory code.

“filter”

The filter criterion is a constraint expression which provides the client with a power
way of expressing its requirements on creation. The generic factory will use the
constraint expression to make decisions about the allocation of particular resource
For example, a client could give a constraint “operating system” != “windows nt”.

These constraints are expressed in some Constraint Language. A constraint langu
suggested in Appendix B.

Filters are potentially complex andInvalidCriteria will be raised if the filter is too
complex for the factory or is syntactically incorrect.

“logical location”

The “logical location” criterion allows a client to express where a
created/copied/migrated object is logically created. For example, in PCTE an obje
always in a relationship with another object. In such an environment, the logical
location would specify another object and a relationship.

Table 2-3 Suggested criteria.

criterion name type of criterion value interpretation

“initialization” sequence<NameValuePair> initialization parameters, given
as a sequence of name-value
pairs.

“filter” string allows clients of the generic
factory to express a constraint
on the created object.

“logical location” sequence<NameValuePair> allows clients of the generic
factory to express a connection
for the object, for example a
PCTE relationship.

“preferences” string a way for clients to influence
the policies that a generic
factory may use when creating
an object
Life Cycle Service V1.1 The CosLifeCycle Module April 2000 2-9

2

ric
ose

ribed

ny

is

ng an
the

ces
“preferences”

The “preferences” criterion allows the client to influence the policies which the gene
factory uses to make decisions. For example, a generic factory might arbitrarily cho
a machine from a set of machines. Using the preferences criterion, a client could
express its preference for a particular machine. Policies and preferences are desc
in more detail in Appendix B.

2.2 Implementing Factories

As defined under Section 1.2, “Client’s Model of Object Life Cycle,” on page 1-3, a
object that creates another object in response to some request is called a factory.
Clients depend only on the definitions in that section.

The client’s model of object life cycle has intentionally been defined abstractly. Th
allows a wide variety of implementation strategies.

Factories are not special objects. They have well-defined IDL interfaces and
implementations in programming languages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementation dependent code that
assembles resources for the storage and execution of an object. The act of creati
object requires assembling and initializing all of the resources required to support
execution and storage of the object. The resources typically include:

• the allocation of one or more BOA object references, and
• resources related to persistence storage.

2.2.1 Minimal Factories

Figure 2-2 illustrates a minimal implementation of a factory that assembles resour
in a single factory object.

Figure 2-2 Factories assemble resources for the execution of an object. A minimal
implementation achieves this with a single factory implementation.

Object specific factory interface

factory

resources

specific code
2-10 Life Cycle Service, V1.1 April 2000

2

set of

tion
rates
that
2.2.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a
resources. The generic factory may apply policies to all creation requests.

Eventually such a generic creation service, needs to communicate with implementa
specific code that actually assembles the resources for the object. Figure 2-3 illust
an object specific factory, such as the document factory of Figure 2-4 on page 2-12
delegates the creation problem to the generic creation service. The object-specific
factory effectively adds a statically typed wrapper around the generic factory.

.

Figure 2-3 In an administered environment, factoryimplementationscan delegate the creation
problem to a generic factory. The generic factory can apply resource allocation
policies. Ultimately the creation service communicates with implementation
specific code that assembles resources for the object.

Object specific factory interface

GenericFactory

GenericFactory

life cycle service

factory
specific code

implementation
specific factory

Factory client

resources

GenericFactory

implementation
specific factory

resources
Life Cycle Service V1.1 Implementing Factories April 2000 2-11

2

The

ined

eing
o the

d on
d in

ry

ory
2.3 Target’s Use of Factories and Factory Finders

Figure 2-4 The copy and move operations are passed a FactoryFinder to represent “there.”
implementation of the target uses the FactoryFinder to find a factory object for
creation over there. The protocol between the object and the factory is private.
They can communicate and transfer state according to any implementation-def
protocol.

A client passes a factory finder as a parameter to acopy or move request.

Clients do not generally understand the implementation constraints of the object b
copied. Clients cannot express what the target object needs in order to copy itself t
new location.

Target object implementations, on the other hand, put constraints on factories base
implementation concerns. It is unlikely that target implementation code is intereste
further constraining location.

To find an appropriate factory, the target object implementation may use the facto
finder with its minimal interface defined in Section 2.1.2, “The FactoryFinder
Interface,” on page 2-4 or it may attempt to narrow the factory finder to a more
sophisticated finding service with more expressive power. The target object
implementation can always depend on the existence of the minimal interface.

Once the target object implementation finds a factory, it communicates with the fact
using a private, implementation-defined, interface.

2.4 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of

• Creating an object

Document

FactoryFinder

Private

THEREHERE

Factory
2-12 Life Cycle Service, V1.1 April 2000

2

• Deleting an object

• Moving and copying an object

• Operating on a graph of distributed objects.

The client’s model of object life cycle is based onfactoriesand target objects
supporting theLifeCycleObject interface. Factories are objects that create other
objects. TheLifeCycleObject interface defines operations to delete an object, to
move an object and to copy an object.

A GenericFactory interface is defined. The generic factory interface is sufficient to
create objects of different types. By defining aGenericFactory interface,
implementations that administer resources are enabled.

2.4.1 Summary of Life Cycle Service Structure

The Life Cycle Service specification consists of these interfaces:

• LifeCycleObject

• FactoryFinder

• GenericFactory

• Interfaces described in Appendix A, an addendum to the Life Cycle Service
Life Cycle Service V1.1 Summary of Life Cycle Service April 2000 2-13

2

2-14 Life Cycle Service, V1.1 April 2000

CompoundLifeCycleSpecification A
the
le

s of

ests
jects

ting

to
A.1 Overview

This appendix contains the specification for the compound life cycle component of
Life Cycle Service. The compound life cycle specification depends on the Life Cyc
Service for the definition of the client view of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graph
related objects. In addition, the compound life cycle specification depends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service specification describes a client’s view of object life cycle. It
describes how a client cancreate, copy, move and remove objects in a distributed
object system. To create objects, clients find factory objects and issue create requ
on factories. To copy, move and remove objects, clients issue requests on target ob
supporting theLifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of a
graph of related objects, the target provides an implementation for each of the
operations in theLifeCycleObject interface.

If, on the other hand, the target object uses the Relationship Service for represen
relationships with other objects, additional services are available to implement the
compound life cycle operations. The specification in this appendix describes those
services.

A.2 Key Features

The compound life cycle specification:

• Addresses the issues of copying, moving and removing objects that are related
other objects. Depending on the semantics of the relationships, these life cycle
operations are applied to:

• the object, to the relationship and to the related objects
Life Cycle Service, V1.1 April 2000 A-1

A

ted

ycle
ns
roles

d in

s.

hips
he
• the object and to the relationship

• the object

• Coordinates compound life cycle operations on graphs of related objects, thus
relieving object developers from implementing compound operations.

• Illustrates a general model for applying compound operations to graphs of rela
objects. The Externalization Service also illustrates the model.

A.3 Service Structure

The specification in this appendix defines a service that applies a compound life c
operation to a graph of related objects, given a starting node. Compound operatio
traverse a graph of related objects and apply the operation to the relevant nodes,
and relationships of the graph. The service supports the
CosCompoundLifeCycle::Operations interface. Implementations of the service
depend on theCosCompoundLifeCycle::Node ,
CosCompoundLifeCycle::Role andCosCompoundLifeCycle::Relationship
interfaces which are subtypes of the Node, Role and Relationship interfaces define
the Relationship Service. TheCosCompoundLifeCycle::Node ,
CosCompoundLifeCycle::Role andCosCompoundLifeCycle::Relationship
interfaces add operations to copy, remove and move nodes, roles and relationship

The Relationship Service defines interfaces for containment and reference relations
and their roles. This appendix defines interfaces that inherit those interfaces and t
compound life cycle interfaces.

A.4 Interface Overview

Table A-1 and Table A-2 summarize the interfaces defined in the
CosCompoundLifeCycle module. TheCosCompoundLifeCycle module is
described in detail in Section A.6, “The CosCompoundLifeCycle Module,” on
page A-9

Table A-1 Interfaces Defined in theCosCompoundLifeCycleModule for initiating compound
life cycle operations

Interface Purpose

Operations Defines compound life cycle operations on graphs
of related objects.

OperationsFactory Defines an operation to create an object that
supports the Operations interface.
A-2 Life Cycle Service, V1.1 April 2000

A

ed

Table A-3 and Table A-4 summarize the interfaces that combine the specific
relationships defined by the Relationship Service and the life cycle interfaces defin
in this appendix.

Table A-2 Interfaces defined in theCosCompoundLifeCyclemodule that are used by
implementations of compound life cycle operations

Interface Inherits Purpose

Node CosGraphs::Node Defines life cycle operations
on nodes in graphs of related
objects.

Relationship CosRelationships::
Relationship

Defines life cycle operations
on relationships.

Role CosGraphs::Role Defines life cycle operations
on roles.

PropagationCriteria
Factory

Creates an object that
supports the
CosGraphs::TraversalCriteria
interface that uses
relationship propagation
values.

Table A-3 Interfaces defined in theCosLifeCycleContainmentmodule

Interface Inherits Purpose

Relationship CosContainment::Containment
and CosCompoundLifeCycle::
Relationship

Combines both interfaces.
No additional operations
are defined.

ContainsRole CosContainment::ContainsRole
and
CosCompoundLifeCycle::Role

Combines both interfaces.
No additional operations
are defined.

ContainedInRole CosContainment::ContainedIn
Role and
CosCompoundLifeCycle::Role

Combines both interfaces.
No additional operations
are defined.
Life Cycle Service V1.1 April 2000 A-3

A

es
tem.
s. To
g the

egate
ion.
A.5 Compound Life Cycle Operations

The Life Cycle specification describes a client’s view of object life cycle. It describ
how a client can create, copy, move and remove objects in a distributed object sys
To create objects, clients find factory objects and issue create requests on factorie
copy, move and remove objects, clients issue requests on target objects supportin
LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of a
graph of related objects, the target provides an implementation for each of the
operations in theLifeCycleObject interface.

If the target participates as a node in a graph of related objects, the target can del
the life cycle operation to a service that implements the compound life cycle operat
In particular, the target simply creates an object that supports the
CosCompoundLifeCycle::Operations interface and issues the corresponding life
cycle request on it. The compound life cycle operations expect a
CosCompoundLifeCycle::Node object reference as a starting node. The target
simply passes itsCosCompoundLifeCycle::Node object reference as the starting
node.

When the life cycle object has completed issuing compound life cycle requests, it
simply issues thedestroy request to destroy the compound operation.

Table A-4 Interfaces defined in theCosLifeCycleReferencemodule

Interface Inherits Purpose

Relationship CosContainment::Reference
and CosCompoundLifeCycle::
Relationship

Combines both interfaces.
No additional operations
are defined.

ReferencesRole CosContainment::References
Role and
CosCompoundLifeCycle::Role

Combines both interfaces.
No additional operations
are defined.

ReferencedByRole CosContainment::ReferencedBy
Role and
CosCompoundLifeCycle::Role

Combines both interfaces.
No additional operations
are defined.
A-4 Life Cycle Service, V1.1 April 2000

A

ly

ing

tains
and
s the
go;
Figure A-1 illustrates the target’s delegation of the life cycle request to compound
operation.

Figure A-1 A life cycle object that is part of a graph of related objects delegates the order
operation on the graph to an object that implements the compound life cycle
operation.

A.5.1 Applying the Copy Operation to the Example

We now use the example in the Relationship Service Specification to illustrate apply
thecopy operation to a graph. Figure A-2 on page A-6 illustrates the graph and the
compound operation prior to applying thecopy operation. Recall that the folder
contains the document; the document is contained in the folder. The document con
the figure; the figure is contained in the document. The document contains the logo
the logo is contained in the document. On the other hand, the document reference
book; the book is referenced by the document. Finally, the figure references the lo
the logo is referenced by the figure.

CosCompoundLifeCycle::Node
compound operations

target

CosCompoundLifeCycle::Operations

CosLifeCycle::LifeCycleObject
Life Cycle Service V1.1 April 2000 A-5

A

as

an

the
Figure A-2 Prior to applying copy to the graph.

In this example, the copy is performed in two passes. The first pass creates a list
representation of the relevant edges of the graph. The second pass takes the list
input, copies the relevant nodes and roles, then creates all the necessary links by
copying the relevant relationships.

A compoundcopy request is initiated by issuing aLifeCycleObject::copy request
on the folder. Since the folder participates in a graph of related objects, it creates
object supporting theCosCompoundLifeCycle::Operations interface (the
Operations object). Then the folder issues aCosCompoundLifeCycle::
Operations::copy request on the Operations object, passing in its own
CosCompoundLifeCycle::Node object reference as the starting node. Thecopy
operation will copy the graph of related objects and return an object reference for
copy of the folder object.

The remainder of this section provides a description of how the Operations object
might implement thecopy operation.

First Pass of the Compound Copy Operation

The first pass consists of creating a list representation of the relevant edges of the
graph. The Operations object uses an object supporting theCosGraphs::Traversal
interface to do most of the work.

The Operations object creates an object supporting the
CosGraphs::TraversalCriteria interface by calling
CosCompoundLifeCycle::PropagationCriteriaFactory::create .

compound
operation

figure

logo

folder

book

document

deep

shallow

deep
shallow

none

shallow

noneshallow

shallow
A-6 Life Cycle Service, V1.1 April 2000

A

)
k)
)
)

e

is

ns”

the

tinct

ce.

s.
The Operations object then creates aCosGraphs::Traversal object by calling
CosGraphs::TraversalFactory::create_traversal_on , passing in the object
supporting theCosGraphs::TraversalCriteria interface. Calls on the
CosGraphs::Traversal object yield an unordered list of
CosGraphs::Traversal::ScopedEdges containing the following information.

(folder, ContainsRole, Containment, ContainedInRole, document
(document, ReferencesRole, Reference, ReferencedByRole, boo
(document, ContainedInRole, Containment, ContainsRole, folder
(document, ContainsRole, Containment, ContainedInRole, figure
(document, ContainsRole, Containment, ContainedInRole, logo)

(figure, ReferencesRole, Reference, ReferencedByRole, logo)

(figure, ContainedInRole, Containment, ContainsRole, document)

(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as theOriginalEdgeList .

Since the propagation value for copy from the document to the book is shallow, th
traversal did not visit the book. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the traversal did visit the logo, the edge

(logo, ReferencedByRole, Reference, ReferencesRole, figure)

is not included because the propagation value for copy from the logo to the figure
none.

For more detailed information regarding the output of theCosGraphs::Traversal
object with respect to the use of propagation semantics, see “Compound Operatio
of the Relationship Service.

Second Pass of the Compound Copy Operation

The second pass copies all the relevant nodes and then relates them by copying
relevant relationships.

First, the set of nodes to be copied must be determined. This consists of all the dis
nodes in the left column of theOriginalEdgeList . Since a node may be involved in
multiple edges, it may appear multiple times in the list; it should only be copied on
Each node in this set is copied by issuing a
CosCompoundLifeCycle::Node::copy_node request. This request will cause the
node and all of its roles to be copied; the new node and its roles will be returned.

For each returned role of the copied node, an entry is made in a table of new role
Each entry consists of:

• the role object is the data, and

• the node’sCosGraphs::Traversal::TraversalScopedId and the role’s
CORBA::InterfaceDef together serve as a key.
Life Cycle Service V1.1 April 2000 A-7

A

nct

ied

t
es in

r.

lue,
ssed
The final step is to create all the relationships for the copied graph. All of the disti
relationships in the center column of theOriginalEdgeList need to be copied.
Although a relationship may appear multiple times in the list, it should only be cop
once. Each relationship is copied by issuing aCosCompoundLifeCycle::
Relationship::copy_relationship request. The arguments to
CosCompoundLifeCycle::Relationship::copy_relationship include the list of
roles to be included in the new relationship. Some of these roles will be copies tha
were created as a result of processing deep propagation values; others will be rol
the original graph.

Thus, copy each unique relationship in theOriginalEdgeList , usingNamedRoles as
follows:

• For each role in an entry in theOriginalEdgeList , make a role key using the
node’sTraversalScopedId and the role’sCORBA::InterfaceDef to search the
table of new roles.

• If the role was copied, the key will find the role’s copy. The role’sRoleName is
obtained from the entry in theOriginalEdgeList . The role’s copy and the
RoleName are combined to form aCosGraphs::NamedRole which will then
be included in the list ofCosGraphs::NamedRoles passed to the
CosCompoundLifeCycle::Relationship::copy_relationship method.

• If no copy is found, the originalCosGraphs::NamedRole is used instead.

Once all the Relationships have been copied, the
CosCompoundLifeCycle::Operations::copy method is done.

Figure A-3 illustrates the result of applying copy to the graph, starting at the folde

Figure A-3 The result of applying copy to the graph, starting at the folder.

When thecopy operation propagates to a node because of a deep propagation va
other shallow propagation values to that node are promoted. That is, they are proce
as if they were deep; relationships are formed with the copied node, not with the

figure

logo

folder

document

new

new

new

new

book

figure

logo

document

folder
A-8 Life Cycle Service, V1.1 April 2000

A

ure
igure

s

original. This happened in the example; the shallow propagation value from the fig
to the logo was promoted to deep because the logo was copied. As such, the new f
references the new logo, not the original logo.

A.6 The CosCompoundLifeCycle Module

The CosCompoundLifeCycle module defines:

• The Operations interface for initiating compound life cycle operations on graph
of related objects,

• OperationsFactory interface for creating compound operations,

• TheNode , Role , Relationship , andPropagationCriteriaFactory interfaces for
use by implementations of compound life cycle operations.

The CosCompoundLifeCycle module is given below. Detailed descriptions of the
interfaces follow.

#include <CosLifeCycle.idl>
#include <CosRelationships.idl>
#include <CosGraphs.idl>

#pragma prefix “omg.org”

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove};

struct RelationshipHandle {
CosRelationships::Relationship the_relationship;
CosObjectIdentity::ObjectIdentifier constant_random_id;

};

interface OperationsFactory {
Operations create_compound_operations();

};

interface Operations {
Node copy (

in Node starting_node,
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
Life Cycle Service V1.1 April 2000 A-9

A

CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void move (
in Node starting_node,
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (CosLifeCycle::NotRemovable);

void destroy();
};

interface Node : CosGraphs::Node {
exception NotLifeCycleObject {};
void copy_node (

in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void move_node (
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void remove_node ()
raises (CosLifeCycle::NotRemovable);

CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

};

interface Role : CosGraphs::Role {
Role copy_role (

in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void move_role (
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
A-10 Life Cycle Service, V1.1 April 2000

A

e
hat
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface Relationship : CosRelationships::Relationship {

Relationship copy_relationship (
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria,
in CosGraphs::NamedRoles new_roles)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

void move_relationship (
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in CosRelationships::RoleName from_role_name,
in CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface PropagationCriteriaFactory {
CosGraphs::TraversalCriteria create(in Operation op);

};
};

A.6.1 The OperationsFactory Interface

Creating a Compound Life Cycle Operation

Operations create_compound_operations();

Thecreate_compound_operations operation creates an object that implements th
compound life cycle operations, that is, the factory creates and returns an object t
supports theCosCompoundLifeCycyle::Operations interface.
Life Cycle Service V1.1 April 2000 A-11

A

d

a

, the
the

for
A.6.2 The Operations Interface

The Operations interface defines compound life cycle operations to copy, move an
remove objects, given a starting node in a graph.

Applying the Copy Operation to a Graph of Related Objects

Node copy (
in Node starting_node,
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as thestarting_node parameter. The copy should be
collocated with the factory finder given by thethere parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If a node, role or relationship in the graph refuses to be copied, theNotCopyable
exception is raised with the node, role or relationship object reference returned as
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannot be found
NoFactory exception is raised. The exception value indicates the key used to find
factory.

In addition to theNoFactory andNotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied graph,NO_RESOURCES will be raised.

It is implementation dependent whether this operation is atomic.

Applying the Move Operation to a Graph of Related Objects

void move (
in Node starting_node,
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);
A-12 Life Cycle Service, V1.1 April 2000

A

n

s a

the

for

The
The move operation applies the move operation to a graph of related objects. The
starting node is provided as thestarting_node parameter. The migrated graph should
be collocated with the factory finder given by thethere parameter. The final
parameter,the_criteria , allows unspecified values to be passed. This is explained i
the Life Cycle specification in detail.

If a node, role, or relationship in the graph refuses to be moved, theNotMovable
exception is raised with the node, role, or relationship object reference returned a
parameter to the exception.

If appropriate factories to migrate the nodes and roles cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated graph,NO_RESOURCES will be raised.

It is implementation-dependent whether this operation is atomic.

Applying the Remove Operation to a Graph of Related Objects

void remove (in Node starting_node)
raises (CosLifeCycle::NotRemovable);

The remove operation applies the remove operation to a graph of related objects.
starting node is provided as thestarting_node parameter.

If a node, role, or relationship in the graph refuses to be removed, the
NotRemovable exception is raised with the node, role, or relationship object
reference returned as a parameter to the exception.

It is implementation dependent whether this operation is atomic.

Destroying the Compound Operation

void destroy();

The destroy operation indicates to the compound operation that the client has
completed operating on the graph. The compound operation object is destroyed.

A.6.3 The Node Interface

The Node interface defines operations to copy, move, and remove a node.

Copying a Node

void copy_node (
in CosLifeCycle::Criteria the_criteria,
out Node new_node,
Life Cycle Service V1.1 April 2000 A-13

A

les

ed”.

tion.

for
out Roles roles_of_new_node)
raises (CosLifeCycle::NoFactory,

CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

The copy operation makes a copy of the node and its roles. The new node and ro
should be collocated with the factory finder given by thethere parameter. The final
input parameter,the_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

The result of a copy operation is a:

• node object reference for the new node, and

• sequence of roles.

Figure A-4 illustrates the result of a copy. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnect
It is the compound copy operation’s job to correctly establish new relationships.

Figure A-4 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses to be copied, theNotCopyable exception is
raised with the node or role object reference returned as a parameter to the excep

If an appropriate factory to create a copy cannot be found, theNoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied node,NO_RESOURCES will be raised.

Moving a Node

void move_node (
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

THEREHERE

original
document

new
document
A-14 Life Cycle Service, V1.1 April 2000

A

and

ed

tion.

the

for

tion.

cts

o
e

e

The move operation transfers some or all of the node’s resources from “here” to
“there.” The move operation migrates a the node and its roles. The migrated node
roles should be collocated with the factory finder given by thethere parameter. The
final parameter,the_criteria , allows unspecified values to be passed. This is explain
in the Life Cycle specification in detail.

If the node or one of its roles refuses to be moved, theNotMovable exception is
raised with the node or role object reference returned as a parameter to the excep

If an appropriate factory to support migration “over there” cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated node,NO_RESOURCES will be raised.

Removing a Node

void remove_node ()
raises (CosLifeCycle::NotRemovable);

The remove operation removes the node and its roles.

If the node or one of its roles refuses to be removed, theNotRemovable exception is
raised with the node or role object reference returned as a parameter to the excep

Getting the Node’s Life Cycle Object

CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

Some nodes not only participate in the life cycle protocols for graphs of related obje
but they also support the client’s view of life cycle services. That is, the node also
supports the CosLifeCycle::LifeCycleObject interface described in the Life Cycle
Service specification. Theget_life_cycle_object operation returns the
CosLifeCycle::LifeCycleObject object reference for the node.

If the node does not support the CosLifeCycle::LifeCycleObject interface, the
NotLifeCycleObject exception is raised.

A.6.4 The Role Interface

The Role interface defines operations to copy and move a role. (Thedestroy
operation is defined by the base Relationship Service. As such, there is no need t
define aremove operation.) TheRole interface also defines an operation to return th
propagation values for thecopy , move , andremove operations.

The implementation of aCompoundLifeCycle::Node operation can call these
operations on roles. For example, an implementation of copy on a node can call th
copy operation on the Role.
Life Cycle Service V1.1 April 2000 A-15

A

ith

tion

he

for

en

for
Copying a Role

Role copy_role (
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

Thecopy operation makes a copy of the role. The new role should be collocated w
the factory finder given by thethere parameter. The final parameter,the_criteria ,
allows unspecified values to be passed. This is explained in the Life Cycle specifica
in detail.

The result of acopy operation is an object reference for the new object supporting t
Role interface.

If the role refuses to be copied, theNotCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, theNoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied role,NO_RESOURCES will be raised.

Moving a Role

void move_role (
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

Themove operation transfers some or all of the role’s resources. Themove operation
migrates the role. The migrated role should be collocated with the factory finder giv
by the there parameter. The final parameter,the_criteria , allows unspecified values
to be passed. This is explained in the Life Cycle specification in detail.

If the role refuses to be moved, theNotMovable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, theNoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated role,NO_RESOURCES will be raised.
A-16 Life Cycle Service, V1.1 April 2000

A

he
d to
o

r,

he
Getting a Propagation

CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Value

The life_cycle_propagation operation returns the propagation value to the role
to_role_name for the life cycle operationop and the relationshiprel . If the role can
guarantee that the propagation value is the same for all relationships in which it
participates,same_for_all is true.

A.6.5 The Relationship Interface

The Relationship interface defines operations to copy and move a relationship. (T
destroy operation is defined by the Relationship Service. As such, there is no nee
define aremove operation.) The Relationship interface also defines an operation t
return the propagation values for thecopy , move andremove operations.

Copying the Relationship

Relationship copy_relationship (
in CosLifeCycle::FactoryFinder there,
in CosLifeCycle::Criteria the_criteria,
in CosGraphs::NamedRoles new_roles)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotCopyable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

The copy operation creates a new relationship. The new relationship should be
collocated with the factory finder given by thethere parameter. The second paramete
the_criteria , allows unspecified values to be passed. This is explained in the
beginning of the Life Cycle specification in detail.

The values of the newly created relationship’s attributes are defined by the
implementation of this operation. However, thenamed_roles attribute of the newly
created relationship must match new_roles. That is, the newly created relationship
relates objects represented bynew_roles parameter, not the by the original
relationship’s named roles.

The result of acopy operation is an object reference for the new object supporting t
Relationship interface.

If the relationship refuses to be copied, theNotCopyable exception is raised with the
relationship object reference returned as a parameter to the exception.
Life Cycle Service V1.1 April 2000 A-17

A

for

d

for
If an appropriate factory to create a copy cannot be found, theNoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied role,NO_RESOURCES will be raised.

Moving the Relationship

void move_relationship (
in CosLifeCycle::Criteria the_criteria)

raises (CosLifeCycle::NoFactory,
CosLifeCycle::NotMovable,
CosLifeCycle::InvalidCriteria,
CosLifeCycle::CannotMeetCriteria);

The move operation transfers some or all of the relationship’s resources. Themove
operation migrates the relationship. The migrated relationship should be collocate
with the factory finder given by thethere parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If the relationship refuses to be moved, theNotMovable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, theNoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated relationship,NO_RESOURCES will be raised.

Getting a Propagation

CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in CosRelationships::RoleName from_role_name,
in CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Value

The life_cycle_propagation operation returns the relationship’s propagation value
from the rolefrom_role to the roleto_role_name for the life cycle operationop . If
the role named byfrom_role_name can guarantee that the propagation value is the
same for all relationships in which it participates,same_for_all is true.
A-18 Life Cycle Service, V1.1 April 2000

A

fines

lues

lues

of

nted

ce is

.

A.6.6 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the CosGraphs::TraversalCriteria interface. Given a node, this object de
which edges to emit and which nodes to visit next.

The PropagationCriteriaFactory creates aTraversalCriteria object that
determines which edges to emit and which nodes to visit based on propagation va
for the compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Values

CosGraphs::TraversalCriteria create(in Operation op);

The create operation returns aTraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation va
for op. For a more detailed discussion see Section A.5.1, “Applying the Copy
Operation to the Example,” on page A-5 of this appendix and “Traversing Graphs
Related Objects” of the Relationship specification.

A.6.7 Specific Life Cycle Relationships

The Relationship service defines two important relationships:

• Containment is a one-to-many relationship. A container can contain many
containees; a containee is contained by one container. Containment is represe
by a relationship with two roles: theContainsRole , and theContainedInRole .

• Reference, on the other hand, is a many-to-many relationship. An object can
reference many objects; an object can be referenced by many objects. Referen
represented by a relationship with two roles:ReferencesRole and
ReferencedByRole .

The compound life cycle specification adds life cycle semantics to these specific
relationships. That is, it defines propagation values for containment and reference

A.7 The CosLifeCycleContainment Module

The CosLifeCycleContainment module defines three interfaces

• the Relationship interface

• the ContainsRole interface and

• the ContainedInRole interface.

#include <CosContainment.idl>
#include <CosCompoundLifeCycle.idl>

pragma prefix “omg.org”
Life Cycle Service V1.1 April 2000 A-19

A

hese
module CosLifeCycleContainment {

interface Relationship :
CosCompoundLifeCycle::Relationship,
CosContainment::Relationship {};

interface ContainsRole :
CosCompoundLifeCycle::Role,
CosContainment::ContainsRole {};

interface ContainedInRole :
CosCompoundLifeCycle::Role,
CosContainment::ContainedInRole {};

};

The CosLifeCycleContainment module does not define new operations. It merely
“mixes in” interfaces from theCosCompoundLifeCycle andCosContainment
modules. Although it does not add any new operations, it refines the semantics of t
attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise:

• DegreeError if the number of roles passed as arguments is not 2.

• RoleTypeError if the roles are not
CosLifeCycleContainment::ContainsRole and
CosLifeCycleContainment::ContainedInRole .

• MaxCardinalityExceeded if the CosLifeCycleContainment::
ContainedInRole is already participating in a relationship.

RelationshipFactory
attribute

value

relationship_type CosLifeCycleContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosLifeCycleContainment::ContainsRole;
“ContainedInRole”,CosLifeCycleContainment::ContainedInRole

RoleFactory attribute for
ContainsRole

value

role_type CosLifeCycleContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node
A-20 Life Cycle Service, V1.1 April 2000

A

t

t

• The CosRelationships::RoleFactory::create_role operation will raise
RelatedObjectTypeError if the related object passed as a parameter does no
support theCosCompoundLifeCycle::Node interface.

• The CosRelationships::RoleFactory::link_role operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface..

• The CosRelationships::RoleFactory::create_role operation will raise
RelatedObjectTypeError if the related object passed as a parameter does no
support theCosCompoundLIfeCycle::Node interface.

• The CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface.

• The CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

The CosLifeCycleContainment::ContainsRole::life_cycle_propagation
operation returns the following:

The CosLifeCycleContainment::ContainedInRole::life_cycle_propagation
operation returns the following::

RoleFactory attribute for
ContainedInRole value

role_type CosLifeCycleContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node

operation ContainsRole to
ContainedInRole

copy deep

move deep

remove deep

operation ContainedInRole to
ContainsRole

copy shallow

move shallow

remove shallow
Life Cycle Service V1.1 April 2000 A-21

A

utes
A.8 The CosLifeCycleReference Module

The CosLifeCycleReference module defines three interfaces

• the Relationship interface,

• the ReferencesRole interface, and

• the ReferencedByRole interface.

#include <CosReference.idl>
#include <CosCompoundLifeCycle.idl>

pragma prefix “omg.org”

module CosLifeCycleReference {

interface Relationship :
CosCompoundLifeCycle::Relationship,
CosReference::Relationship {};

interface ReferencesRole :
CosCompoundLifeCycle::Role,
CosReference::ReferencesRole {};

interface ReferencedByRole :
CosCompoundLifeCycle::Role,
CosReference::ReferencedByRole {};

};

The CosLifeCycleReference module does not define new operations. It merely
“mixes in” interfaces from theCosCompoundLifeCycle andCosReference
modules.

Although it does not add any new operations, it refines the semantics of these attrib
and operations:

The CosRelationships::RelationshipFactory::create operation will raise:

• DegreeError if the number of roles passed as arguments is not 2.

RelationshipFactory
attribute

value

relationship_type CosLifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::ReferencesRole;
“ReferencedByRole”,CosLifeCycleReference::ReferencedByRole
A-22 Life Cycle Service, V1.1 April 2000

A

t

t

• RoleTypeError if the roles are notCosReference::ReferencesRole and
CosReference::ReferencedByRole.

• The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support theCosCompoundLifeCycle::Node interface.

• The CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleReference::Relationship interface.

• The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support theCosCompoundLifeCycle::Node interface.

• The CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleRelationship::Relationship interface.

The CosLifeCycleReference::ReferencesRole::life_cycle_propagation
operation returns the following:

RoleFactory attribute for
ReferencesRole

value

role_type CosLifeCycleReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ReferencedByRole

value

role_type CosLifeCycleReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

operation ReferencesRole to
ReferencedByRole

copy shallow

move shallow

remove shallow
Life Cycle Service V1.1 April 2000 A-23

A

t

The CosLifeCycleReference::ReferencedByRole::life_cycle_propagation
operation returns the following::

• The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support theCosCompoundLifeCycle::Node interface.

• The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are notCosLifeCycleReference::ReferencesRole
andCosLifeCycleReference::ReferencedByRole .

operation ReferencedByRole to
ReferencesRole

copy none

move shallow

remove shallow
A-24 Life Cycle Service, V1.1 April 2000

References B
am
1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.”OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Willi
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.
Life Cycle Service, V1.1 April 2000 B-1

B

B-2 Life Cycle Service, V1.1 April 2000

Filters C
s a
e of

ate

lient
mit
h

be

ts.

ope,
e

er is

nt

r
ntial
Note –This appendix is not part of the Life Cycle Services specification. It sketche
mechanism for expressing filters. This appendix is included to provided an exampl
how a filter might be provided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will alloc
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a c
is exerting some control over the allocation of resources. Therefore, a client can li
the scope of resource allocation, by issuing the request on a different factory whic
represents a smaller set of resources.

However, there are two problems with this. Firstly, the granularity of resources may
much smaller than the granularity represented by the factories in a system. For
example, there are unlikely to be factories which represent individual disk segmen

Secondly, the client may wish to rule out the use of particular resources within a sc
but avoid having a general reduction in scope. For example, the client might not b
concerned with which machine within a LAN an object is created on, providing it is
not on machine X.

Both of these needs can be addressed by providing a filter. In the first case, the filt
relatively simple; it will simply limit the scope of resource allocation. In the second
case, the filter will need to be more sophisticated.

This appendix describes one way of providing filters using properties and constrai
expressions. These concepts appear in the development of Trading in the
ISO/IEC/CCITT Open Distributed Processing standards. Service providers registe
their service with the Trader and use properties to describe the service offer. Pote
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.
Life Cycle Service, V1.1 April 2000 C-1

C

aint

ich
e are

t and

s that

ators
es
e

can

er of
Similarly, the life cycle service may define a number of properties to represent the
different kinds of resources available within in a system and clients may use constr
expressions to place the restrictions upon the use of those resources.

Note –The Object Services Architecture identifies an Object Properties Service wh
enables an object to have a set of arbitrary named values associated with it. Thes
very similar to the concept of properties as used in Trading and in this appendix.

C.1 Resources as Properties

Resource properties are application and generic factory implementation dependen
it is beyond the scope of this specification to identify standard properties which all
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table C-1 gives some examples of propertie
might be supported by a generic factory.

C.2 Constraint Expressions

Constraints are expressed in a Constraint Language which provides a set of oper
which allow arbitrarily complex expressions involving properties and potential valu
to be specified. A property listssatisfiesa constraint if the constraint expression is tru
when evaluated with respect to the property list.

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Host1’ and wishes to create another object which isnot
on the same machine, the client can specify the constraint “Host != ‘Host1’”.

The constraint expression described here works with properties for which the value
be a string, a number, or a set of values.

The constraint language consists of:

• comparative functions:==, !=, >, >=, <, <=, in
• constructors:and, or, not
• property names
• numeric and string constants
• mathematical operators:+, -, *, /
• grouping operators:(,), [,]

The following precedence relations hold in the absence of parentheses, in the ord
lowest to highest:

Table C-1 Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architecture, e.g. “intel”, “sparc”

OSArchitecture Operating system architecture e.g. “solaris”, “hpux”
C-2 Life Cycle Service, V1.1 April 2000

C

n

• + and -
• * and /
• or
• and
• not

The comparative operatorin checks for the inclusion of a particular string constant i
the list which is the value of a property.

C.3 BNF for Constraint Expressions

<ConstraintExpr> := [<Expr>]

<Expr> := <Expr> ”or” <Expr>
| <Expr> ”and” <Expr>
| ”not” <Expr>
| ”(” <Expr> ”)”
| <SetExpr> <SetOp> <SetExpr>
| <StrExpr> <StrOp> <StrExpr>
| <NumExpr> <NumOp> <NumExpr>
| <NumExpr> ”in” <SetExpr>
| <StrExpr> ”in” <SetExpr>

<NumOp> := ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”

<StrOp> := ”==” | ”!=”

<SetOp> := ”==” | ”!=”

<NumExpr> := <NumTerm>
| <NumExpr> ”+” <NumTerm>
| <NumExpr> ”-” <NumTerm>

<NumTerm> := <NumFactor>
| <NumTerm> ”*” <NumFactor>
| <NumTerm> ”/” <NumFactor>

<NumFactor> := <Identifier>
| <Number>
| ”(” <NumExpr> ”)”
| ”-” <NumFactor>

<StrExpr> := <StrTerm>
| <StrExpr> ”+” <StrTerm>
Life Cycle Service V1.1 April 2000 C-3

C

<StrTerm> := <Identifier>
| <String>
| ”(” <StrExpr> ”)”

<SetExpr> := <SetTerm>
| <SetExpr> ”+” <SetTerm>

<SetTerm> := <Identifier>
| <Set>
| ”(” <SetExpr> ”)”

<Identifier> := <Word>

<Number> := <Integer>
| <Float>

<Integer> := { <Digit> }+

<Float> := <Mantissa> [<Sign>] [<Exponent>]

<Mantissa> := <Integer> [”.” [<Integer>]]
| ”.” <Integer>

<Sign> := ”-”
| ”+”

<Exponent> := ”e” <Integer>
| ”E” <Integer>

<Word> := <Letter> { <AlphaNum> }*

<AlphaNum> := <Letter>
| <Digit>
| ”_”

<String> := ”’” { <Char> }* ”’”

<Char> := <Letter>
| <Digit>
| <Other>

<Set> := ”{” <Elements> ”}”

<Elements> := [<Element> { <Sp>+ <Element> }*]
C-4 Life Cycle Service, V1.1 April 2000

C

<Element> := <Number>
| <Word>
| <String>

<Letter> := a | b | c | d | e | f | g | h | i | j | k
| l | m | n | o | p | q | r | s | t | u | v
| w | x | y | z | A | B | C | D | E | F | G
| H | I | J | K | L | M | N | O | P | Q | R
| S | T | U | V | W | X | Y | Z

<Digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Other> := <Sp> | ~ | ! | @ | # | $ | % | ^ | & | * | (
|) | - | _ | = | + | [| { |] | } | ; | :
| “ | \ | | | , | < | . | > | / | ?

<Sp> := ” ”
Life Cycle Service V1.1 April 2000 C-5

C

C-6 Life Cycle Service, V1.1 April 2000

Administration D
ries

, a

g

o
tisfy
aph

,

Note – This appendix is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes theGenericFactory interface.
There will be at least two styles of object which support that interface:

• implementation specific factories that actually assemble the resources for a new
object, and

• generic factories which pass requests on to either implementation specific facto
or other generic factories.

By configuring generic factories and implementation specific factories into a graph
creation service can be built which administers the allocation of a large number of
resources and can use them to create a wide variety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federation is adopted – each component retains its autonomy rather than becomin
subordinate to another.

Whenever the creation service receives a creation request, the request will need t
traverse the graph until it reaches an implementation specific factory which can sa
the request. As the request traverses the graph, each non-terminal node in the gr
(i.e., the generic factories) will decide which link the request will traverse next.
Decisions will be based upon information about each available link, any policies in
force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle of federation is not only
important to the life cycle service. It will be essential to a number of other services
Life Cycle Service, V1.1 April 2000 D-1

D

ct
t one

l,
des

the

ir
” in

s
mes

al

g.,

lso

le.
of

ng
can

ext

d in a
notably trading, and the OMG plans to address the issue of federation for all obje
services, rather than making a premature specification addressing the needs of jus
service.

The remainder of this appendix describes the principle of federation in more detai
outlines the use of policies and preferences to support federation, and then conclu
with a suggestion for how an administration interface might look.

D.1 Federation

Federation is essential in large-scale distributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these systems
only way to achieve cooperation between autonomous systems without creating a
hierarchical structure is to use federation. Federation is also beneficial to smaller
systems which can exploit the high degree of flexibility which federation provides.

Federation differs from the more conventional approach of adopting a strictly
hierarchical organization in a number of ways. Firstly, components can provide the
service to any number of others, not just the single component which is its “parent
the hierarchy. Secondly, components can establish peer-to-peer relationships,
eliminating the need for a single component at the top of the hierarchy. Finally, thi
approach avoids the necessity of maintaining a global namespace. Instead, all na
are relative to the context in which they are used.

Federation enables previously distinct systems to be unified without requiring glob
changes to their naming structures and system management hierarchies. The
administration functions must ensure the systems are configured appropriately (e.
avoiding circular references in those graphs which must be kept acyclic).

D.1.1 Federation in Object Services

In addition to the use of federation in configuring generic factories, federation is a
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirab
Consequently, there will be multiple traders, each representing a different portion
the offer space. Offers held by one trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Nami
contexts can be bound to other naming contexts and requests for name resolution
be passed across the links. However, it is entirely the concern of the naming cont
how it resolves the name within its domain (i.e., it is autonomous).

D.1.2 Federation Issues

There are a number of issues which need to be addressed for federation to be use
cohesive fashion across all object services.
D-2 Life Cycle Service, V1.1 April 2000

D

ients

al
ific

t to

ice.

that

ial
uish
.
ting,

ces,
the

an
ce
re

r-to-
r-to-
to

h

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts into a graph very
visible to the clients. This is essential, because the naming service must provide cl
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the intern
structure of a life cycle creation service built with generic and implementation spec
factories.

The trading service falls in between the two extremes. It may be useful for a clien
be able to navigate the structure of a trading service graph in order to have more
control over the visibility of offers. However, this may make clients too dependent
upon the organization of the trading service and limit the flexibility of the system
administrator in reorganizing the trading service to provide the most effective serv

Service Interface vs. Administration Interface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administrators. This approach ensures
autonomy is retained. However, this precludes the use of compound names in the
administration functions because the administration functions cannot traverse the
graph; only simple names can be used in administration only functions.

However, this is inappropriate for services where graph manipulation is an essent
part of the service. For example, the naming service specification does not disting
between administration functions for manipulating the graph and service functions
This is clearly correct; the clients need to be able to manipulate the graph by crea
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfa
perhaps one for each point it is bound into the graph. However, for services where
administration is kept distinct from the service, it is likely that the conspiracy will
support only one administration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to
administrative interface. The example in Section D.2, “An Example LifeCycleServi
Module,” on page D-5 provides a solution to this which, in theory, will scale, but the
may be better ways of doing this.

Cycles and Peer-to-Peer Relationships

The introduction of cycles into a federation graph is a contentious issue. Since pee
peer relationships are a degenerate form of cycle, any service which supports pee
peer relationships must be capable of handling cycles. The major impact of this is
provide loop detection on operations which would otherwise go out of control. Bot
trading and naming services are examples of this kind of service.
Life Cycle Service V1.1 April 2000 D-3

D

to
t be

vice,
te up
d

in
any

ins
n the

ents
n be
ard

oice

is

nces.

cy
are

be

st.
However, some services may not be able to handle cycles effectively and will wish
proscibe them. This probably covers peer-to-peer relationships, although that migh
an acceptable special case. An example of this might be the life cycle creation ser
where information about the current usage of the available resources must percola
the graph in order to make informed decisions, but the introduction of cycles woul
make this information unclear or even meaningless.

Policies

It is frequently necessary to configure the way in which operations are performed
order to tune the performance, e.g how long a search operation may take, how m
matches can be returned, or how much memory to use for a cache.

The same problems exist in distributed systems except that such configuration
parameters must be explicitly passed around. Where different administrative doma
are connected, such configuration parameters cannot be enforced by one domain o
other. Similarly, users may want to control the configuration but must be prevented
from hogging resources (e.g., memory, disk space, etc.). Some configuration elem
must be enforced (e.g., disk quotas), some elements may specify defaults which ca
changed, and some elements may be requests which may or may not clash with h
limits (e.g., max memory per process).

Policies are used as a generic solution to this problem – wherever some kind of ch
needs to be made, policies may be used to guide the decision making process.

Table D-1 provides some examples of policies. which a federated service might
support.

When invoking operations, clients can specify preferences for particular policies.
Providing the service has no value set for that policy, the preference will be simply
added to the policy list for the duration of the request. However, if a service policy
already specified then the preference will either be ignored or, for policies such as
“maximum_distance”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as prefere
In this way, the autonomy of individual administrative domains is preserved.

When an object doesn’t implement all choices of a policy, it should not allow its poli
to be modified to an unsupported value. This means that implementation limitations
handled as Administrative hard limits which provides the correct semantics.

Table D-1 Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries
should be crossed.

maximum_distance how far to traverse a graph before failing a reque
D-4 Life Cycle Service, V1.1 April 2000

D

ugh

rk
n

Where no policy is specified by either administrator or client, the implementation
determines its own behavior. However, this decision would not be propagated thro
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

D.2 An Example LifeCycleService Module

Administrators access the administration functions via theLifeCycleServicemodule,
which defines the LifeCycleServiceAdmin interface. This example is intended to wo
with the GenericFactory interface in the specification. As a result, the administratio
functions cannot make use of compound names.

Note – This is only an example of the LifeCycle service and is NOT part of the
LifeCycle service.

#include <CosLifeCycle.idl>

#pragma prefix “omg.org”

module LifeCycleService {

typedef sequence <CosLifeCycle::NameValuePair> PolicyList;
typedef sequence <CosLifeCycle::Key> Keys;
typedef sequence <CosLifeCycle::NameValuePair> PropertyList;
typedef sequence <CosNaming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {

attribute PolicyList policies;

void bind_generic_factory(
in CosLifeCycle::GenericFactory gf,
in CosNaming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (CosNaming::NamingContext::AlreadyBound,
CosNaming::NamingContext::InvalidName);

void unbind_generic_factory(
in CosNaming::NameComponent name)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::InvalidName);

CosLifeCycle::GenericFactory resolve_generic_factory(
in CosNaming::NameComponent name)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::InvalidName);

NameComponents list_generic_factories();
Life Cycle Service V1.1 April 2000 D-5

D

s

the

en

de

ble
rt).

rt.

te
boolean match_service (in CosLifeCycle::GenericFactory f);

string get_hint();

void get_link_properties(
in CosNaming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::InvalidName);

};

};

D.2.1 The LifeCycleServiceAdmin Interface

The LifeCycleServiceAdmin interface provides the basic administration operation
required to enable the lifecycle service to be administered by a set of tools or an
administration service. The operations enable configuration of factories supporting
GenericFactory interface into a graph and setting of policies for those factories.

bind_generic_factory

void bind_generic_factory(
in CosLifeCycle::GenericFactory gf,
in CosNaming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (CosNaming::NamingContext::AlreadyBound,

CosNaming::NamingContext::InvalidName);

This operation binds a factory supporting theGenericFactory interface into a graph.
The name must be unique within the context of the target of the operation. From th
on, that factory can be identified by that name.

In order to make a good decision about which link to choose for a request, the no
needs to be provided with additional information about those factories. This
information may be fairly dynamic (e.g., the current usage of the resources availa
through the link), or more static (e.g., the Keys for which the link can provide suppo

Thekey_set parameter is a list of the keys for which the factory can provide suppo
In the case of an implementation specific factory, this list will often only have one
member.

The other_properties parameter can be used to provide other static properties
associated with the factory. For example, an “Architectures” property would indica
the type(s) of machine which the factory could create objects on.
D-6 Life Cycle Service, V1.1 April 2000

D

ver

le to

t.
Changes to the static information as well as more dynamic information can be
monitored through the Events service. Each factory would generate events whene
the information changed significantly (e.g., a newGenericFactory interface with new
keys is bound to the factory, or there is a change in the usage of resources availab
the factory) and these can then be passed to those factories which need to know.

unbind_generic_factory

void unbind_generic_factory(
in CosNaming::NameComponent name)
raises (CosNaming::NamingContext::NotFound,

CosNaming::NamingContext::InvalidName);

This operation unbinds the generic factory identified by the name.

resolve_generic_factory

CosLifeCycle::GenericFactory resolve_generic_factory(
in CosNaming::NameComponent name)
raises (CosNaming::NamingContext::NotFound,

CosNaming::NamingContext::InvalidName);

This operation takes the name supplied and returns the reference to the
GenericFactory object.

list_generic_factories

NameComponents list_generic_factories();

This operation returns a list of the names of all the bound factories.

match_service

boolean match_service (in CosLifeCycle::GenericFactory f);

This operation returnstrue if the generic factory interface is supported by the targe

get_hint

string get_hint();

This operation returns a hint associated with the target, see “Building a Map of a
Graph” on page D-8.

get_link_properties

void get_link_properties(
in CosNaming::NameComponent name,
out Keys key_set,
Life Cycle Service V1.1 April 2000 D-7

D

nd

ies
ell-

here

is
ved is
out PropertyList other_properties)
raises (CosNaming::NamingContext::NotFound,

CosNaming::NamingContext::InvalidName);

This operation returns thekey_set andother_properties associated with thename.

Building a Map of a Graph

Administration tools may wish to build a map of a federation graph from scratch a
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the factor
to be administered. These might be obtained from a number of sources (e.g., a w
known trading context).

For each interface, thelist_generic_factories operation obtains a list of all the links
for each node. Usingresolve_generic_factory , a service interface can be obtained
for each link. These can then be matched to an administration interface using
match_service .

Clearly, this does not scale well if there are many nodes involved because of the
average number of invocations ofmatch_service required. This problem can be
solved if one of theother_properties associated with each service interface is ahint
and a hint is available for each administration interface. If the hints are the same, t
may be a match andmatch_service is called to check. If the hints could be
guaranteed to be unambiguous, the invocation could be avoided altogether, but th
requires a global namespace for the hints. The best that can reasonably be achie
to reduce the chance of a clash to a minimum.

The get_hint andget_link_properties can be used for this purpose.
D-8 Life Cycle Service, V1.1 April 2000

Supports forPCTEObjects E
e
s
. It

an
ices
e

CTE.

Any
hip
een
Note – This appendix is not part of the Life Cycle Services specification. This
appendix defines a set of criteria1 suitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those objects that can b
managed though this lifecycle interface. It is reasonable to expect that application
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects
is also reasonable to expect that clients not specifically written for relationship-
oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, between these two, one can envision clients which desire to be flexible,
working on objects which may or may not be stored in the PCTE repository. One c
also envision object factories, constructed to make use of PCTE which provide serv
to clients that are not PCTE applications because they do not have the appropriat
working schemas, etc.

Support for these clients employs a series of conventional interpretations of the
lifecycle operations. This appendix provides one such set of conventions to
demonstrate the feasibility of the use of these interfaces in a context supporting P

Object references appear in constraint expressions in the form of character strings.
implementation of PCTE as a CORBA Object Adapter has to establish a relations
between these and the corresponding CORBA types, and be able to convert betw
them.

1. As defined in Section 2.1.4, “Criteria,” on page 2-8 of the life cycle specification.
Life Cycle Service, V1.1 April 2000 E-1

E

an
in

eria.
erest

t be
of
rts

ly

d

near

ever,
E.1 Overview

A PCTE repository can be viewed as a generic factory. Using whatever naming or
trading services are appropriate, a client wishing to use the PCTE factory obtains
object reference to it. To support the simple applications intending to operate with
the context of a single PCTE repository, the PCTE factory supports the operations
defined by both theGenericFactory andFactoryFinder interfaces. The client can
then invoke the PCTE factory’screate_object operation, or pass the factory as the
“factory finder” when invoking the move or copy operations to move or copy within
the same PCTE repository. These clients include the servers implementing themove
andcopy operations for various PCTE objects as well.

Lifecycle creation, copy, and move operations are influenced by a sequence of crit
Criteria are specified as a sequence of name/value pairs. Certain criteria are of int
to the PCTE factories:

“logical location”

The logical location is used to express the logical connection information that mus
specified when creating or copying a PCTE object. Logical location is a sequence
name/value pairs expressing a connection for the object. The PCTE factory suppo
and requires two logical locations:

• ORIGIN: A string representation of the reference to the object to which the new
created object is to be connected.

• ORIGINLINK: The name of the origin object’s link which is to hold the link from
the origin object to the newly created object.

“filter”

The filter is used to express the fact that an object being created, copied, or move
should reside on the same volume as some other, nearby, object. A filter is an
expression as described in Section C.3, “BNF for Constraint Expressions,” on
page C-3. For PCTE, the term “NEAR=” followed by an object reference to the
designated nearby object indicates that the new object is to be located at least as
as the same volume to the specified object.

“authorization”

Please note that no proposal on authorization has yet been accepted by OMG; how
this lifecycle criterion is required to create PCTE objects.

E.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this specification is
borne by factory objects. It has two parameters:

1. a key used to identify the desired object to be created and

2. a set of criteria expressed in an NVP-list.
E-2 Life Cycle Service, V1.1 April 2000

E

to

”

e of

to
out

E
le

ith
has
The corresponding PCTE operation is called OBJECT_CREATE. The parameters
OBJECT_CREATE are obtained from theLifeCycle::GenericFactory::
create_object parameters.

The PCTE operation OBJECT_CREATE has six parameters:

1. the type of object to be created This is the “key” from LifeCyclecreate_object .

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link. This is the string identified as the named “LINKKEY
of the initialization criteria.

5. an object near whose location the object is to be created This is the string valu
a required filter expression value by the qualifier “NEAR.”

6. an access mask. This is the string identified as the named “ACCESS” of the
authorization criteria. This string is a simple mapping of the granted and denied
access rights.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

E.3 Object Deletion

TheLifeCycle::LifeCycleObject::remove operation in this specification is borne by
all life-cycle objects. It has no parameters.

The corresponding PCTE operation is called OBJECT_DELETE. The parameters
OBJECT_DELETE are obtained from the object to be deleted using information ab
that object defined in PCTE’s schema information about the object.

The PCTE operation OBJECT_DELETE has two parameters:

1. the origin object of a relation anchoring the object to be deleted, and

2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PCT
referential integrity constraints the following steps are performed for each reversib
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.

2. Determine the name, r&prime., of the reverse link back from o.

3. Perform PCTE OBJECT_DELETE(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt w
thus, or before that if one of the OBJECT_DELETE calls fails because the object
already been deleted.
Life Cycle Service V1.1 April 2000 E-3

E

ied

ters

f the

”

e of

ich

ed
Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

E.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is borne by
all life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the cop
object, and

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operation is called OBJECT_COPY. Some of the parame
to OBJECT_COPY can be obtained directly from the LifeCycle copy parameters.
Other required information is obtained from the constraint expression parameter o
LifeCycle copy.

The PCTE operation OBJECT_COPY has six parameters:

1. The object to be copied. This is the bearer object of LifeCycle copy operation.

2. The origin object of the relation anchoring the new object. This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. The name of the link from that origin object to the new object. This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. An optional key for that link. This is the string identified as the named “LINKKEY
of the initialization criteria.

5. An object near whose location the object is to be created. This is the string valu
a required filter expression value by the qualifier “NEAR.”

6. An access mask. This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

The semantics of the copy operation corresponds to the PCTE OBJECT_COPY
semantics. They are based upon details of the object types involved, including wh
attributes, links and destination objects are “duplicable.”

Exceptions raised by PCTE are mapped to suitable CORBA standard exceptions.

E.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is borne by
all life-cycle objects. It has two parameters:

1. A factory-finder to assist in locating a factory that provide resources for the mov
object, and

2. a set of criteria expressed in an NVP-list.
E-4 Life Cycle Service, V1.1 April 2000

E

m

e of

his
The corresponding PCTE operation is called OBJECT_MOVE. The parameters to
OBJECT_MOVE can be obtained directly from the LifeCycle copy parameters or fro
defaults.

The PCTE operation OBJECT_MOVE has three parameters:

1. The object to be copied. This is the bearer object of LifeCycle move operation.

2. An object near whose location the object is to be created. This is the string valu
a required filter expression value by the qualifier “NEAR.”

3. Scope - whether to move the object itself or the object and all its components. T
will be defaulted to ATOMIC.
Life Cycle Service V1.1 April 2000 E-5

E

E-6 Life Cycle Service, V1.1 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.1.1 The problem of creation
	1.1.2 The problem of moving or copying an object
	1.1.3 The problem of operating on a graph of distributed objects

	1.2 Client’s Model of Object Life Cycle
	1.2.1 Client’s Model of Creation
	1.2.2 Client’s model of deleting an object
	1.2.3 Client’s model of copying or moving an object

	1.3 Factory Finders
	1.3.1 Multiple Factory Finders

	1.4 Design Principles
	1.5 Resolution of Technical Issues

	2. Life Cycle Interfaces
	2.1 The CosLifeCycle Module
	2.1.1 The LifeCycleObject Interface
	2.1.2 The FactoryFinder Interface
	2.1.3 The GenericFactory Interface
	2.1.4 Criteria

	2.2 Implementing Factories
	2.2.1 Minimal Factories
	2.2.2 Administered Factories

	2.3 Target’s Use of Factories and Factory Finders
	2.4 Summary of Life Cycle Service
	2.4.1 Summary of Life Cycle Service Structure

	Appendix A - Compound Life Cycle Specification
	Appendix B - References
	Appendix C - Filters
	Appendix D - Administration
	Appendix E - Supports for PCTE Objects

